blob: 1d4c8ad3487b161f5be130d153d19564bedcfede [file] [log] [blame]
drhbbd42a62004-05-22 17:41:58 +00001/*
2** 2004 May 22
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11******************************************************************************
12**
drh734c9862008-11-28 15:37:20 +000013** This file contains the VFS implementation for unix-like operating systems
14** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
danielk1977822a5162008-05-16 04:51:54 +000015**
drh734c9862008-11-28 15:37:20 +000016** There are actually several different VFS implementations in this file.
17** The differences are in the way that file locking is done. The default
18** implementation uses Posix Advisory Locks. Alternative implementations
19** use flock(), dot-files, various proprietary locking schemas, or simply
20** skip locking all together.
21**
drh9b35ea62008-11-29 02:20:26 +000022** This source file is organized into divisions where the logic for various
drh734c9862008-11-28 15:37:20 +000023** subfunctions is contained within the appropriate division. PLEASE
24** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed
25** in the correct division and should be clearly labeled.
26**
drh6b9d6dd2008-12-03 19:34:47 +000027** The layout of divisions is as follows:
drh734c9862008-11-28 15:37:20 +000028**
29** * General-purpose declarations and utility functions.
30** * Unique file ID logic used by VxWorks.
drh715ff302008-12-03 22:32:44 +000031** * Various locking primitive implementations (all except proxy locking):
drh734c9862008-11-28 15:37:20 +000032** + for Posix Advisory Locks
33** + for no-op locks
34** + for dot-file locks
35** + for flock() locking
36** + for named semaphore locks (VxWorks only)
37** + for AFP filesystem locks (MacOSX only)
drh9b35ea62008-11-29 02:20:26 +000038** * sqlite3_file methods not associated with locking.
39** * Definitions of sqlite3_io_methods objects for all locking
40** methods plus "finder" functions for each locking method.
drh6b9d6dd2008-12-03 19:34:47 +000041** * sqlite3_vfs method implementations.
drh715ff302008-12-03 22:32:44 +000042** * Locking primitives for the proxy uber-locking-method. (MacOSX only)
drh9b35ea62008-11-29 02:20:26 +000043** * Definitions of sqlite3_vfs objects for all locking methods
44** plus implementations of sqlite3_os_init() and sqlite3_os_end().
drhbbd42a62004-05-22 17:41:58 +000045*/
drhbbd42a62004-05-22 17:41:58 +000046#include "sqliteInt.h"
danielk197729bafea2008-06-26 10:41:19 +000047#if SQLITE_OS_UNIX /* This file is used on unix only */
drh66560ad2006-01-06 14:32:19 +000048
drh6033e152012-11-13 11:08:49 +000049/* Use posix_fallocate() if it is available
50*/
51#if !defined(HAVE_POSIX_FALLOCATE) \
52 && (_XOPEN_SOURCE >= 600 || _POSIX_C_SOURCE >= 200112L)
53# define HAVE_POSIX_FALLOCATE 1
54#endif
55
danielk1977e339d652008-06-28 11:23:00 +000056/*
drh6b9d6dd2008-12-03 19:34:47 +000057** There are various methods for file locking used for concurrency
58** control:
danielk1977e339d652008-06-28 11:23:00 +000059**
drh734c9862008-11-28 15:37:20 +000060** 1. POSIX locking (the default),
61** 2. No locking,
62** 3. Dot-file locking,
63** 4. flock() locking,
64** 5. AFP locking (OSX only),
65** 6. Named POSIX semaphores (VXWorks only),
66** 7. proxy locking. (OSX only)
67**
68** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
69** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
70** selection of the appropriate locking style based on the filesystem
71** where the database is located.
danielk1977e339d652008-06-28 11:23:00 +000072*/
drh40bbb0a2008-09-23 10:23:26 +000073#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
drhd2cb50b2009-01-09 21:41:17 +000074# if defined(__APPLE__)
drh40bbb0a2008-09-23 10:23:26 +000075# define SQLITE_ENABLE_LOCKING_STYLE 1
76# else
77# define SQLITE_ENABLE_LOCKING_STYLE 0
78# endif
79#endif
drhbfe66312006-10-03 17:40:40 +000080
drh9cbe6352005-11-29 03:13:21 +000081/*
drh6c7d5c52008-11-21 20:32:33 +000082** Define the OS_VXWORKS pre-processor macro to 1 if building on
danielk1977397d65f2008-11-19 11:35:39 +000083** vxworks, or 0 otherwise.
84*/
drh6c7d5c52008-11-21 20:32:33 +000085#ifndef OS_VXWORKS
86# if defined(__RTP__) || defined(_WRS_KERNEL)
87# define OS_VXWORKS 1
88# else
89# define OS_VXWORKS 0
90# endif
danielk1977397d65f2008-11-19 11:35:39 +000091#endif
92
93/*
drh9cbe6352005-11-29 03:13:21 +000094** These #defines should enable >2GB file support on Posix if the
95** underlying operating system supports it. If the OS lacks
drhf1a221e2006-01-15 17:27:17 +000096** large file support, these should be no-ops.
drh9cbe6352005-11-29 03:13:21 +000097**
98** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
99** on the compiler command line. This is necessary if you are compiling
100** on a recent machine (ex: RedHat 7.2) but you want your code to work
101** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
102** without this option, LFS is enable. But LFS does not exist in the kernel
103** in RedHat 6.0, so the code won't work. Hence, for maximum binary
104** portability you should omit LFS.
drh9b35ea62008-11-29 02:20:26 +0000105**
106** The previous paragraph was written in 2005. (This paragraph is written
107** on 2008-11-28.) These days, all Linux kernels support large files, so
108** you should probably leave LFS enabled. But some embedded platforms might
109** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
drh9cbe6352005-11-29 03:13:21 +0000110*/
111#ifndef SQLITE_DISABLE_LFS
112# define _LARGE_FILE 1
113# ifndef _FILE_OFFSET_BITS
114# define _FILE_OFFSET_BITS 64
115# endif
116# define _LARGEFILE_SOURCE 1
117#endif
drhbbd42a62004-05-22 17:41:58 +0000118
drh9cbe6352005-11-29 03:13:21 +0000119/*
120** standard include files.
121*/
122#include <sys/types.h>
123#include <sys/stat.h>
124#include <fcntl.h>
125#include <unistd.h>
drhbbd42a62004-05-22 17:41:58 +0000126#include <time.h>
drh19e2d372005-08-29 23:00:03 +0000127#include <sys/time.h>
drhbbd42a62004-05-22 17:41:58 +0000128#include <errno.h>
drhb469f462010-12-22 21:48:50 +0000129#ifndef SQLITE_OMIT_WAL
drhf2424c52010-04-26 00:04:55 +0000130#include <sys/mman.h>
drhb469f462010-12-22 21:48:50 +0000131#endif
drh1da88f02011-12-17 16:09:16 +0000132
danielk1977e339d652008-06-28 11:23:00 +0000133
drh40bbb0a2008-09-23 10:23:26 +0000134#if SQLITE_ENABLE_LOCKING_STYLE
danielk1977c70dfc42008-11-19 13:52:30 +0000135# include <sys/ioctl.h>
drh6c7d5c52008-11-21 20:32:33 +0000136# if OS_VXWORKS
danielk1977c70dfc42008-11-19 13:52:30 +0000137# include <semaphore.h>
138# include <limits.h>
139# else
drh9b35ea62008-11-29 02:20:26 +0000140# include <sys/file.h>
danielk1977c70dfc42008-11-19 13:52:30 +0000141# include <sys/param.h>
danielk1977c70dfc42008-11-19 13:52:30 +0000142# endif
drhbfe66312006-10-03 17:40:40 +0000143#endif /* SQLITE_ENABLE_LOCKING_STYLE */
drh9cbe6352005-11-29 03:13:21 +0000144
drhf8b4d8c2010-03-05 13:53:22 +0000145#if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
drh84a2bf62010-03-05 13:41:06 +0000146# include <sys/mount.h>
147#endif
148
drhdbe4b882011-06-20 18:00:17 +0000149#ifdef HAVE_UTIME
150# include <utime.h>
151#endif
152
drh9cbe6352005-11-29 03:13:21 +0000153/*
drh7ed97b92010-01-20 13:07:21 +0000154** Allowed values of unixFile.fsFlags
155*/
156#define SQLITE_FSFLAGS_IS_MSDOS 0x1
157
158/*
drhf1a221e2006-01-15 17:27:17 +0000159** If we are to be thread-safe, include the pthreads header and define
160** the SQLITE_UNIX_THREADS macro.
drh9cbe6352005-11-29 03:13:21 +0000161*/
drhd677b3d2007-08-20 22:48:41 +0000162#if SQLITE_THREADSAFE
drh9cbe6352005-11-29 03:13:21 +0000163# include <pthread.h>
164# define SQLITE_UNIX_THREADS 1
165#endif
166
167/*
168** Default permissions when creating a new file
169*/
170#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
171# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
172#endif
173
danielk1977b4b47412007-08-17 15:53:36 +0000174/*
drh5adc60b2012-04-14 13:25:11 +0000175** Default permissions when creating auto proxy dir
176*/
aswiftaebf4132008-11-21 00:10:35 +0000177#ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
178# define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
179#endif
180
181/*
danielk1977b4b47412007-08-17 15:53:36 +0000182** Maximum supported path-length.
183*/
184#define MAX_PATHNAME 512
drh9cbe6352005-11-29 03:13:21 +0000185
drh734c9862008-11-28 15:37:20 +0000186/*
drh734c9862008-11-28 15:37:20 +0000187** Only set the lastErrno if the error code is a real error and not
188** a normal expected return code of SQLITE_BUSY or SQLITE_OK
189*/
190#define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY))
191
drhd91c68f2010-05-14 14:52:25 +0000192/* Forward references */
193typedef struct unixShm unixShm; /* Connection shared memory */
194typedef struct unixShmNode unixShmNode; /* Shared memory instance */
195typedef struct unixInodeInfo unixInodeInfo; /* An i-node */
196typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */
drh9cbe6352005-11-29 03:13:21 +0000197
198/*
dane946c392009-08-22 11:39:46 +0000199** Sometimes, after a file handle is closed by SQLite, the file descriptor
200** cannot be closed immediately. In these cases, instances of the following
201** structure are used to store the file descriptor while waiting for an
202** opportunity to either close or reuse it.
203*/
dane946c392009-08-22 11:39:46 +0000204struct UnixUnusedFd {
205 int fd; /* File descriptor to close */
206 int flags; /* Flags this file descriptor was opened with */
207 UnixUnusedFd *pNext; /* Next unused file descriptor on same file */
208};
209
210/*
drh9b35ea62008-11-29 02:20:26 +0000211** The unixFile structure is subclass of sqlite3_file specific to the unix
212** VFS implementations.
drh9cbe6352005-11-29 03:13:21 +0000213*/
drh054889e2005-11-30 03:20:31 +0000214typedef struct unixFile unixFile;
215struct unixFile {
danielk197762079062007-08-15 17:08:46 +0000216 sqlite3_io_methods const *pMethod; /* Always the first entry */
drhde60fc22011-12-14 17:53:36 +0000217 sqlite3_vfs *pVfs; /* The VFS that created this unixFile */
drhd91c68f2010-05-14 14:52:25 +0000218 unixInodeInfo *pInode; /* Info about locks on this inode */
drh8af6c222010-05-14 12:43:01 +0000219 int h; /* The file descriptor */
drh8af6c222010-05-14 12:43:01 +0000220 unsigned char eFileLock; /* The type of lock held on this fd */
drh3ee34842012-02-11 21:21:17 +0000221 unsigned short int ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */
drh8af6c222010-05-14 12:43:01 +0000222 int lastErrno; /* The unix errno from last I/O error */
223 void *lockingContext; /* Locking style specific state */
224 UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */
drh8af6c222010-05-14 12:43:01 +0000225 const char *zPath; /* Name of the file */
226 unixShm *pShm; /* Shared memory segment information */
dan6e09d692010-07-27 18:34:15 +0000227 int szChunk; /* Configured by FCNTL_CHUNK_SIZE */
drh0d0614b2013-03-25 23:09:28 +0000228 int nFetchOut; /* Number of outstanding xFetch refs */
229 sqlite3_int64 mmapSize; /* Usable size of mapping at pMapRegion */
230 sqlite3_int64 mmapOrigsize; /* Actual size of mapping at pMapRegion */
231 sqlite3_int64 mmapLimit; /* Configured FCNTL_MMAP_LIMIT value */
232 void *pMapRegion; /* Memory mapped region */
drh537dddf2012-10-26 13:46:24 +0000233#ifdef __QNXNTO__
234 int sectorSize; /* Device sector size */
235 int deviceCharacteristics; /* Precomputed device characteristics */
236#endif
drh08c6d442009-02-09 17:34:07 +0000237#if SQLITE_ENABLE_LOCKING_STYLE
drh8af6c222010-05-14 12:43:01 +0000238 int openFlags; /* The flags specified at open() */
drh08c6d442009-02-09 17:34:07 +0000239#endif
drh7ed97b92010-01-20 13:07:21 +0000240#if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
drh8af6c222010-05-14 12:43:01 +0000241 unsigned fsFlags; /* cached details from statfs() */
drh6c7d5c52008-11-21 20:32:33 +0000242#endif
243#if OS_VXWORKS
drh8af6c222010-05-14 12:43:01 +0000244 struct vxworksFileId *pId; /* Unique file ID */
drh6c7d5c52008-11-21 20:32:33 +0000245#endif
drhd3d8c042012-05-29 17:02:40 +0000246#ifdef SQLITE_DEBUG
drh8f941bc2009-01-14 23:03:40 +0000247 /* The next group of variables are used to track whether or not the
248 ** transaction counter in bytes 24-27 of database files are updated
249 ** whenever any part of the database changes. An assertion fault will
250 ** occur if a file is updated without also updating the transaction
251 ** counter. This test is made to avoid new problems similar to the
252 ** one described by ticket #3584.
253 */
254 unsigned char transCntrChng; /* True if the transaction counter changed */
255 unsigned char dbUpdate; /* True if any part of database file changed */
256 unsigned char inNormalWrite; /* True if in a normal write operation */
danf23da962013-03-23 21:00:41 +0000257
drh8f941bc2009-01-14 23:03:40 +0000258#endif
danf23da962013-03-23 21:00:41 +0000259
danielk1977967a4a12007-08-20 14:23:44 +0000260#ifdef SQLITE_TEST
261 /* In test mode, increase the size of this structure a bit so that
262 ** it is larger than the struct CrashFile defined in test6.c.
263 */
264 char aPadding[32];
265#endif
drh9cbe6352005-11-29 03:13:21 +0000266};
267
drh0ccebe72005-06-07 22:22:50 +0000268/*
drha7e61d82011-03-12 17:02:57 +0000269** Allowed values for the unixFile.ctrlFlags bitmask:
270*/
drhf0b190d2011-07-26 16:03:07 +0000271#define UNIXFILE_EXCL 0x01 /* Connections from one process only */
272#define UNIXFILE_RDONLY 0x02 /* Connection is read only */
273#define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */
danee140c42011-08-25 13:46:32 +0000274#ifndef SQLITE_DISABLE_DIRSYNC
275# define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */
276#else
277# define UNIXFILE_DIRSYNC 0x00
278#endif
drhcb15f352011-12-23 01:04:17 +0000279#define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
drhc02a43a2012-01-10 23:18:38 +0000280#define UNIXFILE_DELETE 0x20 /* Delete on close */
281#define UNIXFILE_URI 0x40 /* Filename might have query parameters */
282#define UNIXFILE_NOLOCK 0x80 /* Do no file locking */
drha7e61d82011-03-12 17:02:57 +0000283
284/*
drh198bf392006-01-06 21:52:49 +0000285** Include code that is common to all os_*.c files
286*/
287#include "os_common.h"
288
289/*
drh0ccebe72005-06-07 22:22:50 +0000290** Define various macros that are missing from some systems.
291*/
drhbbd42a62004-05-22 17:41:58 +0000292#ifndef O_LARGEFILE
293# define O_LARGEFILE 0
294#endif
295#ifdef SQLITE_DISABLE_LFS
296# undef O_LARGEFILE
297# define O_LARGEFILE 0
298#endif
299#ifndef O_NOFOLLOW
300# define O_NOFOLLOW 0
301#endif
302#ifndef O_BINARY
303# define O_BINARY 0
304#endif
305
306/*
drh2b4b5962005-06-15 17:47:55 +0000307** The threadid macro resolves to the thread-id or to 0. Used for
308** testing and debugging only.
309*/
drhd677b3d2007-08-20 22:48:41 +0000310#if SQLITE_THREADSAFE
drh2b4b5962005-06-15 17:47:55 +0000311#define threadid pthread_self()
312#else
313#define threadid 0
314#endif
315
drh99ab3b12011-03-02 15:09:07 +0000316/*
dane6ecd662013-04-01 17:56:59 +0000317** HAVE_MREMAP defaults to true on Linux and false everywhere else.
318*/
319#if !defined(HAVE_MREMAP)
320# if defined(__linux__) && defined(_GNU_SOURCE)
321# define HAVE_MREMAP 1
322# else
323# define HAVE_MREMAP 0
324# endif
325#endif
326
327/*
drh9a3baf12011-04-25 18:01:27 +0000328** Different Unix systems declare open() in different ways. Same use
329** open(const char*,int,mode_t). Others use open(const char*,int,...).
330** The difference is important when using a pointer to the function.
331**
332** The safest way to deal with the problem is to always use this wrapper
333** which always has the same well-defined interface.
334*/
335static int posixOpen(const char *zFile, int flags, int mode){
336 return open(zFile, flags, mode);
337}
338
drhed466822012-05-31 13:10:49 +0000339/*
340** On some systems, calls to fchown() will trigger a message in a security
341** log if they come from non-root processes. So avoid calling fchown() if
342** we are not running as root.
343*/
344static int posixFchown(int fd, uid_t uid, gid_t gid){
345 return geteuid() ? 0 : fchown(fd,uid,gid);
346}
347
drh90315a22011-08-10 01:52:12 +0000348/* Forward reference */
349static int openDirectory(const char*, int*);
350
drh9a3baf12011-04-25 18:01:27 +0000351/*
drh99ab3b12011-03-02 15:09:07 +0000352** Many system calls are accessed through pointer-to-functions so that
353** they may be overridden at runtime to facilitate fault injection during
354** testing and sandboxing. The following array holds the names and pointers
355** to all overrideable system calls.
356*/
357static struct unix_syscall {
mistachkin48864df2013-03-21 21:20:32 +0000358 const char *zName; /* Name of the system call */
drh58ad5802011-03-23 22:02:23 +0000359 sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
360 sqlite3_syscall_ptr pDefault; /* Default value */
drh99ab3b12011-03-02 15:09:07 +0000361} aSyscall[] = {
drh9a3baf12011-04-25 18:01:27 +0000362 { "open", (sqlite3_syscall_ptr)posixOpen, 0 },
363#define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
drh99ab3b12011-03-02 15:09:07 +0000364
drh58ad5802011-03-23 22:02:23 +0000365 { "close", (sqlite3_syscall_ptr)close, 0 },
drh99ab3b12011-03-02 15:09:07 +0000366#define osClose ((int(*)(int))aSyscall[1].pCurrent)
367
drh58ad5802011-03-23 22:02:23 +0000368 { "access", (sqlite3_syscall_ptr)access, 0 },
drh99ab3b12011-03-02 15:09:07 +0000369#define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent)
370
drh58ad5802011-03-23 22:02:23 +0000371 { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 },
drh99ab3b12011-03-02 15:09:07 +0000372#define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
373
drh58ad5802011-03-23 22:02:23 +0000374 { "stat", (sqlite3_syscall_ptr)stat, 0 },
drh99ab3b12011-03-02 15:09:07 +0000375#define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
376
377/*
378** The DJGPP compiler environment looks mostly like Unix, but it
379** lacks the fcntl() system call. So redefine fcntl() to be something
380** that always succeeds. This means that locking does not occur under
381** DJGPP. But it is DOS - what did you expect?
382*/
383#ifdef __DJGPP__
384 { "fstat", 0, 0 },
385#define osFstat(a,b,c) 0
386#else
drh58ad5802011-03-23 22:02:23 +0000387 { "fstat", (sqlite3_syscall_ptr)fstat, 0 },
drh99ab3b12011-03-02 15:09:07 +0000388#define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
389#endif
390
drh58ad5802011-03-23 22:02:23 +0000391 { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 },
drh99ab3b12011-03-02 15:09:07 +0000392#define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
393
drh58ad5802011-03-23 22:02:23 +0000394 { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 },
drh99ab3b12011-03-02 15:09:07 +0000395#define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent)
drhe562be52011-03-02 18:01:10 +0000396
drh58ad5802011-03-23 22:02:23 +0000397 { "read", (sqlite3_syscall_ptr)read, 0 },
drhe562be52011-03-02 18:01:10 +0000398#define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
399
drhd4a80312011-04-15 14:33:20 +0000400#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
drh58ad5802011-03-23 22:02:23 +0000401 { "pread", (sqlite3_syscall_ptr)pread, 0 },
drhe562be52011-03-02 18:01:10 +0000402#else
drh58ad5802011-03-23 22:02:23 +0000403 { "pread", (sqlite3_syscall_ptr)0, 0 },
drhe562be52011-03-02 18:01:10 +0000404#endif
405#define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
406
407#if defined(USE_PREAD64)
drh58ad5802011-03-23 22:02:23 +0000408 { "pread64", (sqlite3_syscall_ptr)pread64, 0 },
drhe562be52011-03-02 18:01:10 +0000409#else
drh58ad5802011-03-23 22:02:23 +0000410 { "pread64", (sqlite3_syscall_ptr)0, 0 },
drhe562be52011-03-02 18:01:10 +0000411#endif
412#define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent)
413
drh58ad5802011-03-23 22:02:23 +0000414 { "write", (sqlite3_syscall_ptr)write, 0 },
drhe562be52011-03-02 18:01:10 +0000415#define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
416
drhd4a80312011-04-15 14:33:20 +0000417#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
drh58ad5802011-03-23 22:02:23 +0000418 { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 },
drhe562be52011-03-02 18:01:10 +0000419#else
drh58ad5802011-03-23 22:02:23 +0000420 { "pwrite", (sqlite3_syscall_ptr)0, 0 },
drhe562be52011-03-02 18:01:10 +0000421#endif
422#define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\
423 aSyscall[12].pCurrent)
424
425#if defined(USE_PREAD64)
drh58ad5802011-03-23 22:02:23 +0000426 { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 },
drhe562be52011-03-02 18:01:10 +0000427#else
drh58ad5802011-03-23 22:02:23 +0000428 { "pwrite64", (sqlite3_syscall_ptr)0, 0 },
drhe562be52011-03-02 18:01:10 +0000429#endif
430#define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off_t))\
431 aSyscall[13].pCurrent)
432
drh58ad5802011-03-23 22:02:23 +0000433 { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 },
drh2aa5a002011-04-13 13:42:25 +0000434#define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent)
drhe562be52011-03-02 18:01:10 +0000435
436#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
drh58ad5802011-03-23 22:02:23 +0000437 { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 },
drhe562be52011-03-02 18:01:10 +0000438#else
drh58ad5802011-03-23 22:02:23 +0000439 { "fallocate", (sqlite3_syscall_ptr)0, 0 },
drhe562be52011-03-02 18:01:10 +0000440#endif
dan0fd7d862011-03-29 10:04:23 +0000441#define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
drhe562be52011-03-02 18:01:10 +0000442
drh036ac7f2011-08-08 23:18:05 +0000443 { "unlink", (sqlite3_syscall_ptr)unlink, 0 },
444#define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent)
445
drh90315a22011-08-10 01:52:12 +0000446 { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 },
447#define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
448
drh9ef6bc42011-11-04 02:24:02 +0000449 { "mkdir", (sqlite3_syscall_ptr)mkdir, 0 },
450#define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)
451
452 { "rmdir", (sqlite3_syscall_ptr)rmdir, 0 },
453#define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent)
454
drhed466822012-05-31 13:10:49 +0000455 { "fchown", (sqlite3_syscall_ptr)posixFchown, 0 },
dand3eaebd2012-02-13 08:50:23 +0000456#define osFchown ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)
drh23c4b972012-02-11 23:55:15 +0000457
dan893c0ff2013-03-25 19:05:07 +0000458 { "mmap", (sqlite3_syscall_ptr)mmap, 0 },
459#define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[21].pCurrent)
460
drhd1ab8062013-03-25 20:50:25 +0000461 { "munmap", (sqlite3_syscall_ptr)munmap, 0 },
462#define osMunmap ((void*(*)(void*,size_t))aSyscall[22].pCurrent)
463
dane6ecd662013-04-01 17:56:59 +0000464#if HAVE_MREMAP
drhd1ab8062013-03-25 20:50:25 +0000465 { "mremap", (sqlite3_syscall_ptr)mremap, 0 },
466#else
467 { "mremap", (sqlite3_syscall_ptr)0, 0 },
468#endif
469#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[23].pCurrent)
470
drhe562be52011-03-02 18:01:10 +0000471}; /* End of the overrideable system calls */
drh99ab3b12011-03-02 15:09:07 +0000472
473/*
474** This is the xSetSystemCall() method of sqlite3_vfs for all of the
drh1df30962011-03-02 19:06:42 +0000475** "unix" VFSes. Return SQLITE_OK opon successfully updating the
476** system call pointer, or SQLITE_NOTFOUND if there is no configurable
477** system call named zName.
drh99ab3b12011-03-02 15:09:07 +0000478*/
479static int unixSetSystemCall(
drh58ad5802011-03-23 22:02:23 +0000480 sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */
481 const char *zName, /* Name of system call to override */
482 sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */
drh99ab3b12011-03-02 15:09:07 +0000483){
drh58ad5802011-03-23 22:02:23 +0000484 unsigned int i;
drh1df30962011-03-02 19:06:42 +0000485 int rc = SQLITE_NOTFOUND;
drh58ad5802011-03-23 22:02:23 +0000486
487 UNUSED_PARAMETER(pNotUsed);
drh99ab3b12011-03-02 15:09:07 +0000488 if( zName==0 ){
489 /* If no zName is given, restore all system calls to their default
490 ** settings and return NULL
491 */
dan51438a72011-04-02 17:00:47 +0000492 rc = SQLITE_OK;
drh99ab3b12011-03-02 15:09:07 +0000493 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
494 if( aSyscall[i].pDefault ){
495 aSyscall[i].pCurrent = aSyscall[i].pDefault;
drh99ab3b12011-03-02 15:09:07 +0000496 }
497 }
498 }else{
499 /* If zName is specified, operate on only the one system call
500 ** specified.
501 */
502 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
503 if( strcmp(zName, aSyscall[i].zName)==0 ){
504 if( aSyscall[i].pDefault==0 ){
505 aSyscall[i].pDefault = aSyscall[i].pCurrent;
506 }
drh1df30962011-03-02 19:06:42 +0000507 rc = SQLITE_OK;
drh99ab3b12011-03-02 15:09:07 +0000508 if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
509 aSyscall[i].pCurrent = pNewFunc;
510 break;
511 }
512 }
513 }
514 return rc;
515}
516
drh1df30962011-03-02 19:06:42 +0000517/*
518** Return the value of a system call. Return NULL if zName is not a
519** recognized system call name. NULL is also returned if the system call
520** is currently undefined.
521*/
drh58ad5802011-03-23 22:02:23 +0000522static sqlite3_syscall_ptr unixGetSystemCall(
523 sqlite3_vfs *pNotUsed,
524 const char *zName
525){
526 unsigned int i;
527
528 UNUSED_PARAMETER(pNotUsed);
drh1df30962011-03-02 19:06:42 +0000529 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
530 if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
531 }
532 return 0;
533}
534
535/*
536** Return the name of the first system call after zName. If zName==NULL
537** then return the name of the first system call. Return NULL if zName
538** is the last system call or if zName is not the name of a valid
539** system call.
540*/
541static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
dan0fd7d862011-03-29 10:04:23 +0000542 int i = -1;
drh58ad5802011-03-23 22:02:23 +0000543
544 UNUSED_PARAMETER(p);
dan0fd7d862011-03-29 10:04:23 +0000545 if( zName ){
546 for(i=0; i<ArraySize(aSyscall)-1; i++){
547 if( strcmp(zName, aSyscall[i].zName)==0 ) break;
drh1df30962011-03-02 19:06:42 +0000548 }
549 }
dan0fd7d862011-03-29 10:04:23 +0000550 for(i++; i<ArraySize(aSyscall); i++){
551 if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
drh1df30962011-03-02 19:06:42 +0000552 }
553 return 0;
554}
555
drhad4f1e52011-03-04 15:43:57 +0000556/*
drh8c815d12012-02-13 20:16:37 +0000557** Invoke open(). Do so multiple times, until it either succeeds or
drh5adc60b2012-04-14 13:25:11 +0000558** fails for some reason other than EINTR.
drh8c815d12012-02-13 20:16:37 +0000559**
560** If the file creation mode "m" is 0 then set it to the default for
561** SQLite. The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
562** 0644) as modified by the system umask. If m is not 0, then
563** make the file creation mode be exactly m ignoring the umask.
564**
565** The m parameter will be non-zero only when creating -wal, -journal,
566** and -shm files. We want those files to have *exactly* the same
567** permissions as their original database, unadulterated by the umask.
568** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
569** transaction crashes and leaves behind hot journals, then any
570** process that is able to write to the database will also be able to
571** recover the hot journals.
drhad4f1e52011-03-04 15:43:57 +0000572*/
drh8c815d12012-02-13 20:16:37 +0000573static int robust_open(const char *z, int f, mode_t m){
drh5adc60b2012-04-14 13:25:11 +0000574 int fd;
drhe1186ab2013-01-04 20:45:13 +0000575 mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS;
drh5adc60b2012-04-14 13:25:11 +0000576 do{
577#if defined(O_CLOEXEC)
578 fd = osOpen(z,f|O_CLOEXEC,m2);
579#else
580 fd = osOpen(z,f,m2);
581#endif
582 }while( fd<0 && errno==EINTR );
drhe1186ab2013-01-04 20:45:13 +0000583 if( fd>=0 ){
584 if( m!=0 ){
585 struct stat statbuf;
danb83c21e2013-03-05 15:27:34 +0000586 if( osFstat(fd, &statbuf)==0
587 && statbuf.st_size==0
drhcfc17692013-03-06 01:41:53 +0000588 && (statbuf.st_mode&0777)!=m
danb83c21e2013-03-05 15:27:34 +0000589 ){
drhe1186ab2013-01-04 20:45:13 +0000590 osFchmod(fd, m);
591 }
592 }
drh5adc60b2012-04-14 13:25:11 +0000593#if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
drhe1186ab2013-01-04 20:45:13 +0000594 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
drh5adc60b2012-04-14 13:25:11 +0000595#endif
drhe1186ab2013-01-04 20:45:13 +0000596 }
drh5adc60b2012-04-14 13:25:11 +0000597 return fd;
drhad4f1e52011-03-04 15:43:57 +0000598}
danielk197713adf8a2004-06-03 16:08:41 +0000599
drh107886a2008-11-21 22:21:50 +0000600/*
dan9359c7b2009-08-21 08:29:10 +0000601** Helper functions to obtain and relinquish the global mutex. The
drh8af6c222010-05-14 12:43:01 +0000602** global mutex is used to protect the unixInodeInfo and
dan9359c7b2009-08-21 08:29:10 +0000603** vxworksFileId objects used by this file, all of which may be
604** shared by multiple threads.
605**
606** Function unixMutexHeld() is used to assert() that the global mutex
607** is held when required. This function is only used as part of assert()
608** statements. e.g.
609**
610** unixEnterMutex()
611** assert( unixMutexHeld() );
612** unixEnterLeave()
drh107886a2008-11-21 22:21:50 +0000613*/
614static void unixEnterMutex(void){
615 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
616}
617static void unixLeaveMutex(void){
618 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
619}
dan9359c7b2009-08-21 08:29:10 +0000620#ifdef SQLITE_DEBUG
621static int unixMutexHeld(void) {
622 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
623}
624#endif
drh107886a2008-11-21 22:21:50 +0000625
drh734c9862008-11-28 15:37:20 +0000626
drh30ddce62011-10-15 00:16:30 +0000627#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh734c9862008-11-28 15:37:20 +0000628/*
629** Helper function for printing out trace information from debugging
630** binaries. This returns the string represetation of the supplied
631** integer lock-type.
632*/
drh308c2a52010-05-14 11:30:18 +0000633static const char *azFileLock(int eFileLock){
634 switch( eFileLock ){
dan9359c7b2009-08-21 08:29:10 +0000635 case NO_LOCK: return "NONE";
636 case SHARED_LOCK: return "SHARED";
637 case RESERVED_LOCK: return "RESERVED";
638 case PENDING_LOCK: return "PENDING";
639 case EXCLUSIVE_LOCK: return "EXCLUSIVE";
drh734c9862008-11-28 15:37:20 +0000640 }
641 return "ERROR";
642}
643#endif
644
645#ifdef SQLITE_LOCK_TRACE
646/*
647** Print out information about all locking operations.
drh6c7d5c52008-11-21 20:32:33 +0000648**
drh734c9862008-11-28 15:37:20 +0000649** This routine is used for troubleshooting locks on multithreaded
650** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
651** command-line option on the compiler. This code is normally
652** turned off.
653*/
654static int lockTrace(int fd, int op, struct flock *p){
655 char *zOpName, *zType;
656 int s;
657 int savedErrno;
658 if( op==F_GETLK ){
659 zOpName = "GETLK";
660 }else if( op==F_SETLK ){
661 zOpName = "SETLK";
662 }else{
drh99ab3b12011-03-02 15:09:07 +0000663 s = osFcntl(fd, op, p);
drh734c9862008-11-28 15:37:20 +0000664 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
665 return s;
666 }
667 if( p->l_type==F_RDLCK ){
668 zType = "RDLCK";
669 }else if( p->l_type==F_WRLCK ){
670 zType = "WRLCK";
671 }else if( p->l_type==F_UNLCK ){
672 zType = "UNLCK";
673 }else{
674 assert( 0 );
675 }
676 assert( p->l_whence==SEEK_SET );
drh99ab3b12011-03-02 15:09:07 +0000677 s = osFcntl(fd, op, p);
drh734c9862008-11-28 15:37:20 +0000678 savedErrno = errno;
679 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
680 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
681 (int)p->l_pid, s);
682 if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
683 struct flock l2;
684 l2 = *p;
drh99ab3b12011-03-02 15:09:07 +0000685 osFcntl(fd, F_GETLK, &l2);
drh734c9862008-11-28 15:37:20 +0000686 if( l2.l_type==F_RDLCK ){
687 zType = "RDLCK";
688 }else if( l2.l_type==F_WRLCK ){
689 zType = "WRLCK";
690 }else if( l2.l_type==F_UNLCK ){
691 zType = "UNLCK";
692 }else{
693 assert( 0 );
694 }
695 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
696 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
697 }
698 errno = savedErrno;
699 return s;
700}
drh99ab3b12011-03-02 15:09:07 +0000701#undef osFcntl
702#define osFcntl lockTrace
drh734c9862008-11-28 15:37:20 +0000703#endif /* SQLITE_LOCK_TRACE */
704
drhff812312011-02-23 13:33:46 +0000705/*
706** Retry ftruncate() calls that fail due to EINTR
707*/
drhff812312011-02-23 13:33:46 +0000708static int robust_ftruncate(int h, sqlite3_int64 sz){
709 int rc;
drh99ab3b12011-03-02 15:09:07 +0000710 do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
drhff812312011-02-23 13:33:46 +0000711 return rc;
712}
drh734c9862008-11-28 15:37:20 +0000713
714/*
715** This routine translates a standard POSIX errno code into something
716** useful to the clients of the sqlite3 functions. Specifically, it is
717** intended to translate a variety of "try again" errors into SQLITE_BUSY
718** and a variety of "please close the file descriptor NOW" errors into
719** SQLITE_IOERR
720**
721** Errors during initialization of locks, or file system support for locks,
722** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
723*/
724static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
725 switch (posixError) {
dan661d71a2011-03-30 19:08:03 +0000726#if 0
727 /* At one point this code was not commented out. In theory, this branch
728 ** should never be hit, as this function should only be called after
729 ** a locking-related function (i.e. fcntl()) has returned non-zero with
730 ** the value of errno as the first argument. Since a system call has failed,
731 ** errno should be non-zero.
732 **
733 ** Despite this, if errno really is zero, we still don't want to return
734 ** SQLITE_OK. The system call failed, and *some* SQLite error should be
735 ** propagated back to the caller. Commenting this branch out means errno==0
736 ** will be handled by the "default:" case below.
737 */
drh734c9862008-11-28 15:37:20 +0000738 case 0:
739 return SQLITE_OK;
dan661d71a2011-03-30 19:08:03 +0000740#endif
741
drh734c9862008-11-28 15:37:20 +0000742 case EAGAIN:
743 case ETIMEDOUT:
744 case EBUSY:
745 case EINTR:
746 case ENOLCK:
747 /* random NFS retry error, unless during file system support
748 * introspection, in which it actually means what it says */
749 return SQLITE_BUSY;
750
751 case EACCES:
752 /* EACCES is like EAGAIN during locking operations, but not any other time*/
753 if( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
drhf2f105d2012-08-20 15:53:54 +0000754 (sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
755 (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
756 (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
drh734c9862008-11-28 15:37:20 +0000757 return SQLITE_BUSY;
758 }
759 /* else fall through */
760 case EPERM:
761 return SQLITE_PERM;
762
danea83bc62011-04-01 11:56:32 +0000763 /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And
764 ** this module never makes such a call. And the code in SQLite itself
765 ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons
766 ** this case is also commented out. If the system does set errno to EDEADLK,
767 ** the default SQLITE_IOERR_XXX code will be returned. */
768#if 0
drh734c9862008-11-28 15:37:20 +0000769 case EDEADLK:
770 return SQLITE_IOERR_BLOCKED;
danea83bc62011-04-01 11:56:32 +0000771#endif
drh734c9862008-11-28 15:37:20 +0000772
773#if EOPNOTSUPP!=ENOTSUP
774 case EOPNOTSUPP:
775 /* something went terribly awry, unless during file system support
776 * introspection, in which it actually means what it says */
777#endif
778#ifdef ENOTSUP
779 case ENOTSUP:
780 /* invalid fd, unless during file system support introspection, in which
781 * it actually means what it says */
782#endif
783 case EIO:
784 case EBADF:
785 case EINVAL:
786 case ENOTCONN:
787 case ENODEV:
788 case ENXIO:
789 case ENOENT:
dan33067e72011-07-15 13:43:34 +0000790#ifdef ESTALE /* ESTALE is not defined on Interix systems */
drh734c9862008-11-28 15:37:20 +0000791 case ESTALE:
dan33067e72011-07-15 13:43:34 +0000792#endif
drh734c9862008-11-28 15:37:20 +0000793 case ENOSYS:
794 /* these should force the client to close the file and reconnect */
795
796 default:
797 return sqliteIOErr;
798 }
799}
800
801
802
803/******************************************************************************
804****************** Begin Unique File ID Utility Used By VxWorks ***************
805**
806** On most versions of unix, we can get a unique ID for a file by concatenating
807** the device number and the inode number. But this does not work on VxWorks.
808** On VxWorks, a unique file id must be based on the canonical filename.
809**
810** A pointer to an instance of the following structure can be used as a
811** unique file ID in VxWorks. Each instance of this structure contains
812** a copy of the canonical filename. There is also a reference count.
813** The structure is reclaimed when the number of pointers to it drops to
814** zero.
815**
816** There are never very many files open at one time and lookups are not
817** a performance-critical path, so it is sufficient to put these
818** structures on a linked list.
819*/
820struct vxworksFileId {
821 struct vxworksFileId *pNext; /* Next in a list of them all */
822 int nRef; /* Number of references to this one */
823 int nName; /* Length of the zCanonicalName[] string */
824 char *zCanonicalName; /* Canonical filename */
825};
826
827#if OS_VXWORKS
828/*
drh9b35ea62008-11-29 02:20:26 +0000829** All unique filenames are held on a linked list headed by this
drh734c9862008-11-28 15:37:20 +0000830** variable:
831*/
832static struct vxworksFileId *vxworksFileList = 0;
833
834/*
835** Simplify a filename into its canonical form
836** by making the following changes:
837**
838** * removing any trailing and duplicate /
drh9b35ea62008-11-29 02:20:26 +0000839** * convert /./ into just /
840** * convert /A/../ where A is any simple name into just /
drh734c9862008-11-28 15:37:20 +0000841**
842** Changes are made in-place. Return the new name length.
843**
844** The original filename is in z[0..n-1]. Return the number of
845** characters in the simplified name.
846*/
847static int vxworksSimplifyName(char *z, int n){
848 int i, j;
849 while( n>1 && z[n-1]=='/' ){ n--; }
850 for(i=j=0; i<n; i++){
851 if( z[i]=='/' ){
852 if( z[i+1]=='/' ) continue;
853 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
854 i += 1;
855 continue;
856 }
857 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
858 while( j>0 && z[j-1]!='/' ){ j--; }
859 if( j>0 ){ j--; }
860 i += 2;
861 continue;
862 }
863 }
864 z[j++] = z[i];
865 }
866 z[j] = 0;
867 return j;
868}
869
870/*
871** Find a unique file ID for the given absolute pathname. Return
872** a pointer to the vxworksFileId object. This pointer is the unique
873** file ID.
874**
875** The nRef field of the vxworksFileId object is incremented before
876** the object is returned. A new vxworksFileId object is created
877** and added to the global list if necessary.
878**
879** If a memory allocation error occurs, return NULL.
880*/
881static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
882 struct vxworksFileId *pNew; /* search key and new file ID */
883 struct vxworksFileId *pCandidate; /* For looping over existing file IDs */
884 int n; /* Length of zAbsoluteName string */
885
886 assert( zAbsoluteName[0]=='/' );
drhea678832008-12-10 19:26:22 +0000887 n = (int)strlen(zAbsoluteName);
drh734c9862008-11-28 15:37:20 +0000888 pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) );
889 if( pNew==0 ) return 0;
890 pNew->zCanonicalName = (char*)&pNew[1];
891 memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
892 n = vxworksSimplifyName(pNew->zCanonicalName, n);
893
894 /* Search for an existing entry that matching the canonical name.
895 ** If found, increment the reference count and return a pointer to
896 ** the existing file ID.
897 */
898 unixEnterMutex();
899 for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
900 if( pCandidate->nName==n
901 && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
902 ){
903 sqlite3_free(pNew);
904 pCandidate->nRef++;
905 unixLeaveMutex();
906 return pCandidate;
907 }
908 }
909
910 /* No match was found. We will make a new file ID */
911 pNew->nRef = 1;
912 pNew->nName = n;
913 pNew->pNext = vxworksFileList;
914 vxworksFileList = pNew;
915 unixLeaveMutex();
916 return pNew;
917}
918
919/*
920** Decrement the reference count on a vxworksFileId object. Free
921** the object when the reference count reaches zero.
922*/
923static void vxworksReleaseFileId(struct vxworksFileId *pId){
924 unixEnterMutex();
925 assert( pId->nRef>0 );
926 pId->nRef--;
927 if( pId->nRef==0 ){
928 struct vxworksFileId **pp;
929 for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
930 assert( *pp==pId );
931 *pp = pId->pNext;
932 sqlite3_free(pId);
933 }
934 unixLeaveMutex();
935}
936#endif /* OS_VXWORKS */
937/*************** End of Unique File ID Utility Used By VxWorks ****************
938******************************************************************************/
939
940
941/******************************************************************************
942*************************** Posix Advisory Locking ****************************
943**
drh9b35ea62008-11-29 02:20:26 +0000944** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996)
drhbbd42a62004-05-22 17:41:58 +0000945** section 6.5.2.2 lines 483 through 490 specify that when a process
946** sets or clears a lock, that operation overrides any prior locks set
947** by the same process. It does not explicitly say so, but this implies
948** that it overrides locks set by the same process using a different
949** file descriptor. Consider this test case:
drh6c7d5c52008-11-21 20:32:33 +0000950**
951** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
drhbbd42a62004-05-22 17:41:58 +0000952** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
953**
954** Suppose ./file1 and ./file2 are really the same file (because
955** one is a hard or symbolic link to the other) then if you set
956** an exclusive lock on fd1, then try to get an exclusive lock
957** on fd2, it works. I would have expected the second lock to
958** fail since there was already a lock on the file due to fd1.
959** But not so. Since both locks came from the same process, the
960** second overrides the first, even though they were on different
961** file descriptors opened on different file names.
962**
drh734c9862008-11-28 15:37:20 +0000963** This means that we cannot use POSIX locks to synchronize file access
964** among competing threads of the same process. POSIX locks will work fine
drhbbd42a62004-05-22 17:41:58 +0000965** to synchronize access for threads in separate processes, but not
966** threads within the same process.
967**
968** To work around the problem, SQLite has to manage file locks internally
969** on its own. Whenever a new database is opened, we have to find the
970** specific inode of the database file (the inode is determined by the
971** st_dev and st_ino fields of the stat structure that fstat() fills in)
972** and check for locks already existing on that inode. When locks are
973** created or removed, we have to look at our own internal record of the
974** locks to see if another thread has previously set a lock on that same
975** inode.
976**
drh9b35ea62008-11-29 02:20:26 +0000977** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
978** For VxWorks, we have to use the alternative unique ID system based on
979** canonical filename and implemented in the previous division.)
980**
danielk1977ad94b582007-08-20 06:44:22 +0000981** The sqlite3_file structure for POSIX is no longer just an integer file
drhbbd42a62004-05-22 17:41:58 +0000982** descriptor. It is now a structure that holds the integer file
983** descriptor and a pointer to a structure that describes the internal
984** locks on the corresponding inode. There is one locking structure
danielk1977ad94b582007-08-20 06:44:22 +0000985** per inode, so if the same inode is opened twice, both unixFile structures
drhbbd42a62004-05-22 17:41:58 +0000986** point to the same locking structure. The locking structure keeps
987** a reference count (so we will know when to delete it) and a "cnt"
988** field that tells us its internal lock status. cnt==0 means the
989** file is unlocked. cnt==-1 means the file has an exclusive lock.
990** cnt>0 means there are cnt shared locks on the file.
991**
992** Any attempt to lock or unlock a file first checks the locking
993** structure. The fcntl() system call is only invoked to set a
994** POSIX lock if the internal lock structure transitions between
995** a locked and an unlocked state.
996**
drh734c9862008-11-28 15:37:20 +0000997** But wait: there are yet more problems with POSIX advisory locks.
drhbbd42a62004-05-22 17:41:58 +0000998**
999** If you close a file descriptor that points to a file that has locks,
1000** all locks on that file that are owned by the current process are
drh8af6c222010-05-14 12:43:01 +00001001** released. To work around this problem, each unixInodeInfo object
1002** maintains a count of the number of pending locks on tha inode.
1003** When an attempt is made to close an unixFile, if there are
danielk1977ad94b582007-08-20 06:44:22 +00001004** other unixFile open on the same inode that are holding locks, the call
drhbbd42a62004-05-22 17:41:58 +00001005** to close() the file descriptor is deferred until all of the locks clear.
drh8af6c222010-05-14 12:43:01 +00001006** The unixInodeInfo structure keeps a list of file descriptors that need to
drhbbd42a62004-05-22 17:41:58 +00001007** be closed and that list is walked (and cleared) when the last lock
1008** clears.
1009**
drh9b35ea62008-11-29 02:20:26 +00001010** Yet another problem: LinuxThreads do not play well with posix locks.
drh5fdae772004-06-29 03:29:00 +00001011**
drh9b35ea62008-11-29 02:20:26 +00001012** Many older versions of linux use the LinuxThreads library which is
1013** not posix compliant. Under LinuxThreads, a lock created by thread
drh734c9862008-11-28 15:37:20 +00001014** A cannot be modified or overridden by a different thread B.
1015** Only thread A can modify the lock. Locking behavior is correct
1016** if the appliation uses the newer Native Posix Thread Library (NPTL)
1017** on linux - with NPTL a lock created by thread A can override locks
1018** in thread B. But there is no way to know at compile-time which
1019** threading library is being used. So there is no way to know at
1020** compile-time whether or not thread A can override locks on thread B.
drh8af6c222010-05-14 12:43:01 +00001021** One has to do a run-time check to discover the behavior of the
drh734c9862008-11-28 15:37:20 +00001022** current process.
drh5fdae772004-06-29 03:29:00 +00001023**
drh8af6c222010-05-14 12:43:01 +00001024** SQLite used to support LinuxThreads. But support for LinuxThreads
1025** was dropped beginning with version 3.7.0. SQLite will still work with
1026** LinuxThreads provided that (1) there is no more than one connection
1027** per database file in the same process and (2) database connections
1028** do not move across threads.
drhbbd42a62004-05-22 17:41:58 +00001029*/
1030
1031/*
1032** An instance of the following structure serves as the key used
drh8af6c222010-05-14 12:43:01 +00001033** to locate a particular unixInodeInfo object.
drh6c7d5c52008-11-21 20:32:33 +00001034*/
1035struct unixFileId {
drh107886a2008-11-21 22:21:50 +00001036 dev_t dev; /* Device number */
drh6c7d5c52008-11-21 20:32:33 +00001037#if OS_VXWORKS
drh107886a2008-11-21 22:21:50 +00001038 struct vxworksFileId *pId; /* Unique file ID for vxworks. */
drh6c7d5c52008-11-21 20:32:33 +00001039#else
drh107886a2008-11-21 22:21:50 +00001040 ino_t ino; /* Inode number */
drh6c7d5c52008-11-21 20:32:33 +00001041#endif
1042};
1043
1044/*
drhbbd42a62004-05-22 17:41:58 +00001045** An instance of the following structure is allocated for each open
drh9b35ea62008-11-29 02:20:26 +00001046** inode. Or, on LinuxThreads, there is one of these structures for
1047** each inode opened by each thread.
drhbbd42a62004-05-22 17:41:58 +00001048**
danielk1977ad94b582007-08-20 06:44:22 +00001049** A single inode can have multiple file descriptors, so each unixFile
drhbbd42a62004-05-22 17:41:58 +00001050** structure contains a pointer to an instance of this object and this
danielk1977ad94b582007-08-20 06:44:22 +00001051** object keeps a count of the number of unixFile pointing to it.
drhbbd42a62004-05-22 17:41:58 +00001052*/
drh8af6c222010-05-14 12:43:01 +00001053struct unixInodeInfo {
1054 struct unixFileId fileId; /* The lookup key */
drh308c2a52010-05-14 11:30:18 +00001055 int nShared; /* Number of SHARED locks held */
drha7e61d82011-03-12 17:02:57 +00001056 unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
1057 unsigned char bProcessLock; /* An exclusive process lock is held */
drh734c9862008-11-28 15:37:20 +00001058 int nRef; /* Number of pointers to this structure */
drhd91c68f2010-05-14 14:52:25 +00001059 unixShmNode *pShmNode; /* Shared memory associated with this inode */
1060 int nLock; /* Number of outstanding file locks */
1061 UnixUnusedFd *pUnused; /* Unused file descriptors to close */
1062 unixInodeInfo *pNext; /* List of all unixInodeInfo objects */
1063 unixInodeInfo *pPrev; /* .... doubly linked */
drhd4a80312011-04-15 14:33:20 +00001064#if SQLITE_ENABLE_LOCKING_STYLE
drh7ed97b92010-01-20 13:07:21 +00001065 unsigned long long sharedByte; /* for AFP simulated shared lock */
1066#endif
drh6c7d5c52008-11-21 20:32:33 +00001067#if OS_VXWORKS
drh8af6c222010-05-14 12:43:01 +00001068 sem_t *pSem; /* Named POSIX semaphore */
1069 char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */
chw97185482008-11-17 08:05:31 +00001070#endif
drhbbd42a62004-05-22 17:41:58 +00001071};
1072
drhda0e7682008-07-30 15:27:54 +00001073/*
drh8af6c222010-05-14 12:43:01 +00001074** A lists of all unixInodeInfo objects.
drhbbd42a62004-05-22 17:41:58 +00001075*/
drhd91c68f2010-05-14 14:52:25 +00001076static unixInodeInfo *inodeList = 0;
drh5fdae772004-06-29 03:29:00 +00001077
drh5fdae772004-06-29 03:29:00 +00001078/*
dane18d4952011-02-21 11:46:24 +00001079**
1080** This function - unixLogError_x(), is only ever called via the macro
1081** unixLogError().
1082**
1083** It is invoked after an error occurs in an OS function and errno has been
1084** set. It logs a message using sqlite3_log() containing the current value of
1085** errno and, if possible, the human-readable equivalent from strerror() or
1086** strerror_r().
1087**
1088** The first argument passed to the macro should be the error code that
1089** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
1090** The two subsequent arguments should be the name of the OS function that
mistachkind5578432012-08-25 10:01:29 +00001091** failed (e.g. "unlink", "open") and the associated file-system path,
dane18d4952011-02-21 11:46:24 +00001092** if any.
1093*/
drh0e9365c2011-03-02 02:08:13 +00001094#define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__)
1095static int unixLogErrorAtLine(
dane18d4952011-02-21 11:46:24 +00001096 int errcode, /* SQLite error code */
1097 const char *zFunc, /* Name of OS function that failed */
1098 const char *zPath, /* File path associated with error */
1099 int iLine /* Source line number where error occurred */
1100){
1101 char *zErr; /* Message from strerror() or equivalent */
drh0e9365c2011-03-02 02:08:13 +00001102 int iErrno = errno; /* Saved syscall error number */
dane18d4952011-02-21 11:46:24 +00001103
1104 /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
1105 ** the strerror() function to obtain the human-readable error message
1106 ** equivalent to errno. Otherwise, use strerror_r().
1107 */
1108#if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
1109 char aErr[80];
1110 memset(aErr, 0, sizeof(aErr));
1111 zErr = aErr;
1112
1113 /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
mistachkind5578432012-08-25 10:01:29 +00001114 ** assume that the system provides the GNU version of strerror_r() that
dane18d4952011-02-21 11:46:24 +00001115 ** returns a pointer to a buffer containing the error message. That pointer
1116 ** may point to aErr[], or it may point to some static storage somewhere.
1117 ** Otherwise, assume that the system provides the POSIX version of
1118 ** strerror_r(), which always writes an error message into aErr[].
1119 **
1120 ** If the code incorrectly assumes that it is the POSIX version that is
1121 ** available, the error message will often be an empty string. Not a
1122 ** huge problem. Incorrectly concluding that the GNU version is available
1123 ** could lead to a segfault though.
1124 */
1125#if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
1126 zErr =
1127# endif
drh0e9365c2011-03-02 02:08:13 +00001128 strerror_r(iErrno, aErr, sizeof(aErr)-1);
dane18d4952011-02-21 11:46:24 +00001129
1130#elif SQLITE_THREADSAFE
1131 /* This is a threadsafe build, but strerror_r() is not available. */
1132 zErr = "";
1133#else
1134 /* Non-threadsafe build, use strerror(). */
drh0e9365c2011-03-02 02:08:13 +00001135 zErr = strerror(iErrno);
dane18d4952011-02-21 11:46:24 +00001136#endif
1137
drh0e9365c2011-03-02 02:08:13 +00001138 if( zPath==0 ) zPath = "";
dane18d4952011-02-21 11:46:24 +00001139 sqlite3_log(errcode,
drh0e9365c2011-03-02 02:08:13 +00001140 "os_unix.c:%d: (%d) %s(%s) - %s",
1141 iLine, iErrno, zFunc, zPath, zErr
dane18d4952011-02-21 11:46:24 +00001142 );
1143
1144 return errcode;
1145}
1146
drh0e9365c2011-03-02 02:08:13 +00001147/*
1148** Close a file descriptor.
1149**
1150** We assume that close() almost always works, since it is only in a
1151** very sick application or on a very sick platform that it might fail.
1152** If it does fail, simply leak the file descriptor, but do log the
1153** error.
1154**
1155** Note that it is not safe to retry close() after EINTR since the
1156** file descriptor might have already been reused by another thread.
1157** So we don't even try to recover from an EINTR. Just log the error
1158** and move on.
1159*/
1160static void robust_close(unixFile *pFile, int h, int lineno){
drh99ab3b12011-03-02 15:09:07 +00001161 if( osClose(h) ){
drh0e9365c2011-03-02 02:08:13 +00001162 unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
1163 pFile ? pFile->zPath : 0, lineno);
1164 }
1165}
dane18d4952011-02-21 11:46:24 +00001166
1167/*
danb0ac3e32010-06-16 10:55:42 +00001168** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
danb0ac3e32010-06-16 10:55:42 +00001169*/
drh0e9365c2011-03-02 02:08:13 +00001170static void closePendingFds(unixFile *pFile){
danb0ac3e32010-06-16 10:55:42 +00001171 unixInodeInfo *pInode = pFile->pInode;
danb0ac3e32010-06-16 10:55:42 +00001172 UnixUnusedFd *p;
1173 UnixUnusedFd *pNext;
1174 for(p=pInode->pUnused; p; p=pNext){
1175 pNext = p->pNext;
drh0e9365c2011-03-02 02:08:13 +00001176 robust_close(pFile, p->fd, __LINE__);
1177 sqlite3_free(p);
danb0ac3e32010-06-16 10:55:42 +00001178 }
drh0e9365c2011-03-02 02:08:13 +00001179 pInode->pUnused = 0;
danb0ac3e32010-06-16 10:55:42 +00001180}
1181
1182/*
drh8af6c222010-05-14 12:43:01 +00001183** Release a unixInodeInfo structure previously allocated by findInodeInfo().
dan9359c7b2009-08-21 08:29:10 +00001184**
1185** The mutex entered using the unixEnterMutex() function must be held
1186** when this function is called.
drh6c7d5c52008-11-21 20:32:33 +00001187*/
danb0ac3e32010-06-16 10:55:42 +00001188static void releaseInodeInfo(unixFile *pFile){
1189 unixInodeInfo *pInode = pFile->pInode;
dan9359c7b2009-08-21 08:29:10 +00001190 assert( unixMutexHeld() );
dan661d71a2011-03-30 19:08:03 +00001191 if( ALWAYS(pInode) ){
drh8af6c222010-05-14 12:43:01 +00001192 pInode->nRef--;
1193 if( pInode->nRef==0 ){
drhd91c68f2010-05-14 14:52:25 +00001194 assert( pInode->pShmNode==0 );
danb0ac3e32010-06-16 10:55:42 +00001195 closePendingFds(pFile);
drh8af6c222010-05-14 12:43:01 +00001196 if( pInode->pPrev ){
1197 assert( pInode->pPrev->pNext==pInode );
1198 pInode->pPrev->pNext = pInode->pNext;
drhda0e7682008-07-30 15:27:54 +00001199 }else{
drh8af6c222010-05-14 12:43:01 +00001200 assert( inodeList==pInode );
1201 inodeList = pInode->pNext;
drhda0e7682008-07-30 15:27:54 +00001202 }
drh8af6c222010-05-14 12:43:01 +00001203 if( pInode->pNext ){
1204 assert( pInode->pNext->pPrev==pInode );
1205 pInode->pNext->pPrev = pInode->pPrev;
drhda0e7682008-07-30 15:27:54 +00001206 }
drh8af6c222010-05-14 12:43:01 +00001207 sqlite3_free(pInode);
danielk1977e339d652008-06-28 11:23:00 +00001208 }
drhbbd42a62004-05-22 17:41:58 +00001209 }
1210}
1211
1212/*
drh8af6c222010-05-14 12:43:01 +00001213** Given a file descriptor, locate the unixInodeInfo object that
1214** describes that file descriptor. Create a new one if necessary. The
1215** return value might be uninitialized if an error occurs.
drh6c7d5c52008-11-21 20:32:33 +00001216**
dan9359c7b2009-08-21 08:29:10 +00001217** The mutex entered using the unixEnterMutex() function must be held
1218** when this function is called.
1219**
drh6c7d5c52008-11-21 20:32:33 +00001220** Return an appropriate error code.
1221*/
drh8af6c222010-05-14 12:43:01 +00001222static int findInodeInfo(
drh6c7d5c52008-11-21 20:32:33 +00001223 unixFile *pFile, /* Unix file with file desc used in the key */
drhd91c68f2010-05-14 14:52:25 +00001224 unixInodeInfo **ppInode /* Return the unixInodeInfo object here */
drh6c7d5c52008-11-21 20:32:33 +00001225){
1226 int rc; /* System call return code */
1227 int fd; /* The file descriptor for pFile */
drhd91c68f2010-05-14 14:52:25 +00001228 struct unixFileId fileId; /* Lookup key for the unixInodeInfo */
1229 struct stat statbuf; /* Low-level file information */
1230 unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */
drh6c7d5c52008-11-21 20:32:33 +00001231
dan9359c7b2009-08-21 08:29:10 +00001232 assert( unixMutexHeld() );
1233
drh6c7d5c52008-11-21 20:32:33 +00001234 /* Get low-level information about the file that we can used to
1235 ** create a unique name for the file.
1236 */
1237 fd = pFile->h;
drh99ab3b12011-03-02 15:09:07 +00001238 rc = osFstat(fd, &statbuf);
drh6c7d5c52008-11-21 20:32:33 +00001239 if( rc!=0 ){
1240 pFile->lastErrno = errno;
1241#ifdef EOVERFLOW
1242 if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
1243#endif
1244 return SQLITE_IOERR;
1245 }
1246
drheb0d74f2009-02-03 15:27:02 +00001247#ifdef __APPLE__
drh6c7d5c52008-11-21 20:32:33 +00001248 /* On OS X on an msdos filesystem, the inode number is reported
1249 ** incorrectly for zero-size files. See ticket #3260. To work
1250 ** around this problem (we consider it a bug in OS X, not SQLite)
1251 ** we always increase the file size to 1 by writing a single byte
1252 ** prior to accessing the inode number. The one byte written is
1253 ** an ASCII 'S' character which also happens to be the first byte
1254 ** in the header of every SQLite database. In this way, if there
1255 ** is a race condition such that another thread has already populated
1256 ** the first page of the database, no damage is done.
1257 */
drh7ed97b92010-01-20 13:07:21 +00001258 if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
drhe562be52011-03-02 18:01:10 +00001259 do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
drheb0d74f2009-02-03 15:27:02 +00001260 if( rc!=1 ){
drh7ed97b92010-01-20 13:07:21 +00001261 pFile->lastErrno = errno;
drheb0d74f2009-02-03 15:27:02 +00001262 return SQLITE_IOERR;
1263 }
drh99ab3b12011-03-02 15:09:07 +00001264 rc = osFstat(fd, &statbuf);
drh6c7d5c52008-11-21 20:32:33 +00001265 if( rc!=0 ){
1266 pFile->lastErrno = errno;
1267 return SQLITE_IOERR;
1268 }
1269 }
drheb0d74f2009-02-03 15:27:02 +00001270#endif
drh6c7d5c52008-11-21 20:32:33 +00001271
drh8af6c222010-05-14 12:43:01 +00001272 memset(&fileId, 0, sizeof(fileId));
1273 fileId.dev = statbuf.st_dev;
drh6c7d5c52008-11-21 20:32:33 +00001274#if OS_VXWORKS
drh8af6c222010-05-14 12:43:01 +00001275 fileId.pId = pFile->pId;
drh6c7d5c52008-11-21 20:32:33 +00001276#else
drh8af6c222010-05-14 12:43:01 +00001277 fileId.ino = statbuf.st_ino;
drh6c7d5c52008-11-21 20:32:33 +00001278#endif
drh8af6c222010-05-14 12:43:01 +00001279 pInode = inodeList;
1280 while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
1281 pInode = pInode->pNext;
drh6c7d5c52008-11-21 20:32:33 +00001282 }
drh8af6c222010-05-14 12:43:01 +00001283 if( pInode==0 ){
1284 pInode = sqlite3_malloc( sizeof(*pInode) );
1285 if( pInode==0 ){
1286 return SQLITE_NOMEM;
drh6c7d5c52008-11-21 20:32:33 +00001287 }
drh8af6c222010-05-14 12:43:01 +00001288 memset(pInode, 0, sizeof(*pInode));
1289 memcpy(&pInode->fileId, &fileId, sizeof(fileId));
1290 pInode->nRef = 1;
1291 pInode->pNext = inodeList;
1292 pInode->pPrev = 0;
1293 if( inodeList ) inodeList->pPrev = pInode;
1294 inodeList = pInode;
1295 }else{
1296 pInode->nRef++;
drh6c7d5c52008-11-21 20:32:33 +00001297 }
drh8af6c222010-05-14 12:43:01 +00001298 *ppInode = pInode;
1299 return SQLITE_OK;
drh6c7d5c52008-11-21 20:32:33 +00001300}
drh6c7d5c52008-11-21 20:32:33 +00001301
aswift5b1a2562008-08-22 00:22:35 +00001302
1303/*
danielk197713adf8a2004-06-03 16:08:41 +00001304** This routine checks if there is a RESERVED lock held on the specified
aswift5b1a2562008-08-22 00:22:35 +00001305** file by this or any other process. If such a lock is held, set *pResOut
1306** to a non-zero value otherwise *pResOut is set to zero. The return value
1307** is set to SQLITE_OK unless an I/O error occurs during lock checking.
danielk197713adf8a2004-06-03 16:08:41 +00001308*/
danielk1977861f7452008-06-05 11:39:11 +00001309static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
aswift5b1a2562008-08-22 00:22:35 +00001310 int rc = SQLITE_OK;
1311 int reserved = 0;
drh054889e2005-11-30 03:20:31 +00001312 unixFile *pFile = (unixFile*)id;
danielk197713adf8a2004-06-03 16:08:41 +00001313
danielk1977861f7452008-06-05 11:39:11 +00001314 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1315
drh054889e2005-11-30 03:20:31 +00001316 assert( pFile );
drh8af6c222010-05-14 12:43:01 +00001317 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
danielk197713adf8a2004-06-03 16:08:41 +00001318
1319 /* Check if a thread in this process holds such a lock */
drh8af6c222010-05-14 12:43:01 +00001320 if( pFile->pInode->eFileLock>SHARED_LOCK ){
aswift5b1a2562008-08-22 00:22:35 +00001321 reserved = 1;
danielk197713adf8a2004-06-03 16:08:41 +00001322 }
1323
drh2ac3ee92004-06-07 16:27:46 +00001324 /* Otherwise see if some other process holds it.
danielk197713adf8a2004-06-03 16:08:41 +00001325 */
danielk197709480a92009-02-09 05:32:32 +00001326#ifndef __DJGPP__
drha7e61d82011-03-12 17:02:57 +00001327 if( !reserved && !pFile->pInode->bProcessLock ){
danielk197713adf8a2004-06-03 16:08:41 +00001328 struct flock lock;
1329 lock.l_whence = SEEK_SET;
drh2ac3ee92004-06-07 16:27:46 +00001330 lock.l_start = RESERVED_BYTE;
1331 lock.l_len = 1;
1332 lock.l_type = F_WRLCK;
danea83bc62011-04-01 11:56:32 +00001333 if( osFcntl(pFile->h, F_GETLK, &lock) ){
1334 rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
1335 pFile->lastErrno = errno;
aswift5b1a2562008-08-22 00:22:35 +00001336 } else if( lock.l_type!=F_UNLCK ){
1337 reserved = 1;
danielk197713adf8a2004-06-03 16:08:41 +00001338 }
1339 }
danielk197709480a92009-02-09 05:32:32 +00001340#endif
danielk197713adf8a2004-06-03 16:08:41 +00001341
drh6c7d5c52008-11-21 20:32:33 +00001342 unixLeaveMutex();
drh308c2a52010-05-14 11:30:18 +00001343 OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
danielk197713adf8a2004-06-03 16:08:41 +00001344
aswift5b1a2562008-08-22 00:22:35 +00001345 *pResOut = reserved;
1346 return rc;
danielk197713adf8a2004-06-03 16:08:41 +00001347}
1348
1349/*
drha7e61d82011-03-12 17:02:57 +00001350** Attempt to set a system-lock on the file pFile. The lock is
1351** described by pLock.
1352**
drh77197112011-03-15 19:08:48 +00001353** If the pFile was opened read/write from unix-excl, then the only lock
1354** ever obtained is an exclusive lock, and it is obtained exactly once
drha7e61d82011-03-12 17:02:57 +00001355** the first time any lock is attempted. All subsequent system locking
1356** operations become no-ops. Locking operations still happen internally,
1357** in order to coordinate access between separate database connections
1358** within this process, but all of that is handled in memory and the
1359** operating system does not participate.
drh77197112011-03-15 19:08:48 +00001360**
1361** This function is a pass-through to fcntl(F_SETLK) if pFile is using
1362** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
1363** and is read-only.
dan661d71a2011-03-30 19:08:03 +00001364**
1365** Zero is returned if the call completes successfully, or -1 if a call
1366** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
drha7e61d82011-03-12 17:02:57 +00001367*/
1368static int unixFileLock(unixFile *pFile, struct flock *pLock){
1369 int rc;
drh3cb93392011-03-12 18:10:44 +00001370 unixInodeInfo *pInode = pFile->pInode;
drha7e61d82011-03-12 17:02:57 +00001371 assert( unixMutexHeld() );
drh3cb93392011-03-12 18:10:44 +00001372 assert( pInode!=0 );
drh77197112011-03-15 19:08:48 +00001373 if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock)
1374 && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0)
1375 ){
drh3cb93392011-03-12 18:10:44 +00001376 if( pInode->bProcessLock==0 ){
drha7e61d82011-03-12 17:02:57 +00001377 struct flock lock;
drh3cb93392011-03-12 18:10:44 +00001378 assert( pInode->nLock==0 );
drha7e61d82011-03-12 17:02:57 +00001379 lock.l_whence = SEEK_SET;
1380 lock.l_start = SHARED_FIRST;
1381 lock.l_len = SHARED_SIZE;
1382 lock.l_type = F_WRLCK;
1383 rc = osFcntl(pFile->h, F_SETLK, &lock);
1384 if( rc<0 ) return rc;
drh3cb93392011-03-12 18:10:44 +00001385 pInode->bProcessLock = 1;
1386 pInode->nLock++;
drha7e61d82011-03-12 17:02:57 +00001387 }else{
1388 rc = 0;
1389 }
1390 }else{
1391 rc = osFcntl(pFile->h, F_SETLK, pLock);
1392 }
1393 return rc;
1394}
1395
1396/*
drh308c2a52010-05-14 11:30:18 +00001397** Lock the file with the lock specified by parameter eFileLock - one
danielk19779a1d0ab2004-06-01 14:09:28 +00001398** of the following:
1399**
drh2ac3ee92004-06-07 16:27:46 +00001400** (1) SHARED_LOCK
1401** (2) RESERVED_LOCK
1402** (3) PENDING_LOCK
1403** (4) EXCLUSIVE_LOCK
1404**
drhb3e04342004-06-08 00:47:47 +00001405** Sometimes when requesting one lock state, additional lock states
1406** are inserted in between. The locking might fail on one of the later
1407** transitions leaving the lock state different from what it started but
1408** still short of its goal. The following chart shows the allowed
1409** transitions and the inserted intermediate states:
1410**
1411** UNLOCKED -> SHARED
1412** SHARED -> RESERVED
1413** SHARED -> (PENDING) -> EXCLUSIVE
1414** RESERVED -> (PENDING) -> EXCLUSIVE
1415** PENDING -> EXCLUSIVE
drh2ac3ee92004-06-07 16:27:46 +00001416**
drha6abd042004-06-09 17:37:22 +00001417** This routine will only increase a lock. Use the sqlite3OsUnlock()
1418** routine to lower a locking level.
danielk19779a1d0ab2004-06-01 14:09:28 +00001419*/
drh308c2a52010-05-14 11:30:18 +00001420static int unixLock(sqlite3_file *id, int eFileLock){
danielk1977f42f25c2004-06-25 07:21:28 +00001421 /* The following describes the implementation of the various locks and
1422 ** lock transitions in terms of the POSIX advisory shared and exclusive
1423 ** lock primitives (called read-locks and write-locks below, to avoid
1424 ** confusion with SQLite lock names). The algorithms are complicated
1425 ** slightly in order to be compatible with windows systems simultaneously
1426 ** accessing the same database file, in case that is ever required.
1427 **
1428 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1429 ** byte', each single bytes at well known offsets, and the 'shared byte
1430 ** range', a range of 510 bytes at a well known offset.
1431 **
1432 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1433 ** byte'. If this is successful, a random byte from the 'shared byte
1434 ** range' is read-locked and the lock on the 'pending byte' released.
1435 **
danielk197790ba3bd2004-06-25 08:32:25 +00001436 ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1437 ** A RESERVED lock is implemented by grabbing a write-lock on the
1438 ** 'reserved byte'.
danielk1977f42f25c2004-06-25 07:21:28 +00001439 **
1440 ** A process may only obtain a PENDING lock after it has obtained a
danielk197790ba3bd2004-06-25 08:32:25 +00001441 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1442 ** on the 'pending byte'. This ensures that no new SHARED locks can be
1443 ** obtained, but existing SHARED locks are allowed to persist. A process
1444 ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1445 ** This property is used by the algorithm for rolling back a journal file
1446 ** after a crash.
danielk1977f42f25c2004-06-25 07:21:28 +00001447 **
danielk197790ba3bd2004-06-25 08:32:25 +00001448 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1449 ** implemented by obtaining a write-lock on the entire 'shared byte
1450 ** range'. Since all other locks require a read-lock on one of the bytes
1451 ** within this range, this ensures that no other locks are held on the
1452 ** database.
danielk1977f42f25c2004-06-25 07:21:28 +00001453 **
1454 ** The reason a single byte cannot be used instead of the 'shared byte
1455 ** range' is that some versions of windows do not support read-locks. By
1456 ** locking a random byte from a range, concurrent SHARED locks may exist
1457 ** even if the locking primitive used is always a write-lock.
1458 */
danielk19779a1d0ab2004-06-01 14:09:28 +00001459 int rc = SQLITE_OK;
drh054889e2005-11-30 03:20:31 +00001460 unixFile *pFile = (unixFile*)id;
drhb07028f2011-10-14 21:49:18 +00001461 unixInodeInfo *pInode;
danielk19779a1d0ab2004-06-01 14:09:28 +00001462 struct flock lock;
drh383d30f2010-02-26 13:07:37 +00001463 int tErrno = 0;
danielk19779a1d0ab2004-06-01 14:09:28 +00001464
drh054889e2005-11-30 03:20:31 +00001465 assert( pFile );
drh308c2a52010-05-14 11:30:18 +00001466 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
1467 azFileLock(eFileLock), azFileLock(pFile->eFileLock),
drhb07028f2011-10-14 21:49:18 +00001468 azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared , getpid()));
danielk19779a1d0ab2004-06-01 14:09:28 +00001469
1470 /* If there is already a lock of this type or more restrictive on the
danielk1977ad94b582007-08-20 06:44:22 +00001471 ** unixFile, do nothing. Don't use the end_lock: exit path, as
drh6c7d5c52008-11-21 20:32:33 +00001472 ** unixEnterMutex() hasn't been called yet.
danielk19779a1d0ab2004-06-01 14:09:28 +00001473 */
drh308c2a52010-05-14 11:30:18 +00001474 if( pFile->eFileLock>=eFileLock ){
1475 OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h,
1476 azFileLock(eFileLock)));
danielk19779a1d0ab2004-06-01 14:09:28 +00001477 return SQLITE_OK;
1478 }
1479
drh0c2694b2009-09-03 16:23:44 +00001480 /* Make sure the locking sequence is correct.
1481 ** (1) We never move from unlocked to anything higher than shared lock.
1482 ** (2) SQLite never explicitly requests a pendig lock.
1483 ** (3) A shared lock is always held when a reserve lock is requested.
drh2ac3ee92004-06-07 16:27:46 +00001484 */
drh308c2a52010-05-14 11:30:18 +00001485 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
1486 assert( eFileLock!=PENDING_LOCK );
1487 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
drh2ac3ee92004-06-07 16:27:46 +00001488
drh8af6c222010-05-14 12:43:01 +00001489 /* This mutex is needed because pFile->pInode is shared across threads
drhb3e04342004-06-08 00:47:47 +00001490 */
drh6c7d5c52008-11-21 20:32:33 +00001491 unixEnterMutex();
drh8af6c222010-05-14 12:43:01 +00001492 pInode = pFile->pInode;
drh029b44b2006-01-15 00:13:15 +00001493
danielk1977ad94b582007-08-20 06:44:22 +00001494 /* If some thread using this PID has a lock via a different unixFile*
danielk19779a1d0ab2004-06-01 14:09:28 +00001495 ** handle that precludes the requested lock, return BUSY.
1496 */
drh8af6c222010-05-14 12:43:01 +00001497 if( (pFile->eFileLock!=pInode->eFileLock &&
1498 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
danielk19779a1d0ab2004-06-01 14:09:28 +00001499 ){
1500 rc = SQLITE_BUSY;
1501 goto end_lock;
1502 }
1503
1504 /* If a SHARED lock is requested, and some thread using this PID already
1505 ** has a SHARED or RESERVED lock, then increment reference counts and
1506 ** return SQLITE_OK.
1507 */
drh308c2a52010-05-14 11:30:18 +00001508 if( eFileLock==SHARED_LOCK &&
drh8af6c222010-05-14 12:43:01 +00001509 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
drh308c2a52010-05-14 11:30:18 +00001510 assert( eFileLock==SHARED_LOCK );
1511 assert( pFile->eFileLock==0 );
drh8af6c222010-05-14 12:43:01 +00001512 assert( pInode->nShared>0 );
drh308c2a52010-05-14 11:30:18 +00001513 pFile->eFileLock = SHARED_LOCK;
drh8af6c222010-05-14 12:43:01 +00001514 pInode->nShared++;
1515 pInode->nLock++;
danielk19779a1d0ab2004-06-01 14:09:28 +00001516 goto end_lock;
1517 }
1518
danielk19779a1d0ab2004-06-01 14:09:28 +00001519
drh3cde3bb2004-06-12 02:17:14 +00001520 /* A PENDING lock is needed before acquiring a SHARED lock and before
1521 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1522 ** be released.
danielk19779a1d0ab2004-06-01 14:09:28 +00001523 */
drh0c2694b2009-09-03 16:23:44 +00001524 lock.l_len = 1L;
1525 lock.l_whence = SEEK_SET;
drh308c2a52010-05-14 11:30:18 +00001526 if( eFileLock==SHARED_LOCK
1527 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
drh3cde3bb2004-06-12 02:17:14 +00001528 ){
drh308c2a52010-05-14 11:30:18 +00001529 lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
drh2ac3ee92004-06-07 16:27:46 +00001530 lock.l_start = PENDING_BYTE;
dan661d71a2011-03-30 19:08:03 +00001531 if( unixFileLock(pFile, &lock) ){
drh0c2694b2009-09-03 16:23:44 +00001532 tErrno = errno;
aswift5b1a2562008-08-22 00:22:35 +00001533 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
dan661d71a2011-03-30 19:08:03 +00001534 if( rc!=SQLITE_BUSY ){
aswift5b1a2562008-08-22 00:22:35 +00001535 pFile->lastErrno = tErrno;
1536 }
danielk19779a1d0ab2004-06-01 14:09:28 +00001537 goto end_lock;
1538 }
drh3cde3bb2004-06-12 02:17:14 +00001539 }
1540
1541
1542 /* If control gets to this point, then actually go ahead and make
1543 ** operating system calls for the specified lock.
1544 */
drh308c2a52010-05-14 11:30:18 +00001545 if( eFileLock==SHARED_LOCK ){
drh8af6c222010-05-14 12:43:01 +00001546 assert( pInode->nShared==0 );
1547 assert( pInode->eFileLock==0 );
dan661d71a2011-03-30 19:08:03 +00001548 assert( rc==SQLITE_OK );
danielk19779a1d0ab2004-06-01 14:09:28 +00001549
drh2ac3ee92004-06-07 16:27:46 +00001550 /* Now get the read-lock */
drh7ed97b92010-01-20 13:07:21 +00001551 lock.l_start = SHARED_FIRST;
1552 lock.l_len = SHARED_SIZE;
dan661d71a2011-03-30 19:08:03 +00001553 if( unixFileLock(pFile, &lock) ){
drh7ed97b92010-01-20 13:07:21 +00001554 tErrno = errno;
dan661d71a2011-03-30 19:08:03 +00001555 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
drh7ed97b92010-01-20 13:07:21 +00001556 }
dan661d71a2011-03-30 19:08:03 +00001557
drh2ac3ee92004-06-07 16:27:46 +00001558 /* Drop the temporary PENDING lock */
1559 lock.l_start = PENDING_BYTE;
1560 lock.l_len = 1L;
danielk19779a1d0ab2004-06-01 14:09:28 +00001561 lock.l_type = F_UNLCK;
dan661d71a2011-03-30 19:08:03 +00001562 if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
1563 /* This could happen with a network mount */
1564 tErrno = errno;
danea83bc62011-04-01 11:56:32 +00001565 rc = SQLITE_IOERR_UNLOCK;
drh2b4b5962005-06-15 17:47:55 +00001566 }
dan661d71a2011-03-30 19:08:03 +00001567
1568 if( rc ){
1569 if( rc!=SQLITE_BUSY ){
aswift5b1a2562008-08-22 00:22:35 +00001570 pFile->lastErrno = tErrno;
1571 }
dan661d71a2011-03-30 19:08:03 +00001572 goto end_lock;
drhbbd42a62004-05-22 17:41:58 +00001573 }else{
drh308c2a52010-05-14 11:30:18 +00001574 pFile->eFileLock = SHARED_LOCK;
drh8af6c222010-05-14 12:43:01 +00001575 pInode->nLock++;
1576 pInode->nShared = 1;
drhbbd42a62004-05-22 17:41:58 +00001577 }
drh8af6c222010-05-14 12:43:01 +00001578 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
drh3cde3bb2004-06-12 02:17:14 +00001579 /* We are trying for an exclusive lock but another thread in this
1580 ** same process is still holding a shared lock. */
1581 rc = SQLITE_BUSY;
drhbbd42a62004-05-22 17:41:58 +00001582 }else{
drh3cde3bb2004-06-12 02:17:14 +00001583 /* The request was for a RESERVED or EXCLUSIVE lock. It is
danielk19779a1d0ab2004-06-01 14:09:28 +00001584 ** assumed that there is a SHARED or greater lock on the file
1585 ** already.
1586 */
drh308c2a52010-05-14 11:30:18 +00001587 assert( 0!=pFile->eFileLock );
danielk19779a1d0ab2004-06-01 14:09:28 +00001588 lock.l_type = F_WRLCK;
dan661d71a2011-03-30 19:08:03 +00001589
1590 assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
1591 if( eFileLock==RESERVED_LOCK ){
1592 lock.l_start = RESERVED_BYTE;
1593 lock.l_len = 1L;
1594 }else{
1595 lock.l_start = SHARED_FIRST;
1596 lock.l_len = SHARED_SIZE;
danielk19779a1d0ab2004-06-01 14:09:28 +00001597 }
dan661d71a2011-03-30 19:08:03 +00001598
1599 if( unixFileLock(pFile, &lock) ){
drh7ed97b92010-01-20 13:07:21 +00001600 tErrno = errno;
aswift5b1a2562008-08-22 00:22:35 +00001601 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
dan661d71a2011-03-30 19:08:03 +00001602 if( rc!=SQLITE_BUSY ){
aswift5b1a2562008-08-22 00:22:35 +00001603 pFile->lastErrno = tErrno;
1604 }
danielk19779a1d0ab2004-06-01 14:09:28 +00001605 }
drhbbd42a62004-05-22 17:41:58 +00001606 }
danielk19779a1d0ab2004-06-01 14:09:28 +00001607
drh8f941bc2009-01-14 23:03:40 +00001608
drhd3d8c042012-05-29 17:02:40 +00001609#ifdef SQLITE_DEBUG
drh8f941bc2009-01-14 23:03:40 +00001610 /* Set up the transaction-counter change checking flags when
1611 ** transitioning from a SHARED to a RESERVED lock. The change
1612 ** from SHARED to RESERVED marks the beginning of a normal
1613 ** write operation (not a hot journal rollback).
1614 */
1615 if( rc==SQLITE_OK
drh308c2a52010-05-14 11:30:18 +00001616 && pFile->eFileLock<=SHARED_LOCK
1617 && eFileLock==RESERVED_LOCK
drh8f941bc2009-01-14 23:03:40 +00001618 ){
1619 pFile->transCntrChng = 0;
1620 pFile->dbUpdate = 0;
1621 pFile->inNormalWrite = 1;
1622 }
1623#endif
1624
1625
danielk1977ecb2a962004-06-02 06:30:16 +00001626 if( rc==SQLITE_OK ){
drh308c2a52010-05-14 11:30:18 +00001627 pFile->eFileLock = eFileLock;
drh8af6c222010-05-14 12:43:01 +00001628 pInode->eFileLock = eFileLock;
drh308c2a52010-05-14 11:30:18 +00001629 }else if( eFileLock==EXCLUSIVE_LOCK ){
1630 pFile->eFileLock = PENDING_LOCK;
drh8af6c222010-05-14 12:43:01 +00001631 pInode->eFileLock = PENDING_LOCK;
danielk1977ecb2a962004-06-02 06:30:16 +00001632 }
danielk19779a1d0ab2004-06-01 14:09:28 +00001633
1634end_lock:
drh6c7d5c52008-11-21 20:32:33 +00001635 unixLeaveMutex();
drh308c2a52010-05-14 11:30:18 +00001636 OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
1637 rc==SQLITE_OK ? "ok" : "failed"));
drhbbd42a62004-05-22 17:41:58 +00001638 return rc;
1639}
1640
1641/*
dan08da86a2009-08-21 17:18:03 +00001642** Add the file descriptor used by file handle pFile to the corresponding
dane946c392009-08-22 11:39:46 +00001643** pUnused list.
dan08da86a2009-08-21 17:18:03 +00001644*/
1645static void setPendingFd(unixFile *pFile){
drhd91c68f2010-05-14 14:52:25 +00001646 unixInodeInfo *pInode = pFile->pInode;
dane946c392009-08-22 11:39:46 +00001647 UnixUnusedFd *p = pFile->pUnused;
drh8af6c222010-05-14 12:43:01 +00001648 p->pNext = pInode->pUnused;
1649 pInode->pUnused = p;
dane946c392009-08-22 11:39:46 +00001650 pFile->h = -1;
1651 pFile->pUnused = 0;
dan08da86a2009-08-21 17:18:03 +00001652}
1653
1654/*
drh308c2a52010-05-14 11:30:18 +00001655** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
drha6abd042004-06-09 17:37:22 +00001656** must be either NO_LOCK or SHARED_LOCK.
1657**
1658** If the locking level of the file descriptor is already at or below
1659** the requested locking level, this routine is a no-op.
drh7ed97b92010-01-20 13:07:21 +00001660**
1661** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
1662** the byte range is divided into 2 parts and the first part is unlocked then
1663** set to a read lock, then the other part is simply unlocked. This works
1664** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
1665** remove the write lock on a region when a read lock is set.
drhbbd42a62004-05-22 17:41:58 +00001666*/
drha7e61d82011-03-12 17:02:57 +00001667static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
drh7ed97b92010-01-20 13:07:21 +00001668 unixFile *pFile = (unixFile*)id;
drhd91c68f2010-05-14 14:52:25 +00001669 unixInodeInfo *pInode;
drh7ed97b92010-01-20 13:07:21 +00001670 struct flock lock;
1671 int rc = SQLITE_OK;
drha6abd042004-06-09 17:37:22 +00001672
drh054889e2005-11-30 03:20:31 +00001673 assert( pFile );
drh308c2a52010-05-14 11:30:18 +00001674 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
drh8af6c222010-05-14 12:43:01 +00001675 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
drh308c2a52010-05-14 11:30:18 +00001676 getpid()));
drha6abd042004-06-09 17:37:22 +00001677
drh308c2a52010-05-14 11:30:18 +00001678 assert( eFileLock<=SHARED_LOCK );
1679 if( pFile->eFileLock<=eFileLock ){
drha6abd042004-06-09 17:37:22 +00001680 return SQLITE_OK;
1681 }
drh6c7d5c52008-11-21 20:32:33 +00001682 unixEnterMutex();
drh8af6c222010-05-14 12:43:01 +00001683 pInode = pFile->pInode;
1684 assert( pInode->nShared!=0 );
drh308c2a52010-05-14 11:30:18 +00001685 if( pFile->eFileLock>SHARED_LOCK ){
drh8af6c222010-05-14 12:43:01 +00001686 assert( pInode->eFileLock==pFile->eFileLock );
drh8f941bc2009-01-14 23:03:40 +00001687
drhd3d8c042012-05-29 17:02:40 +00001688#ifdef SQLITE_DEBUG
drh8f941bc2009-01-14 23:03:40 +00001689 /* When reducing a lock such that other processes can start
1690 ** reading the database file again, make sure that the
1691 ** transaction counter was updated if any part of the database
1692 ** file changed. If the transaction counter is not updated,
1693 ** other connections to the same file might not realize that
1694 ** the file has changed and hence might not know to flush their
1695 ** cache. The use of a stale cache can lead to database corruption.
1696 */
drh8f941bc2009-01-14 23:03:40 +00001697 pFile->inNormalWrite = 0;
1698#endif
1699
drh7ed97b92010-01-20 13:07:21 +00001700 /* downgrading to a shared lock on NFS involves clearing the write lock
1701 ** before establishing the readlock - to avoid a race condition we downgrade
1702 ** the lock in 2 blocks, so that part of the range will be covered by a
1703 ** write lock until the rest is covered by a read lock:
1704 ** 1: [WWWWW]
1705 ** 2: [....W]
1706 ** 3: [RRRRW]
1707 ** 4: [RRRR.]
1708 */
drh308c2a52010-05-14 11:30:18 +00001709 if( eFileLock==SHARED_LOCK ){
drh30f776f2011-02-25 03:25:07 +00001710
1711#if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
drh87e79ae2011-03-08 13:06:41 +00001712 (void)handleNFSUnlock;
drh30f776f2011-02-25 03:25:07 +00001713 assert( handleNFSUnlock==0 );
1714#endif
1715#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
drh7ed97b92010-01-20 13:07:21 +00001716 if( handleNFSUnlock ){
drh026663d2011-04-01 13:29:29 +00001717 int tErrno; /* Error code from system call errors */
drh7ed97b92010-01-20 13:07:21 +00001718 off_t divSize = SHARED_SIZE - 1;
1719
1720 lock.l_type = F_UNLCK;
1721 lock.l_whence = SEEK_SET;
1722 lock.l_start = SHARED_FIRST;
1723 lock.l_len = divSize;
dan211fb082011-04-01 09:04:36 +00001724 if( unixFileLock(pFile, &lock)==(-1) ){
drhc05a9a82010-03-04 16:12:34 +00001725 tErrno = errno;
danea83bc62011-04-01 11:56:32 +00001726 rc = SQLITE_IOERR_UNLOCK;
drh7ed97b92010-01-20 13:07:21 +00001727 if( IS_LOCK_ERROR(rc) ){
1728 pFile->lastErrno = tErrno;
1729 }
1730 goto end_unlock;
aswift5b1a2562008-08-22 00:22:35 +00001731 }
drh7ed97b92010-01-20 13:07:21 +00001732 lock.l_type = F_RDLCK;
1733 lock.l_whence = SEEK_SET;
1734 lock.l_start = SHARED_FIRST;
1735 lock.l_len = divSize;
drha7e61d82011-03-12 17:02:57 +00001736 if( unixFileLock(pFile, &lock)==(-1) ){
drhc05a9a82010-03-04 16:12:34 +00001737 tErrno = errno;
drh7ed97b92010-01-20 13:07:21 +00001738 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
1739 if( IS_LOCK_ERROR(rc) ){
1740 pFile->lastErrno = tErrno;
1741 }
1742 goto end_unlock;
1743 }
1744 lock.l_type = F_UNLCK;
1745 lock.l_whence = SEEK_SET;
1746 lock.l_start = SHARED_FIRST+divSize;
1747 lock.l_len = SHARED_SIZE-divSize;
drha7e61d82011-03-12 17:02:57 +00001748 if( unixFileLock(pFile, &lock)==(-1) ){
drhc05a9a82010-03-04 16:12:34 +00001749 tErrno = errno;
danea83bc62011-04-01 11:56:32 +00001750 rc = SQLITE_IOERR_UNLOCK;
drh7ed97b92010-01-20 13:07:21 +00001751 if( IS_LOCK_ERROR(rc) ){
1752 pFile->lastErrno = tErrno;
1753 }
1754 goto end_unlock;
1755 }
drh30f776f2011-02-25 03:25:07 +00001756 }else
1757#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
1758 {
drh7ed97b92010-01-20 13:07:21 +00001759 lock.l_type = F_RDLCK;
1760 lock.l_whence = SEEK_SET;
1761 lock.l_start = SHARED_FIRST;
1762 lock.l_len = SHARED_SIZE;
dan661d71a2011-03-30 19:08:03 +00001763 if( unixFileLock(pFile, &lock) ){
danea83bc62011-04-01 11:56:32 +00001764 /* In theory, the call to unixFileLock() cannot fail because another
1765 ** process is holding an incompatible lock. If it does, this
1766 ** indicates that the other process is not following the locking
1767 ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
1768 ** SQLITE_BUSY would confuse the upper layer (in practice it causes
1769 ** an assert to fail). */
1770 rc = SQLITE_IOERR_RDLOCK;
1771 pFile->lastErrno = errno;
drh7ed97b92010-01-20 13:07:21 +00001772 goto end_unlock;
1773 }
drh9c105bb2004-10-02 20:38:28 +00001774 }
1775 }
drhbbd42a62004-05-22 17:41:58 +00001776 lock.l_type = F_UNLCK;
1777 lock.l_whence = SEEK_SET;
drha6abd042004-06-09 17:37:22 +00001778 lock.l_start = PENDING_BYTE;
1779 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
dan661d71a2011-03-30 19:08:03 +00001780 if( unixFileLock(pFile, &lock)==0 ){
drh8af6c222010-05-14 12:43:01 +00001781 pInode->eFileLock = SHARED_LOCK;
drh2b4b5962005-06-15 17:47:55 +00001782 }else{
danea83bc62011-04-01 11:56:32 +00001783 rc = SQLITE_IOERR_UNLOCK;
1784 pFile->lastErrno = errno;
drhcd731cf2009-03-28 23:23:02 +00001785 goto end_unlock;
drh2b4b5962005-06-15 17:47:55 +00001786 }
drhbbd42a62004-05-22 17:41:58 +00001787 }
drh308c2a52010-05-14 11:30:18 +00001788 if( eFileLock==NO_LOCK ){
drha6abd042004-06-09 17:37:22 +00001789 /* Decrement the shared lock counter. Release the lock using an
1790 ** OS call only when all threads in this same process have released
1791 ** the lock.
1792 */
drh8af6c222010-05-14 12:43:01 +00001793 pInode->nShared--;
1794 if( pInode->nShared==0 ){
drha6abd042004-06-09 17:37:22 +00001795 lock.l_type = F_UNLCK;
1796 lock.l_whence = SEEK_SET;
1797 lock.l_start = lock.l_len = 0L;
dan661d71a2011-03-30 19:08:03 +00001798 if( unixFileLock(pFile, &lock)==0 ){
drh8af6c222010-05-14 12:43:01 +00001799 pInode->eFileLock = NO_LOCK;
drh2b4b5962005-06-15 17:47:55 +00001800 }else{
danea83bc62011-04-01 11:56:32 +00001801 rc = SQLITE_IOERR_UNLOCK;
drhf2f105d2012-08-20 15:53:54 +00001802 pFile->lastErrno = errno;
drh8af6c222010-05-14 12:43:01 +00001803 pInode->eFileLock = NO_LOCK;
drh308c2a52010-05-14 11:30:18 +00001804 pFile->eFileLock = NO_LOCK;
drh2b4b5962005-06-15 17:47:55 +00001805 }
drha6abd042004-06-09 17:37:22 +00001806 }
1807
drhbbd42a62004-05-22 17:41:58 +00001808 /* Decrement the count of locks against this same file. When the
1809 ** count reaches zero, close any other file descriptors whose close
1810 ** was deferred because of outstanding locks.
1811 */
drh8af6c222010-05-14 12:43:01 +00001812 pInode->nLock--;
1813 assert( pInode->nLock>=0 );
1814 if( pInode->nLock==0 ){
drh0e9365c2011-03-02 02:08:13 +00001815 closePendingFds(pFile);
drhbbd42a62004-05-22 17:41:58 +00001816 }
1817 }
drhf2f105d2012-08-20 15:53:54 +00001818
aswift5b1a2562008-08-22 00:22:35 +00001819end_unlock:
drh6c7d5c52008-11-21 20:32:33 +00001820 unixLeaveMutex();
drh308c2a52010-05-14 11:30:18 +00001821 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
drh9c105bb2004-10-02 20:38:28 +00001822 return rc;
drhbbd42a62004-05-22 17:41:58 +00001823}
1824
1825/*
drh308c2a52010-05-14 11:30:18 +00001826** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
drh7ed97b92010-01-20 13:07:21 +00001827** must be either NO_LOCK or SHARED_LOCK.
1828**
1829** If the locking level of the file descriptor is already at or below
1830** the requested locking level, this routine is a no-op.
1831*/
drh308c2a52010-05-14 11:30:18 +00001832static int unixUnlock(sqlite3_file *id, int eFileLock){
dana1afc742013-03-25 13:50:49 +00001833 assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 );
drha7e61d82011-03-12 17:02:57 +00001834 return posixUnlock(id, eFileLock, 0);
drh7ed97b92010-01-20 13:07:21 +00001835}
1836
danf23da962013-03-23 21:00:41 +00001837static int unixMapfile(unixFile *pFd, i64 nByte);
1838static void unixUnmapfile(unixFile *pFd);
1839
drh7ed97b92010-01-20 13:07:21 +00001840/*
danielk1977e339d652008-06-28 11:23:00 +00001841** This function performs the parts of the "close file" operation
1842** common to all locking schemes. It closes the directory and file
1843** handles, if they are valid, and sets all fields of the unixFile
1844** structure to 0.
drh9b35ea62008-11-29 02:20:26 +00001845**
1846** It is *not* necessary to hold the mutex when this routine is called,
1847** even on VxWorks. A mutex will be acquired on VxWorks by the
1848** vxworksReleaseFileId() routine.
danielk1977e339d652008-06-28 11:23:00 +00001849*/
1850static int closeUnixFile(sqlite3_file *id){
1851 unixFile *pFile = (unixFile*)id;
danf23da962013-03-23 21:00:41 +00001852 unixUnmapfile(pFile);
dan661d71a2011-03-30 19:08:03 +00001853 if( pFile->h>=0 ){
1854 robust_close(pFile, pFile->h, __LINE__);
1855 pFile->h = -1;
1856 }
1857#if OS_VXWORKS
1858 if( pFile->pId ){
drhc02a43a2012-01-10 23:18:38 +00001859 if( pFile->ctrlFlags & UNIXFILE_DELETE ){
drh036ac7f2011-08-08 23:18:05 +00001860 osUnlink(pFile->pId->zCanonicalName);
dan661d71a2011-03-30 19:08:03 +00001861 }
1862 vxworksReleaseFileId(pFile->pId);
1863 pFile->pId = 0;
1864 }
1865#endif
1866 OSTRACE(("CLOSE %-3d\n", pFile->h));
1867 OpenCounter(-1);
1868 sqlite3_free(pFile->pUnused);
1869 memset(pFile, 0, sizeof(unixFile));
danielk1977e339d652008-06-28 11:23:00 +00001870 return SQLITE_OK;
1871}
1872
1873/*
danielk1977e3026632004-06-22 11:29:02 +00001874** Close a file.
1875*/
danielk197762079062007-08-15 17:08:46 +00001876static int unixClose(sqlite3_file *id){
aswiftaebf4132008-11-21 00:10:35 +00001877 int rc = SQLITE_OK;
dan661d71a2011-03-30 19:08:03 +00001878 unixFile *pFile = (unixFile *)id;
1879 unixUnlock(id, NO_LOCK);
1880 unixEnterMutex();
1881
1882 /* unixFile.pInode is always valid here. Otherwise, a different close
1883 ** routine (e.g. nolockClose()) would be called instead.
1884 */
1885 assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
1886 if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){
1887 /* If there are outstanding locks, do not actually close the file just
1888 ** yet because that would clear those locks. Instead, add the file
1889 ** descriptor to pInode->pUnused list. It will be automatically closed
1890 ** when the last lock is cleared.
1891 */
1892 setPendingFd(pFile);
danielk1977e3026632004-06-22 11:29:02 +00001893 }
dan661d71a2011-03-30 19:08:03 +00001894 releaseInodeInfo(pFile);
1895 rc = closeUnixFile(id);
1896 unixLeaveMutex();
aswiftaebf4132008-11-21 00:10:35 +00001897 return rc;
danielk1977e3026632004-06-22 11:29:02 +00001898}
1899
drh734c9862008-11-28 15:37:20 +00001900/************** End of the posix advisory lock implementation *****************
1901******************************************************************************/
drhbfe66312006-10-03 17:40:40 +00001902
drh734c9862008-11-28 15:37:20 +00001903/******************************************************************************
1904****************************** No-op Locking **********************************
1905**
1906** Of the various locking implementations available, this is by far the
1907** simplest: locking is ignored. No attempt is made to lock the database
1908** file for reading or writing.
1909**
1910** This locking mode is appropriate for use on read-only databases
1911** (ex: databases that are burned into CD-ROM, for example.) It can
1912** also be used if the application employs some external mechanism to
1913** prevent simultaneous access of the same database by two or more
1914** database connections. But there is a serious risk of database
1915** corruption if this locking mode is used in situations where multiple
1916** database connections are accessing the same database file at the same
1917** time and one or more of those connections are writing.
1918*/
drhbfe66312006-10-03 17:40:40 +00001919
drh734c9862008-11-28 15:37:20 +00001920static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
1921 UNUSED_PARAMETER(NotUsed);
1922 *pResOut = 0;
1923 return SQLITE_OK;
1924}
drh734c9862008-11-28 15:37:20 +00001925static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
1926 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1927 return SQLITE_OK;
1928}
drh734c9862008-11-28 15:37:20 +00001929static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
1930 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1931 return SQLITE_OK;
1932}
1933
1934/*
drh9b35ea62008-11-29 02:20:26 +00001935** Close the file.
drh734c9862008-11-28 15:37:20 +00001936*/
1937static int nolockClose(sqlite3_file *id) {
drh9b35ea62008-11-29 02:20:26 +00001938 return closeUnixFile(id);
drh734c9862008-11-28 15:37:20 +00001939}
1940
1941/******************* End of the no-op lock implementation *********************
1942******************************************************************************/
1943
1944/******************************************************************************
1945************************* Begin dot-file Locking ******************************
1946**
mistachkin48864df2013-03-21 21:20:32 +00001947** The dotfile locking implementation uses the existence of separate lock
drh9ef6bc42011-11-04 02:24:02 +00001948** files (really a directory) to control access to the database. This works
1949** on just about every filesystem imaginable. But there are serious downsides:
drh734c9862008-11-28 15:37:20 +00001950**
1951** (1) There is zero concurrency. A single reader blocks all other
1952** connections from reading or writing the database.
1953**
1954** (2) An application crash or power loss can leave stale lock files
1955** sitting around that need to be cleared manually.
1956**
1957** Nevertheless, a dotlock is an appropriate locking mode for use if no
1958** other locking strategy is available.
drh7708e972008-11-29 00:56:52 +00001959**
drh9ef6bc42011-11-04 02:24:02 +00001960** Dotfile locking works by creating a subdirectory in the same directory as
1961** the database and with the same name but with a ".lock" extension added.
mistachkin48864df2013-03-21 21:20:32 +00001962** The existence of a lock directory implies an EXCLUSIVE lock. All other
drh9ef6bc42011-11-04 02:24:02 +00001963** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
drh734c9862008-11-28 15:37:20 +00001964*/
1965
1966/*
1967** The file suffix added to the data base filename in order to create the
drh9ef6bc42011-11-04 02:24:02 +00001968** lock directory.
drh734c9862008-11-28 15:37:20 +00001969*/
1970#define DOTLOCK_SUFFIX ".lock"
1971
drh7708e972008-11-29 00:56:52 +00001972/*
1973** This routine checks if there is a RESERVED lock held on the specified
1974** file by this or any other process. If such a lock is held, set *pResOut
1975** to a non-zero value otherwise *pResOut is set to zero. The return value
1976** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1977**
1978** In dotfile locking, either a lock exists or it does not. So in this
1979** variation of CheckReservedLock(), *pResOut is set to true if any lock
1980** is held on the file and false if the file is unlocked.
1981*/
drh734c9862008-11-28 15:37:20 +00001982static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
1983 int rc = SQLITE_OK;
1984 int reserved = 0;
1985 unixFile *pFile = (unixFile*)id;
1986
1987 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1988
1989 assert( pFile );
1990
1991 /* Check if a thread in this process holds such a lock */
drh308c2a52010-05-14 11:30:18 +00001992 if( pFile->eFileLock>SHARED_LOCK ){
drh7708e972008-11-29 00:56:52 +00001993 /* Either this connection or some other connection in the same process
1994 ** holds a lock on the file. No need to check further. */
drh734c9862008-11-28 15:37:20 +00001995 reserved = 1;
drh7708e972008-11-29 00:56:52 +00001996 }else{
1997 /* The lock is held if and only if the lockfile exists */
1998 const char *zLockFile = (const char*)pFile->lockingContext;
drh99ab3b12011-03-02 15:09:07 +00001999 reserved = osAccess(zLockFile, 0)==0;
drh734c9862008-11-28 15:37:20 +00002000 }
drh308c2a52010-05-14 11:30:18 +00002001 OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
drh734c9862008-11-28 15:37:20 +00002002 *pResOut = reserved;
2003 return rc;
2004}
2005
drh7708e972008-11-29 00:56:52 +00002006/*
drh308c2a52010-05-14 11:30:18 +00002007** Lock the file with the lock specified by parameter eFileLock - one
drh7708e972008-11-29 00:56:52 +00002008** of the following:
2009**
2010** (1) SHARED_LOCK
2011** (2) RESERVED_LOCK
2012** (3) PENDING_LOCK
2013** (4) EXCLUSIVE_LOCK
2014**
2015** Sometimes when requesting one lock state, additional lock states
2016** are inserted in between. The locking might fail on one of the later
2017** transitions leaving the lock state different from what it started but
2018** still short of its goal. The following chart shows the allowed
2019** transitions and the inserted intermediate states:
2020**
2021** UNLOCKED -> SHARED
2022** SHARED -> RESERVED
2023** SHARED -> (PENDING) -> EXCLUSIVE
2024** RESERVED -> (PENDING) -> EXCLUSIVE
2025** PENDING -> EXCLUSIVE
2026**
2027** This routine will only increase a lock. Use the sqlite3OsUnlock()
2028** routine to lower a locking level.
2029**
2030** With dotfile locking, we really only support state (4): EXCLUSIVE.
2031** But we track the other locking levels internally.
2032*/
drh308c2a52010-05-14 11:30:18 +00002033static int dotlockLock(sqlite3_file *id, int eFileLock) {
drh734c9862008-11-28 15:37:20 +00002034 unixFile *pFile = (unixFile*)id;
drh734c9862008-11-28 15:37:20 +00002035 char *zLockFile = (char *)pFile->lockingContext;
drh7708e972008-11-29 00:56:52 +00002036 int rc = SQLITE_OK;
drh734c9862008-11-28 15:37:20 +00002037
drh7708e972008-11-29 00:56:52 +00002038
2039 /* If we have any lock, then the lock file already exists. All we have
2040 ** to do is adjust our internal record of the lock level.
2041 */
drh308c2a52010-05-14 11:30:18 +00002042 if( pFile->eFileLock > NO_LOCK ){
2043 pFile->eFileLock = eFileLock;
drh734c9862008-11-28 15:37:20 +00002044 /* Always update the timestamp on the old file */
drhdbe4b882011-06-20 18:00:17 +00002045#ifdef HAVE_UTIME
2046 utime(zLockFile, NULL);
2047#else
drh734c9862008-11-28 15:37:20 +00002048 utimes(zLockFile, NULL);
2049#endif
drh7708e972008-11-29 00:56:52 +00002050 return SQLITE_OK;
drh734c9862008-11-28 15:37:20 +00002051 }
2052
2053 /* grab an exclusive lock */
drh9ef6bc42011-11-04 02:24:02 +00002054 rc = osMkdir(zLockFile, 0777);
2055 if( rc<0 ){
2056 /* failed to open/create the lock directory */
drh734c9862008-11-28 15:37:20 +00002057 int tErrno = errno;
2058 if( EEXIST == tErrno ){
2059 rc = SQLITE_BUSY;
2060 } else {
2061 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2062 if( IS_LOCK_ERROR(rc) ){
2063 pFile->lastErrno = tErrno;
2064 }
2065 }
drh7708e972008-11-29 00:56:52 +00002066 return rc;
drh734c9862008-11-28 15:37:20 +00002067 }
drh734c9862008-11-28 15:37:20 +00002068
2069 /* got it, set the type and return ok */
drh308c2a52010-05-14 11:30:18 +00002070 pFile->eFileLock = eFileLock;
drh734c9862008-11-28 15:37:20 +00002071 return rc;
2072}
2073
drh7708e972008-11-29 00:56:52 +00002074/*
drh308c2a52010-05-14 11:30:18 +00002075** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
drh7708e972008-11-29 00:56:52 +00002076** must be either NO_LOCK or SHARED_LOCK.
2077**
2078** If the locking level of the file descriptor is already at or below
2079** the requested locking level, this routine is a no-op.
2080**
2081** When the locking level reaches NO_LOCK, delete the lock file.
2082*/
drh308c2a52010-05-14 11:30:18 +00002083static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
drh734c9862008-11-28 15:37:20 +00002084 unixFile *pFile = (unixFile*)id;
2085 char *zLockFile = (char *)pFile->lockingContext;
drh9ef6bc42011-11-04 02:24:02 +00002086 int rc;
drh734c9862008-11-28 15:37:20 +00002087
2088 assert( pFile );
drh308c2a52010-05-14 11:30:18 +00002089 OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
drhf2f105d2012-08-20 15:53:54 +00002090 pFile->eFileLock, getpid()));
drh308c2a52010-05-14 11:30:18 +00002091 assert( eFileLock<=SHARED_LOCK );
drh734c9862008-11-28 15:37:20 +00002092
2093 /* no-op if possible */
drh308c2a52010-05-14 11:30:18 +00002094 if( pFile->eFileLock==eFileLock ){
drh734c9862008-11-28 15:37:20 +00002095 return SQLITE_OK;
2096 }
drh7708e972008-11-29 00:56:52 +00002097
2098 /* To downgrade to shared, simply update our internal notion of the
2099 ** lock state. No need to mess with the file on disk.
2100 */
drh308c2a52010-05-14 11:30:18 +00002101 if( eFileLock==SHARED_LOCK ){
2102 pFile->eFileLock = SHARED_LOCK;
drh734c9862008-11-28 15:37:20 +00002103 return SQLITE_OK;
2104 }
2105
drh7708e972008-11-29 00:56:52 +00002106 /* To fully unlock the database, delete the lock file */
drh308c2a52010-05-14 11:30:18 +00002107 assert( eFileLock==NO_LOCK );
drh9ef6bc42011-11-04 02:24:02 +00002108 rc = osRmdir(zLockFile);
2109 if( rc<0 && errno==ENOTDIR ) rc = osUnlink(zLockFile);
2110 if( rc<0 ){
drh0d588bb2009-06-17 13:09:38 +00002111 int tErrno = errno;
drh13e0ea92011-12-11 02:29:25 +00002112 rc = 0;
drh734c9862008-11-28 15:37:20 +00002113 if( ENOENT != tErrno ){
danea83bc62011-04-01 11:56:32 +00002114 rc = SQLITE_IOERR_UNLOCK;
drh734c9862008-11-28 15:37:20 +00002115 }
2116 if( IS_LOCK_ERROR(rc) ){
2117 pFile->lastErrno = tErrno;
2118 }
2119 return rc;
2120 }
drh308c2a52010-05-14 11:30:18 +00002121 pFile->eFileLock = NO_LOCK;
drh734c9862008-11-28 15:37:20 +00002122 return SQLITE_OK;
2123}
2124
2125/*
drh9b35ea62008-11-29 02:20:26 +00002126** Close a file. Make sure the lock has been released before closing.
drh734c9862008-11-28 15:37:20 +00002127*/
2128static int dotlockClose(sqlite3_file *id) {
drh5a05be12012-10-09 18:51:44 +00002129 int rc = SQLITE_OK;
drh734c9862008-11-28 15:37:20 +00002130 if( id ){
2131 unixFile *pFile = (unixFile*)id;
2132 dotlockUnlock(id, NO_LOCK);
2133 sqlite3_free(pFile->lockingContext);
drh5a05be12012-10-09 18:51:44 +00002134 rc = closeUnixFile(id);
drh734c9862008-11-28 15:37:20 +00002135 }
drh734c9862008-11-28 15:37:20 +00002136 return rc;
2137}
2138/****************** End of the dot-file lock implementation *******************
2139******************************************************************************/
2140
2141/******************************************************************************
2142************************** Begin flock Locking ********************************
2143**
2144** Use the flock() system call to do file locking.
2145**
drh6b9d6dd2008-12-03 19:34:47 +00002146** flock() locking is like dot-file locking in that the various
2147** fine-grain locking levels supported by SQLite are collapsed into
2148** a single exclusive lock. In other words, SHARED, RESERVED, and
2149** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite
2150** still works when you do this, but concurrency is reduced since
2151** only a single process can be reading the database at a time.
2152**
drh734c9862008-11-28 15:37:20 +00002153** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
2154** compiling for VXWORKS.
2155*/
2156#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
drh734c9862008-11-28 15:37:20 +00002157
drh6b9d6dd2008-12-03 19:34:47 +00002158/*
drhff812312011-02-23 13:33:46 +00002159** Retry flock() calls that fail with EINTR
2160*/
2161#ifdef EINTR
2162static int robust_flock(int fd, int op){
2163 int rc;
2164 do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
2165 return rc;
2166}
2167#else
drh5c819272011-02-23 14:00:12 +00002168# define robust_flock(a,b) flock(a,b)
drhff812312011-02-23 13:33:46 +00002169#endif
2170
2171
2172/*
drh6b9d6dd2008-12-03 19:34:47 +00002173** This routine checks if there is a RESERVED lock held on the specified
2174** file by this or any other process. If such a lock is held, set *pResOut
2175** to a non-zero value otherwise *pResOut is set to zero. The return value
2176** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2177*/
drh734c9862008-11-28 15:37:20 +00002178static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
2179 int rc = SQLITE_OK;
2180 int reserved = 0;
2181 unixFile *pFile = (unixFile*)id;
2182
2183 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2184
2185 assert( pFile );
2186
2187 /* Check if a thread in this process holds such a lock */
drh308c2a52010-05-14 11:30:18 +00002188 if( pFile->eFileLock>SHARED_LOCK ){
drh734c9862008-11-28 15:37:20 +00002189 reserved = 1;
2190 }
2191
2192 /* Otherwise see if some other process holds it. */
2193 if( !reserved ){
2194 /* attempt to get the lock */
drhff812312011-02-23 13:33:46 +00002195 int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
drh734c9862008-11-28 15:37:20 +00002196 if( !lrc ){
2197 /* got the lock, unlock it */
drhff812312011-02-23 13:33:46 +00002198 lrc = robust_flock(pFile->h, LOCK_UN);
drh734c9862008-11-28 15:37:20 +00002199 if ( lrc ) {
2200 int tErrno = errno;
2201 /* unlock failed with an error */
danea83bc62011-04-01 11:56:32 +00002202 lrc = SQLITE_IOERR_UNLOCK;
drh734c9862008-11-28 15:37:20 +00002203 if( IS_LOCK_ERROR(lrc) ){
2204 pFile->lastErrno = tErrno;
2205 rc = lrc;
2206 }
2207 }
2208 } else {
2209 int tErrno = errno;
2210 reserved = 1;
2211 /* someone else might have it reserved */
2212 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2213 if( IS_LOCK_ERROR(lrc) ){
2214 pFile->lastErrno = tErrno;
2215 rc = lrc;
2216 }
2217 }
2218 }
drh308c2a52010-05-14 11:30:18 +00002219 OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
drh734c9862008-11-28 15:37:20 +00002220
2221#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2222 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2223 rc = SQLITE_OK;
2224 reserved=1;
2225 }
2226#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2227 *pResOut = reserved;
2228 return rc;
2229}
2230
drh6b9d6dd2008-12-03 19:34:47 +00002231/*
drh308c2a52010-05-14 11:30:18 +00002232** Lock the file with the lock specified by parameter eFileLock - one
drh6b9d6dd2008-12-03 19:34:47 +00002233** of the following:
2234**
2235** (1) SHARED_LOCK
2236** (2) RESERVED_LOCK
2237** (3) PENDING_LOCK
2238** (4) EXCLUSIVE_LOCK
2239**
2240** Sometimes when requesting one lock state, additional lock states
2241** are inserted in between. The locking might fail on one of the later
2242** transitions leaving the lock state different from what it started but
2243** still short of its goal. The following chart shows the allowed
2244** transitions and the inserted intermediate states:
2245**
2246** UNLOCKED -> SHARED
2247** SHARED -> RESERVED
2248** SHARED -> (PENDING) -> EXCLUSIVE
2249** RESERVED -> (PENDING) -> EXCLUSIVE
2250** PENDING -> EXCLUSIVE
2251**
2252** flock() only really support EXCLUSIVE locks. We track intermediate
2253** lock states in the sqlite3_file structure, but all locks SHARED or
2254** above are really EXCLUSIVE locks and exclude all other processes from
2255** access the file.
2256**
2257** This routine will only increase a lock. Use the sqlite3OsUnlock()
2258** routine to lower a locking level.
2259*/
drh308c2a52010-05-14 11:30:18 +00002260static int flockLock(sqlite3_file *id, int eFileLock) {
drh734c9862008-11-28 15:37:20 +00002261 int rc = SQLITE_OK;
drh734c9862008-11-28 15:37:20 +00002262 unixFile *pFile = (unixFile*)id;
2263
2264 assert( pFile );
2265
2266 /* if we already have a lock, it is exclusive.
2267 ** Just adjust level and punt on outta here. */
drh308c2a52010-05-14 11:30:18 +00002268 if (pFile->eFileLock > NO_LOCK) {
2269 pFile->eFileLock = eFileLock;
drh734c9862008-11-28 15:37:20 +00002270 return SQLITE_OK;
2271 }
2272
2273 /* grab an exclusive lock */
2274
drhff812312011-02-23 13:33:46 +00002275 if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
drh734c9862008-11-28 15:37:20 +00002276 int tErrno = errno;
2277 /* didn't get, must be busy */
2278 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2279 if( IS_LOCK_ERROR(rc) ){
2280 pFile->lastErrno = tErrno;
2281 }
2282 } else {
2283 /* got it, set the type and return ok */
drh308c2a52010-05-14 11:30:18 +00002284 pFile->eFileLock = eFileLock;
drh734c9862008-11-28 15:37:20 +00002285 }
drh308c2a52010-05-14 11:30:18 +00002286 OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
2287 rc==SQLITE_OK ? "ok" : "failed"));
drh734c9862008-11-28 15:37:20 +00002288#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2289 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2290 rc = SQLITE_BUSY;
2291 }
2292#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2293 return rc;
2294}
2295
drh6b9d6dd2008-12-03 19:34:47 +00002296
2297/*
drh308c2a52010-05-14 11:30:18 +00002298** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
drh6b9d6dd2008-12-03 19:34:47 +00002299** must be either NO_LOCK or SHARED_LOCK.
2300**
2301** If the locking level of the file descriptor is already at or below
2302** the requested locking level, this routine is a no-op.
2303*/
drh308c2a52010-05-14 11:30:18 +00002304static int flockUnlock(sqlite3_file *id, int eFileLock) {
drh734c9862008-11-28 15:37:20 +00002305 unixFile *pFile = (unixFile*)id;
2306
2307 assert( pFile );
drh308c2a52010-05-14 11:30:18 +00002308 OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
2309 pFile->eFileLock, getpid()));
2310 assert( eFileLock<=SHARED_LOCK );
drh734c9862008-11-28 15:37:20 +00002311
2312 /* no-op if possible */
drh308c2a52010-05-14 11:30:18 +00002313 if( pFile->eFileLock==eFileLock ){
drh734c9862008-11-28 15:37:20 +00002314 return SQLITE_OK;
2315 }
2316
2317 /* shared can just be set because we always have an exclusive */
drh308c2a52010-05-14 11:30:18 +00002318 if (eFileLock==SHARED_LOCK) {
2319 pFile->eFileLock = eFileLock;
drh734c9862008-11-28 15:37:20 +00002320 return SQLITE_OK;
2321 }
2322
2323 /* no, really, unlock. */
danea83bc62011-04-01 11:56:32 +00002324 if( robust_flock(pFile->h, LOCK_UN) ){
drh734c9862008-11-28 15:37:20 +00002325#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
danea83bc62011-04-01 11:56:32 +00002326 return SQLITE_OK;
drh734c9862008-11-28 15:37:20 +00002327#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
danea83bc62011-04-01 11:56:32 +00002328 return SQLITE_IOERR_UNLOCK;
2329 }else{
drh308c2a52010-05-14 11:30:18 +00002330 pFile->eFileLock = NO_LOCK;
drh734c9862008-11-28 15:37:20 +00002331 return SQLITE_OK;
2332 }
2333}
2334
2335/*
2336** Close a file.
2337*/
2338static int flockClose(sqlite3_file *id) {
drh5a05be12012-10-09 18:51:44 +00002339 int rc = SQLITE_OK;
drh734c9862008-11-28 15:37:20 +00002340 if( id ){
2341 flockUnlock(id, NO_LOCK);
drh5a05be12012-10-09 18:51:44 +00002342 rc = closeUnixFile(id);
drh734c9862008-11-28 15:37:20 +00002343 }
drh5a05be12012-10-09 18:51:44 +00002344 return rc;
drh734c9862008-11-28 15:37:20 +00002345}
2346
2347#endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
2348
2349/******************* End of the flock lock implementation *********************
2350******************************************************************************/
2351
2352/******************************************************************************
2353************************ Begin Named Semaphore Locking ************************
2354**
2355** Named semaphore locking is only supported on VxWorks.
drh6b9d6dd2008-12-03 19:34:47 +00002356**
2357** Semaphore locking is like dot-lock and flock in that it really only
2358** supports EXCLUSIVE locking. Only a single process can read or write
2359** the database file at a time. This reduces potential concurrency, but
2360** makes the lock implementation much easier.
drh734c9862008-11-28 15:37:20 +00002361*/
2362#if OS_VXWORKS
2363
drh6b9d6dd2008-12-03 19:34:47 +00002364/*
2365** This routine checks if there is a RESERVED lock held on the specified
2366** file by this or any other process. If such a lock is held, set *pResOut
2367** to a non-zero value otherwise *pResOut is set to zero. The return value
2368** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2369*/
drh734c9862008-11-28 15:37:20 +00002370static int semCheckReservedLock(sqlite3_file *id, int *pResOut) {
2371 int rc = SQLITE_OK;
2372 int reserved = 0;
2373 unixFile *pFile = (unixFile*)id;
2374
2375 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2376
2377 assert( pFile );
2378
2379 /* Check if a thread in this process holds such a lock */
drh308c2a52010-05-14 11:30:18 +00002380 if( pFile->eFileLock>SHARED_LOCK ){
drh734c9862008-11-28 15:37:20 +00002381 reserved = 1;
2382 }
2383
2384 /* Otherwise see if some other process holds it. */
2385 if( !reserved ){
drh8af6c222010-05-14 12:43:01 +00002386 sem_t *pSem = pFile->pInode->pSem;
drh734c9862008-11-28 15:37:20 +00002387 struct stat statBuf;
2388
2389 if( sem_trywait(pSem)==-1 ){
2390 int tErrno = errno;
2391 if( EAGAIN != tErrno ){
2392 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
2393 pFile->lastErrno = tErrno;
2394 } else {
2395 /* someone else has the lock when we are in NO_LOCK */
drh308c2a52010-05-14 11:30:18 +00002396 reserved = (pFile->eFileLock < SHARED_LOCK);
drh734c9862008-11-28 15:37:20 +00002397 }
2398 }else{
2399 /* we could have it if we want it */
2400 sem_post(pSem);
2401 }
2402 }
drh308c2a52010-05-14 11:30:18 +00002403 OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
drh734c9862008-11-28 15:37:20 +00002404
2405 *pResOut = reserved;
2406 return rc;
2407}
2408
drh6b9d6dd2008-12-03 19:34:47 +00002409/*
drh308c2a52010-05-14 11:30:18 +00002410** Lock the file with the lock specified by parameter eFileLock - one
drh6b9d6dd2008-12-03 19:34:47 +00002411** of the following:
2412**
2413** (1) SHARED_LOCK
2414** (2) RESERVED_LOCK
2415** (3) PENDING_LOCK
2416** (4) EXCLUSIVE_LOCK
2417**
2418** Sometimes when requesting one lock state, additional lock states
2419** are inserted in between. The locking might fail on one of the later
2420** transitions leaving the lock state different from what it started but
2421** still short of its goal. The following chart shows the allowed
2422** transitions and the inserted intermediate states:
2423**
2424** UNLOCKED -> SHARED
2425** SHARED -> RESERVED
2426** SHARED -> (PENDING) -> EXCLUSIVE
2427** RESERVED -> (PENDING) -> EXCLUSIVE
2428** PENDING -> EXCLUSIVE
2429**
2430** Semaphore locks only really support EXCLUSIVE locks. We track intermediate
2431** lock states in the sqlite3_file structure, but all locks SHARED or
2432** above are really EXCLUSIVE locks and exclude all other processes from
2433** access the file.
2434**
2435** This routine will only increase a lock. Use the sqlite3OsUnlock()
2436** routine to lower a locking level.
2437*/
drh308c2a52010-05-14 11:30:18 +00002438static int semLock(sqlite3_file *id, int eFileLock) {
drh734c9862008-11-28 15:37:20 +00002439 unixFile *pFile = (unixFile*)id;
2440 int fd;
drh8af6c222010-05-14 12:43:01 +00002441 sem_t *pSem = pFile->pInode->pSem;
drh734c9862008-11-28 15:37:20 +00002442 int rc = SQLITE_OK;
2443
2444 /* if we already have a lock, it is exclusive.
2445 ** Just adjust level and punt on outta here. */
drh308c2a52010-05-14 11:30:18 +00002446 if (pFile->eFileLock > NO_LOCK) {
2447 pFile->eFileLock = eFileLock;
drh734c9862008-11-28 15:37:20 +00002448 rc = SQLITE_OK;
2449 goto sem_end_lock;
2450 }
2451
2452 /* lock semaphore now but bail out when already locked. */
2453 if( sem_trywait(pSem)==-1 ){
2454 rc = SQLITE_BUSY;
2455 goto sem_end_lock;
2456 }
2457
2458 /* got it, set the type and return ok */
drh308c2a52010-05-14 11:30:18 +00002459 pFile->eFileLock = eFileLock;
drh734c9862008-11-28 15:37:20 +00002460
2461 sem_end_lock:
2462 return rc;
2463}
2464
drh6b9d6dd2008-12-03 19:34:47 +00002465/*
drh308c2a52010-05-14 11:30:18 +00002466** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
drh6b9d6dd2008-12-03 19:34:47 +00002467** must be either NO_LOCK or SHARED_LOCK.
2468**
2469** If the locking level of the file descriptor is already at or below
2470** the requested locking level, this routine is a no-op.
2471*/
drh308c2a52010-05-14 11:30:18 +00002472static int semUnlock(sqlite3_file *id, int eFileLock) {
drh734c9862008-11-28 15:37:20 +00002473 unixFile *pFile = (unixFile*)id;
drh8af6c222010-05-14 12:43:01 +00002474 sem_t *pSem = pFile->pInode->pSem;
drh734c9862008-11-28 15:37:20 +00002475
2476 assert( pFile );
2477 assert( pSem );
drh308c2a52010-05-14 11:30:18 +00002478 OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
drhf2f105d2012-08-20 15:53:54 +00002479 pFile->eFileLock, getpid()));
drh308c2a52010-05-14 11:30:18 +00002480 assert( eFileLock<=SHARED_LOCK );
drh734c9862008-11-28 15:37:20 +00002481
2482 /* no-op if possible */
drh308c2a52010-05-14 11:30:18 +00002483 if( pFile->eFileLock==eFileLock ){
drh734c9862008-11-28 15:37:20 +00002484 return SQLITE_OK;
2485 }
2486
2487 /* shared can just be set because we always have an exclusive */
drh308c2a52010-05-14 11:30:18 +00002488 if (eFileLock==SHARED_LOCK) {
2489 pFile->eFileLock = eFileLock;
drh734c9862008-11-28 15:37:20 +00002490 return SQLITE_OK;
2491 }
2492
2493 /* no, really unlock. */
2494 if ( sem_post(pSem)==-1 ) {
2495 int rc, tErrno = errno;
2496 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
2497 if( IS_LOCK_ERROR(rc) ){
2498 pFile->lastErrno = tErrno;
2499 }
2500 return rc;
2501 }
drh308c2a52010-05-14 11:30:18 +00002502 pFile->eFileLock = NO_LOCK;
drh734c9862008-11-28 15:37:20 +00002503 return SQLITE_OK;
2504}
2505
2506/*
2507 ** Close a file.
drhbfe66312006-10-03 17:40:40 +00002508 */
drh734c9862008-11-28 15:37:20 +00002509static int semClose(sqlite3_file *id) {
2510 if( id ){
2511 unixFile *pFile = (unixFile*)id;
2512 semUnlock(id, NO_LOCK);
2513 assert( pFile );
2514 unixEnterMutex();
danb0ac3e32010-06-16 10:55:42 +00002515 releaseInodeInfo(pFile);
drh734c9862008-11-28 15:37:20 +00002516 unixLeaveMutex();
chw78a13182009-04-07 05:35:03 +00002517 closeUnixFile(id);
drh734c9862008-11-28 15:37:20 +00002518 }
2519 return SQLITE_OK;
2520}
2521
2522#endif /* OS_VXWORKS */
2523/*
2524** Named semaphore locking is only available on VxWorks.
2525**
2526*************** End of the named semaphore lock implementation ****************
2527******************************************************************************/
2528
2529
2530/******************************************************************************
2531*************************** Begin AFP Locking *********************************
2532**
2533** AFP is the Apple Filing Protocol. AFP is a network filesystem found
2534** on Apple Macintosh computers - both OS9 and OSX.
2535**
2536** Third-party implementations of AFP are available. But this code here
2537** only works on OSX.
2538*/
2539
drhd2cb50b2009-01-09 21:41:17 +00002540#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
drh734c9862008-11-28 15:37:20 +00002541/*
2542** The afpLockingContext structure contains all afp lock specific state
2543*/
drhbfe66312006-10-03 17:40:40 +00002544typedef struct afpLockingContext afpLockingContext;
2545struct afpLockingContext {
drh7ed97b92010-01-20 13:07:21 +00002546 int reserved;
drh6b9d6dd2008-12-03 19:34:47 +00002547 const char *dbPath; /* Name of the open file */
drhbfe66312006-10-03 17:40:40 +00002548};
2549
2550struct ByteRangeLockPB2
2551{
2552 unsigned long long offset; /* offset to first byte to lock */
2553 unsigned long long length; /* nbr of bytes to lock */
2554 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
2555 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
2556 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
2557 int fd; /* file desc to assoc this lock with */
2558};
2559
drhfd131da2007-08-07 17:13:03 +00002560#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
drhbfe66312006-10-03 17:40:40 +00002561
drh6b9d6dd2008-12-03 19:34:47 +00002562/*
2563** This is a utility for setting or clearing a bit-range lock on an
2564** AFP filesystem.
2565**
2566** Return SQLITE_OK on success, SQLITE_BUSY on failure.
2567*/
2568static int afpSetLock(
2569 const char *path, /* Name of the file to be locked or unlocked */
2570 unixFile *pFile, /* Open file descriptor on path */
2571 unsigned long long offset, /* First byte to be locked */
2572 unsigned long long length, /* Number of bytes to lock */
2573 int setLockFlag /* True to set lock. False to clear lock */
danielk1977ad94b582007-08-20 06:44:22 +00002574){
drh6b9d6dd2008-12-03 19:34:47 +00002575 struct ByteRangeLockPB2 pb;
2576 int err;
drhbfe66312006-10-03 17:40:40 +00002577
2578 pb.unLockFlag = setLockFlag ? 0 : 1;
2579 pb.startEndFlag = 0;
2580 pb.offset = offset;
2581 pb.length = length;
aswift5b1a2562008-08-22 00:22:35 +00002582 pb.fd = pFile->h;
aswiftaebf4132008-11-21 00:10:35 +00002583
drh308c2a52010-05-14 11:30:18 +00002584 OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
drh734c9862008-11-28 15:37:20 +00002585 (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
drh308c2a52010-05-14 11:30:18 +00002586 offset, length));
drhbfe66312006-10-03 17:40:40 +00002587 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
2588 if ( err==-1 ) {
aswift5b1a2562008-08-22 00:22:35 +00002589 int rc;
2590 int tErrno = errno;
drh308c2a52010-05-14 11:30:18 +00002591 OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
2592 path, tErrno, strerror(tErrno)));
aswiftaebf4132008-11-21 00:10:35 +00002593#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
2594 rc = SQLITE_BUSY;
2595#else
drh734c9862008-11-28 15:37:20 +00002596 rc = sqliteErrorFromPosixError(tErrno,
2597 setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
aswiftaebf4132008-11-21 00:10:35 +00002598#endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
aswift5b1a2562008-08-22 00:22:35 +00002599 if( IS_LOCK_ERROR(rc) ){
2600 pFile->lastErrno = tErrno;
2601 }
2602 return rc;
drhbfe66312006-10-03 17:40:40 +00002603 } else {
aswift5b1a2562008-08-22 00:22:35 +00002604 return SQLITE_OK;
drhbfe66312006-10-03 17:40:40 +00002605 }
2606}
2607
drh6b9d6dd2008-12-03 19:34:47 +00002608/*
2609** This routine checks if there is a RESERVED lock held on the specified
2610** file by this or any other process. If such a lock is held, set *pResOut
2611** to a non-zero value otherwise *pResOut is set to zero. The return value
2612** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2613*/
danielk1977e339d652008-06-28 11:23:00 +00002614static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
aswift5b1a2562008-08-22 00:22:35 +00002615 int rc = SQLITE_OK;
2616 int reserved = 0;
drhbfe66312006-10-03 17:40:40 +00002617 unixFile *pFile = (unixFile*)id;
drh3d4435b2011-08-26 20:55:50 +00002618 afpLockingContext *context;
drhbfe66312006-10-03 17:40:40 +00002619
aswift5b1a2562008-08-22 00:22:35 +00002620 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2621
2622 assert( pFile );
drh3d4435b2011-08-26 20:55:50 +00002623 context = (afpLockingContext *) pFile->lockingContext;
drh7ed97b92010-01-20 13:07:21 +00002624 if( context->reserved ){
2625 *pResOut = 1;
2626 return SQLITE_OK;
2627 }
drh8af6c222010-05-14 12:43:01 +00002628 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
drhbfe66312006-10-03 17:40:40 +00002629
2630 /* Check if a thread in this process holds such a lock */
drh8af6c222010-05-14 12:43:01 +00002631 if( pFile->pInode->eFileLock>SHARED_LOCK ){
aswift5b1a2562008-08-22 00:22:35 +00002632 reserved = 1;
drhbfe66312006-10-03 17:40:40 +00002633 }
2634
2635 /* Otherwise see if some other process holds it.
2636 */
aswift5b1a2562008-08-22 00:22:35 +00002637 if( !reserved ){
2638 /* lock the RESERVED byte */
drh6b9d6dd2008-12-03 19:34:47 +00002639 int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
aswift5b1a2562008-08-22 00:22:35 +00002640 if( SQLITE_OK==lrc ){
drhbfe66312006-10-03 17:40:40 +00002641 /* if we succeeded in taking the reserved lock, unlock it to restore
2642 ** the original state */
drh6b9d6dd2008-12-03 19:34:47 +00002643 lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
aswift5b1a2562008-08-22 00:22:35 +00002644 } else {
2645 /* if we failed to get the lock then someone else must have it */
2646 reserved = 1;
2647 }
2648 if( IS_LOCK_ERROR(lrc) ){
2649 rc=lrc;
drhbfe66312006-10-03 17:40:40 +00002650 }
2651 }
drhbfe66312006-10-03 17:40:40 +00002652
drh7ed97b92010-01-20 13:07:21 +00002653 unixLeaveMutex();
drh308c2a52010-05-14 11:30:18 +00002654 OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
aswift5b1a2562008-08-22 00:22:35 +00002655
2656 *pResOut = reserved;
2657 return rc;
drhbfe66312006-10-03 17:40:40 +00002658}
2659
drh6b9d6dd2008-12-03 19:34:47 +00002660/*
drh308c2a52010-05-14 11:30:18 +00002661** Lock the file with the lock specified by parameter eFileLock - one
drh6b9d6dd2008-12-03 19:34:47 +00002662** of the following:
2663**
2664** (1) SHARED_LOCK
2665** (2) RESERVED_LOCK
2666** (3) PENDING_LOCK
2667** (4) EXCLUSIVE_LOCK
2668**
2669** Sometimes when requesting one lock state, additional lock states
2670** are inserted in between. The locking might fail on one of the later
2671** transitions leaving the lock state different from what it started but
2672** still short of its goal. The following chart shows the allowed
2673** transitions and the inserted intermediate states:
2674**
2675** UNLOCKED -> SHARED
2676** SHARED -> RESERVED
2677** SHARED -> (PENDING) -> EXCLUSIVE
2678** RESERVED -> (PENDING) -> EXCLUSIVE
2679** PENDING -> EXCLUSIVE
2680**
2681** This routine will only increase a lock. Use the sqlite3OsUnlock()
2682** routine to lower a locking level.
2683*/
drh308c2a52010-05-14 11:30:18 +00002684static int afpLock(sqlite3_file *id, int eFileLock){
drhbfe66312006-10-03 17:40:40 +00002685 int rc = SQLITE_OK;
2686 unixFile *pFile = (unixFile*)id;
drhd91c68f2010-05-14 14:52:25 +00002687 unixInodeInfo *pInode = pFile->pInode;
drhbfe66312006-10-03 17:40:40 +00002688 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
drhbfe66312006-10-03 17:40:40 +00002689
2690 assert( pFile );
drh308c2a52010-05-14 11:30:18 +00002691 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
2692 azFileLock(eFileLock), azFileLock(pFile->eFileLock),
drh8af6c222010-05-14 12:43:01 +00002693 azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
drh339eb0b2008-03-07 15:34:11 +00002694
drhbfe66312006-10-03 17:40:40 +00002695 /* If there is already a lock of this type or more restrictive on the
drh339eb0b2008-03-07 15:34:11 +00002696 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
drh6c7d5c52008-11-21 20:32:33 +00002697 ** unixEnterMutex() hasn't been called yet.
drh339eb0b2008-03-07 15:34:11 +00002698 */
drh308c2a52010-05-14 11:30:18 +00002699 if( pFile->eFileLock>=eFileLock ){
2700 OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h,
2701 azFileLock(eFileLock)));
drhbfe66312006-10-03 17:40:40 +00002702 return SQLITE_OK;
2703 }
2704
2705 /* Make sure the locking sequence is correct
drh7ed97b92010-01-20 13:07:21 +00002706 ** (1) We never move from unlocked to anything higher than shared lock.
2707 ** (2) SQLite never explicitly requests a pendig lock.
2708 ** (3) A shared lock is always held when a reserve lock is requested.
drh339eb0b2008-03-07 15:34:11 +00002709 */
drh308c2a52010-05-14 11:30:18 +00002710 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
2711 assert( eFileLock!=PENDING_LOCK );
2712 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
drhbfe66312006-10-03 17:40:40 +00002713
drh8af6c222010-05-14 12:43:01 +00002714 /* This mutex is needed because pFile->pInode is shared across threads
drh339eb0b2008-03-07 15:34:11 +00002715 */
drh6c7d5c52008-11-21 20:32:33 +00002716 unixEnterMutex();
drh8af6c222010-05-14 12:43:01 +00002717 pInode = pFile->pInode;
drh7ed97b92010-01-20 13:07:21 +00002718
2719 /* If some thread using this PID has a lock via a different unixFile*
2720 ** handle that precludes the requested lock, return BUSY.
2721 */
drh8af6c222010-05-14 12:43:01 +00002722 if( (pFile->eFileLock!=pInode->eFileLock &&
2723 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
drh7ed97b92010-01-20 13:07:21 +00002724 ){
2725 rc = SQLITE_BUSY;
2726 goto afp_end_lock;
2727 }
2728
2729 /* If a SHARED lock is requested, and some thread using this PID already
2730 ** has a SHARED or RESERVED lock, then increment reference counts and
2731 ** return SQLITE_OK.
2732 */
drh308c2a52010-05-14 11:30:18 +00002733 if( eFileLock==SHARED_LOCK &&
drh8af6c222010-05-14 12:43:01 +00002734 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
drh308c2a52010-05-14 11:30:18 +00002735 assert( eFileLock==SHARED_LOCK );
2736 assert( pFile->eFileLock==0 );
drh8af6c222010-05-14 12:43:01 +00002737 assert( pInode->nShared>0 );
drh308c2a52010-05-14 11:30:18 +00002738 pFile->eFileLock = SHARED_LOCK;
drh8af6c222010-05-14 12:43:01 +00002739 pInode->nShared++;
2740 pInode->nLock++;
drh7ed97b92010-01-20 13:07:21 +00002741 goto afp_end_lock;
2742 }
drhbfe66312006-10-03 17:40:40 +00002743
2744 /* A PENDING lock is needed before acquiring a SHARED lock and before
drh339eb0b2008-03-07 15:34:11 +00002745 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
2746 ** be released.
2747 */
drh308c2a52010-05-14 11:30:18 +00002748 if( eFileLock==SHARED_LOCK
2749 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
drh339eb0b2008-03-07 15:34:11 +00002750 ){
2751 int failed;
drh6b9d6dd2008-12-03 19:34:47 +00002752 failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
drhbfe66312006-10-03 17:40:40 +00002753 if (failed) {
aswift5b1a2562008-08-22 00:22:35 +00002754 rc = failed;
drhbfe66312006-10-03 17:40:40 +00002755 goto afp_end_lock;
2756 }
2757 }
2758
2759 /* If control gets to this point, then actually go ahead and make
drh339eb0b2008-03-07 15:34:11 +00002760 ** operating system calls for the specified lock.
2761 */
drh308c2a52010-05-14 11:30:18 +00002762 if( eFileLock==SHARED_LOCK ){
drh3d4435b2011-08-26 20:55:50 +00002763 int lrc1, lrc2, lrc1Errno = 0;
drh7ed97b92010-01-20 13:07:21 +00002764 long lk, mask;
drhbfe66312006-10-03 17:40:40 +00002765
drh8af6c222010-05-14 12:43:01 +00002766 assert( pInode->nShared==0 );
2767 assert( pInode->eFileLock==0 );
drh7ed97b92010-01-20 13:07:21 +00002768
2769 mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
aswift5b1a2562008-08-22 00:22:35 +00002770 /* Now get the read-lock SHARED_LOCK */
drhbfe66312006-10-03 17:40:40 +00002771 /* note that the quality of the randomness doesn't matter that much */
2772 lk = random();
drh8af6c222010-05-14 12:43:01 +00002773 pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
drh6b9d6dd2008-12-03 19:34:47 +00002774 lrc1 = afpSetLock(context->dbPath, pFile,
drh8af6c222010-05-14 12:43:01 +00002775 SHARED_FIRST+pInode->sharedByte, 1, 1);
aswift5b1a2562008-08-22 00:22:35 +00002776 if( IS_LOCK_ERROR(lrc1) ){
2777 lrc1Errno = pFile->lastErrno;
drhbfe66312006-10-03 17:40:40 +00002778 }
aswift5b1a2562008-08-22 00:22:35 +00002779 /* Drop the temporary PENDING lock */
drh6b9d6dd2008-12-03 19:34:47 +00002780 lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
drhbfe66312006-10-03 17:40:40 +00002781
aswift5b1a2562008-08-22 00:22:35 +00002782 if( IS_LOCK_ERROR(lrc1) ) {
2783 pFile->lastErrno = lrc1Errno;
2784 rc = lrc1;
2785 goto afp_end_lock;
2786 } else if( IS_LOCK_ERROR(lrc2) ){
2787 rc = lrc2;
2788 goto afp_end_lock;
2789 } else if( lrc1 != SQLITE_OK ) {
2790 rc = lrc1;
drhbfe66312006-10-03 17:40:40 +00002791 } else {
drh308c2a52010-05-14 11:30:18 +00002792 pFile->eFileLock = SHARED_LOCK;
drh8af6c222010-05-14 12:43:01 +00002793 pInode->nLock++;
2794 pInode->nShared = 1;
drhbfe66312006-10-03 17:40:40 +00002795 }
drh8af6c222010-05-14 12:43:01 +00002796 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
drh7ed97b92010-01-20 13:07:21 +00002797 /* We are trying for an exclusive lock but another thread in this
2798 ** same process is still holding a shared lock. */
2799 rc = SQLITE_BUSY;
drhbfe66312006-10-03 17:40:40 +00002800 }else{
2801 /* The request was for a RESERVED or EXCLUSIVE lock. It is
2802 ** assumed that there is a SHARED or greater lock on the file
2803 ** already.
2804 */
2805 int failed = 0;
drh308c2a52010-05-14 11:30:18 +00002806 assert( 0!=pFile->eFileLock );
2807 if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
drhbfe66312006-10-03 17:40:40 +00002808 /* Acquire a RESERVED lock */
drh6b9d6dd2008-12-03 19:34:47 +00002809 failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
drh7ed97b92010-01-20 13:07:21 +00002810 if( !failed ){
2811 context->reserved = 1;
2812 }
drhbfe66312006-10-03 17:40:40 +00002813 }
drh308c2a52010-05-14 11:30:18 +00002814 if (!failed && eFileLock == EXCLUSIVE_LOCK) {
drhbfe66312006-10-03 17:40:40 +00002815 /* Acquire an EXCLUSIVE lock */
2816
2817 /* Remove the shared lock before trying the range. we'll need to
danielk1977e339d652008-06-28 11:23:00 +00002818 ** reestablish the shared lock if we can't get the afpUnlock
drhbfe66312006-10-03 17:40:40 +00002819 */
drh6b9d6dd2008-12-03 19:34:47 +00002820 if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
drh8af6c222010-05-14 12:43:01 +00002821 pInode->sharedByte, 1, 0)) ){
aswiftaebf4132008-11-21 00:10:35 +00002822 int failed2 = SQLITE_OK;
drhbfe66312006-10-03 17:40:40 +00002823 /* now attemmpt to get the exclusive lock range */
drh6b9d6dd2008-12-03 19:34:47 +00002824 failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
drhbfe66312006-10-03 17:40:40 +00002825 SHARED_SIZE, 1);
drh6b9d6dd2008-12-03 19:34:47 +00002826 if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
drh8af6c222010-05-14 12:43:01 +00002827 SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
aswiftaebf4132008-11-21 00:10:35 +00002828 /* Can't reestablish the shared lock. Sqlite can't deal, this is
2829 ** a critical I/O error
2830 */
2831 rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 :
2832 SQLITE_IOERR_LOCK;
2833 goto afp_end_lock;
2834 }
2835 }else{
aswift5b1a2562008-08-22 00:22:35 +00002836 rc = failed;
drhbfe66312006-10-03 17:40:40 +00002837 }
2838 }
aswift5b1a2562008-08-22 00:22:35 +00002839 if( failed ){
2840 rc = failed;
drhbfe66312006-10-03 17:40:40 +00002841 }
2842 }
2843
2844 if( rc==SQLITE_OK ){
drh308c2a52010-05-14 11:30:18 +00002845 pFile->eFileLock = eFileLock;
drh8af6c222010-05-14 12:43:01 +00002846 pInode->eFileLock = eFileLock;
drh308c2a52010-05-14 11:30:18 +00002847 }else if( eFileLock==EXCLUSIVE_LOCK ){
2848 pFile->eFileLock = PENDING_LOCK;
drh8af6c222010-05-14 12:43:01 +00002849 pInode->eFileLock = PENDING_LOCK;
drhbfe66312006-10-03 17:40:40 +00002850 }
2851
2852afp_end_lock:
drh6c7d5c52008-11-21 20:32:33 +00002853 unixLeaveMutex();
drh308c2a52010-05-14 11:30:18 +00002854 OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
2855 rc==SQLITE_OK ? "ok" : "failed"));
drhbfe66312006-10-03 17:40:40 +00002856 return rc;
2857}
2858
2859/*
drh308c2a52010-05-14 11:30:18 +00002860** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
drh339eb0b2008-03-07 15:34:11 +00002861** must be either NO_LOCK or SHARED_LOCK.
2862**
2863** If the locking level of the file descriptor is already at or below
2864** the requested locking level, this routine is a no-op.
2865*/
drh308c2a52010-05-14 11:30:18 +00002866static int afpUnlock(sqlite3_file *id, int eFileLock) {
drhbfe66312006-10-03 17:40:40 +00002867 int rc = SQLITE_OK;
2868 unixFile *pFile = (unixFile*)id;
drhd91c68f2010-05-14 14:52:25 +00002869 unixInodeInfo *pInode;
drh7ed97b92010-01-20 13:07:21 +00002870 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2871 int skipShared = 0;
2872#ifdef SQLITE_TEST
2873 int h = pFile->h;
2874#endif
drhbfe66312006-10-03 17:40:40 +00002875
2876 assert( pFile );
drh308c2a52010-05-14 11:30:18 +00002877 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
drh8af6c222010-05-14 12:43:01 +00002878 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
drh308c2a52010-05-14 11:30:18 +00002879 getpid()));
aswift5b1a2562008-08-22 00:22:35 +00002880
drh308c2a52010-05-14 11:30:18 +00002881 assert( eFileLock<=SHARED_LOCK );
2882 if( pFile->eFileLock<=eFileLock ){
drhbfe66312006-10-03 17:40:40 +00002883 return SQLITE_OK;
2884 }
drh6c7d5c52008-11-21 20:32:33 +00002885 unixEnterMutex();
drh8af6c222010-05-14 12:43:01 +00002886 pInode = pFile->pInode;
2887 assert( pInode->nShared!=0 );
drh308c2a52010-05-14 11:30:18 +00002888 if( pFile->eFileLock>SHARED_LOCK ){
drh8af6c222010-05-14 12:43:01 +00002889 assert( pInode->eFileLock==pFile->eFileLock );
drh7ed97b92010-01-20 13:07:21 +00002890 SimulateIOErrorBenign(1);
2891 SimulateIOError( h=(-1) )
2892 SimulateIOErrorBenign(0);
2893
drhd3d8c042012-05-29 17:02:40 +00002894#ifdef SQLITE_DEBUG
drh7ed97b92010-01-20 13:07:21 +00002895 /* When reducing a lock such that other processes can start
2896 ** reading the database file again, make sure that the
2897 ** transaction counter was updated if any part of the database
2898 ** file changed. If the transaction counter is not updated,
2899 ** other connections to the same file might not realize that
2900 ** the file has changed and hence might not know to flush their
2901 ** cache. The use of a stale cache can lead to database corruption.
2902 */
2903 assert( pFile->inNormalWrite==0
2904 || pFile->dbUpdate==0
2905 || pFile->transCntrChng==1 );
2906 pFile->inNormalWrite = 0;
2907#endif
aswiftaebf4132008-11-21 00:10:35 +00002908
drh308c2a52010-05-14 11:30:18 +00002909 if( pFile->eFileLock==EXCLUSIVE_LOCK ){
drh7ed97b92010-01-20 13:07:21 +00002910 rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
drh8af6c222010-05-14 12:43:01 +00002911 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
aswiftaebf4132008-11-21 00:10:35 +00002912 /* only re-establish the shared lock if necessary */
drh8af6c222010-05-14 12:43:01 +00002913 int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
drh7ed97b92010-01-20 13:07:21 +00002914 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
2915 } else {
2916 skipShared = 1;
aswiftaebf4132008-11-21 00:10:35 +00002917 }
2918 }
drh308c2a52010-05-14 11:30:18 +00002919 if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
drh7ed97b92010-01-20 13:07:21 +00002920 rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
aswiftaebf4132008-11-21 00:10:35 +00002921 }
drh308c2a52010-05-14 11:30:18 +00002922 if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
drh7ed97b92010-01-20 13:07:21 +00002923 rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2924 if( !rc ){
2925 context->reserved = 0;
2926 }
aswiftaebf4132008-11-21 00:10:35 +00002927 }
drh8af6c222010-05-14 12:43:01 +00002928 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
2929 pInode->eFileLock = SHARED_LOCK;
drh7ed97b92010-01-20 13:07:21 +00002930 }
aswiftaebf4132008-11-21 00:10:35 +00002931 }
drh308c2a52010-05-14 11:30:18 +00002932 if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
drhbfe66312006-10-03 17:40:40 +00002933
drh7ed97b92010-01-20 13:07:21 +00002934 /* Decrement the shared lock counter. Release the lock using an
2935 ** OS call only when all threads in this same process have released
2936 ** the lock.
2937 */
drh8af6c222010-05-14 12:43:01 +00002938 unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
2939 pInode->nShared--;
2940 if( pInode->nShared==0 ){
drh7ed97b92010-01-20 13:07:21 +00002941 SimulateIOErrorBenign(1);
2942 SimulateIOError( h=(-1) )
2943 SimulateIOErrorBenign(0);
2944 if( !skipShared ){
2945 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
2946 }
2947 if( !rc ){
drh8af6c222010-05-14 12:43:01 +00002948 pInode->eFileLock = NO_LOCK;
drh308c2a52010-05-14 11:30:18 +00002949 pFile->eFileLock = NO_LOCK;
drh7ed97b92010-01-20 13:07:21 +00002950 }
2951 }
2952 if( rc==SQLITE_OK ){
drh8af6c222010-05-14 12:43:01 +00002953 pInode->nLock--;
2954 assert( pInode->nLock>=0 );
2955 if( pInode->nLock==0 ){
drh0e9365c2011-03-02 02:08:13 +00002956 closePendingFds(pFile);
drhbfe66312006-10-03 17:40:40 +00002957 }
2958 }
drhbfe66312006-10-03 17:40:40 +00002959 }
drh7ed97b92010-01-20 13:07:21 +00002960
drh6c7d5c52008-11-21 20:32:33 +00002961 unixLeaveMutex();
drh308c2a52010-05-14 11:30:18 +00002962 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
drhbfe66312006-10-03 17:40:40 +00002963 return rc;
2964}
2965
2966/*
drh339eb0b2008-03-07 15:34:11 +00002967** Close a file & cleanup AFP specific locking context
2968*/
danielk1977e339d652008-06-28 11:23:00 +00002969static int afpClose(sqlite3_file *id) {
drh7ed97b92010-01-20 13:07:21 +00002970 int rc = SQLITE_OK;
danielk1977e339d652008-06-28 11:23:00 +00002971 if( id ){
2972 unixFile *pFile = (unixFile*)id;
2973 afpUnlock(id, NO_LOCK);
drh6c7d5c52008-11-21 20:32:33 +00002974 unixEnterMutex();
drh8af6c222010-05-14 12:43:01 +00002975 if( pFile->pInode && pFile->pInode->nLock ){
aswiftaebf4132008-11-21 00:10:35 +00002976 /* If there are outstanding locks, do not actually close the file just
drh734c9862008-11-28 15:37:20 +00002977 ** yet because that would clear those locks. Instead, add the file
drh8af6c222010-05-14 12:43:01 +00002978 ** descriptor to pInode->aPending. It will be automatically closed when
drh734c9862008-11-28 15:37:20 +00002979 ** the last lock is cleared.
2980 */
dan08da86a2009-08-21 17:18:03 +00002981 setPendingFd(pFile);
aswiftaebf4132008-11-21 00:10:35 +00002982 }
danb0ac3e32010-06-16 10:55:42 +00002983 releaseInodeInfo(pFile);
danielk1977e339d652008-06-28 11:23:00 +00002984 sqlite3_free(pFile->lockingContext);
drh7ed97b92010-01-20 13:07:21 +00002985 rc = closeUnixFile(id);
drh6c7d5c52008-11-21 20:32:33 +00002986 unixLeaveMutex();
danielk1977e339d652008-06-28 11:23:00 +00002987 }
drh7ed97b92010-01-20 13:07:21 +00002988 return rc;
drhbfe66312006-10-03 17:40:40 +00002989}
2990
drhd2cb50b2009-01-09 21:41:17 +00002991#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
drh734c9862008-11-28 15:37:20 +00002992/*
2993** The code above is the AFP lock implementation. The code is specific
2994** to MacOSX and does not work on other unix platforms. No alternative
2995** is available. If you don't compile for a mac, then the "unix-afp"
2996** VFS is not available.
2997**
2998********************* End of the AFP lock implementation **********************
2999******************************************************************************/
drhbfe66312006-10-03 17:40:40 +00003000
drh7ed97b92010-01-20 13:07:21 +00003001/******************************************************************************
3002*************************** Begin NFS Locking ********************************/
3003
3004#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
3005/*
drh308c2a52010-05-14 11:30:18 +00003006 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
drh7ed97b92010-01-20 13:07:21 +00003007 ** must be either NO_LOCK or SHARED_LOCK.
3008 **
3009 ** If the locking level of the file descriptor is already at or below
3010 ** the requested locking level, this routine is a no-op.
3011 */
drh308c2a52010-05-14 11:30:18 +00003012static int nfsUnlock(sqlite3_file *id, int eFileLock){
drha7e61d82011-03-12 17:02:57 +00003013 return posixUnlock(id, eFileLock, 1);
drh7ed97b92010-01-20 13:07:21 +00003014}
3015
3016#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
3017/*
3018** The code above is the NFS lock implementation. The code is specific
3019** to MacOSX and does not work on other unix platforms. No alternative
3020** is available.
3021**
3022********************* End of the NFS lock implementation **********************
3023******************************************************************************/
drh734c9862008-11-28 15:37:20 +00003024
3025/******************************************************************************
3026**************** Non-locking sqlite3_file methods *****************************
3027**
3028** The next division contains implementations for all methods of the
3029** sqlite3_file object other than the locking methods. The locking
3030** methods were defined in divisions above (one locking method per
3031** division). Those methods that are common to all locking modes
3032** are gather together into this division.
3033*/
drhbfe66312006-10-03 17:40:40 +00003034
3035/*
drh734c9862008-11-28 15:37:20 +00003036** Seek to the offset passed as the second argument, then read cnt
3037** bytes into pBuf. Return the number of bytes actually read.
3038**
3039** NB: If you define USE_PREAD or USE_PREAD64, then it might also
3040** be necessary to define _XOPEN_SOURCE to be 500. This varies from
3041** one system to another. Since SQLite does not define USE_PREAD
3042** any any form by default, we will not attempt to define _XOPEN_SOURCE.
3043** See tickets #2741 and #2681.
3044**
3045** To avoid stomping the errno value on a failed read the lastErrno value
3046** is set before returning.
drh339eb0b2008-03-07 15:34:11 +00003047*/
drh734c9862008-11-28 15:37:20 +00003048static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
3049 int got;
drh58024642011-11-07 18:16:00 +00003050 int prior = 0;
drh7ed97b92010-01-20 13:07:21 +00003051#if (!defined(USE_PREAD) && !defined(USE_PREAD64))
drh734c9862008-11-28 15:37:20 +00003052 i64 newOffset;
drh7ed97b92010-01-20 13:07:21 +00003053#endif
drh734c9862008-11-28 15:37:20 +00003054 TIMER_START;
drhc1fd2cf2012-10-01 12:16:26 +00003055 assert( cnt==(cnt&0x1ffff) );
3056 cnt &= 0x1ffff;
drh58024642011-11-07 18:16:00 +00003057 do{
drh734c9862008-11-28 15:37:20 +00003058#if defined(USE_PREAD)
drh58024642011-11-07 18:16:00 +00003059 got = osPread(id->h, pBuf, cnt, offset);
3060 SimulateIOError( got = -1 );
drh734c9862008-11-28 15:37:20 +00003061#elif defined(USE_PREAD64)
drh58024642011-11-07 18:16:00 +00003062 got = osPread64(id->h, pBuf, cnt, offset);
3063 SimulateIOError( got = -1 );
drh734c9862008-11-28 15:37:20 +00003064#else
drh58024642011-11-07 18:16:00 +00003065 newOffset = lseek(id->h, offset, SEEK_SET);
3066 SimulateIOError( newOffset-- );
3067 if( newOffset!=offset ){
3068 if( newOffset == -1 ){
3069 ((unixFile*)id)->lastErrno = errno;
3070 }else{
drhf2f105d2012-08-20 15:53:54 +00003071 ((unixFile*)id)->lastErrno = 0;
drh58024642011-11-07 18:16:00 +00003072 }
3073 return -1;
drh734c9862008-11-28 15:37:20 +00003074 }
drh58024642011-11-07 18:16:00 +00003075 got = osRead(id->h, pBuf, cnt);
drh734c9862008-11-28 15:37:20 +00003076#endif
drh58024642011-11-07 18:16:00 +00003077 if( got==cnt ) break;
3078 if( got<0 ){
3079 if( errno==EINTR ){ got = 1; continue; }
3080 prior = 0;
3081 ((unixFile*)id)->lastErrno = errno;
3082 break;
3083 }else if( got>0 ){
3084 cnt -= got;
3085 offset += got;
3086 prior += got;
3087 pBuf = (void*)(got + (char*)pBuf);
3088 }
3089 }while( got>0 );
drh734c9862008-11-28 15:37:20 +00003090 TIMER_END;
drh58024642011-11-07 18:16:00 +00003091 OSTRACE(("READ %-3d %5d %7lld %llu\n",
3092 id->h, got+prior, offset-prior, TIMER_ELAPSED));
3093 return got+prior;
drhbfe66312006-10-03 17:40:40 +00003094}
3095
3096/*
drh734c9862008-11-28 15:37:20 +00003097** Read data from a file into a buffer. Return SQLITE_OK if all
3098** bytes were read successfully and SQLITE_IOERR if anything goes
3099** wrong.
drh339eb0b2008-03-07 15:34:11 +00003100*/
drh734c9862008-11-28 15:37:20 +00003101static int unixRead(
3102 sqlite3_file *id,
3103 void *pBuf,
3104 int amt,
3105 sqlite3_int64 offset
3106){
dan08da86a2009-08-21 17:18:03 +00003107 unixFile *pFile = (unixFile *)id;
drh734c9862008-11-28 15:37:20 +00003108 int got;
3109 assert( id );
drh08c6d442009-02-09 17:34:07 +00003110
dan08da86a2009-08-21 17:18:03 +00003111 /* If this is a database file (not a journal, master-journal or temp
3112 ** file), the bytes in the locking range should never be read or written. */
dan7c246102010-04-12 19:00:29 +00003113#if 0
dane946c392009-08-22 11:39:46 +00003114 assert( pFile->pUnused==0
dan08da86a2009-08-21 17:18:03 +00003115 || offset>=PENDING_BYTE+512
3116 || offset+amt<=PENDING_BYTE
3117 );
dan7c246102010-04-12 19:00:29 +00003118#endif
drh08c6d442009-02-09 17:34:07 +00003119
drh6c569632013-03-26 18:48:11 +00003120 /* Deal with as much of this read request as possible by transfering
3121 ** data from the memory mapping using memcpy(). */
danf23da962013-03-23 21:00:41 +00003122 if( offset<pFile->mmapSize ){
3123 if( offset+amt <= pFile->mmapSize ){
3124 memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
3125 return SQLITE_OK;
3126 }else{
3127 int nCopy = pFile->mmapSize - offset;
3128 memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
3129 pBuf = &((u8 *)pBuf)[nCopy];
3130 amt -= nCopy;
3131 offset += nCopy;
3132 }
3133 }
3134
dan08da86a2009-08-21 17:18:03 +00003135 got = seekAndRead(pFile, offset, pBuf, amt);
drh734c9862008-11-28 15:37:20 +00003136 if( got==amt ){
3137 return SQLITE_OK;
3138 }else if( got<0 ){
3139 /* lastErrno set by seekAndRead */
3140 return SQLITE_IOERR_READ;
3141 }else{
dan08da86a2009-08-21 17:18:03 +00003142 pFile->lastErrno = 0; /* not a system error */
drh734c9862008-11-28 15:37:20 +00003143 /* Unread parts of the buffer must be zero-filled */
3144 memset(&((char*)pBuf)[got], 0, amt-got);
3145 return SQLITE_IOERR_SHORT_READ;
3146 }
3147}
3148
3149/*
3150** Seek to the offset in id->offset then read cnt bytes into pBuf.
3151** Return the number of bytes actually read. Update the offset.
3152**
3153** To avoid stomping the errno value on a failed write the lastErrno value
3154** is set before returning.
3155*/
3156static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
3157 int got;
drh7ed97b92010-01-20 13:07:21 +00003158#if (!defined(USE_PREAD) && !defined(USE_PREAD64))
drh734c9862008-11-28 15:37:20 +00003159 i64 newOffset;
drh7ed97b92010-01-20 13:07:21 +00003160#endif
drhc1fd2cf2012-10-01 12:16:26 +00003161 assert( cnt==(cnt&0x1ffff) );
3162 cnt &= 0x1ffff;
drh734c9862008-11-28 15:37:20 +00003163 TIMER_START;
3164#if defined(USE_PREAD)
drhe562be52011-03-02 18:01:10 +00003165 do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
drh734c9862008-11-28 15:37:20 +00003166#elif defined(USE_PREAD64)
drhe562be52011-03-02 18:01:10 +00003167 do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR);
drh734c9862008-11-28 15:37:20 +00003168#else
drhbd1e50c2011-08-19 14:54:12 +00003169 do{
3170 newOffset = lseek(id->h, offset, SEEK_SET);
3171 SimulateIOError( newOffset-- );
3172 if( newOffset!=offset ){
3173 if( newOffset == -1 ){
3174 ((unixFile*)id)->lastErrno = errno;
3175 }else{
drhf2f105d2012-08-20 15:53:54 +00003176 ((unixFile*)id)->lastErrno = 0;
drhbd1e50c2011-08-19 14:54:12 +00003177 }
3178 return -1;
drh734c9862008-11-28 15:37:20 +00003179 }
drhbd1e50c2011-08-19 14:54:12 +00003180 got = osWrite(id->h, pBuf, cnt);
3181 }while( got<0 && errno==EINTR );
drh734c9862008-11-28 15:37:20 +00003182#endif
3183 TIMER_END;
3184 if( got<0 ){
3185 ((unixFile*)id)->lastErrno = errno;
3186 }
3187
drh308c2a52010-05-14 11:30:18 +00003188 OSTRACE(("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
drh734c9862008-11-28 15:37:20 +00003189 return got;
3190}
3191
3192
3193/*
3194** Write data from a buffer into a file. Return SQLITE_OK on success
3195** or some other error code on failure.
3196*/
3197static int unixWrite(
3198 sqlite3_file *id,
3199 const void *pBuf,
3200 int amt,
3201 sqlite3_int64 offset
3202){
dan08da86a2009-08-21 17:18:03 +00003203 unixFile *pFile = (unixFile*)id;
drh734c9862008-11-28 15:37:20 +00003204 int wrote = 0;
3205 assert( id );
3206 assert( amt>0 );
drh8f941bc2009-01-14 23:03:40 +00003207
dan08da86a2009-08-21 17:18:03 +00003208 /* If this is a database file (not a journal, master-journal or temp
3209 ** file), the bytes in the locking range should never be read or written. */
dan7c246102010-04-12 19:00:29 +00003210#if 0
dane946c392009-08-22 11:39:46 +00003211 assert( pFile->pUnused==0
dan08da86a2009-08-21 17:18:03 +00003212 || offset>=PENDING_BYTE+512
3213 || offset+amt<=PENDING_BYTE
3214 );
dan7c246102010-04-12 19:00:29 +00003215#endif
drh08c6d442009-02-09 17:34:07 +00003216
drhd3d8c042012-05-29 17:02:40 +00003217#ifdef SQLITE_DEBUG
drh8f941bc2009-01-14 23:03:40 +00003218 /* If we are doing a normal write to a database file (as opposed to
3219 ** doing a hot-journal rollback or a write to some file other than a
3220 ** normal database file) then record the fact that the database
3221 ** has changed. If the transaction counter is modified, record that
3222 ** fact too.
3223 */
dan08da86a2009-08-21 17:18:03 +00003224 if( pFile->inNormalWrite ){
drh8f941bc2009-01-14 23:03:40 +00003225 pFile->dbUpdate = 1; /* The database has been modified */
3226 if( offset<=24 && offset+amt>=27 ){
drha6d90f02009-01-16 23:47:42 +00003227 int rc;
drh8f941bc2009-01-14 23:03:40 +00003228 char oldCntr[4];
3229 SimulateIOErrorBenign(1);
drha6d90f02009-01-16 23:47:42 +00003230 rc = seekAndRead(pFile, 24, oldCntr, 4);
drh8f941bc2009-01-14 23:03:40 +00003231 SimulateIOErrorBenign(0);
drha6d90f02009-01-16 23:47:42 +00003232 if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
drh8f941bc2009-01-14 23:03:40 +00003233 pFile->transCntrChng = 1; /* The transaction counter has changed */
3234 }
3235 }
3236 }
3237#endif
3238
danf23da962013-03-23 21:00:41 +00003239 /* Deal with as much of this write request as possible by transfering
3240 ** data from the memory mapping using memcpy(). */
3241 if( offset<pFile->mmapSize ){
3242 if( offset+amt <= pFile->mmapSize ){
3243 memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
3244 return SQLITE_OK;
3245 }else{
3246 int nCopy = pFile->mmapSize - offset;
3247 memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
3248 pBuf = &((u8 *)pBuf)[nCopy];
3249 amt -= nCopy;
3250 offset += nCopy;
3251 }
3252 }
3253
dan08da86a2009-08-21 17:18:03 +00003254 while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){
drh734c9862008-11-28 15:37:20 +00003255 amt -= wrote;
3256 offset += wrote;
3257 pBuf = &((char*)pBuf)[wrote];
3258 }
3259 SimulateIOError(( wrote=(-1), amt=1 ));
3260 SimulateDiskfullError(( wrote=0, amt=1 ));
dan6e09d692010-07-27 18:34:15 +00003261
drh734c9862008-11-28 15:37:20 +00003262 if( amt>0 ){
drha21b83b2011-04-15 12:36:10 +00003263 if( wrote<0 && pFile->lastErrno!=ENOSPC ){
drh734c9862008-11-28 15:37:20 +00003264 /* lastErrno set by seekAndWrite */
3265 return SQLITE_IOERR_WRITE;
3266 }else{
dan08da86a2009-08-21 17:18:03 +00003267 pFile->lastErrno = 0; /* not a system error */
drh734c9862008-11-28 15:37:20 +00003268 return SQLITE_FULL;
3269 }
3270 }
dan6e09d692010-07-27 18:34:15 +00003271
drh734c9862008-11-28 15:37:20 +00003272 return SQLITE_OK;
3273}
3274
3275#ifdef SQLITE_TEST
3276/*
3277** Count the number of fullsyncs and normal syncs. This is used to test
drh6b9d6dd2008-12-03 19:34:47 +00003278** that syncs and fullsyncs are occurring at the right times.
drh734c9862008-11-28 15:37:20 +00003279*/
3280int sqlite3_sync_count = 0;
3281int sqlite3_fullsync_count = 0;
3282#endif
3283
3284/*
drh89240432009-03-25 01:06:01 +00003285** We do not trust systems to provide a working fdatasync(). Some do.
drh20f8e132011-08-31 21:01:55 +00003286** Others do no. To be safe, we will stick with the (slightly slower)
3287** fsync(). If you know that your system does support fdatasync() correctly,
drh89240432009-03-25 01:06:01 +00003288** then simply compile with -Dfdatasync=fdatasync
drh734c9862008-11-28 15:37:20 +00003289*/
drh20f8e132011-08-31 21:01:55 +00003290#if !defined(fdatasync)
drh734c9862008-11-28 15:37:20 +00003291# define fdatasync fsync
3292#endif
3293
3294/*
3295** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
3296** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
3297** only available on Mac OS X. But that could change.
3298*/
3299#ifdef F_FULLFSYNC
3300# define HAVE_FULLFSYNC 1
3301#else
3302# define HAVE_FULLFSYNC 0
3303#endif
3304
3305
3306/*
3307** The fsync() system call does not work as advertised on many
3308** unix systems. The following procedure is an attempt to make
3309** it work better.
3310**
3311** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
3312** for testing when we want to run through the test suite quickly.
3313** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
3314** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
3315** or power failure will likely corrupt the database file.
drh0b647ff2009-03-21 14:41:04 +00003316**
3317** SQLite sets the dataOnly flag if the size of the file is unchanged.
3318** The idea behind dataOnly is that it should only write the file content
3319** to disk, not the inode. We only set dataOnly if the file size is
3320** unchanged since the file size is part of the inode. However,
3321** Ted Ts'o tells us that fdatasync() will also write the inode if the
3322** file size has changed. The only real difference between fdatasync()
3323** and fsync(), Ted tells us, is that fdatasync() will not flush the
3324** inode if the mtime or owner or other inode attributes have changed.
3325** We only care about the file size, not the other file attributes, so
3326** as far as SQLite is concerned, an fdatasync() is always adequate.
3327** So, we always use fdatasync() if it is available, regardless of
3328** the value of the dataOnly flag.
drh734c9862008-11-28 15:37:20 +00003329*/
3330static int full_fsync(int fd, int fullSync, int dataOnly){
chw97185482008-11-17 08:05:31 +00003331 int rc;
drh734c9862008-11-28 15:37:20 +00003332
3333 /* The following "ifdef/elif/else/" block has the same structure as
3334 ** the one below. It is replicated here solely to avoid cluttering
3335 ** up the real code with the UNUSED_PARAMETER() macros.
3336 */
3337#ifdef SQLITE_NO_SYNC
3338 UNUSED_PARAMETER(fd);
3339 UNUSED_PARAMETER(fullSync);
3340 UNUSED_PARAMETER(dataOnly);
3341#elif HAVE_FULLFSYNC
3342 UNUSED_PARAMETER(dataOnly);
3343#else
3344 UNUSED_PARAMETER(fullSync);
drh0b647ff2009-03-21 14:41:04 +00003345 UNUSED_PARAMETER(dataOnly);
drh734c9862008-11-28 15:37:20 +00003346#endif
3347
3348 /* Record the number of times that we do a normal fsync() and
3349 ** FULLSYNC. This is used during testing to verify that this procedure
3350 ** gets called with the correct arguments.
3351 */
3352#ifdef SQLITE_TEST
3353 if( fullSync ) sqlite3_fullsync_count++;
3354 sqlite3_sync_count++;
3355#endif
3356
3357 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
3358 ** no-op
3359 */
3360#ifdef SQLITE_NO_SYNC
3361 rc = SQLITE_OK;
3362#elif HAVE_FULLFSYNC
3363 if( fullSync ){
drh99ab3b12011-03-02 15:09:07 +00003364 rc = osFcntl(fd, F_FULLFSYNC, 0);
drh734c9862008-11-28 15:37:20 +00003365 }else{
3366 rc = 1;
3367 }
3368 /* If the FULLFSYNC failed, fall back to attempting an fsync().
drh6b9d6dd2008-12-03 19:34:47 +00003369 ** It shouldn't be possible for fullfsync to fail on the local
3370 ** file system (on OSX), so failure indicates that FULLFSYNC
3371 ** isn't supported for this file system. So, attempt an fsync
3372 ** and (for now) ignore the overhead of a superfluous fcntl call.
3373 ** It'd be better to detect fullfsync support once and avoid
3374 ** the fcntl call every time sync is called.
3375 */
drh734c9862008-11-28 15:37:20 +00003376 if( rc ) rc = fsync(fd);
3377
drh7ed97b92010-01-20 13:07:21 +00003378#elif defined(__APPLE__)
3379 /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
3380 ** so currently we default to the macro that redefines fdatasync to fsync
3381 */
3382 rc = fsync(fd);
drh734c9862008-11-28 15:37:20 +00003383#else
drh0b647ff2009-03-21 14:41:04 +00003384 rc = fdatasync(fd);
drhc7288ee2009-01-15 04:30:02 +00003385#if OS_VXWORKS
drh0b647ff2009-03-21 14:41:04 +00003386 if( rc==-1 && errno==ENOTSUP ){
drh734c9862008-11-28 15:37:20 +00003387 rc = fsync(fd);
3388 }
drh0b647ff2009-03-21 14:41:04 +00003389#endif /* OS_VXWORKS */
drh734c9862008-11-28 15:37:20 +00003390#endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
3391
3392 if( OS_VXWORKS && rc!= -1 ){
3393 rc = 0;
3394 }
chw97185482008-11-17 08:05:31 +00003395 return rc;
drhbfe66312006-10-03 17:40:40 +00003396}
3397
drh734c9862008-11-28 15:37:20 +00003398/*
drh0059eae2011-08-08 23:48:40 +00003399** Open a file descriptor to the directory containing file zFilename.
3400** If successful, *pFd is set to the opened file descriptor and
3401** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
3402** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
3403** value.
3404**
drh90315a22011-08-10 01:52:12 +00003405** The directory file descriptor is used for only one thing - to
3406** fsync() a directory to make sure file creation and deletion events
3407** are flushed to disk. Such fsyncs are not needed on newer
3408** journaling filesystems, but are required on older filesystems.
3409**
3410** This routine can be overridden using the xSetSysCall interface.
3411** The ability to override this routine was added in support of the
3412** chromium sandbox. Opening a directory is a security risk (we are
3413** told) so making it overrideable allows the chromium sandbox to
3414** replace this routine with a harmless no-op. To make this routine
3415** a no-op, replace it with a stub that returns SQLITE_OK but leaves
3416** *pFd set to a negative number.
3417**
drh0059eae2011-08-08 23:48:40 +00003418** If SQLITE_OK is returned, the caller is responsible for closing
3419** the file descriptor *pFd using close().
3420*/
3421static int openDirectory(const char *zFilename, int *pFd){
3422 int ii;
3423 int fd = -1;
3424 char zDirname[MAX_PATHNAME+1];
3425
3426 sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
3427 for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
3428 if( ii>0 ){
3429 zDirname[ii] = '\0';
3430 fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
3431 if( fd>=0 ){
drh0059eae2011-08-08 23:48:40 +00003432 OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
3433 }
3434 }
3435 *pFd = fd;
3436 return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
3437}
3438
3439/*
drh734c9862008-11-28 15:37:20 +00003440** Make sure all writes to a particular file are committed to disk.
3441**
3442** If dataOnly==0 then both the file itself and its metadata (file
3443** size, access time, etc) are synced. If dataOnly!=0 then only the
3444** file data is synced.
3445**
3446** Under Unix, also make sure that the directory entry for the file
3447** has been created by fsync-ing the directory that contains the file.
3448** If we do not do this and we encounter a power failure, the directory
3449** entry for the journal might not exist after we reboot. The next
3450** SQLite to access the file will not know that the journal exists (because
3451** the directory entry for the journal was never created) and the transaction
3452** will not roll back - possibly leading to database corruption.
3453*/
3454static int unixSync(sqlite3_file *id, int flags){
3455 int rc;
3456 unixFile *pFile = (unixFile*)id;
3457
3458 int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
3459 int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
3460
3461 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
3462 assert((flags&0x0F)==SQLITE_SYNC_NORMAL
3463 || (flags&0x0F)==SQLITE_SYNC_FULL
3464 );
3465
3466 /* Unix cannot, but some systems may return SQLITE_FULL from here. This
3467 ** line is to test that doing so does not cause any problems.
3468 */
3469 SimulateDiskfullError( return SQLITE_FULL );
3470
3471 assert( pFile );
drh308c2a52010-05-14 11:30:18 +00003472 OSTRACE(("SYNC %-3d\n", pFile->h));
drh734c9862008-11-28 15:37:20 +00003473 rc = full_fsync(pFile->h, isFullsync, isDataOnly);
3474 SimulateIOError( rc=1 );
3475 if( rc ){
3476 pFile->lastErrno = errno;
dane18d4952011-02-21 11:46:24 +00003477 return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
drh734c9862008-11-28 15:37:20 +00003478 }
drh0059eae2011-08-08 23:48:40 +00003479
3480 /* Also fsync the directory containing the file if the DIRSYNC flag
mistachkin48864df2013-03-21 21:20:32 +00003481 ** is set. This is a one-time occurrence. Many systems (examples: AIX)
drh90315a22011-08-10 01:52:12 +00003482 ** are unable to fsync a directory, so ignore errors on the fsync.
drh0059eae2011-08-08 23:48:40 +00003483 */
3484 if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
3485 int dirfd;
3486 OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
drh308c2a52010-05-14 11:30:18 +00003487 HAVE_FULLFSYNC, isFullsync));
drh90315a22011-08-10 01:52:12 +00003488 rc = osOpenDirectory(pFile->zPath, &dirfd);
3489 if( rc==SQLITE_OK && dirfd>=0 ){
drh0059eae2011-08-08 23:48:40 +00003490 full_fsync(dirfd, 0, 0);
3491 robust_close(pFile, dirfd, __LINE__);
drh1ee6f742011-08-23 20:11:32 +00003492 }else if( rc==SQLITE_CANTOPEN ){
3493 rc = SQLITE_OK;
drh734c9862008-11-28 15:37:20 +00003494 }
drh0059eae2011-08-08 23:48:40 +00003495 pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
drh734c9862008-11-28 15:37:20 +00003496 }
3497 return rc;
3498}
3499
3500/*
3501** Truncate an open file to a specified size
3502*/
3503static int unixTruncate(sqlite3_file *id, i64 nByte){
dan6e09d692010-07-27 18:34:15 +00003504 unixFile *pFile = (unixFile *)id;
drh734c9862008-11-28 15:37:20 +00003505 int rc;
dan6e09d692010-07-27 18:34:15 +00003506 assert( pFile );
drh734c9862008-11-28 15:37:20 +00003507 SimulateIOError( return SQLITE_IOERR_TRUNCATE );
dan6e09d692010-07-27 18:34:15 +00003508
3509 /* If the user has configured a chunk-size for this file, truncate the
3510 ** file so that it consists of an integer number of chunks (i.e. the
3511 ** actual file size after the operation may be larger than the requested
3512 ** size).
3513 */
drhb8af4b72012-04-05 20:04:39 +00003514 if( pFile->szChunk>0 ){
dan6e09d692010-07-27 18:34:15 +00003515 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
3516 }
3517
drhff812312011-02-23 13:33:46 +00003518 rc = robust_ftruncate(pFile->h, (off_t)nByte);
drh734c9862008-11-28 15:37:20 +00003519 if( rc ){
dan6e09d692010-07-27 18:34:15 +00003520 pFile->lastErrno = errno;
dane18d4952011-02-21 11:46:24 +00003521 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
drh734c9862008-11-28 15:37:20 +00003522 }else{
drhd3d8c042012-05-29 17:02:40 +00003523#ifdef SQLITE_DEBUG
drh3313b142009-11-06 04:13:18 +00003524 /* If we are doing a normal write to a database file (as opposed to
3525 ** doing a hot-journal rollback or a write to some file other than a
3526 ** normal database file) and we truncate the file to zero length,
3527 ** that effectively updates the change counter. This might happen
3528 ** when restoring a database using the backup API from a zero-length
3529 ** source.
3530 */
dan6e09d692010-07-27 18:34:15 +00003531 if( pFile->inNormalWrite && nByte==0 ){
3532 pFile->transCntrChng = 1;
drh3313b142009-11-06 04:13:18 +00003533 }
danf23da962013-03-23 21:00:41 +00003534#endif
danc0003312013-03-22 17:46:11 +00003535
3536 /* If the file was just truncated to a size smaller than the currently
3537 ** mapped region, reduce the effective mapping size as well. SQLite will
3538 ** use read() and write() to access data beyond this point from now on.
3539 */
3540 if( nByte<pFile->mmapSize ){
3541 pFile->mmapSize = nByte;
3542 }
drh3313b142009-11-06 04:13:18 +00003543
drh734c9862008-11-28 15:37:20 +00003544 return SQLITE_OK;
3545 }
3546}
3547
3548/*
3549** Determine the current size of a file in bytes
3550*/
3551static int unixFileSize(sqlite3_file *id, i64 *pSize){
3552 int rc;
3553 struct stat buf;
3554 assert( id );
drh99ab3b12011-03-02 15:09:07 +00003555 rc = osFstat(((unixFile*)id)->h, &buf);
drh734c9862008-11-28 15:37:20 +00003556 SimulateIOError( rc=1 );
3557 if( rc!=0 ){
3558 ((unixFile*)id)->lastErrno = errno;
3559 return SQLITE_IOERR_FSTAT;
3560 }
3561 *pSize = buf.st_size;
3562
drh8af6c222010-05-14 12:43:01 +00003563 /* When opening a zero-size database, the findInodeInfo() procedure
drh734c9862008-11-28 15:37:20 +00003564 ** writes a single byte into that file in order to work around a bug
3565 ** in the OS-X msdos filesystem. In order to avoid problems with upper
3566 ** layers, we need to report this file size as zero even though it is
3567 ** really 1. Ticket #3260.
3568 */
3569 if( *pSize==1 ) *pSize = 0;
3570
3571
3572 return SQLITE_OK;
3573}
3574
drhd2cb50b2009-01-09 21:41:17 +00003575#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
drh715ff302008-12-03 22:32:44 +00003576/*
3577** Handler for proxy-locking file-control verbs. Defined below in the
3578** proxying locking division.
3579*/
3580static int proxyFileControl(sqlite3_file*,int,void*);
drh947bd802008-12-04 12:34:15 +00003581#endif
drh715ff302008-12-03 22:32:44 +00003582
dan502019c2010-07-28 14:26:17 +00003583/*
3584** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
drh3d4435b2011-08-26 20:55:50 +00003585** file-control operation. Enlarge the database to nBytes in size
3586** (rounded up to the next chunk-size). If the database is already
3587** nBytes or larger, this routine is a no-op.
dan502019c2010-07-28 14:26:17 +00003588*/
3589static int fcntlSizeHint(unixFile *pFile, i64 nByte){
mistachkind589a542011-08-30 01:23:34 +00003590 if( pFile->szChunk>0 ){
dan502019c2010-07-28 14:26:17 +00003591 i64 nSize; /* Required file size */
3592 struct stat buf; /* Used to hold return values of fstat() */
3593
drh99ab3b12011-03-02 15:09:07 +00003594 if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;
dan502019c2010-07-28 14:26:17 +00003595
3596 nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
3597 if( nSize>(i64)buf.st_size ){
dan661d71a2011-03-30 19:08:03 +00003598
dan502019c2010-07-28 14:26:17 +00003599#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
dan661d71a2011-03-30 19:08:03 +00003600 /* The code below is handling the return value of osFallocate()
3601 ** correctly. posix_fallocate() is defined to "returns zero on success,
3602 ** or an error number on failure". See the manpage for details. */
3603 int err;
drhff812312011-02-23 13:33:46 +00003604 do{
dan661d71a2011-03-30 19:08:03 +00003605 err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
3606 }while( err==EINTR );
3607 if( err ) return SQLITE_IOERR_WRITE;
dan502019c2010-07-28 14:26:17 +00003608#else
3609 /* If the OS does not have posix_fallocate(), fake it. First use
3610 ** ftruncate() to set the file size, then write a single byte to
3611 ** the last byte in each block within the extended region. This
3612 ** is the same technique used by glibc to implement posix_fallocate()
3613 ** on systems that do not have a real fallocate() system call.
3614 */
3615 int nBlk = buf.st_blksize; /* File-system block size */
3616 i64 iWrite; /* Next offset to write to */
dan502019c2010-07-28 14:26:17 +00003617
drhff812312011-02-23 13:33:46 +00003618 if( robust_ftruncate(pFile->h, nSize) ){
dan502019c2010-07-28 14:26:17 +00003619 pFile->lastErrno = errno;
dane18d4952011-02-21 11:46:24 +00003620 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
dan502019c2010-07-28 14:26:17 +00003621 }
3622 iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;
dandc5df0f2011-04-06 19:15:45 +00003623 while( iWrite<nSize ){
3624 int nWrite = seekAndWrite(pFile, iWrite, "", 1);
3625 if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
dan502019c2010-07-28 14:26:17 +00003626 iWrite += nBlk;
dandc5df0f2011-04-06 19:15:45 +00003627 }
dan502019c2010-07-28 14:26:17 +00003628#endif
3629 }
3630 }
3631
dane6ecd662013-04-01 17:56:59 +00003632 if( pFile->mmapLimit>0 && nByte>pFile->mmapSize ){
danf23da962013-03-23 21:00:41 +00003633 int rc;
3634 if( pFile->szChunk<=0 ){
3635 if( robust_ftruncate(pFile->h, nByte) ){
3636 pFile->lastErrno = errno;
3637 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3638 }
3639 }
3640
3641 rc = unixMapfile(pFile, nByte);
3642 return rc;
3643 }
3644
dan502019c2010-07-28 14:26:17 +00003645 return SQLITE_OK;
3646}
danielk1977ad94b582007-08-20 06:44:22 +00003647
danielk1977e3026632004-06-22 11:29:02 +00003648/*
drhf12b3f62011-12-21 14:42:29 +00003649** If *pArg is inititially negative then this is a query. Set *pArg to
3650** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
3651**
3652** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
3653*/
3654static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){
3655 if( *pArg<0 ){
3656 *pArg = (pFile->ctrlFlags & mask)!=0;
3657 }else if( (*pArg)==0 ){
3658 pFile->ctrlFlags &= ~mask;
3659 }else{
3660 pFile->ctrlFlags |= mask;
3661 }
3662}
3663
drh696b33e2012-12-06 19:01:42 +00003664/* Forward declaration */
3665static int unixGetTempname(int nBuf, char *zBuf);
3666
drhf12b3f62011-12-21 14:42:29 +00003667/*
drh9e33c2c2007-08-31 18:34:59 +00003668** Information and control of an open file handle.
drh18839212005-11-26 03:43:23 +00003669*/
drhcc6bb3e2007-08-31 16:11:35 +00003670static int unixFileControl(sqlite3_file *id, int op, void *pArg){
drhf0b190d2011-07-26 16:03:07 +00003671 unixFile *pFile = (unixFile*)id;
drh9e33c2c2007-08-31 18:34:59 +00003672 switch( op ){
3673 case SQLITE_FCNTL_LOCKSTATE: {
drhf0b190d2011-07-26 16:03:07 +00003674 *(int*)pArg = pFile->eFileLock;
drh9e33c2c2007-08-31 18:34:59 +00003675 return SQLITE_OK;
3676 }
drh7708e972008-11-29 00:56:52 +00003677 case SQLITE_LAST_ERRNO: {
drhf0b190d2011-07-26 16:03:07 +00003678 *(int*)pArg = pFile->lastErrno;
drh7708e972008-11-29 00:56:52 +00003679 return SQLITE_OK;
3680 }
dan6e09d692010-07-27 18:34:15 +00003681 case SQLITE_FCNTL_CHUNK_SIZE: {
drhf0b190d2011-07-26 16:03:07 +00003682 pFile->szChunk = *(int *)pArg;
dan502019c2010-07-28 14:26:17 +00003683 return SQLITE_OK;
dan6e09d692010-07-27 18:34:15 +00003684 }
drh9ff27ec2010-05-19 19:26:05 +00003685 case SQLITE_FCNTL_SIZE_HINT: {
danda04ea42011-08-23 05:10:39 +00003686 int rc;
3687 SimulateIOErrorBenign(1);
3688 rc = fcntlSizeHint(pFile, *(i64 *)pArg);
3689 SimulateIOErrorBenign(0);
3690 return rc;
drhf0b190d2011-07-26 16:03:07 +00003691 }
3692 case SQLITE_FCNTL_PERSIST_WAL: {
drhf12b3f62011-12-21 14:42:29 +00003693 unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg);
3694 return SQLITE_OK;
3695 }
drhcb15f352011-12-23 01:04:17 +00003696 case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
3697 unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg);
drhf0b190d2011-07-26 16:03:07 +00003698 return SQLITE_OK;
drh9ff27ec2010-05-19 19:26:05 +00003699 }
drhde60fc22011-12-14 17:53:36 +00003700 case SQLITE_FCNTL_VFSNAME: {
3701 *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
3702 return SQLITE_OK;
3703 }
drh696b33e2012-12-06 19:01:42 +00003704 case SQLITE_FCNTL_TEMPFILENAME: {
3705 char *zTFile = sqlite3_malloc( pFile->pVfs->mxPathname );
3706 if( zTFile ){
3707 unixGetTempname(pFile->pVfs->mxPathname, zTFile);
3708 *(char**)pArg = zTFile;
3709 }
3710 return SQLITE_OK;
3711 }
drh0d0614b2013-03-25 23:09:28 +00003712 case SQLITE_FCNTL_MMAP_LIMIT: {
drh34f74902013-04-03 13:09:18 +00003713 i64 newLimit = *(i64*)pArg;
3714 *(i64*)pArg = pFile->mmapLimit;
danbcb8a862013-04-08 15:30:41 +00003715 if( newLimit>=0 ){
3716 pFile->mmapLimit = newLimit;
3717 if( newLimit<pFile->mmapSize ) pFile->mmapSize = newLimit;
3718 }
danb2d3de32013-03-14 18:34:37 +00003719 return SQLITE_OK;
3720 }
drhd3d8c042012-05-29 17:02:40 +00003721#ifdef SQLITE_DEBUG
drh8f941bc2009-01-14 23:03:40 +00003722 /* The pager calls this method to signal that it has done
3723 ** a rollback and that the database is therefore unchanged and
3724 ** it hence it is OK for the transaction change counter to be
3725 ** unchanged.
3726 */
3727 case SQLITE_FCNTL_DB_UNCHANGED: {
3728 ((unixFile*)id)->dbUpdate = 0;
3729 return SQLITE_OK;
3730 }
3731#endif
drhd2cb50b2009-01-09 21:41:17 +00003732#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
drh715ff302008-12-03 22:32:44 +00003733 case SQLITE_SET_LOCKPROXYFILE:
aswiftaebf4132008-11-21 00:10:35 +00003734 case SQLITE_GET_LOCKPROXYFILE: {
drh715ff302008-12-03 22:32:44 +00003735 return proxyFileControl(id,op,pArg);
drh7708e972008-11-29 00:56:52 +00003736 }
drhd2cb50b2009-01-09 21:41:17 +00003737#endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
drh9e33c2c2007-08-31 18:34:59 +00003738 }
drh0b52b7d2011-01-26 19:46:22 +00003739 return SQLITE_NOTFOUND;
drh9cbe6352005-11-29 03:13:21 +00003740}
3741
3742/*
danielk1977a3d4c882007-03-23 10:08:38 +00003743** Return the sector size in bytes of the underlying block device for
3744** the specified file. This is almost always 512 bytes, but may be
3745** larger for some devices.
3746**
3747** SQLite code assumes this function cannot fail. It also assumes that
3748** if two files are created in the same file-system directory (i.e.
drh85b623f2007-12-13 21:54:09 +00003749** a database and its journal file) that the sector size will be the
danielk1977a3d4c882007-03-23 10:08:38 +00003750** same for both.
3751*/
drh537dddf2012-10-26 13:46:24 +00003752#ifndef __QNXNTO__
3753static int unixSectorSize(sqlite3_file *NotUsed){
3754 UNUSED_PARAMETER(NotUsed);
drh8942d412012-01-02 18:20:14 +00003755 return SQLITE_DEFAULT_SECTOR_SIZE;
danielk1977a3d4c882007-03-23 10:08:38 +00003756}
drh537dddf2012-10-26 13:46:24 +00003757#endif
3758
3759/*
3760** The following version of unixSectorSize() is optimized for QNX.
3761*/
3762#ifdef __QNXNTO__
3763#include <sys/dcmd_blk.h>
3764#include <sys/statvfs.h>
3765static int unixSectorSize(sqlite3_file *id){
3766 unixFile *pFile = (unixFile*)id;
3767 if( pFile->sectorSize == 0 ){
3768 struct statvfs fsInfo;
3769
3770 /* Set defaults for non-supported filesystems */
3771 pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
3772 pFile->deviceCharacteristics = 0;
3773 if( fstatvfs(pFile->h, &fsInfo) == -1 ) {
3774 return pFile->sectorSize;
3775 }
3776
3777 if( !strcmp(fsInfo.f_basetype, "tmp") ) {
3778 pFile->sectorSize = fsInfo.f_bsize;
3779 pFile->deviceCharacteristics =
3780 SQLITE_IOCAP_ATOMIC4K | /* All ram filesystem writes are atomic */
3781 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
3782 ** the write succeeds */
3783 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
3784 ** so it is ordered */
3785 0;
3786 }else if( strstr(fsInfo.f_basetype, "etfs") ){
3787 pFile->sectorSize = fsInfo.f_bsize;
3788 pFile->deviceCharacteristics =
3789 /* etfs cluster size writes are atomic */
3790 (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) |
3791 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
3792 ** the write succeeds */
3793 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
3794 ** so it is ordered */
3795 0;
3796 }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){
3797 pFile->sectorSize = fsInfo.f_bsize;
3798 pFile->deviceCharacteristics =
3799 SQLITE_IOCAP_ATOMIC | /* All filesystem writes are atomic */
3800 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
3801 ** the write succeeds */
3802 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
3803 ** so it is ordered */
3804 0;
3805 }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){
3806 pFile->sectorSize = fsInfo.f_bsize;
3807 pFile->deviceCharacteristics =
3808 /* full bitset of atomics from max sector size and smaller */
3809 ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
3810 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
3811 ** so it is ordered */
3812 0;
3813 }else if( strstr(fsInfo.f_basetype, "dos") ){
3814 pFile->sectorSize = fsInfo.f_bsize;
3815 pFile->deviceCharacteristics =
3816 /* full bitset of atomics from max sector size and smaller */
3817 ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
3818 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
3819 ** so it is ordered */
3820 0;
3821 }else{
3822 pFile->deviceCharacteristics =
3823 SQLITE_IOCAP_ATOMIC512 | /* blocks are atomic */
3824 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
3825 ** the write succeeds */
3826 0;
3827 }
3828 }
3829 /* Last chance verification. If the sector size isn't a multiple of 512
3830 ** then it isn't valid.*/
3831 if( pFile->sectorSize % 512 != 0 ){
3832 pFile->deviceCharacteristics = 0;
3833 pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
3834 }
3835 return pFile->sectorSize;
3836}
3837#endif /* __QNXNTO__ */
danielk1977a3d4c882007-03-23 10:08:38 +00003838
danielk197790949c22007-08-17 16:50:38 +00003839/*
drhf12b3f62011-12-21 14:42:29 +00003840** Return the device characteristics for the file.
3841**
drhcb15f352011-12-23 01:04:17 +00003842** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
3843** However, that choice is contraversial since technically the underlying
3844** file system does not always provide powersafe overwrites. (In other
3845** words, after a power-loss event, parts of the file that were never
3846** written might end up being altered.) However, non-PSOW behavior is very,
3847** very rare. And asserting PSOW makes a large reduction in the amount
3848** of required I/O for journaling, since a lot of padding is eliminated.
3849** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
3850** available to turn it off and URI query parameter available to turn it off.
danielk197790949c22007-08-17 16:50:38 +00003851*/
drhf12b3f62011-12-21 14:42:29 +00003852static int unixDeviceCharacteristics(sqlite3_file *id){
3853 unixFile *p = (unixFile*)id;
drh537dddf2012-10-26 13:46:24 +00003854 int rc = 0;
3855#ifdef __QNXNTO__
3856 if( p->sectorSize==0 ) unixSectorSize(id);
3857 rc = p->deviceCharacteristics;
3858#endif
drhcb15f352011-12-23 01:04:17 +00003859 if( p->ctrlFlags & UNIXFILE_PSOW ){
drh537dddf2012-10-26 13:46:24 +00003860 rc |= SQLITE_IOCAP_POWERSAFE_OVERWRITE;
drhcb15f352011-12-23 01:04:17 +00003861 }
drh537dddf2012-10-26 13:46:24 +00003862 return rc;
danielk197762079062007-08-15 17:08:46 +00003863}
3864
drhd9e5c4f2010-05-12 18:01:39 +00003865#ifndef SQLITE_OMIT_WAL
3866
3867
3868/*
drhd91c68f2010-05-14 14:52:25 +00003869** Object used to represent an shared memory buffer.
3870**
3871** When multiple threads all reference the same wal-index, each thread
3872** has its own unixShm object, but they all point to a single instance
3873** of this unixShmNode object. In other words, each wal-index is opened
3874** only once per process.
3875**
3876** Each unixShmNode object is connected to a single unixInodeInfo object.
3877** We could coalesce this object into unixInodeInfo, but that would mean
3878** every open file that does not use shared memory (in other words, most
3879** open files) would have to carry around this extra information. So
3880** the unixInodeInfo object contains a pointer to this unixShmNode object
3881** and the unixShmNode object is created only when needed.
drhd9e5c4f2010-05-12 18:01:39 +00003882**
3883** unixMutexHeld() must be true when creating or destroying
3884** this object or while reading or writing the following fields:
3885**
3886** nRef
drhd9e5c4f2010-05-12 18:01:39 +00003887**
3888** The following fields are read-only after the object is created:
3889**
3890** fid
3891** zFilename
3892**
drhd91c68f2010-05-14 14:52:25 +00003893** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
drhd9e5c4f2010-05-12 18:01:39 +00003894** unixMutexHeld() is true when reading or writing any other field
3895** in this structure.
drhd9e5c4f2010-05-12 18:01:39 +00003896*/
drhd91c68f2010-05-14 14:52:25 +00003897struct unixShmNode {
3898 unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */
drhd9e5c4f2010-05-12 18:01:39 +00003899 sqlite3_mutex *mutex; /* Mutex to access this object */
drhd9e5c4f2010-05-12 18:01:39 +00003900 char *zFilename; /* Name of the mmapped file */
3901 int h; /* Open file descriptor */
dan18801912010-06-14 14:07:50 +00003902 int szRegion; /* Size of shared-memory regions */
drh66dfec8b2011-06-01 20:01:49 +00003903 u16 nRegion; /* Size of array apRegion */
3904 u8 isReadonly; /* True if read-only */
dan18801912010-06-14 14:07:50 +00003905 char **apRegion; /* Array of mapped shared-memory regions */
drhd9e5c4f2010-05-12 18:01:39 +00003906 int nRef; /* Number of unixShm objects pointing to this */
3907 unixShm *pFirst; /* All unixShm objects pointing to this */
drhd9e5c4f2010-05-12 18:01:39 +00003908#ifdef SQLITE_DEBUG
3909 u8 exclMask; /* Mask of exclusive locks held */
3910 u8 sharedMask; /* Mask of shared locks held */
3911 u8 nextShmId; /* Next available unixShm.id value */
3912#endif
3913};
3914
3915/*
drhd9e5c4f2010-05-12 18:01:39 +00003916** Structure used internally by this VFS to record the state of an
3917** open shared memory connection.
3918**
drhd91c68f2010-05-14 14:52:25 +00003919** The following fields are initialized when this object is created and
3920** are read-only thereafter:
drhd9e5c4f2010-05-12 18:01:39 +00003921**
drhd91c68f2010-05-14 14:52:25 +00003922** unixShm.pFile
3923** unixShm.id
3924**
3925** All other fields are read/write. The unixShm.pFile->mutex must be held
3926** while accessing any read/write fields.
drhd9e5c4f2010-05-12 18:01:39 +00003927*/
3928struct unixShm {
drhd91c68f2010-05-14 14:52:25 +00003929 unixShmNode *pShmNode; /* The underlying unixShmNode object */
3930 unixShm *pNext; /* Next unixShm with the same unixShmNode */
drhd91c68f2010-05-14 14:52:25 +00003931 u8 hasMutex; /* True if holding the unixShmNode mutex */
drhfd532312011-08-31 18:35:34 +00003932 u8 id; /* Id of this connection within its unixShmNode */
drh73b64e42010-05-30 19:55:15 +00003933 u16 sharedMask; /* Mask of shared locks held */
3934 u16 exclMask; /* Mask of exclusive locks held */
drhd9e5c4f2010-05-12 18:01:39 +00003935};
3936
3937/*
drhd9e5c4f2010-05-12 18:01:39 +00003938** Constants used for locking
3939*/
drhbd9676c2010-06-23 17:58:38 +00003940#define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
drh42224412010-05-31 14:28:25 +00003941#define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
drhd9e5c4f2010-05-12 18:01:39 +00003942
drhd9e5c4f2010-05-12 18:01:39 +00003943/*
drh73b64e42010-05-30 19:55:15 +00003944** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
drhd9e5c4f2010-05-12 18:01:39 +00003945**
3946** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
3947** otherwise.
3948*/
3949static int unixShmSystemLock(
drhd91c68f2010-05-14 14:52:25 +00003950 unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */
3951 int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */
drh73b64e42010-05-30 19:55:15 +00003952 int ofst, /* First byte of the locking range */
3953 int n /* Number of bytes to lock */
drhd9e5c4f2010-05-12 18:01:39 +00003954){
3955 struct flock f; /* The posix advisory locking structure */
drh73b64e42010-05-30 19:55:15 +00003956 int rc = SQLITE_OK; /* Result code form fcntl() */
drhd9e5c4f2010-05-12 18:01:39 +00003957
drhd91c68f2010-05-14 14:52:25 +00003958 /* Access to the unixShmNode object is serialized by the caller */
3959 assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );
drhd9e5c4f2010-05-12 18:01:39 +00003960
drh73b64e42010-05-30 19:55:15 +00003961 /* Shared locks never span more than one byte */
3962 assert( n==1 || lockType!=F_RDLCK );
3963
3964 /* Locks are within range */
drhc99597c2010-05-31 01:41:15 +00003965 assert( n>=1 && n<SQLITE_SHM_NLOCK );
drh73b64e42010-05-30 19:55:15 +00003966
drh3cb93392011-03-12 18:10:44 +00003967 if( pShmNode->h>=0 ){
3968 /* Initialize the locking parameters */
3969 memset(&f, 0, sizeof(f));
3970 f.l_type = lockType;
3971 f.l_whence = SEEK_SET;
3972 f.l_start = ofst;
3973 f.l_len = n;
drhd9e5c4f2010-05-12 18:01:39 +00003974
drh3cb93392011-03-12 18:10:44 +00003975 rc = osFcntl(pShmNode->h, F_SETLK, &f);
3976 rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
3977 }
drhd9e5c4f2010-05-12 18:01:39 +00003978
3979 /* Update the global lock state and do debug tracing */
3980#ifdef SQLITE_DEBUG
drh73b64e42010-05-30 19:55:15 +00003981 { u16 mask;
drhd9e5c4f2010-05-12 18:01:39 +00003982 OSTRACE(("SHM-LOCK "));
drh73b64e42010-05-30 19:55:15 +00003983 mask = (1<<(ofst+n)) - (1<<ofst);
drhd9e5c4f2010-05-12 18:01:39 +00003984 if( rc==SQLITE_OK ){
3985 if( lockType==F_UNLCK ){
drh73b64e42010-05-30 19:55:15 +00003986 OSTRACE(("unlock %d ok", ofst));
3987 pShmNode->exclMask &= ~mask;
3988 pShmNode->sharedMask &= ~mask;
drhd9e5c4f2010-05-12 18:01:39 +00003989 }else if( lockType==F_RDLCK ){
drh73b64e42010-05-30 19:55:15 +00003990 OSTRACE(("read-lock %d ok", ofst));
3991 pShmNode->exclMask &= ~mask;
3992 pShmNode->sharedMask |= mask;
drhd9e5c4f2010-05-12 18:01:39 +00003993 }else{
3994 assert( lockType==F_WRLCK );
drh73b64e42010-05-30 19:55:15 +00003995 OSTRACE(("write-lock %d ok", ofst));
3996 pShmNode->exclMask |= mask;
3997 pShmNode->sharedMask &= ~mask;
drhd9e5c4f2010-05-12 18:01:39 +00003998 }
3999 }else{
4000 if( lockType==F_UNLCK ){
drh73b64e42010-05-30 19:55:15 +00004001 OSTRACE(("unlock %d failed", ofst));
drhd9e5c4f2010-05-12 18:01:39 +00004002 }else if( lockType==F_RDLCK ){
4003 OSTRACE(("read-lock failed"));
4004 }else{
4005 assert( lockType==F_WRLCK );
drh73b64e42010-05-30 19:55:15 +00004006 OSTRACE(("write-lock %d failed", ofst));
drhd9e5c4f2010-05-12 18:01:39 +00004007 }
4008 }
drh20e1f082010-05-31 16:10:12 +00004009 OSTRACE((" - afterwards %03x,%03x\n",
4010 pShmNode->sharedMask, pShmNode->exclMask));
drh73b64e42010-05-30 19:55:15 +00004011 }
drhd9e5c4f2010-05-12 18:01:39 +00004012#endif
4013
4014 return rc;
4015}
4016
drhd9e5c4f2010-05-12 18:01:39 +00004017
4018/*
drhd91c68f2010-05-14 14:52:25 +00004019** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
drhd9e5c4f2010-05-12 18:01:39 +00004020**
4021** This is not a VFS shared-memory method; it is a utility function called
4022** by VFS shared-memory methods.
4023*/
drhd91c68f2010-05-14 14:52:25 +00004024static void unixShmPurge(unixFile *pFd){
4025 unixShmNode *p = pFd->pInode->pShmNode;
drhd9e5c4f2010-05-12 18:01:39 +00004026 assert( unixMutexHeld() );
drhd91c68f2010-05-14 14:52:25 +00004027 if( p && p->nRef==0 ){
dan13a3cb82010-06-11 19:04:21 +00004028 int i;
drhd91c68f2010-05-14 14:52:25 +00004029 assert( p->pInode==pFd->pInode );
drhdf3aa162011-06-24 11:29:51 +00004030 sqlite3_mutex_free(p->mutex);
dan18801912010-06-14 14:07:50 +00004031 for(i=0; i<p->nRegion; i++){
drh3cb93392011-03-12 18:10:44 +00004032 if( p->h>=0 ){
drhd1ab8062013-03-25 20:50:25 +00004033 osMunmap(p->apRegion[i], p->szRegion);
drh3cb93392011-03-12 18:10:44 +00004034 }else{
4035 sqlite3_free(p->apRegion[i]);
4036 }
dan13a3cb82010-06-11 19:04:21 +00004037 }
dan18801912010-06-14 14:07:50 +00004038 sqlite3_free(p->apRegion);
drh0e9365c2011-03-02 02:08:13 +00004039 if( p->h>=0 ){
4040 robust_close(pFd, p->h, __LINE__);
4041 p->h = -1;
4042 }
drhd91c68f2010-05-14 14:52:25 +00004043 p->pInode->pShmNode = 0;
4044 sqlite3_free(p);
drhd9e5c4f2010-05-12 18:01:39 +00004045 }
4046}
4047
4048/*
danda9fe0c2010-07-13 18:44:03 +00004049** Open a shared-memory area associated with open database file pDbFd.
drh7234c6d2010-06-19 15:10:09 +00004050** This particular implementation uses mmapped files.
drhd9e5c4f2010-05-12 18:01:39 +00004051**
drh7234c6d2010-06-19 15:10:09 +00004052** The file used to implement shared-memory is in the same directory
4053** as the open database file and has the same name as the open database
4054** file with the "-shm" suffix added. For example, if the database file
4055** is "/home/user1/config.db" then the file that is created and mmapped
drha4ced192010-07-15 18:32:40 +00004056** for shared memory will be called "/home/user1/config.db-shm".
4057**
4058** Another approach to is to use files in /dev/shm or /dev/tmp or an
4059** some other tmpfs mount. But if a file in a different directory
4060** from the database file is used, then differing access permissions
4061** or a chroot() might cause two different processes on the same
4062** database to end up using different files for shared memory -
4063** meaning that their memory would not really be shared - resulting
4064** in database corruption. Nevertheless, this tmpfs file usage
4065** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
4066** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time
4067** option results in an incompatible build of SQLite; builds of SQLite
4068** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
4069** same database file at the same time, database corruption will likely
4070** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
4071** "unsupported" and may go away in a future SQLite release.
drhd9e5c4f2010-05-12 18:01:39 +00004072**
4073** When opening a new shared-memory file, if no other instances of that
4074** file are currently open, in this process or in other processes, then
4075** the file must be truncated to zero length or have its header cleared.
drh3cb93392011-03-12 18:10:44 +00004076**
4077** If the original database file (pDbFd) is using the "unix-excl" VFS
4078** that means that an exclusive lock is held on the database file and
4079** that no other processes are able to read or write the database. In
4080** that case, we do not really need shared memory. No shared memory
4081** file is created. The shared memory will be simulated with heap memory.
drhd9e5c4f2010-05-12 18:01:39 +00004082*/
danda9fe0c2010-07-13 18:44:03 +00004083static int unixOpenSharedMemory(unixFile *pDbFd){
4084 struct unixShm *p = 0; /* The connection to be opened */
4085 struct unixShmNode *pShmNode; /* The underlying mmapped file */
4086 int rc; /* Result code */
4087 unixInodeInfo *pInode; /* The inode of fd */
4088 char *zShmFilename; /* Name of the file used for SHM */
4089 int nShmFilename; /* Size of the SHM filename in bytes */
drhd9e5c4f2010-05-12 18:01:39 +00004090
danda9fe0c2010-07-13 18:44:03 +00004091 /* Allocate space for the new unixShm object. */
drhd9e5c4f2010-05-12 18:01:39 +00004092 p = sqlite3_malloc( sizeof(*p) );
4093 if( p==0 ) return SQLITE_NOMEM;
4094 memset(p, 0, sizeof(*p));
drhd9e5c4f2010-05-12 18:01:39 +00004095 assert( pDbFd->pShm==0 );
drhd9e5c4f2010-05-12 18:01:39 +00004096
danda9fe0c2010-07-13 18:44:03 +00004097 /* Check to see if a unixShmNode object already exists. Reuse an existing
4098 ** one if present. Create a new one if necessary.
drhd9e5c4f2010-05-12 18:01:39 +00004099 */
4100 unixEnterMutex();
drh8b3cf822010-06-01 21:02:51 +00004101 pInode = pDbFd->pInode;
4102 pShmNode = pInode->pShmNode;
drhd91c68f2010-05-14 14:52:25 +00004103 if( pShmNode==0 ){
danddb0ac42010-07-14 14:48:58 +00004104 struct stat sStat; /* fstat() info for database file */
4105
4106 /* Call fstat() to figure out the permissions on the database file. If
4107 ** a new *-shm file is created, an attempt will be made to create it
drh8c815d12012-02-13 20:16:37 +00004108 ** with the same permissions.
danddb0ac42010-07-14 14:48:58 +00004109 */
drh3cb93392011-03-12 18:10:44 +00004110 if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){
danddb0ac42010-07-14 14:48:58 +00004111 rc = SQLITE_IOERR_FSTAT;
4112 goto shm_open_err;
4113 }
4114
drha4ced192010-07-15 18:32:40 +00004115#ifdef SQLITE_SHM_DIRECTORY
drh52bcde02012-01-03 14:50:45 +00004116 nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
drha4ced192010-07-15 18:32:40 +00004117#else
drh52bcde02012-01-03 14:50:45 +00004118 nShmFilename = 6 + (int)strlen(pDbFd->zPath);
drha4ced192010-07-15 18:32:40 +00004119#endif
drh7234c6d2010-06-19 15:10:09 +00004120 pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename );
drhd91c68f2010-05-14 14:52:25 +00004121 if( pShmNode==0 ){
drhd9e5c4f2010-05-12 18:01:39 +00004122 rc = SQLITE_NOMEM;
4123 goto shm_open_err;
4124 }
drh9cb5a0d2012-01-05 21:19:54 +00004125 memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename);
drh7234c6d2010-06-19 15:10:09 +00004126 zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1];
drha4ced192010-07-15 18:32:40 +00004127#ifdef SQLITE_SHM_DIRECTORY
4128 sqlite3_snprintf(nShmFilename, zShmFilename,
4129 SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
4130 (u32)sStat.st_ino, (u32)sStat.st_dev);
4131#else
drh7234c6d2010-06-19 15:10:09 +00004132 sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath);
drh81cc5162011-05-17 20:36:21 +00004133 sqlite3FileSuffix3(pDbFd->zPath, zShmFilename);
drha4ced192010-07-15 18:32:40 +00004134#endif
drhd91c68f2010-05-14 14:52:25 +00004135 pShmNode->h = -1;
4136 pDbFd->pInode->pShmNode = pShmNode;
4137 pShmNode->pInode = pDbFd->pInode;
4138 pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
4139 if( pShmNode->mutex==0 ){
4140 rc = SQLITE_NOMEM;
4141 goto shm_open_err;
4142 }
drhd9e5c4f2010-05-12 18:01:39 +00004143
drh3cb93392011-03-12 18:10:44 +00004144 if( pInode->bProcessLock==0 ){
drh3ec4a0c2011-10-11 18:18:54 +00004145 int openFlags = O_RDWR | O_CREAT;
drh92913722011-12-23 00:07:33 +00004146 if( sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
drh3ec4a0c2011-10-11 18:18:54 +00004147 openFlags = O_RDONLY;
4148 pShmNode->isReadonly = 1;
4149 }
4150 pShmNode->h = robust_open(zShmFilename, openFlags, (sStat.st_mode&0777));
drh3cb93392011-03-12 18:10:44 +00004151 if( pShmNode->h<0 ){
drhc96d1e72012-02-11 18:51:34 +00004152 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
4153 goto shm_open_err;
drhd9e5c4f2010-05-12 18:01:39 +00004154 }
drhac7c3ac2012-02-11 19:23:48 +00004155
4156 /* If this process is running as root, make sure that the SHM file
4157 ** is owned by the same user that owns the original database. Otherwise,
drhed466822012-05-31 13:10:49 +00004158 ** the original owner will not be able to connect.
drhac7c3ac2012-02-11 19:23:48 +00004159 */
drhed466822012-05-31 13:10:49 +00004160 osFchown(pShmNode->h, sStat.st_uid, sStat.st_gid);
drh3cb93392011-03-12 18:10:44 +00004161
4162 /* Check to see if another process is holding the dead-man switch.
drh66dfec8b2011-06-01 20:01:49 +00004163 ** If not, truncate the file to zero length.
4164 */
4165 rc = SQLITE_OK;
4166 if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
4167 if( robust_ftruncate(pShmNode->h, 0) ){
4168 rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename);
drh3cb93392011-03-12 18:10:44 +00004169 }
4170 }
drh66dfec8b2011-06-01 20:01:49 +00004171 if( rc==SQLITE_OK ){
4172 rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1);
4173 }
4174 if( rc ) goto shm_open_err;
drhd9e5c4f2010-05-12 18:01:39 +00004175 }
drhd9e5c4f2010-05-12 18:01:39 +00004176 }
4177
drhd91c68f2010-05-14 14:52:25 +00004178 /* Make the new connection a child of the unixShmNode */
4179 p->pShmNode = pShmNode;
drhd9e5c4f2010-05-12 18:01:39 +00004180#ifdef SQLITE_DEBUG
drhd91c68f2010-05-14 14:52:25 +00004181 p->id = pShmNode->nextShmId++;
drhd9e5c4f2010-05-12 18:01:39 +00004182#endif
drhd91c68f2010-05-14 14:52:25 +00004183 pShmNode->nRef++;
drhd9e5c4f2010-05-12 18:01:39 +00004184 pDbFd->pShm = p;
4185 unixLeaveMutex();
dan0668f592010-07-20 18:59:00 +00004186
4187 /* The reference count on pShmNode has already been incremented under
4188 ** the cover of the unixEnterMutex() mutex and the pointer from the
4189 ** new (struct unixShm) object to the pShmNode has been set. All that is
4190 ** left to do is to link the new object into the linked list starting
4191 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
4192 ** mutex.
4193 */
4194 sqlite3_mutex_enter(pShmNode->mutex);
4195 p->pNext = pShmNode->pFirst;
4196 pShmNode->pFirst = p;
4197 sqlite3_mutex_leave(pShmNode->mutex);
drhd9e5c4f2010-05-12 18:01:39 +00004198 return SQLITE_OK;
4199
4200 /* Jump here on any error */
4201shm_open_err:
drhd91c68f2010-05-14 14:52:25 +00004202 unixShmPurge(pDbFd); /* This call frees pShmNode if required */
drhd9e5c4f2010-05-12 18:01:39 +00004203 sqlite3_free(p);
drhd9e5c4f2010-05-12 18:01:39 +00004204 unixLeaveMutex();
4205 return rc;
4206}
4207
4208/*
danda9fe0c2010-07-13 18:44:03 +00004209** This function is called to obtain a pointer to region iRegion of the
4210** shared-memory associated with the database file fd. Shared-memory regions
4211** are numbered starting from zero. Each shared-memory region is szRegion
4212** bytes in size.
4213**
4214** If an error occurs, an error code is returned and *pp is set to NULL.
4215**
4216** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
4217** region has not been allocated (by any client, including one running in a
4218** separate process), then *pp is set to NULL and SQLITE_OK returned. If
4219** bExtend is non-zero and the requested shared-memory region has not yet
4220** been allocated, it is allocated by this function.
4221**
4222** If the shared-memory region has already been allocated or is allocated by
4223** this call as described above, then it is mapped into this processes
4224** address space (if it is not already), *pp is set to point to the mapped
4225** memory and SQLITE_OK returned.
drhd9e5c4f2010-05-12 18:01:39 +00004226*/
danda9fe0c2010-07-13 18:44:03 +00004227static int unixShmMap(
4228 sqlite3_file *fd, /* Handle open on database file */
4229 int iRegion, /* Region to retrieve */
4230 int szRegion, /* Size of regions */
4231 int bExtend, /* True to extend file if necessary */
4232 void volatile **pp /* OUT: Mapped memory */
drhd9e5c4f2010-05-12 18:01:39 +00004233){
danda9fe0c2010-07-13 18:44:03 +00004234 unixFile *pDbFd = (unixFile*)fd;
4235 unixShm *p;
4236 unixShmNode *pShmNode;
4237 int rc = SQLITE_OK;
drhd9e5c4f2010-05-12 18:01:39 +00004238
danda9fe0c2010-07-13 18:44:03 +00004239 /* If the shared-memory file has not yet been opened, open it now. */
4240 if( pDbFd->pShm==0 ){
4241 rc = unixOpenSharedMemory(pDbFd);
4242 if( rc!=SQLITE_OK ) return rc;
drhd9e5c4f2010-05-12 18:01:39 +00004243 }
drhd9e5c4f2010-05-12 18:01:39 +00004244
danda9fe0c2010-07-13 18:44:03 +00004245 p = pDbFd->pShm;
4246 pShmNode = p->pShmNode;
4247 sqlite3_mutex_enter(pShmNode->mutex);
4248 assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
drh3cb93392011-03-12 18:10:44 +00004249 assert( pShmNode->pInode==pDbFd->pInode );
4250 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
4251 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
danda9fe0c2010-07-13 18:44:03 +00004252
4253 if( pShmNode->nRegion<=iRegion ){
4254 char **apNew; /* New apRegion[] array */
4255 int nByte = (iRegion+1)*szRegion; /* Minimum required file size */
4256 struct stat sStat; /* Used by fstat() */
4257
4258 pShmNode->szRegion = szRegion;
4259
drh3cb93392011-03-12 18:10:44 +00004260 if( pShmNode->h>=0 ){
4261 /* The requested region is not mapped into this processes address space.
4262 ** Check to see if it has been allocated (i.e. if the wal-index file is
4263 ** large enough to contain the requested region).
danda9fe0c2010-07-13 18:44:03 +00004264 */
drh3cb93392011-03-12 18:10:44 +00004265 if( osFstat(pShmNode->h, &sStat) ){
4266 rc = SQLITE_IOERR_SHMSIZE;
danda9fe0c2010-07-13 18:44:03 +00004267 goto shmpage_out;
4268 }
drh3cb93392011-03-12 18:10:44 +00004269
4270 if( sStat.st_size<nByte ){
4271 /* The requested memory region does not exist. If bExtend is set to
4272 ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
4273 **
4274 ** Alternatively, if bExtend is true, use ftruncate() to allocate
4275 ** the requested memory region.
4276 */
4277 if( !bExtend ) goto shmpage_out;
drh0fbb50e2012-11-13 10:54:12 +00004278#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
4279 if( osFallocate(pShmNode->h, sStat.st_size, nByte)!=0 ){
4280 rc = unixLogError(SQLITE_IOERR_SHMSIZE, "fallocate",
4281 pShmNode->zFilename);
4282 goto shmpage_out;
4283 }
4284#else
drh3cb93392011-03-12 18:10:44 +00004285 if( robust_ftruncate(pShmNode->h, nByte) ){
4286 rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate",
4287 pShmNode->zFilename);
4288 goto shmpage_out;
4289 }
drh0fbb50e2012-11-13 10:54:12 +00004290#endif
drh3cb93392011-03-12 18:10:44 +00004291 }
danda9fe0c2010-07-13 18:44:03 +00004292 }
4293
4294 /* Map the requested memory region into this processes address space. */
4295 apNew = (char **)sqlite3_realloc(
4296 pShmNode->apRegion, (iRegion+1)*sizeof(char *)
4297 );
4298 if( !apNew ){
4299 rc = SQLITE_IOERR_NOMEM;
4300 goto shmpage_out;
4301 }
4302 pShmNode->apRegion = apNew;
4303 while(pShmNode->nRegion<=iRegion){
drh3cb93392011-03-12 18:10:44 +00004304 void *pMem;
4305 if( pShmNode->h>=0 ){
drhd1ab8062013-03-25 20:50:25 +00004306 pMem = osMmap(0, szRegion,
drh66dfec8b2011-06-01 20:01:49 +00004307 pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE,
drh5a05be12012-10-09 18:51:44 +00004308 MAP_SHARED, pShmNode->h, szRegion*(i64)pShmNode->nRegion
drh3cb93392011-03-12 18:10:44 +00004309 );
4310 if( pMem==MAP_FAILED ){
drh50990db2011-04-13 20:26:13 +00004311 rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
drh3cb93392011-03-12 18:10:44 +00004312 goto shmpage_out;
4313 }
4314 }else{
4315 pMem = sqlite3_malloc(szRegion);
4316 if( pMem==0 ){
4317 rc = SQLITE_NOMEM;
4318 goto shmpage_out;
4319 }
4320 memset(pMem, 0, szRegion);
danda9fe0c2010-07-13 18:44:03 +00004321 }
4322 pShmNode->apRegion[pShmNode->nRegion] = pMem;
4323 pShmNode->nRegion++;
4324 }
4325 }
4326
4327shmpage_out:
4328 if( pShmNode->nRegion>iRegion ){
4329 *pp = pShmNode->apRegion[iRegion];
4330 }else{
4331 *pp = 0;
4332 }
drh66dfec8b2011-06-01 20:01:49 +00004333 if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
danda9fe0c2010-07-13 18:44:03 +00004334 sqlite3_mutex_leave(pShmNode->mutex);
4335 return rc;
drhd9e5c4f2010-05-12 18:01:39 +00004336}
4337
4338/*
drhd9e5c4f2010-05-12 18:01:39 +00004339** Change the lock state for a shared-memory segment.
drh15d68092010-05-31 16:56:14 +00004340**
4341** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
4342** different here than in posix. In xShmLock(), one can go from unlocked
4343** to shared and back or from unlocked to exclusive and back. But one may
4344** not go from shared to exclusive or from exclusive to shared.
drhd9e5c4f2010-05-12 18:01:39 +00004345*/
4346static int unixShmLock(
4347 sqlite3_file *fd, /* Database file holding the shared memory */
drh73b64e42010-05-30 19:55:15 +00004348 int ofst, /* First lock to acquire or release */
4349 int n, /* Number of locks to acquire or release */
4350 int flags /* What to do with the lock */
drhd9e5c4f2010-05-12 18:01:39 +00004351){
drh73b64e42010-05-30 19:55:15 +00004352 unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */
4353 unixShm *p = pDbFd->pShm; /* The shared memory being locked */
4354 unixShm *pX; /* For looping over all siblings */
4355 unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */
4356 int rc = SQLITE_OK; /* Result code */
4357 u16 mask; /* Mask of locks to take or release */
drhd9e5c4f2010-05-12 18:01:39 +00004358
drhd91c68f2010-05-14 14:52:25 +00004359 assert( pShmNode==pDbFd->pInode->pShmNode );
4360 assert( pShmNode->pInode==pDbFd->pInode );
drhc99597c2010-05-31 01:41:15 +00004361 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
drh73b64e42010-05-30 19:55:15 +00004362 assert( n>=1 );
4363 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
4364 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
4365 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
4366 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
4367 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
drh3cb93392011-03-12 18:10:44 +00004368 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
4369 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
drhd91c68f2010-05-14 14:52:25 +00004370
drhc99597c2010-05-31 01:41:15 +00004371 mask = (1<<(ofst+n)) - (1<<ofst);
drh73b64e42010-05-30 19:55:15 +00004372 assert( n>1 || mask==(1<<ofst) );
drhd91c68f2010-05-14 14:52:25 +00004373 sqlite3_mutex_enter(pShmNode->mutex);
drh73b64e42010-05-30 19:55:15 +00004374 if( flags & SQLITE_SHM_UNLOCK ){
4375 u16 allMask = 0; /* Mask of locks held by siblings */
4376
4377 /* See if any siblings hold this same lock */
4378 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4379 if( pX==p ) continue;
4380 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
4381 allMask |= pX->sharedMask;
4382 }
4383
4384 /* Unlock the system-level locks */
4385 if( (mask & allMask)==0 ){
drhc99597c2010-05-31 01:41:15 +00004386 rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n);
drh73b64e42010-05-30 19:55:15 +00004387 }else{
drhd9e5c4f2010-05-12 18:01:39 +00004388 rc = SQLITE_OK;
drhd9e5c4f2010-05-12 18:01:39 +00004389 }
drh73b64e42010-05-30 19:55:15 +00004390
4391 /* Undo the local locks */
4392 if( rc==SQLITE_OK ){
4393 p->exclMask &= ~mask;
4394 p->sharedMask &= ~mask;
4395 }
4396 }else if( flags & SQLITE_SHM_SHARED ){
4397 u16 allShared = 0; /* Union of locks held by connections other than "p" */
4398
4399 /* Find out which shared locks are already held by sibling connections.
4400 ** If any sibling already holds an exclusive lock, go ahead and return
4401 ** SQLITE_BUSY.
4402 */
4403 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
drh73b64e42010-05-30 19:55:15 +00004404 if( (pX->exclMask & mask)!=0 ){
drhd9e5c4f2010-05-12 18:01:39 +00004405 rc = SQLITE_BUSY;
drh73b64e42010-05-30 19:55:15 +00004406 break;
4407 }
4408 allShared |= pX->sharedMask;
4409 }
4410
4411 /* Get shared locks at the system level, if necessary */
4412 if( rc==SQLITE_OK ){
4413 if( (allShared & mask)==0 ){
drhc99597c2010-05-31 01:41:15 +00004414 rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n);
drhd9e5c4f2010-05-12 18:01:39 +00004415 }else{
drh73b64e42010-05-30 19:55:15 +00004416 rc = SQLITE_OK;
drhd9e5c4f2010-05-12 18:01:39 +00004417 }
drhd9e5c4f2010-05-12 18:01:39 +00004418 }
drh73b64e42010-05-30 19:55:15 +00004419
4420 /* Get the local shared locks */
4421 if( rc==SQLITE_OK ){
4422 p->sharedMask |= mask;
4423 }
4424 }else{
4425 /* Make sure no sibling connections hold locks that will block this
4426 ** lock. If any do, return SQLITE_BUSY right away.
4427 */
4428 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
drh73b64e42010-05-30 19:55:15 +00004429 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
4430 rc = SQLITE_BUSY;
4431 break;
4432 }
4433 }
4434
4435 /* Get the exclusive locks at the system level. Then if successful
4436 ** also mark the local connection as being locked.
4437 */
4438 if( rc==SQLITE_OK ){
drhc99597c2010-05-31 01:41:15 +00004439 rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n);
drhd9e5c4f2010-05-12 18:01:39 +00004440 if( rc==SQLITE_OK ){
drh15d68092010-05-31 16:56:14 +00004441 assert( (p->sharedMask & mask)==0 );
drh73b64e42010-05-30 19:55:15 +00004442 p->exclMask |= mask;
drhd9e5c4f2010-05-12 18:01:39 +00004443 }
drhd9e5c4f2010-05-12 18:01:39 +00004444 }
4445 }
drhd91c68f2010-05-14 14:52:25 +00004446 sqlite3_mutex_leave(pShmNode->mutex);
drh20e1f082010-05-31 16:10:12 +00004447 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
4448 p->id, getpid(), p->sharedMask, p->exclMask));
drhd9e5c4f2010-05-12 18:01:39 +00004449 return rc;
4450}
4451
drh286a2882010-05-20 23:51:06 +00004452/*
4453** Implement a memory barrier or memory fence on shared memory.
4454**
4455** All loads and stores begun before the barrier must complete before
4456** any load or store begun after the barrier.
4457*/
4458static void unixShmBarrier(
dan18801912010-06-14 14:07:50 +00004459 sqlite3_file *fd /* Database file holding the shared memory */
drh286a2882010-05-20 23:51:06 +00004460){
drhff828942010-06-26 21:34:06 +00004461 UNUSED_PARAMETER(fd);
drhb29ad852010-06-01 00:03:57 +00004462 unixEnterMutex();
4463 unixLeaveMutex();
drh286a2882010-05-20 23:51:06 +00004464}
4465
dan18801912010-06-14 14:07:50 +00004466/*
danda9fe0c2010-07-13 18:44:03 +00004467** Close a connection to shared-memory. Delete the underlying
4468** storage if deleteFlag is true.
drhe11fedc2010-07-14 00:14:30 +00004469**
4470** If there is no shared memory associated with the connection then this
4471** routine is a harmless no-op.
dan18801912010-06-14 14:07:50 +00004472*/
danda9fe0c2010-07-13 18:44:03 +00004473static int unixShmUnmap(
4474 sqlite3_file *fd, /* The underlying database file */
4475 int deleteFlag /* Delete shared-memory if true */
dan13a3cb82010-06-11 19:04:21 +00004476){
danda9fe0c2010-07-13 18:44:03 +00004477 unixShm *p; /* The connection to be closed */
4478 unixShmNode *pShmNode; /* The underlying shared-memory file */
4479 unixShm **pp; /* For looping over sibling connections */
4480 unixFile *pDbFd; /* The underlying database file */
dan13a3cb82010-06-11 19:04:21 +00004481
danda9fe0c2010-07-13 18:44:03 +00004482 pDbFd = (unixFile*)fd;
4483 p = pDbFd->pShm;
4484 if( p==0 ) return SQLITE_OK;
4485 pShmNode = p->pShmNode;
4486
4487 assert( pShmNode==pDbFd->pInode->pShmNode );
4488 assert( pShmNode->pInode==pDbFd->pInode );
4489
4490 /* Remove connection p from the set of connections associated
4491 ** with pShmNode */
dan18801912010-06-14 14:07:50 +00004492 sqlite3_mutex_enter(pShmNode->mutex);
danda9fe0c2010-07-13 18:44:03 +00004493 for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
4494 *pp = p->pNext;
dan13a3cb82010-06-11 19:04:21 +00004495
danda9fe0c2010-07-13 18:44:03 +00004496 /* Free the connection p */
4497 sqlite3_free(p);
4498 pDbFd->pShm = 0;
dan18801912010-06-14 14:07:50 +00004499 sqlite3_mutex_leave(pShmNode->mutex);
danda9fe0c2010-07-13 18:44:03 +00004500
4501 /* If pShmNode->nRef has reached 0, then close the underlying
4502 ** shared-memory file, too */
4503 unixEnterMutex();
4504 assert( pShmNode->nRef>0 );
4505 pShmNode->nRef--;
4506 if( pShmNode->nRef==0 ){
drh036ac7f2011-08-08 23:18:05 +00004507 if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename);
danda9fe0c2010-07-13 18:44:03 +00004508 unixShmPurge(pDbFd);
4509 }
4510 unixLeaveMutex();
4511
4512 return SQLITE_OK;
dan13a3cb82010-06-11 19:04:21 +00004513}
drh286a2882010-05-20 23:51:06 +00004514
danda9fe0c2010-07-13 18:44:03 +00004515
drhd9e5c4f2010-05-12 18:01:39 +00004516#else
drh6b017cc2010-06-14 18:01:46 +00004517# define unixShmMap 0
danda9fe0c2010-07-13 18:44:03 +00004518# define unixShmLock 0
drh286a2882010-05-20 23:51:06 +00004519# define unixShmBarrier 0
danda9fe0c2010-07-13 18:44:03 +00004520# define unixShmUnmap 0
drhd9e5c4f2010-05-12 18:01:39 +00004521#endif /* #ifndef SQLITE_OMIT_WAL */
4522
drh734c9862008-11-28 15:37:20 +00004523/*
danaef49d72013-03-25 16:28:54 +00004524** If it is currently memory mapped, unmap file pFd.
dand306e1a2013-03-20 18:25:49 +00004525*/
danf23da962013-03-23 21:00:41 +00004526static void unixUnmapfile(unixFile *pFd){
4527 assert( pFd->nFetchOut==0 );
4528 if( pFd->pMapRegion ){
drhd1ab8062013-03-25 20:50:25 +00004529 osMunmap(pFd->pMapRegion, pFd->mmapOrigsize);
danf23da962013-03-23 21:00:41 +00004530 pFd->pMapRegion = 0;
4531 pFd->mmapSize = 0;
4532 pFd->mmapOrigsize = 0;
4533 }
4534}
dan5d8a1372013-03-19 19:28:06 +00004535
danaef49d72013-03-25 16:28:54 +00004536/*
dane6ecd662013-04-01 17:56:59 +00004537** Return the system page size.
4538*/
4539static int unixGetPagesize(void){
4540#if HAVE_MREMAP
4541 return 512;
drh85830a72013-04-03 00:42:01 +00004542#elif defined(_BSD_SOURCE)
dane6ecd662013-04-01 17:56:59 +00004543 return getpagesize();
4544#else
4545 return (int)sysconf(_SC_PAGESIZE);
4546#endif
4547}
4548
4549/*
4550** Attempt to set the size of the memory mapping maintained by file
4551** descriptor pFd to nNew bytes. Any existing mapping is discarded.
4552**
4553** If successful, this function sets the following variables:
4554**
4555** unixFile.pMapRegion
4556** unixFile.mmapSize
4557** unixFile.mmapOrigsize
4558**
4559** If unsuccessful, an error message is logged via sqlite3_log() and
4560** the three variables above are zeroed. In this case SQLite should
4561** continue accessing the database using the xRead() and xWrite()
4562** methods.
4563*/
4564static void unixRemapfile(
4565 unixFile *pFd, /* File descriptor object */
4566 i64 nNew /* Required mapping size */
4567){
dan4ff7bc42013-04-02 12:04:09 +00004568 const char *zErr = "mmap";
dane6ecd662013-04-01 17:56:59 +00004569 int h = pFd->h; /* File descriptor open on db file */
4570 u8 *pOrig = (u8 *)pFd->pMapRegion; /* Pointer to current file mapping */
4571 i64 nOrig = pFd->mmapOrigsize; /* Size of pOrig region in bytes */
4572 u8 *pNew = 0; /* Location of new mapping */
4573 int flags = PROT_READ; /* Flags to pass to mmap() */
4574
4575 assert( pFd->nFetchOut==0 );
4576 assert( nNew>pFd->mmapSize );
4577 assert( nNew<=pFd->mmapLimit );
4578 assert( nNew>0 );
4579 assert( pFd->mmapOrigsize>=pFd->mmapSize );
dan4ff7bc42013-04-02 12:04:09 +00004580 assert( MAP_FAILED!=0 );
dane6ecd662013-04-01 17:56:59 +00004581
4582 if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE;
4583
4584 if( pOrig ){
4585 const int szSyspage = unixGetPagesize();
4586 i64 nReuse = (pFd->mmapSize & ~(szSyspage-1));
4587 u8 *pReq = &pOrig[nReuse];
4588
4589 /* Unmap any pages of the existing mapping that cannot be reused. */
4590 if( nReuse!=nOrig ){
4591 osMunmap(pReq, nOrig-nReuse);
4592 }
4593
4594#if HAVE_MREMAP
4595 pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE);
dan4ff7bc42013-04-02 12:04:09 +00004596 zErr = "mremap";
dane6ecd662013-04-01 17:56:59 +00004597#else
4598 pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse);
4599 if( pNew!=MAP_FAILED ){
4600 if( pNew!=pReq ){
4601 osMunmap(pNew, nNew - nReuse);
dan4ff7bc42013-04-02 12:04:09 +00004602 pNew = 0;
dane6ecd662013-04-01 17:56:59 +00004603 }else{
4604 pNew = pOrig;
4605 }
4606 }
4607#endif
4608
dan48ccef82013-04-02 20:55:01 +00004609 /* The attempt to extend the existing mapping failed. Free it. */
4610 if( pNew==MAP_FAILED || pNew==0 ){
dane6ecd662013-04-01 17:56:59 +00004611 osMunmap(pOrig, nReuse);
4612 }
4613 }
4614
4615 /* If pNew is still NULL, try to create an entirely new mapping. */
4616 if( pNew==0 ){
4617 pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0);
dane6ecd662013-04-01 17:56:59 +00004618 }
4619
dan4ff7bc42013-04-02 12:04:09 +00004620 if( pNew==MAP_FAILED ){
4621 pNew = 0;
4622 nNew = 0;
4623 unixLogError(SQLITE_OK, zErr, pFd->zPath);
4624
4625 /* If the mmap() above failed, assume that all subsequent mmap() calls
4626 ** will probably fail too. Fall back to using xRead/xWrite exclusively
4627 ** in this case. */
4628 pFd->mmapLimit = 0;
4629 }
dane6ecd662013-04-01 17:56:59 +00004630 pFd->pMapRegion = (void *)pNew;
4631 pFd->mmapSize = pFd->mmapOrigsize = nNew;
4632}
4633
4634/*
danaef49d72013-03-25 16:28:54 +00004635** Memory map or remap the file opened by file-descriptor pFd (if the file
4636** is already mapped, the existing mapping is replaced by the new). Or, if
4637** there already exists a mapping for this file, and there are still
4638** outstanding xFetch() references to it, this function is a no-op.
4639**
4640** If parameter nByte is non-negative, then it is the requested size of
4641** the mapping to create. Otherwise, if nByte is less than zero, then the
4642** requested size is the size of the file on disk. The actual size of the
4643** created mapping is either the requested size or the value configured
drh0d0614b2013-03-25 23:09:28 +00004644** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller.
danaef49d72013-03-25 16:28:54 +00004645**
4646** SQLITE_OK is returned if no error occurs (even if the mapping is not
4647** recreated as a result of outstanding references) or an SQLite error
4648** code otherwise.
4649*/
danf23da962013-03-23 21:00:41 +00004650static int unixMapfile(unixFile *pFd, i64 nByte){
4651 i64 nMap = nByte;
4652 int rc;
daneb97b292013-03-20 14:26:59 +00004653
danf23da962013-03-23 21:00:41 +00004654 assert( nMap>=0 || pFd->nFetchOut==0 );
4655 if( pFd->nFetchOut>0 ) return SQLITE_OK;
4656
4657 if( nMap<0 ){
daneb97b292013-03-20 14:26:59 +00004658 struct stat statbuf; /* Low-level file information */
danf23da962013-03-23 21:00:41 +00004659 rc = osFstat(pFd->h, &statbuf);
4660 if( rc!=SQLITE_OK ){
4661 return SQLITE_IOERR_FSTAT;
daneb97b292013-03-20 14:26:59 +00004662 }
danf23da962013-03-23 21:00:41 +00004663 nMap = statbuf.st_size;
4664 }
4665 if( nMap>pFd->mmapLimit ){
4666 nMap = pFd->mmapLimit;
daneb97b292013-03-20 14:26:59 +00004667 }
4668
danf23da962013-03-23 21:00:41 +00004669 if( nMap!=pFd->mmapSize ){
dane6ecd662013-04-01 17:56:59 +00004670 if( nMap>0 ){
4671 unixRemapfile(pFd, nMap);
4672 }else{
danb7e3a322013-03-25 20:30:13 +00004673 unixUnmapfile(pFd);
dan5d8a1372013-03-19 19:28:06 +00004674 }
4675 }
4676
danf23da962013-03-23 21:00:41 +00004677 return SQLITE_OK;
4678}
4679
danaef49d72013-03-25 16:28:54 +00004680/*
4681** If possible, return a pointer to a mapping of file fd starting at offset
4682** iOff. The mapping must be valid for at least nAmt bytes.
4683**
4684** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
4685** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
4686** Finally, if an error does occur, return an SQLite error code. The final
4687** value of *pp is undefined in this case.
4688**
4689** If this function does return a pointer, the caller must eventually
4690** release the reference by calling unixUnfetch().
4691*/
danf23da962013-03-23 21:00:41 +00004692static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){
4693 unixFile *pFd = (unixFile *)fd; /* The underlying database file */
4694 *pp = 0;
4695
4696 if( pFd->mmapLimit>0 ){
4697 if( pFd->pMapRegion==0 ){
4698 int rc = unixMapfile(pFd, -1);
4699 if( rc!=SQLITE_OK ) return rc;
4700 }
4701 if( pFd->mmapSize >= iOff+nAmt ){
4702 *pp = &((u8 *)pFd->pMapRegion)[iOff];
4703 pFd->nFetchOut++;
4704 }
4705 }
4706 return SQLITE_OK;
4707}
4708
danaef49d72013-03-25 16:28:54 +00004709/*
dandf737fe2013-03-25 17:00:24 +00004710** If the third argument is non-NULL, then this function releases a
4711** reference obtained by an earlier call to unixFetch(). The second
4712** argument passed to this function must be the same as the corresponding
4713** argument that was passed to the unixFetch() invocation.
4714**
4715** Or, if the third argument is NULL, then this function is being called
4716** to inform the VFS layer that, according to POSIX, any existing mapping
4717** may now be invalid and should be unmapped.
danaef49d72013-03-25 16:28:54 +00004718*/
dandf737fe2013-03-25 17:00:24 +00004719static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){
danf23da962013-03-23 21:00:41 +00004720 unixFile *pFd = (unixFile *)fd; /* The underlying database file */
4721
danaef49d72013-03-25 16:28:54 +00004722 /* If p==0 (unmap the entire file) then there must be no outstanding
4723 ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
4724 ** then there must be at least one outstanding. */
danf23da962013-03-23 21:00:41 +00004725 assert( (p==0)==(pFd->nFetchOut==0) );
4726
dandf737fe2013-03-25 17:00:24 +00004727 /* If p!=0, it must match the iOff value. */
4728 assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );
4729
danf23da962013-03-23 21:00:41 +00004730 if( p ){
4731 pFd->nFetchOut--;
4732 }else{
4733 unixUnmapfile(pFd);
4734 }
4735
4736 assert( pFd->nFetchOut>=0 );
4737 return SQLITE_OK;
dan5d8a1372013-03-19 19:28:06 +00004738}
4739
4740/*
drh734c9862008-11-28 15:37:20 +00004741** Here ends the implementation of all sqlite3_file methods.
4742**
4743********************** End sqlite3_file Methods *******************************
4744******************************************************************************/
4745
4746/*
drh6b9d6dd2008-12-03 19:34:47 +00004747** This division contains definitions of sqlite3_io_methods objects that
4748** implement various file locking strategies. It also contains definitions
4749** of "finder" functions. A finder-function is used to locate the appropriate
4750** sqlite3_io_methods object for a particular database file. The pAppData
4751** field of the sqlite3_vfs VFS objects are initialized to be pointers to
4752** the correct finder-function for that VFS.
4753**
4754** Most finder functions return a pointer to a fixed sqlite3_io_methods
4755** object. The only interesting finder-function is autolockIoFinder, which
4756** looks at the filesystem type and tries to guess the best locking
4757** strategy from that.
4758**
drh1875f7a2008-12-08 18:19:17 +00004759** For finder-funtion F, two objects are created:
4760**
4761** (1) The real finder-function named "FImpt()".
4762**
dane946c392009-08-22 11:39:46 +00004763** (2) A constant pointer to this function named just "F".
drh1875f7a2008-12-08 18:19:17 +00004764**
4765**
4766** A pointer to the F pointer is used as the pAppData value for VFS
4767** objects. We have to do this instead of letting pAppData point
4768** directly at the finder-function since C90 rules prevent a void*
4769** from be cast into a function pointer.
4770**
drh6b9d6dd2008-12-03 19:34:47 +00004771**
drh7708e972008-11-29 00:56:52 +00004772** Each instance of this macro generates two objects:
drh734c9862008-11-28 15:37:20 +00004773**
drh7708e972008-11-29 00:56:52 +00004774** * A constant sqlite3_io_methods object call METHOD that has locking
4775** methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
4776**
4777** * An I/O method finder function called FINDER that returns a pointer
4778** to the METHOD object in the previous bullet.
drh734c9862008-11-28 15:37:20 +00004779*/
drhd9e5c4f2010-05-12 18:01:39 +00004780#define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK) \
drh7708e972008-11-29 00:56:52 +00004781static const sqlite3_io_methods METHOD = { \
drhd9e5c4f2010-05-12 18:01:39 +00004782 VERSION, /* iVersion */ \
drh7708e972008-11-29 00:56:52 +00004783 CLOSE, /* xClose */ \
4784 unixRead, /* xRead */ \
4785 unixWrite, /* xWrite */ \
4786 unixTruncate, /* xTruncate */ \
4787 unixSync, /* xSync */ \
4788 unixFileSize, /* xFileSize */ \
4789 LOCK, /* xLock */ \
4790 UNLOCK, /* xUnlock */ \
4791 CKLOCK, /* xCheckReservedLock */ \
4792 unixFileControl, /* xFileControl */ \
4793 unixSectorSize, /* xSectorSize */ \
drhd9e5c4f2010-05-12 18:01:39 +00004794 unixDeviceCharacteristics, /* xDeviceCapabilities */ \
drh6b017cc2010-06-14 18:01:46 +00004795 unixShmMap, /* xShmMap */ \
danda9fe0c2010-07-13 18:44:03 +00004796 unixShmLock, /* xShmLock */ \
drh286a2882010-05-20 23:51:06 +00004797 unixShmBarrier, /* xShmBarrier */ \
dan5d8a1372013-03-19 19:28:06 +00004798 unixShmUnmap, /* xShmUnmap */ \
danf23da962013-03-23 21:00:41 +00004799 unixFetch, /* xFetch */ \
4800 unixUnfetch, /* xUnfetch */ \
drh7708e972008-11-29 00:56:52 +00004801}; \
drh0c2694b2009-09-03 16:23:44 +00004802static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \
4803 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \
drh7708e972008-11-29 00:56:52 +00004804 return &METHOD; \
drh1875f7a2008-12-08 18:19:17 +00004805} \
drh0c2694b2009-09-03 16:23:44 +00004806static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \
drh1875f7a2008-12-08 18:19:17 +00004807 = FINDER##Impl;
drh7708e972008-11-29 00:56:52 +00004808
4809/*
4810** Here are all of the sqlite3_io_methods objects for each of the
4811** locking strategies. Functions that return pointers to these methods
4812** are also created.
4813*/
4814IOMETHODS(
4815 posixIoFinder, /* Finder function name */
4816 posixIoMethods, /* sqlite3_io_methods object name */
dan5d8a1372013-03-19 19:28:06 +00004817 3, /* shared memory and mmap are enabled */
drh7708e972008-11-29 00:56:52 +00004818 unixClose, /* xClose method */
4819 unixLock, /* xLock method */
4820 unixUnlock, /* xUnlock method */
4821 unixCheckReservedLock /* xCheckReservedLock method */
drh1875f7a2008-12-08 18:19:17 +00004822)
drh7708e972008-11-29 00:56:52 +00004823IOMETHODS(
4824 nolockIoFinder, /* Finder function name */
4825 nolockIoMethods, /* sqlite3_io_methods object name */
drh6e1f4822010-07-13 23:41:40 +00004826 1, /* shared memory is disabled */
drh7708e972008-11-29 00:56:52 +00004827 nolockClose, /* xClose method */
4828 nolockLock, /* xLock method */
4829 nolockUnlock, /* xUnlock method */
4830 nolockCheckReservedLock /* xCheckReservedLock method */
drh1875f7a2008-12-08 18:19:17 +00004831)
drh7708e972008-11-29 00:56:52 +00004832IOMETHODS(
4833 dotlockIoFinder, /* Finder function name */
4834 dotlockIoMethods, /* sqlite3_io_methods object name */
drh6e1f4822010-07-13 23:41:40 +00004835 1, /* shared memory is disabled */
drh7708e972008-11-29 00:56:52 +00004836 dotlockClose, /* xClose method */
4837 dotlockLock, /* xLock method */
4838 dotlockUnlock, /* xUnlock method */
4839 dotlockCheckReservedLock /* xCheckReservedLock method */
drh1875f7a2008-12-08 18:19:17 +00004840)
drh7708e972008-11-29 00:56:52 +00004841
chw78a13182009-04-07 05:35:03 +00004842#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
drh7708e972008-11-29 00:56:52 +00004843IOMETHODS(
4844 flockIoFinder, /* Finder function name */
4845 flockIoMethods, /* sqlite3_io_methods object name */
drh6e1f4822010-07-13 23:41:40 +00004846 1, /* shared memory is disabled */
drh7708e972008-11-29 00:56:52 +00004847 flockClose, /* xClose method */
4848 flockLock, /* xLock method */
4849 flockUnlock, /* xUnlock method */
4850 flockCheckReservedLock /* xCheckReservedLock method */
drh1875f7a2008-12-08 18:19:17 +00004851)
drh7708e972008-11-29 00:56:52 +00004852#endif
4853
drh6c7d5c52008-11-21 20:32:33 +00004854#if OS_VXWORKS
drh7708e972008-11-29 00:56:52 +00004855IOMETHODS(
4856 semIoFinder, /* Finder function name */
4857 semIoMethods, /* sqlite3_io_methods object name */
drh6e1f4822010-07-13 23:41:40 +00004858 1, /* shared memory is disabled */
drh7708e972008-11-29 00:56:52 +00004859 semClose, /* xClose method */
4860 semLock, /* xLock method */
4861 semUnlock, /* xUnlock method */
4862 semCheckReservedLock /* xCheckReservedLock method */
drh1875f7a2008-12-08 18:19:17 +00004863)
aswiftaebf4132008-11-21 00:10:35 +00004864#endif
drh7708e972008-11-29 00:56:52 +00004865
drhd2cb50b2009-01-09 21:41:17 +00004866#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
drh7708e972008-11-29 00:56:52 +00004867IOMETHODS(
4868 afpIoFinder, /* Finder function name */
4869 afpIoMethods, /* sqlite3_io_methods object name */
drh6e1f4822010-07-13 23:41:40 +00004870 1, /* shared memory is disabled */
drh7708e972008-11-29 00:56:52 +00004871 afpClose, /* xClose method */
4872 afpLock, /* xLock method */
4873 afpUnlock, /* xUnlock method */
4874 afpCheckReservedLock /* xCheckReservedLock method */
drh1875f7a2008-12-08 18:19:17 +00004875)
drh715ff302008-12-03 22:32:44 +00004876#endif
4877
4878/*
4879** The proxy locking method is a "super-method" in the sense that it
4880** opens secondary file descriptors for the conch and lock files and
4881** it uses proxy, dot-file, AFP, and flock() locking methods on those
4882** secondary files. For this reason, the division that implements
4883** proxy locking is located much further down in the file. But we need
4884** to go ahead and define the sqlite3_io_methods and finder function
4885** for proxy locking here. So we forward declare the I/O methods.
4886*/
drhd2cb50b2009-01-09 21:41:17 +00004887#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
drh715ff302008-12-03 22:32:44 +00004888static int proxyClose(sqlite3_file*);
4889static int proxyLock(sqlite3_file*, int);
4890static int proxyUnlock(sqlite3_file*, int);
4891static int proxyCheckReservedLock(sqlite3_file*, int*);
drh7708e972008-11-29 00:56:52 +00004892IOMETHODS(
4893 proxyIoFinder, /* Finder function name */
4894 proxyIoMethods, /* sqlite3_io_methods object name */
drh6e1f4822010-07-13 23:41:40 +00004895 1, /* shared memory is disabled */
drh7708e972008-11-29 00:56:52 +00004896 proxyClose, /* xClose method */
4897 proxyLock, /* xLock method */
4898 proxyUnlock, /* xUnlock method */
4899 proxyCheckReservedLock /* xCheckReservedLock method */
drh1875f7a2008-12-08 18:19:17 +00004900)
aswiftaebf4132008-11-21 00:10:35 +00004901#endif
drh7708e972008-11-29 00:56:52 +00004902
drh7ed97b92010-01-20 13:07:21 +00004903/* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
4904#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4905IOMETHODS(
4906 nfsIoFinder, /* Finder function name */
4907 nfsIoMethods, /* sqlite3_io_methods object name */
drh6e1f4822010-07-13 23:41:40 +00004908 1, /* shared memory is disabled */
drh7ed97b92010-01-20 13:07:21 +00004909 unixClose, /* xClose method */
4910 unixLock, /* xLock method */
4911 nfsUnlock, /* xUnlock method */
4912 unixCheckReservedLock /* xCheckReservedLock method */
4913)
4914#endif
drh7708e972008-11-29 00:56:52 +00004915
drhd2cb50b2009-01-09 21:41:17 +00004916#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
drh7708e972008-11-29 00:56:52 +00004917/*
drh6b9d6dd2008-12-03 19:34:47 +00004918** This "finder" function attempts to determine the best locking strategy
4919** for the database file "filePath". It then returns the sqlite3_io_methods
drh7708e972008-11-29 00:56:52 +00004920** object that implements that strategy.
4921**
4922** This is for MacOSX only.
4923*/
drh1875f7a2008-12-08 18:19:17 +00004924static const sqlite3_io_methods *autolockIoFinderImpl(
drh7708e972008-11-29 00:56:52 +00004925 const char *filePath, /* name of the database file */
drh0c2694b2009-09-03 16:23:44 +00004926 unixFile *pNew /* open file object for the database file */
drh7708e972008-11-29 00:56:52 +00004927){
4928 static const struct Mapping {
drh6b9d6dd2008-12-03 19:34:47 +00004929 const char *zFilesystem; /* Filesystem type name */
4930 const sqlite3_io_methods *pMethods; /* Appropriate locking method */
drh7708e972008-11-29 00:56:52 +00004931 } aMap[] = {
4932 { "hfs", &posixIoMethods },
4933 { "ufs", &posixIoMethods },
4934 { "afpfs", &afpIoMethods },
drh7708e972008-11-29 00:56:52 +00004935 { "smbfs", &afpIoMethods },
drh7708e972008-11-29 00:56:52 +00004936 { "webdav", &nolockIoMethods },
4937 { 0, 0 }
4938 };
4939 int i;
4940 struct statfs fsInfo;
4941 struct flock lockInfo;
4942
4943 if( !filePath ){
drh6b9d6dd2008-12-03 19:34:47 +00004944 /* If filePath==NULL that means we are dealing with a transient file
4945 ** that does not need to be locked. */
drh7708e972008-11-29 00:56:52 +00004946 return &nolockIoMethods;
4947 }
4948 if( statfs(filePath, &fsInfo) != -1 ){
4949 if( fsInfo.f_flags & MNT_RDONLY ){
4950 return &nolockIoMethods;
4951 }
4952 for(i=0; aMap[i].zFilesystem; i++){
4953 if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
4954 return aMap[i].pMethods;
4955 }
4956 }
4957 }
4958
4959 /* Default case. Handles, amongst others, "nfs".
4960 ** Test byte-range lock using fcntl(). If the call succeeds,
4961 ** assume that the file-system supports POSIX style locks.
drh734c9862008-11-28 15:37:20 +00004962 */
drh7708e972008-11-29 00:56:52 +00004963 lockInfo.l_len = 1;
4964 lockInfo.l_start = 0;
4965 lockInfo.l_whence = SEEK_SET;
4966 lockInfo.l_type = F_RDLCK;
drh99ab3b12011-03-02 15:09:07 +00004967 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
drh7ed97b92010-01-20 13:07:21 +00004968 if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
4969 return &nfsIoMethods;
4970 } else {
4971 return &posixIoMethods;
4972 }
drh7708e972008-11-29 00:56:52 +00004973 }else{
4974 return &dotlockIoMethods;
4975 }
4976}
drh0c2694b2009-09-03 16:23:44 +00004977static const sqlite3_io_methods
4978 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
drh1875f7a2008-12-08 18:19:17 +00004979
drhd2cb50b2009-01-09 21:41:17 +00004980#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
drh7708e972008-11-29 00:56:52 +00004981
chw78a13182009-04-07 05:35:03 +00004982#if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
4983/*
4984** This "finder" function attempts to determine the best locking strategy
4985** for the database file "filePath". It then returns the sqlite3_io_methods
4986** object that implements that strategy.
4987**
4988** This is for VXWorks only.
4989*/
4990static const sqlite3_io_methods *autolockIoFinderImpl(
4991 const char *filePath, /* name of the database file */
drh0c2694b2009-09-03 16:23:44 +00004992 unixFile *pNew /* the open file object */
chw78a13182009-04-07 05:35:03 +00004993){
4994 struct flock lockInfo;
4995
4996 if( !filePath ){
4997 /* If filePath==NULL that means we are dealing with a transient file
4998 ** that does not need to be locked. */
4999 return &nolockIoMethods;
5000 }
5001
5002 /* Test if fcntl() is supported and use POSIX style locks.
5003 ** Otherwise fall back to the named semaphore method.
5004 */
5005 lockInfo.l_len = 1;
5006 lockInfo.l_start = 0;
5007 lockInfo.l_whence = SEEK_SET;
5008 lockInfo.l_type = F_RDLCK;
drh99ab3b12011-03-02 15:09:07 +00005009 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
chw78a13182009-04-07 05:35:03 +00005010 return &posixIoMethods;
5011 }else{
5012 return &semIoMethods;
5013 }
5014}
drh0c2694b2009-09-03 16:23:44 +00005015static const sqlite3_io_methods
5016 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
chw78a13182009-04-07 05:35:03 +00005017
5018#endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */
5019
drh7708e972008-11-29 00:56:52 +00005020/*
5021** An abstract type for a pointer to a IO method finder function:
5022*/
drh0c2694b2009-09-03 16:23:44 +00005023typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
drh7708e972008-11-29 00:56:52 +00005024
aswiftaebf4132008-11-21 00:10:35 +00005025
drh734c9862008-11-28 15:37:20 +00005026/****************************************************************************
5027**************************** sqlite3_vfs methods ****************************
5028**
5029** This division contains the implementation of methods on the
5030** sqlite3_vfs object.
5031*/
5032
danielk1977a3d4c882007-03-23 10:08:38 +00005033/*
danielk1977e339d652008-06-28 11:23:00 +00005034** Initialize the contents of the unixFile structure pointed to by pId.
danielk1977ad94b582007-08-20 06:44:22 +00005035*/
5036static int fillInUnixFile(
danielk1977e339d652008-06-28 11:23:00 +00005037 sqlite3_vfs *pVfs, /* Pointer to vfs object */
drhbfe66312006-10-03 17:40:40 +00005038 int h, /* Open file descriptor of file being opened */
drh218c5082008-03-07 00:27:10 +00005039 sqlite3_file *pId, /* Write to the unixFile structure here */
drhda0e7682008-07-30 15:27:54 +00005040 const char *zFilename, /* Name of the file being opened */
drhc02a43a2012-01-10 23:18:38 +00005041 int ctrlFlags /* Zero or more UNIXFILE_* values */
drhbfe66312006-10-03 17:40:40 +00005042){
drh7708e972008-11-29 00:56:52 +00005043 const sqlite3_io_methods *pLockingStyle;
drhda0e7682008-07-30 15:27:54 +00005044 unixFile *pNew = (unixFile *)pId;
5045 int rc = SQLITE_OK;
5046
drh8af6c222010-05-14 12:43:01 +00005047 assert( pNew->pInode==NULL );
drh218c5082008-03-07 00:27:10 +00005048
dan00157392010-10-05 11:33:15 +00005049 /* Usually the path zFilename should not be a relative pathname. The
5050 ** exception is when opening the proxy "conch" file in builds that
5051 ** include the special Apple locking styles.
5052 */
dan00157392010-10-05 11:33:15 +00005053#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
drhf7f55ed2010-10-05 18:22:47 +00005054 assert( zFilename==0 || zFilename[0]=='/'
5055 || pVfs->pAppData==(void*)&autolockIoFinder );
5056#else
5057 assert( zFilename==0 || zFilename[0]=='/' );
dan00157392010-10-05 11:33:15 +00005058#endif
dan00157392010-10-05 11:33:15 +00005059
drhb07028f2011-10-14 21:49:18 +00005060 /* No locking occurs in temporary files */
drhc02a43a2012-01-10 23:18:38 +00005061 assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 );
drhb07028f2011-10-14 21:49:18 +00005062
drh308c2a52010-05-14 11:30:18 +00005063 OSTRACE(("OPEN %-3d %s\n", h, zFilename));
danielk1977ad94b582007-08-20 06:44:22 +00005064 pNew->h = h;
drhde60fc22011-12-14 17:53:36 +00005065 pNew->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00005066 pNew->zPath = zFilename;
drhc02a43a2012-01-10 23:18:38 +00005067 pNew->ctrlFlags = (u8)ctrlFlags;
drh2b8246e2013-04-03 10:50:02 +00005068 pNew->mmapLimit = sqlite3GlobalConfig.mxMmap;
drhc02a43a2012-01-10 23:18:38 +00005069 if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
5070 "psow", SQLITE_POWERSAFE_OVERWRITE) ){
drhcb15f352011-12-23 01:04:17 +00005071 pNew->ctrlFlags |= UNIXFILE_PSOW;
drhbec7c972011-12-23 00:25:02 +00005072 }
drh503a6862013-03-01 01:07:17 +00005073 if( strcmp(pVfs->zName,"unix-excl")==0 ){
drhf12b3f62011-12-21 14:42:29 +00005074 pNew->ctrlFlags |= UNIXFILE_EXCL;
drha7e61d82011-03-12 17:02:57 +00005075 }
drh339eb0b2008-03-07 15:34:11 +00005076
drh6c7d5c52008-11-21 20:32:33 +00005077#if OS_VXWORKS
drh107886a2008-11-21 22:21:50 +00005078 pNew->pId = vxworksFindFileId(zFilename);
5079 if( pNew->pId==0 ){
drhc02a43a2012-01-10 23:18:38 +00005080 ctrlFlags |= UNIXFILE_NOLOCK;
drh107886a2008-11-21 22:21:50 +00005081 rc = SQLITE_NOMEM;
chw97185482008-11-17 08:05:31 +00005082 }
5083#endif
5084
drhc02a43a2012-01-10 23:18:38 +00005085 if( ctrlFlags & UNIXFILE_NOLOCK ){
drh7708e972008-11-29 00:56:52 +00005086 pLockingStyle = &nolockIoMethods;
drhda0e7682008-07-30 15:27:54 +00005087 }else{
drh0c2694b2009-09-03 16:23:44 +00005088 pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
aswiftaebf4132008-11-21 00:10:35 +00005089#if SQLITE_ENABLE_LOCKING_STYLE
5090 /* Cache zFilename in the locking context (AFP and dotlock override) for
5091 ** proxyLock activation is possible (remote proxy is based on db name)
5092 ** zFilename remains valid until file is closed, to support */
5093 pNew->lockingContext = (void*)zFilename;
5094#endif
drhda0e7682008-07-30 15:27:54 +00005095 }
danielk1977e339d652008-06-28 11:23:00 +00005096
drh7ed97b92010-01-20 13:07:21 +00005097 if( pLockingStyle == &posixIoMethods
5098#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5099 || pLockingStyle == &nfsIoMethods
5100#endif
5101 ){
drh7708e972008-11-29 00:56:52 +00005102 unixEnterMutex();
drh8af6c222010-05-14 12:43:01 +00005103 rc = findInodeInfo(pNew, &pNew->pInode);
dane946c392009-08-22 11:39:46 +00005104 if( rc!=SQLITE_OK ){
mistachkin48864df2013-03-21 21:20:32 +00005105 /* If an error occurred in findInodeInfo(), close the file descriptor
drh8af6c222010-05-14 12:43:01 +00005106 ** immediately, before releasing the mutex. findInodeInfo() may fail
dane946c392009-08-22 11:39:46 +00005107 ** in two scenarios:
5108 **
5109 ** (a) A call to fstat() failed.
5110 ** (b) A malloc failed.
5111 **
5112 ** Scenario (b) may only occur if the process is holding no other
5113 ** file descriptors open on the same file. If there were other file
5114 ** descriptors on this file, then no malloc would be required by
drh8af6c222010-05-14 12:43:01 +00005115 ** findInodeInfo(). If this is the case, it is quite safe to close
dane946c392009-08-22 11:39:46 +00005116 ** handle h - as it is guaranteed that no posix locks will be released
5117 ** by doing so.
5118 **
5119 ** If scenario (a) caused the error then things are not so safe. The
5120 ** implicit assumption here is that if fstat() fails, things are in
5121 ** such bad shape that dropping a lock or two doesn't matter much.
5122 */
drh0e9365c2011-03-02 02:08:13 +00005123 robust_close(pNew, h, __LINE__);
dane946c392009-08-22 11:39:46 +00005124 h = -1;
5125 }
drh7708e972008-11-29 00:56:52 +00005126 unixLeaveMutex();
5127 }
danielk1977e339d652008-06-28 11:23:00 +00005128
drhd2cb50b2009-01-09 21:41:17 +00005129#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
aswiftf0551ee2008-12-03 21:26:19 +00005130 else if( pLockingStyle == &afpIoMethods ){
drh7708e972008-11-29 00:56:52 +00005131 /* AFP locking uses the file path so it needs to be included in
5132 ** the afpLockingContext.
5133 */
5134 afpLockingContext *pCtx;
5135 pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
5136 if( pCtx==0 ){
5137 rc = SQLITE_NOMEM;
5138 }else{
5139 /* NB: zFilename exists and remains valid until the file is closed
5140 ** according to requirement F11141. So we do not need to make a
5141 ** copy of the filename. */
5142 pCtx->dbPath = zFilename;
drh7ed97b92010-01-20 13:07:21 +00005143 pCtx->reserved = 0;
drh7708e972008-11-29 00:56:52 +00005144 srandomdev();
drh6c7d5c52008-11-21 20:32:33 +00005145 unixEnterMutex();
drh8af6c222010-05-14 12:43:01 +00005146 rc = findInodeInfo(pNew, &pNew->pInode);
drh7ed97b92010-01-20 13:07:21 +00005147 if( rc!=SQLITE_OK ){
5148 sqlite3_free(pNew->lockingContext);
drh0e9365c2011-03-02 02:08:13 +00005149 robust_close(pNew, h, __LINE__);
drh7ed97b92010-01-20 13:07:21 +00005150 h = -1;
5151 }
drh7708e972008-11-29 00:56:52 +00005152 unixLeaveMutex();
drhbfe66312006-10-03 17:40:40 +00005153 }
drh7708e972008-11-29 00:56:52 +00005154 }
5155#endif
danielk1977e339d652008-06-28 11:23:00 +00005156
drh7708e972008-11-29 00:56:52 +00005157 else if( pLockingStyle == &dotlockIoMethods ){
5158 /* Dotfile locking uses the file path so it needs to be included in
5159 ** the dotlockLockingContext
5160 */
5161 char *zLockFile;
5162 int nFilename;
drhb07028f2011-10-14 21:49:18 +00005163 assert( zFilename!=0 );
drhea678832008-12-10 19:26:22 +00005164 nFilename = (int)strlen(zFilename) + 6;
drh7708e972008-11-29 00:56:52 +00005165 zLockFile = (char *)sqlite3_malloc(nFilename);
5166 if( zLockFile==0 ){
5167 rc = SQLITE_NOMEM;
5168 }else{
5169 sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
danielk1977e339d652008-06-28 11:23:00 +00005170 }
drh7708e972008-11-29 00:56:52 +00005171 pNew->lockingContext = zLockFile;
5172 }
danielk1977e339d652008-06-28 11:23:00 +00005173
drh6c7d5c52008-11-21 20:32:33 +00005174#if OS_VXWORKS
drh7708e972008-11-29 00:56:52 +00005175 else if( pLockingStyle == &semIoMethods ){
5176 /* Named semaphore locking uses the file path so it needs to be
5177 ** included in the semLockingContext
5178 */
5179 unixEnterMutex();
drh8af6c222010-05-14 12:43:01 +00005180 rc = findInodeInfo(pNew, &pNew->pInode);
5181 if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
5182 char *zSemName = pNew->pInode->aSemName;
drh7708e972008-11-29 00:56:52 +00005183 int n;
drh2238dcc2009-08-27 17:56:20 +00005184 sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
drh7708e972008-11-29 00:56:52 +00005185 pNew->pId->zCanonicalName);
drh2238dcc2009-08-27 17:56:20 +00005186 for( n=1; zSemName[n]; n++ )
drh7708e972008-11-29 00:56:52 +00005187 if( zSemName[n]=='/' ) zSemName[n] = '_';
drh8af6c222010-05-14 12:43:01 +00005188 pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
5189 if( pNew->pInode->pSem == SEM_FAILED ){
drh7708e972008-11-29 00:56:52 +00005190 rc = SQLITE_NOMEM;
drh8af6c222010-05-14 12:43:01 +00005191 pNew->pInode->aSemName[0] = '\0';
chw97185482008-11-17 08:05:31 +00005192 }
chw97185482008-11-17 08:05:31 +00005193 }
drh7708e972008-11-29 00:56:52 +00005194 unixLeaveMutex();
danielk1977e339d652008-06-28 11:23:00 +00005195 }
drh7708e972008-11-29 00:56:52 +00005196#endif
aswift5b1a2562008-08-22 00:22:35 +00005197
5198 pNew->lastErrno = 0;
drh6c7d5c52008-11-21 20:32:33 +00005199#if OS_VXWORKS
chw97185482008-11-17 08:05:31 +00005200 if( rc!=SQLITE_OK ){
drh0e9365c2011-03-02 02:08:13 +00005201 if( h>=0 ) robust_close(pNew, h, __LINE__);
drh309e6552010-02-05 18:00:26 +00005202 h = -1;
drh036ac7f2011-08-08 23:18:05 +00005203 osUnlink(zFilename);
chw97185482008-11-17 08:05:31 +00005204 isDelete = 0;
5205 }
drhc02a43a2012-01-10 23:18:38 +00005206 if( isDelete ) pNew->ctrlFlags |= UNIXFILE_DELETE;
chw97185482008-11-17 08:05:31 +00005207#endif
danielk1977e339d652008-06-28 11:23:00 +00005208 if( rc!=SQLITE_OK ){
drh0e9365c2011-03-02 02:08:13 +00005209 if( h>=0 ) robust_close(pNew, h, __LINE__);
danielk1977e339d652008-06-28 11:23:00 +00005210 }else{
drh7708e972008-11-29 00:56:52 +00005211 pNew->pMethod = pLockingStyle;
danielk1977e339d652008-06-28 11:23:00 +00005212 OpenCounter(+1);
drhbfe66312006-10-03 17:40:40 +00005213 }
danielk1977e339d652008-06-28 11:23:00 +00005214 return rc;
drh054889e2005-11-30 03:20:31 +00005215}
drh9c06c952005-11-26 00:25:00 +00005216
danielk1977ad94b582007-08-20 06:44:22 +00005217/*
drh8b3cf822010-06-01 21:02:51 +00005218** Return the name of a directory in which to put temporary files.
5219** If no suitable temporary file directory can be found, return NULL.
danielk197717b90b52008-06-06 11:11:25 +00005220*/
drh7234c6d2010-06-19 15:10:09 +00005221static const char *unixTempFileDir(void){
danielk197717b90b52008-06-06 11:11:25 +00005222 static const char *azDirs[] = {
5223 0,
aswiftaebf4132008-11-21 00:10:35 +00005224 0,
danielk197717b90b52008-06-06 11:11:25 +00005225 "/var/tmp",
5226 "/usr/tmp",
5227 "/tmp",
drh8b3cf822010-06-01 21:02:51 +00005228 0 /* List terminator */
danielk197717b90b52008-06-06 11:11:25 +00005229 };
drh8b3cf822010-06-01 21:02:51 +00005230 unsigned int i;
5231 struct stat buf;
5232 const char *zDir = 0;
5233
5234 azDirs[0] = sqlite3_temp_directory;
5235 if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
drh19515c82010-06-19 23:53:11 +00005236 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
drh8b3cf822010-06-01 21:02:51 +00005237 if( zDir==0 ) continue;
drh99ab3b12011-03-02 15:09:07 +00005238 if( osStat(zDir, &buf) ) continue;
drh8b3cf822010-06-01 21:02:51 +00005239 if( !S_ISDIR(buf.st_mode) ) continue;
drh99ab3b12011-03-02 15:09:07 +00005240 if( osAccess(zDir, 07) ) continue;
drh8b3cf822010-06-01 21:02:51 +00005241 break;
5242 }
5243 return zDir;
5244}
5245
5246/*
5247** Create a temporary file name in zBuf. zBuf must be allocated
5248** by the calling process and must be big enough to hold at least
5249** pVfs->mxPathname bytes.
5250*/
5251static int unixGetTempname(int nBuf, char *zBuf){
danielk197717b90b52008-06-06 11:11:25 +00005252 static const unsigned char zChars[] =
5253 "abcdefghijklmnopqrstuvwxyz"
5254 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
5255 "0123456789";
drh41022642008-11-21 00:24:42 +00005256 unsigned int i, j;
drh8b3cf822010-06-01 21:02:51 +00005257 const char *zDir;
danielk197717b90b52008-06-06 11:11:25 +00005258
5259 /* It's odd to simulate an io-error here, but really this is just
5260 ** using the io-error infrastructure to test that SQLite handles this
5261 ** function failing.
5262 */
5263 SimulateIOError( return SQLITE_IOERR );
5264
drh7234c6d2010-06-19 15:10:09 +00005265 zDir = unixTempFileDir();
drh8b3cf822010-06-01 21:02:51 +00005266 if( zDir==0 ) zDir = ".";
danielk197717b90b52008-06-06 11:11:25 +00005267
5268 /* Check that the output buffer is large enough for the temporary file
5269 ** name. If it is not, return SQLITE_ERROR.
5270 */
drhc02a43a2012-01-10 23:18:38 +00005271 if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 18) >= (size_t)nBuf ){
danielk197717b90b52008-06-06 11:11:25 +00005272 return SQLITE_ERROR;
5273 }
5274
5275 do{
drhc02a43a2012-01-10 23:18:38 +00005276 sqlite3_snprintf(nBuf-18, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
drhea678832008-12-10 19:26:22 +00005277 j = (int)strlen(zBuf);
danielk197717b90b52008-06-06 11:11:25 +00005278 sqlite3_randomness(15, &zBuf[j]);
5279 for(i=0; i<15; i++, j++){
5280 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
5281 }
5282 zBuf[j] = 0;
drhc02a43a2012-01-10 23:18:38 +00005283 zBuf[j+1] = 0;
drh99ab3b12011-03-02 15:09:07 +00005284 }while( osAccess(zBuf,0)==0 );
danielk197717b90b52008-06-06 11:11:25 +00005285 return SQLITE_OK;
5286}
5287
drhd2cb50b2009-01-09 21:41:17 +00005288#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
drhc66d5b62008-12-03 22:48:32 +00005289/*
5290** Routine to transform a unixFile into a proxy-locking unixFile.
5291** Implementation in the proxy-lock division, but used by unixOpen()
5292** if SQLITE_PREFER_PROXY_LOCKING is defined.
5293*/
5294static int proxyTransformUnixFile(unixFile*, const char*);
drh947bd802008-12-04 12:34:15 +00005295#endif
drhc66d5b62008-12-03 22:48:32 +00005296
dan08da86a2009-08-21 17:18:03 +00005297/*
5298** Search for an unused file descriptor that was opened on the database
5299** file (not a journal or master-journal file) identified by pathname
5300** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
5301** argument to this function.
5302**
5303** Such a file descriptor may exist if a database connection was closed
5304** but the associated file descriptor could not be closed because some
5305** other file descriptor open on the same file is holding a file-lock.
5306** Refer to comments in the unixClose() function and the lengthy comment
5307** describing "Posix Advisory Locking" at the start of this file for
5308** further details. Also, ticket #4018.
5309**
5310** If a suitable file descriptor is found, then it is returned. If no
5311** such file descriptor is located, -1 is returned.
5312*/
dane946c392009-08-22 11:39:46 +00005313static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
5314 UnixUnusedFd *pUnused = 0;
5315
5316 /* Do not search for an unused file descriptor on vxworks. Not because
5317 ** vxworks would not benefit from the change (it might, we're not sure),
5318 ** but because no way to test it is currently available. It is better
5319 ** not to risk breaking vxworks support for the sake of such an obscure
5320 ** feature. */
5321#if !OS_VXWORKS
dan08da86a2009-08-21 17:18:03 +00005322 struct stat sStat; /* Results of stat() call */
5323
5324 /* A stat() call may fail for various reasons. If this happens, it is
5325 ** almost certain that an open() call on the same path will also fail.
5326 ** For this reason, if an error occurs in the stat() call here, it is
5327 ** ignored and -1 is returned. The caller will try to open a new file
5328 ** descriptor on the same path, fail, and return an error to SQLite.
5329 **
5330 ** Even if a subsequent open() call does succeed, the consequences of
5331 ** not searching for a resusable file descriptor are not dire. */
drh58384f12011-07-28 00:14:45 +00005332 if( 0==osStat(zPath, &sStat) ){
drhd91c68f2010-05-14 14:52:25 +00005333 unixInodeInfo *pInode;
dan08da86a2009-08-21 17:18:03 +00005334
5335 unixEnterMutex();
drh8af6c222010-05-14 12:43:01 +00005336 pInode = inodeList;
5337 while( pInode && (pInode->fileId.dev!=sStat.st_dev
5338 || pInode->fileId.ino!=sStat.st_ino) ){
5339 pInode = pInode->pNext;
drh9061ad12010-01-05 00:14:49 +00005340 }
drh8af6c222010-05-14 12:43:01 +00005341 if( pInode ){
dane946c392009-08-22 11:39:46 +00005342 UnixUnusedFd **pp;
drh8af6c222010-05-14 12:43:01 +00005343 for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
dane946c392009-08-22 11:39:46 +00005344 pUnused = *pp;
5345 if( pUnused ){
5346 *pp = pUnused->pNext;
dan08da86a2009-08-21 17:18:03 +00005347 }
5348 }
5349 unixLeaveMutex();
5350 }
dane946c392009-08-22 11:39:46 +00005351#endif /* if !OS_VXWORKS */
5352 return pUnused;
dan08da86a2009-08-21 17:18:03 +00005353}
danielk197717b90b52008-06-06 11:11:25 +00005354
5355/*
danddb0ac42010-07-14 14:48:58 +00005356** This function is called by unixOpen() to determine the unix permissions
drhf65bc912010-07-14 20:51:34 +00005357** to create new files with. If no error occurs, then SQLITE_OK is returned
danddb0ac42010-07-14 14:48:58 +00005358** and a value suitable for passing as the third argument to open(2) is
5359** written to *pMode. If an IO error occurs, an SQLite error code is
5360** returned and the value of *pMode is not modified.
5361**
drh8c815d12012-02-13 20:16:37 +00005362** In most cases cases, this routine sets *pMode to 0, which will become
5363** an indication to robust_open() to create the file using
5364** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask.
5365** But if the file being opened is a WAL or regular journal file, then
drh8ab58662010-07-15 18:38:39 +00005366** this function queries the file-system for the permissions on the
5367** corresponding database file and sets *pMode to this value. Whenever
5368** possible, WAL and journal files are created using the same permissions
5369** as the associated database file.
drh81cc5162011-05-17 20:36:21 +00005370**
5371** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
5372** original filename is unavailable. But 8_3_NAMES is only used for
5373** FAT filesystems and permissions do not matter there, so just use
5374** the default permissions.
danddb0ac42010-07-14 14:48:58 +00005375*/
5376static int findCreateFileMode(
5377 const char *zPath, /* Path of file (possibly) being created */
5378 int flags, /* Flags passed as 4th argument to xOpen() */
drhac7c3ac2012-02-11 19:23:48 +00005379 mode_t *pMode, /* OUT: Permissions to open file with */
5380 uid_t *pUid, /* OUT: uid to set on the file */
5381 gid_t *pGid /* OUT: gid to set on the file */
danddb0ac42010-07-14 14:48:58 +00005382){
5383 int rc = SQLITE_OK; /* Return Code */
drh8c815d12012-02-13 20:16:37 +00005384 *pMode = 0;
drhac7c3ac2012-02-11 19:23:48 +00005385 *pUid = 0;
5386 *pGid = 0;
drh8ab58662010-07-15 18:38:39 +00005387 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
danddb0ac42010-07-14 14:48:58 +00005388 char zDb[MAX_PATHNAME+1]; /* Database file path */
5389 int nDb; /* Number of valid bytes in zDb */
5390 struct stat sStat; /* Output of stat() on database file */
5391
dana0c989d2010-11-05 18:07:37 +00005392 /* zPath is a path to a WAL or journal file. The following block derives
5393 ** the path to the associated database file from zPath. This block handles
5394 ** the following naming conventions:
5395 **
5396 ** "<path to db>-journal"
5397 ** "<path to db>-wal"
drh81cc5162011-05-17 20:36:21 +00005398 ** "<path to db>-journalNN"
5399 ** "<path to db>-walNN"
dana0c989d2010-11-05 18:07:37 +00005400 **
drhd337c5b2011-10-20 18:23:35 +00005401 ** where NN is a decimal number. The NN naming schemes are
dana0c989d2010-11-05 18:07:37 +00005402 ** used by the test_multiplex.c module.
5403 */
5404 nDb = sqlite3Strlen30(zPath) - 1;
drhc47167a2011-10-05 15:26:13 +00005405#ifdef SQLITE_ENABLE_8_3_NAMES
dan28a67fd2011-12-12 19:48:43 +00005406 while( nDb>0 && sqlite3Isalnum(zPath[nDb]) ) nDb--;
drhd337c5b2011-10-20 18:23:35 +00005407 if( nDb==0 || zPath[nDb]!='-' ) return SQLITE_OK;
drhc47167a2011-10-05 15:26:13 +00005408#else
5409 while( zPath[nDb]!='-' ){
5410 assert( nDb>0 );
5411 assert( zPath[nDb]!='\n' );
5412 nDb--;
5413 }
5414#endif
danddb0ac42010-07-14 14:48:58 +00005415 memcpy(zDb, zPath, nDb);
5416 zDb[nDb] = '\0';
dana0c989d2010-11-05 18:07:37 +00005417
drh58384f12011-07-28 00:14:45 +00005418 if( 0==osStat(zDb, &sStat) ){
danddb0ac42010-07-14 14:48:58 +00005419 *pMode = sStat.st_mode & 0777;
drhac7c3ac2012-02-11 19:23:48 +00005420 *pUid = sStat.st_uid;
5421 *pGid = sStat.st_gid;
danddb0ac42010-07-14 14:48:58 +00005422 }else{
5423 rc = SQLITE_IOERR_FSTAT;
5424 }
5425 }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
5426 *pMode = 0600;
danddb0ac42010-07-14 14:48:58 +00005427 }
5428 return rc;
5429}
5430
5431/*
danielk1977ad94b582007-08-20 06:44:22 +00005432** Open the file zPath.
5433**
danielk1977b4b47412007-08-17 15:53:36 +00005434** Previously, the SQLite OS layer used three functions in place of this
5435** one:
5436**
5437** sqlite3OsOpenReadWrite();
5438** sqlite3OsOpenReadOnly();
5439** sqlite3OsOpenExclusive();
5440**
5441** These calls correspond to the following combinations of flags:
5442**
5443** ReadWrite() -> (READWRITE | CREATE)
5444** ReadOnly() -> (READONLY)
5445** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
5446**
5447** The old OpenExclusive() accepted a boolean argument - "delFlag". If
5448** true, the file was configured to be automatically deleted when the
5449** file handle closed. To achieve the same effect using this new
5450** interface, add the DELETEONCLOSE flag to those specified above for
5451** OpenExclusive().
5452*/
5453static int unixOpen(
drh6b9d6dd2008-12-03 19:34:47 +00005454 sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */
5455 const char *zPath, /* Pathname of file to be opened */
5456 sqlite3_file *pFile, /* The file descriptor to be filled in */
5457 int flags, /* Input flags to control the opening */
5458 int *pOutFlags /* Output flags returned to SQLite core */
danielk1977b4b47412007-08-17 15:53:36 +00005459){
dan08da86a2009-08-21 17:18:03 +00005460 unixFile *p = (unixFile *)pFile;
5461 int fd = -1; /* File descriptor returned by open() */
drh6b9d6dd2008-12-03 19:34:47 +00005462 int openFlags = 0; /* Flags to pass to open() */
danielk1977fee2d252007-08-18 10:59:19 +00005463 int eType = flags&0xFFFFFF00; /* Type of file to open */
drhda0e7682008-07-30 15:27:54 +00005464 int noLock; /* True to omit locking primitives */
dan08da86a2009-08-21 17:18:03 +00005465 int rc = SQLITE_OK; /* Function Return Code */
drhc02a43a2012-01-10 23:18:38 +00005466 int ctrlFlags = 0; /* UNIXFILE_* flags */
danielk1977b4b47412007-08-17 15:53:36 +00005467
5468 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
5469 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
5470 int isCreate = (flags & SQLITE_OPEN_CREATE);
5471 int isReadonly = (flags & SQLITE_OPEN_READONLY);
5472 int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
drh7ed97b92010-01-20 13:07:21 +00005473#if SQLITE_ENABLE_LOCKING_STYLE
5474 int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY);
5475#endif
drh3d4435b2011-08-26 20:55:50 +00005476#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
5477 struct statfs fsInfo;
5478#endif
danielk1977b4b47412007-08-17 15:53:36 +00005479
danielk1977fee2d252007-08-18 10:59:19 +00005480 /* If creating a master or main-file journal, this function will open
5481 ** a file-descriptor on the directory too. The first time unixSync()
5482 ** is called the directory file descriptor will be fsync()ed and close()d.
5483 */
drh0059eae2011-08-08 23:48:40 +00005484 int syncDir = (isCreate && (
danddb0ac42010-07-14 14:48:58 +00005485 eType==SQLITE_OPEN_MASTER_JOURNAL
5486 || eType==SQLITE_OPEN_MAIN_JOURNAL
5487 || eType==SQLITE_OPEN_WAL
5488 ));
danielk1977fee2d252007-08-18 10:59:19 +00005489
danielk197717b90b52008-06-06 11:11:25 +00005490 /* If argument zPath is a NULL pointer, this function is required to open
5491 ** a temporary file. Use this buffer to store the file name in.
5492 */
drhc02a43a2012-01-10 23:18:38 +00005493 char zTmpname[MAX_PATHNAME+2];
danielk197717b90b52008-06-06 11:11:25 +00005494 const char *zName = zPath;
5495
danielk1977fee2d252007-08-18 10:59:19 +00005496 /* Check the following statements are true:
5497 **
5498 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
5499 ** (b) if CREATE is set, then READWRITE must also be set, and
5500 ** (c) if EXCLUSIVE is set, then CREATE must also be set.
drh33f4e022007-09-03 15:19:34 +00005501 ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
danielk1977fee2d252007-08-18 10:59:19 +00005502 */
danielk1977b4b47412007-08-17 15:53:36 +00005503 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
danielk1977b4b47412007-08-17 15:53:36 +00005504 assert(isCreate==0 || isReadWrite);
danielk1977b4b47412007-08-17 15:53:36 +00005505 assert(isExclusive==0 || isCreate);
drh33f4e022007-09-03 15:19:34 +00005506 assert(isDelete==0 || isCreate);
5507
danddb0ac42010-07-14 14:48:58 +00005508 /* The main DB, main journal, WAL file and master journal are never
5509 ** automatically deleted. Nor are they ever temporary files. */
dan08da86a2009-08-21 17:18:03 +00005510 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
5511 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
5512 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
danddb0ac42010-07-14 14:48:58 +00005513 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
danielk1977b4b47412007-08-17 15:53:36 +00005514
danielk1977fee2d252007-08-18 10:59:19 +00005515 /* Assert that the upper layer has set one of the "file-type" flags. */
5516 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
5517 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
5518 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
danddb0ac42010-07-14 14:48:58 +00005519 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
danielk1977fee2d252007-08-18 10:59:19 +00005520 );
5521
dan08da86a2009-08-21 17:18:03 +00005522 memset(p, 0, sizeof(unixFile));
danielk1977e339d652008-06-28 11:23:00 +00005523
dan08da86a2009-08-21 17:18:03 +00005524 if( eType==SQLITE_OPEN_MAIN_DB ){
dane946c392009-08-22 11:39:46 +00005525 UnixUnusedFd *pUnused;
5526 pUnused = findReusableFd(zName, flags);
5527 if( pUnused ){
5528 fd = pUnused->fd;
5529 }else{
dan6aa657f2009-08-24 18:57:58 +00005530 pUnused = sqlite3_malloc(sizeof(*pUnused));
dane946c392009-08-22 11:39:46 +00005531 if( !pUnused ){
5532 return SQLITE_NOMEM;
5533 }
5534 }
5535 p->pUnused = pUnused;
drhc02a43a2012-01-10 23:18:38 +00005536
5537 /* Database filenames are double-zero terminated if they are not
5538 ** URIs with parameters. Hence, they can always be passed into
5539 ** sqlite3_uri_parameter(). */
5540 assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 );
5541
dan08da86a2009-08-21 17:18:03 +00005542 }else if( !zName ){
5543 /* If zName is NULL, the upper layer is requesting a temp file. */
drh0059eae2011-08-08 23:48:40 +00005544 assert(isDelete && !syncDir);
drhc02a43a2012-01-10 23:18:38 +00005545 rc = unixGetTempname(MAX_PATHNAME+2, zTmpname);
danielk197717b90b52008-06-06 11:11:25 +00005546 if( rc!=SQLITE_OK ){
5547 return rc;
5548 }
5549 zName = zTmpname;
drhc02a43a2012-01-10 23:18:38 +00005550
5551 /* Generated temporary filenames are always double-zero terminated
5552 ** for use by sqlite3_uri_parameter(). */
5553 assert( zName[strlen(zName)+1]==0 );
danielk197717b90b52008-06-06 11:11:25 +00005554 }
5555
dan08da86a2009-08-21 17:18:03 +00005556 /* Determine the value of the flags parameter passed to POSIX function
5557 ** open(). These must be calculated even if open() is not called, as
5558 ** they may be stored as part of the file handle and used by the
5559 ** 'conch file' locking functions later on. */
drh734c9862008-11-28 15:37:20 +00005560 if( isReadonly ) openFlags |= O_RDONLY;
5561 if( isReadWrite ) openFlags |= O_RDWR;
5562 if( isCreate ) openFlags |= O_CREAT;
5563 if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
5564 openFlags |= (O_LARGEFILE|O_BINARY);
danielk1977b4b47412007-08-17 15:53:36 +00005565
danielk1977b4b47412007-08-17 15:53:36 +00005566 if( fd<0 ){
danddb0ac42010-07-14 14:48:58 +00005567 mode_t openMode; /* Permissions to create file with */
drhac7c3ac2012-02-11 19:23:48 +00005568 uid_t uid; /* Userid for the file */
5569 gid_t gid; /* Groupid for the file */
5570 rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid);
danddb0ac42010-07-14 14:48:58 +00005571 if( rc!=SQLITE_OK ){
5572 assert( !p->pUnused );
drh8ab58662010-07-15 18:38:39 +00005573 assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
danddb0ac42010-07-14 14:48:58 +00005574 return rc;
5575 }
drhad4f1e52011-03-04 15:43:57 +00005576 fd = robust_open(zName, openFlags, openMode);
drh308c2a52010-05-14 11:30:18 +00005577 OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags));
dan08da86a2009-08-21 17:18:03 +00005578 if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
5579 /* Failed to open the file for read/write access. Try read-only. */
5580 flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
dane946c392009-08-22 11:39:46 +00005581 openFlags &= ~(O_RDWR|O_CREAT);
dan08da86a2009-08-21 17:18:03 +00005582 flags |= SQLITE_OPEN_READONLY;
dane946c392009-08-22 11:39:46 +00005583 openFlags |= O_RDONLY;
drh77197112011-03-15 19:08:48 +00005584 isReadonly = 1;
drhad4f1e52011-03-04 15:43:57 +00005585 fd = robust_open(zName, openFlags, openMode);
dan08da86a2009-08-21 17:18:03 +00005586 }
5587 if( fd<0 ){
dane18d4952011-02-21 11:46:24 +00005588 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
dane946c392009-08-22 11:39:46 +00005589 goto open_finished;
dan08da86a2009-08-21 17:18:03 +00005590 }
drhac7c3ac2012-02-11 19:23:48 +00005591
5592 /* If this process is running as root and if creating a new rollback
5593 ** journal or WAL file, set the ownership of the journal or WAL to be
drhed466822012-05-31 13:10:49 +00005594 ** the same as the original database.
drhac7c3ac2012-02-11 19:23:48 +00005595 */
5596 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
drhed466822012-05-31 13:10:49 +00005597 osFchown(fd, uid, gid);
drhac7c3ac2012-02-11 19:23:48 +00005598 }
danielk1977b4b47412007-08-17 15:53:36 +00005599 }
dan08da86a2009-08-21 17:18:03 +00005600 assert( fd>=0 );
dan08da86a2009-08-21 17:18:03 +00005601 if( pOutFlags ){
5602 *pOutFlags = flags;
5603 }
5604
dane946c392009-08-22 11:39:46 +00005605 if( p->pUnused ){
5606 p->pUnused->fd = fd;
5607 p->pUnused->flags = flags;
5608 }
5609
danielk1977b4b47412007-08-17 15:53:36 +00005610 if( isDelete ){
drh6c7d5c52008-11-21 20:32:33 +00005611#if OS_VXWORKS
chw97185482008-11-17 08:05:31 +00005612 zPath = zName;
5613#else
drh036ac7f2011-08-08 23:18:05 +00005614 osUnlink(zName);
chw97185482008-11-17 08:05:31 +00005615#endif
danielk1977b4b47412007-08-17 15:53:36 +00005616 }
drh41022642008-11-21 00:24:42 +00005617#if SQLITE_ENABLE_LOCKING_STYLE
5618 else{
dan08da86a2009-08-21 17:18:03 +00005619 p->openFlags = openFlags;
drh08c6d442009-02-09 17:34:07 +00005620 }
5621#endif
5622
drhda0e7682008-07-30 15:27:54 +00005623 noLock = eType!=SQLITE_OPEN_MAIN_DB;
aswiftaebf4132008-11-21 00:10:35 +00005624
drh7ed97b92010-01-20 13:07:21 +00005625
5626#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
drh7ed97b92010-01-20 13:07:21 +00005627 if( fstatfs(fd, &fsInfo) == -1 ){
5628 ((unixFile*)pFile)->lastErrno = errno;
drh0e9365c2011-03-02 02:08:13 +00005629 robust_close(p, fd, __LINE__);
drh7ed97b92010-01-20 13:07:21 +00005630 return SQLITE_IOERR_ACCESS;
5631 }
5632 if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
5633 ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
5634 }
5635#endif
drhc02a43a2012-01-10 23:18:38 +00005636
5637 /* Set up appropriate ctrlFlags */
5638 if( isDelete ) ctrlFlags |= UNIXFILE_DELETE;
5639 if( isReadonly ) ctrlFlags |= UNIXFILE_RDONLY;
5640 if( noLock ) ctrlFlags |= UNIXFILE_NOLOCK;
5641 if( syncDir ) ctrlFlags |= UNIXFILE_DIRSYNC;
5642 if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI;
5643
drh7ed97b92010-01-20 13:07:21 +00005644#if SQLITE_ENABLE_LOCKING_STYLE
aswiftaebf4132008-11-21 00:10:35 +00005645#if SQLITE_PREFER_PROXY_LOCKING
drh7ed97b92010-01-20 13:07:21 +00005646 isAutoProxy = 1;
5647#endif
5648 if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
aswiftaebf4132008-11-21 00:10:35 +00005649 char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
5650 int useProxy = 0;
5651
dan08da86a2009-08-21 17:18:03 +00005652 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
5653 ** never use proxy, NULL means use proxy for non-local files only. */
aswiftaebf4132008-11-21 00:10:35 +00005654 if( envforce!=NULL ){
5655 useProxy = atoi(envforce)>0;
5656 }else{
aswiftaebf4132008-11-21 00:10:35 +00005657 if( statfs(zPath, &fsInfo) == -1 ){
dane946c392009-08-22 11:39:46 +00005658 /* In theory, the close(fd) call is sub-optimal. If the file opened
5659 ** with fd is a database file, and there are other connections open
5660 ** on that file that are currently holding advisory locks on it,
5661 ** then the call to close() will cancel those locks. In practice,
5662 ** we're assuming that statfs() doesn't fail very often. At least
5663 ** not while other file descriptors opened by the same process on
5664 ** the same file are working. */
5665 p->lastErrno = errno;
drh0e9365c2011-03-02 02:08:13 +00005666 robust_close(p, fd, __LINE__);
dane946c392009-08-22 11:39:46 +00005667 rc = SQLITE_IOERR_ACCESS;
5668 goto open_finished;
aswiftaebf4132008-11-21 00:10:35 +00005669 }
5670 useProxy = !(fsInfo.f_flags&MNT_LOCAL);
5671 }
5672 if( useProxy ){
drhc02a43a2012-01-10 23:18:38 +00005673 rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
aswiftaebf4132008-11-21 00:10:35 +00005674 if( rc==SQLITE_OK ){
drh715ff302008-12-03 22:32:44 +00005675 rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
drh7ed97b92010-01-20 13:07:21 +00005676 if( rc!=SQLITE_OK ){
5677 /* Use unixClose to clean up the resources added in fillInUnixFile
5678 ** and clear all the structure's references. Specifically,
5679 ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
5680 */
5681 unixClose(pFile);
5682 return rc;
5683 }
aswiftaebf4132008-11-21 00:10:35 +00005684 }
dane946c392009-08-22 11:39:46 +00005685 goto open_finished;
aswiftaebf4132008-11-21 00:10:35 +00005686 }
5687 }
5688#endif
5689
drhc02a43a2012-01-10 23:18:38 +00005690 rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
5691
dane946c392009-08-22 11:39:46 +00005692open_finished:
5693 if( rc!=SQLITE_OK ){
5694 sqlite3_free(p->pUnused);
5695 }
5696 return rc;
danielk1977b4b47412007-08-17 15:53:36 +00005697}
5698
dane946c392009-08-22 11:39:46 +00005699
danielk1977b4b47412007-08-17 15:53:36 +00005700/*
danielk1977fee2d252007-08-18 10:59:19 +00005701** Delete the file at zPath. If the dirSync argument is true, fsync()
5702** the directory after deleting the file.
danielk1977b4b47412007-08-17 15:53:36 +00005703*/
drh6b9d6dd2008-12-03 19:34:47 +00005704static int unixDelete(
5705 sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */
5706 const char *zPath, /* Name of file to be deleted */
5707 int dirSync /* If true, fsync() directory after deleting file */
5708){
danielk1977fee2d252007-08-18 10:59:19 +00005709 int rc = SQLITE_OK;
danielk1977397d65f2008-11-19 11:35:39 +00005710 UNUSED_PARAMETER(NotUsed);
danielk1977b4b47412007-08-17 15:53:36 +00005711 SimulateIOError(return SQLITE_IOERR_DELETE);
dan9fc5b4a2012-11-09 20:17:26 +00005712 if( osUnlink(zPath)==(-1) ){
5713 if( errno==ENOENT ){
5714 rc = SQLITE_IOERR_DELETE_NOENT;
5715 }else{
drhb4308162012-11-09 21:40:02 +00005716 rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
dan9fc5b4a2012-11-09 20:17:26 +00005717 }
drhb4308162012-11-09 21:40:02 +00005718 return rc;
drh5d4feff2010-07-14 01:45:22 +00005719 }
danielk1977d39fa702008-10-16 13:27:40 +00005720#ifndef SQLITE_DISABLE_DIRSYNC
drhe3495192012-01-05 16:07:30 +00005721 if( (dirSync & 1)!=0 ){
danielk1977fee2d252007-08-18 10:59:19 +00005722 int fd;
drh90315a22011-08-10 01:52:12 +00005723 rc = osOpenDirectory(zPath, &fd);
danielk1977fee2d252007-08-18 10:59:19 +00005724 if( rc==SQLITE_OK ){
drh6c7d5c52008-11-21 20:32:33 +00005725#if OS_VXWORKS
chw97185482008-11-17 08:05:31 +00005726 if( fsync(fd)==-1 )
5727#else
5728 if( fsync(fd) )
5729#endif
5730 {
dane18d4952011-02-21 11:46:24 +00005731 rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
danielk1977fee2d252007-08-18 10:59:19 +00005732 }
drh0e9365c2011-03-02 02:08:13 +00005733 robust_close(0, fd, __LINE__);
drh1ee6f742011-08-23 20:11:32 +00005734 }else if( rc==SQLITE_CANTOPEN ){
5735 rc = SQLITE_OK;
danielk1977fee2d252007-08-18 10:59:19 +00005736 }
5737 }
danielk1977d138dd82008-10-15 16:02:48 +00005738#endif
danielk1977fee2d252007-08-18 10:59:19 +00005739 return rc;
danielk1977b4b47412007-08-17 15:53:36 +00005740}
5741
danielk197790949c22007-08-17 16:50:38 +00005742/*
mistachkin48864df2013-03-21 21:20:32 +00005743** Test the existence of or access permissions of file zPath. The
danielk197790949c22007-08-17 16:50:38 +00005744** test performed depends on the value of flags:
5745**
5746** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
5747** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
5748** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
5749**
5750** Otherwise return 0.
5751*/
danielk1977861f7452008-06-05 11:39:11 +00005752static int unixAccess(
drh6b9d6dd2008-12-03 19:34:47 +00005753 sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */
5754 const char *zPath, /* Path of the file to examine */
5755 int flags, /* What do we want to learn about the zPath file? */
5756 int *pResOut /* Write result boolean here */
danielk1977861f7452008-06-05 11:39:11 +00005757){
rse25c0d1a2007-09-20 08:38:14 +00005758 int amode = 0;
danielk1977397d65f2008-11-19 11:35:39 +00005759 UNUSED_PARAMETER(NotUsed);
danielk1977861f7452008-06-05 11:39:11 +00005760 SimulateIOError( return SQLITE_IOERR_ACCESS; );
danielk1977b4b47412007-08-17 15:53:36 +00005761 switch( flags ){
5762 case SQLITE_ACCESS_EXISTS:
5763 amode = F_OK;
5764 break;
5765 case SQLITE_ACCESS_READWRITE:
5766 amode = W_OK|R_OK;
5767 break;
drh50d3f902007-08-27 21:10:36 +00005768 case SQLITE_ACCESS_READ:
danielk1977b4b47412007-08-17 15:53:36 +00005769 amode = R_OK;
5770 break;
5771
5772 default:
5773 assert(!"Invalid flags argument");
5774 }
drh99ab3b12011-03-02 15:09:07 +00005775 *pResOut = (osAccess(zPath, amode)==0);
dan83acd422010-06-18 11:10:06 +00005776 if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){
5777 struct stat buf;
drh58384f12011-07-28 00:14:45 +00005778 if( 0==osStat(zPath, &buf) && buf.st_size==0 ){
dan83acd422010-06-18 11:10:06 +00005779 *pResOut = 0;
5780 }
5781 }
danielk1977861f7452008-06-05 11:39:11 +00005782 return SQLITE_OK;
danielk1977b4b47412007-08-17 15:53:36 +00005783}
5784
danielk1977b4b47412007-08-17 15:53:36 +00005785
5786/*
5787** Turn a relative pathname into a full pathname. The relative path
5788** is stored as a nul-terminated string in the buffer pointed to by
5789** zPath.
5790**
5791** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
5792** (in this case, MAX_PATHNAME bytes). The full-path is written to
5793** this buffer before returning.
5794*/
danielk1977adfb9b02007-09-17 07:02:56 +00005795static int unixFullPathname(
5796 sqlite3_vfs *pVfs, /* Pointer to vfs object */
5797 const char *zPath, /* Possibly relative input path */
5798 int nOut, /* Size of output buffer in bytes */
5799 char *zOut /* Output buffer */
5800){
danielk1977843e65f2007-09-01 16:16:15 +00005801
5802 /* It's odd to simulate an io-error here, but really this is just
5803 ** using the io-error infrastructure to test that SQLite handles this
5804 ** function failing. This function could fail if, for example, the
drh6b9d6dd2008-12-03 19:34:47 +00005805 ** current working directory has been unlinked.
danielk1977843e65f2007-09-01 16:16:15 +00005806 */
5807 SimulateIOError( return SQLITE_ERROR );
5808
drh153c62c2007-08-24 03:51:33 +00005809 assert( pVfs->mxPathname==MAX_PATHNAME );
danielk1977f3d3c272008-11-19 16:52:44 +00005810 UNUSED_PARAMETER(pVfs);
chw97185482008-11-17 08:05:31 +00005811
drh3c7f2dc2007-12-06 13:26:20 +00005812 zOut[nOut-1] = '\0';
danielk1977b4b47412007-08-17 15:53:36 +00005813 if( zPath[0]=='/' ){
drh3c7f2dc2007-12-06 13:26:20 +00005814 sqlite3_snprintf(nOut, zOut, "%s", zPath);
danielk1977b4b47412007-08-17 15:53:36 +00005815 }else{
5816 int nCwd;
drh99ab3b12011-03-02 15:09:07 +00005817 if( osGetcwd(zOut, nOut-1)==0 ){
dane18d4952011-02-21 11:46:24 +00005818 return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
danielk1977b4b47412007-08-17 15:53:36 +00005819 }
drhea678832008-12-10 19:26:22 +00005820 nCwd = (int)strlen(zOut);
drh3c7f2dc2007-12-06 13:26:20 +00005821 sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
danielk1977b4b47412007-08-17 15:53:36 +00005822 }
5823 return SQLITE_OK;
danielk1977b4b47412007-08-17 15:53:36 +00005824}
5825
drh0ccebe72005-06-07 22:22:50 +00005826
drh761df872006-12-21 01:29:22 +00005827#ifndef SQLITE_OMIT_LOAD_EXTENSION
5828/*
5829** Interfaces for opening a shared library, finding entry points
5830** within the shared library, and closing the shared library.
5831*/
5832#include <dlfcn.h>
danielk1977397d65f2008-11-19 11:35:39 +00005833static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
5834 UNUSED_PARAMETER(NotUsed);
drh761df872006-12-21 01:29:22 +00005835 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
5836}
danielk197795c8a542007-09-01 06:51:27 +00005837
5838/*
5839** SQLite calls this function immediately after a call to unixDlSym() or
5840** unixDlOpen() fails (returns a null pointer). If a more detailed error
5841** message is available, it is written to zBufOut. If no error message
5842** is available, zBufOut is left unmodified and SQLite uses a default
5843** error message.
5844*/
danielk1977397d65f2008-11-19 11:35:39 +00005845static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
dan32390532010-11-29 18:36:22 +00005846 const char *zErr;
danielk1977397d65f2008-11-19 11:35:39 +00005847 UNUSED_PARAMETER(NotUsed);
drh6c7d5c52008-11-21 20:32:33 +00005848 unixEnterMutex();
danielk1977b4b47412007-08-17 15:53:36 +00005849 zErr = dlerror();
5850 if( zErr ){
drh153c62c2007-08-24 03:51:33 +00005851 sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
danielk1977b4b47412007-08-17 15:53:36 +00005852 }
drh6c7d5c52008-11-21 20:32:33 +00005853 unixLeaveMutex();
danielk1977b4b47412007-08-17 15:53:36 +00005854}
drh1875f7a2008-12-08 18:19:17 +00005855static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
5856 /*
5857 ** GCC with -pedantic-errors says that C90 does not allow a void* to be
5858 ** cast into a pointer to a function. And yet the library dlsym() routine
5859 ** returns a void* which is really a pointer to a function. So how do we
5860 ** use dlsym() with -pedantic-errors?
5861 **
5862 ** Variable x below is defined to be a pointer to a function taking
5863 ** parameters void* and const char* and returning a pointer to a function.
5864 ** We initialize x by assigning it a pointer to the dlsym() function.
5865 ** (That assignment requires a cast.) Then we call the function that
5866 ** x points to.
5867 **
5868 ** This work-around is unlikely to work correctly on any system where
5869 ** you really cannot cast a function pointer into void*. But then, on the
5870 ** other hand, dlsym() will not work on such a system either, so we have
5871 ** not really lost anything.
5872 */
5873 void (*(*x)(void*,const char*))(void);
danielk1977397d65f2008-11-19 11:35:39 +00005874 UNUSED_PARAMETER(NotUsed);
drh1875f7a2008-12-08 18:19:17 +00005875 x = (void(*(*)(void*,const char*))(void))dlsym;
5876 return (*x)(p, zSym);
drh761df872006-12-21 01:29:22 +00005877}
danielk1977397d65f2008-11-19 11:35:39 +00005878static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
5879 UNUSED_PARAMETER(NotUsed);
danielk1977b4b47412007-08-17 15:53:36 +00005880 dlclose(pHandle);
drh761df872006-12-21 01:29:22 +00005881}
danielk1977b4b47412007-08-17 15:53:36 +00005882#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
5883 #define unixDlOpen 0
5884 #define unixDlError 0
5885 #define unixDlSym 0
5886 #define unixDlClose 0
5887#endif
5888
5889/*
danielk197790949c22007-08-17 16:50:38 +00005890** Write nBuf bytes of random data to the supplied buffer zBuf.
drhbbd42a62004-05-22 17:41:58 +00005891*/
danielk1977397d65f2008-11-19 11:35:39 +00005892static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
5893 UNUSED_PARAMETER(NotUsed);
danielk197700e13612008-11-17 19:18:54 +00005894 assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
danielk197790949c22007-08-17 16:50:38 +00005895
drhbbd42a62004-05-22 17:41:58 +00005896 /* We have to initialize zBuf to prevent valgrind from reporting
5897 ** errors. The reports issued by valgrind are incorrect - we would
5898 ** prefer that the randomness be increased by making use of the
5899 ** uninitialized space in zBuf - but valgrind errors tend to worry
5900 ** some users. Rather than argue, it seems easier just to initialize
5901 ** the whole array and silence valgrind, even if that means less randomness
5902 ** in the random seed.
5903 **
5904 ** When testing, initializing zBuf[] to zero is all we do. That means
drhf1a221e2006-01-15 17:27:17 +00005905 ** that we always use the same random number sequence. This makes the
drhbbd42a62004-05-22 17:41:58 +00005906 ** tests repeatable.
5907 */
danielk1977b4b47412007-08-17 15:53:36 +00005908 memset(zBuf, 0, nBuf);
drhbbd42a62004-05-22 17:41:58 +00005909#if !defined(SQLITE_TEST)
5910 {
drhc18b4042012-02-10 03:10:27 +00005911 int pid, fd, got;
drhad4f1e52011-03-04 15:43:57 +00005912 fd = robust_open("/dev/urandom", O_RDONLY, 0);
drh842b8642005-01-21 17:53:17 +00005913 if( fd<0 ){
drh07397232006-01-06 14:46:46 +00005914 time_t t;
5915 time(&t);
danielk197790949c22007-08-17 16:50:38 +00005916 memcpy(zBuf, &t, sizeof(t));
5917 pid = getpid();
5918 memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
danielk197700e13612008-11-17 19:18:54 +00005919 assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf );
drh72cbd072008-10-14 17:58:38 +00005920 nBuf = sizeof(t) + sizeof(pid);
drh842b8642005-01-21 17:53:17 +00005921 }else{
drhc18b4042012-02-10 03:10:27 +00005922 do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR );
drh0e9365c2011-03-02 02:08:13 +00005923 robust_close(0, fd, __LINE__);
drh842b8642005-01-21 17:53:17 +00005924 }
drhbbd42a62004-05-22 17:41:58 +00005925 }
5926#endif
drh72cbd072008-10-14 17:58:38 +00005927 return nBuf;
drhbbd42a62004-05-22 17:41:58 +00005928}
5929
danielk1977b4b47412007-08-17 15:53:36 +00005930
drhbbd42a62004-05-22 17:41:58 +00005931/*
5932** Sleep for a little while. Return the amount of time slept.
danielk1977b4b47412007-08-17 15:53:36 +00005933** The argument is the number of microseconds we want to sleep.
drh4a50aac2007-08-23 02:47:53 +00005934** The return value is the number of microseconds of sleep actually
5935** requested from the underlying operating system, a number which
5936** might be greater than or equal to the argument, but not less
5937** than the argument.
drhbbd42a62004-05-22 17:41:58 +00005938*/
danielk1977397d65f2008-11-19 11:35:39 +00005939static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
drh6c7d5c52008-11-21 20:32:33 +00005940#if OS_VXWORKS
chw97185482008-11-17 08:05:31 +00005941 struct timespec sp;
5942
5943 sp.tv_sec = microseconds / 1000000;
5944 sp.tv_nsec = (microseconds % 1000000) * 1000;
5945 nanosleep(&sp, NULL);
drhd43fe202009-03-01 22:29:20 +00005946 UNUSED_PARAMETER(NotUsed);
danielk1977397d65f2008-11-19 11:35:39 +00005947 return microseconds;
5948#elif defined(HAVE_USLEEP) && HAVE_USLEEP
danielk1977b4b47412007-08-17 15:53:36 +00005949 usleep(microseconds);
drhd43fe202009-03-01 22:29:20 +00005950 UNUSED_PARAMETER(NotUsed);
danielk1977b4b47412007-08-17 15:53:36 +00005951 return microseconds;
drhbbd42a62004-05-22 17:41:58 +00005952#else
danielk1977b4b47412007-08-17 15:53:36 +00005953 int seconds = (microseconds+999999)/1000000;
5954 sleep(seconds);
drhd43fe202009-03-01 22:29:20 +00005955 UNUSED_PARAMETER(NotUsed);
drh4a50aac2007-08-23 02:47:53 +00005956 return seconds*1000000;
drha3fad6f2006-01-18 14:06:37 +00005957#endif
drh88f474a2006-01-02 20:00:12 +00005958}
5959
5960/*
drh6b9d6dd2008-12-03 19:34:47 +00005961** The following variable, if set to a non-zero value, is interpreted as
5962** the number of seconds since 1970 and is used to set the result of
5963** sqlite3OsCurrentTime() during testing.
drhbbd42a62004-05-22 17:41:58 +00005964*/
5965#ifdef SQLITE_TEST
drh6b9d6dd2008-12-03 19:34:47 +00005966int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
drhbbd42a62004-05-22 17:41:58 +00005967#endif
5968
5969/*
drhb7e8ea22010-05-03 14:32:30 +00005970** Find the current time (in Universal Coordinated Time). Write into *piNow
5971** the current time and date as a Julian Day number times 86_400_000. In
5972** other words, write into *piNow the number of milliseconds since the Julian
5973** epoch of noon in Greenwich on November 24, 4714 B.C according to the
5974** proleptic Gregorian calendar.
5975**
drh31702252011-10-12 23:13:43 +00005976** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date
5977** cannot be found.
drhb7e8ea22010-05-03 14:32:30 +00005978*/
5979static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
5980 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
drh31702252011-10-12 23:13:43 +00005981 int rc = SQLITE_OK;
drhb7e8ea22010-05-03 14:32:30 +00005982#if defined(NO_GETTOD)
5983 time_t t;
5984 time(&t);
dan15eac4e2010-11-22 17:26:07 +00005985 *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
drhb7e8ea22010-05-03 14:32:30 +00005986#elif OS_VXWORKS
5987 struct timespec sNow;
5988 clock_gettime(CLOCK_REALTIME, &sNow);
5989 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
5990#else
5991 struct timeval sNow;
drh31702252011-10-12 23:13:43 +00005992 if( gettimeofday(&sNow, 0)==0 ){
5993 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
5994 }else{
5995 rc = SQLITE_ERROR;
5996 }
drhb7e8ea22010-05-03 14:32:30 +00005997#endif
5998
5999#ifdef SQLITE_TEST
6000 if( sqlite3_current_time ){
6001 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
6002 }
6003#endif
6004 UNUSED_PARAMETER(NotUsed);
drh31702252011-10-12 23:13:43 +00006005 return rc;
drhb7e8ea22010-05-03 14:32:30 +00006006}
6007
6008/*
drhbbd42a62004-05-22 17:41:58 +00006009** Find the current time (in Universal Coordinated Time). Write the
6010** current time and date as a Julian Day number into *prNow and
6011** return 0. Return 1 if the time and date cannot be found.
6012*/
danielk1977397d65f2008-11-19 11:35:39 +00006013static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
drhb87a6662011-10-13 01:01:14 +00006014 sqlite3_int64 i = 0;
drh31702252011-10-12 23:13:43 +00006015 int rc;
drhff828942010-06-26 21:34:06 +00006016 UNUSED_PARAMETER(NotUsed);
drh31702252011-10-12 23:13:43 +00006017 rc = unixCurrentTimeInt64(0, &i);
drh0dcb0a72010-05-03 18:22:52 +00006018 *prNow = i/86400000.0;
drh31702252011-10-12 23:13:43 +00006019 return rc;
drhbbd42a62004-05-22 17:41:58 +00006020}
danielk1977b4b47412007-08-17 15:53:36 +00006021
drh6b9d6dd2008-12-03 19:34:47 +00006022/*
6023** We added the xGetLastError() method with the intention of providing
6024** better low-level error messages when operating-system problems come up
6025** during SQLite operation. But so far, none of that has been implemented
6026** in the core. So this routine is never called. For now, it is merely
6027** a place-holder.
6028*/
danielk1977397d65f2008-11-19 11:35:39 +00006029static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
6030 UNUSED_PARAMETER(NotUsed);
6031 UNUSED_PARAMETER(NotUsed2);
6032 UNUSED_PARAMETER(NotUsed3);
danielk1977bcb97fe2008-06-06 15:49:29 +00006033 return 0;
6034}
6035
drhf2424c52010-04-26 00:04:55 +00006036
6037/*
drh734c9862008-11-28 15:37:20 +00006038************************ End of sqlite3_vfs methods ***************************
6039******************************************************************************/
6040
drh715ff302008-12-03 22:32:44 +00006041/******************************************************************************
6042************************** Begin Proxy Locking ********************************
6043**
6044** Proxy locking is a "uber-locking-method" in this sense: It uses the
6045** other locking methods on secondary lock files. Proxy locking is a
6046** meta-layer over top of the primitive locking implemented above. For
6047** this reason, the division that implements of proxy locking is deferred
6048** until late in the file (here) after all of the other I/O methods have
6049** been defined - so that the primitive locking methods are available
6050** as services to help with the implementation of proxy locking.
6051**
6052****
6053**
6054** The default locking schemes in SQLite use byte-range locks on the
6055** database file to coordinate safe, concurrent access by multiple readers
6056** and writers [http://sqlite.org/lockingv3.html]. The five file locking
6057** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
6058** as POSIX read & write locks over fixed set of locations (via fsctl),
6059** on AFP and SMB only exclusive byte-range locks are available via fsctl
6060** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
6061** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
6062** address in the shared range is taken for a SHARED lock, the entire
6063** shared range is taken for an EXCLUSIVE lock):
6064**
drhf2f105d2012-08-20 15:53:54 +00006065** PENDING_BYTE 0x40000000
drh715ff302008-12-03 22:32:44 +00006066** RESERVED_BYTE 0x40000001
6067** SHARED_RANGE 0x40000002 -> 0x40000200
6068**
6069** This works well on the local file system, but shows a nearly 100x
6070** slowdown in read performance on AFP because the AFP client disables
6071** the read cache when byte-range locks are present. Enabling the read
6072** cache exposes a cache coherency problem that is present on all OS X
6073** supported network file systems. NFS and AFP both observe the
6074** close-to-open semantics for ensuring cache coherency
6075** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
6076** address the requirements for concurrent database access by multiple
6077** readers and writers
6078** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
6079**
6080** To address the performance and cache coherency issues, proxy file locking
6081** changes the way database access is controlled by limiting access to a
6082** single host at a time and moving file locks off of the database file
6083** and onto a proxy file on the local file system.
6084**
6085**
6086** Using proxy locks
6087** -----------------
6088**
6089** C APIs
6090**
6091** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
6092** <proxy_path> | ":auto:");
6093** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);
6094**
6095**
6096** SQL pragmas
6097**
6098** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
6099** PRAGMA [database.]lock_proxy_file
6100**
6101** Specifying ":auto:" means that if there is a conch file with a matching
6102** host ID in it, the proxy path in the conch file will be used, otherwise
6103** a proxy path based on the user's temp dir
6104** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
6105** actual proxy file name is generated from the name and path of the
6106** database file. For example:
6107**
6108** For database path "/Users/me/foo.db"
6109** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
6110**
6111** Once a lock proxy is configured for a database connection, it can not
6112** be removed, however it may be switched to a different proxy path via
6113** the above APIs (assuming the conch file is not being held by another
6114** connection or process).
6115**
6116**
6117** How proxy locking works
6118** -----------------------
6119**
6120** Proxy file locking relies primarily on two new supporting files:
6121**
6122** * conch file to limit access to the database file to a single host
6123** at a time
6124**
6125** * proxy file to act as a proxy for the advisory locks normally
6126** taken on the database
6127**
6128** The conch file - to use a proxy file, sqlite must first "hold the conch"
6129** by taking an sqlite-style shared lock on the conch file, reading the
6130** contents and comparing the host's unique host ID (see below) and lock
6131** proxy path against the values stored in the conch. The conch file is
6132** stored in the same directory as the database file and the file name
6133** is patterned after the database file name as ".<databasename>-conch".
6134** If the conch file does not exist, or it's contents do not match the
6135** host ID and/or proxy path, then the lock is escalated to an exclusive
6136** lock and the conch file contents is updated with the host ID and proxy
6137** path and the lock is downgraded to a shared lock again. If the conch
6138** is held by another process (with a shared lock), the exclusive lock
6139** will fail and SQLITE_BUSY is returned.
6140**
6141** The proxy file - a single-byte file used for all advisory file locks
6142** normally taken on the database file. This allows for safe sharing
6143** of the database file for multiple readers and writers on the same
6144** host (the conch ensures that they all use the same local lock file).
6145**
drh715ff302008-12-03 22:32:44 +00006146** Requesting the lock proxy does not immediately take the conch, it is
6147** only taken when the first request to lock database file is made.
6148** This matches the semantics of the traditional locking behavior, where
6149** opening a connection to a database file does not take a lock on it.
6150** The shared lock and an open file descriptor are maintained until
6151** the connection to the database is closed.
6152**
6153** The proxy file and the lock file are never deleted so they only need
6154** to be created the first time they are used.
6155**
6156** Configuration options
6157** ---------------------
6158**
6159** SQLITE_PREFER_PROXY_LOCKING
6160**
6161** Database files accessed on non-local file systems are
6162** automatically configured for proxy locking, lock files are
6163** named automatically using the same logic as
6164** PRAGMA lock_proxy_file=":auto:"
6165**
6166** SQLITE_PROXY_DEBUG
6167**
6168** Enables the logging of error messages during host id file
6169** retrieval and creation
6170**
drh715ff302008-12-03 22:32:44 +00006171** LOCKPROXYDIR
6172**
6173** Overrides the default directory used for lock proxy files that
6174** are named automatically via the ":auto:" setting
6175**
6176** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
6177**
6178** Permissions to use when creating a directory for storing the
6179** lock proxy files, only used when LOCKPROXYDIR is not set.
6180**
6181**
6182** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
6183** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
6184** force proxy locking to be used for every database file opened, and 0
6185** will force automatic proxy locking to be disabled for all database
6186** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
6187** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
6188*/
6189
6190/*
6191** Proxy locking is only available on MacOSX
6192*/
drhd2cb50b2009-01-09 21:41:17 +00006193#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
drh715ff302008-12-03 22:32:44 +00006194
drh715ff302008-12-03 22:32:44 +00006195/*
6196** The proxyLockingContext has the path and file structures for the remote
6197** and local proxy files in it
6198*/
6199typedef struct proxyLockingContext proxyLockingContext;
6200struct proxyLockingContext {
6201 unixFile *conchFile; /* Open conch file */
6202 char *conchFilePath; /* Name of the conch file */
6203 unixFile *lockProxy; /* Open proxy lock file */
6204 char *lockProxyPath; /* Name of the proxy lock file */
6205 char *dbPath; /* Name of the open file */
drh7ed97b92010-01-20 13:07:21 +00006206 int conchHeld; /* 1 if the conch is held, -1 if lockless */
drh715ff302008-12-03 22:32:44 +00006207 void *oldLockingContext; /* Original lockingcontext to restore on close */
6208 sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */
6209};
6210
drh7ed97b92010-01-20 13:07:21 +00006211/*
6212** The proxy lock file path for the database at dbPath is written into lPath,
6213** which must point to valid, writable memory large enough for a maxLen length
6214** file path.
drh715ff302008-12-03 22:32:44 +00006215*/
drh715ff302008-12-03 22:32:44 +00006216static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
6217 int len;
6218 int dbLen;
6219 int i;
6220
6221#ifdef LOCKPROXYDIR
6222 len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
6223#else
6224# ifdef _CS_DARWIN_USER_TEMP_DIR
6225 {
drh7ed97b92010-01-20 13:07:21 +00006226 if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
drh308c2a52010-05-14 11:30:18 +00006227 OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n",
6228 lPath, errno, getpid()));
drh7ed97b92010-01-20 13:07:21 +00006229 return SQLITE_IOERR_LOCK;
drh715ff302008-12-03 22:32:44 +00006230 }
drh7ed97b92010-01-20 13:07:21 +00006231 len = strlcat(lPath, "sqliteplocks", maxLen);
drh715ff302008-12-03 22:32:44 +00006232 }
6233# else
6234 len = strlcpy(lPath, "/tmp/", maxLen);
6235# endif
6236#endif
6237
6238 if( lPath[len-1]!='/' ){
6239 len = strlcat(lPath, "/", maxLen);
6240 }
6241
6242 /* transform the db path to a unique cache name */
drhea678832008-12-10 19:26:22 +00006243 dbLen = (int)strlen(dbPath);
drh0ab216a2010-07-02 17:10:40 +00006244 for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
drh715ff302008-12-03 22:32:44 +00006245 char c = dbPath[i];
6246 lPath[i+len] = (c=='/')?'_':c;
6247 }
6248 lPath[i+len]='\0';
6249 strlcat(lPath, ":auto:", maxLen);
drh308c2a52010-05-14 11:30:18 +00006250 OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, getpid()));
drh715ff302008-12-03 22:32:44 +00006251 return SQLITE_OK;
6252}
6253
drh7ed97b92010-01-20 13:07:21 +00006254/*
6255 ** Creates the lock file and any missing directories in lockPath
6256 */
6257static int proxyCreateLockPath(const char *lockPath){
6258 int i, len;
6259 char buf[MAXPATHLEN];
6260 int start = 0;
6261
6262 assert(lockPath!=NULL);
6263 /* try to create all the intermediate directories */
6264 len = (int)strlen(lockPath);
6265 buf[0] = lockPath[0];
6266 for( i=1; i<len; i++ ){
6267 if( lockPath[i] == '/' && (i - start > 0) ){
6268 /* only mkdir if leaf dir != "." or "/" or ".." */
6269 if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
6270 || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
6271 buf[i]='\0';
drh9ef6bc42011-11-04 02:24:02 +00006272 if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
drh7ed97b92010-01-20 13:07:21 +00006273 int err=errno;
6274 if( err!=EEXIST ) {
drh308c2a52010-05-14 11:30:18 +00006275 OSTRACE(("CREATELOCKPATH FAILED creating %s, "
drh7ed97b92010-01-20 13:07:21 +00006276 "'%s' proxy lock path=%s pid=%d\n",
drh308c2a52010-05-14 11:30:18 +00006277 buf, strerror(err), lockPath, getpid()));
drh7ed97b92010-01-20 13:07:21 +00006278 return err;
6279 }
6280 }
6281 }
6282 start=i+1;
6283 }
6284 buf[i] = lockPath[i];
6285 }
drh308c2a52010-05-14 11:30:18 +00006286 OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, getpid()));
drh7ed97b92010-01-20 13:07:21 +00006287 return 0;
6288}
6289
drh715ff302008-12-03 22:32:44 +00006290/*
6291** Create a new VFS file descriptor (stored in memory obtained from
6292** sqlite3_malloc) and open the file named "path" in the file descriptor.
6293**
6294** The caller is responsible not only for closing the file descriptor
6295** but also for freeing the memory associated with the file descriptor.
6296*/
drh7ed97b92010-01-20 13:07:21 +00006297static int proxyCreateUnixFile(
6298 const char *path, /* path for the new unixFile */
6299 unixFile **ppFile, /* unixFile created and returned by ref */
6300 int islockfile /* if non zero missing dirs will be created */
6301) {
6302 int fd = -1;
drh715ff302008-12-03 22:32:44 +00006303 unixFile *pNew;
6304 int rc = SQLITE_OK;
drh7ed97b92010-01-20 13:07:21 +00006305 int openFlags = O_RDWR | O_CREAT;
drh715ff302008-12-03 22:32:44 +00006306 sqlite3_vfs dummyVfs;
drh7ed97b92010-01-20 13:07:21 +00006307 int terrno = 0;
6308 UnixUnusedFd *pUnused = NULL;
drh715ff302008-12-03 22:32:44 +00006309
drh7ed97b92010-01-20 13:07:21 +00006310 /* 1. first try to open/create the file
6311 ** 2. if that fails, and this is a lock file (not-conch), try creating
6312 ** the parent directories and then try again.
6313 ** 3. if that fails, try to open the file read-only
6314 ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
6315 */
6316 pUnused = findReusableFd(path, openFlags);
6317 if( pUnused ){
6318 fd = pUnused->fd;
6319 }else{
6320 pUnused = sqlite3_malloc(sizeof(*pUnused));
6321 if( !pUnused ){
6322 return SQLITE_NOMEM;
6323 }
6324 }
6325 if( fd<0 ){
drh8c815d12012-02-13 20:16:37 +00006326 fd = robust_open(path, openFlags, 0);
drh7ed97b92010-01-20 13:07:21 +00006327 terrno = errno;
6328 if( fd<0 && errno==ENOENT && islockfile ){
6329 if( proxyCreateLockPath(path) == SQLITE_OK ){
drh8c815d12012-02-13 20:16:37 +00006330 fd = robust_open(path, openFlags, 0);
drh7ed97b92010-01-20 13:07:21 +00006331 }
6332 }
6333 }
6334 if( fd<0 ){
6335 openFlags = O_RDONLY;
drh8c815d12012-02-13 20:16:37 +00006336 fd = robust_open(path, openFlags, 0);
drh7ed97b92010-01-20 13:07:21 +00006337 terrno = errno;
6338 }
6339 if( fd<0 ){
6340 if( islockfile ){
6341 return SQLITE_BUSY;
6342 }
6343 switch (terrno) {
6344 case EACCES:
6345 return SQLITE_PERM;
6346 case EIO:
6347 return SQLITE_IOERR_LOCK; /* even though it is the conch */
6348 default:
drh9978c972010-02-23 17:36:32 +00006349 return SQLITE_CANTOPEN_BKPT;
drh7ed97b92010-01-20 13:07:21 +00006350 }
6351 }
6352
6353 pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew));
6354 if( pNew==NULL ){
6355 rc = SQLITE_NOMEM;
6356 goto end_create_proxy;
drh715ff302008-12-03 22:32:44 +00006357 }
6358 memset(pNew, 0, sizeof(unixFile));
drh7ed97b92010-01-20 13:07:21 +00006359 pNew->openFlags = openFlags;
dan211fb082011-04-01 09:04:36 +00006360 memset(&dummyVfs, 0, sizeof(dummyVfs));
drh1875f7a2008-12-08 18:19:17 +00006361 dummyVfs.pAppData = (void*)&autolockIoFinder;
dan211fb082011-04-01 09:04:36 +00006362 dummyVfs.zName = "dummy";
drh7ed97b92010-01-20 13:07:21 +00006363 pUnused->fd = fd;
6364 pUnused->flags = openFlags;
6365 pNew->pUnused = pUnused;
6366
drhc02a43a2012-01-10 23:18:38 +00006367 rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0);
drh7ed97b92010-01-20 13:07:21 +00006368 if( rc==SQLITE_OK ){
6369 *ppFile = pNew;
6370 return SQLITE_OK;
drh715ff302008-12-03 22:32:44 +00006371 }
drh7ed97b92010-01-20 13:07:21 +00006372end_create_proxy:
drh0e9365c2011-03-02 02:08:13 +00006373 robust_close(pNew, fd, __LINE__);
drh7ed97b92010-01-20 13:07:21 +00006374 sqlite3_free(pNew);
6375 sqlite3_free(pUnused);
drh715ff302008-12-03 22:32:44 +00006376 return rc;
6377}
6378
drh7ed97b92010-01-20 13:07:21 +00006379#ifdef SQLITE_TEST
6380/* simulate multiple hosts by creating unique hostid file paths */
6381int sqlite3_hostid_num = 0;
6382#endif
6383
6384#define PROXY_HOSTIDLEN 16 /* conch file host id length */
6385
drh0ab216a2010-07-02 17:10:40 +00006386/* Not always defined in the headers as it ought to be */
6387extern int gethostuuid(uuid_t id, const struct timespec *wait);
6388
drh7ed97b92010-01-20 13:07:21 +00006389/* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
6390** bytes of writable memory.
6391*/
6392static int proxyGetHostID(unsigned char *pHostID, int *pError){
drh7ed97b92010-01-20 13:07:21 +00006393 assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
6394 memset(pHostID, 0, PROXY_HOSTIDLEN);
drhe8b0c9b2010-09-25 14:13:17 +00006395#if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\
6396 && __MAC_OS_X_VERSION_MIN_REQUIRED<1050
drh29ecd8a2010-12-21 00:16:40 +00006397 {
6398 static const struct timespec timeout = {1, 0}; /* 1 sec timeout */
6399 if( gethostuuid(pHostID, &timeout) ){
6400 int err = errno;
6401 if( pError ){
6402 *pError = err;
6403 }
6404 return SQLITE_IOERR;
drh7ed97b92010-01-20 13:07:21 +00006405 }
drh7ed97b92010-01-20 13:07:21 +00006406 }
drh3d4435b2011-08-26 20:55:50 +00006407#else
6408 UNUSED_PARAMETER(pError);
drhe8b0c9b2010-09-25 14:13:17 +00006409#endif
drh7ed97b92010-01-20 13:07:21 +00006410#ifdef SQLITE_TEST
6411 /* simulate multiple hosts by creating unique hostid file paths */
6412 if( sqlite3_hostid_num != 0){
6413 pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
6414 }
6415#endif
6416
6417 return SQLITE_OK;
6418}
6419
6420/* The conch file contains the header, host id and lock file path
6421 */
6422#define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */
6423#define PROXY_HEADERLEN 1 /* conch file header length */
6424#define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
6425#define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
6426
6427/*
6428** Takes an open conch file, copies the contents to a new path and then moves
6429** it back. The newly created file's file descriptor is assigned to the
6430** conch file structure and finally the original conch file descriptor is
6431** closed. Returns zero if successful.
6432*/
6433static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
6434 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6435 unixFile *conchFile = pCtx->conchFile;
6436 char tPath[MAXPATHLEN];
6437 char buf[PROXY_MAXCONCHLEN];
6438 char *cPath = pCtx->conchFilePath;
6439 size_t readLen = 0;
6440 size_t pathLen = 0;
6441 char errmsg[64] = "";
6442 int fd = -1;
6443 int rc = -1;
drh0ab216a2010-07-02 17:10:40 +00006444 UNUSED_PARAMETER(myHostID);
drh7ed97b92010-01-20 13:07:21 +00006445
6446 /* create a new path by replace the trailing '-conch' with '-break' */
6447 pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
6448 if( pathLen>MAXPATHLEN || pathLen<6 ||
6449 (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
dan0cb3a1e2010-11-29 17:55:18 +00006450 sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
drh7ed97b92010-01-20 13:07:21 +00006451 goto end_breaklock;
6452 }
6453 /* read the conch content */
drhe562be52011-03-02 18:01:10 +00006454 readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
drh7ed97b92010-01-20 13:07:21 +00006455 if( readLen<PROXY_PATHINDEX ){
dan0cb3a1e2010-11-29 17:55:18 +00006456 sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
drh7ed97b92010-01-20 13:07:21 +00006457 goto end_breaklock;
6458 }
6459 /* write it out to the temporary break file */
drh8c815d12012-02-13 20:16:37 +00006460 fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL), 0);
drh7ed97b92010-01-20 13:07:21 +00006461 if( fd<0 ){
dan0cb3a1e2010-11-29 17:55:18 +00006462 sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
drh7ed97b92010-01-20 13:07:21 +00006463 goto end_breaklock;
6464 }
drhe562be52011-03-02 18:01:10 +00006465 if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
dan0cb3a1e2010-11-29 17:55:18 +00006466 sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
drh7ed97b92010-01-20 13:07:21 +00006467 goto end_breaklock;
6468 }
6469 if( rename(tPath, cPath) ){
dan0cb3a1e2010-11-29 17:55:18 +00006470 sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
drh7ed97b92010-01-20 13:07:21 +00006471 goto end_breaklock;
6472 }
6473 rc = 0;
6474 fprintf(stderr, "broke stale lock on %s\n", cPath);
drh0e9365c2011-03-02 02:08:13 +00006475 robust_close(pFile, conchFile->h, __LINE__);
drh7ed97b92010-01-20 13:07:21 +00006476 conchFile->h = fd;
6477 conchFile->openFlags = O_RDWR | O_CREAT;
6478
6479end_breaklock:
6480 if( rc ){
6481 if( fd>=0 ){
drh036ac7f2011-08-08 23:18:05 +00006482 osUnlink(tPath);
drh0e9365c2011-03-02 02:08:13 +00006483 robust_close(pFile, fd, __LINE__);
drh7ed97b92010-01-20 13:07:21 +00006484 }
6485 fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
6486 }
6487 return rc;
6488}
6489
6490/* Take the requested lock on the conch file and break a stale lock if the
6491** host id matches.
6492*/
6493static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
6494 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6495 unixFile *conchFile = pCtx->conchFile;
6496 int rc = SQLITE_OK;
6497 int nTries = 0;
6498 struct timespec conchModTime;
6499
drh3d4435b2011-08-26 20:55:50 +00006500 memset(&conchModTime, 0, sizeof(conchModTime));
drh7ed97b92010-01-20 13:07:21 +00006501 do {
6502 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
6503 nTries ++;
6504 if( rc==SQLITE_BUSY ){
6505 /* If the lock failed (busy):
6506 * 1st try: get the mod time of the conch, wait 0.5s and try again.
6507 * 2nd try: fail if the mod time changed or host id is different, wait
6508 * 10 sec and try again
6509 * 3rd try: break the lock unless the mod time has changed.
6510 */
6511 struct stat buf;
drh99ab3b12011-03-02 15:09:07 +00006512 if( osFstat(conchFile->h, &buf) ){
drh7ed97b92010-01-20 13:07:21 +00006513 pFile->lastErrno = errno;
6514 return SQLITE_IOERR_LOCK;
6515 }
6516
6517 if( nTries==1 ){
6518 conchModTime = buf.st_mtimespec;
6519 usleep(500000); /* wait 0.5 sec and try the lock again*/
6520 continue;
6521 }
6522
6523 assert( nTries>1 );
6524 if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
6525 conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
6526 return SQLITE_BUSY;
6527 }
6528
6529 if( nTries==2 ){
6530 char tBuf[PROXY_MAXCONCHLEN];
drhe562be52011-03-02 18:01:10 +00006531 int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
drh7ed97b92010-01-20 13:07:21 +00006532 if( len<0 ){
6533 pFile->lastErrno = errno;
6534 return SQLITE_IOERR_LOCK;
6535 }
6536 if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
6537 /* don't break the lock if the host id doesn't match */
6538 if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
6539 return SQLITE_BUSY;
6540 }
6541 }else{
6542 /* don't break the lock on short read or a version mismatch */
6543 return SQLITE_BUSY;
6544 }
6545 usleep(10000000); /* wait 10 sec and try the lock again */
6546 continue;
6547 }
6548
6549 assert( nTries==3 );
6550 if( 0==proxyBreakConchLock(pFile, myHostID) ){
6551 rc = SQLITE_OK;
6552 if( lockType==EXCLUSIVE_LOCK ){
6553 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
6554 }
6555 if( !rc ){
6556 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
6557 }
6558 }
6559 }
6560 } while( rc==SQLITE_BUSY && nTries<3 );
6561
6562 return rc;
6563}
6564
6565/* Takes the conch by taking a shared lock and read the contents conch, if
drh715ff302008-12-03 22:32:44 +00006566** lockPath is non-NULL, the host ID and lock file path must match. A NULL
6567** lockPath means that the lockPath in the conch file will be used if the
6568** host IDs match, or a new lock path will be generated automatically
6569** and written to the conch file.
6570*/
6571static int proxyTakeConch(unixFile *pFile){
6572 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6573
drh7ed97b92010-01-20 13:07:21 +00006574 if( pCtx->conchHeld!=0 ){
drh715ff302008-12-03 22:32:44 +00006575 return SQLITE_OK;
6576 }else{
6577 unixFile *conchFile = pCtx->conchFile;
drh7ed97b92010-01-20 13:07:21 +00006578 uuid_t myHostID;
6579 int pError = 0;
6580 char readBuf[PROXY_MAXCONCHLEN];
drh715ff302008-12-03 22:32:44 +00006581 char lockPath[MAXPATHLEN];
drh7ed97b92010-01-20 13:07:21 +00006582 char *tempLockPath = NULL;
drh715ff302008-12-03 22:32:44 +00006583 int rc = SQLITE_OK;
drh7ed97b92010-01-20 13:07:21 +00006584 int createConch = 0;
6585 int hostIdMatch = 0;
6586 int readLen = 0;
6587 int tryOldLockPath = 0;
6588 int forceNewLockPath = 0;
6589
drh308c2a52010-05-14 11:30:18 +00006590 OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h,
6591 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid()));
drh715ff302008-12-03 22:32:44 +00006592
drh7ed97b92010-01-20 13:07:21 +00006593 rc = proxyGetHostID(myHostID, &pError);
6594 if( (rc&0xff)==SQLITE_IOERR ){
6595 pFile->lastErrno = pError;
6596 goto end_takeconch;
drh715ff302008-12-03 22:32:44 +00006597 }
drh7ed97b92010-01-20 13:07:21 +00006598 rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
drh715ff302008-12-03 22:32:44 +00006599 if( rc!=SQLITE_OK ){
6600 goto end_takeconch;
6601 }
drh7ed97b92010-01-20 13:07:21 +00006602 /* read the existing conch file */
6603 readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
6604 if( readLen<0 ){
6605 /* I/O error: lastErrno set by seekAndRead */
6606 pFile->lastErrno = conchFile->lastErrno;
6607 rc = SQLITE_IOERR_READ;
6608 goto end_takeconch;
6609 }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
6610 readBuf[0]!=(char)PROXY_CONCHVERSION ){
6611 /* a short read or version format mismatch means we need to create a new
6612 ** conch file.
6613 */
6614 createConch = 1;
6615 }
6616 /* if the host id matches and the lock path already exists in the conch
6617 ** we'll try to use the path there, if we can't open that path, we'll
6618 ** retry with a new auto-generated path
6619 */
6620 do { /* in case we need to try again for an :auto: named lock file */
6621
6622 if( !createConch && !forceNewLockPath ){
6623 hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
6624 PROXY_HOSTIDLEN);
6625 /* if the conch has data compare the contents */
6626 if( !pCtx->lockProxyPath ){
6627 /* for auto-named local lock file, just check the host ID and we'll
6628 ** use the local lock file path that's already in there
6629 */
6630 if( hostIdMatch ){
6631 size_t pathLen = (readLen - PROXY_PATHINDEX);
6632
6633 if( pathLen>=MAXPATHLEN ){
6634 pathLen=MAXPATHLEN-1;
6635 }
6636 memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
6637 lockPath[pathLen] = 0;
6638 tempLockPath = lockPath;
6639 tryOldLockPath = 1;
6640 /* create a copy of the lock path if the conch is taken */
6641 goto end_takeconch;
6642 }
6643 }else if( hostIdMatch
6644 && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
6645 readLen-PROXY_PATHINDEX)
6646 ){
6647 /* conch host and lock path match */
6648 goto end_takeconch;
drh715ff302008-12-03 22:32:44 +00006649 }
drh7ed97b92010-01-20 13:07:21 +00006650 }
6651
6652 /* if the conch isn't writable and doesn't match, we can't take it */
6653 if( (conchFile->openFlags&O_RDWR) == 0 ){
6654 rc = SQLITE_BUSY;
drh715ff302008-12-03 22:32:44 +00006655 goto end_takeconch;
6656 }
drh7ed97b92010-01-20 13:07:21 +00006657
6658 /* either the conch didn't match or we need to create a new one */
drh715ff302008-12-03 22:32:44 +00006659 if( !pCtx->lockProxyPath ){
drh7ed97b92010-01-20 13:07:21 +00006660 proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
6661 tempLockPath = lockPath;
6662 /* create a copy of the lock path _only_ if the conch is taken */
drh715ff302008-12-03 22:32:44 +00006663 }
drh7ed97b92010-01-20 13:07:21 +00006664
6665 /* update conch with host and path (this will fail if other process
6666 ** has a shared lock already), if the host id matches, use the big
6667 ** stick.
drh715ff302008-12-03 22:32:44 +00006668 */
drh7ed97b92010-01-20 13:07:21 +00006669 futimes(conchFile->h, NULL);
6670 if( hostIdMatch && !createConch ){
drh8af6c222010-05-14 12:43:01 +00006671 if( conchFile->pInode && conchFile->pInode->nShared>1 ){
drh7ed97b92010-01-20 13:07:21 +00006672 /* We are trying for an exclusive lock but another thread in this
6673 ** same process is still holding a shared lock. */
6674 rc = SQLITE_BUSY;
6675 } else {
6676 rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
drh715ff302008-12-03 22:32:44 +00006677 }
drh715ff302008-12-03 22:32:44 +00006678 }else{
drh7ed97b92010-01-20 13:07:21 +00006679 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK);
drh715ff302008-12-03 22:32:44 +00006680 }
drh7ed97b92010-01-20 13:07:21 +00006681 if( rc==SQLITE_OK ){
6682 char writeBuffer[PROXY_MAXCONCHLEN];
6683 int writeSize = 0;
6684
6685 writeBuffer[0] = (char)PROXY_CONCHVERSION;
6686 memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
6687 if( pCtx->lockProxyPath!=NULL ){
6688 strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN);
6689 }else{
6690 strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
6691 }
6692 writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
drhff812312011-02-23 13:33:46 +00006693 robust_ftruncate(conchFile->h, writeSize);
drh7ed97b92010-01-20 13:07:21 +00006694 rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
6695 fsync(conchFile->h);
6696 /* If we created a new conch file (not just updated the contents of a
6697 ** valid conch file), try to match the permissions of the database
6698 */
6699 if( rc==SQLITE_OK && createConch ){
6700 struct stat buf;
drh99ab3b12011-03-02 15:09:07 +00006701 int err = osFstat(pFile->h, &buf);
drh7ed97b92010-01-20 13:07:21 +00006702 if( err==0 ){
6703 mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
6704 S_IROTH|S_IWOTH);
6705 /* try to match the database file R/W permissions, ignore failure */
6706#ifndef SQLITE_PROXY_DEBUG
drhe562be52011-03-02 18:01:10 +00006707 osFchmod(conchFile->h, cmode);
drh7ed97b92010-01-20 13:07:21 +00006708#else
drhff812312011-02-23 13:33:46 +00006709 do{
drhe562be52011-03-02 18:01:10 +00006710 rc = osFchmod(conchFile->h, cmode);
drhff812312011-02-23 13:33:46 +00006711 }while( rc==(-1) && errno==EINTR );
6712 if( rc!=0 ){
drh7ed97b92010-01-20 13:07:21 +00006713 int code = errno;
6714 fprintf(stderr, "fchmod %o FAILED with %d %s\n",
6715 cmode, code, strerror(code));
6716 } else {
6717 fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
6718 }
6719 }else{
6720 int code = errno;
6721 fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
6722 err, code, strerror(code));
6723#endif
6724 }
drh715ff302008-12-03 22:32:44 +00006725 }
6726 }
drh7ed97b92010-01-20 13:07:21 +00006727 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
6728
6729 end_takeconch:
drh308c2a52010-05-14 11:30:18 +00006730 OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h));
drh7ed97b92010-01-20 13:07:21 +00006731 if( rc==SQLITE_OK && pFile->openFlags ){
drh3d4435b2011-08-26 20:55:50 +00006732 int fd;
drh7ed97b92010-01-20 13:07:21 +00006733 if( pFile->h>=0 ){
drhe84009f2011-03-02 17:54:32 +00006734 robust_close(pFile, pFile->h, __LINE__);
drh7ed97b92010-01-20 13:07:21 +00006735 }
6736 pFile->h = -1;
drh8c815d12012-02-13 20:16:37 +00006737 fd = robust_open(pCtx->dbPath, pFile->openFlags, 0);
drh308c2a52010-05-14 11:30:18 +00006738 OSTRACE(("TRANSPROXY: OPEN %d\n", fd));
drh7ed97b92010-01-20 13:07:21 +00006739 if( fd>=0 ){
6740 pFile->h = fd;
6741 }else{
drh9978c972010-02-23 17:36:32 +00006742 rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
drh7ed97b92010-01-20 13:07:21 +00006743 during locking */
6744 }
6745 }
6746 if( rc==SQLITE_OK && !pCtx->lockProxy ){
6747 char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
6748 rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
6749 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
6750 /* we couldn't create the proxy lock file with the old lock file path
6751 ** so try again via auto-naming
6752 */
6753 forceNewLockPath = 1;
6754 tryOldLockPath = 0;
dan2b0ef472010-02-16 12:18:47 +00006755 continue; /* go back to the do {} while start point, try again */
drh7ed97b92010-01-20 13:07:21 +00006756 }
6757 }
6758 if( rc==SQLITE_OK ){
6759 /* Need to make a copy of path if we extracted the value
6760 ** from the conch file or the path was allocated on the stack
6761 */
6762 if( tempLockPath ){
6763 pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
6764 if( !pCtx->lockProxyPath ){
6765 rc = SQLITE_NOMEM;
6766 }
6767 }
6768 }
6769 if( rc==SQLITE_OK ){
6770 pCtx->conchHeld = 1;
6771
6772 if( pCtx->lockProxy->pMethod == &afpIoMethods ){
6773 afpLockingContext *afpCtx;
6774 afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
6775 afpCtx->dbPath = pCtx->lockProxyPath;
6776 }
6777 } else {
6778 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
6779 }
drh308c2a52010-05-14 11:30:18 +00006780 OSTRACE(("TAKECONCH %d %s\n", conchFile->h,
6781 rc==SQLITE_OK?"ok":"failed"));
drh7ed97b92010-01-20 13:07:21 +00006782 return rc;
drh308c2a52010-05-14 11:30:18 +00006783 } while (1); /* in case we need to retry the :auto: lock file -
6784 ** we should never get here except via the 'continue' call. */
drh715ff302008-12-03 22:32:44 +00006785 }
6786}
6787
6788/*
6789** If pFile holds a lock on a conch file, then release that lock.
6790*/
6791static int proxyReleaseConch(unixFile *pFile){
drh1c5bb4d2010-05-10 17:29:28 +00006792 int rc = SQLITE_OK; /* Subroutine return code */
drh715ff302008-12-03 22:32:44 +00006793 proxyLockingContext *pCtx; /* The locking context for the proxy lock */
6794 unixFile *conchFile; /* Name of the conch file */
6795
6796 pCtx = (proxyLockingContext *)pFile->lockingContext;
6797 conchFile = pCtx->conchFile;
drh308c2a52010-05-14 11:30:18 +00006798 OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h,
drh715ff302008-12-03 22:32:44 +00006799 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
drh308c2a52010-05-14 11:30:18 +00006800 getpid()));
drh7ed97b92010-01-20 13:07:21 +00006801 if( pCtx->conchHeld>0 ){
6802 rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
6803 }
drh715ff302008-12-03 22:32:44 +00006804 pCtx->conchHeld = 0;
drh308c2a52010-05-14 11:30:18 +00006805 OSTRACE(("RELEASECONCH %d %s\n", conchFile->h,
6806 (rc==SQLITE_OK ? "ok" : "failed")));
drh715ff302008-12-03 22:32:44 +00006807 return rc;
6808}
6809
6810/*
6811** Given the name of a database file, compute the name of its conch file.
6812** Store the conch filename in memory obtained from sqlite3_malloc().
6813** Make *pConchPath point to the new name. Return SQLITE_OK on success
6814** or SQLITE_NOMEM if unable to obtain memory.
6815**
6816** The caller is responsible for ensuring that the allocated memory
6817** space is eventually freed.
6818**
6819** *pConchPath is set to NULL if a memory allocation error occurs.
6820*/
6821static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
6822 int i; /* Loop counter */
drhea678832008-12-10 19:26:22 +00006823 int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
drh715ff302008-12-03 22:32:44 +00006824 char *conchPath; /* buffer in which to construct conch name */
6825
6826 /* Allocate space for the conch filename and initialize the name to
6827 ** the name of the original database file. */
6828 *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8);
6829 if( conchPath==0 ){
6830 return SQLITE_NOMEM;
6831 }
6832 memcpy(conchPath, dbPath, len+1);
6833
6834 /* now insert a "." before the last / character */
6835 for( i=(len-1); i>=0; i-- ){
6836 if( conchPath[i]=='/' ){
6837 i++;
6838 break;
6839 }
6840 }
6841 conchPath[i]='.';
6842 while ( i<len ){
6843 conchPath[i+1]=dbPath[i];
6844 i++;
6845 }
6846
6847 /* append the "-conch" suffix to the file */
6848 memcpy(&conchPath[i+1], "-conch", 7);
drhea678832008-12-10 19:26:22 +00006849 assert( (int)strlen(conchPath) == len+7 );
drh715ff302008-12-03 22:32:44 +00006850
6851 return SQLITE_OK;
6852}
6853
6854
6855/* Takes a fully configured proxy locking-style unix file and switches
6856** the local lock file path
6857*/
6858static int switchLockProxyPath(unixFile *pFile, const char *path) {
6859 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
6860 char *oldPath = pCtx->lockProxyPath;
6861 int rc = SQLITE_OK;
6862
drh308c2a52010-05-14 11:30:18 +00006863 if( pFile->eFileLock!=NO_LOCK ){
drh715ff302008-12-03 22:32:44 +00006864 return SQLITE_BUSY;
6865 }
6866
6867 /* nothing to do if the path is NULL, :auto: or matches the existing path */
6868 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
6869 (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
6870 return SQLITE_OK;
6871 }else{
6872 unixFile *lockProxy = pCtx->lockProxy;
6873 pCtx->lockProxy=NULL;
6874 pCtx->conchHeld = 0;
6875 if( lockProxy!=NULL ){
6876 rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
6877 if( rc ) return rc;
6878 sqlite3_free(lockProxy);
6879 }
6880 sqlite3_free(oldPath);
6881 pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
6882 }
6883
6884 return rc;
6885}
6886
6887/*
6888** pFile is a file that has been opened by a prior xOpen call. dbPath
6889** is a string buffer at least MAXPATHLEN+1 characters in size.
6890**
6891** This routine find the filename associated with pFile and writes it
6892** int dbPath.
6893*/
6894static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
drhd2cb50b2009-01-09 21:41:17 +00006895#if defined(__APPLE__)
drh715ff302008-12-03 22:32:44 +00006896 if( pFile->pMethod == &afpIoMethods ){
6897 /* afp style keeps a reference to the db path in the filePath field
6898 ** of the struct */
drhea678832008-12-10 19:26:22 +00006899 assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
drh7ed97b92010-01-20 13:07:21 +00006900 strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN);
6901 } else
drh715ff302008-12-03 22:32:44 +00006902#endif
6903 if( pFile->pMethod == &dotlockIoMethods ){
6904 /* dot lock style uses the locking context to store the dot lock
6905 ** file path */
6906 int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
6907 memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
6908 }else{
6909 /* all other styles use the locking context to store the db file path */
6910 assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
drh7ed97b92010-01-20 13:07:21 +00006911 strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
drh715ff302008-12-03 22:32:44 +00006912 }
6913 return SQLITE_OK;
6914}
6915
6916/*
6917** Takes an already filled in unix file and alters it so all file locking
6918** will be performed on the local proxy lock file. The following fields
6919** are preserved in the locking context so that they can be restored and
6920** the unix structure properly cleaned up at close time:
6921** ->lockingContext
6922** ->pMethod
6923*/
6924static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
6925 proxyLockingContext *pCtx;
6926 char dbPath[MAXPATHLEN+1]; /* Name of the database file */
6927 char *lockPath=NULL;
6928 int rc = SQLITE_OK;
6929
drh308c2a52010-05-14 11:30:18 +00006930 if( pFile->eFileLock!=NO_LOCK ){
drh715ff302008-12-03 22:32:44 +00006931 return SQLITE_BUSY;
6932 }
6933 proxyGetDbPathForUnixFile(pFile, dbPath);
6934 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
6935 lockPath=NULL;
6936 }else{
6937 lockPath=(char *)path;
6938 }
6939
drh308c2a52010-05-14 11:30:18 +00006940 OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h,
6941 (lockPath ? lockPath : ":auto:"), getpid()));
drh715ff302008-12-03 22:32:44 +00006942
6943 pCtx = sqlite3_malloc( sizeof(*pCtx) );
6944 if( pCtx==0 ){
6945 return SQLITE_NOMEM;
6946 }
6947 memset(pCtx, 0, sizeof(*pCtx));
6948
6949 rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
6950 if( rc==SQLITE_OK ){
drh7ed97b92010-01-20 13:07:21 +00006951 rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
6952 if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
6953 /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
6954 ** (c) the file system is read-only, then enable no-locking access.
6955 ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
6956 ** that openFlags will have only one of O_RDONLY or O_RDWR.
6957 */
6958 struct statfs fsInfo;
6959 struct stat conchInfo;
6960 int goLockless = 0;
6961
drh99ab3b12011-03-02 15:09:07 +00006962 if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
drh7ed97b92010-01-20 13:07:21 +00006963 int err = errno;
6964 if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
6965 goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
6966 }
6967 }
6968 if( goLockless ){
6969 pCtx->conchHeld = -1; /* read only FS/ lockless */
6970 rc = SQLITE_OK;
6971 }
6972 }
drh715ff302008-12-03 22:32:44 +00006973 }
6974 if( rc==SQLITE_OK && lockPath ){
6975 pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
6976 }
6977
6978 if( rc==SQLITE_OK ){
drh7ed97b92010-01-20 13:07:21 +00006979 pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
6980 if( pCtx->dbPath==NULL ){
6981 rc = SQLITE_NOMEM;
6982 }
6983 }
6984 if( rc==SQLITE_OK ){
drh715ff302008-12-03 22:32:44 +00006985 /* all memory is allocated, proxys are created and assigned,
6986 ** switch the locking context and pMethod then return.
6987 */
drh715ff302008-12-03 22:32:44 +00006988 pCtx->oldLockingContext = pFile->lockingContext;
6989 pFile->lockingContext = pCtx;
6990 pCtx->pOldMethod = pFile->pMethod;
6991 pFile->pMethod = &proxyIoMethods;
6992 }else{
6993 if( pCtx->conchFile ){
drh7ed97b92010-01-20 13:07:21 +00006994 pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
drh715ff302008-12-03 22:32:44 +00006995 sqlite3_free(pCtx->conchFile);
6996 }
drhd56b1212010-08-11 06:14:15 +00006997 sqlite3DbFree(0, pCtx->lockProxyPath);
drh715ff302008-12-03 22:32:44 +00006998 sqlite3_free(pCtx->conchFilePath);
6999 sqlite3_free(pCtx);
7000 }
drh308c2a52010-05-14 11:30:18 +00007001 OSTRACE(("TRANSPROXY %d %s\n", pFile->h,
7002 (rc==SQLITE_OK ? "ok" : "failed")));
drh715ff302008-12-03 22:32:44 +00007003 return rc;
7004}
7005
7006
7007/*
7008** This routine handles sqlite3_file_control() calls that are specific
7009** to proxy locking.
7010*/
7011static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
7012 switch( op ){
7013 case SQLITE_GET_LOCKPROXYFILE: {
7014 unixFile *pFile = (unixFile*)id;
7015 if( pFile->pMethod == &proxyIoMethods ){
7016 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
7017 proxyTakeConch(pFile);
7018 if( pCtx->lockProxyPath ){
7019 *(const char **)pArg = pCtx->lockProxyPath;
7020 }else{
7021 *(const char **)pArg = ":auto: (not held)";
7022 }
7023 } else {
7024 *(const char **)pArg = NULL;
7025 }
7026 return SQLITE_OK;
7027 }
7028 case SQLITE_SET_LOCKPROXYFILE: {
7029 unixFile *pFile = (unixFile*)id;
7030 int rc = SQLITE_OK;
7031 int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
7032 if( pArg==NULL || (const char *)pArg==0 ){
7033 if( isProxyStyle ){
7034 /* turn off proxy locking - not supported */
7035 rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
7036 }else{
7037 /* turn off proxy locking - already off - NOOP */
7038 rc = SQLITE_OK;
7039 }
7040 }else{
7041 const char *proxyPath = (const char *)pArg;
7042 if( isProxyStyle ){
7043 proxyLockingContext *pCtx =
7044 (proxyLockingContext*)pFile->lockingContext;
7045 if( !strcmp(pArg, ":auto:")
7046 || (pCtx->lockProxyPath &&
7047 !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
7048 ){
7049 rc = SQLITE_OK;
7050 }else{
7051 rc = switchLockProxyPath(pFile, proxyPath);
7052 }
7053 }else{
7054 /* turn on proxy file locking */
7055 rc = proxyTransformUnixFile(pFile, proxyPath);
7056 }
7057 }
7058 return rc;
7059 }
7060 default: {
7061 assert( 0 ); /* The call assures that only valid opcodes are sent */
7062 }
7063 }
7064 /*NOTREACHED*/
7065 return SQLITE_ERROR;
7066}
7067
7068/*
7069** Within this division (the proxying locking implementation) the procedures
7070** above this point are all utilities. The lock-related methods of the
7071** proxy-locking sqlite3_io_method object follow.
7072*/
7073
7074
7075/*
7076** This routine checks if there is a RESERVED lock held on the specified
7077** file by this or any other process. If such a lock is held, set *pResOut
7078** to a non-zero value otherwise *pResOut is set to zero. The return value
7079** is set to SQLITE_OK unless an I/O error occurs during lock checking.
7080*/
7081static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
7082 unixFile *pFile = (unixFile*)id;
7083 int rc = proxyTakeConch(pFile);
7084 if( rc==SQLITE_OK ){
7085 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
drh7ed97b92010-01-20 13:07:21 +00007086 if( pCtx->conchHeld>0 ){
7087 unixFile *proxy = pCtx->lockProxy;
7088 return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
7089 }else{ /* conchHeld < 0 is lockless */
7090 pResOut=0;
7091 }
drh715ff302008-12-03 22:32:44 +00007092 }
7093 return rc;
7094}
7095
7096/*
drh308c2a52010-05-14 11:30:18 +00007097** Lock the file with the lock specified by parameter eFileLock - one
drh715ff302008-12-03 22:32:44 +00007098** of the following:
7099**
7100** (1) SHARED_LOCK
7101** (2) RESERVED_LOCK
7102** (3) PENDING_LOCK
7103** (4) EXCLUSIVE_LOCK
7104**
7105** Sometimes when requesting one lock state, additional lock states
7106** are inserted in between. The locking might fail on one of the later
7107** transitions leaving the lock state different from what it started but
7108** still short of its goal. The following chart shows the allowed
7109** transitions and the inserted intermediate states:
7110**
7111** UNLOCKED -> SHARED
7112** SHARED -> RESERVED
7113** SHARED -> (PENDING) -> EXCLUSIVE
7114** RESERVED -> (PENDING) -> EXCLUSIVE
7115** PENDING -> EXCLUSIVE
7116**
7117** This routine will only increase a lock. Use the sqlite3OsUnlock()
7118** routine to lower a locking level.
7119*/
drh308c2a52010-05-14 11:30:18 +00007120static int proxyLock(sqlite3_file *id, int eFileLock) {
drh715ff302008-12-03 22:32:44 +00007121 unixFile *pFile = (unixFile*)id;
7122 int rc = proxyTakeConch(pFile);
7123 if( rc==SQLITE_OK ){
7124 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
drh7ed97b92010-01-20 13:07:21 +00007125 if( pCtx->conchHeld>0 ){
7126 unixFile *proxy = pCtx->lockProxy;
drh308c2a52010-05-14 11:30:18 +00007127 rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
7128 pFile->eFileLock = proxy->eFileLock;
drh7ed97b92010-01-20 13:07:21 +00007129 }else{
7130 /* conchHeld < 0 is lockless */
7131 }
drh715ff302008-12-03 22:32:44 +00007132 }
7133 return rc;
7134}
7135
7136
7137/*
drh308c2a52010-05-14 11:30:18 +00007138** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
drh715ff302008-12-03 22:32:44 +00007139** must be either NO_LOCK or SHARED_LOCK.
7140**
7141** If the locking level of the file descriptor is already at or below
7142** the requested locking level, this routine is a no-op.
7143*/
drh308c2a52010-05-14 11:30:18 +00007144static int proxyUnlock(sqlite3_file *id, int eFileLock) {
drh715ff302008-12-03 22:32:44 +00007145 unixFile *pFile = (unixFile*)id;
7146 int rc = proxyTakeConch(pFile);
7147 if( rc==SQLITE_OK ){
7148 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
drh7ed97b92010-01-20 13:07:21 +00007149 if( pCtx->conchHeld>0 ){
7150 unixFile *proxy = pCtx->lockProxy;
drh308c2a52010-05-14 11:30:18 +00007151 rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
7152 pFile->eFileLock = proxy->eFileLock;
drh7ed97b92010-01-20 13:07:21 +00007153 }else{
7154 /* conchHeld < 0 is lockless */
7155 }
drh715ff302008-12-03 22:32:44 +00007156 }
7157 return rc;
7158}
7159
7160/*
7161** Close a file that uses proxy locks.
7162*/
7163static int proxyClose(sqlite3_file *id) {
7164 if( id ){
7165 unixFile *pFile = (unixFile*)id;
7166 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7167 unixFile *lockProxy = pCtx->lockProxy;
7168 unixFile *conchFile = pCtx->conchFile;
7169 int rc = SQLITE_OK;
7170
7171 if( lockProxy ){
7172 rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
7173 if( rc ) return rc;
7174 rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
7175 if( rc ) return rc;
7176 sqlite3_free(lockProxy);
7177 pCtx->lockProxy = 0;
7178 }
7179 if( conchFile ){
7180 if( pCtx->conchHeld ){
7181 rc = proxyReleaseConch(pFile);
7182 if( rc ) return rc;
7183 }
7184 rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
7185 if( rc ) return rc;
7186 sqlite3_free(conchFile);
7187 }
drhd56b1212010-08-11 06:14:15 +00007188 sqlite3DbFree(0, pCtx->lockProxyPath);
drh715ff302008-12-03 22:32:44 +00007189 sqlite3_free(pCtx->conchFilePath);
drhd56b1212010-08-11 06:14:15 +00007190 sqlite3DbFree(0, pCtx->dbPath);
drh715ff302008-12-03 22:32:44 +00007191 /* restore the original locking context and pMethod then close it */
7192 pFile->lockingContext = pCtx->oldLockingContext;
7193 pFile->pMethod = pCtx->pOldMethod;
7194 sqlite3_free(pCtx);
7195 return pFile->pMethod->xClose(id);
7196 }
7197 return SQLITE_OK;
7198}
7199
7200
7201
drhd2cb50b2009-01-09 21:41:17 +00007202#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
drh715ff302008-12-03 22:32:44 +00007203/*
7204** The proxy locking style is intended for use with AFP filesystems.
7205** And since AFP is only supported on MacOSX, the proxy locking is also
7206** restricted to MacOSX.
7207**
7208**
7209******************* End of the proxy lock implementation **********************
7210******************************************************************************/
7211
drh734c9862008-11-28 15:37:20 +00007212/*
danielk1977e339d652008-06-28 11:23:00 +00007213** Initialize the operating system interface.
drh734c9862008-11-28 15:37:20 +00007214**
7215** This routine registers all VFS implementations for unix-like operating
7216** systems. This routine, and the sqlite3_os_end() routine that follows,
7217** should be the only routines in this file that are visible from other
7218** files.
drh6b9d6dd2008-12-03 19:34:47 +00007219**
7220** This routine is called once during SQLite initialization and by a
7221** single thread. The memory allocation and mutex subsystems have not
7222** necessarily been initialized when this routine is called, and so they
7223** should not be used.
drh153c62c2007-08-24 03:51:33 +00007224*/
danielk1977c0fa4c52008-06-25 17:19:00 +00007225int sqlite3_os_init(void){
drh6b9d6dd2008-12-03 19:34:47 +00007226 /*
7227 ** The following macro defines an initializer for an sqlite3_vfs object.
drh1875f7a2008-12-08 18:19:17 +00007228 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer
7229 ** to the "finder" function. (pAppData is a pointer to a pointer because
7230 ** silly C90 rules prohibit a void* from being cast to a function pointer
7231 ** and so we have to go through the intermediate pointer to avoid problems
7232 ** when compiling with -pedantic-errors on GCC.)
7233 **
7234 ** The FINDER parameter to this macro is the name of the pointer to the
drh6b9d6dd2008-12-03 19:34:47 +00007235 ** finder-function. The finder-function returns a pointer to the
7236 ** sqlite_io_methods object that implements the desired locking
7237 ** behaviors. See the division above that contains the IOMETHODS
7238 ** macro for addition information on finder-functions.
7239 **
7240 ** Most finders simply return a pointer to a fixed sqlite3_io_methods
7241 ** object. But the "autolockIoFinder" available on MacOSX does a little
7242 ** more than that; it looks at the filesystem type that hosts the
7243 ** database file and tries to choose an locking method appropriate for
7244 ** that filesystem time.
danielk1977e339d652008-06-28 11:23:00 +00007245 */
drh7708e972008-11-29 00:56:52 +00007246 #define UNIXVFS(VFSNAME, FINDER) { \
drh99ab3b12011-03-02 15:09:07 +00007247 3, /* iVersion */ \
danielk1977e339d652008-06-28 11:23:00 +00007248 sizeof(unixFile), /* szOsFile */ \
7249 MAX_PATHNAME, /* mxPathname */ \
7250 0, /* pNext */ \
drh7708e972008-11-29 00:56:52 +00007251 VFSNAME, /* zName */ \
drh1875f7a2008-12-08 18:19:17 +00007252 (void*)&FINDER, /* pAppData */ \
danielk1977e339d652008-06-28 11:23:00 +00007253 unixOpen, /* xOpen */ \
7254 unixDelete, /* xDelete */ \
7255 unixAccess, /* xAccess */ \
7256 unixFullPathname, /* xFullPathname */ \
7257 unixDlOpen, /* xDlOpen */ \
7258 unixDlError, /* xDlError */ \
7259 unixDlSym, /* xDlSym */ \
7260 unixDlClose, /* xDlClose */ \
7261 unixRandomness, /* xRandomness */ \
7262 unixSleep, /* xSleep */ \
7263 unixCurrentTime, /* xCurrentTime */ \
drhf2424c52010-04-26 00:04:55 +00007264 unixGetLastError, /* xGetLastError */ \
drhb7e8ea22010-05-03 14:32:30 +00007265 unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \
drh99ab3b12011-03-02 15:09:07 +00007266 unixSetSystemCall, /* xSetSystemCall */ \
drh1df30962011-03-02 19:06:42 +00007267 unixGetSystemCall, /* xGetSystemCall */ \
7268 unixNextSystemCall, /* xNextSystemCall */ \
danielk1977e339d652008-06-28 11:23:00 +00007269 }
7270
drh6b9d6dd2008-12-03 19:34:47 +00007271 /*
7272 ** All default VFSes for unix are contained in the following array.
7273 **
7274 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
7275 ** by the SQLite core when the VFS is registered. So the following
7276 ** array cannot be const.
7277 */
danielk1977e339d652008-06-28 11:23:00 +00007278 static sqlite3_vfs aVfs[] = {
chw78a13182009-04-07 05:35:03 +00007279#if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
drh7708e972008-11-29 00:56:52 +00007280 UNIXVFS("unix", autolockIoFinder ),
7281#else
7282 UNIXVFS("unix", posixIoFinder ),
7283#endif
7284 UNIXVFS("unix-none", nolockIoFinder ),
7285 UNIXVFS("unix-dotfile", dotlockIoFinder ),
drha7e61d82011-03-12 17:02:57 +00007286 UNIXVFS("unix-excl", posixIoFinder ),
drh734c9862008-11-28 15:37:20 +00007287#if OS_VXWORKS
drh7708e972008-11-29 00:56:52 +00007288 UNIXVFS("unix-namedsem", semIoFinder ),
drh734c9862008-11-28 15:37:20 +00007289#endif
7290#if SQLITE_ENABLE_LOCKING_STYLE
drh7708e972008-11-29 00:56:52 +00007291 UNIXVFS("unix-posix", posixIoFinder ),
chw78a13182009-04-07 05:35:03 +00007292#if !OS_VXWORKS
drh7708e972008-11-29 00:56:52 +00007293 UNIXVFS("unix-flock", flockIoFinder ),
drh734c9862008-11-28 15:37:20 +00007294#endif
chw78a13182009-04-07 05:35:03 +00007295#endif
drhd2cb50b2009-01-09 21:41:17 +00007296#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
drh7708e972008-11-29 00:56:52 +00007297 UNIXVFS("unix-afp", afpIoFinder ),
drh7ed97b92010-01-20 13:07:21 +00007298 UNIXVFS("unix-nfs", nfsIoFinder ),
drh7708e972008-11-29 00:56:52 +00007299 UNIXVFS("unix-proxy", proxyIoFinder ),
drh734c9862008-11-28 15:37:20 +00007300#endif
drh153c62c2007-08-24 03:51:33 +00007301 };
drh6b9d6dd2008-12-03 19:34:47 +00007302 unsigned int i; /* Loop counter */
7303
drh2aa5a002011-04-13 13:42:25 +00007304 /* Double-check that the aSyscall[] array has been constructed
7305 ** correctly. See ticket [bb3a86e890c8e96ab] */
drhd1ab8062013-03-25 20:50:25 +00007306 assert( ArraySize(aSyscall)==24 );
drh2aa5a002011-04-13 13:42:25 +00007307
drh6b9d6dd2008-12-03 19:34:47 +00007308 /* Register all VFSes defined in the aVfs[] array */
danielk1977e339d652008-06-28 11:23:00 +00007309 for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
drh734c9862008-11-28 15:37:20 +00007310 sqlite3_vfs_register(&aVfs[i], i==0);
danielk1977e339d652008-06-28 11:23:00 +00007311 }
danielk1977c0fa4c52008-06-25 17:19:00 +00007312 return SQLITE_OK;
drh153c62c2007-08-24 03:51:33 +00007313}
danielk1977e339d652008-06-28 11:23:00 +00007314
7315/*
drh6b9d6dd2008-12-03 19:34:47 +00007316** Shutdown the operating system interface.
7317**
7318** Some operating systems might need to do some cleanup in this routine,
7319** to release dynamically allocated objects. But not on unix.
7320** This routine is a no-op for unix.
danielk1977e339d652008-06-28 11:23:00 +00007321*/
danielk1977c0fa4c52008-06-25 17:19:00 +00007322int sqlite3_os_end(void){
7323 return SQLITE_OK;
7324}
drhdce8bdb2007-08-16 13:01:44 +00007325
danielk197729bafea2008-06-26 10:41:19 +00007326#endif /* SQLITE_OS_UNIX */