dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 1 | |
| 2 | /* |
| 3 | ** This file contains the implementation of a log file used in |
| 4 | ** "journal_mode=wal" mode. |
| 5 | */ |
| 6 | |
| 7 | #include "log.h" |
| 8 | |
| 9 | #include <unistd.h> |
| 10 | #include <fcntl.h> |
| 11 | #include <sys/mman.h> |
| 12 | |
| 13 | typedef struct LogSummaryHdr LogSummaryHdr; |
| 14 | typedef struct LogSummary LogSummary; |
| 15 | typedef struct LogCheckpoint LogCheckpoint; |
| 16 | |
| 17 | |
| 18 | /* |
| 19 | ** The following structure may be used to store the same data that |
| 20 | ** is stored in the log-summary header. |
| 21 | ** |
| 22 | ** Member variables iCheck1 and iCheck2 contain the checksum for the |
| 23 | ** last frame written to the log, or 2 and 3 respectively if the log |
| 24 | ** is currently empty. |
| 25 | */ |
| 26 | struct LogSummaryHdr { |
| 27 | u32 iChange; /* Counter incremented each transaction */ |
| 28 | u32 pgsz; /* Database page size in bytes */ |
| 29 | u32 iLastPg; /* Address of last valid frame in log */ |
| 30 | u32 nPage; /* Size of database in pages */ |
| 31 | u32 iCheck1; /* Checkpoint value 1 */ |
| 32 | u32 iCheck2; /* Checkpoint value 2 */ |
| 33 | }; |
| 34 | |
| 35 | /* Size of serialized LogSummaryHdr object. */ |
| 36 | #define LOGSUMMARY_HDR_NFIELD (sizeof(LogSummaryHdr) / sizeof(u32)) |
| 37 | |
| 38 | #define LOGSUMMARY_FRAME_OFFSET \ |
| 39 | (LOGSUMMARY_HDR_NFIELD + LOG_CKSM_BYTES/sizeof(u32)) |
| 40 | |
| 41 | /* Size of frame header */ |
| 42 | #define LOG_FRAME_HDRSIZE 20 |
| 43 | |
| 44 | /* |
| 45 | ** There is one instance of this structure for each log-summary object |
| 46 | ** that this process has a connection to. They are stored in a linked |
| 47 | ** list starting at pLogSummary (global variable). |
| 48 | ** |
| 49 | ** TODO: LogSummary.fd is a unix file descriptor. Unix APIs are used |
| 50 | ** directly in this implementation because the VFS does not support |
| 51 | ** the required blocking file-locks. |
| 52 | */ |
| 53 | struct LogSummary { |
| 54 | sqlite3_mutex *mutex; /* Mutex used to protect this object */ |
| 55 | int nRef; /* Number of pointers to this structure */ |
| 56 | int fd; /* File descriptor open on log-summary */ |
| 57 | char *zPath; /* Path to associated WAL file */ |
| 58 | LogSummary *pNext; /* Next in global list */ |
| 59 | int nData; /* Size of aData allocation/mapping */ |
| 60 | u32 *aData; /* File body */ |
| 61 | }; |
| 62 | |
| 63 | /* |
| 64 | ** List of all LogSummary objects created by this process. Protected by |
| 65 | ** static mutex LOG_SUMMARY_MUTEX. TODO: Should have a dedicated mutex |
| 66 | ** here instead of borrowing the LRU mutex. |
| 67 | */ |
| 68 | #define LOG_SUMMARY_MUTEX SQLITE_MUTEX_STATIC_LRU |
| 69 | static LogSummary *pLogSummary = 0; |
| 70 | |
| 71 | struct Log { |
| 72 | LogSummary *pSummary; /* Log file summary data */ |
| 73 | sqlite3_vfs *pVfs; /* The VFS used to create pFd */ |
| 74 | sqlite3_file *pFd; /* File handle for log file */ |
| 75 | int sync_flags; /* Flags to use with OsSync() */ |
| 76 | int isLocked; /* True if a snapshot is held open */ |
| 77 | int isWriteLocked; /* True if this is the writer connection */ |
| 78 | LogSummaryHdr hdr; /* Log summary header for current snapshot */ |
| 79 | }; |
| 80 | |
| 81 | /* |
| 82 | ** This structure is used to implement an iterator that iterates through |
| 83 | ** all frames in the log in database page order. Where two or more frames |
| 84 | ** correspond to the same database page, the iterator visits only the |
| 85 | ** frame most recently written to the log. |
| 86 | ** |
| 87 | ** The internals of this structure are only accessed by: |
| 88 | ** |
| 89 | ** logCheckpointInit() - Create a new iterator, |
| 90 | ** logCheckpointNext() - Step an iterator, |
| 91 | ** logCheckpointFree() - Free an iterator. |
| 92 | ** |
| 93 | ** This functionality is used by the checkpoint code (see logCheckpoint()). |
| 94 | */ |
| 95 | struct LogCheckpoint { |
| 96 | int nSegment; /* Size of LogCheckpoint.aSummary[] array */ |
| 97 | int nFinal; /* Elements in segment nSegment-1 */ |
| 98 | struct LogSegment { |
| 99 | int iNext; /* Next aIndex index */ |
| 100 | u8 *aIndex; /* Pointer to index array */ |
| 101 | u32 *aDbPage; /* Pointer to db page array */ |
| 102 | } aSegment[1]; |
| 103 | }; |
| 104 | |
| 105 | /* |
| 106 | ** Generate an 8 byte checksum based on the data in array aByte[] and the |
| 107 | ** initial values of aCksum[0] and aCksum[1]. The checksum is written into |
| 108 | ** aCksum[] before returning. |
| 109 | */ |
| 110 | #define LOG_CKSM_BYTES 8 |
| 111 | static void logChecksumBytes(u8 *aByte, int nByte, u32 *aCksum){ |
| 112 | u32 *z32 = (u32 *)aByte; |
| 113 | int n32 = nByte / sizeof(u32); |
| 114 | int i; |
| 115 | |
| 116 | assert( LOG_CKSM_BYTES==2*sizeof(u32) ); |
| 117 | assert( (nByte&0x00000003)==0 ); |
| 118 | |
| 119 | u32 cksum0 = aCksum[0]; |
| 120 | u32 cksum1 = aCksum[1]; |
| 121 | |
| 122 | for(i=0; i<n32; i++){ |
| 123 | cksum0 = (cksum0 >> 8) + (cksum0 ^ z32[i]); |
| 124 | cksum1 = (cksum1 >> 8) + (cksum1 ^ z32[i]); |
| 125 | } |
| 126 | |
| 127 | aCksum[0] = cksum0; |
| 128 | aCksum[1] = cksum1; |
| 129 | } |
| 130 | |
| 131 | /* |
| 132 | ** Argument zPath must be a nul-terminated string containing a path-name. |
| 133 | ** This function modifies the string in-place by removing any "./" or "../" |
| 134 | ** elements in the path. For example, the following input: |
| 135 | ** |
| 136 | ** "/home/user/plans/good/../evil/./world_domination.txt" |
| 137 | ** |
| 138 | ** is overwritten with the 'normalized' version: |
| 139 | ** |
| 140 | ** "/home/user/plans/evil/world_domination.txt" |
| 141 | */ |
| 142 | static void logNormalizePath(char *zPath){ |
| 143 | int i, j; |
| 144 | char *z = zPath; |
| 145 | int n = strlen(z); |
| 146 | |
| 147 | while( n>1 && z[n-1]=='/' ){ n--; } |
| 148 | for(i=j=0; i<n; i++){ |
| 149 | if( z[i]=='/' ){ |
| 150 | if( z[i+1]=='/' ) continue; |
| 151 | if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ |
| 152 | i += 1; |
| 153 | continue; |
| 154 | } |
| 155 | if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ |
| 156 | while( j>0 && z[j-1]!='/' ){ j--; } |
| 157 | if( j>0 ){ j--; } |
| 158 | i += 2; |
| 159 | continue; |
| 160 | } |
| 161 | } |
| 162 | z[j++] = z[i]; |
| 163 | } |
| 164 | z[j] = 0; |
| 165 | } |
| 166 | |
| 167 | /* |
| 168 | ** Lock the summary file pSummary->fd. |
| 169 | */ |
| 170 | static int logSummaryLock(LogSummary *pSummary){ |
| 171 | int rc; |
| 172 | struct flock f; |
| 173 | memset(&f, 0, sizeof(f)); |
| 174 | f.l_type = F_WRLCK; |
| 175 | f.l_whence = SEEK_SET; |
| 176 | f.l_start = 0; |
| 177 | f.l_len = 1; |
| 178 | rc = fcntl(pSummary->fd, F_SETLKW, &f); |
| 179 | if( rc!=0 ){ |
| 180 | return SQLITE_IOERR; |
| 181 | } |
| 182 | return SQLITE_OK; |
| 183 | } |
| 184 | |
| 185 | /* |
| 186 | ** Unlock the summary file pSummary->fd. |
| 187 | */ |
| 188 | static int logSummaryUnlock(LogSummary *pSummary){ |
| 189 | int rc; |
| 190 | struct flock f; |
| 191 | memset(&f, 0, sizeof(f)); |
| 192 | f.l_type = F_UNLCK; |
| 193 | f.l_whence = SEEK_SET; |
| 194 | f.l_start = 0; |
| 195 | f.l_len = 1; |
| 196 | rc = fcntl(pSummary->fd, F_SETLK, &f); |
| 197 | if( rc!=0 ){ |
| 198 | return SQLITE_IOERR; |
| 199 | } |
| 200 | return SQLITE_OK; |
| 201 | } |
| 202 | |
| 203 | /* |
| 204 | ** Memory map the first nByte bytes of the summary file opened with |
| 205 | ** pSummary->fd at pSummary->aData. If the summary file is smaller than |
| 206 | ** nByte bytes in size when this function is called, ftruncate() is |
| 207 | ** used to expand it before it is mapped. |
| 208 | ** |
| 209 | ** It is assumed that an exclusive lock is held on the summary file |
| 210 | ** by the caller (to protect the ftruncate()). |
| 211 | */ |
| 212 | static int logSummaryMap(LogSummary *pSummary, int nByte){ |
| 213 | struct stat sStat; |
| 214 | int rc; |
| 215 | int fd = pSummary->fd; |
| 216 | void *pMap; |
| 217 | |
| 218 | assert( pSummary->aData==0 ); |
| 219 | |
| 220 | /* If the file is less than nByte bytes in size, cause it to grow. */ |
| 221 | rc = fstat(fd, &sStat); |
| 222 | if( rc!=0 ) return SQLITE_IOERR; |
| 223 | if( sStat.st_size<nByte ){ |
| 224 | rc = ftruncate(fd, nByte); |
| 225 | if( rc!=0 ) return SQLITE_IOERR; |
| 226 | } |
| 227 | |
| 228 | /* Map the file. */ |
| 229 | pMap = mmap(0, nByte, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); |
| 230 | if( pMap==MAP_FAILED ){ |
| 231 | return SQLITE_IOERR; |
| 232 | } |
| 233 | pSummary->aData = (u32 *)pMap; |
| 234 | pSummary->nData = nByte; |
| 235 | |
| 236 | return SQLITE_OK; |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | ** Unmap the log-summary mapping and close the file-descriptor. If |
| 241 | ** the isTruncate argument is non-zero, truncate the log-summary file |
| 242 | ** region to zero bytes. |
| 243 | ** |
| 244 | ** Regardless of the value of isTruncate, close the file-descriptor |
| 245 | ** opened on the log-summary file. |
| 246 | */ |
| 247 | static int logSummaryUnmap(LogSummary *pSummary, int isTruncate){ |
| 248 | int rc = SQLITE_OK; |
| 249 | if( pSummary->aData ){ |
| 250 | assert( pSummary->fd>0 ); |
| 251 | munmap(pSummary->aData, pSummary->nData); |
| 252 | pSummary->aData = 0; |
| 253 | if( isTruncate ){ |
| 254 | rc = (ftruncate(pSummary->fd, 0) ? SQLITE_IOERR : SQLITE_OK); |
| 255 | } |
| 256 | } |
| 257 | if( pSummary->fd>0 ){ |
| 258 | close(pSummary->fd); |
| 259 | pSummary->fd = -1; |
| 260 | } |
| 261 | return rc; |
| 262 | } |
| 263 | |
| 264 | |
| 265 | static void logSummaryWriteHdr(LogSummary *pSummary, LogSummaryHdr *pHdr){ |
| 266 | u32 *aData = pSummary->aData; |
| 267 | memcpy(aData, pHdr, sizeof(LogSummaryHdr)); |
| 268 | aData[LOGSUMMARY_HDR_NFIELD] = 1; |
| 269 | aData[LOGSUMMARY_HDR_NFIELD+1] = 1; |
| 270 | logChecksumBytes( |
| 271 | (u8 *)aData, sizeof(LogSummaryHdr), &aData[LOGSUMMARY_HDR_NFIELD] |
| 272 | ); |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | ** This function encodes a single frame header and writes it to a buffer |
| 277 | ** supplied by the caller. A log frame-header is made up of a series of |
| 278 | ** 4-byte big-endian integers, as follows: |
| 279 | ** |
| 280 | ** 0: Database page size in bytes. |
| 281 | ** 4: Page number. |
| 282 | ** 8: New database size (for commit frames, otherwise zero). |
| 283 | ** 12: Frame checksum 1. |
| 284 | ** 16: Frame checksum 2. |
| 285 | */ |
| 286 | static void logEncodeFrame( |
| 287 | u32 *aCksum, /* IN/OUT: Checksum values */ |
| 288 | u32 iPage, /* Database page number for frame */ |
| 289 | u32 nTruncate, /* New db size (or 0 for non-commit frames) */ |
| 290 | int nData, /* Database page size (size of aData[]) */ |
| 291 | u8 *aData, /* Pointer to page data (for checksum) */ |
| 292 | u8 *aFrame /* OUT: Write encoded frame here */ |
| 293 | ){ |
| 294 | assert( LOG_FRAME_HDRSIZE==20 ); |
| 295 | |
| 296 | sqlite3Put4byte(&aFrame[0], nData); |
| 297 | sqlite3Put4byte(&aFrame[4], iPage); |
| 298 | sqlite3Put4byte(&aFrame[8], nTruncate); |
| 299 | |
| 300 | logChecksumBytes(aFrame, 12, aCksum); |
| 301 | logChecksumBytes(aData, nData, aCksum); |
| 302 | |
| 303 | sqlite3Put4byte(&aFrame[12], aCksum[0]); |
| 304 | sqlite3Put4byte(&aFrame[16], aCksum[1]); |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | ** Return 1 and populate *piPage, *pnTruncate and aCksum if the |
| 309 | ** frame checksum looks Ok. Otherwise return 0. |
| 310 | */ |
| 311 | static int logDecodeFrame( |
| 312 | u32 *aCksum, /* IN/OUT: Checksum values */ |
| 313 | u32 *piPage, /* OUT: Database page number for frame */ |
| 314 | u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ |
| 315 | int nData, /* Database page size (size of aData[]) */ |
| 316 | u8 *aData, /* Pointer to page data (for checksum) */ |
| 317 | u8 *aFrame /* Frame data */ |
| 318 | ){ |
| 319 | logChecksumBytes(aFrame, 12, aCksum); |
| 320 | logChecksumBytes(aData, nData, aCksum); |
| 321 | |
| 322 | if( aCksum[0]!=sqlite3Get4byte(&aFrame[12]) |
| 323 | || aCksum[1]!=sqlite3Get4byte(&aFrame[16]) |
| 324 | ){ |
| 325 | /* Checksum failed. */ |
| 326 | return 0; |
| 327 | } |
| 328 | |
| 329 | *piPage = sqlite3Get4byte(&aFrame[4]); |
| 330 | *pnTruncate = sqlite3Get4byte(&aFrame[8]); |
| 331 | return 1; |
| 332 | } |
| 333 | |
| 334 | static void logMergesort8( |
| 335 | Pgno *aContent, /* Pages in log */ |
| 336 | u8 *aBuffer, /* Buffer of at least *pnList items to use */ |
| 337 | u8 *aList, /* IN/OUT: List to sort */ |
| 338 | int *pnList /* IN/OUT: Number of elements in aList[] */ |
| 339 | ){ |
| 340 | int nList = *pnList; |
| 341 | if( nList>1 ){ |
| 342 | int nLeft = nList / 2; /* Elements in left list */ |
| 343 | int nRight = nList - nLeft; /* Elements in right list */ |
| 344 | u8 *aLeft = aList; /* Left list */ |
| 345 | u8 *aRight = &aList[nLeft]; /* Right list */ |
| 346 | int iLeft = 0; /* Current index in aLeft */ |
| 347 | int iRight = 0; /* Current index in aright */ |
| 348 | int iOut = 0; /* Current index in output buffer */ |
| 349 | |
| 350 | /* TODO: Change to non-recursive version. */ |
| 351 | logMergesort8(aContent, aBuffer, aLeft, &nLeft); |
| 352 | logMergesort8(aContent, aBuffer, aRight, &nRight); |
| 353 | |
| 354 | while( iRight<nRight || iLeft<nLeft ){ |
| 355 | u8 logpage; |
| 356 | Pgno dbpage; |
| 357 | |
| 358 | if( (iLeft<nLeft) |
| 359 | && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) |
| 360 | ){ |
| 361 | logpage = aLeft[iLeft++]; |
| 362 | }else{ |
| 363 | logpage = aRight[iRight++]; |
| 364 | } |
| 365 | dbpage = aContent[logpage]; |
| 366 | |
| 367 | aBuffer[iOut++] = logpage; |
| 368 | if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; |
| 369 | |
| 370 | assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); |
| 371 | assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); |
| 372 | } |
| 373 | memcpy(aList, aBuffer, sizeof(aList[0])*iOut); |
| 374 | *pnList = iOut; |
| 375 | } |
| 376 | |
| 377 | #ifdef SQLITE_DEBUG |
| 378 | { |
| 379 | int i; |
| 380 | for(i=1; i<*pnList; i++){ |
| 381 | assert( aContent[aList[i]] > aContent[aList[i-1]] ); |
| 382 | } |
| 383 | } |
| 384 | #endif |
| 385 | } |
| 386 | |
| 387 | |
| 388 | /* |
| 389 | ** Return the index in the LogSummary.aData array that corresponds to |
| 390 | ** frame iFrame. The log-summary file consists of a header, followed by |
| 391 | ** alternating "map" and "index" blocks. |
| 392 | */ |
| 393 | static int logSummaryEntry(u32 iFrame){ |
| 394 | return ((((iFrame-1)>>8)<<6) + iFrame-1 + 2 + LOGSUMMARY_HDR_NFIELD); |
| 395 | } |
| 396 | |
| 397 | |
| 398 | /* |
| 399 | ** Set an entry in the log-summary map to map log frame iFrame to db |
| 400 | ** page iPage. Values are always appended to the log-summary (i.e. the |
| 401 | ** value of iFrame is always exactly one more than the value passed to |
| 402 | ** the previous call), but that restriction is not enforced or asserted |
| 403 | ** here. |
| 404 | */ |
| 405 | static void logSummaryAppend(LogSummary *pSummary, u32 iFrame, u32 iPage){ |
| 406 | u32 iSlot = logSummaryEntry(iFrame); |
| 407 | |
| 408 | /* Set the log-summary entry itself */ |
| 409 | pSummary->aData[iSlot] = iPage; |
| 410 | |
| 411 | /* If the frame number is a multiple of 256 (frames are numbered starting |
| 412 | ** at 1), build an index of the most recently added 256 frames. |
| 413 | */ |
| 414 | if( (iFrame&0x000000FF)==0 ){ |
| 415 | int i; /* Iterator used while initializing aIndex */ |
| 416 | u32 *aFrame; /* Pointer to array of 256 frames */ |
| 417 | int nIndex; /* Number of entries in index */ |
| 418 | u8 *aIndex; /* 256 bytes to build index in */ |
| 419 | u8 *aTmp; /* Scratch space to use while sorting */ |
| 420 | |
| 421 | aFrame = &pSummary->aData[iSlot-255]; |
| 422 | aIndex = (u8 *)&pSummary->aData[iSlot+1]; |
| 423 | aTmp = &aIndex[256]; |
| 424 | |
| 425 | nIndex = 256; |
| 426 | for(i=0; i<256; i++) aIndex[i] = (u8)i; |
| 427 | logMergesort8(aFrame, aTmp, aIndex, &nIndex); |
| 428 | memset(&aIndex[nIndex], aIndex[nIndex-1], 256-nIndex); |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | |
| 433 | /* |
| 434 | ** Recover the log-summary by reading the log file. The caller must hold |
| 435 | ** an exclusive lock on the log-summary file. |
| 436 | */ |
| 437 | static int logSummaryRecover(LogSummary *pSummary, sqlite3_file *pFd){ |
| 438 | int rc; /* Return Code */ |
| 439 | i64 nSize; /* Size of log file */ |
| 440 | LogSummaryHdr hdr; /* Recovered log-summary header */ |
| 441 | |
| 442 | memset(&hdr, 0, sizeof(hdr)); |
| 443 | |
| 444 | rc = sqlite3OsFileSize(pFd, &nSize); |
| 445 | if( rc!=SQLITE_OK ){ |
| 446 | return rc; |
| 447 | } |
| 448 | |
| 449 | if( nSize>LOG_FRAME_HDRSIZE ){ |
| 450 | u8 aBuf[LOG_FRAME_HDRSIZE]; /* Buffer to load first frame header into */ |
| 451 | u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ |
| 452 | int nFrame; /* Number of bytes at aFrame */ |
| 453 | u8 *aData; /* Pointer to data part of aFrame buffer */ |
| 454 | int iFrame; /* Index of last frame read */ |
| 455 | i64 iOffset; /* Next offset to read from log file */ |
| 456 | int nPgsz; /* Page size according to the log */ |
| 457 | u32 aCksum[2] = {2, 3}; /* Running checksum */ |
| 458 | |
| 459 | /* Read in the first frame header in the file (to determine the |
| 460 | ** database page size). |
| 461 | */ |
| 462 | rc = sqlite3OsRead(pFd, aBuf, LOG_FRAME_HDRSIZE, 0); |
| 463 | if( rc!=SQLITE_OK ){ |
| 464 | return rc; |
| 465 | } |
| 466 | |
| 467 | /* If the database page size is not a power of two, or is greater than |
| 468 | ** SQLITE_MAX_PAGE_SIZE, conclude that the log file contains no valid data. |
| 469 | */ |
| 470 | nPgsz = sqlite3Get4byte(&aBuf[0]); |
| 471 | if( nPgsz&(nPgsz-1) || nPgsz>SQLITE_MAX_PAGE_SIZE ){ |
| 472 | goto finished; |
| 473 | } |
| 474 | |
| 475 | /* Malloc a buffer to read frames into. */ |
| 476 | nFrame = nPgsz + LOG_FRAME_HDRSIZE; |
| 477 | aFrame = (u8 *)sqlite3_malloc(nFrame); |
| 478 | if( !aFrame ){ |
| 479 | return SQLITE_NOMEM; |
| 480 | } |
| 481 | aData = &aFrame[LOG_FRAME_HDRSIZE]; |
| 482 | |
| 483 | /* Read all frames from the log file. */ |
| 484 | iFrame = 0; |
| 485 | iOffset = 0; |
| 486 | for(iOffset=0; (iOffset+nFrame)<nSize; iOffset+=nFrame){ |
| 487 | u32 pgno; /* Database page number for frame */ |
| 488 | u32 nTruncate; /* dbsize field from frame header */ |
| 489 | int isValid; /* True if this frame is valid */ |
| 490 | |
| 491 | /* Read and decode the next log frame. */ |
| 492 | rc = sqlite3OsRead(pFd, aFrame, nFrame, iOffset); |
| 493 | if( rc!=SQLITE_OK ) break; |
| 494 | isValid = logDecodeFrame(aCksum, &pgno, &nTruncate, nPgsz, aData, aFrame); |
| 495 | if( !isValid ) break; |
| 496 | logSummaryAppend(pSummary, ++iFrame, pgno); |
| 497 | |
| 498 | /* If nTruncate is non-zero, this is a commit record. */ |
| 499 | if( nTruncate ){ |
| 500 | hdr.iCheck1 = aCksum[0]; |
| 501 | hdr.iCheck2 = aCksum[1]; |
| 502 | hdr.iLastPg = iFrame; |
| 503 | hdr.nPage = nTruncate; |
| 504 | hdr.pgsz = nPgsz; |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | sqlite3_free(aFrame); |
| 509 | }else{ |
| 510 | hdr.iCheck1 = 2; |
| 511 | hdr.iCheck2 = 3; |
| 512 | } |
| 513 | |
| 514 | finished: |
| 515 | logSummaryWriteHdr(pSummary, &hdr); |
| 516 | return rc; |
| 517 | } |
| 518 | |
| 519 | |
| 520 | /* |
| 521 | ** This function intializes the connection to the log-summary identified |
| 522 | ** by struct pSummary. |
| 523 | */ |
| 524 | static int logSummaryInit(LogSummary *pSummary, sqlite3_file *pFd){ |
| 525 | int rc; /* Return Code */ |
| 526 | char *zFile; /* File name for summary file */ |
| 527 | |
| 528 | assert( pSummary->fd<0 ); |
| 529 | assert( pSummary->aData==0 ); |
| 530 | assert( pSummary->nRef>0 ); |
| 531 | assert( pSummary->zPath ); |
| 532 | |
| 533 | /* Open a file descriptor on the summary file. */ |
| 534 | zFile = sqlite3_mprintf("%s-summary", pSummary->zPath); |
| 535 | if( !zFile ){ |
| 536 | return SQLITE_NOMEM; |
| 537 | } |
| 538 | pSummary->fd = open(zFile, O_RDWR|O_CREAT, S_IWUSR|S_IRUSR); |
| 539 | sqlite3_free(zFile); |
| 540 | if( pSummary->fd<0 ){ |
| 541 | return SQLITE_IOERR; |
| 542 | } |
| 543 | |
| 544 | /* Grab an exclusive lock the summary file. Then mmap() it. TODO: This |
| 545 | ** code needs to be enhanced to support a growable mapping. For now, just |
| 546 | ** make the mapping very large to start with. |
| 547 | */ |
| 548 | rc = logSummaryLock(pSummary); |
| 549 | if( rc!=SQLITE_OK ) return rc; |
| 550 | rc = logSummaryMap(pSummary, 512*1024); |
| 551 | if( rc!=SQLITE_OK ) goto out; |
| 552 | |
| 553 | /* Grab a SHARED lock on the log file. Then try to upgrade to an EXCLUSIVE |
| 554 | ** lock. If successful, then this is the first (and only) connection to |
| 555 | ** the database. In this case assume the contents of the log-summary |
| 556 | ** cannot be trusted. Zero the log-summary header to make sure. |
| 557 | ** |
| 558 | ** The SHARED lock on the log file is not released until the connection |
| 559 | ** to the database is closed. |
| 560 | */ |
| 561 | rc = sqlite3OsLock(pFd, SQLITE_LOCK_SHARED); |
| 562 | if( rc!=SQLITE_OK ) goto out; |
| 563 | rc = sqlite3OsLock(pFd, SQLITE_LOCK_EXCLUSIVE); |
| 564 | if( rc==SQLITE_OK ){ |
| 565 | /* This is the first and only connection. */ |
| 566 | memset(pSummary->aData, 0, (LOGSUMMARY_HDR_NFIELD+2)*sizeof(u32) ); |
| 567 | rc = sqlite3OsUnlock(pFd, SQLITE_LOCK_SHARED); |
| 568 | }else if( rc==SQLITE_BUSY ){ |
| 569 | rc = SQLITE_OK; |
| 570 | } |
| 571 | |
| 572 | out: |
| 573 | logSummaryUnlock(pSummary); |
| 574 | return rc; |
| 575 | } |
| 576 | |
| 577 | /* |
| 578 | ** Open a connection to the log file associated with database zDb. The |
| 579 | ** database file does not actually have to exist. zDb is used only to |
| 580 | ** figure out the name of the log file to open. If the log file does not |
| 581 | ** exist it is created by this call. |
| 582 | */ |
| 583 | int sqlite3LogOpen( |
| 584 | sqlite3_vfs *pVfs, /* vfs module to open log file with */ |
| 585 | const char *zDb, /* Name of database file */ |
| 586 | Log **ppLog /* OUT: Allocated Log handle */ |
| 587 | ){ |
| 588 | int rc; /* Return Code */ |
| 589 | Log *pRet; /* Object to allocate and return */ |
| 590 | LogSummary *pSummary = 0; /* Summary object */ |
| 591 | sqlite3_mutex *mutex = 0; /* LOG_SUMMARY_MUTEX mutex */ |
| 592 | int flags; /* Flags passed to OsOpen() */ |
| 593 | char *zWal = 0; /* Path to WAL file */ |
| 594 | int nWal; /* Length of zWal in bytes */ |
| 595 | |
| 596 | /* Zero output variables */ |
| 597 | assert( zDb ); |
| 598 | *ppLog = 0; |
| 599 | |
| 600 | /* Allocate an instance of struct Log to return. */ |
| 601 | pRet = (Log *)sqlite3MallocZero(sizeof(Log) + pVfs->szOsFile); |
| 602 | if( !pRet ) goto out; |
| 603 | pRet->pVfs = pVfs; |
| 604 | pRet->pFd = (sqlite3_file *)&pRet[1]; |
| 605 | pRet->sync_flags = SQLITE_SYNC_NORMAL; |
| 606 | |
| 607 | /* Normalize the path name. */ |
| 608 | zWal = sqlite3_mprintf("%s-wal", zDb); |
| 609 | if( !zWal ) goto out; |
| 610 | logNormalizePath(zWal); |
| 611 | flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_DB); |
| 612 | nWal = sqlite3Strlen30(zWal); |
| 613 | |
| 614 | /* Enter the mutex that protects the linked-list of LogSummary structures */ |
| 615 | if( sqlite3GlobalConfig.bCoreMutex ){ |
| 616 | mutex = sqlite3_mutex_alloc(LOG_SUMMARY_MUTEX); |
| 617 | } |
| 618 | sqlite3_mutex_enter(mutex); |
| 619 | |
| 620 | /* Search for an existing log summary object in the linked list. If one |
| 621 | ** cannot be found, allocate and initialize a new object. |
| 622 | */ |
| 623 | for(pSummary=pLogSummary; pSummary; pSummary=pSummary->pNext){ |
| 624 | int nPath = sqlite3Strlen30(pSummary->zPath); |
| 625 | if( nWal==nPath && 0==memcmp(pSummary->zPath, zWal, nPath) ) break; |
| 626 | } |
| 627 | if( !pSummary ){ |
| 628 | int nByte = sizeof(LogSummary) + nWal + 1; |
| 629 | pSummary = (LogSummary *)sqlite3MallocZero(nByte); |
| 630 | if( !pSummary ){ |
| 631 | rc = SQLITE_NOMEM; |
| 632 | goto out; |
| 633 | } |
| 634 | if( sqlite3GlobalConfig.bCoreMutex ){ |
| 635 | pSummary->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE); |
| 636 | } |
| 637 | pSummary->zPath = (char *)&pSummary[1]; |
| 638 | pSummary->fd = -1; |
| 639 | memcpy(pSummary->zPath, zWal, nWal); |
| 640 | pSummary->pNext = pLogSummary; |
| 641 | pLogSummary = pSummary; |
| 642 | } |
| 643 | pSummary->nRef++; |
| 644 | pRet->pSummary = pSummary; |
| 645 | |
| 646 | /* Exit the mutex protecting the linked-list of LogSummary objects. */ |
| 647 | sqlite3_mutex_leave(mutex); |
| 648 | mutex = 0; |
| 649 | |
| 650 | /* Open file handle on the log file. */ |
| 651 | rc = sqlite3OsOpen(pVfs, pSummary->zPath, pRet->pFd, flags, &flags); |
| 652 | if( rc!=SQLITE_OK ) goto out; |
| 653 | |
| 654 | /* Object pSummary is shared between all connections to the database made |
| 655 | ** by this process. So at this point it may or may not be connected to |
| 656 | ** the log-summary. If it is not, connect it. Otherwise, just take the |
| 657 | ** SHARED lock on the log file. |
| 658 | */ |
| 659 | sqlite3_mutex_enter(pSummary->mutex); |
| 660 | mutex = pSummary->mutex; |
| 661 | if( pSummary->fd<0 ){ |
| 662 | rc = logSummaryInit(pSummary, pRet->pFd); |
| 663 | }else{ |
| 664 | rc = sqlite3OsLock(pRet->pFd, SQLITE_LOCK_SHARED); |
| 665 | } |
| 666 | |
| 667 | out: |
| 668 | sqlite3_mutex_leave(mutex); |
| 669 | sqlite3_free(zWal); |
| 670 | if( rc!=SQLITE_OK ){ |
| 671 | assert(0); |
| 672 | if( pRet ){ |
| 673 | sqlite3OsClose(pRet->pFd); |
| 674 | sqlite3_free(pRet); |
| 675 | } |
| 676 | assert( !pSummary || pSummary->nRef==0 ); |
| 677 | sqlite3_free(pSummary); |
| 678 | } |
| 679 | *ppLog = pRet; |
| 680 | return rc; |
| 681 | } |
| 682 | |
| 683 | static int logCheckpointNext( |
| 684 | LogCheckpoint *p, /* Iterator */ |
| 685 | u32 *piPage, /* OUT: Next db page to write */ |
| 686 | u32 *piFrame /* OUT: Log frame to read from */ |
| 687 | ){ |
| 688 | u32 iMin = *piPage; |
| 689 | u32 iRet = 0xFFFFFFFF; |
| 690 | int i; |
| 691 | int nBlock = p->nFinal; |
| 692 | |
| 693 | for(i=p->nSegment-1; i>=0; i--){ |
| 694 | struct LogSegment *pSegment = &p->aSegment[i]; |
| 695 | while( pSegment->iNext<nBlock ){ |
| 696 | u32 iPg = pSegment->aDbPage[pSegment->aIndex[pSegment->iNext]]; |
| 697 | if( iPg>iMin ){ |
| 698 | if( iPg<iRet ){ |
| 699 | iRet = iPg; |
| 700 | *piFrame = i*256 + 1 + pSegment->aIndex[pSegment->iNext]; |
| 701 | } |
| 702 | break; |
| 703 | } |
| 704 | pSegment->iNext++; |
| 705 | } |
| 706 | |
| 707 | nBlock = 256; |
| 708 | } |
| 709 | |
| 710 | *piPage = iRet; |
| 711 | return (iRet==0xFFFFFFFF); |
| 712 | } |
| 713 | |
| 714 | static LogCheckpoint *logCheckpointInit(Log *pLog){ |
| 715 | u32 *aData = pLog->pSummary->aData; |
| 716 | LogCheckpoint *p; /* Return value */ |
| 717 | int nSegment; /* Number of segments to merge */ |
| 718 | u32 iLast; /* Last frame in log */ |
| 719 | int nByte; /* Number of bytes to allocate */ |
| 720 | int i; /* Iterator variable */ |
| 721 | int nFinal; /* Number of unindexed entries */ |
| 722 | struct LogSegment *pFinal; /* Final (unindexed) segment */ |
| 723 | u8 *aTmp; /* Temp space used by merge-sort */ |
| 724 | |
| 725 | iLast = pLog->hdr.iLastPg; |
| 726 | nSegment = (iLast >> 8) + 1; |
| 727 | nFinal = (iLast & 0x000000FF); |
| 728 | |
| 729 | nByte = sizeof(LogCheckpoint) + (nSegment-1)*sizeof(struct LogSegment) + 512; |
| 730 | p = (LogCheckpoint *)sqlite3_malloc(nByte); |
| 731 | if( p ){ |
| 732 | memset(p, 0, nByte); |
| 733 | p->nSegment = nSegment; |
| 734 | p->nFinal = nFinal; |
| 735 | } |
| 736 | |
| 737 | for(i=0; i<nSegment-1; i++){ |
| 738 | p->aSegment[i].aDbPage = &aData[logSummaryEntry(i*256+1)]; |
| 739 | p->aSegment[i].aIndex = (u8 *)&aData[logSummaryEntry(i*256+1)+256]; |
| 740 | } |
| 741 | pFinal = &p->aSegment[nSegment-1]; |
| 742 | |
| 743 | pFinal->aDbPage = &aData[logSummaryEntry((nSegment-1)*256+1)]; |
| 744 | pFinal->aIndex = (u8 *)&pFinal[1]; |
| 745 | aTmp = &pFinal->aIndex[256]; |
| 746 | for(i=0; i<nFinal; i++){ |
| 747 | pFinal->aIndex[i] = i; |
| 748 | } |
| 749 | logMergesort8(pFinal->aDbPage, aTmp, pFinal->aIndex, &nFinal); |
| 750 | p->nFinal = nFinal; |
| 751 | |
| 752 | return p; |
| 753 | } |
| 754 | |
| 755 | /* |
| 756 | ** Free a log iterator allocated by logCheckpointInit(). |
| 757 | */ |
| 758 | static void logCheckpointFree(LogCheckpoint *p){ |
| 759 | sqlite3_free(p); |
| 760 | } |
| 761 | |
| 762 | /* |
| 763 | ** Checkpoint the contents of the log file. |
| 764 | */ |
| 765 | static int logCheckpoint( |
| 766 | Log *pLog, /* Log connection */ |
| 767 | sqlite3_file *pFd, /* File descriptor open on db file */ |
| 768 | u8 *zBuf /* Temporary buffer to use */ |
| 769 | ){ |
| 770 | int rc; /* Return code */ |
| 771 | int pgsz = pLog->hdr.pgsz; /* Database page-size */ |
| 772 | LogCheckpoint *pIter = 0; /* Log iterator context */ |
| 773 | u32 iDbpage = 0; /* Next database page to write */ |
| 774 | u32 iFrame; /* Log frame containing data for iDbpage */ |
| 775 | |
| 776 | /* Allocate the iterator */ |
| 777 | pIter = logCheckpointInit(pLog); |
| 778 | if( !pIter ) return SQLITE_NOMEM; |
| 779 | |
| 780 | /* Sync the log file to disk */ |
| 781 | rc = sqlite3OsSync(pLog->pFd, pLog->sync_flags); |
| 782 | if( rc!=SQLITE_OK ) goto out; |
| 783 | |
| 784 | /* Iterate through the contents of the log, copying data to the db file. */ |
| 785 | while( 0==logCheckpointNext(pIter, &iDbpage, &iFrame) ){ |
| 786 | rc = sqlite3OsRead(pLog->pFd, zBuf, pgsz, |
| 787 | (iFrame-1) * (pgsz+LOG_FRAME_HDRSIZE) + LOG_FRAME_HDRSIZE |
| 788 | ); |
| 789 | if( rc!=SQLITE_OK ) goto out; |
| 790 | rc = sqlite3OsWrite(pFd, zBuf, pgsz, (iDbpage-1)*pgsz); |
| 791 | if( rc!=SQLITE_OK ) goto out; |
| 792 | } |
| 793 | |
| 794 | /* Truncate the database file */ |
| 795 | rc = sqlite3OsTruncate(pFd, ((i64)pLog->hdr.nPage*(i64)pgsz)); |
| 796 | if( rc!=SQLITE_OK ) goto out; |
| 797 | |
| 798 | /* Sync the database file. If successful, update the log-summary. */ |
| 799 | rc = sqlite3OsSync(pFd, pLog->sync_flags); |
| 800 | if( rc!=SQLITE_OK ) goto out; |
| 801 | pLog->hdr.iLastPg = 0; |
| 802 | pLog->hdr.iCheck1 = 2; |
| 803 | pLog->hdr.iCheck2 = 3; |
| 804 | logSummaryWriteHdr(pLog->pSummary, &pLog->hdr); |
| 805 | |
| 806 | /* TODO: If a crash occurs and the current log is copied into the |
| 807 | ** database there is no problem. However, if a crash occurs while |
| 808 | ** writing the next transaction into the start of the log, such that: |
| 809 | ** |
| 810 | ** * The first transaction currently in the log is left intact, but |
| 811 | ** * The second (or subsequent) transaction is damaged, |
| 812 | ** |
| 813 | ** then the database could become corrupt. |
| 814 | ** |
| 815 | ** The easiest thing to do would be to write and sync a dummy header |
| 816 | ** into the log at this point. Unfortunately, that turns out to be |
| 817 | ** an unwelcome performance hit. Alternatives are... |
| 818 | */ |
| 819 | #if 0 |
| 820 | memset(zBuf, 0, LOG_FRAME_HDRSIZE); |
| 821 | rc = sqlite3OsWrite(pLog->pFd, zBuf, LOG_FRAME_HDRSIZE, 0); |
| 822 | if( rc!=SQLITE_OK ) goto out; |
| 823 | rc = sqlite3OsSync(pLog->pFd, pLog->sync_flags); |
| 824 | #endif |
| 825 | |
| 826 | out: |
| 827 | logCheckpointFree(pIter); |
| 828 | return rc; |
| 829 | } |
| 830 | |
| 831 | /* |
| 832 | ** Close a connection to a log file. |
| 833 | */ |
| 834 | int sqlite3LogClose( |
| 835 | Log *pLog, /* Log to close */ |
| 836 | sqlite3_file *pFd, /* Database file */ |
| 837 | u8 *zBuf /* Buffer of at least page-size bytes */ |
| 838 | ){ |
| 839 | int rc = SQLITE_OK; |
| 840 | if( pLog ){ |
| 841 | LogSummary *pSummary = pLog->pSummary; |
| 842 | sqlite3_mutex *mutex = 0; |
| 843 | |
| 844 | if( sqlite3GlobalConfig.bCoreMutex ){ |
| 845 | mutex = sqlite3_mutex_alloc(LOG_SUMMARY_MUTEX); |
| 846 | } |
| 847 | sqlite3_mutex_enter(mutex); |
| 848 | |
| 849 | /* Decrement the reference count on the log summary. If this is the last |
| 850 | ** reference to the log summary object in this process, the object will |
| 851 | ** be freed. If this is also the last connection to the database, then |
| 852 | ** checkpoint the database and truncate the log and log-summary files |
| 853 | ** to zero bytes in size. |
| 854 | **/ |
| 855 | pSummary->nRef--; |
| 856 | if( pSummary->nRef==0 ){ |
| 857 | LogSummary **pp; |
| 858 | |
| 859 | rc = logSummaryLock(pSummary); |
| 860 | if( rc==SQLITE_OK ){ |
| 861 | int isTruncate = 0; |
| 862 | int rc2 = sqlite3OsLock(pLog->pFd, SQLITE_LOCK_EXCLUSIVE); |
| 863 | if( rc2==SQLITE_OK ){ |
| 864 | /* This is the last connection to the database (including other |
| 865 | ** processes). Do three things: |
| 866 | ** |
| 867 | ** 1. Checkpoint the db. |
| 868 | ** 2. Truncate the log file to zero bytes. |
| 869 | ** 3. Truncate the log-summary file to zero bytes. |
| 870 | */ |
| 871 | rc2 = logCheckpoint(pLog, pFd, zBuf); |
| 872 | if( rc2==SQLITE_OK ){ |
| 873 | rc2 = sqlite3OsTruncate(pLog->pFd, 0); |
| 874 | } |
| 875 | isTruncate = 1; |
| 876 | }else if( rc2==SQLITE_BUSY ){ |
| 877 | rc2 = SQLITE_OK; |
| 878 | } |
| 879 | logSummaryUnmap(pSummary, isTruncate); |
| 880 | sqlite3OsUnlock(pLog->pFd, SQLITE_LOCK_NONE); |
| 881 | rc = logSummaryUnlock(pSummary); |
| 882 | if( rc2!=SQLITE_OK ) rc = rc2; |
| 883 | } |
| 884 | |
| 885 | /* Remove the LogSummary object from the global list. Then free the |
| 886 | ** mutex and the object itself. |
| 887 | */ |
| 888 | for(pp=&pLogSummary; *pp!=pSummary; pp=&(*pp)->pNext); |
| 889 | *pp = (*pp)->pNext; |
| 890 | sqlite3_mutex_free(pSummary->mutex); |
| 891 | sqlite3_free(pSummary); |
| 892 | } |
| 893 | |
| 894 | sqlite3_mutex_leave(mutex); |
| 895 | |
| 896 | /* Close the connection to the log file and free the Log handle. */ |
| 897 | sqlite3OsClose(pLog->pFd); |
| 898 | sqlite3_free(pLog); |
| 899 | } |
| 900 | return rc; |
| 901 | } |
| 902 | |
| 903 | /* |
| 904 | ** Set the flags to pass to the sqlite3OsSync() function when syncing |
| 905 | ** the log file. |
| 906 | */ |
| 907 | #if 0 |
| 908 | void sqlite3LogSetSyncflags(Log *pLog, int sync_flags){ |
| 909 | assert( sync_flags==SQLITE_SYNC_NORMAL || sync_flags==SQLITE_SYNC_FULL ); |
| 910 | pLog->sync_flags = sync_flags; |
| 911 | } |
| 912 | #endif |
| 913 | |
| 914 | /* |
| 915 | ** Enter and leave the log-summary mutex. In this context, entering the |
| 916 | ** log-summary mutex means: |
| 917 | ** |
| 918 | ** 1. Obtaining mutex pLog->pSummary->mutex, and |
| 919 | ** 2. Taking an exclusive lock on the log-summary file. |
| 920 | ** |
| 921 | ** i.e. this mutex locks out other processes as well as other threads |
| 922 | ** hosted in this address space. |
| 923 | */ |
| 924 | static int logEnterMutex(Log *pLog){ |
| 925 | LogSummary *pSummary = pLog->pSummary; |
| 926 | int rc; |
| 927 | |
| 928 | sqlite3_mutex_enter(pSummary->mutex); |
| 929 | rc = logSummaryLock(pSummary); |
| 930 | if( rc!=SQLITE_OK ){ |
| 931 | sqlite3_mutex_leave(pSummary->mutex); |
| 932 | } |
| 933 | return rc; |
| 934 | } |
| 935 | static void logLeaveMutex(Log *pLog){ |
| 936 | LogSummary *pSummary = pLog->pSummary; |
| 937 | logSummaryUnlock(pSummary); |
| 938 | sqlite3_mutex_leave(pSummary->mutex); |
| 939 | } |
| 940 | |
| 941 | /* |
| 942 | ** The caller must hold a SHARED lock on the database file. |
| 943 | ** |
| 944 | ** If this call obtains a new read-lock and the database contents have been |
| 945 | ** modified since the most recent call to LogCloseSnapshot() on this Log |
| 946 | ** connection, then *pChanged is set to 1 before returning. Otherwise, it |
| 947 | ** is left unmodified. This is used by the pager layer to determine whether |
| 948 | ** or not any cached pages may be safely reused. |
| 949 | */ |
| 950 | int sqlite3LogOpenSnapshot(Log *pLog, int *pChanged){ |
| 951 | int rc = SQLITE_OK; |
| 952 | if( pLog->isLocked==0 ){ |
| 953 | if( SQLITE_OK==(rc = logEnterMutex(pLog)) ){ |
| 954 | u32 aCksum[2] = {1, 1}; |
| 955 | u32 aHdr[LOGSUMMARY_HDR_NFIELD+2]; |
| 956 | memcpy(aHdr, pLog->pSummary->aData, sizeof(aHdr)); |
| 957 | |
| 958 | /* Verify the checksum on the log-summary header. If it fails, |
| 959 | ** recover the log-summary from the log file. |
| 960 | */ |
| 961 | logChecksumBytes((u8*)aHdr, sizeof(u32)*LOGSUMMARY_HDR_NFIELD, aCksum); |
| 962 | if( aCksum[0]!=aHdr[LOGSUMMARY_HDR_NFIELD] |
| 963 | || aCksum[1]!=aHdr[LOGSUMMARY_HDR_NFIELD+1] |
| 964 | ){ |
| 965 | rc = logSummaryRecover(pLog->pSummary, pLog->pFd); |
| 966 | memcpy(aHdr, pLog->pSummary->aData, sizeof(aHdr)); |
| 967 | *pChanged = 1; |
| 968 | } |
| 969 | if( rc==SQLITE_OK ){ |
| 970 | pLog->isLocked = 1; |
| 971 | if( memcmp(&pLog->hdr, aHdr, sizeof(LogSummaryHdr)) ){ |
| 972 | *pChanged = 1; |
| 973 | memcpy(&pLog->hdr, aHdr, LOGSUMMARY_HDR_NFIELD*sizeof(u32)); |
| 974 | } |
| 975 | } |
| 976 | logLeaveMutex(pLog); |
| 977 | } |
| 978 | } |
| 979 | return rc; |
| 980 | } |
| 981 | |
| 982 | /* |
| 983 | ** Unlock the current snapshot. |
| 984 | */ |
| 985 | void sqlite3LogCloseSnapshot(Log *pLog){ |
| 986 | pLog->isLocked = 0; |
| 987 | } |
| 988 | |
| 989 | |
| 990 | |
| 991 | /* |
| 992 | ** Read a page from the log, if it is present. |
| 993 | */ |
| 994 | int sqlite3LogRead(Log *pLog, Pgno pgno, int *pInLog, u8 *pOut){ |
| 995 | u32 iRead = 0; |
| 996 | u32 *aData = pLog->pSummary->aData; |
| 997 | int iFrame = (pLog->hdr.iLastPg & 0xFFFFFF00); |
| 998 | |
| 999 | /* Do a linear search of the unindexed block of page-numbers (if any) |
| 1000 | ** at the end of the log-summary. An alternative to this would be to |
| 1001 | ** build an index in private memory each time a read transaction is |
| 1002 | ** opened on a new snapshot. |
| 1003 | */ |
| 1004 | if( pLog->hdr.iLastPg ){ |
| 1005 | u32 *pi = &aData[logSummaryEntry(pLog->hdr.iLastPg)]; |
| 1006 | u32 *piStop = pi - (pLog->hdr.iLastPg & 0xFF); |
| 1007 | while( *pi!=pgno && pi!=piStop ) pi--; |
| 1008 | if( pi!=piStop ){ |
| 1009 | iRead = (pi-piStop) + iFrame; |
| 1010 | } |
| 1011 | } |
| 1012 | assert( iRead==0 || aData[logSummaryEntry(iRead)]==pgno ); |
| 1013 | |
| 1014 | while( iRead==0 && iFrame>0 ){ |
| 1015 | int iLow = 0; |
| 1016 | int iHigh = 255; |
| 1017 | u32 *aFrame; |
| 1018 | u8 *aIndex; |
| 1019 | |
| 1020 | iFrame -= 256; |
| 1021 | aFrame = &aData[logSummaryEntry(iFrame+1)]; |
| 1022 | aIndex = (u8 *)&aFrame[256]; |
| 1023 | |
| 1024 | while( iLow<=iHigh ){ |
| 1025 | int iTest = (iLow+iHigh)>>1; |
| 1026 | u32 iPg = aFrame[aIndex[iTest]]; |
| 1027 | |
| 1028 | if( iPg==pgno ){ |
| 1029 | iRead = iFrame + 1 + aIndex[iTest]; |
| 1030 | break; |
| 1031 | } |
| 1032 | else if( iPg<pgno ){ |
| 1033 | iLow = iTest+1; |
| 1034 | }else{ |
| 1035 | iHigh = iTest-1; |
| 1036 | } |
| 1037 | } |
| 1038 | } |
| 1039 | assert( iRead==0 || aData[logSummaryEntry(iRead)]==pgno ); |
| 1040 | |
| 1041 | /* If iRead is non-zero, then it is the log frame number that contains the |
| 1042 | ** required page. Read and return data from the log file. |
| 1043 | */ |
| 1044 | if( iRead ){ |
| 1045 | i64 iOffset = (iRead-1) * (pLog->hdr.pgsz+LOG_FRAME_HDRSIZE); |
| 1046 | iOffset += LOG_FRAME_HDRSIZE; |
| 1047 | *pInLog = 1; |
| 1048 | return sqlite3OsRead(pLog->pFd, pOut, pLog->hdr.pgsz, iOffset); |
| 1049 | } |
| 1050 | |
| 1051 | *pInLog = 0; |
| 1052 | return SQLITE_OK; |
| 1053 | } |
| 1054 | |
| 1055 | |
| 1056 | /* |
| 1057 | ** Set *pPgno to the size of the database file (or zero, if unknown). |
| 1058 | */ |
| 1059 | void sqlite3LogMaxpgno(Log *pLog, Pgno *pPgno){ |
| 1060 | assert( pLog->isLocked ); |
| 1061 | *pPgno = pLog->hdr.nPage; |
| 1062 | } |
| 1063 | |
| 1064 | /* |
| 1065 | ** The caller must hold at least a RESERVED lock on the database file |
| 1066 | ** when invoking this function. |
| 1067 | ** |
| 1068 | ** This function returns SQLITE_OK if the caller may write to the database. |
| 1069 | ** Otherwise, if the caller is operating on a snapshot that has already |
| 1070 | ** been overwritten by another writer, SQLITE_OBE is returned. |
| 1071 | */ |
| 1072 | int sqlite3LogWriteLock(Log *pLog, int op){ |
| 1073 | assert( pLog->isLocked ); |
| 1074 | if( op ){ |
| 1075 | if( memcmp(&pLog->hdr, pLog->pSummary->aData, sizeof(pLog->hdr)) ){ |
| 1076 | return SQLITE_BUSY; |
| 1077 | } |
| 1078 | pLog->isWriteLocked = 1; |
| 1079 | }else if( pLog->isWriteLocked ){ |
| 1080 | memcpy(&pLog->hdr, pLog->pSummary->aData, sizeof(pLog->hdr)); |
| 1081 | pLog->isWriteLocked = 0; |
| 1082 | } |
| 1083 | return SQLITE_OK; |
| 1084 | } |
| 1085 | |
| 1086 | /* |
| 1087 | ** Write a set of frames to the log. The caller must hold at least a |
| 1088 | ** RESERVED lock on the database file. |
| 1089 | */ |
| 1090 | int sqlite3LogFrames( |
| 1091 | Log *pLog, /* Log handle to write to */ |
| 1092 | int nPgsz, /* Database page-size in bytes */ |
| 1093 | PgHdr *pList, /* List of dirty pages to write */ |
| 1094 | Pgno nTruncate, /* Database size after this commit */ |
| 1095 | int isCommit, /* True if this is a commit */ |
| 1096 | int isSync /* True to sync the log file */ |
| 1097 | ){ |
| 1098 | /* Each frame has a 20 byte header, as follows: |
| 1099 | ** |
| 1100 | ** + Pseudo-random salt (4 bytes) |
| 1101 | ** + Page number (4 bytes) |
| 1102 | ** + New database size, or 0 if not a commit frame (4 bytes) |
| 1103 | ** + Checksum (CHECKSUM_BYTES bytes); |
| 1104 | ** |
| 1105 | ** The checksum is computed based on the following: |
| 1106 | ** |
| 1107 | ** + The previous checksum, or {2, 3} for the first frame in the log. |
| 1108 | ** + The non-checksum fields of the frame header, and |
| 1109 | ** + The frame contents (page data). |
| 1110 | ** |
| 1111 | ** This format must also be understood by the code in logSummaryRecover(). |
| 1112 | ** The size of the frame header is used by LogRead() and LogCheckpoint(). |
| 1113 | */ |
| 1114 | int rc; /* Used to catch return codes */ |
| 1115 | u32 iFrame; /* Next frame address */ |
| 1116 | u8 aFrame[LOG_FRAME_HDRSIZE]; |
| 1117 | PgHdr *p; /* Iterator to run through pList with. */ |
| 1118 | u32 aCksum[2]; |
| 1119 | |
| 1120 | PgHdr *pLast; /* Last frame in list */ |
| 1121 | int nLast = 0; /* Number of extra copies of last page */ |
| 1122 | |
| 1123 | assert( LOG_FRAME_HDRSIZE==(4 * 3 + LOG_CKSM_BYTES) ); |
| 1124 | assert( pList ); |
| 1125 | |
| 1126 | aCksum[0] = pLog->hdr.iCheck1; |
| 1127 | aCksum[1] = pLog->hdr.iCheck2; |
| 1128 | |
| 1129 | /* Write the log file. */ |
| 1130 | iFrame = pLog->hdr.iLastPg; |
| 1131 | for(p=pList; p; p=p->pDirty){ |
| 1132 | u32 nDbsize; /* Db-size field for frame header */ |
| 1133 | i64 iOffset; /* Write offset in log file */ |
| 1134 | |
| 1135 | iFrame++; |
| 1136 | iOffset = (iFrame-1) * (nPgsz+sizeof(aFrame)); |
| 1137 | |
| 1138 | /* Populate and write the frame header */ |
| 1139 | nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0; |
| 1140 | logEncodeFrame(aCksum, p->pgno, nDbsize, nPgsz, p->pData, aFrame); |
| 1141 | rc = sqlite3OsWrite(pLog->pFd, aFrame, sizeof(aFrame), iOffset); |
| 1142 | if( rc!=SQLITE_OK ){ |
| 1143 | return rc; |
| 1144 | } |
| 1145 | |
| 1146 | /* Write the page data */ |
| 1147 | rc = sqlite3OsWrite(pLog->pFd, p->pData, nPgsz, iOffset + sizeof(aFrame)); |
| 1148 | if( rc!=SQLITE_OK ){ |
| 1149 | return rc; |
| 1150 | } |
| 1151 | pLast = p; |
| 1152 | } |
| 1153 | |
| 1154 | /* Sync the log file if the 'isSync' flag was specified. */ |
| 1155 | if( isSync ){ |
| 1156 | #if 0 |
| 1157 | i64 iSegment = sqlite3OsSectorSize(pLog->pFd); |
| 1158 | i64 iOffset = iFrame * (nPgsz+sizeof(aFrame)); |
| 1159 | |
| 1160 | if( iSegment<SQLITE_DEFAULT_SECTOR_SIZE ){ |
| 1161 | iSegment = SQLITE_DEFAULT_SECTOR_SIZE; |
| 1162 | } |
| 1163 | iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment); |
| 1164 | while( iOffset<iSegment ){ |
| 1165 | logEncodeFrame(aCksum,pLast->pgno,nTruncate,nPgsz,pLast->pData,aFrame); |
| 1166 | rc = sqlite3OsWrite(pLog->pFd, aFrame, sizeof(aFrame), iOffset); |
| 1167 | if( rc!=SQLITE_OK ){ |
| 1168 | return rc; |
| 1169 | } |
| 1170 | |
| 1171 | iOffset += LOG_FRAME_HDRSIZE; |
| 1172 | rc = sqlite3OsWrite(pLog->pFd, pLast->pData, nPgsz, iOffset); |
| 1173 | if( rc!=SQLITE_OK ){ |
| 1174 | return rc; |
| 1175 | } |
| 1176 | nLast++; |
| 1177 | iOffset += nPgsz; |
| 1178 | } |
| 1179 | #endif |
| 1180 | |
| 1181 | rc = sqlite3OsSync(pLog->pFd, pLog->sync_flags); |
| 1182 | if( rc!=SQLITE_OK ){ |
| 1183 | return rc; |
| 1184 | } |
| 1185 | } |
| 1186 | |
| 1187 | /* Append data to the log summary. It is not necessary to lock the |
| 1188 | ** log-summary to do this as the RESERVED lock held on the db file |
| 1189 | ** guarantees that there are no other writers, and no data that may |
| 1190 | ** be in use by existing readers is being overwritten. |
| 1191 | */ |
| 1192 | iFrame = pLog->hdr.iLastPg; |
| 1193 | for(p=pList; p; p=p->pDirty){ |
| 1194 | iFrame++; |
| 1195 | logSummaryAppend(pLog->pSummary, iFrame, p->pgno); |
| 1196 | } |
| 1197 | while( nLast>0 ){ |
| 1198 | iFrame++; |
| 1199 | nLast--; |
| 1200 | logSummaryAppend(pLog->pSummary, iFrame, pLast->pgno); |
| 1201 | } |
| 1202 | |
| 1203 | /* Update the private copy of the header. */ |
| 1204 | pLog->hdr.pgsz = nPgsz; |
| 1205 | pLog->hdr.iLastPg = iFrame; |
| 1206 | if( isCommit ){ |
| 1207 | pLog->hdr.iChange++; |
| 1208 | pLog->hdr.nPage = nTruncate; |
| 1209 | } |
| 1210 | pLog->hdr.iCheck1 = aCksum[0]; |
| 1211 | pLog->hdr.iCheck2 = aCksum[1]; |
| 1212 | |
| 1213 | /* If this is a commit, update the log-summary header too. */ |
| 1214 | if( isCommit && SQLITE_OK==(rc = logEnterMutex(pLog)) ){ |
| 1215 | logSummaryWriteHdr(pLog->pSummary, &pLog->hdr); |
| 1216 | logLeaveMutex(pLog); |
| 1217 | } |
| 1218 | |
| 1219 | return SQLITE_OK; |
| 1220 | } |
| 1221 | |
| 1222 | /* |
| 1223 | ** Checkpoint the database. When this function is called the caller |
| 1224 | ** must hold an exclusive lock on the database file. |
| 1225 | */ |
| 1226 | int sqlite3LogCheckpoint( |
| 1227 | Log *pLog, /* Log connection */ |
| 1228 | sqlite3_file *pFd, /* File descriptor open on db file */ |
| 1229 | u8 *zBuf /* Temporary buffer to use */ |
| 1230 | ){ |
| 1231 | |
| 1232 | /* Assert() that the caller is holding an EXCLUSIVE lock on the |
| 1233 | ** database file. |
| 1234 | */ |
| 1235 | #ifdef SQLITE_DEBUG |
| 1236 | int lock; |
| 1237 | sqlite3OsFileControl(pFd, SQLITE_FCNTL_LOCKSTATE, &lock); |
| 1238 | assert( lock>=4 ); |
| 1239 | #endif |
| 1240 | |
| 1241 | return logCheckpoint(pLog, pFd, zBuf); |
| 1242 | } |
| 1243 | |