blob: f90e62753656248fd920d9caaf2db052b695fba3 [file] [log] [blame]
drha3152892007-05-05 11:48:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
drhfec00ea2008-06-14 16:56:21 +000012**
drha3152892007-05-05 11:48:52 +000013** Memory allocation functions used throughout sqlite.
14**
drh633e6d52008-07-28 19:34:53 +000015** $Id: malloc.c,v 1.30 2008/07/28 19:34:53 drh Exp $
drha3152892007-05-05 11:48:52 +000016*/
17#include "sqliteInt.h"
drha3152892007-05-05 11:48:52 +000018#include <stdarg.h>
19#include <ctype.h>
20
21/*
drhb21c8cd2007-08-21 19:33:56 +000022** This routine runs when the memory allocator sees that the
23** total memory allocation is about to exceed the soft heap
24** limit.
25*/
26static void softHeapLimitEnforcer(
27 void *NotUsed,
drh153c62c2007-08-24 03:51:33 +000028 sqlite3_int64 inUse,
29 int allocSize
drhb21c8cd2007-08-21 19:33:56 +000030){
31 sqlite3_release_memory(allocSize);
32}
33
34/*
danielk197784680242008-06-23 11:11:35 +000035** Set the soft heap-size limit for the library. Passing a zero or
36** negative value indicates no limit.
drha3152892007-05-05 11:48:52 +000037*/
38void sqlite3_soft_heap_limit(int n){
drhb21c8cd2007-08-21 19:33:56 +000039 sqlite3_uint64 iLimit;
40 int overage;
41 if( n<0 ){
42 iLimit = 0;
43 }else{
44 iLimit = n;
drha3152892007-05-05 11:48:52 +000045 }
drh9ac3fe92008-06-18 18:12:04 +000046 sqlite3_initialize();
drhb21c8cd2007-08-21 19:33:56 +000047 if( iLimit>0 ){
48 sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
49 }else{
50 sqlite3_memory_alarm(0, 0, 0);
51 }
52 overage = sqlite3_memory_used() - n;
53 if( overage>0 ){
54 sqlite3_release_memory(overage);
55 }
drha3152892007-05-05 11:48:52 +000056}
57
58/*
danielk197784680242008-06-23 11:11:35 +000059** Attempt to release up to n bytes of non-essential memory currently
60** held by SQLite. An example of non-essential memory is memory used to
61** cache database pages that are not currently in use.
drha3152892007-05-05 11:48:52 +000062*/
63int sqlite3_release_memory(int n){
drh86f8c192007-08-22 00:39:19 +000064#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
danielk1977dfb316d2008-03-26 18:34:43 +000065 int nRet = sqlite3VdbeReleaseMemory(n);
66 nRet += sqlite3PagerReleaseMemory(n-nRet);
67 return nRet;
danielk19771e536952007-08-16 10:09:01 +000068#else
69 return SQLITE_OK;
70#endif
drha3152892007-05-05 11:48:52 +000071}
drha3152892007-05-05 11:48:52 +000072
drhfec00ea2008-06-14 16:56:21 +000073/*
74** State information local to the memory allocation subsystem.
75*/
76static struct {
77 sqlite3_mutex *mutex; /* Mutex to serialize access */
78
79 /*
80 ** The alarm callback and its arguments. The mem0.mutex lock will
81 ** be held while the callback is running. Recursive calls into
82 ** the memory subsystem are allowed, but no new callbacks will be
83 ** issued. The alarmBusy variable is set to prevent recursive
84 ** callbacks.
85 */
86 sqlite3_int64 alarmThreshold;
87 void (*alarmCallback)(void*, sqlite3_int64,int);
88 void *alarmArg;
89 int alarmBusy;
90
91 /*
drh9ac3fe92008-06-18 18:12:04 +000092 ** Pointers to the end of sqlite3Config.pScratch and
93 ** sqlite3Config.pPage to a block of memory that records
94 ** which pages are available.
95 */
96 u32 *aScratchFree;
97 u32 *aPageFree;
98
99 /* Number of free pages for scratch and page-cache memory */
100 u32 nScratchFree;
101 u32 nPageFree;
drhfec00ea2008-06-14 16:56:21 +0000102} mem0;
103
104/*
105** Initialize the memory allocation subsystem.
106*/
107int sqlite3MallocInit(void){
108 if( sqlite3Config.m.xMalloc==0 ){
109 sqlite3MemSetDefault();
110 }
111 memset(&mem0, 0, sizeof(mem0));
drh9ac3fe92008-06-18 18:12:04 +0000112 if( sqlite3Config.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +0000113 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
drhfec00ea2008-06-14 16:56:21 +0000114 }
drh9ac3fe92008-06-18 18:12:04 +0000115 if( sqlite3Config.pScratch && sqlite3Config.szScratch>=3000
116 && sqlite3Config.nScratch>0 ){
117 int i;
118 mem0.aScratchFree = (u32*)&((char*)sqlite3Config.pScratch)
119 [sqlite3Config.szScratch*sqlite3Config.nScratch];
120 for(i=0; i<sqlite3Config.nScratch; i++){ mem0.aScratchFree[i] = i; }
121 mem0.nScratchFree = sqlite3Config.nScratch;
122 }else{
123 sqlite3Config.pScratch = 0;
drhf7141992008-06-19 00:16:08 +0000124 sqlite3Config.szScratch = 0;
drh9ac3fe92008-06-18 18:12:04 +0000125 }
126 if( sqlite3Config.pPage && sqlite3Config.szPage>=512
127 && sqlite3Config.nPage>0 ){
128 int i;
129 mem0.aPageFree = (u32*)&((char*)sqlite3Config.pPage)
130 [sqlite3Config.szPage*sqlite3Config.nPage];
131 for(i=0; i<sqlite3Config.nPage; i++){ mem0.aPageFree[i] = i; }
132 mem0.nPageFree = sqlite3Config.nPage;
133 }else{
134 sqlite3Config.pPage = 0;
drhf7141992008-06-19 00:16:08 +0000135 sqlite3Config.szPage = 0;
drh9ac3fe92008-06-18 18:12:04 +0000136 }
drhfec00ea2008-06-14 16:56:21 +0000137 return sqlite3Config.m.xInit(sqlite3Config.m.pAppData);
138}
139
140/*
141** Deinitialize the memory allocation subsystem.
142*/
143void sqlite3MallocEnd(void){
drh9ac3fe92008-06-18 18:12:04 +0000144 sqlite3Config.m.xShutdown(sqlite3Config.m.pAppData);
145 memset(&mem0, 0, sizeof(mem0));
drhfec00ea2008-06-14 16:56:21 +0000146}
147
148/*
149** Return the amount of memory currently checked out.
150*/
151sqlite3_int64 sqlite3_memory_used(void){
drhf7141992008-06-19 00:16:08 +0000152 int n, mx;
drhc376a192008-07-14 12:30:54 +0000153 sqlite3_int64 res;
drhf7141992008-06-19 00:16:08 +0000154 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
drhc376a192008-07-14 12:30:54 +0000155 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
156 return res;
drhfec00ea2008-06-14 16:56:21 +0000157}
158
159/*
160** Return the maximum amount of memory that has ever been
161** checked out since either the beginning of this process
162** or since the most recent reset.
163*/
164sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
drhf7141992008-06-19 00:16:08 +0000165 int n, mx;
drhc376a192008-07-14 12:30:54 +0000166 sqlite3_int64 res;
drhf7141992008-06-19 00:16:08 +0000167 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
drh7986a712008-07-14 12:38:20 +0000168 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
drhc376a192008-07-14 12:30:54 +0000169 return res;
drhfec00ea2008-06-14 16:56:21 +0000170}
171
172/*
173** Change the alarm callback
174*/
175int sqlite3_memory_alarm(
176 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
177 void *pArg,
178 sqlite3_int64 iThreshold
179){
180 sqlite3_mutex_enter(mem0.mutex);
181 mem0.alarmCallback = xCallback;
182 mem0.alarmArg = pArg;
183 mem0.alarmThreshold = iThreshold;
184 sqlite3_mutex_leave(mem0.mutex);
185 return SQLITE_OK;
186}
187
188/*
189** Trigger the alarm
190*/
191static void sqlite3MallocAlarm(int nByte){
192 void (*xCallback)(void*,sqlite3_int64,int);
193 sqlite3_int64 nowUsed;
194 void *pArg;
195 if( mem0.alarmCallback==0 || mem0.alarmBusy ) return;
196 mem0.alarmBusy = 1;
197 xCallback = mem0.alarmCallback;
drhf7141992008-06-19 00:16:08 +0000198 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
drhfec00ea2008-06-14 16:56:21 +0000199 pArg = mem0.alarmArg;
200 sqlite3_mutex_leave(mem0.mutex);
201 xCallback(pArg, nowUsed, nByte);
202 sqlite3_mutex_enter(mem0.mutex);
203 mem0.alarmBusy = 0;
204}
205
drhf7141992008-06-19 00:16:08 +0000206/*
207** Do a memory allocation with statistics and alarms. Assume the
208** lock is already held.
209*/
210static int mallocWithAlarm(int n, void **pp){
211 int nFull;
212 void *p;
213 assert( sqlite3_mutex_held(mem0.mutex) );
214 nFull = sqlite3Config.m.xRoundup(n);
215 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
216 if( mem0.alarmCallback!=0 ){
217 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
218 if( nUsed+nFull >= mem0.alarmThreshold ){
219 sqlite3MallocAlarm(nFull);
220 }
221 }
danielk1977d09414c2008-06-19 18:17:49 +0000222 p = sqlite3Config.m.xMalloc(nFull);
223 if( p==0 && mem0.alarmCallback ){
224 sqlite3MallocAlarm(nFull);
drhf7141992008-06-19 00:16:08 +0000225 p = sqlite3Config.m.xMalloc(nFull);
drhf7141992008-06-19 00:16:08 +0000226 }
drhc702c7c2008-07-18 18:56:16 +0000227 if( p ){
228 nFull = sqlite3MallocSize(p);
229 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
230 }
drhf7141992008-06-19 00:16:08 +0000231 *pp = p;
232 return nFull;
233}
drhfec00ea2008-06-14 16:56:21 +0000234
235/*
236** Allocate memory. This routine is like sqlite3_malloc() except that it
237** assumes the memory subsystem has already been initialized.
238*/
239void *sqlite3Malloc(int n){
240 void *p;
drhfec00ea2008-06-14 16:56:21 +0000241 if( n<=0 ){
drhf7141992008-06-19 00:16:08 +0000242 p = 0;
drhfec00ea2008-06-14 16:56:21 +0000243 }else if( sqlite3Config.bMemstat ){
drhfec00ea2008-06-14 16:56:21 +0000244 sqlite3_mutex_enter(mem0.mutex);
drhf7141992008-06-19 00:16:08 +0000245 mallocWithAlarm(n, &p);
drhfec00ea2008-06-14 16:56:21 +0000246 sqlite3_mutex_leave(mem0.mutex);
247 }else{
248 p = sqlite3Config.m.xMalloc(n);
249 }
250 return p;
251}
252
253/*
254** This version of the memory allocation is for use by the application.
255** First make sure the memory subsystem is initialized, then do the
256** allocation.
257*/
258void *sqlite3_malloc(int n){
259#ifndef SQLITE_OMIT_AUTOINIT
260 if( sqlite3_initialize() ) return 0;
261#endif
262 return sqlite3Malloc(n);
263}
264
265/*
drhe5ae5732008-06-15 02:51:47 +0000266** Each thread may only have a single outstanding allocation from
drhfacf0302008-06-17 15:12:00 +0000267** xScratchMalloc(). We verify this constraint in the single-threaded
268** case by setting scratchAllocOut to 1 when an allocation
drhe5ae5732008-06-15 02:51:47 +0000269** is outstanding clearing it when the allocation is freed.
270*/
271#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
drhfacf0302008-06-17 15:12:00 +0000272static int scratchAllocOut = 0;
drhe5ae5732008-06-15 02:51:47 +0000273#endif
274
275
276/*
277** Allocate memory that is to be used and released right away.
278** This routine is similar to alloca() in that it is not intended
279** for situations where the memory might be held long-term. This
280** routine is intended to get memory to old large transient data
281** structures that would not normally fit on the stack of an
282** embedded processor.
283*/
drhfacf0302008-06-17 15:12:00 +0000284void *sqlite3ScratchMalloc(int n){
drhe5ae5732008-06-15 02:51:47 +0000285 void *p;
286 assert( n>0 );
drh9ac3fe92008-06-18 18:12:04 +0000287
drhe5ae5732008-06-15 02:51:47 +0000288#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
drh9ac3fe92008-06-18 18:12:04 +0000289 /* Verify that no more than one scratch allocation per thread
290 ** is outstanding at one time. (This is only checked in the
291 ** single-threaded case since checking in the multi-threaded case
292 ** would be much more complicated.) */
drhfacf0302008-06-17 15:12:00 +0000293 assert( scratchAllocOut==0 );
drhe5ae5732008-06-15 02:51:47 +0000294#endif
drh9ac3fe92008-06-18 18:12:04 +0000295
drhf7141992008-06-19 00:16:08 +0000296 if( sqlite3Config.szScratch<n ){
297 goto scratch_overflow;
298 }else{
299 sqlite3_mutex_enter(mem0.mutex);
300 if( mem0.nScratchFree==0 ){
301 sqlite3_mutex_leave(mem0.mutex);
302 goto scratch_overflow;
303 }else{
304 int i;
305 i = mem0.aScratchFree[--mem0.nScratchFree];
306 sqlite3_mutex_leave(mem0.mutex);
307 i *= sqlite3Config.szScratch;
308 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
309 p = (void*)&((char*)sqlite3Config.pScratch)[i];
310 }
drhe5ae5732008-06-15 02:51:47 +0000311 }
drhf7141992008-06-19 00:16:08 +0000312#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
313 scratchAllocOut = p!=0;
314#endif
315
drhe5ae5732008-06-15 02:51:47 +0000316 return p;
drhf7141992008-06-19 00:16:08 +0000317
318scratch_overflow:
319 if( sqlite3Config.bMemstat ){
320 sqlite3_mutex_enter(mem0.mutex);
321 n = mallocWithAlarm(n, &p);
322 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
323 sqlite3_mutex_leave(mem0.mutex);
324 }else{
325 p = sqlite3Config.m.xMalloc(n);
326 }
327#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
328 scratchAllocOut = p!=0;
329#endif
330 return p;
drhe5ae5732008-06-15 02:51:47 +0000331}
drhfacf0302008-06-17 15:12:00 +0000332void sqlite3ScratchFree(void *p){
drhe5ae5732008-06-15 02:51:47 +0000333 if( p ){
drh9ac3fe92008-06-18 18:12:04 +0000334
drhe5ae5732008-06-15 02:51:47 +0000335#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
drh9ac3fe92008-06-18 18:12:04 +0000336 /* Verify that no more than one scratch allocation per thread
337 ** is outstanding at one time. (This is only checked in the
338 ** single-threaded case since checking in the multi-threaded case
339 ** would be much more complicated.) */
drhfacf0302008-06-17 15:12:00 +0000340 assert( scratchAllocOut==1 );
341 scratchAllocOut = 0;
drhe5ae5732008-06-15 02:51:47 +0000342#endif
drh9ac3fe92008-06-18 18:12:04 +0000343
344 if( sqlite3Config.pScratch==0
drhf7141992008-06-19 00:16:08 +0000345 || p<sqlite3Config.pScratch
346 || p>=(void*)mem0.aScratchFree ){
347 if( sqlite3Config.bMemstat ){
348 int iSize = sqlite3MallocSize(p);
349 sqlite3_mutex_enter(mem0.mutex);
350 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
351 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
352 sqlite3Config.m.xFree(p);
353 sqlite3_mutex_leave(mem0.mutex);
354 }else{
355 sqlite3Config.m.xFree(p);
356 }
drh9ac3fe92008-06-18 18:12:04 +0000357 }else{
358 int i;
danielk1977867d05a2008-06-23 14:03:45 +0000359 i = (u8 *)p - (u8 *)sqlite3Config.pScratch;
drh9ac3fe92008-06-18 18:12:04 +0000360 i /= sqlite3Config.szScratch;
361 assert( i>=0 && i<sqlite3Config.nScratch );
drhf7141992008-06-19 00:16:08 +0000362 sqlite3_mutex_enter(mem0.mutex);
363 assert( mem0.nScratchFree<sqlite3Config.nScratch );
drh9ac3fe92008-06-18 18:12:04 +0000364 mem0.aScratchFree[mem0.nScratchFree++] = i;
drhf7141992008-06-19 00:16:08 +0000365 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
drh9ac3fe92008-06-18 18:12:04 +0000366 sqlite3_mutex_leave(mem0.mutex);
367 }
drhe5ae5732008-06-15 02:51:47 +0000368 }
369}
370
371/*
drhf7141992008-06-19 00:16:08 +0000372** Allocate memory to be used by the page cache. Make use of the
373** memory buffer provided by SQLITE_CONFIG_PAGECACHE if there is one
374** and that memory is of the right size and is not completely
375** consumed. Otherwise, failover to sqlite3Malloc().
drhfacf0302008-06-17 15:12:00 +0000376*/
drhf7141992008-06-19 00:16:08 +0000377void *sqlite3PageMalloc(int n){
378 void *p;
379 assert( n>0 );
380 assert( (n & (n-1))==0 );
381 assert( n>=512 && n<=32768 );
drhf7141992008-06-19 00:16:08 +0000382
383 if( sqlite3Config.szPage<n ){
384 goto page_overflow;
385 }else{
386 sqlite3_mutex_enter(mem0.mutex);
387 if( mem0.nPageFree==0 ){
388 sqlite3_mutex_leave(mem0.mutex);
389 goto page_overflow;
390 }else{
391 int i;
392 i = mem0.aPageFree[--mem0.nPageFree];
393 sqlite3_mutex_leave(mem0.mutex);
394 i *= sqlite3Config.szPage;
395 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
396 p = (void*)&((char*)sqlite3Config.pPage)[i];
397 }
398 }
399 return p;
400
401page_overflow:
402 if( sqlite3Config.bMemstat ){
403 sqlite3_mutex_enter(mem0.mutex);
404 n = mallocWithAlarm(n, &p);
405 if( p ) sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, n);
406 sqlite3_mutex_leave(mem0.mutex);
407 }else{
408 p = sqlite3Config.m.xMalloc(n);
409 }
410 return p;
drhfacf0302008-06-17 15:12:00 +0000411}
drhf7141992008-06-19 00:16:08 +0000412void sqlite3PageFree(void *p){
413 if( p ){
414 if( sqlite3Config.pPage==0
415 || p<sqlite3Config.pPage
416 || p>=(void*)mem0.aPageFree ){
danielk19774b9507a2008-06-21 08:12:15 +0000417 /* In this case, the page allocation was obtained from a regular
418 ** call to sqlite3_mem_methods.xMalloc() (a page-cache-memory
419 ** "overflow"). Free the block with sqlite3_mem_methods.xFree().
420 */
drhf7141992008-06-19 00:16:08 +0000421 if( sqlite3Config.bMemstat ){
422 int iSize = sqlite3MallocSize(p);
423 sqlite3_mutex_enter(mem0.mutex);
424 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
425 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
426 sqlite3Config.m.xFree(p);
427 sqlite3_mutex_leave(mem0.mutex);
428 }else{
429 sqlite3Config.m.xFree(p);
430 }
431 }else{
danielk19774b9507a2008-06-21 08:12:15 +0000432 /* The page allocation was allocated from the sqlite3Config.pPage
433 ** buffer. In this case all that is add the index of the page in
434 ** the sqlite3Config.pPage array to the set of free indexes stored
435 ** in the mem0.aPageFree[] array.
436 */
drhf7141992008-06-19 00:16:08 +0000437 int i;
danielk1977867d05a2008-06-23 14:03:45 +0000438 i = (u8 *)p - (u8 *)sqlite3Config.pPage;
drhf7141992008-06-19 00:16:08 +0000439 i /= sqlite3Config.szPage;
440 assert( i>=0 && i<sqlite3Config.nPage );
441 sqlite3_mutex_enter(mem0.mutex);
442 assert( mem0.nPageFree<sqlite3Config.nPage );
443 mem0.aPageFree[mem0.nPageFree++] = i;
444 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
445 sqlite3_mutex_leave(mem0.mutex);
danielk19774b9507a2008-06-21 08:12:15 +0000446#ifndef NDEBUG
447 /* Assert that a duplicate was not just inserted into aPageFree[]. */
448 for(i=0; i<mem0.nPageFree-1; i++){
449 assert( mem0.aPageFree[i]!=mem0.aPageFree[mem0.nPageFree-1] );
450 }
451#endif
drhf7141992008-06-19 00:16:08 +0000452 }
453 }
drhfacf0302008-06-17 15:12:00 +0000454}
455
456/*
drh633e6d52008-07-28 19:34:53 +0000457** TRUE if p is a lookaside memory allocation from db
458*/
459static int isLookaside(sqlite3 *db, void *p){
460 return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
461}
462
463/*
drhfec00ea2008-06-14 16:56:21 +0000464** Return the size of a memory allocation previously obtained from
465** sqlite3Malloc() or sqlite3_malloc().
466*/
467int sqlite3MallocSize(void *p){
468 return sqlite3Config.m.xSize(p);
469}
drh633e6d52008-07-28 19:34:53 +0000470int sqlite3DbMallocSize(sqlite3 *db, void *p){
471 if( isLookaside(db, p) ){
472 return db->lookaside.sz;
473 }else{
474 return sqlite3Config.m.xSize(p);
475 }
476}
drhfec00ea2008-06-14 16:56:21 +0000477
478/*
479** Free memory previously obtained from sqlite3Malloc().
480*/
481void sqlite3_free(void *p){
482 if( p==0 ) return;
483 if( sqlite3Config.bMemstat ){
484 sqlite3_mutex_enter(mem0.mutex);
drhf7141992008-06-19 00:16:08 +0000485 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
drhfec00ea2008-06-14 16:56:21 +0000486 sqlite3Config.m.xFree(p);
487 sqlite3_mutex_leave(mem0.mutex);
488 }else{
489 sqlite3Config.m.xFree(p);
490 }
491}
492
493/*
drh633e6d52008-07-28 19:34:53 +0000494** Free memory that might be associated with a particular database
495** connection.
496*/
497void sqlite3DbFree(sqlite3 *db, void *p){
498 if( isLookaside(db, p) ){
499 LookasideSlot *pBuf = (LookasideSlot*)p;
500 pBuf->pNext = db->lookaside.pFree;
501 db->lookaside.pFree = pBuf;
502 db->lookaside.nOut--;
503 }else{
504 sqlite3_free(p);
505 }
506}
507
508/*
drhfec00ea2008-06-14 16:56:21 +0000509** Change the size of an existing memory allocation
510*/
511void *sqlite3Realloc(void *pOld, int nBytes){
512 int nOld, nNew;
513 void *pNew;
514 if( pOld==0 ){
515 return sqlite3Malloc(nBytes);
516 }
517 if( nBytes<=0 ){
518 sqlite3_free(pOld);
519 return 0;
520 }
521 nOld = sqlite3MallocSize(pOld);
522 if( sqlite3Config.bMemstat ){
523 sqlite3_mutex_enter(mem0.mutex);
drhf7141992008-06-19 00:16:08 +0000524 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
drhfec00ea2008-06-14 16:56:21 +0000525 nNew = sqlite3Config.m.xRoundup(nBytes);
526 if( nOld==nNew ){
527 pNew = pOld;
528 }else{
drhf7141992008-06-19 00:16:08 +0000529 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
530 mem0.alarmThreshold ){
drhfec00ea2008-06-14 16:56:21 +0000531 sqlite3MallocAlarm(nNew-nOld);
532 }
danielk1977d09414c2008-06-19 18:17:49 +0000533 pNew = sqlite3Config.m.xRealloc(pOld, nNew);
534 if( pNew==0 && mem0.alarmCallback ){
535 sqlite3MallocAlarm(nBytes);
drhfec00ea2008-06-14 16:56:21 +0000536 pNew = sqlite3Config.m.xRealloc(pOld, nNew);
drhfec00ea2008-06-14 16:56:21 +0000537 }
538 if( pNew ){
drhc702c7c2008-07-18 18:56:16 +0000539 nNew = sqlite3MallocSize(pNew);
drhf7141992008-06-19 00:16:08 +0000540 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
drhfec00ea2008-06-14 16:56:21 +0000541 }
542 }
543 sqlite3_mutex_leave(mem0.mutex);
544 }else{
545 pNew = sqlite3Config.m.xRealloc(pOld, nBytes);
546 }
547 return pNew;
548}
549
550/*
551** The public interface to sqlite3Realloc. Make sure that the memory
552** subsystem is initialized prior to invoking sqliteRealloc.
553*/
554void *sqlite3_realloc(void *pOld, int n){
555#ifndef SQLITE_OMIT_AUTOINIT
556 if( sqlite3_initialize() ) return 0;
557#endif
558 return sqlite3Realloc(pOld, n);
559}
560
drha3152892007-05-05 11:48:52 +0000561
562/*
drh17435752007-08-16 04:30:38 +0000563** Allocate and zero memory.
drha3152892007-05-05 11:48:52 +0000564*/
drhfec00ea2008-06-14 16:56:21 +0000565void *sqlite3MallocZero(int n){
566 void *p = sqlite3Malloc(n);
drha3152892007-05-05 11:48:52 +0000567 if( p ){
568 memset(p, 0, n);
569 }
570 return p;
571}
drh17435752007-08-16 04:30:38 +0000572
573/*
574** Allocate and zero memory. If the allocation fails, make
575** the mallocFailed flag in the connection pointer.
576*/
drhfec00ea2008-06-14 16:56:21 +0000577void *sqlite3DbMallocZero(sqlite3 *db, int n){
danielk1977a1644fd2007-08-29 12:31:25 +0000578 void *p = sqlite3DbMallocRaw(db, n);
drh17435752007-08-16 04:30:38 +0000579 if( p ){
580 memset(p, 0, n);
drh17435752007-08-16 04:30:38 +0000581 }
582 return p;
583}
584
585/*
586** Allocate and zero memory. If the allocation fails, make
587** the mallocFailed flag in the connection pointer.
588*/
drhfec00ea2008-06-14 16:56:21 +0000589void *sqlite3DbMallocRaw(sqlite3 *db, int n){
drh633e6d52008-07-28 19:34:53 +0000590 void *p;
591 if( db ){
592 LookasideSlot *pBuf;
593 if( db->mallocFailed ){
594 return 0;
danielk1977a1644fd2007-08-29 12:31:25 +0000595 }
drh633e6d52008-07-28 19:34:53 +0000596 if( db->lookaside.bEnabled && n<=db->lookaside.sz
597 && (pBuf = db->lookaside.pFree)!=0 ){
598 db->lookaside.pFree = pBuf->pNext;
599 db->lookaside.nOut++;
600 if( db->lookaside.nOut>db->lookaside.mxOut ){
601 db->lookaside.mxOut = db->lookaside.nOut;
602 }
603 return (void*)pBuf;
604 }
605 }
606 p = sqlite3Malloc(n);
607 if( !p && db ){
608 db->mallocFailed = 1;
drh17435752007-08-16 04:30:38 +0000609 }
610 return p;
611}
612
danielk197726783a52007-08-29 14:06:22 +0000613/*
614** Resize the block of memory pointed to by p to n bytes. If the
drh633e6d52008-07-28 19:34:53 +0000615** resize fails, set the mallocFailed flag in the connection object.
danielk197726783a52007-08-29 14:06:22 +0000616*/
danielk1977a1644fd2007-08-29 12:31:25 +0000617void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
618 void *pNew = 0;
619 if( db->mallocFailed==0 ){
drh633e6d52008-07-28 19:34:53 +0000620 if( p==0 ){
621 return sqlite3DbMallocRaw(db, n);
622 }
623 if( isLookaside(db, p) ){
624 if( n<=db->lookaside.sz ){
625 return p;
626 }
627 pNew = sqlite3DbMallocRaw(db, n);
628 if( pNew ){
629 memcpy(pNew, p, db->lookaside.sz);
630 sqlite3DbFree(db, p);
631 }
632 }else{
633 pNew = sqlite3_realloc(p, n);
634 if( !pNew ){
635 db->mallocFailed = 1;
636 }
danielk1977a1644fd2007-08-29 12:31:25 +0000637 }
638 }
639 return pNew;
640}
641
drh17435752007-08-16 04:30:38 +0000642/*
643** Attempt to reallocate p. If the reallocation fails, then free p
644** and set the mallocFailed flag in the database connection.
645*/
646void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
drha3152892007-05-05 11:48:52 +0000647 void *pNew;
danielk1977a1644fd2007-08-29 12:31:25 +0000648 pNew = sqlite3DbRealloc(db, p, n);
drha3152892007-05-05 11:48:52 +0000649 if( !pNew ){
drh633e6d52008-07-28 19:34:53 +0000650 sqlite3DbFree(db, p);
drha3152892007-05-05 11:48:52 +0000651 }
652 return pNew;
653}
654
drha3152892007-05-05 11:48:52 +0000655/*
656** Make a copy of a string in memory obtained from sqliteMalloc(). These
657** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
658** is because when memory debugging is turned on, these two functions are
659** called via macros that record the current file and line number in the
660** ThreadData structure.
661*/
drh633e6d52008-07-28 19:34:53 +0000662char *sqlite3DbStrDup(sqlite3 *db, const char *z){
drha3152892007-05-05 11:48:52 +0000663 char *zNew;
drh633e6d52008-07-28 19:34:53 +0000664 size_t n;
665 if( z==0 ){
666 return 0;
667 }
drha3152892007-05-05 11:48:52 +0000668 n = strlen(z)+1;
drh633e6d52008-07-28 19:34:53 +0000669 assert( (n&0x7fffffff)==n );
670 zNew = sqlite3DbMallocRaw(db, (int)n);
drha3152892007-05-05 11:48:52 +0000671 if( zNew ){
672 memcpy(zNew, z, n);
danielk19771e536952007-08-16 10:09:01 +0000673 }
674 return zNew;
675}
676char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
drh633e6d52008-07-28 19:34:53 +0000677 char *zNew;
678 if( z==0 ){
679 return 0;
680 }
681 assert( (n&0x7fffffff)==n );
682 zNew = sqlite3DbMallocRaw(db, n+1);
683 if( zNew ){
684 memcpy(zNew, z, n);
685 zNew[n] = 0;
danielk19771e536952007-08-16 10:09:01 +0000686 }
687 return zNew;
688}
689
drha3152892007-05-05 11:48:52 +0000690/*
drhf089aa42008-07-08 19:34:06 +0000691** Create a string from the zFromat argument and the va_list that follows.
692** Store the string in memory obtained from sqliteMalloc() and make *pz
693** point to that string.
drha3152892007-05-05 11:48:52 +0000694*/
drhf089aa42008-07-08 19:34:06 +0000695void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
drha3152892007-05-05 11:48:52 +0000696 va_list ap;
drhf089aa42008-07-08 19:34:06 +0000697 char *z;
drha3152892007-05-05 11:48:52 +0000698
drhf089aa42008-07-08 19:34:06 +0000699 va_start(ap, zFormat);
700 z = sqlite3VMPrintf(db, zFormat, ap);
drha3152892007-05-05 11:48:52 +0000701 va_end(ap);
drh633e6d52008-07-28 19:34:53 +0000702 sqlite3DbFree(db, *pz);
drhf089aa42008-07-08 19:34:06 +0000703 *pz = z;
drha3152892007-05-05 11:48:52 +0000704}
705
706
707/*
708** This function must be called before exiting any API function (i.e.
drh17435752007-08-16 04:30:38 +0000709** returning control to the user) that has called sqlite3_malloc or
710** sqlite3_realloc.
drha3152892007-05-05 11:48:52 +0000711**
712** The returned value is normally a copy of the second argument to this
713** function. However, if a malloc() failure has occured since the previous
714** invocation SQLITE_NOMEM is returned instead.
715**
716** If the first argument, db, is not NULL and a malloc() error has occured,
717** then the connection error-code (the value returned by sqlite3_errcode())
718** is set to SQLITE_NOMEM.
719*/
drha3152892007-05-05 11:48:52 +0000720int sqlite3ApiExit(sqlite3* db, int rc){
danielk1977a1644fd2007-08-29 12:31:25 +0000721 /* If the db handle is not NULL, then we must hold the connection handle
722 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
723 ** is unsafe, as is the call to sqlite3Error().
724 */
725 assert( !db || sqlite3_mutex_held(db->mutex) );
danielk19771e536952007-08-16 10:09:01 +0000726 if( db && db->mallocFailed ){
drha3152892007-05-05 11:48:52 +0000727 sqlite3Error(db, SQLITE_NOMEM, 0);
drh17435752007-08-16 04:30:38 +0000728 db->mallocFailed = 0;
drha3152892007-05-05 11:48:52 +0000729 rc = SQLITE_NOMEM;
730 }
731 return rc & (db ? db->errMask : 0xff);
732}