blob: 38cd492afa2065ff82a38ee9cc2a3ec4d771eb33 [file] [log] [blame]
drh9a324642003-09-06 20:12:01 +00001/*
2** 2003 September 6
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains code used for creating, destroying, and populating
drh7abda852014-09-19 16:02:06 +000013** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
drh9a324642003-09-06 20:12:01 +000014*/
15#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000016#include "vdbeInt.h"
17
drh9a324642003-09-06 20:12:01 +000018/*
19** Create a new virtual database engine.
20*/
drh9ac79622013-12-18 15:11:47 +000021Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
drh9a324642003-09-06 20:12:01 +000023 Vdbe *p;
drh17435752007-08-16 04:30:38 +000024 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
drh9a324642003-09-06 20:12:01 +000025 if( p==0 ) return 0;
26 p->db = db;
27 if( db->pVdbe ){
28 db->pVdbe->pPrev = p;
29 }
30 p->pNext = db->pVdbe;
31 p->pPrev = 0;
32 db->pVdbe = p;
33 p->magic = VDBE_MAGIC_INIT;
drh9ac79622013-12-18 15:11:47 +000034 p->pParse = pParse;
drh73d5b8f2013-12-23 19:09:07 +000035 assert( pParse->aLabel==0 );
36 assert( pParse->nLabel==0 );
37 assert( pParse->nOpAlloc==0 );
drh9a324642003-09-06 20:12:01 +000038 return p;
39}
40
41/*
drh22c17b82015-05-15 04:13:15 +000042** Change the error string stored in Vdbe.zErrMsg
43*/
44void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
45 va_list ap;
46 sqlite3DbFree(p->db, p->zErrMsg);
47 va_start(ap, zFormat);
48 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
49 va_end(ap);
50}
51
52/*
drhb900aaf2006-11-09 00:24:53 +000053** Remember the SQL string for a prepared statement.
54*/
danielk19776ab3a2e2009-02-19 14:39:25 +000055void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
dan1d2ce4f2009-10-19 18:11:09 +000056 assert( isPrepareV2==1 || isPrepareV2==0 );
drhb900aaf2006-11-09 00:24:53 +000057 if( p==0 ) return;
danac455932012-11-26 19:50:41 +000058#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
danielk19776ab3a2e2009-02-19 14:39:25 +000059 if( !isPrepareV2 ) return;
60#endif
drhb900aaf2006-11-09 00:24:53 +000061 assert( p->zSql==0 );
drh17435752007-08-16 04:30:38 +000062 p->zSql = sqlite3DbStrNDup(p->db, z, n);
shanef639c402009-11-03 19:42:30 +000063 p->isPrepareV2 = (u8)isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000064}
65
66/*
67** Return the SQL associated with a prepared statement
68*/
danielk1977d0e2a852007-11-14 06:48:48 +000069const char *sqlite3_sql(sqlite3_stmt *pStmt){
danielk19776ab3a2e2009-02-19 14:39:25 +000070 Vdbe *p = (Vdbe *)pStmt;
drhef41dfe2015-09-02 17:55:12 +000071 return p ? p->zSql : 0;
drhb900aaf2006-11-09 00:24:53 +000072}
73
74/*
drhc5155252007-01-08 21:07:17 +000075** Swap all content between two VDBE structures.
drhb900aaf2006-11-09 00:24:53 +000076*/
drhc5155252007-01-08 21:07:17 +000077void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
78 Vdbe tmp, *pTmp;
79 char *zTmp;
drhc5155252007-01-08 21:07:17 +000080 tmp = *pA;
81 *pA = *pB;
82 *pB = tmp;
83 pTmp = pA->pNext;
84 pA->pNext = pB->pNext;
85 pB->pNext = pTmp;
86 pTmp = pA->pPrev;
87 pA->pPrev = pB->pPrev;
88 pB->pPrev = pTmp;
89 zTmp = pA->zSql;
90 pA->zSql = pB->zSql;
91 pB->zSql = zTmp;
danielk19776ab3a2e2009-02-19 14:39:25 +000092 pB->isPrepareV2 = pA->isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000093}
94
drh9a324642003-09-06 20:12:01 +000095/*
dan76ccd892014-08-12 13:38:52 +000096** Resize the Vdbe.aOp array so that it is at least nOp elements larger
drh81e069e2014-08-12 14:29:20 +000097** than its current size. nOp is guaranteed to be less than or equal
98** to 1024/sizeof(Op).
danielk1977ace3eb22006-01-26 10:35:04 +000099**
danielk197700e13612008-11-17 19:18:54 +0000100** If an out-of-memory error occurs while resizing the array, return
dan76ccd892014-08-12 13:38:52 +0000101** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
danielk197700e13612008-11-17 19:18:54 +0000102** unchanged (this is so that any opcodes already allocated can be
103** correctly deallocated along with the rest of the Vdbe).
drh76ff3a02004-09-24 22:32:30 +0000104*/
dan76ccd892014-08-12 13:38:52 +0000105static int growOpArray(Vdbe *v, int nOp){
drha4e5d582007-10-20 15:41:57 +0000106 VdbeOp *pNew;
drh73d5b8f2013-12-23 19:09:07 +0000107 Parse *p = v->pParse;
dan76ccd892014-08-12 13:38:52 +0000108
drh81e069e2014-08-12 14:29:20 +0000109 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
110 ** more frequent reallocs and hence provide more opportunities for
111 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
112 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
113 ** by the minimum* amount required until the size reaches 512. Normal
114 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
115 ** size of the op array or add 1KB of space, whichever is smaller. */
dan76ccd892014-08-12 13:38:52 +0000116#ifdef SQLITE_TEST_REALLOC_STRESS
117 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
118#else
danielk197700e13612008-11-17 19:18:54 +0000119 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
dan76ccd892014-08-12 13:38:52 +0000120 UNUSED_PARAMETER(nOp);
121#endif
122
drh81e069e2014-08-12 14:29:20 +0000123 assert( nOp<=(1024/sizeof(Op)) );
dan76ccd892014-08-12 13:38:52 +0000124 assert( nNew>=(p->nOpAlloc+nOp) );
drh73d5b8f2013-12-23 19:09:07 +0000125 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
drha4e5d582007-10-20 15:41:57 +0000126 if( pNew ){
drhb45f65d2009-03-01 19:42:11 +0000127 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
drh73d5b8f2013-12-23 19:09:07 +0000128 v->aOp = pNew;
drh76ff3a02004-09-24 22:32:30 +0000129 }
danielk197700e13612008-11-17 19:18:54 +0000130 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
drh76ff3a02004-09-24 22:32:30 +0000131}
132
drh313619f2013-10-31 20:34:06 +0000133#ifdef SQLITE_DEBUG
134/* This routine is just a convenient place to set a breakpoint that will
135** fire after each opcode is inserted and displayed using
136** "PRAGMA vdbe_addoptrace=on".
137*/
138static void test_addop_breakpoint(void){
139 static int n = 0;
140 n++;
141}
142#endif
143
drh76ff3a02004-09-24 22:32:30 +0000144/*
drh9a324642003-09-06 20:12:01 +0000145** Add a new instruction to the list of instructions current in the
146** VDBE. Return the address of the new instruction.
147**
148** Parameters:
149**
150** p Pointer to the VDBE
151**
152** op The opcode for this instruction
153**
drh66a51672008-01-03 00:01:23 +0000154** p1, p2, p3 Operands
drh9a324642003-09-06 20:12:01 +0000155**
danielk19774adee202004-05-08 08:23:19 +0000156** Use the sqlite3VdbeResolveLabel() function to fix an address and
drh66a51672008-01-03 00:01:23 +0000157** the sqlite3VdbeChangeP4() function to change the value of the P4
drh9a324642003-09-06 20:12:01 +0000158** operand.
159*/
drhd7970352015-11-09 12:33:39 +0000160static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
161 assert( p->pParse->nOpAlloc<=p->nOp );
162 if( growOpArray(p, 1) ) return 1;
163 assert( p->pParse->nOpAlloc>p->nOp );
164 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
165}
drh66a51672008-01-03 00:01:23 +0000166int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
drh9a324642003-09-06 20:12:01 +0000167 int i;
drh701a0ae2004-02-22 20:05:00 +0000168 VdbeOp *pOp;
drh9a324642003-09-06 20:12:01 +0000169
170 i = p->nOp;
drh9a324642003-09-06 20:12:01 +0000171 assert( p->magic==VDBE_MAGIC_INIT );
drh8df32842008-12-09 02:51:23 +0000172 assert( op>0 && op<0xff );
drh73d5b8f2013-12-23 19:09:07 +0000173 if( p->pParse->nOpAlloc<=i ){
drhd7970352015-11-09 12:33:39 +0000174 return growOp3(p, op, p1, p2, p3);
drh9a324642003-09-06 20:12:01 +0000175 }
danielk197701256832007-04-18 14:24:32 +0000176 p->nOp++;
drh701a0ae2004-02-22 20:05:00 +0000177 pOp = &p->aOp[i];
drh8df32842008-12-09 02:51:23 +0000178 pOp->opcode = (u8)op;
drh26c9b5e2008-04-11 14:56:53 +0000179 pOp->p5 = 0;
drh701a0ae2004-02-22 20:05:00 +0000180 pOp->p1 = p1;
drh701a0ae2004-02-22 20:05:00 +0000181 pOp->p2 = p2;
drh66a51672008-01-03 00:01:23 +0000182 pOp->p3 = p3;
183 pOp->p4.p = 0;
184 pOp->p4type = P4_NOTUSED;
drhc7379ce2013-10-30 02:28:23 +0000185#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh26c9b5e2008-04-11 14:56:53 +0000186 pOp->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000187#endif
188#ifdef SQLITE_DEBUG
drhe0962052013-01-29 19:14:31 +0000189 if( p->db->flags & SQLITE_VdbeAddopTrace ){
drh9ac79622013-12-18 15:11:47 +0000190 int jj, kk;
191 Parse *pParse = p->pParse;
192 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
193 struct yColCache *x = pParse->aColCache + jj;
194 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
195 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
196 kk++;
197 }
198 if( kk ) printf("\n");
drhe0962052013-01-29 19:14:31 +0000199 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
drh313619f2013-10-31 20:34:06 +0000200 test_addop_breakpoint();
drhe0962052013-01-29 19:14:31 +0000201 }
drh9a324642003-09-06 20:12:01 +0000202#endif
drh26c9b5e2008-04-11 14:56:53 +0000203#ifdef VDBE_PROFILE
204 pOp->cycles = 0;
205 pOp->cnt = 0;
206#endif
drh688852a2014-02-17 22:40:43 +0000207#ifdef SQLITE_VDBE_COVERAGE
208 pOp->iSrcLine = 0;
209#endif
drh9a324642003-09-06 20:12:01 +0000210 return i;
211}
drh66a51672008-01-03 00:01:23 +0000212int sqlite3VdbeAddOp0(Vdbe *p, int op){
213 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
214}
215int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
216 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
217}
218int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
219 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
drh701a0ae2004-02-22 20:05:00 +0000220}
221
drh076e85f2015-09-03 13:46:12 +0000222/* Generate code for an unconditional jump to instruction iDest
223*/
224int sqlite3VdbeGoto(Vdbe *p, int iDest){
drh2991ba02015-09-02 18:19:00 +0000225 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
226}
drh701a0ae2004-02-22 20:05:00 +0000227
drh076e85f2015-09-03 13:46:12 +0000228/* Generate code to cause the string zStr to be loaded into
229** register iDest
230*/
231int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
232 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
233}
234
235/*
236** Generate code that initializes multiple registers to string or integer
237** constants. The registers begin with iDest and increase consecutively.
238** One register is initialized for each characgter in zTypes[]. For each
239** "s" character in zTypes[], the register is a string if the argument is
240** not NULL, or OP_Null if the value is a null pointer. For each "i" character
241** in zTypes[], the register is initialized to an integer.
242*/
243void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
244 va_list ap;
245 int i;
246 char c;
247 va_start(ap, zTypes);
248 for(i=0; (c = zTypes[i])!=0; i++){
249 if( c=='s' ){
250 const char *z = va_arg(ap, const char*);
251 int addr = sqlite3VdbeAddOp2(p, z==0 ? OP_Null : OP_String8, 0, iDest++);
252 if( z ) sqlite3VdbeChangeP4(p, addr, z, 0);
253 }else{
254 assert( c=='i' );
255 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
256 }
257 }
258 va_end(ap);
259}
drh66a51672008-01-03 00:01:23 +0000260
drh701a0ae2004-02-22 20:05:00 +0000261/*
drh66a51672008-01-03 00:01:23 +0000262** Add an opcode that includes the p4 value as a pointer.
drhd4e70eb2008-01-02 00:34:36 +0000263*/
drh66a51672008-01-03 00:01:23 +0000264int sqlite3VdbeAddOp4(
drhd4e70eb2008-01-02 00:34:36 +0000265 Vdbe *p, /* Add the opcode to this VM */
266 int op, /* The new opcode */
drh66a51672008-01-03 00:01:23 +0000267 int p1, /* The P1 operand */
268 int p2, /* The P2 operand */
269 int p3, /* The P3 operand */
270 const char *zP4, /* The P4 operand */
271 int p4type /* P4 operand type */
drhd4e70eb2008-01-02 00:34:36 +0000272){
drh66a51672008-01-03 00:01:23 +0000273 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
274 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
drhd4e70eb2008-01-02 00:34:36 +0000275 return addr;
276}
277
278/*
drh7cc023c2015-09-03 04:28:25 +0000279** Add an opcode that includes the p4 value with a P4_INT64 or
280** P4_REAL type.
drh97bae792015-06-05 15:59:57 +0000281*/
282int sqlite3VdbeAddOp4Dup8(
283 Vdbe *p, /* Add the opcode to this VM */
284 int op, /* The new opcode */
285 int p1, /* The P1 operand */
286 int p2, /* The P2 operand */
287 int p3, /* The P3 operand */
288 const u8 *zP4, /* The P4 operand */
289 int p4type /* P4 operand type */
290){
291 char *p4copy = sqlite3DbMallocRaw(sqlite3VdbeDb(p), 8);
292 if( p4copy ) memcpy(p4copy, zP4, 8);
293 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
294}
295
296/*
drh5d9c9da2011-06-03 20:11:17 +0000297** Add an OP_ParseSchema opcode. This routine is broken out from
drhe4c88c02012-01-04 12:57:45 +0000298** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
299** as having been used.
drh5d9c9da2011-06-03 20:11:17 +0000300**
301** The zWhere string must have been obtained from sqlite3_malloc().
302** This routine will take ownership of the allocated memory.
303*/
304void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
305 int j;
306 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
307 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
308 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
309}
310
311/*
drh8cff69d2009-11-12 19:59:44 +0000312** Add an opcode that includes the p4 value as an integer.
313*/
314int sqlite3VdbeAddOp4Int(
315 Vdbe *p, /* Add the opcode to this VM */
316 int op, /* The new opcode */
317 int p1, /* The P1 operand */
318 int p2, /* The P2 operand */
319 int p3, /* The P3 operand */
320 int p4 /* The P4 operand as an integer */
321){
322 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
323 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
324 return addr;
325}
326
327/*
drh9a324642003-09-06 20:12:01 +0000328** Create a new symbolic label for an instruction that has yet to be
329** coded. The symbolic label is really just a negative number. The
330** label can be used as the P2 value of an operation. Later, when
331** the label is resolved to a specific address, the VDBE will scan
332** through its operation list and change all values of P2 which match
333** the label into the resolved address.
334**
335** The VDBE knows that a P2 value is a label because labels are
336** always negative and P2 values are suppose to be non-negative.
337** Hence, a negative P2 value is a label that has yet to be resolved.
danielk1977b5548a82004-06-26 13:51:33 +0000338**
339** Zero is returned if a malloc() fails.
drh9a324642003-09-06 20:12:01 +0000340*/
drh73d5b8f2013-12-23 19:09:07 +0000341int sqlite3VdbeMakeLabel(Vdbe *v){
342 Parse *p = v->pParse;
drhc35f3d52012-02-01 19:03:38 +0000343 int i = p->nLabel++;
drh73d5b8f2013-12-23 19:09:07 +0000344 assert( v->magic==VDBE_MAGIC_INIT );
drhc35f3d52012-02-01 19:03:38 +0000345 if( (i & (i-1))==0 ){
346 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
347 (i*2+1)*sizeof(p->aLabel[0]));
drh9a324642003-09-06 20:12:01 +0000348 }
drh76ff3a02004-09-24 22:32:30 +0000349 if( p->aLabel ){
350 p->aLabel[i] = -1;
drh9a324642003-09-06 20:12:01 +0000351 }
drh5ef09bf2015-12-09 17:23:12 +0000352 return ADDR(i);
drh9a324642003-09-06 20:12:01 +0000353}
354
355/*
356** Resolve label "x" to be the address of the next instruction to
357** be inserted. The parameter "x" must have been obtained from
danielk19774adee202004-05-08 08:23:19 +0000358** a prior call to sqlite3VdbeMakeLabel().
drh9a324642003-09-06 20:12:01 +0000359*/
drh73d5b8f2013-12-23 19:09:07 +0000360void sqlite3VdbeResolveLabel(Vdbe *v, int x){
361 Parse *p = v->pParse;
drh5ef09bf2015-12-09 17:23:12 +0000362 int j = ADDR(x);
drh73d5b8f2013-12-23 19:09:07 +0000363 assert( v->magic==VDBE_MAGIC_INIT );
drhb2b9d3d2013-08-01 01:14:43 +0000364 assert( j<p->nLabel );
drhef41dfe2015-09-02 17:55:12 +0000365 assert( j>=0 );
366 if( p->aLabel ){
drh73d5b8f2013-12-23 19:09:07 +0000367 p->aLabel[j] = v->nOp;
drh9a324642003-09-06 20:12:01 +0000368 }
drh61019c72014-01-04 16:49:02 +0000369 p->iFixedOp = v->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000370}
371
drh4611d922010-02-25 14:47:01 +0000372/*
373** Mark the VDBE as one that can only be run one time.
374*/
375void sqlite3VdbeRunOnlyOnce(Vdbe *p){
376 p->runOnlyOnce = 1;
377}
378
drhff738bc2009-09-24 00:09:58 +0000379#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
dan144926d2009-09-09 11:37:20 +0000380
381/*
382** The following type and function are used to iterate through all opcodes
383** in a Vdbe main program and each of the sub-programs (triggers) it may
384** invoke directly or indirectly. It should be used as follows:
385**
386** Op *pOp;
387** VdbeOpIter sIter;
388**
389** memset(&sIter, 0, sizeof(sIter));
390** sIter.v = v; // v is of type Vdbe*
391** while( (pOp = opIterNext(&sIter)) ){
392** // Do something with pOp
393** }
394** sqlite3DbFree(v->db, sIter.apSub);
395**
396*/
397typedef struct VdbeOpIter VdbeOpIter;
398struct VdbeOpIter {
399 Vdbe *v; /* Vdbe to iterate through the opcodes of */
400 SubProgram **apSub; /* Array of subprograms */
401 int nSub; /* Number of entries in apSub */
402 int iAddr; /* Address of next instruction to return */
403 int iSub; /* 0 = main program, 1 = first sub-program etc. */
404};
405static Op *opIterNext(VdbeOpIter *p){
406 Vdbe *v = p->v;
407 Op *pRet = 0;
408 Op *aOp;
409 int nOp;
410
411 if( p->iSub<=p->nSub ){
412
413 if( p->iSub==0 ){
414 aOp = v->aOp;
415 nOp = v->nOp;
416 }else{
417 aOp = p->apSub[p->iSub-1]->aOp;
418 nOp = p->apSub[p->iSub-1]->nOp;
419 }
420 assert( p->iAddr<nOp );
421
422 pRet = &aOp[p->iAddr];
423 p->iAddr++;
424 if( p->iAddr==nOp ){
425 p->iSub++;
426 p->iAddr = 0;
427 }
428
429 if( pRet->p4type==P4_SUBPROGRAM ){
430 int nByte = (p->nSub+1)*sizeof(SubProgram*);
431 int j;
432 for(j=0; j<p->nSub; j++){
433 if( p->apSub[j]==pRet->p4.pProgram ) break;
434 }
435 if( j==p->nSub ){
436 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
437 if( !p->apSub ){
438 pRet = 0;
439 }else{
440 p->apSub[p->nSub++] = pRet->p4.pProgram;
441 }
442 }
443 }
444 }
445
446 return pRet;
447}
448
449/*
danf3677212009-09-10 16:14:50 +0000450** Check if the program stored in the VM associated with pParse may
drhff738bc2009-09-24 00:09:58 +0000451** throw an ABORT exception (causing the statement, but not entire transaction
dan144926d2009-09-09 11:37:20 +0000452** to be rolled back). This condition is true if the main program or any
453** sub-programs contains any of the following:
454**
455** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
456** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
457** * OP_Destroy
458** * OP_VUpdate
459** * OP_VRename
dan32b09f22009-09-23 17:29:59 +0000460** * OP_FkCounter with P2==0 (immediate foreign key constraint)
drh0dd5cda2015-06-16 16:39:01 +0000461** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
dan144926d2009-09-09 11:37:20 +0000462**
danf3677212009-09-10 16:14:50 +0000463** Then check that the value of Parse.mayAbort is true if an
464** ABORT may be thrown, or false otherwise. Return true if it does
465** match, or false otherwise. This function is intended to be used as
466** part of an assert statement in the compiler. Similar to:
467**
468** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
dan144926d2009-09-09 11:37:20 +0000469*/
danf3677212009-09-10 16:14:50 +0000470int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
471 int hasAbort = 0;
dan04668832014-12-16 20:13:30 +0000472 int hasFkCounter = 0;
drh0dd5cda2015-06-16 16:39:01 +0000473 int hasCreateTable = 0;
474 int hasInitCoroutine = 0;
dan144926d2009-09-09 11:37:20 +0000475 Op *pOp;
476 VdbeOpIter sIter;
477 memset(&sIter, 0, sizeof(sIter));
478 sIter.v = v;
479
480 while( (pOp = opIterNext(&sIter))!=0 ){
481 int opcode = pOp->opcode;
482 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
483 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
drhd91c1a12013-02-09 13:58:25 +0000484 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
dan144926d2009-09-09 11:37:20 +0000485 ){
danf3677212009-09-10 16:14:50 +0000486 hasAbort = 1;
dan144926d2009-09-09 11:37:20 +0000487 break;
488 }
drh0dd5cda2015-06-16 16:39:01 +0000489 if( opcode==OP_CreateTable ) hasCreateTable = 1;
490 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
dan04668832014-12-16 20:13:30 +0000491#ifndef SQLITE_OMIT_FOREIGN_KEY
492 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
493 hasFkCounter = 1;
494 }
495#endif
dan144926d2009-09-09 11:37:20 +0000496 }
dan144926d2009-09-09 11:37:20 +0000497 sqlite3DbFree(v->db, sIter.apSub);
danf3677212009-09-10 16:14:50 +0000498
mistachkin48864df2013-03-21 21:20:32 +0000499 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
danf3677212009-09-10 16:14:50 +0000500 ** If malloc failed, then the while() loop above may not have iterated
501 ** through all opcodes and hasAbort may be set incorrectly. Return
502 ** true for this case to prevent the assert() in the callers frame
503 ** from failing. */
drh0dd5cda2015-06-16 16:39:01 +0000504 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
505 || (hasCreateTable && hasInitCoroutine) );
dan144926d2009-09-09 11:37:20 +0000506}
drhff738bc2009-09-24 00:09:58 +0000507#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
dan144926d2009-09-09 11:37:20 +0000508
drh9a324642003-09-06 20:12:01 +0000509/*
drhef41dfe2015-09-02 17:55:12 +0000510** This routine is called after all opcodes have been inserted. It loops
511** through all the opcodes and fixes up some details.
drh76ff3a02004-09-24 22:32:30 +0000512**
drhef41dfe2015-09-02 17:55:12 +0000513** (1) For each jump instruction with a negative P2 value (a label)
514** resolve the P2 value to an actual address.
danielk1977634f2982005-03-28 08:44:07 +0000515**
drhef41dfe2015-09-02 17:55:12 +0000516** (2) Compute the maximum number of arguments used by any SQL function
517** and store that value in *pMaxFuncArgs.
drha6c2ed92009-11-14 23:22:23 +0000518**
drhef41dfe2015-09-02 17:55:12 +0000519** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
520** indicate what the prepared statement actually does.
521**
522** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
523**
524** (5) Reclaim the memory allocated for storing labels.
drh76ff3a02004-09-24 22:32:30 +0000525*/
drh9cbf3422008-01-17 16:22:13 +0000526static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
drh76ff3a02004-09-24 22:32:30 +0000527 int i;
dan165921a2009-08-28 18:53:45 +0000528 int nMaxArgs = *pMaxFuncArgs;
drh76ff3a02004-09-24 22:32:30 +0000529 Op *pOp;
drh73d5b8f2013-12-23 19:09:07 +0000530 Parse *pParse = p->pParse;
531 int *aLabel = pParse->aLabel;
drhad4a4b82008-11-05 16:37:34 +0000532 p->readOnly = 1;
drh1713afb2013-06-28 01:24:57 +0000533 p->bIsReader = 0;
drh76ff3a02004-09-24 22:32:30 +0000534 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
danielk1977634f2982005-03-28 08:44:07 +0000535 u8 opcode = pOp->opcode;
536
drh8c8a8c42013-08-06 07:45:08 +0000537 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
538 ** cases from this switch! */
539 switch( opcode ){
drh8c8a8c42013-08-06 07:45:08 +0000540 case OP_Transaction: {
541 if( pOp->p2!=0 ) p->readOnly = 0;
542 /* fall thru */
543 }
544 case OP_AutoCommit:
545 case OP_Savepoint: {
546 p->bIsReader = 1;
547 break;
548 }
dand9031542013-07-05 16:54:30 +0000549#ifndef SQLITE_OMIT_WAL
drh8c8a8c42013-08-06 07:45:08 +0000550 case OP_Checkpoint:
drh9e92a472013-06-27 17:40:30 +0000551#endif
drh8c8a8c42013-08-06 07:45:08 +0000552 case OP_Vacuum:
553 case OP_JournalMode: {
554 p->readOnly = 0;
555 p->bIsReader = 1;
556 break;
557 }
danielk1977182c4ba2007-06-27 15:53:34 +0000558#ifndef SQLITE_OMIT_VIRTUALTABLE
drh8c8a8c42013-08-06 07:45:08 +0000559 case OP_VUpdate: {
560 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
561 break;
562 }
563 case OP_VFilter: {
564 int n;
565 assert( p->nOp - i >= 3 );
566 assert( pOp[-1].opcode==OP_Integer );
567 n = pOp[-1].p1;
568 if( n>nMaxArgs ) nMaxArgs = n;
569 break;
570 }
danielk1977182c4ba2007-06-27 15:53:34 +0000571#endif
drh8c8a8c42013-08-06 07:45:08 +0000572 case OP_Next:
drhf93cd942013-11-21 03:12:25 +0000573 case OP_NextIfOpen:
drh8c8a8c42013-08-06 07:45:08 +0000574 case OP_SorterNext: {
575 pOp->p4.xAdvance = sqlite3BtreeNext;
576 pOp->p4type = P4_ADVANCE;
577 break;
578 }
drhf93cd942013-11-21 03:12:25 +0000579 case OP_Prev:
580 case OP_PrevIfOpen: {
drh8c8a8c42013-08-06 07:45:08 +0000581 pOp->p4.xAdvance = sqlite3BtreePrevious;
582 pOp->p4type = P4_ADVANCE;
583 break;
584 }
danielk1977bc04f852005-03-29 08:26:13 +0000585 }
danielk1977634f2982005-03-28 08:44:07 +0000586
drh8c8a8c42013-08-06 07:45:08 +0000587 pOp->opflags = sqlite3OpcodeProperty[opcode];
drha6c2ed92009-11-14 23:22:23 +0000588 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
drh5ef09bf2015-12-09 17:23:12 +0000589 assert( ADDR(pOp->p2)<pParse->nLabel );
590 pOp->p2 = aLabel[ADDR(pOp->p2)];
drhd2981512008-01-04 19:33:49 +0000591 }
drh76ff3a02004-09-24 22:32:30 +0000592 }
drh73d5b8f2013-12-23 19:09:07 +0000593 sqlite3DbFree(p->db, pParse->aLabel);
594 pParse->aLabel = 0;
595 pParse->nLabel = 0;
danielk1977bc04f852005-03-29 08:26:13 +0000596 *pMaxFuncArgs = nMaxArgs;
drha7ab6d82014-07-21 15:44:39 +0000597 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
drh76ff3a02004-09-24 22:32:30 +0000598}
599
600/*
drh9a324642003-09-06 20:12:01 +0000601** Return the address of the next instruction to be inserted.
602*/
danielk19774adee202004-05-08 08:23:19 +0000603int sqlite3VdbeCurrentAddr(Vdbe *p){
drh9a324642003-09-06 20:12:01 +0000604 assert( p->magic==VDBE_MAGIC_INIT );
605 return p->nOp;
606}
607
dan65a7cd12009-09-01 12:16:01 +0000608/*
609** This function returns a pointer to the array of opcodes associated with
610** the Vdbe passed as the first argument. It is the callers responsibility
611** to arrange for the returned array to be eventually freed using the
612** vdbeFreeOpArray() function.
613**
614** Before returning, *pnOp is set to the number of entries in the returned
615** array. Also, *pnMaxArg is set to the larger of its current value and
616** the number of entries in the Vdbe.apArg[] array required to execute the
617** returned program.
618*/
dan165921a2009-08-28 18:53:45 +0000619VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
620 VdbeOp *aOp = p->aOp;
dan523a0872009-08-31 05:23:32 +0000621 assert( aOp && !p->db->mallocFailed );
dan65a7cd12009-09-01 12:16:01 +0000622
623 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
drha7ab6d82014-07-21 15:44:39 +0000624 assert( DbMaskAllZero(p->btreeMask) );
dan65a7cd12009-09-01 12:16:01 +0000625
dan165921a2009-08-28 18:53:45 +0000626 resolveP2Values(p, pnMaxArg);
627 *pnOp = p->nOp;
628 p->aOp = 0;
629 return aOp;
630}
631
drh9a324642003-09-06 20:12:01 +0000632/*
633** Add a whole list of operations to the operation stack. Return the
634** address of the first operation added.
635*/
drh688852a2014-02-17 22:40:43 +0000636int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
drhef41dfe2015-09-02 17:55:12 +0000637 int addr, i;
638 VdbeOp *pOut;
639 assert( nOp>0 );
drh9a324642003-09-06 20:12:01 +0000640 assert( p->magic==VDBE_MAGIC_INIT );
dan76ccd892014-08-12 13:38:52 +0000641 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
drh76ff3a02004-09-24 22:32:30 +0000642 return 0;
drh9a324642003-09-06 20:12:01 +0000643 }
644 addr = p->nOp;
drhef41dfe2015-09-02 17:55:12 +0000645 pOut = &p->aOp[addr];
646 for(i=0; i<nOp; i++, aOp++, pOut++){
drhef41dfe2015-09-02 17:55:12 +0000647 pOut->opcode = aOp->opcode;
648 pOut->p1 = aOp->p1;
drh5ef09bf2015-12-09 17:23:12 +0000649 pOut->p2 = aOp->p2;
650 assert( aOp->p2>=0 );
drhef41dfe2015-09-02 17:55:12 +0000651 pOut->p3 = aOp->p3;
652 pOut->p4type = P4_NOTUSED;
653 pOut->p4.p = 0;
654 pOut->p5 = 0;
drhc7379ce2013-10-30 02:28:23 +0000655#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhef41dfe2015-09-02 17:55:12 +0000656 pOut->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000657#endif
drh688852a2014-02-17 22:40:43 +0000658#ifdef SQLITE_VDBE_COVERAGE
drhef41dfe2015-09-02 17:55:12 +0000659 pOut->iSrcLine = iLineno+i;
drh688852a2014-02-17 22:40:43 +0000660#else
drhef41dfe2015-09-02 17:55:12 +0000661 (void)iLineno;
drh688852a2014-02-17 22:40:43 +0000662#endif
drhc7379ce2013-10-30 02:28:23 +0000663#ifdef SQLITE_DEBUG
drhef41dfe2015-09-02 17:55:12 +0000664 if( p->db->flags & SQLITE_VdbeAddopTrace ){
665 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
drh9a324642003-09-06 20:12:01 +0000666 }
drhef41dfe2015-09-02 17:55:12 +0000667#endif
drh9a324642003-09-06 20:12:01 +0000668 }
drhef41dfe2015-09-02 17:55:12 +0000669 p->nOp += nOp;
drh9a324642003-09-06 20:12:01 +0000670 return addr;
671}
672
dan6f9702e2014-11-01 20:38:06 +0000673#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
674/*
675** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
676*/
dan037b5322014-11-03 11:25:32 +0000677void sqlite3VdbeScanStatus(
dan6f9702e2014-11-01 20:38:06 +0000678 Vdbe *p, /* VM to add scanstatus() to */
679 int addrExplain, /* Address of OP_Explain (or 0) */
680 int addrLoop, /* Address of loop counter */
681 int addrVisit, /* Address of rows visited counter */
drh518140e2014-11-06 03:55:10 +0000682 LogEst nEst, /* Estimated number of output rows */
dan6f9702e2014-11-01 20:38:06 +0000683 const char *zName /* Name of table or index being scanned */
684){
dan037b5322014-11-03 11:25:32 +0000685 int nByte = (p->nScan+1) * sizeof(ScanStatus);
686 ScanStatus *aNew;
687 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
dan6f9702e2014-11-01 20:38:06 +0000688 if( aNew ){
dan037b5322014-11-03 11:25:32 +0000689 ScanStatus *pNew = &aNew[p->nScan++];
dan6f9702e2014-11-01 20:38:06 +0000690 pNew->addrExplain = addrExplain;
691 pNew->addrLoop = addrLoop;
692 pNew->addrVisit = addrVisit;
693 pNew->nEst = nEst;
694 pNew->zName = sqlite3DbStrDup(p->db, zName);
695 p->aScan = aNew;
696 }
697}
698#endif
699
700
drh9a324642003-09-06 20:12:01 +0000701/*
drh0ff287f2015-09-02 18:40:33 +0000702** Change the value of the opcode, or P1, P2, P3, or P5 operands
703** for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000704*/
drh0ff287f2015-09-02 18:40:33 +0000705void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
706 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
707}
drh88caeac2011-08-24 15:12:08 +0000708void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000709 sqlite3VdbeGetOp(p,addr)->p1 = val;
drh9a324642003-09-06 20:12:01 +0000710}
drh88caeac2011-08-24 15:12:08 +0000711void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000712 sqlite3VdbeGetOp(p,addr)->p2 = val;
drh9a324642003-09-06 20:12:01 +0000713}
drh88caeac2011-08-24 15:12:08 +0000714void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000715 sqlite3VdbeGetOp(p,addr)->p3 = val;
danielk1977207872a2008-01-03 07:54:23 +0000716}
drh0ff287f2015-09-02 18:40:33 +0000717void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){
718 sqlite3VdbeGetOp(p,-1)->p5 = p5;
danielk19771f4aa332008-01-03 09:51:55 +0000719}
720
721/*
drhf8875402006-03-17 13:56:34 +0000722** Change the P2 operand of instruction addr so that it points to
drhd654be82005-09-20 17:42:23 +0000723** the address of the next instruction to be coded.
724*/
725void sqlite3VdbeJumpHere(Vdbe *p, int addr){
drh61019c72014-01-04 16:49:02 +0000726 p->pParse->iFixedOp = p->nOp - 1;
drh0ff287f2015-09-02 18:40:33 +0000727 sqlite3VdbeChangeP2(p, addr, p->nOp);
drhd654be82005-09-20 17:42:23 +0000728}
drhb38ad992005-09-16 00:27:01 +0000729
drhb7f6f682006-07-08 17:06:43 +0000730
731/*
732** If the input FuncDef structure is ephemeral, then free it. If
733** the FuncDef is not ephermal, then do nothing.
734*/
drh633e6d52008-07-28 19:34:53 +0000735static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
drhd36e1042013-09-06 13:10:12 +0000736 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
drh633e6d52008-07-28 19:34:53 +0000737 sqlite3DbFree(db, pDef);
drhb7f6f682006-07-08 17:06:43 +0000738 }
739}
740
dand46def72010-07-24 11:28:28 +0000741static void vdbeFreeOpArray(sqlite3 *, Op *, int);
742
drhb38ad992005-09-16 00:27:01 +0000743/*
drh66a51672008-01-03 00:01:23 +0000744** Delete a P4 value if necessary.
drhb38ad992005-09-16 00:27:01 +0000745*/
drh633e6d52008-07-28 19:34:53 +0000746static void freeP4(sqlite3 *db, int p4type, void *p4){
drh0acb7e42008-06-25 00:12:41 +0000747 if( p4 ){
dand46def72010-07-24 11:28:28 +0000748 assert( db );
drh66a51672008-01-03 00:01:23 +0000749 switch( p4type ){
drh9c7c9132015-06-26 18:16:52 +0000750 case P4_FUNCCTX: {
751 freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc);
752 /* Fall through into the next case */
753 }
drh66a51672008-01-03 00:01:23 +0000754 case P4_REAL:
755 case P4_INT64:
drh66a51672008-01-03 00:01:23 +0000756 case P4_DYNAMIC:
drh2ec2fb22013-11-06 19:59:23 +0000757 case P4_INTARRAY: {
drh633e6d52008-07-28 19:34:53 +0000758 sqlite3DbFree(db, p4);
drhac1733d2005-09-17 17:58:22 +0000759 break;
760 }
drh2ec2fb22013-11-06 19:59:23 +0000761 case P4_KEYINFO: {
762 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
763 break;
764 }
drh28935362013-12-07 20:39:19 +0000765#ifdef SQLITE_ENABLE_CURSOR_HINTS
766 case P4_EXPR: {
767 sqlite3ExprDelete(db, (Expr*)p4);
768 break;
769 }
770#endif
drhb9755982010-07-24 16:34:37 +0000771 case P4_MPRINTF: {
drh7043db92010-07-26 12:38:12 +0000772 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
drhb9755982010-07-24 16:34:37 +0000773 break;
774 }
drh66a51672008-01-03 00:01:23 +0000775 case P4_FUNCDEF: {
drh633e6d52008-07-28 19:34:53 +0000776 freeEphemeralFunction(db, (FuncDef*)p4);
drhb7f6f682006-07-08 17:06:43 +0000777 break;
778 }
drh66a51672008-01-03 00:01:23 +0000779 case P4_MEM: {
drhc176c272010-07-26 13:57:59 +0000780 if( db->pnBytesFreed==0 ){
781 sqlite3ValueFree((sqlite3_value*)p4);
782 }else{
drhf37c68e2010-07-26 14:20:06 +0000783 Mem *p = (Mem*)p4;
drh17bcb102014-09-18 21:25:33 +0000784 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drhf37c68e2010-07-26 14:20:06 +0000785 sqlite3DbFree(db, p);
drhc176c272010-07-26 13:57:59 +0000786 }
drhac1733d2005-09-17 17:58:22 +0000787 break;
788 }
danielk1977595a5232009-07-24 17:58:53 +0000789 case P4_VTAB : {
dand46def72010-07-24 11:28:28 +0000790 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
danielk1977595a5232009-07-24 17:58:53 +0000791 break;
792 }
drhb38ad992005-09-16 00:27:01 +0000793 }
794 }
795}
796
dan65a7cd12009-09-01 12:16:01 +0000797/*
798** Free the space allocated for aOp and any p4 values allocated for the
799** opcodes contained within. If aOp is not NULL it is assumed to contain
800** nOp entries.
801*/
dan165921a2009-08-28 18:53:45 +0000802static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
803 if( aOp ){
804 Op *pOp;
805 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
806 freeP4(db, pOp->p4type, pOp->p4.p);
drhc7379ce2013-10-30 02:28:23 +0000807#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
dan165921a2009-08-28 18:53:45 +0000808 sqlite3DbFree(db, pOp->zComment);
809#endif
810 }
811 }
812 sqlite3DbFree(db, aOp);
813}
814
dan65a7cd12009-09-01 12:16:01 +0000815/*
dand19c9332010-07-26 12:05:17 +0000816** Link the SubProgram object passed as the second argument into the linked
817** list at Vdbe.pSubProgram. This list is used to delete all sub-program
818** objects when the VM is no longer required.
dan65a7cd12009-09-01 12:16:01 +0000819*/
dand19c9332010-07-26 12:05:17 +0000820void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
821 p->pNext = pVdbe->pProgram;
822 pVdbe->pProgram = p;
dan165921a2009-08-28 18:53:45 +0000823}
824
drh9a324642003-09-06 20:12:01 +0000825/*
drh48f2d3b2011-09-16 01:34:43 +0000826** Change the opcode at addr into OP_Noop
drhf8875402006-03-17 13:56:34 +0000827*/
drh48f2d3b2011-09-16 01:34:43 +0000828void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
dan76ccd892014-08-12 13:38:52 +0000829 if( addr<p->nOp ){
danielk197792d4d7a2007-05-04 12:05:56 +0000830 VdbeOp *pOp = &p->aOp[addr];
drh633e6d52008-07-28 19:34:53 +0000831 sqlite3 *db = p->db;
drh48f2d3b2011-09-16 01:34:43 +0000832 freeP4(db, pOp->p4type, pOp->p4.p);
833 memset(pOp, 0, sizeof(pOp[0]));
834 pOp->opcode = OP_Noop;
drhf8875402006-03-17 13:56:34 +0000835 }
836}
837
838/*
drh39c4b822014-09-29 15:42:01 +0000839** If the last opcode is "op" and it is not a jump destination,
840** then remove it. Return true if and only if an opcode was removed.
drh762c1c42014-01-02 19:35:30 +0000841*/
drh61019c72014-01-04 16:49:02 +0000842int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
843 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
844 sqlite3VdbeChangeToNoop(p, p->nOp-1);
845 return 1;
846 }else{
847 return 0;
848 }
drh762c1c42014-01-02 19:35:30 +0000849}
850
851/*
drh66a51672008-01-03 00:01:23 +0000852** Change the value of the P4 operand for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000853** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000854** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000855** few minor changes to the program.
856**
drh66a51672008-01-03 00:01:23 +0000857** If n>=0 then the P4 operand is dynamic, meaning that a copy of
drh17435752007-08-16 04:30:38 +0000858** the string is made into memory obtained from sqlite3_malloc().
drh66a51672008-01-03 00:01:23 +0000859** A value of n==0 means copy bytes of zP4 up to and including the
860** first null byte. If n>0 then copy n+1 bytes of zP4.
danielk19771f55c052005-05-19 08:42:59 +0000861**
drh66a51672008-01-03 00:01:23 +0000862** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
danielk19771f55c052005-05-19 08:42:59 +0000863** to a string or structure that is guaranteed to exist for the lifetime of
864** the Vdbe. In these cases we can just copy the pointer.
drh9a324642003-09-06 20:12:01 +0000865**
drh66a51672008-01-03 00:01:23 +0000866** If addr<0 then change P4 on the most recently inserted instruction.
drh9a324642003-09-06 20:12:01 +0000867*/
drh66a51672008-01-03 00:01:23 +0000868void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
drh9a324642003-09-06 20:12:01 +0000869 Op *pOp;
drh633e6d52008-07-28 19:34:53 +0000870 sqlite3 *db;
drh91fd4d42008-01-19 20:11:25 +0000871 assert( p!=0 );
drh633e6d52008-07-28 19:34:53 +0000872 db = p->db;
drh91fd4d42008-01-19 20:11:25 +0000873 assert( p->magic==VDBE_MAGIC_INIT );
drh633e6d52008-07-28 19:34:53 +0000874 if( p->aOp==0 || db->mallocFailed ){
drh2ec2fb22013-11-06 19:59:23 +0000875 if( n!=P4_VTAB ){
drh633e6d52008-07-28 19:34:53 +0000876 freeP4(db, n, (void*)*(char**)&zP4);
danielk1977261919c2005-12-06 12:52:59 +0000877 }
danielk1977d5d56522005-03-16 12:15:20 +0000878 return;
879 }
drh7b746032009-06-26 12:15:22 +0000880 assert( p->nOp>0 );
drh91fd4d42008-01-19 20:11:25 +0000881 assert( addr<p->nOp );
882 if( addr<0 ){
drh9a324642003-09-06 20:12:01 +0000883 addr = p->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000884 }
885 pOp = &p->aOp[addr];
drh079a3072014-03-19 14:10:55 +0000886 assert( pOp->p4type==P4_NOTUSED
887 || pOp->p4type==P4_INT32
888 || pOp->p4type==P4_KEYINFO );
drh633e6d52008-07-28 19:34:53 +0000889 freeP4(db, pOp->p4type, pOp->p4.p);
drh66a51672008-01-03 00:01:23 +0000890 pOp->p4.p = 0;
drh98757152008-01-09 23:04:12 +0000891 if( n==P4_INT32 ){
mlcreech12d40822008-03-06 07:35:21 +0000892 /* Note: this cast is safe, because the origin data point was an int
893 ** that was cast to a (const char *). */
shane1fc41292008-07-08 22:28:48 +0000894 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
drh8df32842008-12-09 02:51:23 +0000895 pOp->p4type = P4_INT32;
drh98757152008-01-09 23:04:12 +0000896 }else if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +0000897 pOp->p4.p = 0;
898 pOp->p4type = P4_NOTUSED;
899 }else if( n==P4_KEYINFO ){
danielk19772dca4ac2008-01-03 11:50:29 +0000900 pOp->p4.p = (void*)zP4;
drh66a51672008-01-03 00:01:23 +0000901 pOp->p4type = P4_KEYINFO;
drh28935362013-12-07 20:39:19 +0000902#ifdef SQLITE_ENABLE_CURSOR_HINTS
903 }else if( n==P4_EXPR ){
904 /* Responsibility for deleting the Expr tree is handed over to the
905 ** VDBE by this operation. The caller should have already invoked
906 ** sqlite3ExprDup() or whatever other routine is needed to make a
907 ** private copy of the tree. */
908 pOp->p4.pExpr = (Expr*)zP4;
909 pOp->p4type = P4_EXPR;
910#endif
danielk1977595a5232009-07-24 17:58:53 +0000911 }else if( n==P4_VTAB ){
912 pOp->p4.p = (void*)zP4;
913 pOp->p4type = P4_VTAB;
914 sqlite3VtabLock((VTable *)zP4);
915 assert( ((VTable *)zP4)->db==p->db );
drh9a324642003-09-06 20:12:01 +0000916 }else if( n<0 ){
danielk19772dca4ac2008-01-03 11:50:29 +0000917 pOp->p4.p = (void*)zP4;
drh8df32842008-12-09 02:51:23 +0000918 pOp->p4type = (signed char)n;
drh9a324642003-09-06 20:12:01 +0000919 }else{
drhea678832008-12-10 19:26:22 +0000920 if( n==0 ) n = sqlite3Strlen30(zP4);
danielk19772dca4ac2008-01-03 11:50:29 +0000921 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
drh66a51672008-01-03 00:01:23 +0000922 pOp->p4type = P4_DYNAMIC;
drh9a324642003-09-06 20:12:01 +0000923 }
924}
925
drh2ec2fb22013-11-06 19:59:23 +0000926/*
927** Set the P4 on the most recently added opcode to the KeyInfo for the
928** index given.
929*/
930void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
931 Vdbe *v = pParse->pVdbe;
932 assert( v!=0 );
933 assert( pIdx!=0 );
934 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
935 P4_KEYINFO);
936}
937
drhc7379ce2013-10-30 02:28:23 +0000938#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhad6d9462004-09-19 02:15:24 +0000939/*
mistachkind5578432012-08-25 10:01:29 +0000940** Change the comment on the most recently coded instruction. Or
drh16ee60f2008-06-20 18:13:25 +0000941** insert a No-op and add the comment to that new instruction. This
942** makes the code easier to read during debugging. None of this happens
943** in a production build.
drhad6d9462004-09-19 02:15:24 +0000944*/
drhb07028f2011-10-14 21:49:18 +0000945static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
danielk197701256832007-04-18 14:24:32 +0000946 assert( p->nOp>0 || p->aOp==0 );
drhd4e70eb2008-01-02 00:34:36 +0000947 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
danielk1977dba01372008-01-05 18:44:29 +0000948 if( p->nOp ){
drhb07028f2011-10-14 21:49:18 +0000949 assert( p->aOp );
950 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
951 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
952 }
953}
954void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
955 va_list ap;
956 if( p ){
danielk1977dba01372008-01-05 18:44:29 +0000957 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000958 vdbeVComment(p, zFormat, ap);
danielk1977dba01372008-01-05 18:44:29 +0000959 va_end(ap);
960 }
drhad6d9462004-09-19 02:15:24 +0000961}
drh16ee60f2008-06-20 18:13:25 +0000962void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
963 va_list ap;
drhb07028f2011-10-14 21:49:18 +0000964 if( p ){
965 sqlite3VdbeAddOp0(p, OP_Noop);
drh16ee60f2008-06-20 18:13:25 +0000966 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000967 vdbeVComment(p, zFormat, ap);
drh16ee60f2008-06-20 18:13:25 +0000968 va_end(ap);
969 }
970}
971#endif /* NDEBUG */
drhad6d9462004-09-19 02:15:24 +0000972
drh688852a2014-02-17 22:40:43 +0000973#ifdef SQLITE_VDBE_COVERAGE
974/*
975** Set the value if the iSrcLine field for the previously coded instruction.
976*/
977void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
978 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
979}
980#endif /* SQLITE_VDBE_COVERAGE */
981
drh9a324642003-09-06 20:12:01 +0000982/*
drh20411ea2009-05-29 19:00:12 +0000983** Return the opcode for a given address. If the address is -1, then
984** return the most recently inserted opcode.
985**
986** If a memory allocation error has occurred prior to the calling of this
987** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
drhf83dc1e2010-06-03 12:09:52 +0000988** is readable but not writable, though it is cast to a writable value.
989** The return of a dummy opcode allows the call to continue functioning
peter.d.reid60ec9142014-09-06 16:39:46 +0000990** after an OOM fault without having to check to see if the return from
drhf83dc1e2010-06-03 12:09:52 +0000991** this routine is a valid pointer. But because the dummy.opcode is 0,
992** dummy will never be written to. This is verified by code inspection and
993** by running with Valgrind.
drh9a324642003-09-06 20:12:01 +0000994*/
danielk19774adee202004-05-08 08:23:19 +0000995VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
drha0b75da2010-07-02 18:44:37 +0000996 /* C89 specifies that the constant "dummy" will be initialized to all
997 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
mistachkin0fe5f952011-09-14 18:19:08 +0000998 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
drh9a324642003-09-06 20:12:01 +0000999 assert( p->magic==VDBE_MAGIC_INIT );
drh37b89a02009-06-19 00:33:31 +00001000 if( addr<0 ){
drh37b89a02009-06-19 00:33:31 +00001001 addr = p->nOp - 1;
1002 }
drh17435752007-08-16 04:30:38 +00001003 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
drh20411ea2009-05-29 19:00:12 +00001004 if( p->db->mallocFailed ){
drhf83dc1e2010-06-03 12:09:52 +00001005 return (VdbeOp*)&dummy;
drh20411ea2009-05-29 19:00:12 +00001006 }else{
1007 return &p->aOp[addr];
1008 }
drh9a324642003-09-06 20:12:01 +00001009}
1010
drhc7379ce2013-10-30 02:28:23 +00001011#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
drh81316f82013-10-29 20:40:47 +00001012/*
drhf63552b2013-10-30 00:25:03 +00001013** Return an integer value for one of the parameters to the opcode pOp
1014** determined by character c.
1015*/
1016static int translateP(char c, const Op *pOp){
1017 if( c=='1' ) return pOp->p1;
1018 if( c=='2' ) return pOp->p2;
1019 if( c=='3' ) return pOp->p3;
1020 if( c=='4' ) return pOp->p4.i;
1021 return pOp->p5;
1022}
1023
drh81316f82013-10-29 20:40:47 +00001024/*
drh4eded602013-12-20 15:59:20 +00001025** Compute a string for the "comment" field of a VDBE opcode listing.
1026**
1027** The Synopsis: field in comments in the vdbe.c source file gets converted
1028** to an extra string that is appended to the sqlite3OpcodeName(). In the
1029** absence of other comments, this synopsis becomes the comment on the opcode.
1030** Some translation occurs:
1031**
1032** "PX" -> "r[X]"
1033** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1034** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1035** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
drh81316f82013-10-29 20:40:47 +00001036*/
drhf63552b2013-10-30 00:25:03 +00001037static int displayComment(
1038 const Op *pOp, /* The opcode to be commented */
1039 const char *zP4, /* Previously obtained value for P4 */
1040 char *zTemp, /* Write result here */
1041 int nTemp /* Space available in zTemp[] */
1042){
drh81316f82013-10-29 20:40:47 +00001043 const char *zOpName;
1044 const char *zSynopsis;
1045 int nOpName;
1046 int ii, jj;
1047 zOpName = sqlite3OpcodeName(pOp->opcode);
1048 nOpName = sqlite3Strlen30(zOpName);
1049 if( zOpName[nOpName+1] ){
1050 int seenCom = 0;
drhf63552b2013-10-30 00:25:03 +00001051 char c;
drh81316f82013-10-29 20:40:47 +00001052 zSynopsis = zOpName += nOpName + 1;
drhf63552b2013-10-30 00:25:03 +00001053 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1054 if( c=='P' ){
1055 c = zSynopsis[++ii];
1056 if( c=='4' ){
1057 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1058 }else if( c=='X' ){
1059 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1060 seenCom = 1;
drh81316f82013-10-29 20:40:47 +00001061 }else{
drhf63552b2013-10-30 00:25:03 +00001062 int v1 = translateP(c, pOp);
1063 int v2;
1064 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1065 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1066 ii += 3;
1067 jj += sqlite3Strlen30(zTemp+jj);
1068 v2 = translateP(zSynopsis[ii], pOp);
drh4eded602013-12-20 15:59:20 +00001069 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1070 ii += 2;
1071 v2++;
1072 }
1073 if( v2>1 ){
1074 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1075 }
drhf63552b2013-10-30 00:25:03 +00001076 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1077 ii += 4;
1078 }
drh81316f82013-10-29 20:40:47 +00001079 }
1080 jj += sqlite3Strlen30(zTemp+jj);
1081 }else{
drhf63552b2013-10-30 00:25:03 +00001082 zTemp[jj++] = c;
drh81316f82013-10-29 20:40:47 +00001083 }
1084 }
1085 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1086 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1087 jj += sqlite3Strlen30(zTemp+jj);
1088 }
1089 if( jj<nTemp ) zTemp[jj] = 0;
1090 }else if( pOp->zComment ){
1091 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1092 jj = sqlite3Strlen30(zTemp);
1093 }else{
1094 zTemp[0] = 0;
1095 jj = 0;
1096 }
1097 return jj;
1098}
1099#endif /* SQLITE_DEBUG */
1100
drhf7e36902015-08-13 21:32:41 +00001101#if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1102/*
1103** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1104** that can be displayed in the P4 column of EXPLAIN output.
1105*/
1106static int displayP4Expr(int nTemp, char *zTemp, Expr *pExpr){
drha67a3162015-08-15 00:51:23 +00001107 const char *zOp = 0;
1108 int n;
drhf7e36902015-08-13 21:32:41 +00001109 switch( pExpr->op ){
1110 case TK_STRING:
1111 sqlite3_snprintf(nTemp, zTemp, "%Q", pExpr->u.zToken);
1112 break;
drhf7e36902015-08-13 21:32:41 +00001113 case TK_INTEGER:
1114 sqlite3_snprintf(nTemp, zTemp, "%d", pExpr->u.iValue);
1115 break;
drhf7e36902015-08-13 21:32:41 +00001116 case TK_NULL:
1117 sqlite3_snprintf(nTemp, zTemp, "NULL");
1118 break;
drhf7e36902015-08-13 21:32:41 +00001119 case TK_REGISTER: {
1120 sqlite3_snprintf(nTemp, zTemp, "r[%d]", pExpr->iTable);
1121 break;
1122 }
drhf7e36902015-08-13 21:32:41 +00001123 case TK_COLUMN: {
drhfe663522015-08-14 01:03:21 +00001124 if( pExpr->iColumn<0 ){
1125 sqlite3_snprintf(nTemp, zTemp, "rowid");
1126 }else{
1127 sqlite3_snprintf(nTemp, zTemp, "c%d", (int)pExpr->iColumn);
1128 }
drhf7e36902015-08-13 21:32:41 +00001129 break;
1130 }
drha67a3162015-08-15 00:51:23 +00001131 case TK_LT: zOp = "LT"; break;
1132 case TK_LE: zOp = "LE"; break;
1133 case TK_GT: zOp = "GT"; break;
1134 case TK_GE: zOp = "GE"; break;
1135 case TK_NE: zOp = "NE"; break;
1136 case TK_EQ: zOp = "EQ"; break;
1137 case TK_IS: zOp = "IS"; break;
1138 case TK_ISNOT: zOp = "ISNOT"; break;
1139 case TK_AND: zOp = "AND"; break;
1140 case TK_OR: zOp = "OR"; break;
1141 case TK_PLUS: zOp = "ADD"; break;
1142 case TK_STAR: zOp = "MUL"; break;
1143 case TK_MINUS: zOp = "SUB"; break;
1144 case TK_REM: zOp = "REM"; break;
1145 case TK_BITAND: zOp = "BITAND"; break;
1146 case TK_BITOR: zOp = "BITOR"; break;
1147 case TK_SLASH: zOp = "DIV"; break;
1148 case TK_LSHIFT: zOp = "LSHIFT"; break;
1149 case TK_RSHIFT: zOp = "RSHIFT"; break;
1150 case TK_CONCAT: zOp = "CONCAT"; break;
1151 case TK_UMINUS: zOp = "MINUS"; break;
1152 case TK_UPLUS: zOp = "PLUS"; break;
1153 case TK_BITNOT: zOp = "BITNOT"; break;
1154 case TK_NOT: zOp = "NOT"; break;
1155 case TK_ISNULL: zOp = "ISNULL"; break;
1156 case TK_NOTNULL: zOp = "NOTNULL"; break;
drhf7e36902015-08-13 21:32:41 +00001157
1158 default:
1159 sqlite3_snprintf(nTemp, zTemp, "%s", "expr");
1160 break;
1161 }
1162
drha67a3162015-08-15 00:51:23 +00001163 if( zOp ){
1164 sqlite3_snprintf(nTemp, zTemp, "%s(", zOp);
1165 n = sqlite3Strlen30(zTemp);
drhf7e36902015-08-13 21:32:41 +00001166 n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pLeft);
drha67a3162015-08-15 00:51:23 +00001167 if( n<nTemp-1 && pExpr->pRight ){
1168 zTemp[n++] = ',';
1169 n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pRight);
1170 }
drhf7e36902015-08-13 21:32:41 +00001171 sqlite3_snprintf(nTemp-n, zTemp+n, ")");
1172 }
drhf7e36902015-08-13 21:32:41 +00001173 return sqlite3Strlen30(zTemp);
1174}
1175#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1176
1177
1178#if VDBE_DISPLAY_P4
drh9a324642003-09-06 20:12:01 +00001179/*
drh66a51672008-01-03 00:01:23 +00001180** Compute a string that describes the P4 parameter for an opcode.
drhd3d39e92004-05-20 22:16:29 +00001181** Use zTemp for any required temporary buffer space.
1182*/
drh66a51672008-01-03 00:01:23 +00001183static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1184 char *zP4 = zTemp;
drhd3d39e92004-05-20 22:16:29 +00001185 assert( nTemp>=20 );
drh66a51672008-01-03 00:01:23 +00001186 switch( pOp->p4type ){
1187 case P4_KEYINFO: {
drhd3d39e92004-05-20 22:16:29 +00001188 int i, j;
danielk19772dca4ac2008-01-03 11:50:29 +00001189 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
drhe1a022e2012-09-17 17:16:53 +00001190 assert( pKeyInfo->aSortOrder!=0 );
drh5b843aa2013-10-30 13:46:01 +00001191 sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
drhea678832008-12-10 19:26:22 +00001192 i = sqlite3Strlen30(zTemp);
drhd3d39e92004-05-20 22:16:29 +00001193 for(j=0; j<pKeyInfo->nField; j++){
1194 CollSeq *pColl = pKeyInfo->aColl[j];
drh261d8a52012-12-08 21:36:26 +00001195 const char *zColl = pColl ? pColl->zName : "nil";
1196 int n = sqlite3Strlen30(zColl);
drh5b843aa2013-10-30 13:46:01 +00001197 if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
1198 zColl = "B";
1199 n = 1;
1200 }
drhd5a74c82015-08-15 16:32:50 +00001201 if( i+n>nTemp-7 ){
drh261d8a52012-12-08 21:36:26 +00001202 memcpy(&zTemp[i],",...",4);
drhd5a74c82015-08-15 16:32:50 +00001203 i += 4;
drh261d8a52012-12-08 21:36:26 +00001204 break;
drhd3d39e92004-05-20 22:16:29 +00001205 }
drh261d8a52012-12-08 21:36:26 +00001206 zTemp[i++] = ',';
1207 if( pKeyInfo->aSortOrder[j] ){
1208 zTemp[i++] = '-';
1209 }
1210 memcpy(&zTemp[i], zColl, n+1);
1211 i += n;
drhd3d39e92004-05-20 22:16:29 +00001212 }
1213 zTemp[i++] = ')';
1214 zTemp[i] = 0;
1215 assert( i<nTemp );
drhd3d39e92004-05-20 22:16:29 +00001216 break;
1217 }
drh28935362013-12-07 20:39:19 +00001218#ifdef SQLITE_ENABLE_CURSOR_HINTS
1219 case P4_EXPR: {
drhf7e36902015-08-13 21:32:41 +00001220 displayP4Expr(nTemp, zTemp, pOp->p4.pExpr);
drh28935362013-12-07 20:39:19 +00001221 break;
1222 }
1223#endif
drh66a51672008-01-03 00:01:23 +00001224 case P4_COLLSEQ: {
danielk19772dca4ac2008-01-03 11:50:29 +00001225 CollSeq *pColl = pOp->p4.pColl;
drh5e6790c2013-11-12 20:18:14 +00001226 sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
drhd3d39e92004-05-20 22:16:29 +00001227 break;
1228 }
drh66a51672008-01-03 00:01:23 +00001229 case P4_FUNCDEF: {
danielk19772dca4ac2008-01-03 11:50:29 +00001230 FuncDef *pDef = pOp->p4.pFunc;
drha967e882006-06-13 01:04:52 +00001231 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
drhf9b596e2004-05-26 16:54:42 +00001232 break;
1233 }
drhe2d9e7c2015-06-26 18:47:53 +00001234#ifdef SQLITE_DEBUG
drh9c7c9132015-06-26 18:16:52 +00001235 case P4_FUNCCTX: {
1236 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1237 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
1238 break;
1239 }
drhe2d9e7c2015-06-26 18:47:53 +00001240#endif
drh66a51672008-01-03 00:01:23 +00001241 case P4_INT64: {
danielk19772dca4ac2008-01-03 11:50:29 +00001242 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
drhd4e70eb2008-01-02 00:34:36 +00001243 break;
1244 }
drh66a51672008-01-03 00:01:23 +00001245 case P4_INT32: {
1246 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
drh598f1342007-10-23 15:39:45 +00001247 break;
1248 }
drh66a51672008-01-03 00:01:23 +00001249 case P4_REAL: {
danielk19772dca4ac2008-01-03 11:50:29 +00001250 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
drhd4e70eb2008-01-02 00:34:36 +00001251 break;
1252 }
drh66a51672008-01-03 00:01:23 +00001253 case P4_MEM: {
danielk19772dca4ac2008-01-03 11:50:29 +00001254 Mem *pMem = pOp->p4.pMem;
drhd4e70eb2008-01-02 00:34:36 +00001255 if( pMem->flags & MEM_Str ){
drh66a51672008-01-03 00:01:23 +00001256 zP4 = pMem->z;
drhd4e70eb2008-01-02 00:34:36 +00001257 }else if( pMem->flags & MEM_Int ){
1258 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
1259 }else if( pMem->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +00001260 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
drhb8475df2011-12-09 16:21:19 +00001261 }else if( pMem->flags & MEM_Null ){
1262 sqlite3_snprintf(nTemp, zTemp, "NULL");
drh56016892009-08-25 14:24:04 +00001263 }else{
1264 assert( pMem->flags & MEM_Blob );
1265 zP4 = "(blob)";
drhd4e70eb2008-01-02 00:34:36 +00001266 }
drh598f1342007-10-23 15:39:45 +00001267 break;
1268 }
drha967e882006-06-13 01:04:52 +00001269#ifndef SQLITE_OMIT_VIRTUALTABLE
drh66a51672008-01-03 00:01:23 +00001270 case P4_VTAB: {
danielk1977595a5232009-07-24 17:58:53 +00001271 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
drh466fd812015-03-24 14:57:02 +00001272 sqlite3_snprintf(nTemp, zTemp, "vtab:%p", pVtab);
drha967e882006-06-13 01:04:52 +00001273 break;
1274 }
1275#endif
drh0acb7e42008-06-25 00:12:41 +00001276 case P4_INTARRAY: {
1277 sqlite3_snprintf(nTemp, zTemp, "intarray");
1278 break;
1279 }
dan165921a2009-08-28 18:53:45 +00001280 case P4_SUBPROGRAM: {
1281 sqlite3_snprintf(nTemp, zTemp, "program");
1282 break;
1283 }
drh4a6f3aa2011-08-28 00:19:26 +00001284 case P4_ADVANCE: {
1285 zTemp[0] = 0;
1286 break;
1287 }
drhd3d39e92004-05-20 22:16:29 +00001288 default: {
danielk19772dca4ac2008-01-03 11:50:29 +00001289 zP4 = pOp->p4.z;
drh949f9cd2008-01-12 21:35:57 +00001290 if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +00001291 zP4 = zTemp;
drhd4e70eb2008-01-02 00:34:36 +00001292 zTemp[0] = 0;
drhd3d39e92004-05-20 22:16:29 +00001293 }
1294 }
1295 }
drh66a51672008-01-03 00:01:23 +00001296 assert( zP4!=0 );
drh66a51672008-01-03 00:01:23 +00001297 return zP4;
drhd3d39e92004-05-20 22:16:29 +00001298}
drhf7e36902015-08-13 21:32:41 +00001299#endif /* VDBE_DISPLAY_P4 */
drhd3d39e92004-05-20 22:16:29 +00001300
drh900b31e2007-08-28 02:27:51 +00001301/*
drhd0679ed2007-08-28 22:24:34 +00001302** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
drh3ebaee92010-05-06 21:37:22 +00001303**
drhbdaec522011-04-04 00:14:43 +00001304** The prepared statements need to know in advance the complete set of
drhe4c88c02012-01-04 12:57:45 +00001305** attached databases that will be use. A mask of these databases
1306** is maintained in p->btreeMask. The p->lockMask value is the subset of
1307** p->btreeMask of databases that will require a lock.
drh900b31e2007-08-28 02:27:51 +00001308*/
drhfb982642007-08-30 01:19:59 +00001309void sqlite3VdbeUsesBtree(Vdbe *p, int i){
drhfcd71b62011-04-05 22:08:24 +00001310 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
danielk197700e13612008-11-17 19:18:54 +00001311 assert( i<(int)sizeof(p->btreeMask)*8 );
drha7ab6d82014-07-21 15:44:39 +00001312 DbMaskSet(p->btreeMask, i);
drhdc5b0472011-04-06 22:05:53 +00001313 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
drha7ab6d82014-07-21 15:44:39 +00001314 DbMaskSet(p->lockMask, i);
drhdc5b0472011-04-06 22:05:53 +00001315 }
drh900b31e2007-08-28 02:27:51 +00001316}
1317
drhe54e0512011-04-05 17:31:56 +00001318#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001319/*
1320** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1321** this routine obtains the mutex associated with each BtShared structure
1322** that may be accessed by the VM passed as an argument. In doing so it also
1323** sets the BtShared.db member of each of the BtShared structures, ensuring
1324** that the correct busy-handler callback is invoked if required.
1325**
1326** If SQLite is not threadsafe but does support shared-cache mode, then
1327** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1328** of all of BtShared structures accessible via the database handle
1329** associated with the VM.
1330**
1331** If SQLite is not threadsafe and does not support shared-cache mode, this
1332** function is a no-op.
1333**
1334** The p->btreeMask field is a bitmask of all btrees that the prepared
1335** statement p will ever use. Let N be the number of bits in p->btreeMask
1336** corresponding to btrees that use shared cache. Then the runtime of
1337** this routine is N*N. But as N is rarely more than 1, this should not
1338** be a problem.
1339*/
1340void sqlite3VdbeEnter(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001341 int i;
drhdc5b0472011-04-06 22:05:53 +00001342 sqlite3 *db;
1343 Db *aDb;
1344 int nDb;
drha7ab6d82014-07-21 15:44:39 +00001345 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
drhdc5b0472011-04-06 22:05:53 +00001346 db = p->db;
1347 aDb = db->aDb;
1348 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001349 for(i=0; i<nDb; i++){
1350 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001351 sqlite3BtreeEnter(aDb[i].pBt);
1352 }
1353 }
drhbdaec522011-04-04 00:14:43 +00001354}
drhe54e0512011-04-05 17:31:56 +00001355#endif
drhbdaec522011-04-04 00:14:43 +00001356
drhe54e0512011-04-05 17:31:56 +00001357#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001358/*
1359** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1360*/
drhf1aabd62015-06-17 01:31:28 +00001361static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001362 int i;
drhdc5b0472011-04-06 22:05:53 +00001363 sqlite3 *db;
1364 Db *aDb;
1365 int nDb;
drhdc5b0472011-04-06 22:05:53 +00001366 db = p->db;
1367 aDb = db->aDb;
1368 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001369 for(i=0; i<nDb; i++){
1370 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001371 sqlite3BtreeLeave(aDb[i].pBt);
1372 }
1373 }
drhbdaec522011-04-04 00:14:43 +00001374}
drhf1aabd62015-06-17 01:31:28 +00001375void sqlite3VdbeLeave(Vdbe *p){
1376 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1377 vdbeLeave(p);
1378}
drhbdaec522011-04-04 00:14:43 +00001379#endif
drhd3d39e92004-05-20 22:16:29 +00001380
danielk19778b60e0f2005-01-12 09:10:39 +00001381#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +00001382/*
1383** Print a single opcode. This routine is used for debugging only.
1384*/
danielk19774adee202004-05-08 08:23:19 +00001385void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
drh66a51672008-01-03 00:01:23 +00001386 char *zP4;
drhd3d39e92004-05-20 22:16:29 +00001387 char zPtr[50];
drh81316f82013-10-29 20:40:47 +00001388 char zCom[100];
drh26198bb2013-10-31 11:15:09 +00001389 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
drh9a324642003-09-06 20:12:01 +00001390 if( pOut==0 ) pOut = stdout;
drh66a51672008-01-03 00:01:23 +00001391 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
drhc7379ce2013-10-30 02:28:23 +00001392#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh81316f82013-10-29 20:40:47 +00001393 displayComment(pOp, zP4, zCom, sizeof(zCom));
1394#else
drh2926f962014-02-17 01:13:28 +00001395 zCom[0] = 0;
drh81316f82013-10-29 20:40:47 +00001396#endif
drh4eded602013-12-20 15:59:20 +00001397 /* NB: The sqlite3OpcodeName() function is implemented by code created
1398 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1399 ** information from the vdbe.c source text */
danielk197711641c12008-01-03 08:18:30 +00001400 fprintf(pOut, zFormat1, pc,
drh1db639c2008-01-17 02:36:28 +00001401 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
drh81316f82013-10-29 20:40:47 +00001402 zCom
drh1db639c2008-01-17 02:36:28 +00001403 );
drh9a324642003-09-06 20:12:01 +00001404 fflush(pOut);
1405}
1406#endif
1407
1408/*
drh76ff3a02004-09-24 22:32:30 +00001409** Release an array of N Mem elements
1410*/
drhc890fec2008-08-01 20:10:08 +00001411static void releaseMemArray(Mem *p, int N){
danielk1977a7a8e142008-02-13 18:25:27 +00001412 if( p && N ){
drh069c23c2014-09-19 16:13:12 +00001413 Mem *pEnd = &p[N];
danielk1977a7a8e142008-02-13 18:25:27 +00001414 sqlite3 *db = p->db;
drh8df32842008-12-09 02:51:23 +00001415 u8 malloc_failed = db->mallocFailed;
dand46def72010-07-24 11:28:28 +00001416 if( db->pnBytesFreed ){
drh069c23c2014-09-19 16:13:12 +00001417 do{
drh17bcb102014-09-18 21:25:33 +00001418 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drh069c23c2014-09-19 16:13:12 +00001419 }while( (++p)<pEnd );
drhc176c272010-07-26 13:57:59 +00001420 return;
1421 }
drh069c23c2014-09-19 16:13:12 +00001422 do{
danielk1977e972e032008-09-19 18:32:26 +00001423 assert( (&p[1])==pEnd || p[0].db==p[1].db );
drh75fd0542014-03-01 16:24:44 +00001424 assert( sqlite3VdbeCheckMemInvariants(p) );
danielk1977e972e032008-09-19 18:32:26 +00001425
1426 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1427 ** that takes advantage of the fact that the memory cell value is
1428 ** being set to NULL after releasing any dynamic resources.
1429 **
1430 ** The justification for duplicating code is that according to
1431 ** callgrind, this causes a certain test case to hit the CPU 4.7
1432 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1433 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1434 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1435 ** with no indexes using a single prepared INSERT statement, bind()
1436 ** and reset(). Inserts are grouped into a transaction.
1437 */
drhb6e8fd12014-03-06 01:56:33 +00001438 testcase( p->flags & MEM_Agg );
1439 testcase( p->flags & MEM_Dyn );
1440 testcase( p->flags & MEM_Frame );
1441 testcase( p->flags & MEM_RowSet );
dan165921a2009-08-28 18:53:45 +00001442 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
danielk1977e972e032008-09-19 18:32:26 +00001443 sqlite3VdbeMemRelease(p);
drh17bcb102014-09-18 21:25:33 +00001444 }else if( p->szMalloc ){
danielk1977e972e032008-09-19 18:32:26 +00001445 sqlite3DbFree(db, p->zMalloc);
drh17bcb102014-09-18 21:25:33 +00001446 p->szMalloc = 0;
danielk1977e972e032008-09-19 18:32:26 +00001447 }
1448
drha5750cf2014-02-07 13:20:31 +00001449 p->flags = MEM_Undefined;
drh069c23c2014-09-19 16:13:12 +00001450 }while( (++p)<pEnd );
danielk1977a7a8e142008-02-13 18:25:27 +00001451 db->mallocFailed = malloc_failed;
drh76ff3a02004-09-24 22:32:30 +00001452 }
1453}
1454
dan65a7cd12009-09-01 12:16:01 +00001455/*
1456** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1457** allocated by the OP_Program opcode in sqlite3VdbeExec().
1458*/
dan165921a2009-08-28 18:53:45 +00001459void sqlite3VdbeFrameDelete(VdbeFrame *p){
1460 int i;
1461 Mem *aMem = VdbeFrameMem(p);
1462 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1463 for(i=0; i<p->nChildCsr; i++){
1464 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1465 }
1466 releaseMemArray(aMem, p->nChildMem);
1467 sqlite3DbFree(p->v->db, p);
1468}
1469
drhb7f91642004-10-31 02:22:47 +00001470#ifndef SQLITE_OMIT_EXPLAIN
drh76ff3a02004-09-24 22:32:30 +00001471/*
drh9a324642003-09-06 20:12:01 +00001472** Give a listing of the program in the virtual machine.
1473**
danielk19774adee202004-05-08 08:23:19 +00001474** The interface is the same as sqlite3VdbeExec(). But instead of
drh9a324642003-09-06 20:12:01 +00001475** running the code, it invokes the callback once for each instruction.
1476** This feature is used to implement "EXPLAIN".
drh9cbf3422008-01-17 16:22:13 +00001477**
1478** When p->explain==1, each instruction is listed. When
1479** p->explain==2, only OP_Explain instructions are listed and these
1480** are shown in a different format. p->explain==2 is used to implement
1481** EXPLAIN QUERY PLAN.
drh5cfa5842009-12-31 20:35:08 +00001482**
1483** When p->explain==1, first the main program is listed, then each of
1484** the trigger subprograms are listed one by one.
drh9a324642003-09-06 20:12:01 +00001485*/
danielk19774adee202004-05-08 08:23:19 +00001486int sqlite3VdbeList(
drh9a324642003-09-06 20:12:01 +00001487 Vdbe *p /* The VDBE */
1488){
drh5cfa5842009-12-31 20:35:08 +00001489 int nRow; /* Stop when row count reaches this */
dan165921a2009-08-28 18:53:45 +00001490 int nSub = 0; /* Number of sub-vdbes seen so far */
1491 SubProgram **apSub = 0; /* Array of sub-vdbes */
drh5cfa5842009-12-31 20:35:08 +00001492 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1493 sqlite3 *db = p->db; /* The database connection */
1494 int i; /* Loop counter */
1495 int rc = SQLITE_OK; /* Return code */
drh9734e6e2011-10-07 18:24:25 +00001496 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
drh9a324642003-09-06 20:12:01 +00001497
drh9a324642003-09-06 20:12:01 +00001498 assert( p->explain );
drh5f82e3c2009-07-06 00:44:08 +00001499 assert( p->magic==VDBE_MAGIC_RUN );
danielk19776c359f02008-11-21 16:58:03 +00001500 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
danielk197718f41892004-05-22 07:27:46 +00001501
drh9cbf3422008-01-17 16:22:13 +00001502 /* Even though this opcode does not use dynamic strings for
1503 ** the result, result columns may become dynamic if the user calls
drh4f26d6c2004-05-26 23:25:30 +00001504 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
danielk197718f41892004-05-22 07:27:46 +00001505 */
dan165921a2009-08-28 18:53:45 +00001506 releaseMemArray(pMem, 8);
drh9734e6e2011-10-07 18:24:25 +00001507 p->pResultSet = 0;
danielk197718f41892004-05-22 07:27:46 +00001508
danielk19776c359f02008-11-21 16:58:03 +00001509 if( p->rc==SQLITE_NOMEM ){
1510 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1511 ** sqlite3_column_text16() failed. */
1512 db->mallocFailed = 1;
1513 return SQLITE_ERROR;
1514 }
1515
drh5cfa5842009-12-31 20:35:08 +00001516 /* When the number of output rows reaches nRow, that means the
1517 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1518 ** nRow is the sum of the number of rows in the main program, plus
1519 ** the sum of the number of rows in all trigger subprograms encountered
1520 ** so far. The nRow value will increase as new trigger subprograms are
1521 ** encountered, but p->pc will eventually catch up to nRow.
1522 */
dan165921a2009-08-28 18:53:45 +00001523 nRow = p->nOp;
1524 if( p->explain==1 ){
drh5cfa5842009-12-31 20:35:08 +00001525 /* The first 8 memory cells are used for the result set. So we will
1526 ** commandeer the 9th cell to use as storage for an array of pointers
1527 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1528 ** cells. */
1529 assert( p->nMem>9 );
dan165921a2009-08-28 18:53:45 +00001530 pSub = &p->aMem[9];
1531 if( pSub->flags&MEM_Blob ){
drh5cfa5842009-12-31 20:35:08 +00001532 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1533 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
dan165921a2009-08-28 18:53:45 +00001534 nSub = pSub->n/sizeof(Vdbe*);
1535 apSub = (SubProgram **)pSub->z;
1536 }
1537 for(i=0; i<nSub; i++){
1538 nRow += apSub[i]->nOp;
1539 }
1540 }
1541
drhecc92422005-09-10 16:46:12 +00001542 do{
1543 i = p->pc++;
dan165921a2009-08-28 18:53:45 +00001544 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1545 if( i>=nRow ){
drh826fb5a2004-02-14 23:59:57 +00001546 p->rc = SQLITE_OK;
1547 rc = SQLITE_DONE;
drh881feaa2006-07-26 01:39:30 +00001548 }else if( db->u1.isInterrupted ){
drhc5cdca62005-01-11 16:54:14 +00001549 p->rc = SQLITE_INTERRUPT;
drh826fb5a2004-02-14 23:59:57 +00001550 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00001551 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
drh826fb5a2004-02-14 23:59:57 +00001552 }else{
drh81316f82013-10-29 20:40:47 +00001553 char *zP4;
dan165921a2009-08-28 18:53:45 +00001554 Op *pOp;
1555 if( i<p->nOp ){
drh5cfa5842009-12-31 20:35:08 +00001556 /* The output line number is small enough that we are still in the
1557 ** main program. */
dan165921a2009-08-28 18:53:45 +00001558 pOp = &p->aOp[i];
1559 }else{
drh5cfa5842009-12-31 20:35:08 +00001560 /* We are currently listing subprograms. Figure out which one and
1561 ** pick up the appropriate opcode. */
dan165921a2009-08-28 18:53:45 +00001562 int j;
1563 i -= p->nOp;
1564 for(j=0; i>=apSub[j]->nOp; j++){
1565 i -= apSub[j]->nOp;
1566 }
1567 pOp = &apSub[j]->aOp[i];
1568 }
danielk19770d78bae2008-01-03 07:09:48 +00001569 if( p->explain==1 ){
1570 pMem->flags = MEM_Int;
danielk19770d78bae2008-01-03 07:09:48 +00001571 pMem->u.i = i; /* Program counter */
1572 pMem++;
1573
1574 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001575 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
danielk19770d78bae2008-01-03 07:09:48 +00001576 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001577 pMem->n = sqlite3Strlen30(pMem->z);
danielk19770d78bae2008-01-03 07:09:48 +00001578 pMem->enc = SQLITE_UTF8;
1579 pMem++;
dan165921a2009-08-28 18:53:45 +00001580
drh5cfa5842009-12-31 20:35:08 +00001581 /* When an OP_Program opcode is encounter (the only opcode that has
1582 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1583 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1584 ** has not already been seen.
1585 */
dan165921a2009-08-28 18:53:45 +00001586 if( pOp->p4type==P4_SUBPROGRAM ){
1587 int nByte = (nSub+1)*sizeof(SubProgram*);
1588 int j;
1589 for(j=0; j<nSub; j++){
1590 if( apSub[j]==pOp->p4.pProgram ) break;
1591 }
dan2b9ee772012-03-31 09:59:44 +00001592 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
dan165921a2009-08-28 18:53:45 +00001593 apSub = (SubProgram **)pSub->z;
1594 apSub[nSub++] = pOp->p4.pProgram;
1595 pSub->flags |= MEM_Blob;
1596 pSub->n = nSub*sizeof(SubProgram*);
1597 }
1598 }
danielk19770d78bae2008-01-03 07:09:48 +00001599 }
drheb2e1762004-05-27 01:53:56 +00001600
1601 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001602 pMem->u.i = pOp->p1; /* P1 */
drheb2e1762004-05-27 01:53:56 +00001603 pMem++;
1604
1605 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001606 pMem->u.i = pOp->p2; /* P2 */
drheb2e1762004-05-27 01:53:56 +00001607 pMem++;
1608
dan2ce22452010-11-08 19:01:16 +00001609 pMem->flags = MEM_Int;
1610 pMem->u.i = pOp->p3; /* P3 */
dan2ce22452010-11-08 19:01:16 +00001611 pMem++;
danielk19770d78bae2008-01-03 07:09:48 +00001612
drh2f2b0272015-08-14 18:50:04 +00001613 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
danielk1977357864e2009-03-25 15:43:08 +00001614 assert( p->db->mallocFailed );
1615 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001616 }
drhc91b2fd2014-03-01 18:13:23 +00001617 pMem->flags = MEM_Str|MEM_Term;
drh2f2b0272015-08-14 18:50:04 +00001618 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
drh81316f82013-10-29 20:40:47 +00001619 if( zP4!=pMem->z ){
1620 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
danielk1977a7a8e142008-02-13 18:25:27 +00001621 }else{
1622 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001623 pMem->n = sqlite3Strlen30(pMem->z);
danielk1977a7a8e142008-02-13 18:25:27 +00001624 pMem->enc = SQLITE_UTF8;
1625 }
danielk19770d78bae2008-01-03 07:09:48 +00001626 pMem++;
drheb2e1762004-05-27 01:53:56 +00001627
danielk19770d78bae2008-01-03 07:09:48 +00001628 if( p->explain==1 ){
drh322f2852014-09-19 00:43:39 +00001629 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
danielk1977357864e2009-03-25 15:43:08 +00001630 assert( p->db->mallocFailed );
1631 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001632 }
drhc91b2fd2014-03-01 18:13:23 +00001633 pMem->flags = MEM_Str|MEM_Term;
drh85e5f0d2008-02-19 18:28:13 +00001634 pMem->n = 2;
1635 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
danielk19770d78bae2008-01-03 07:09:48 +00001636 pMem->enc = SQLITE_UTF8;
1637 pMem++;
1638
drhc7379ce2013-10-30 02:28:23 +00001639#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh322f2852014-09-19 00:43:39 +00001640 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
drh81316f82013-10-29 20:40:47 +00001641 assert( p->db->mallocFailed );
1642 return SQLITE_ERROR;
drh52391cb2008-02-14 23:44:13 +00001643 }
drhc91b2fd2014-03-01 18:13:23 +00001644 pMem->flags = MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001645 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
drh81316f82013-10-29 20:40:47 +00001646 pMem->enc = SQLITE_UTF8;
1647#else
1648 pMem->flags = MEM_Null; /* Comment */
drh81316f82013-10-29 20:40:47 +00001649#endif
danielk19770d78bae2008-01-03 07:09:48 +00001650 }
1651
dan2ce22452010-11-08 19:01:16 +00001652 p->nResColumn = 8 - 4*(p->explain-1);
drh9734e6e2011-10-07 18:24:25 +00001653 p->pResultSet = &p->aMem[1];
drh826fb5a2004-02-14 23:59:57 +00001654 p->rc = SQLITE_OK;
1655 rc = SQLITE_ROW;
drh9a324642003-09-06 20:12:01 +00001656 }
drh826fb5a2004-02-14 23:59:57 +00001657 return rc;
drh9a324642003-09-06 20:12:01 +00001658}
drhb7f91642004-10-31 02:22:47 +00001659#endif /* SQLITE_OMIT_EXPLAIN */
drh9a324642003-09-06 20:12:01 +00001660
drh7c4ac0c2007-04-05 11:25:58 +00001661#ifdef SQLITE_DEBUG
drh9a324642003-09-06 20:12:01 +00001662/*
drh3f7d4e42004-07-24 14:35:58 +00001663** Print the SQL that was used to generate a VDBE program.
1664*/
1665void sqlite3VdbePrintSql(Vdbe *p){
drh84e55a82013-11-13 17:58:23 +00001666 const char *z = 0;
1667 if( p->zSql ){
1668 z = p->zSql;
1669 }else if( p->nOp>=1 ){
1670 const VdbeOp *pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001671 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh84e55a82013-11-13 17:58:23 +00001672 z = pOp->p4.z;
1673 while( sqlite3Isspace(*z) ) z++;
1674 }
drh3f7d4e42004-07-24 14:35:58 +00001675 }
drh84e55a82013-11-13 17:58:23 +00001676 if( z ) printf("SQL: [%s]\n", z);
drh3f7d4e42004-07-24 14:35:58 +00001677}
drh7c4ac0c2007-04-05 11:25:58 +00001678#endif
drh3f7d4e42004-07-24 14:35:58 +00001679
drh602c2372007-03-01 00:29:13 +00001680#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1681/*
1682** Print an IOTRACE message showing SQL content.
1683*/
1684void sqlite3VdbeIOTraceSql(Vdbe *p){
1685 int nOp = p->nOp;
1686 VdbeOp *pOp;
mlcreech3a00f902008-03-04 17:45:01 +00001687 if( sqlite3IoTrace==0 ) return;
drh602c2372007-03-01 00:29:13 +00001688 if( nOp<1 ) return;
drh949f9cd2008-01-12 21:35:57 +00001689 pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001690 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh602c2372007-03-01 00:29:13 +00001691 int i, j;
drh00a18e42007-08-13 11:10:34 +00001692 char z[1000];
drh949f9cd2008-01-12 21:35:57 +00001693 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
danielk197778ca0e72009-01-20 16:53:39 +00001694 for(i=0; sqlite3Isspace(z[i]); i++){}
drh602c2372007-03-01 00:29:13 +00001695 for(j=0; z[i]; i++){
danielk197778ca0e72009-01-20 16:53:39 +00001696 if( sqlite3Isspace(z[i]) ){
drh602c2372007-03-01 00:29:13 +00001697 if( z[i-1]!=' ' ){
1698 z[j++] = ' ';
1699 }
1700 }else{
1701 z[j++] = z[i];
1702 }
1703 }
1704 z[j] = 0;
mlcreech3a00f902008-03-04 17:45:01 +00001705 sqlite3IoTrace("SQL %s\n", z);
drh602c2372007-03-01 00:29:13 +00001706 }
1707}
1708#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1709
drhb2771ce2009-02-20 01:28:59 +00001710/*
drh4800b2e2009-12-08 15:35:22 +00001711** Allocate space from a fixed size buffer and return a pointer to
1712** that space. If insufficient space is available, return NULL.
1713**
1714** The pBuf parameter is the initial value of a pointer which will
1715** receive the new memory. pBuf is normally NULL. If pBuf is not
1716** NULL, it means that memory space has already been allocated and that
1717** this routine should not allocate any new memory. When pBuf is not
1718** NULL simply return pBuf. Only allocate new memory space when pBuf
1719** is NULL.
drhb2771ce2009-02-20 01:28:59 +00001720**
1721** nByte is the number of bytes of space needed.
1722**
drhd797a9b2015-12-07 16:43:44 +00001723** pFrom points to *pnFrom bytes of available space. New space is allocated
1724** from the end of the pFrom buffer and *pnFrom is decremented.
drhb2771ce2009-02-20 01:28:59 +00001725**
drhd797a9b2015-12-07 16:43:44 +00001726** *pnNeeded is a counter of the number of bytes of space that have failed
1727** to allocate. If there is insufficient space in pFrom to satisfy the
1728** request, then increment *pnNeeded by the amount of the request.
drhb2771ce2009-02-20 01:28:59 +00001729*/
drh4800b2e2009-12-08 15:35:22 +00001730static void *allocSpace(
1731 void *pBuf, /* Where return pointer will be stored */
drhb2771ce2009-02-20 01:28:59 +00001732 int nByte, /* Number of bytes to allocate */
drhd797a9b2015-12-07 16:43:44 +00001733 u8 *pFrom, /* Memory available for allocation */
1734 int *pnFrom, /* IN/OUT: Space available at pFrom */
1735 int *pnNeeded /* If allocation cannot be made, increment *pnByte */
drhb2771ce2009-02-20 01:28:59 +00001736){
drhd797a9b2015-12-07 16:43:44 +00001737 assert( EIGHT_BYTE_ALIGNMENT(pFrom) );
1738 if( pBuf==0 ){
1739 nByte = ROUND8(nByte);
1740 if( nByte <= *pnFrom ){
1741 *pnFrom -= nByte;
1742 pBuf = &pFrom[*pnFrom];
1743 }else{
1744 *pnNeeded += nByte;
1745 }
drhb2771ce2009-02-20 01:28:59 +00001746 }
drhd797a9b2015-12-07 16:43:44 +00001747 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
drh4800b2e2009-12-08 15:35:22 +00001748 return pBuf;
drhb2771ce2009-02-20 01:28:59 +00001749}
drh602c2372007-03-01 00:29:13 +00001750
drh3f7d4e42004-07-24 14:35:58 +00001751/*
drh124c0b42011-06-01 18:15:55 +00001752** Rewind the VDBE back to the beginning in preparation for
1753** running it.
drh9a324642003-09-06 20:12:01 +00001754*/
drh124c0b42011-06-01 18:15:55 +00001755void sqlite3VdbeRewind(Vdbe *p){
1756#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1757 int i;
1758#endif
drh9a324642003-09-06 20:12:01 +00001759 assert( p!=0 );
drh9a324642003-09-06 20:12:01 +00001760 assert( p->magic==VDBE_MAGIC_INIT );
1761
drhc16a03b2004-09-15 13:38:10 +00001762 /* There should be at least one opcode.
drh9a324642003-09-06 20:12:01 +00001763 */
drhc16a03b2004-09-15 13:38:10 +00001764 assert( p->nOp>0 );
drh9a324642003-09-06 20:12:01 +00001765
danielk197700e13612008-11-17 19:18:54 +00001766 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
danielk1977634f2982005-03-28 08:44:07 +00001767 p->magic = VDBE_MAGIC_RUN;
1768
drh124c0b42011-06-01 18:15:55 +00001769#ifdef SQLITE_DEBUG
1770 for(i=1; i<p->nMem; i++){
1771 assert( p->aMem[i].db==p->db );
1772 }
1773#endif
1774 p->pc = -1;
1775 p->rc = SQLITE_OK;
1776 p->errorAction = OE_Abort;
1777 p->magic = VDBE_MAGIC_RUN;
1778 p->nChange = 0;
1779 p->cacheCtr = 1;
1780 p->minWriteFileFormat = 255;
1781 p->iStatement = 0;
1782 p->nFkConstraint = 0;
1783#ifdef VDBE_PROFILE
1784 for(i=0; i<p->nOp; i++){
1785 p->aOp[i].cnt = 0;
1786 p->aOp[i].cycles = 0;
1787 }
1788#endif
1789}
1790
1791/*
1792** Prepare a virtual machine for execution for the first time after
1793** creating the virtual machine. This involves things such
drh7abda852014-09-19 16:02:06 +00001794** as allocating registers and initializing the program counter.
drh124c0b42011-06-01 18:15:55 +00001795** After the VDBE has be prepped, it can be executed by one or more
1796** calls to sqlite3VdbeExec().
1797**
peter.d.reid60ec9142014-09-06 16:39:46 +00001798** This function may be called exactly once on each virtual machine.
drh124c0b42011-06-01 18:15:55 +00001799** After this routine is called the VM has been "packaged" and is ready
peter.d.reid60ec9142014-09-06 16:39:46 +00001800** to run. After this routine is called, further calls to
drh124c0b42011-06-01 18:15:55 +00001801** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1802** the Vdbe from the Parse object that helped generate it so that the
1803** the Vdbe becomes an independent entity and the Parse object can be
1804** destroyed.
1805**
1806** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1807** to its initial state after it has been run.
1808*/
1809void sqlite3VdbeMakeReady(
1810 Vdbe *p, /* The VDBE */
1811 Parse *pParse /* Parsing context */
1812){
1813 sqlite3 *db; /* The database connection */
1814 int nVar; /* Number of parameters */
1815 int nMem; /* Number of VM memory registers */
1816 int nCursor; /* Number of cursors required */
1817 int nArg; /* Number of arguments in subprograms */
dan1d8cb212011-12-09 13:24:16 +00001818 int nOnce; /* Number of OP_Once instructions */
drh124c0b42011-06-01 18:15:55 +00001819 int n; /* Loop counter */
drhd797a9b2015-12-07 16:43:44 +00001820 int nFree; /* Available free space */
drh124c0b42011-06-01 18:15:55 +00001821 u8 *zCsr; /* Memory available for allocation */
drh124c0b42011-06-01 18:15:55 +00001822 int nByte; /* How much extra memory is needed */
1823
1824 assert( p!=0 );
1825 assert( p->nOp>0 );
1826 assert( pParse!=0 );
1827 assert( p->magic==VDBE_MAGIC_INIT );
drh73d5b8f2013-12-23 19:09:07 +00001828 assert( pParse==p->pParse );
drh124c0b42011-06-01 18:15:55 +00001829 db = p->db;
1830 assert( db->mallocFailed==0 );
1831 nVar = pParse->nVar;
1832 nMem = pParse->nMem;
1833 nCursor = pParse->nTab;
1834 nArg = pParse->nMaxArg;
dan1d8cb212011-12-09 13:24:16 +00001835 nOnce = pParse->nOnce;
drh20e226d2012-01-01 13:58:53 +00001836 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
drh124c0b42011-06-01 18:15:55 +00001837
danielk1977cd3e8f72008-03-25 09:47:35 +00001838 /* For each cursor required, also allocate a memory cell. Memory
1839 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1840 ** the vdbe program. Instead they are used to allocate space for
drhdfe88ec2008-11-03 20:55:06 +00001841 ** VdbeCursor/BtCursor structures. The blob of memory associated with
danielk1977cd3e8f72008-03-25 09:47:35 +00001842 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1843 ** stores the blob of memory associated with cursor 1, etc.
1844 **
1845 ** See also: allocateCursor().
1846 */
1847 nMem += nCursor;
1848
danielk19776ab3a2e2009-02-19 14:39:25 +00001849 /* Allocate space for memory registers, SQL variables, VDBE cursors and
drh124c0b42011-06-01 18:15:55 +00001850 ** an array to marshal SQL function arguments in.
drh9a324642003-09-06 20:12:01 +00001851 */
drh73d5b8f2013-12-23 19:09:07 +00001852 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
drhd797a9b2015-12-07 16:43:44 +00001853 assert( pParse->nOpAlloc*sizeof(Op) <= 0x7fffff00 );
1854 nFree = (pParse->nOpAlloc - p->nOp)*sizeof(p->aOp[0]); /* Available space */
drh19875c82009-12-08 19:58:19 +00001855
drh124c0b42011-06-01 18:15:55 +00001856 resolveP2Values(p, &nArg);
1857 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1858 if( pParse->explain && nMem<10 ){
1859 nMem = 10;
1860 }
drhd797a9b2015-12-07 16:43:44 +00001861 memset(zCsr, 0, nFree);
drh124c0b42011-06-01 18:15:55 +00001862 zCsr += (zCsr - (u8*)0)&7;
1863 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
drhaab910c2011-06-27 00:01:22 +00001864 p->expired = 0;
drh124c0b42011-06-01 18:15:55 +00001865
1866 /* Memory for registers, parameters, cursor, etc, is allocated in two
1867 ** passes. On the first pass, we try to reuse unused space at the
1868 ** end of the opcode array. If we are unable to satisfy all memory
1869 ** requirements by reusing the opcode array tail, then the second
1870 ** pass will fill in the rest using a fresh allocation.
1871 **
1872 ** This two-pass approach that reuses as much memory as possible from
1873 ** the leftover space at the end of the opcode array can significantly
1874 ** reduce the amount of memory held by a prepared statement.
1875 */
1876 do {
1877 nByte = 0;
drhd797a9b2015-12-07 16:43:44 +00001878 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), zCsr, &nFree, &nByte);
1879 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), zCsr, &nFree, &nByte);
1880 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), zCsr, &nFree, &nByte);
1881 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), zCsr, &nFree, &nByte);
drh124c0b42011-06-01 18:15:55 +00001882 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
drhd797a9b2015-12-07 16:43:44 +00001883 zCsr, &nFree, &nByte);
1884 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, zCsr, &nFree, &nByte);
dane2f771b2014-11-03 15:33:17 +00001885#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drhd797a9b2015-12-07 16:43:44 +00001886 p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), zCsr, &nFree, &nByte);
dane2f771b2014-11-03 15:33:17 +00001887#endif
drh124c0b42011-06-01 18:15:55 +00001888 if( nByte ){
1889 p->pFree = sqlite3DbMallocZero(db, nByte);
drh0f7eb612006-08-08 13:51:43 +00001890 }
drh124c0b42011-06-01 18:15:55 +00001891 zCsr = p->pFree;
drhd797a9b2015-12-07 16:43:44 +00001892 nFree = nByte;
drh124c0b42011-06-01 18:15:55 +00001893 }while( nByte && !db->mallocFailed );
drhb2771ce2009-02-20 01:28:59 +00001894
drhd2a56232013-01-28 19:00:20 +00001895 p->nCursor = nCursor;
dan1d8cb212011-12-09 13:24:16 +00001896 p->nOnceFlag = nOnce;
drh124c0b42011-06-01 18:15:55 +00001897 if( p->aVar ){
1898 p->nVar = (ynVar)nVar;
1899 for(n=0; n<nVar; n++){
1900 p->aVar[n].flags = MEM_Null;
1901 p->aVar[n].db = db;
danielk197754db47e2004-05-19 10:36:43 +00001902 }
drh82a48512003-09-06 22:45:20 +00001903 }
drh9b5444a2014-12-02 13:46:53 +00001904 if( p->azVar && pParse->nzVar>0 ){
drh124c0b42011-06-01 18:15:55 +00001905 p->nzVar = pParse->nzVar;
1906 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
1907 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
danielk1977b3bce662005-01-29 08:32:43 +00001908 }
drh124c0b42011-06-01 18:15:55 +00001909 if( p->aMem ){
1910 p->aMem--; /* aMem[] goes from 1..nMem */
1911 p->nMem = nMem; /* not from 0..nMem-1 */
1912 for(n=1; n<=nMem; n++){
drha5750cf2014-02-07 13:20:31 +00001913 p->aMem[n].flags = MEM_Undefined;
drh124c0b42011-06-01 18:15:55 +00001914 p->aMem[n].db = db;
drhcf64d8b2003-12-31 17:57:10 +00001915 }
drh9a324642003-09-06 20:12:01 +00001916 }
drh124c0b42011-06-01 18:15:55 +00001917 p->explain = pParse->explain;
1918 sqlite3VdbeRewind(p);
drh9a324642003-09-06 20:12:01 +00001919}
1920
drh9a324642003-09-06 20:12:01 +00001921/*
danielk1977cd3e8f72008-03-25 09:47:35 +00001922** Close a VDBE cursor and release all the resources that cursor
1923** happens to hold.
drh9a324642003-09-06 20:12:01 +00001924*/
drhdfe88ec2008-11-03 20:55:06 +00001925void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
drh4774b132004-06-12 20:12:51 +00001926 if( pCx==0 ){
1927 return;
1928 }
drhc960dcb2015-11-20 19:22:01 +00001929 assert( pCx->pBt==0 || pCx->eCurType==CURTYPE_BTREE );
1930 switch( pCx->eCurType ){
1931 case CURTYPE_SORTER: {
1932 sqlite3VdbeSorterClose(p->db, pCx);
1933 break;
1934 }
1935 case CURTYPE_BTREE: {
1936 if( pCx->pBt ){
1937 sqlite3BtreeClose(pCx->pBt);
1938 /* The pCx->pCursor will be close automatically, if it exists, by
1939 ** the call above. */
1940 }else{
1941 assert( pCx->uc.pCursor!=0 );
1942 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
1943 }
1944 break;
1945 }
drh9eff6162006-06-12 21:59:13 +00001946#ifndef SQLITE_OMIT_VIRTUALTABLE
drhc960dcb2015-11-20 19:22:01 +00001947 case CURTYPE_VTAB: {
1948 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
1949 const sqlite3_module *pModule = pVCur->pVtab->pModule;
1950 assert( pVCur->pVtab->nRef>0 );
1951 pVCur->pVtab->nRef--;
1952 pModule->xClose(pVCur);
1953 break;
1954 }
drh9eff6162006-06-12 21:59:13 +00001955#endif
drhc960dcb2015-11-20 19:22:01 +00001956 }
drh9a324642003-09-06 20:12:01 +00001957}
1958
dan65a7cd12009-09-01 12:16:01 +00001959/*
drhab4e7f32015-04-16 18:11:50 +00001960** Close all cursors in the current frame.
1961*/
1962static void closeCursorsInFrame(Vdbe *p){
1963 if( p->apCsr ){
1964 int i;
1965 for(i=0; i<p->nCursor; i++){
1966 VdbeCursor *pC = p->apCsr[i];
1967 if( pC ){
1968 sqlite3VdbeFreeCursor(p, pC);
1969 p->apCsr[i] = 0;
1970 }
1971 }
1972 }
1973}
1974
1975/*
dan65a7cd12009-09-01 12:16:01 +00001976** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1977** is used, for example, when a trigger sub-program is halted to restore
1978** control to the main program.
1979*/
dan165921a2009-08-28 18:53:45 +00001980int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1981 Vdbe *v = pFrame->v;
drhab4e7f32015-04-16 18:11:50 +00001982 closeCursorsInFrame(v);
dane2f771b2014-11-03 15:33:17 +00001983#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00001984 v->anExec = pFrame->anExec;
dane2f771b2014-11-03 15:33:17 +00001985#endif
dan1d8cb212011-12-09 13:24:16 +00001986 v->aOnceFlag = pFrame->aOnceFlag;
1987 v->nOnceFlag = pFrame->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00001988 v->aOp = pFrame->aOp;
1989 v->nOp = pFrame->nOp;
1990 v->aMem = pFrame->aMem;
1991 v->nMem = pFrame->nMem;
1992 v->apCsr = pFrame->apCsr;
1993 v->nCursor = pFrame->nCursor;
dan76d462e2009-08-30 11:42:51 +00001994 v->db->lastRowid = pFrame->lastRowid;
1995 v->nChange = pFrame->nChange;
danc3da6672014-10-28 18:24:16 +00001996 v->db->nChange = pFrame->nDbChange;
dan165921a2009-08-28 18:53:45 +00001997 return pFrame->pc;
1998}
1999
drh9a324642003-09-06 20:12:01 +00002000/*
drh5f82e3c2009-07-06 00:44:08 +00002001** Close all cursors.
dan165921a2009-08-28 18:53:45 +00002002**
2003** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2004** cell array. This is necessary as the memory cell array may contain
2005** pointers to VdbeFrame objects, which may in turn contain pointers to
2006** open cursors.
drh9a324642003-09-06 20:12:01 +00002007*/
drh5f82e3c2009-07-06 00:44:08 +00002008static void closeAllCursors(Vdbe *p){
dan165921a2009-08-28 18:53:45 +00002009 if( p->pFrame ){
drh23272752011-03-06 21:54:33 +00002010 VdbeFrame *pFrame;
dan165921a2009-08-28 18:53:45 +00002011 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2012 sqlite3VdbeFrameRestore(pFrame);
drhf526dca2014-10-13 17:42:05 +00002013 p->pFrame = 0;
2014 p->nFrame = 0;
dan165921a2009-08-28 18:53:45 +00002015 }
drhf526dca2014-10-13 17:42:05 +00002016 assert( p->nFrame==0 );
drhab4e7f32015-04-16 18:11:50 +00002017 closeCursorsInFrame(p);
dan523a0872009-08-31 05:23:32 +00002018 if( p->aMem ){
2019 releaseMemArray(&p->aMem[1], p->nMem);
2020 }
dan27106572010-12-01 08:04:47 +00002021 while( p->pDelFrame ){
2022 VdbeFrame *pDel = p->pDelFrame;
2023 p->pDelFrame = pDel->pParent;
2024 sqlite3VdbeFrameDelete(pDel);
2025 }
dan0c547792013-07-18 17:12:08 +00002026
2027 /* Delete any auxdata allocations made by the VM */
drhf526dca2014-10-13 17:42:05 +00002028 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
dan0c547792013-07-18 17:12:08 +00002029 assert( p->pAuxData==0 );
drh9a324642003-09-06 20:12:01 +00002030}
2031
2032/*
drh7abda852014-09-19 16:02:06 +00002033** Clean up the VM after a single run.
drh9a324642003-09-06 20:12:01 +00002034*/
drhc890fec2008-08-01 20:10:08 +00002035static void Cleanup(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00002036 sqlite3 *db = p->db;
dan165921a2009-08-28 18:53:45 +00002037
2038#ifdef SQLITE_DEBUG
2039 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2040 ** Vdbe.aMem[] arrays have already been cleaned up. */
2041 int i;
drhb8475df2011-12-09 16:21:19 +00002042 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2043 if( p->aMem ){
drha5750cf2014-02-07 13:20:31 +00002044 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
drhb8475df2011-12-09 16:21:19 +00002045 }
dan165921a2009-08-28 18:53:45 +00002046#endif
2047
drh633e6d52008-07-28 19:34:53 +00002048 sqlite3DbFree(db, p->zErrMsg);
drh9a324642003-09-06 20:12:01 +00002049 p->zErrMsg = 0;
drhd4e70eb2008-01-02 00:34:36 +00002050 p->pResultSet = 0;
drh9a324642003-09-06 20:12:01 +00002051}
2052
2053/*
danielk197722322fd2004-05-25 23:35:17 +00002054** Set the number of result columns that will be returned by this SQL
2055** statement. This is now set at compile time, rather than during
2056** execution of the vdbe program so that sqlite3_column_count() can
2057** be called on an SQL statement before sqlite3_step().
2058*/
2059void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
drh76ff3a02004-09-24 22:32:30 +00002060 Mem *pColName;
2061 int n;
drh633e6d52008-07-28 19:34:53 +00002062 sqlite3 *db = p->db;
drh4a50aac2007-08-23 02:47:53 +00002063
drhc890fec2008-08-01 20:10:08 +00002064 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
drh633e6d52008-07-28 19:34:53 +00002065 sqlite3DbFree(db, p->aColName);
danielk1977955de522006-02-10 02:27:42 +00002066 n = nResColumn*COLNAME_N;
shane36840fd2009-06-26 16:32:13 +00002067 p->nResColumn = (u16)nResColumn;
drh633e6d52008-07-28 19:34:53 +00002068 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
drh76ff3a02004-09-24 22:32:30 +00002069 if( p->aColName==0 ) return;
2070 while( n-- > 0 ){
drh4a50aac2007-08-23 02:47:53 +00002071 pColName->flags = MEM_Null;
drh153c62c2007-08-24 03:51:33 +00002072 pColName->db = p->db;
drh4a50aac2007-08-23 02:47:53 +00002073 pColName++;
drh76ff3a02004-09-24 22:32:30 +00002074 }
danielk197722322fd2004-05-25 23:35:17 +00002075}
2076
2077/*
danielk19773cf86062004-05-26 10:11:05 +00002078** Set the name of the idx'th column to be returned by the SQL statement.
2079** zName must be a pointer to a nul terminated string.
2080**
2081** This call must be made after a call to sqlite3VdbeSetNumCols().
2082**
danielk197710fb7492008-10-31 10:53:22 +00002083** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2084** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2085** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
danielk19773cf86062004-05-26 10:11:05 +00002086*/
danielk197710fb7492008-10-31 10:53:22 +00002087int sqlite3VdbeSetColName(
2088 Vdbe *p, /* Vdbe being configured */
2089 int idx, /* Index of column zName applies to */
2090 int var, /* One of the COLNAME_* constants */
2091 const char *zName, /* Pointer to buffer containing name */
2092 void (*xDel)(void*) /* Memory management strategy for zName */
2093){
danielk19773cf86062004-05-26 10:11:05 +00002094 int rc;
2095 Mem *pColName;
danielk1977955de522006-02-10 02:27:42 +00002096 assert( idx<p->nResColumn );
2097 assert( var<COLNAME_N );
danielk197710fb7492008-10-31 10:53:22 +00002098 if( p->db->mallocFailed ){
2099 assert( !zName || xDel!=SQLITE_DYNAMIC );
2100 return SQLITE_NOMEM;
2101 }
drh76ff3a02004-09-24 22:32:30 +00002102 assert( p->aColName!=0 );
danielk1977955de522006-02-10 02:27:42 +00002103 pColName = &(p->aColName[idx+var*p->nResColumn]);
danielk197710fb7492008-10-31 10:53:22 +00002104 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
drh0793f1b2008-11-05 17:41:19 +00002105 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
danielk19773cf86062004-05-26 10:11:05 +00002106 return rc;
2107}
2108
danielk197713adf8a2004-06-03 16:08:41 +00002109/*
2110** A read or write transaction may or may not be active on database handle
2111** db. If a transaction is active, commit it. If there is a
2112** write-transaction spanning more than one database file, this routine
2113** takes care of the master journal trickery.
2114*/
danielk19773e3a84d2008-08-01 17:37:40 +00002115static int vdbeCommit(sqlite3 *db, Vdbe *p){
danielk197713adf8a2004-06-03 16:08:41 +00002116 int i;
2117 int nTrans = 0; /* Number of databases with an active write-transaction */
2118 int rc = SQLITE_OK;
2119 int needXcommit = 0;
2120
shane36840fd2009-06-26 16:32:13 +00002121#ifdef SQLITE_OMIT_VIRTUALTABLE
2122 /* With this option, sqlite3VtabSync() is defined to be simply
2123 ** SQLITE_OK so p is not used.
2124 */
2125 UNUSED_PARAMETER(p);
2126#endif
2127
danielk19775bd270b2006-07-25 15:14:52 +00002128 /* Before doing anything else, call the xSync() callback for any
2129 ** virtual module tables written in this transaction. This has to
2130 ** be done before determining whether a master journal file is
2131 ** required, as an xSync() callback may add an attached database
2132 ** to the transaction.
2133 */
dan016f7812013-08-21 17:35:48 +00002134 rc = sqlite3VtabSync(db, p);
danielk19775bd270b2006-07-25 15:14:52 +00002135
2136 /* This loop determines (a) if the commit hook should be invoked and
2137 ** (b) how many database files have open write transactions, not
2138 ** including the temp database. (b) is important because if more than
2139 ** one database file has an open write transaction, a master journal
2140 ** file is required for an atomic commit.
2141 */
drhabfb62f2010-07-30 11:20:35 +00002142 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002143 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002144 if( sqlite3BtreeIsInTrans(pBt) ){
danielk197713adf8a2004-06-03 16:08:41 +00002145 needXcommit = 1;
2146 if( i!=1 ) nTrans++;
dan6b9bb592012-10-05 19:43:02 +00002147 sqlite3BtreeEnter(pBt);
drhabfb62f2010-07-30 11:20:35 +00002148 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
dan6b9bb592012-10-05 19:43:02 +00002149 sqlite3BtreeLeave(pBt);
danielk197713adf8a2004-06-03 16:08:41 +00002150 }
2151 }
drhabfb62f2010-07-30 11:20:35 +00002152 if( rc!=SQLITE_OK ){
2153 return rc;
2154 }
danielk197713adf8a2004-06-03 16:08:41 +00002155
2156 /* If there are any write-transactions at all, invoke the commit hook */
2157 if( needXcommit && db->xCommitCallback ){
drh92f02c32004-09-02 14:57:08 +00002158 rc = db->xCommitCallback(db->pCommitArg);
drh92f02c32004-09-02 14:57:08 +00002159 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002160 return SQLITE_CONSTRAINT_COMMITHOOK;
danielk197713adf8a2004-06-03 16:08:41 +00002161 }
2162 }
2163
danielk197740b38dc2004-06-26 08:38:24 +00002164 /* The simple case - no more than one database file (not counting the
2165 ** TEMP database) has a transaction active. There is no need for the
drh2ac3ee92004-06-07 16:27:46 +00002166 ** master-journal.
drhc9e06862004-06-09 20:03:08 +00002167 **
danielk197740b38dc2004-06-26 08:38:24 +00002168 ** If the return value of sqlite3BtreeGetFilename() is a zero length
danielk197717b90b52008-06-06 11:11:25 +00002169 ** string, it means the main database is :memory: or a temp file. In
2170 ** that case we do not support atomic multi-file commits, so use the
2171 ** simple case then too.
danielk197713adf8a2004-06-03 16:08:41 +00002172 */
drhea678832008-12-10 19:26:22 +00002173 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2174 || nTrans<=1
2175 ){
danielk197704103022009-02-03 16:51:24 +00002176 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002177 Btree *pBt = db->aDb[i].pBt;
2178 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002179 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
drh2ac3ee92004-06-07 16:27:46 +00002180 }
2181 }
2182
drh80e35f42007-03-30 14:06:34 +00002183 /* Do the commit only if all databases successfully complete phase 1.
2184 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2185 ** IO error while deleting or truncating a journal file. It is unlikely,
2186 ** but could happen. In this case abandon processing and return the error.
danielk1977979f38e2007-03-27 16:19:51 +00002187 */
2188 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2189 Btree *pBt = db->aDb[i].pBt;
2190 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002191 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
danielk197713adf8a2004-06-03 16:08:41 +00002192 }
danielk1977979f38e2007-03-27 16:19:51 +00002193 }
2194 if( rc==SQLITE_OK ){
danielk1977f9e7dda2006-06-16 16:08:53 +00002195 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002196 }
2197 }
2198
2199 /* The complex case - There is a multi-file write-transaction active.
2200 ** This requires a master journal file to ensure the transaction is
peter.d.reid60ec9142014-09-06 16:39:46 +00002201 ** committed atomically.
danielk197713adf8a2004-06-03 16:08:41 +00002202 */
danielk197744ee5bf2005-05-27 09:41:12 +00002203#ifndef SQLITE_OMIT_DISKIO
danielk197713adf8a2004-06-03 16:08:41 +00002204 else{
danielk1977b4b47412007-08-17 15:53:36 +00002205 sqlite3_vfs *pVfs = db->pVfs;
drh2c8997b2005-08-27 16:36:48 +00002206 int needSync = 0;
danielk197713adf8a2004-06-03 16:08:41 +00002207 char *zMaster = 0; /* File-name for the master journal */
2208 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
danielk1977b4b47412007-08-17 15:53:36 +00002209 sqlite3_file *pMaster = 0;
danielk197762079062007-08-15 17:08:46 +00002210 i64 offset = 0;
danielk1977861f7452008-06-05 11:39:11 +00002211 int res;
drhf5808602011-12-16 00:33:04 +00002212 int retryCount = 0;
drh5c531a42011-12-16 01:21:31 +00002213 int nMainFile;
danielk197713adf8a2004-06-03 16:08:41 +00002214
2215 /* Select a master journal file name */
drh5c531a42011-12-16 01:21:31 +00002216 nMainFile = sqlite3Strlen30(zMainFile);
drh52bcde02012-01-03 14:50:45 +00002217 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
drh5c531a42011-12-16 01:21:31 +00002218 if( zMaster==0 ) return SQLITE_NOMEM;
danielk197713adf8a2004-06-03 16:08:41 +00002219 do {
drhdc5ea5c2008-12-10 17:19:59 +00002220 u32 iRandom;
drh84968c02011-12-16 15:11:39 +00002221 if( retryCount ){
2222 if( retryCount>100 ){
2223 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2224 sqlite3OsDelete(pVfs, zMaster, 0);
2225 break;
2226 }else if( retryCount==1 ){
2227 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2228 }
danielk197713adf8a2004-06-03 16:08:41 +00002229 }
drh84968c02011-12-16 15:11:39 +00002230 retryCount++;
danielk197713adf8a2004-06-03 16:08:41 +00002231 sqlite3_randomness(sizeof(iRandom), &iRandom);
drh5c531a42011-12-16 01:21:31 +00002232 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
drhf5808602011-12-16 00:33:04 +00002233 (iRandom>>8)&0xffffff, iRandom&0xff);
drhf5808602011-12-16 00:33:04 +00002234 /* The antipenultimate character of the master journal name must
2235 ** be "9" to avoid name collisions when using 8+3 filenames. */
drh5c531a42011-12-16 01:21:31 +00002236 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
drh81cc5162011-05-17 20:36:21 +00002237 sqlite3FileSuffix3(zMainFile, zMaster);
danielk1977861f7452008-06-05 11:39:11 +00002238 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2239 }while( rc==SQLITE_OK && res );
2240 if( rc==SQLITE_OK ){
drh19db9352008-03-27 22:42:51 +00002241 /* Open the master journal. */
2242 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2243 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2244 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2245 );
2246 }
danielk197713adf8a2004-06-03 16:08:41 +00002247 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002248 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002249 return rc;
2250 }
2251
2252 /* Write the name of each database file in the transaction into the new
2253 ** master journal file. If an error occurs at this point close
2254 ** and delete the master journal file. All the individual journal files
2255 ** still have 'null' as the master journal pointer, so they will roll
danielk1977aca790a2005-01-13 11:07:52 +00002256 ** back independently if a failure occurs.
danielk197713adf8a2004-06-03 16:08:41 +00002257 */
danielk19771e536952007-08-16 10:09:01 +00002258 for(i=0; i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002259 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002260 if( sqlite3BtreeIsInTrans(pBt) ){
danielk19775865e3d2004-06-14 06:03:57 +00002261 char const *zFile = sqlite3BtreeGetJournalname(pBt);
drh8c96a6e2010-08-31 01:09:15 +00002262 if( zFile==0 ){
drhb290e1c2009-12-08 13:36:55 +00002263 continue; /* Ignore TEMP and :memory: databases */
2264 }
drh8c96a6e2010-08-31 01:09:15 +00002265 assert( zFile[0]!=0 );
drh2c8997b2005-08-27 16:36:48 +00002266 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
2267 needSync = 1;
2268 }
drhea678832008-12-10 19:26:22 +00002269 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2270 offset += sqlite3Strlen30(zFile)+1;
danielk197713adf8a2004-06-03 16:08:41 +00002271 if( rc!=SQLITE_OK ){
danielk1977fee2d252007-08-18 10:59:19 +00002272 sqlite3OsCloseFree(pMaster);
2273 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002274 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002275 return rc;
2276 }
2277 }
2278 }
2279
danielk19779663b8f2007-08-24 11:52:28 +00002280 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2281 ** flag is set this is not required.
2282 */
danielk1977bea2a942009-01-20 17:06:27 +00002283 if( needSync
2284 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2285 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2286 ){
danielk1977fee2d252007-08-18 10:59:19 +00002287 sqlite3OsCloseFree(pMaster);
2288 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002289 sqlite3DbFree(db, zMaster);
danielk19775865e3d2004-06-14 06:03:57 +00002290 return rc;
2291 }
drhc9e06862004-06-09 20:03:08 +00002292
danielk197713adf8a2004-06-03 16:08:41 +00002293 /* Sync all the db files involved in the transaction. The same call
2294 ** sets the master journal pointer in each individual journal. If
2295 ** an error occurs here, do not delete the master journal file.
2296 **
drh80e35f42007-03-30 14:06:34 +00002297 ** If the error occurs during the first call to
2298 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2299 ** master journal file will be orphaned. But we cannot delete it,
2300 ** in case the master journal file name was written into the journal
shanebe217792009-03-05 04:20:31 +00002301 ** file before the failure occurred.
danielk197713adf8a2004-06-03 16:08:41 +00002302 */
danielk19775bd270b2006-07-25 15:14:52 +00002303 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002304 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002305 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002306 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002307 }
2308 }
danielk1977fee2d252007-08-18 10:59:19 +00002309 sqlite3OsCloseFree(pMaster);
drhabfb62f2010-07-30 11:20:35 +00002310 assert( rc!=SQLITE_BUSY );
danielk19775bd270b2006-07-25 15:14:52 +00002311 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002312 sqlite3DbFree(db, zMaster);
danielk19775bd270b2006-07-25 15:14:52 +00002313 return rc;
2314 }
danielk197713adf8a2004-06-03 16:08:41 +00002315
danielk1977962398d2004-06-14 09:35:16 +00002316 /* Delete the master journal file. This commits the transaction. After
2317 ** doing this the directory is synced again before any individual
2318 ** transaction files are deleted.
2319 */
drh75a4d7c2015-03-16 16:44:55 +00002320 rc = sqlite3OsDelete(pVfs, zMaster, needSync);
drh633e6d52008-07-28 19:34:53 +00002321 sqlite3DbFree(db, zMaster);
drhc416ba92007-03-30 18:42:55 +00002322 zMaster = 0;
drh29a01382006-08-13 19:04:18 +00002323 if( rc ){
2324 return rc;
2325 }
danielk197713adf8a2004-06-03 16:08:41 +00002326
2327 /* All files and directories have already been synced, so the following
drh80e35f42007-03-30 14:06:34 +00002328 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2329 ** deleting or truncating journals. If something goes wrong while
2330 ** this is happening we don't really care. The integrity of the
2331 ** transaction is already guaranteed, but some stray 'cold' journals
2332 ** may be lying around. Returning an error code won't help matters.
danielk197713adf8a2004-06-03 16:08:41 +00002333 */
danielk1977979f38e2007-03-27 16:19:51 +00002334 disable_simulated_io_errors();
danielk19772d1d86f2008-06-20 14:59:51 +00002335 sqlite3BeginBenignMalloc();
danielk197713adf8a2004-06-03 16:08:41 +00002336 for(i=0; i<db->nDb; i++){
2337 Btree *pBt = db->aDb[i].pBt;
2338 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002339 sqlite3BtreeCommitPhaseTwo(pBt, 1);
danielk197713adf8a2004-06-03 16:08:41 +00002340 }
2341 }
danielk19772d1d86f2008-06-20 14:59:51 +00002342 sqlite3EndBenignMalloc();
danielk1977979f38e2007-03-27 16:19:51 +00002343 enable_simulated_io_errors();
2344
danielk1977f9e7dda2006-06-16 16:08:53 +00002345 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002346 }
danielk197744ee5bf2005-05-27 09:41:12 +00002347#endif
danielk1977026d2702004-06-14 13:14:59 +00002348
drh2ac3ee92004-06-07 16:27:46 +00002349 return rc;
danielk197713adf8a2004-06-03 16:08:41 +00002350}
2351
danielk19771d850a72004-05-31 08:26:49 +00002352/*
drh4f7d3a52013-06-27 23:54:02 +00002353** This routine checks that the sqlite3.nVdbeActive count variable
danielk19771d850a72004-05-31 08:26:49 +00002354** matches the number of vdbe's in the list sqlite3.pVdbe that are
2355** currently active. An assertion fails if the two counts do not match.
drh92f02c32004-09-02 14:57:08 +00002356** This is an internal self-check only - it is not an essential processing
2357** step.
danielk19771d850a72004-05-31 08:26:49 +00002358**
2359** This is a no-op if NDEBUG is defined.
2360*/
2361#ifndef NDEBUG
drh9bb575f2004-09-06 17:24:11 +00002362static void checkActiveVdbeCnt(sqlite3 *db){
danielk19771d850a72004-05-31 08:26:49 +00002363 Vdbe *p;
2364 int cnt = 0;
drhad4a4b82008-11-05 16:37:34 +00002365 int nWrite = 0;
drh4f7d3a52013-06-27 23:54:02 +00002366 int nRead = 0;
danielk19771d850a72004-05-31 08:26:49 +00002367 p = db->pVdbe;
2368 while( p ){
dan857745c2014-07-19 17:57:10 +00002369 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
danielk19771d850a72004-05-31 08:26:49 +00002370 cnt++;
drhad4a4b82008-11-05 16:37:34 +00002371 if( p->readOnly==0 ) nWrite++;
drh1713afb2013-06-28 01:24:57 +00002372 if( p->bIsReader ) nRead++;
danielk19771d850a72004-05-31 08:26:49 +00002373 }
2374 p = p->pNext;
2375 }
drh4f7d3a52013-06-27 23:54:02 +00002376 assert( cnt==db->nVdbeActive );
2377 assert( nWrite==db->nVdbeWrite );
2378 assert( nRead==db->nVdbeRead );
danielk19771d850a72004-05-31 08:26:49 +00002379}
2380#else
2381#define checkActiveVdbeCnt(x)
2382#endif
2383
danielk19773cf86062004-05-26 10:11:05 +00002384/*
danielk1977bd434552009-03-18 10:33:00 +00002385** If the Vdbe passed as the first argument opened a statement-transaction,
2386** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2387** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2388** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
drhf7b54962013-05-28 12:11:54 +00002389** statement transaction is committed.
danielk1977bd434552009-03-18 10:33:00 +00002390**
2391** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2392** Otherwise SQLITE_OK.
2393*/
2394int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
danielk1977c926b6a2009-03-20 14:42:11 +00002395 sqlite3 *const db = p->db;
danielk1977bd434552009-03-18 10:33:00 +00002396 int rc = SQLITE_OK;
danielk1977ecaecf92009-07-08 08:05:35 +00002397
danielk1977e4948172009-07-17 17:25:43 +00002398 /* If p->iStatement is greater than zero, then this Vdbe opened a
2399 ** statement transaction that should be closed here. The only exception
mistachkin48864df2013-03-21 21:20:32 +00002400 ** is that an IO error may have occurred, causing an emergency rollback.
danielk1977e4948172009-07-17 17:25:43 +00002401 ** In this case (db->nStatement==0), and there is nothing to do.
2402 */
2403 if( db->nStatement && p->iStatement ){
danielk1977bd434552009-03-18 10:33:00 +00002404 int i;
2405 const int iSavepoint = p->iStatement-1;
danielk1977bd434552009-03-18 10:33:00 +00002406
2407 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2408 assert( db->nStatement>0 );
2409 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2410
2411 for(i=0; i<db->nDb; i++){
2412 int rc2 = SQLITE_OK;
2413 Btree *pBt = db->aDb[i].pBt;
2414 if( pBt ){
2415 if( eOp==SAVEPOINT_ROLLBACK ){
2416 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2417 }
2418 if( rc2==SQLITE_OK ){
2419 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2420 }
2421 if( rc==SQLITE_OK ){
2422 rc = rc2;
2423 }
2424 }
2425 }
2426 db->nStatement--;
2427 p->iStatement = 0;
dan1da40a32009-09-19 17:00:31 +00002428
dana311b802011-04-26 19:21:34 +00002429 if( rc==SQLITE_OK ){
2430 if( eOp==SAVEPOINT_ROLLBACK ){
2431 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2432 }
2433 if( rc==SQLITE_OK ){
2434 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2435 }
2436 }
2437
dan1da40a32009-09-19 17:00:31 +00002438 /* If the statement transaction is being rolled back, also restore the
2439 ** database handles deferred constraint counter to the value it had when
2440 ** the statement transaction was opened. */
2441 if( eOp==SAVEPOINT_ROLLBACK ){
2442 db->nDeferredCons = p->nStmtDefCons;
drh648e2642013-07-11 15:03:32 +00002443 db->nDeferredImmCons = p->nStmtDefImmCons;
dan1da40a32009-09-19 17:00:31 +00002444 }
danielk1977bd434552009-03-18 10:33:00 +00002445 }
2446 return rc;
2447}
2448
2449/*
dan1da40a32009-09-19 17:00:31 +00002450** This function is called when a transaction opened by the database
2451** handle associated with the VM passed as an argument is about to be
2452** committed. If there are outstanding deferred foreign key constraint
2453** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2454**
2455** If there are outstanding FK violations and this function returns
drhd91c1a12013-02-09 13:58:25 +00002456** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2457** and write an error message to it. Then return SQLITE_ERROR.
dan1da40a32009-09-19 17:00:31 +00002458*/
2459#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00002460int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
dan1da40a32009-09-19 17:00:31 +00002461 sqlite3 *db = p->db;
drh648e2642013-07-11 15:03:32 +00002462 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2463 || (!deferred && p->nFkConstraint>0)
2464 ){
drhd91c1a12013-02-09 13:58:25 +00002465 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan32b09f22009-09-23 17:29:59 +00002466 p->errorAction = OE_Abort;
drh22c17b82015-05-15 04:13:15 +00002467 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
dan1da40a32009-09-19 17:00:31 +00002468 return SQLITE_ERROR;
2469 }
2470 return SQLITE_OK;
2471}
2472#endif
2473
2474/*
drh92f02c32004-09-02 14:57:08 +00002475** This routine is called the when a VDBE tries to halt. If the VDBE
2476** has made changes and is in autocommit mode, then commit those
2477** changes. If a rollback is needed, then do the rollback.
drh9a324642003-09-06 20:12:01 +00002478**
drh92f02c32004-09-02 14:57:08 +00002479** This routine is the only way to move the state of a VM from
drhff0587c2007-08-29 17:43:19 +00002480** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2481** call this on a VM that is in the SQLITE_MAGIC_HALT state.
drh92f02c32004-09-02 14:57:08 +00002482**
2483** Return an error code. If the commit could not complete because of
2484** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2485** means the close did not happen and needs to be repeated.
drh9a324642003-09-06 20:12:01 +00002486*/
drhff0587c2007-08-29 17:43:19 +00002487int sqlite3VdbeHalt(Vdbe *p){
danielk1977bd434552009-03-18 10:33:00 +00002488 int rc; /* Used to store transient return codes */
drh9bb575f2004-09-06 17:24:11 +00002489 sqlite3 *db = p->db;
danielk197707cb5602006-01-20 10:55:05 +00002490
2491 /* This function contains the logic that determines if a statement or
2492 ** transaction will be committed or rolled back as a result of the
2493 ** execution of this virtual machine.
2494 **
drh71b890a2007-10-03 15:30:52 +00002495 ** If any of the following errors occur:
danielk197707cb5602006-01-20 10:55:05 +00002496 **
drh71b890a2007-10-03 15:30:52 +00002497 ** SQLITE_NOMEM
2498 ** SQLITE_IOERR
2499 ** SQLITE_FULL
2500 ** SQLITE_INTERRUPT
danielk197707cb5602006-01-20 10:55:05 +00002501 **
drh71b890a2007-10-03 15:30:52 +00002502 ** Then the internal cache might have been left in an inconsistent
2503 ** state. We need to rollback the statement transaction, if there is
2504 ** one, or the complete transaction if there is no statement transaction.
danielk197707cb5602006-01-20 10:55:05 +00002505 */
drh9a324642003-09-06 20:12:01 +00002506
drh17435752007-08-16 04:30:38 +00002507 if( p->db->mallocFailed ){
danielk1977261919c2005-12-06 12:52:59 +00002508 p->rc = SQLITE_NOMEM;
2509 }
drh6e856bc2011-12-09 18:06:44 +00002510 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
drh5f82e3c2009-07-06 00:44:08 +00002511 closeAllCursors(p);
drh92f02c32004-09-02 14:57:08 +00002512 if( p->magic!=VDBE_MAGIC_RUN ){
drh92f02c32004-09-02 14:57:08 +00002513 return SQLITE_OK;
drh9a324642003-09-06 20:12:01 +00002514 }
danielk19771d850a72004-05-31 08:26:49 +00002515 checkActiveVdbeCnt(db);
danielk1977261919c2005-12-06 12:52:59 +00002516
danc0537fe2013-06-28 19:41:43 +00002517 /* No commit or rollback needed if the program never started or if the
2518 ** SQL statement does not read or write a database file. */
2519 if( p->pc>=0 && p->bIsReader ){
drhaac2f552006-09-23 21:44:23 +00002520 int mrc; /* Primary error code from p->rc */
danielk1977bd434552009-03-18 10:33:00 +00002521 int eStatementOp = 0;
2522 int isSpecialError; /* Set to true if a 'special' error */
drhff0587c2007-08-29 17:43:19 +00002523
2524 /* Lock all btrees used by the statement */
drhbdaec522011-04-04 00:14:43 +00002525 sqlite3VdbeEnter(p);
drhff0587c2007-08-29 17:43:19 +00002526
drh71b890a2007-10-03 15:30:52 +00002527 /* Check for one of the special errors */
drhaac2f552006-09-23 21:44:23 +00002528 mrc = p->rc & 0xff;
drh71b890a2007-10-03 15:30:52 +00002529 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
drh77658e22007-12-04 16:54:52 +00002530 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
danielk197707cb5602006-01-20 10:55:05 +00002531 if( isSpecialError ){
dan5653e4d2010-08-12 11:25:47 +00002532 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2533 ** no rollback is necessary. Otherwise, at least a savepoint
2534 ** transaction must be rolled back to restore the database to a
2535 ** consistent state.
2536 **
2537 ** Even if the statement is read-only, it is important to perform
2538 ** a statement or transaction rollback operation. If the error
mistachkin48864df2013-03-21 21:20:32 +00002539 ** occurred while writing to the journal, sub-journal or database
dan5653e4d2010-08-12 11:25:47 +00002540 ** file as part of an effort to free up cache space (see function
2541 ** pagerStress() in pager.c), the rollback is required to restore
2542 ** the pager to a consistent state.
danielk197707cb5602006-01-20 10:55:05 +00002543 */
drhad4a4b82008-11-05 16:37:34 +00002544 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
drhfa3be902009-07-07 02:44:07 +00002545 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
danielk1977bd434552009-03-18 10:33:00 +00002546 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002547 }else{
2548 /* We are forced to roll back the active transaction. Before doing
2549 ** so, abort any other statements this handle currently has active.
2550 */
drh21021a52012-02-13 17:01:51 +00002551 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002552 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002553 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002554 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002555 }
danielk1977261919c2005-12-06 12:52:59 +00002556 }
2557 }
dan32b09f22009-09-23 17:29:59 +00002558
2559 /* Check for immediate foreign key violations. */
2560 if( p->rc==SQLITE_OK ){
2561 sqlite3VdbeCheckFk(p, 0);
2562 }
danielk197707cb5602006-01-20 10:55:05 +00002563
danielk1977bd434552009-03-18 10:33:00 +00002564 /* If the auto-commit flag is set and this is the only active writer
2565 ** VM, then we do either a commit or rollback of the current transaction.
danielk197707cb5602006-01-20 10:55:05 +00002566 **
2567 ** Note: This block also runs if one of the special errors handled
drhad4a4b82008-11-05 16:37:34 +00002568 ** above has occurred.
danielk197707cb5602006-01-20 10:55:05 +00002569 */
danielk1977093e0f62008-11-13 18:00:14 +00002570 if( !sqlite3VtabInSync(db)
2571 && db->autoCommit
drh4f7d3a52013-06-27 23:54:02 +00002572 && db->nVdbeWrite==(p->readOnly==0)
danielk1977093e0f62008-11-13 18:00:14 +00002573 ){
danielk197707cb5602006-01-20 10:55:05 +00002574 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
dan19611b12011-01-24 16:00:58 +00002575 rc = sqlite3VdbeCheckFk(p, 1);
2576 if( rc!=SQLITE_OK ){
drhe9ce5852011-02-11 22:54:28 +00002577 if( NEVER(p->readOnly) ){
drhbdaec522011-04-04 00:14:43 +00002578 sqlite3VdbeLeave(p);
dan19611b12011-01-24 16:00:58 +00002579 return SQLITE_ERROR;
2580 }
drhd91c1a12013-02-09 13:58:25 +00002581 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan19611b12011-01-24 16:00:58 +00002582 }else{
2583 /* The auto-commit flag is true, the vdbe program was successful
2584 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2585 ** key constraints to hold up the transaction. This means a commit
2586 ** is required. */
2587 rc = vdbeCommit(db, p);
dan1da40a32009-09-19 17:00:31 +00002588 }
dan19611b12011-01-24 16:00:58 +00002589 if( rc==SQLITE_BUSY && p->readOnly ){
drhbdaec522011-04-04 00:14:43 +00002590 sqlite3VdbeLeave(p);
danielk197707cb5602006-01-20 10:55:05 +00002591 return SQLITE_BUSY;
2592 }else if( rc!=SQLITE_OK ){
2593 p->rc = rc;
drh0f198a72012-02-13 16:43:16 +00002594 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002595 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002596 }else{
dan1da40a32009-09-19 17:00:31 +00002597 db->nDeferredCons = 0;
drh648e2642013-07-11 15:03:32 +00002598 db->nDeferredImmCons = 0;
2599 db->flags &= ~SQLITE_DeferFKs;
danielk197707cb5602006-01-20 10:55:05 +00002600 sqlite3CommitInternalChanges(db);
2601 }
2602 }else{
drh0f198a72012-02-13 16:43:16 +00002603 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002604 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002605 }
danielk1977bd434552009-03-18 10:33:00 +00002606 db->nStatement = 0;
2607 }else if( eStatementOp==0 ){
danielk197707cb5602006-01-20 10:55:05 +00002608 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
danielk1977bd434552009-03-18 10:33:00 +00002609 eStatementOp = SAVEPOINT_RELEASE;
danielk197707cb5602006-01-20 10:55:05 +00002610 }else if( p->errorAction==OE_Abort ){
danielk1977bd434552009-03-18 10:33:00 +00002611 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002612 }else{
drh21021a52012-02-13 17:01:51 +00002613 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002614 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002615 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002616 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002617 }
danielk19771d850a72004-05-31 08:26:49 +00002618 }
danielk197707cb5602006-01-20 10:55:05 +00002619
danielk1977bd434552009-03-18 10:33:00 +00002620 /* If eStatementOp is non-zero, then a statement transaction needs to
2621 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2622 ** do so. If this operation returns an error, and the current statement
drh35173242010-03-08 21:40:13 +00002623 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2624 ** current statement error code.
danielk197707cb5602006-01-20 10:55:05 +00002625 */
danielk1977bd434552009-03-18 10:33:00 +00002626 if( eStatementOp ){
2627 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
dan40ad9d22010-06-03 09:17:38 +00002628 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002629 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
dan40ad9d22010-06-03 09:17:38 +00002630 p->rc = rc;
2631 sqlite3DbFree(db, p->zErrMsg);
2632 p->zErrMsg = 0;
2633 }
drh21021a52012-02-13 17:01:51 +00002634 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
dan40ad9d22010-06-03 09:17:38 +00002635 sqlite3CloseSavepoints(db);
2636 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002637 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002638 }
danielk197777d83ba2004-05-31 10:08:14 +00002639 }
danielk197707cb5602006-01-20 10:55:05 +00002640
danielk1977bd434552009-03-18 10:33:00 +00002641 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2642 ** has been rolled back, update the database connection change-counter.
danielk197707cb5602006-01-20 10:55:05 +00002643 */
drh6be240e2009-07-14 02:33:02 +00002644 if( p->changeCntOn ){
danielk1977bd434552009-03-18 10:33:00 +00002645 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
danielk197707cb5602006-01-20 10:55:05 +00002646 sqlite3VdbeSetChanges(db, p->nChange);
2647 }else{
2648 sqlite3VdbeSetChanges(db, 0);
2649 }
2650 p->nChange = 0;
danielk1977b28af712004-06-21 06:50:26 +00002651 }
drhff0587c2007-08-29 17:43:19 +00002652
2653 /* Release the locks */
drhbdaec522011-04-04 00:14:43 +00002654 sqlite3VdbeLeave(p);
drh9a324642003-09-06 20:12:01 +00002655 }
danielk19771d850a72004-05-31 08:26:49 +00002656
danielk197765fd59f2006-06-24 11:51:33 +00002657 /* We have successfully halted and closed the VM. Record this fact. */
2658 if( p->pc>=0 ){
drh4f7d3a52013-06-27 23:54:02 +00002659 db->nVdbeActive--;
2660 if( !p->readOnly ) db->nVdbeWrite--;
drh1713afb2013-06-28 01:24:57 +00002661 if( p->bIsReader ) db->nVdbeRead--;
drh4f7d3a52013-06-27 23:54:02 +00002662 assert( db->nVdbeActive>=db->nVdbeRead );
2663 assert( db->nVdbeRead>=db->nVdbeWrite );
2664 assert( db->nVdbeWrite>=0 );
drh9a324642003-09-06 20:12:01 +00002665 }
drh92f02c32004-09-02 14:57:08 +00002666 p->magic = VDBE_MAGIC_HALT;
2667 checkActiveVdbeCnt(db);
drhff0587c2007-08-29 17:43:19 +00002668 if( p->db->mallocFailed ){
2669 p->rc = SQLITE_NOMEM;
2670 }
danielk19771d850a72004-05-31 08:26:49 +00002671
danielk1977404ca072009-03-16 13:19:36 +00002672 /* If the auto-commit flag is set to true, then any locks that were held
2673 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2674 ** to invoke any required unlock-notify callbacks.
2675 */
2676 if( db->autoCommit ){
2677 sqlite3ConnectionUnlocked(db);
2678 }
2679
drh4f7d3a52013-06-27 23:54:02 +00002680 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
dan19611b12011-01-24 16:00:58 +00002681 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
drh92f02c32004-09-02 14:57:08 +00002682}
drh4cf7c7f2007-08-28 23:28:07 +00002683
drh92f02c32004-09-02 14:57:08 +00002684
2685/*
drh3c23a882007-01-09 14:01:13 +00002686** Each VDBE holds the result of the most recent sqlite3_step() call
2687** in p->rc. This routine sets that result back to SQLITE_OK.
2688*/
2689void sqlite3VdbeResetStepResult(Vdbe *p){
2690 p->rc = SQLITE_OK;
2691}
2692
2693/*
dan029ead62011-10-27 15:19:58 +00002694** Copy the error code and error message belonging to the VDBE passed
2695** as the first argument to its database handle (so that they will be
2696** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2697**
2698** This function does not clear the VDBE error code or message, just
2699** copies them to the database handle.
2700*/
2701int sqlite3VdbeTransferError(Vdbe *p){
2702 sqlite3 *db = p->db;
2703 int rc = p->rc;
2704 if( p->zErrMsg ){
drh81bdd6d2011-10-29 01:33:24 +00002705 u8 mallocFailed = db->mallocFailed;
dan029ead62011-10-27 15:19:58 +00002706 sqlite3BeginBenignMalloc();
drha3cc0072013-12-13 16:23:55 +00002707 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
dan029ead62011-10-27 15:19:58 +00002708 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2709 sqlite3EndBenignMalloc();
drh81bdd6d2011-10-29 01:33:24 +00002710 db->mallocFailed = mallocFailed;
dan029ead62011-10-27 15:19:58 +00002711 db->errCode = rc;
2712 }else{
drh13f40da2014-08-22 18:00:11 +00002713 sqlite3Error(db, rc);
dan029ead62011-10-27 15:19:58 +00002714 }
2715 return rc;
2716}
2717
danac455932012-11-26 19:50:41 +00002718#ifdef SQLITE_ENABLE_SQLLOG
2719/*
2720** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2721** invoke it.
2722*/
2723static void vdbeInvokeSqllog(Vdbe *v){
2724 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2725 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2726 assert( v->db->init.busy==0 );
2727 if( zExpanded ){
2728 sqlite3GlobalConfig.xSqllog(
2729 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2730 );
2731 sqlite3DbFree(v->db, zExpanded);
2732 }
2733 }
2734}
2735#else
2736# define vdbeInvokeSqllog(x)
2737#endif
2738
dan029ead62011-10-27 15:19:58 +00002739/*
drh92f02c32004-09-02 14:57:08 +00002740** Clean up a VDBE after execution but do not delete the VDBE just yet.
2741** Write any error messages into *pzErrMsg. Return the result code.
2742**
2743** After this routine is run, the VDBE should be ready to be executed
2744** again.
2745**
2746** To look at it another way, this routine resets the state of the
2747** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2748** VDBE_MAGIC_INIT.
2749*/
drhc890fec2008-08-01 20:10:08 +00002750int sqlite3VdbeReset(Vdbe *p){
drh4ac285a2006-09-15 07:28:50 +00002751 sqlite3 *db;
drh4ac285a2006-09-15 07:28:50 +00002752 db = p->db;
drh92f02c32004-09-02 14:57:08 +00002753
2754 /* If the VM did not run to completion or if it encountered an
2755 ** error, then it might not have been halted properly. So halt
2756 ** it now.
2757 */
2758 sqlite3VdbeHalt(p);
2759
drhfb7e7652005-01-24 00:28:42 +00002760 /* If the VDBE has be run even partially, then transfer the error code
2761 ** and error message from the VDBE into the main database structure. But
2762 ** if the VDBE has just been set to run but has not actually executed any
2763 ** instructions yet, leave the main database error information unchanged.
drh92f02c32004-09-02 14:57:08 +00002764 */
drhfb7e7652005-01-24 00:28:42 +00002765 if( p->pc>=0 ){
danac455932012-11-26 19:50:41 +00002766 vdbeInvokeSqllog(p);
dan029ead62011-10-27 15:19:58 +00002767 sqlite3VdbeTransferError(p);
2768 sqlite3DbFree(db, p->zErrMsg);
2769 p->zErrMsg = 0;
drh4611d922010-02-25 14:47:01 +00002770 if( p->runOnlyOnce ) p->expired = 1;
danielk1977a21c6b62005-01-24 10:25:59 +00002771 }else if( p->rc && p->expired ){
2772 /* The expired flag was set on the VDBE before the first call
2773 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2774 ** called), set the database error in this case as well.
2775 */
drh13f40da2014-08-22 18:00:11 +00002776 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
drh633e6d52008-07-28 19:34:53 +00002777 sqlite3DbFree(db, p->zErrMsg);
danielk19778e556522007-11-13 10:30:24 +00002778 p->zErrMsg = 0;
drh92f02c32004-09-02 14:57:08 +00002779 }
2780
2781 /* Reclaim all memory used by the VDBE
2782 */
drhc890fec2008-08-01 20:10:08 +00002783 Cleanup(p);
drh92f02c32004-09-02 14:57:08 +00002784
2785 /* Save profiling information from this VDBE run.
2786 */
drh9a324642003-09-06 20:12:01 +00002787#ifdef VDBE_PROFILE
2788 {
2789 FILE *out = fopen("vdbe_profile.out", "a");
2790 if( out ){
2791 int i;
2792 fprintf(out, "---- ");
2793 for(i=0; i<p->nOp; i++){
2794 fprintf(out, "%02x", p->aOp[i].opcode);
2795 }
2796 fprintf(out, "\n");
drh2926f962014-02-17 01:13:28 +00002797 if( p->zSql ){
2798 char c, pc = 0;
2799 fprintf(out, "-- ");
2800 for(i=0; (c = p->zSql[i])!=0; i++){
2801 if( pc=='\n' ) fprintf(out, "-- ");
2802 putc(c, out);
2803 pc = c;
2804 }
2805 if( pc!='\n' ) fprintf(out, "\n");
2806 }
drh9a324642003-09-06 20:12:01 +00002807 for(i=0; i<p->nOp; i++){
drh15ab9412014-02-24 14:24:01 +00002808 char zHdr[100];
2809 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
drh9a324642003-09-06 20:12:01 +00002810 p->aOp[i].cnt,
2811 p->aOp[i].cycles,
2812 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2813 );
drh15ab9412014-02-24 14:24:01 +00002814 fprintf(out, "%s", zHdr);
danielk19774adee202004-05-08 08:23:19 +00002815 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
drh9a324642003-09-06 20:12:01 +00002816 }
2817 fclose(out);
2818 }
2819 }
2820#endif
drh7fa20922013-09-17 23:36:33 +00002821 p->iCurrentTime = 0;
drh9a324642003-09-06 20:12:01 +00002822 p->magic = VDBE_MAGIC_INIT;
drh4ac285a2006-09-15 07:28:50 +00002823 return p->rc & db->errMask;
drh9a324642003-09-06 20:12:01 +00002824}
drh92f02c32004-09-02 14:57:08 +00002825
drh9a324642003-09-06 20:12:01 +00002826/*
2827** Clean up and delete a VDBE after execution. Return an integer which is
2828** the result code. Write any error message text into *pzErrMsg.
2829*/
danielk19779e6db7d2004-06-21 08:18:51 +00002830int sqlite3VdbeFinalize(Vdbe *p){
danielk1977b5548a82004-06-26 13:51:33 +00002831 int rc = SQLITE_OK;
danielk1977b5548a82004-06-26 13:51:33 +00002832 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
drhc890fec2008-08-01 20:10:08 +00002833 rc = sqlite3VdbeReset(p);
drh4ac285a2006-09-15 07:28:50 +00002834 assert( (rc & p->db->errMask)==rc );
drh9a324642003-09-06 20:12:01 +00002835 }
danielk19774adee202004-05-08 08:23:19 +00002836 sqlite3VdbeDelete(p);
drh9a324642003-09-06 20:12:01 +00002837 return rc;
2838}
2839
2840/*
dan0c547792013-07-18 17:12:08 +00002841** If parameter iOp is less than zero, then invoke the destructor for
2842** all auxiliary data pointers currently cached by the VM passed as
2843** the first argument.
2844**
2845** Or, if iOp is greater than or equal to zero, then the destructor is
2846** only invoked for those auxiliary data pointers created by the user
2847** function invoked by the OP_Function opcode at instruction iOp of
2848** VM pVdbe, and only then if:
2849**
2850** * the associated function parameter is the 32nd or later (counting
2851** from left to right), or
2852**
2853** * the corresponding bit in argument mask is clear (where the first
peter.d.reid60ec9142014-09-06 16:39:46 +00002854** function parameter corresponds to bit 0 etc.).
drhf92c7ff2004-06-19 15:40:23 +00002855*/
dan0c547792013-07-18 17:12:08 +00002856void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
2857 AuxData **pp = &pVdbe->pAuxData;
2858 while( *pp ){
2859 AuxData *pAux = *pp;
2860 if( (iOp<0)
drh693e6712014-01-24 22:58:00 +00002861 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
dan0c547792013-07-18 17:12:08 +00002862 ){
drh693e6712014-01-24 22:58:00 +00002863 testcase( pAux->iArg==31 );
drhf92c7ff2004-06-19 15:40:23 +00002864 if( pAux->xDelete ){
2865 pAux->xDelete(pAux->pAux);
2866 }
dan0c547792013-07-18 17:12:08 +00002867 *pp = pAux->pNext;
2868 sqlite3DbFree(pVdbe->db, pAux);
2869 }else{
2870 pp= &pAux->pNext;
drhf92c7ff2004-06-19 15:40:23 +00002871 }
2872 }
2873}
2874
2875/*
drhcb103b92012-10-26 00:11:23 +00002876** Free all memory associated with the Vdbe passed as the second argument,
2877** except for object itself, which is preserved.
2878**
dand46def72010-07-24 11:28:28 +00002879** The difference between this function and sqlite3VdbeDelete() is that
2880** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
drhcb103b92012-10-26 00:11:23 +00002881** the database connection and frees the object itself.
dand46def72010-07-24 11:28:28 +00002882*/
drhcb103b92012-10-26 00:11:23 +00002883void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
dand19c9332010-07-26 12:05:17 +00002884 SubProgram *pSub, *pNext;
drh124c0b42011-06-01 18:15:55 +00002885 int i;
dand46def72010-07-24 11:28:28 +00002886 assert( p->db==0 || p->db==db );
2887 releaseMemArray(p->aVar, p->nVar);
2888 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
dand19c9332010-07-26 12:05:17 +00002889 for(pSub=p->pProgram; pSub; pSub=pNext){
2890 pNext = pSub->pNext;
2891 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2892 sqlite3DbFree(db, pSub);
2893 }
drh124c0b42011-06-01 18:15:55 +00002894 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
dand46def72010-07-24 11:28:28 +00002895 vdbeFreeOpArray(db, p->aOp, p->nOp);
dand46def72010-07-24 11:28:28 +00002896 sqlite3DbFree(db, p->aColName);
2897 sqlite3DbFree(db, p->zSql);
2898 sqlite3DbFree(db, p->pFree);
dan6f9702e2014-11-01 20:38:06 +00002899#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan6f9702e2014-11-01 20:38:06 +00002900 for(i=0; i<p->nScan; i++){
2901 sqlite3DbFree(db, p->aScan[i].zName);
2902 }
2903 sqlite3DbFree(db, p->aScan);
drh7e02e5e2011-12-06 19:44:51 +00002904#endif
dand46def72010-07-24 11:28:28 +00002905}
2906
2907/*
drh9a324642003-09-06 20:12:01 +00002908** Delete an entire VDBE.
2909*/
danielk19774adee202004-05-08 08:23:19 +00002910void sqlite3VdbeDelete(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00002911 sqlite3 *db;
2912
drhfa3be902009-07-07 02:44:07 +00002913 if( NEVER(p==0) ) return;
drh633e6d52008-07-28 19:34:53 +00002914 db = p->db;
drh4245c402012-06-02 14:32:21 +00002915 assert( sqlite3_mutex_held(db->mutex) );
drhcb103b92012-10-26 00:11:23 +00002916 sqlite3VdbeClearObject(db, p);
drh9a324642003-09-06 20:12:01 +00002917 if( p->pPrev ){
2918 p->pPrev->pNext = p->pNext;
2919 }else{
drh633e6d52008-07-28 19:34:53 +00002920 assert( db->pVdbe==p );
2921 db->pVdbe = p->pNext;
drh9a324642003-09-06 20:12:01 +00002922 }
2923 if( p->pNext ){
2924 p->pNext->pPrev = p->pPrev;
2925 }
drh9a324642003-09-06 20:12:01 +00002926 p->magic = VDBE_MAGIC_DEAD;
drh87f5c5f2010-01-20 01:20:56 +00002927 p->db = 0;
drhcb103b92012-10-26 00:11:23 +00002928 sqlite3DbFree(db, p);
drh9a324642003-09-06 20:12:01 +00002929}
drha11846b2004-01-07 18:52:56 +00002930
2931/*
drh6848dad2014-08-22 23:33:03 +00002932** The cursor "p" has a pending seek operation that has not yet been
2933** carried out. Seek the cursor now. If an error occurs, return
2934** the appropriate error code.
2935*/
2936static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
2937 int res, rc;
2938#ifdef SQLITE_TEST
2939 extern int sqlite3_search_count;
2940#endif
2941 assert( p->deferredMoveto );
2942 assert( p->isTable );
drhc960dcb2015-11-20 19:22:01 +00002943 assert( p->eCurType==CURTYPE_BTREE );
2944 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
drh6848dad2014-08-22 23:33:03 +00002945 if( rc ) return rc;
drh6848dad2014-08-22 23:33:03 +00002946 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
drh6848dad2014-08-22 23:33:03 +00002947#ifdef SQLITE_TEST
2948 sqlite3_search_count++;
2949#endif
2950 p->deferredMoveto = 0;
2951 p->cacheStatus = CACHE_STALE;
2952 return SQLITE_OK;
2953}
2954
2955/*
2956** Something has moved cursor "p" out of place. Maybe the row it was
2957** pointed to was deleted out from under it. Or maybe the btree was
2958** rebalanced. Whatever the cause, try to restore "p" to the place it
peter.d.reid60ec9142014-09-06 16:39:46 +00002959** is supposed to be pointing. If the row was deleted out from under the
drh6848dad2014-08-22 23:33:03 +00002960** cursor, set the cursor to point to a NULL row.
2961*/
2962static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
2963 int isDifferentRow, rc;
drhc960dcb2015-11-20 19:22:01 +00002964 assert( p->eCurType==CURTYPE_BTREE );
2965 assert( p->uc.pCursor!=0 );
2966 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
2967 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
drh6848dad2014-08-22 23:33:03 +00002968 p->cacheStatus = CACHE_STALE;
2969 if( isDifferentRow ) p->nullRow = 1;
2970 return rc;
2971}
2972
2973/*
drhc22284f2014-10-13 16:02:20 +00002974** Check to ensure that the cursor is valid. Restore the cursor
2975** if need be. Return any I/O error from the restore operation.
2976*/
2977int sqlite3VdbeCursorRestore(VdbeCursor *p){
drhc960dcb2015-11-20 19:22:01 +00002978 assert( p->eCurType==CURTYPE_BTREE );
2979 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
drhc22284f2014-10-13 16:02:20 +00002980 return handleMovedCursor(p);
2981 }
2982 return SQLITE_OK;
2983}
2984
2985/*
drh9a65f2c2009-06-22 19:05:40 +00002986** Make sure the cursor p is ready to read or write the row to which it
2987** was last positioned. Return an error code if an OOM fault or I/O error
2988** prevents us from positioning the cursor to its correct position.
2989**
drha11846b2004-01-07 18:52:56 +00002990** If a MoveTo operation is pending on the given cursor, then do that
drh9a65f2c2009-06-22 19:05:40 +00002991** MoveTo now. If no move is pending, check to see if the row has been
2992** deleted out from under the cursor and if it has, mark the row as
2993** a NULL row.
2994**
2995** If the cursor is already pointing to the correct row and that row has
2996** not been deleted out from under the cursor, then this routine is a no-op.
drha11846b2004-01-07 18:52:56 +00002997*/
drhdfe88ec2008-11-03 20:55:06 +00002998int sqlite3VdbeCursorMoveto(VdbeCursor *p){
drhc960dcb2015-11-20 19:22:01 +00002999 if( p->eCurType==CURTYPE_BTREE ){
3000 if( p->deferredMoveto ){
3001 return handleDeferredMoveto(p);
3002 }
3003 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3004 return handleMovedCursor(p);
3005 }
drha11846b2004-01-07 18:52:56 +00003006 }
3007 return SQLITE_OK;
3008}
danielk19774adee202004-05-08 08:23:19 +00003009
drhab9f7f12004-05-08 10:56:11 +00003010/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003011** The following functions:
danielk197790e4d952004-05-10 10:05:53 +00003012**
danielk1977cfcdaef2004-05-12 07:33:33 +00003013** sqlite3VdbeSerialType()
3014** sqlite3VdbeSerialTypeLen()
danielk197790e4d952004-05-10 10:05:53 +00003015** sqlite3VdbeSerialLen()
shane92003092008-07-31 01:43:13 +00003016** sqlite3VdbeSerialPut()
3017** sqlite3VdbeSerialGet()
danielk197790e4d952004-05-10 10:05:53 +00003018**
3019** encapsulate the code that serializes values for storage in SQLite
danielk1977cfcdaef2004-05-12 07:33:33 +00003020** data and index records. Each serialized value consists of a
3021** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3022** integer, stored as a varint.
danielk197790e4d952004-05-10 10:05:53 +00003023**
danielk1977cfcdaef2004-05-12 07:33:33 +00003024** In an SQLite index record, the serial type is stored directly before
3025** the blob of data that it corresponds to. In a table record, all serial
3026** types are stored at the start of the record, and the blobs of data at
3027** the end. Hence these functions allow the caller to handle the
mistachkin48864df2013-03-21 21:20:32 +00003028** serial-type and data blob separately.
danielk1977cfcdaef2004-05-12 07:33:33 +00003029**
3030** The following table describes the various storage classes for data:
3031**
3032** serial type bytes of data type
danielk197790e4d952004-05-10 10:05:53 +00003033** -------------- --------------- ---------------
drha19b7752004-05-30 21:14:58 +00003034** 0 0 NULL
danielk197790e4d952004-05-10 10:05:53 +00003035** 1 1 signed integer
3036** 2 2 signed integer
drha19b7752004-05-30 21:14:58 +00003037** 3 3 signed integer
3038** 4 4 signed integer
3039** 5 6 signed integer
3040** 6 8 signed integer
3041** 7 8 IEEE float
drhd946db02005-12-29 19:23:06 +00003042** 8 0 Integer constant 0
3043** 9 0 Integer constant 1
3044** 10,11 reserved for expansion
danielk197790e4d952004-05-10 10:05:53 +00003045** N>=12 and even (N-12)/2 BLOB
3046** N>=13 and odd (N-13)/2 text
3047**
drh35a59652006-01-02 18:24:40 +00003048** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3049** of SQLite will not understand those serial types.
danielk197790e4d952004-05-10 10:05:53 +00003050*/
3051
3052/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003053** Return the serial-type for the value stored in pMem.
danielk1977192ac1d2004-05-10 07:17:30 +00003054*/
drhbe37c122015-10-16 14:54:17 +00003055u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
danielk1977cfcdaef2004-05-12 07:33:33 +00003056 int flags = pMem->flags;
drheac5bd72014-07-25 21:35:39 +00003057 u32 n;
danielk1977cfcdaef2004-05-12 07:33:33 +00003058
drhbe37c122015-10-16 14:54:17 +00003059 assert( pLen!=0 );
danielk1977cfcdaef2004-05-12 07:33:33 +00003060 if( flags&MEM_Null ){
drhbe37c122015-10-16 14:54:17 +00003061 *pLen = 0;
drha19b7752004-05-30 21:14:58 +00003062 return 0;
danielk197790e4d952004-05-10 10:05:53 +00003063 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003064 if( flags&MEM_Int ){
drhfe2093d2005-01-20 22:48:47 +00003065 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
drh5284a052008-05-08 15:18:10 +00003066# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
drh3c024d62007-03-30 11:23:45 +00003067 i64 i = pMem->u.i;
drhd946db02005-12-29 19:23:06 +00003068 u64 u;
drhcfd654b2011-03-05 13:54:15 +00003069 if( i<0 ){
drh1b40e632014-11-20 02:58:10 +00003070 u = ~i;
drhcfd654b2011-03-05 13:54:15 +00003071 }else{
3072 u = i;
3073 }
drh56690b32012-09-17 15:36:31 +00003074 if( u<=127 ){
drhbe37c122015-10-16 14:54:17 +00003075 if( (i&1)==i && file_format>=4 ){
3076 *pLen = 0;
3077 return 8+(u32)u;
3078 }else{
3079 *pLen = 1;
3080 return 1;
3081 }
drh56690b32012-09-17 15:36:31 +00003082 }
drhbe37c122015-10-16 14:54:17 +00003083 if( u<=32767 ){ *pLen = 2; return 2; }
3084 if( u<=8388607 ){ *pLen = 3; return 3; }
3085 if( u<=2147483647 ){ *pLen = 4; return 4; }
3086 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3087 *pLen = 8;
drha19b7752004-05-30 21:14:58 +00003088 return 6;
danielk197790e4d952004-05-10 10:05:53 +00003089 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003090 if( flags&MEM_Real ){
drhbe37c122015-10-16 14:54:17 +00003091 *pLen = 8;
drha19b7752004-05-30 21:14:58 +00003092 return 7;
danielk197790e4d952004-05-10 10:05:53 +00003093 }
danielk1977e4359752008-11-03 09:39:45 +00003094 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
drheac5bd72014-07-25 21:35:39 +00003095 assert( pMem->n>=0 );
3096 n = (u32)pMem->n;
drhfdf972a2007-05-02 13:30:27 +00003097 if( flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00003098 n += pMem->u.nZero;
danielk197790e4d952004-05-10 10:05:53 +00003099 }
drhbe37c122015-10-16 14:54:17 +00003100 *pLen = n;
drhfdf972a2007-05-02 13:30:27 +00003101 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
danielk1977192ac1d2004-05-10 07:17:30 +00003102}
3103
3104/*
drhfaf37272015-10-16 14:23:42 +00003105** The sizes for serial types less than 128
drhc5ef7152015-06-28 02:58:51 +00003106*/
3107static const u8 sqlite3SmallTypeSizes[] = {
drhfaf37272015-10-16 14:23:42 +00003108 /* 0 1 2 3 4 5 6 7 8 9 */
3109/* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3110/* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3111/* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3112/* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3113/* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3114/* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3115/* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3116/* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3117/* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3118/* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3119/* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3120/* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3121/* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
drhc5ef7152015-06-28 02:58:51 +00003122};
3123
3124/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003125** Return the length of the data corresponding to the supplied serial-type.
danielk1977192ac1d2004-05-10 07:17:30 +00003126*/
drh35cd6432009-06-05 14:17:21 +00003127u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
drhfaf37272015-10-16 14:23:42 +00003128 if( serial_type>=128 ){
drh51846b52004-05-28 16:00:21 +00003129 return (serial_type-12)/2;
3130 }else{
drhfaf37272015-10-16 14:23:42 +00003131 assert( serial_type<12
3132 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
drhc5ef7152015-06-28 02:58:51 +00003133 return sqlite3SmallTypeSizes[serial_type];
drh51846b52004-05-28 16:00:21 +00003134 }
danielk1977192ac1d2004-05-10 07:17:30 +00003135}
drhfaf37272015-10-16 14:23:42 +00003136u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3137 assert( serial_type<128 );
3138 return sqlite3SmallTypeSizes[serial_type];
3139}
danielk1977192ac1d2004-05-10 07:17:30 +00003140
3141/*
drh110daac2007-05-04 11:59:31 +00003142** If we are on an architecture with mixed-endian floating
drh7a4f5022007-05-23 07:20:08 +00003143** points (ex: ARM7) then swap the lower 4 bytes with the
drh110daac2007-05-04 11:59:31 +00003144** upper 4 bytes. Return the result.
3145**
drh7a4f5022007-05-23 07:20:08 +00003146** For most architectures, this is a no-op.
3147**
3148** (later): It is reported to me that the mixed-endian problem
3149** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3150** that early versions of GCC stored the two words of a 64-bit
3151** float in the wrong order. And that error has been propagated
3152** ever since. The blame is not necessarily with GCC, though.
3153** GCC might have just copying the problem from a prior compiler.
3154** I am also told that newer versions of GCC that follow a different
3155** ABI get the byte order right.
3156**
3157** Developers using SQLite on an ARM7 should compile and run their
3158** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3159** enabled, some asserts below will ensure that the byte order of
3160** floating point values is correct.
drh60d09a72007-08-30 15:05:08 +00003161**
3162** (2007-08-30) Frank van Vugt has studied this problem closely
3163** and has send his findings to the SQLite developers. Frank
3164** writes that some Linux kernels offer floating point hardware
3165** emulation that uses only 32-bit mantissas instead of a full
3166** 48-bits as required by the IEEE standard. (This is the
3167** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3168** byte swapping becomes very complicated. To avoid problems,
3169** the necessary byte swapping is carried out using a 64-bit integer
3170** rather than a 64-bit float. Frank assures us that the code here
3171** works for him. We, the developers, have no way to independently
3172** verify this, but Frank seems to know what he is talking about
3173** so we trust him.
drh110daac2007-05-04 11:59:31 +00003174*/
3175#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
drh60d09a72007-08-30 15:05:08 +00003176static u64 floatSwap(u64 in){
drh110daac2007-05-04 11:59:31 +00003177 union {
drh60d09a72007-08-30 15:05:08 +00003178 u64 r;
drh110daac2007-05-04 11:59:31 +00003179 u32 i[2];
3180 } u;
3181 u32 t;
3182
3183 u.r = in;
3184 t = u.i[0];
3185 u.i[0] = u.i[1];
3186 u.i[1] = t;
3187 return u.r;
3188}
3189# define swapMixedEndianFloat(X) X = floatSwap(X)
3190#else
3191# define swapMixedEndianFloat(X)
3192#endif
3193
3194/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003195** Write the serialized data blob for the value stored in pMem into
3196** buf. It is assumed that the caller has allocated sufficient space.
3197** Return the number of bytes written.
drhfdf972a2007-05-02 13:30:27 +00003198**
drh038b7bc2013-12-09 23:17:22 +00003199** nBuf is the amount of space left in buf[]. The caller is responsible
3200** for allocating enough space to buf[] to hold the entire field, exclusive
3201** of the pMem->u.nZero bytes for a MEM_Zero value.
drhfdf972a2007-05-02 13:30:27 +00003202**
3203** Return the number of bytes actually written into buf[]. The number
3204** of bytes in the zero-filled tail is included in the return value only
3205** if those bytes were zeroed in buf[].
danielk1977cfcdaef2004-05-12 07:33:33 +00003206*/
drha9ab4812013-12-11 11:00:44 +00003207u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
drh35cd6432009-06-05 14:17:21 +00003208 u32 len;
danielk1977183f9f72004-05-13 05:20:26 +00003209
drh1483e142004-05-21 21:12:42 +00003210 /* Integer and Real */
drhd946db02005-12-29 19:23:06 +00003211 if( serial_type<=7 && serial_type>0 ){
drh1483e142004-05-21 21:12:42 +00003212 u64 v;
drh35cd6432009-06-05 14:17:21 +00003213 u32 i;
drha19b7752004-05-30 21:14:58 +00003214 if( serial_type==7 ){
drh74eaba42014-09-18 17:52:15 +00003215 assert( sizeof(v)==sizeof(pMem->u.r) );
3216 memcpy(&v, &pMem->u.r, sizeof(v));
drh60d09a72007-08-30 15:05:08 +00003217 swapMixedEndianFloat(v);
drh1483e142004-05-21 21:12:42 +00003218 }else{
drh3c024d62007-03-30 11:23:45 +00003219 v = pMem->u.i;
danielk1977cfcdaef2004-05-12 07:33:33 +00003220 }
drhc5ef7152015-06-28 02:58:51 +00003221 len = i = sqlite3SmallTypeSizes[serial_type];
drh3f5b1992014-08-22 13:22:32 +00003222 assert( i>0 );
3223 do{
3224 buf[--i] = (u8)(v&0xFF);
drh1483e142004-05-21 21:12:42 +00003225 v >>= 8;
drh3f5b1992014-08-22 13:22:32 +00003226 }while( i );
drh1483e142004-05-21 21:12:42 +00003227 return len;
danielk1977cfcdaef2004-05-12 07:33:33 +00003228 }
drhd946db02005-12-29 19:23:06 +00003229
danielk1977cfcdaef2004-05-12 07:33:33 +00003230 /* String or blob */
drhd946db02005-12-29 19:23:06 +00003231 if( serial_type>=12 ){
drh8df32842008-12-09 02:51:23 +00003232 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
shane75ac1de2009-06-09 18:58:52 +00003233 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
drhfdf972a2007-05-02 13:30:27 +00003234 len = pMem->n;
drh72ea29d2015-12-08 16:58:45 +00003235 if( len>0 ) memcpy(buf, pMem->z, len);
drhd946db02005-12-29 19:23:06 +00003236 return len;
3237 }
3238
3239 /* NULL or constants 0 or 1 */
3240 return 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00003241}
3242
drhf926d1e2014-03-04 04:04:33 +00003243/* Input "x" is a sequence of unsigned characters that represent a
3244** big-endian integer. Return the equivalent native integer
3245*/
3246#define ONE_BYTE_INT(x) ((i8)(x)[0])
3247#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3248#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3249#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drh8932bec2014-08-22 14:56:13 +00003250#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drhf926d1e2014-03-04 04:04:33 +00003251
danielk1977cfcdaef2004-05-12 07:33:33 +00003252/*
3253** Deserialize the data blob pointed to by buf as serial type serial_type
3254** and store the result in pMem. Return the number of bytes read.
drh14a924a2014-08-22 14:34:05 +00003255**
3256** This function is implemented as two separate routines for performance.
3257** The few cases that require local variables are broken out into a separate
3258** routine so that in most cases the overhead of moving the stack pointer
3259** is avoided.
danielk1977cfcdaef2004-05-12 07:33:33 +00003260*/
drh14a924a2014-08-22 14:34:05 +00003261static u32 SQLITE_NOINLINE serialGet(
danielk197793d46752004-05-23 13:30:58 +00003262 const unsigned char *buf, /* Buffer to deserialize from */
drh25aa1b42004-05-28 01:39:01 +00003263 u32 serial_type, /* Serial type to deserialize */
3264 Mem *pMem /* Memory cell to write value into */
danielk1977b1bc9532004-05-22 03:05:33 +00003265){
drh8932bec2014-08-22 14:56:13 +00003266 u64 x = FOUR_BYTE_UINT(buf);
3267 u32 y = FOUR_BYTE_UINT(buf+4);
3268 x = (x<<32) + y;
drh14a924a2014-08-22 14:34:05 +00003269 if( serial_type==6 ){
drh654858d2014-11-20 02:18:14 +00003270 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3271 ** twos-complement integer. */
drh14a924a2014-08-22 14:34:05 +00003272 pMem->u.i = *(i64*)&x;
3273 pMem->flags = MEM_Int;
3274 testcase( pMem->u.i<0 );
3275 }else{
drh654858d2014-11-20 02:18:14 +00003276 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3277 ** floating point number. */
drh14a924a2014-08-22 14:34:05 +00003278#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3279 /* Verify that integers and floating point values use the same
3280 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3281 ** defined that 64-bit floating point values really are mixed
3282 ** endian.
3283 */
3284 static const u64 t1 = ((u64)0x3ff00000)<<32;
3285 static const double r1 = 1.0;
3286 u64 t2 = t1;
3287 swapMixedEndianFloat(t2);
3288 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3289#endif
drh74eaba42014-09-18 17:52:15 +00003290 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
drh14a924a2014-08-22 14:34:05 +00003291 swapMixedEndianFloat(x);
drh74eaba42014-09-18 17:52:15 +00003292 memcpy(&pMem->u.r, &x, sizeof(x));
3293 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
drh14a924a2014-08-22 14:34:05 +00003294 }
3295 return 8;
3296}
danielk1977b1bc9532004-05-22 03:05:33 +00003297u32 sqlite3VdbeSerialGet(
3298 const unsigned char *buf, /* Buffer to deserialize from */
3299 u32 serial_type, /* Serial type to deserialize */
3300 Mem *pMem /* Memory cell to write value into */
3301){
drh3c685822005-05-21 18:32:18 +00003302 switch( serial_type ){
drh3c685822005-05-21 18:32:18 +00003303 case 10: /* Reserved for future use */
3304 case 11: /* Reserved for future use */
drh654858d2014-11-20 02:18:14 +00003305 case 0: { /* Null */
3306 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
drh3c685822005-05-21 18:32:18 +00003307 pMem->flags = MEM_Null;
3308 break;
3309 }
drh654858d2014-11-20 02:18:14 +00003310 case 1: {
3311 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3312 ** integer. */
drhf926d1e2014-03-04 04:04:33 +00003313 pMem->u.i = ONE_BYTE_INT(buf);
drh1483e142004-05-21 21:12:42 +00003314 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003315 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003316 return 1;
drh1483e142004-05-21 21:12:42 +00003317 }
drh3c685822005-05-21 18:32:18 +00003318 case 2: { /* 2-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003319 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3320 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003321 pMem->u.i = TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003322 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003323 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003324 return 2;
3325 }
3326 case 3: { /* 3-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003327 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3328 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003329 pMem->u.i = THREE_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003330 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003331 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003332 return 3;
3333 }
3334 case 4: { /* 4-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003335 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3336 ** twos-complement integer. */
drh8932bec2014-08-22 14:56:13 +00003337 pMem->u.i = FOUR_BYTE_INT(buf);
drhc8bb4302015-11-06 17:28:00 +00003338#ifdef __HP_cc
3339 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3340 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3341#endif
drh3c685822005-05-21 18:32:18 +00003342 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003343 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003344 return 4;
3345 }
3346 case 5: { /* 6-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003347 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3348 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003349 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003350 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003351 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003352 return 6;
3353 }
drh91124b32005-08-18 18:15:05 +00003354 case 6: /* 8-byte signed integer */
drh3c685822005-05-21 18:32:18 +00003355 case 7: { /* IEEE floating point */
drh8932bec2014-08-22 14:56:13 +00003356 /* These use local variables, so do them in a separate routine
3357 ** to avoid having to move the frame pointer in the common case */
drh14a924a2014-08-22 14:34:05 +00003358 return serialGet(buf,serial_type,pMem);
drh3c685822005-05-21 18:32:18 +00003359 }
drhd946db02005-12-29 19:23:06 +00003360 case 8: /* Integer 0 */
3361 case 9: { /* Integer 1 */
drh654858d2014-11-20 02:18:14 +00003362 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3363 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
drh3c024d62007-03-30 11:23:45 +00003364 pMem->u.i = serial_type-8;
drhd946db02005-12-29 19:23:06 +00003365 pMem->flags = MEM_Int;
3366 return 0;
3367 }
drh3c685822005-05-21 18:32:18 +00003368 default: {
drh654858d2014-11-20 02:18:14 +00003369 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3370 ** length.
3371 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3372 ** (N-13)/2 bytes in length. */
drhc138daf2013-11-19 13:55:34 +00003373 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
drh3c685822005-05-21 18:32:18 +00003374 pMem->z = (char *)buf;
drh14a924a2014-08-22 14:34:05 +00003375 pMem->n = (serial_type-12)/2;
drhc138daf2013-11-19 13:55:34 +00003376 pMem->flags = aFlag[serial_type&1];
drh14a924a2014-08-22 14:34:05 +00003377 return pMem->n;
drh696b32f2004-05-30 01:51:52 +00003378 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003379 }
drh3c685822005-05-21 18:32:18 +00003380 return 0;
danielk1977192ac1d2004-05-10 07:17:30 +00003381}
drh1e968a02008-03-25 00:22:21 +00003382/*
dan03e9cfc2011-09-05 14:20:27 +00003383** This routine is used to allocate sufficient space for an UnpackedRecord
3384** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3385** the first argument is a pointer to KeyInfo structure pKeyInfo.
drh1e968a02008-03-25 00:22:21 +00003386**
dan03e9cfc2011-09-05 14:20:27 +00003387** The space is either allocated using sqlite3DbMallocRaw() or from within
3388** the unaligned buffer passed via the second and third arguments (presumably
3389** stack space). If the former, then *ppFree is set to a pointer that should
3390** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3391** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3392** before returning.
drh1e968a02008-03-25 00:22:21 +00003393**
dan03e9cfc2011-09-05 14:20:27 +00003394** If an OOM error occurs, NULL is returned.
3395*/
3396UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3397 KeyInfo *pKeyInfo, /* Description of the record */
3398 char *pSpace, /* Unaligned space available */
3399 int szSpace, /* Size of pSpace[] in bytes */
3400 char **ppFree /* OUT: Caller should free this pointer */
drh1e968a02008-03-25 00:22:21 +00003401){
dan03e9cfc2011-09-05 14:20:27 +00003402 UnpackedRecord *p; /* Unpacked record to return */
3403 int nOff; /* Increment pSpace by nOff to align it */
3404 int nByte; /* Number of bytes required for *p */
3405
3406 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
shane80167bf2009-04-10 15:42:36 +00003407 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
3408 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
3409 */
3410 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
drh8c5d1522009-04-10 00:56:28 +00003411 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
dan42acb3e2011-09-05 20:16:38 +00003412 if( nByte>szSpace+nOff ){
dan03e9cfc2011-09-05 14:20:27 +00003413 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3414 *ppFree = (char *)p;
dan42acb3e2011-09-05 20:16:38 +00003415 if( !p ) return 0;
drh1e968a02008-03-25 00:22:21 +00003416 }else{
dan42acb3e2011-09-05 20:16:38 +00003417 p = (UnpackedRecord*)&pSpace[nOff];
dan03e9cfc2011-09-05 14:20:27 +00003418 *ppFree = 0;
drh1e968a02008-03-25 00:22:21 +00003419 }
dan42acb3e2011-09-05 20:16:38 +00003420
3421 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
drhe1a022e2012-09-17 17:16:53 +00003422 assert( pKeyInfo->aSortOrder!=0 );
drh1e968a02008-03-25 00:22:21 +00003423 p->pKeyInfo = pKeyInfo;
3424 p->nField = pKeyInfo->nField + 1;
dan03e9cfc2011-09-05 14:20:27 +00003425 return p;
3426}
3427
3428/*
3429** Given the nKey-byte encoding of a record in pKey[], populate the
3430** UnpackedRecord structure indicated by the fourth argument with the
3431** contents of the decoded record.
3432*/
3433void sqlite3VdbeRecordUnpack(
3434 KeyInfo *pKeyInfo, /* Information about the record format */
3435 int nKey, /* Size of the binary record */
3436 const void *pKey, /* The binary record */
3437 UnpackedRecord *p /* Populate this structure before returning. */
3438){
3439 const unsigned char *aKey = (const unsigned char *)pKey;
3440 int d;
3441 u32 idx; /* Offset in aKey[] to read from */
3442 u16 u; /* Unsigned loop counter */
3443 u32 szHdr;
dan42acb3e2011-09-05 20:16:38 +00003444 Mem *pMem = p->aMem;
dan03e9cfc2011-09-05 14:20:27 +00003445
dan1fed5da2014-02-25 21:01:25 +00003446 p->default_rc = 0;
drh8c5d1522009-04-10 00:56:28 +00003447 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
shane3f8d5cf2008-04-24 19:15:09 +00003448 idx = getVarint32(aKey, szHdr);
drh1e968a02008-03-25 00:22:21 +00003449 d = szHdr;
shane0b8d2762008-07-22 05:18:00 +00003450 u = 0;
drh7f4b19f2014-09-16 13:30:05 +00003451 while( idx<szHdr && d<=nKey ){
drh1e968a02008-03-25 00:22:21 +00003452 u32 serial_type;
3453
danielk197700e13612008-11-17 19:18:54 +00003454 idx += getVarint32(&aKey[idx], serial_type);
drh1e968a02008-03-25 00:22:21 +00003455 pMem->enc = pKeyInfo->enc;
3456 pMem->db = pKeyInfo->db;
drhc3f1d5f2011-05-30 23:42:16 +00003457 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
drh17bcb102014-09-18 21:25:33 +00003458 pMem->szMalloc = 0;
drh1e968a02008-03-25 00:22:21 +00003459 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
drhe14006d2008-03-25 17:23:32 +00003460 pMem++;
drh7f4b19f2014-09-16 13:30:05 +00003461 if( (++u)>=p->nField ) break;
drh1e968a02008-03-25 00:22:21 +00003462 }
drh7d10d5a2008-08-20 16:35:10 +00003463 assert( u<=pKeyInfo->nField + 1 );
shane0b8d2762008-07-22 05:18:00 +00003464 p->nField = u;
drh1e968a02008-03-25 00:22:21 +00003465}
3466
dan3833e932014-03-01 19:44:56 +00003467#if SQLITE_DEBUG
drh1e968a02008-03-25 00:22:21 +00003468/*
dan3833e932014-03-01 19:44:56 +00003469** This function compares two index or table record keys in the same way
3470** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3471** this function deserializes and compares values using the
3472** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3473** in assert() statements to ensure that the optimized code in
3474** sqlite3VdbeRecordCompare() returns results with these two primitives.
drh1e968a02008-03-25 00:22:21 +00003475**
drh79211e12014-05-02 17:33:16 +00003476** Return true if the result of comparison is equivalent to desiredResult.
3477** Return false if there is a disagreement.
drh1e968a02008-03-25 00:22:21 +00003478*/
dan3833e932014-03-01 19:44:56 +00003479static int vdbeRecordCompareDebug(
drhec1fc802008-08-13 14:07:40 +00003480 int nKey1, const void *pKey1, /* Left key */
drh79211e12014-05-02 17:33:16 +00003481 const UnpackedRecord *pPKey2, /* Right key */
3482 int desiredResult /* Correct answer */
drh1e968a02008-03-25 00:22:21 +00003483){
drhdf003d62013-08-01 19:17:39 +00003484 u32 d1; /* Offset into aKey[] of next data element */
drh1e968a02008-03-25 00:22:21 +00003485 u32 idx1; /* Offset into aKey[] of next header element */
3486 u32 szHdr1; /* Number of bytes in header */
3487 int i = 0;
drh1e968a02008-03-25 00:22:21 +00003488 int rc = 0;
3489 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3490 KeyInfo *pKeyInfo;
3491 Mem mem1;
3492
3493 pKeyInfo = pPKey2->pKeyInfo;
drh84de6902014-05-02 18:46:52 +00003494 if( pKeyInfo->db==0 ) return 1;
drh1e968a02008-03-25 00:22:21 +00003495 mem1.enc = pKeyInfo->enc;
drh37272632009-11-16 21:28:45 +00003496 mem1.db = pKeyInfo->db;
drhd93a8b22009-11-16 03:13:40 +00003497 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
drh17bcb102014-09-18 21:25:33 +00003498 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
drh8b249a82009-11-16 02:14:00 +00003499
3500 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3501 ** We could initialize it, as shown here, to silence those complaints.
drh5275d2e2011-04-27 01:00:17 +00003502 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
drh8b249a82009-11-16 02:14:00 +00003503 ** the unnecessary initialization has a measurable negative performance
3504 ** impact, since this routine is a very high runner. And so, we choose
3505 ** to ignore the compiler warnings and leave this variable uninitialized.
3506 */
3507 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
drh1e968a02008-03-25 00:22:21 +00003508
shane3f8d5cf2008-04-24 19:15:09 +00003509 idx1 = getVarint32(aKey1, szHdr1);
drh46981362015-07-08 12:25:38 +00003510 if( szHdr1>98307 ) return SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00003511 d1 = szHdr1;
drhb2023662013-11-29 15:39:36 +00003512 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
drhe1a022e2012-09-17 17:16:53 +00003513 assert( pKeyInfo->aSortOrder!=0 );
dan89bc0212013-12-03 09:49:52 +00003514 assert( pKeyInfo->nField>0 );
3515 assert( idx1<=szHdr1 || CORRUPT_DB );
drh0b9dada2013-11-25 22:24:36 +00003516 do{
drh1e968a02008-03-25 00:22:21 +00003517 u32 serial_type1;
3518
3519 /* Read the serial types for the next element in each key. */
shane3f8d5cf2008-04-24 19:15:09 +00003520 idx1 += getVarint32( aKey1+idx1, serial_type1 );
drhaf5b2af2013-08-05 15:32:09 +00003521
3522 /* Verify that there is enough key space remaining to avoid
3523 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3524 ** always be greater than or equal to the amount of required key space.
3525 ** Use that approximation to avoid the more expensive call to
3526 ** sqlite3VdbeSerialTypeLen() in the common case.
3527 */
3528 if( d1+serial_type1+2>(u32)nKey1
3529 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3530 ){
3531 break;
3532 }
drh1e968a02008-03-25 00:22:21 +00003533
3534 /* Extract the values to be compared.
3535 */
3536 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3537
3538 /* Do the comparison
3539 */
drh323df792013-08-05 19:11:29 +00003540 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
drh1e968a02008-03-25 00:22:21 +00003541 if( rc!=0 ){
drh17bcb102014-09-18 21:25:33 +00003542 assert( mem1.szMalloc==0 ); /* See comment below */
drh323df792013-08-05 19:11:29 +00003543 if( pKeyInfo->aSortOrder[i] ){
drh6f225d02013-10-26 13:36:51 +00003544 rc = -rc; /* Invert the result for DESC sort order. */
drh8b249a82009-11-16 02:14:00 +00003545 }
drh79211e12014-05-02 17:33:16 +00003546 goto debugCompareEnd;
drh1e968a02008-03-25 00:22:21 +00003547 }
3548 i++;
drh0b9dada2013-11-25 22:24:36 +00003549 }while( idx1<szHdr1 && i<pPKey2->nField );
drh407414c2009-07-14 14:15:27 +00003550
drh8b249a82009-11-16 02:14:00 +00003551 /* No memory allocation is ever used on mem1. Prove this using
3552 ** the following assert(). If the assert() fails, it indicates a
3553 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
danielk1977de630352009-05-04 11:42:29 +00003554 */
drh17bcb102014-09-18 21:25:33 +00003555 assert( mem1.szMalloc==0 );
danielk1977de630352009-05-04 11:42:29 +00003556
drh8b249a82009-11-16 02:14:00 +00003557 /* rc==0 here means that one of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00003558 ** all the fields up to that point were equal. Return the default_rc
dan3b9330f2014-02-27 20:44:18 +00003559 ** value. */
drh79211e12014-05-02 17:33:16 +00003560 rc = pPKey2->default_rc;
3561
3562debugCompareEnd:
3563 if( desiredResult==0 && rc==0 ) return 1;
3564 if( desiredResult<0 && rc<0 ) return 1;
3565 if( desiredResult>0 && rc>0 ) return 1;
3566 if( CORRUPT_DB ) return 1;
3567 if( pKeyInfo->db->mallocFailed ) return 1;
3568 return 0;
drh1e968a02008-03-25 00:22:21 +00003569}
dan3833e932014-03-01 19:44:56 +00003570#endif
dan1fed5da2014-02-25 21:01:25 +00003571
drhe1bb8022015-01-19 19:48:52 +00003572#if SQLITE_DEBUG
3573/*
3574** Count the number of fields (a.k.a. columns) in the record given by
3575** pKey,nKey. The verify that this count is less than or equal to the
3576** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3577**
3578** If this constraint is not satisfied, it means that the high-speed
3579** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3580** not work correctly. If this assert() ever fires, it probably means
3581** that the KeyInfo.nField or KeyInfo.nXField values were computed
3582** incorrectly.
3583*/
3584static void vdbeAssertFieldCountWithinLimits(
3585 int nKey, const void *pKey, /* The record to verify */
3586 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3587){
3588 int nField = 0;
3589 u32 szHdr;
3590 u32 idx;
3591 u32 notUsed;
3592 const unsigned char *aKey = (const unsigned char*)pKey;
3593
3594 if( CORRUPT_DB ) return;
3595 idx = getVarint32(aKey, szHdr);
mistachkin1b3ee492015-01-21 00:51:08 +00003596 assert( nKey>=0 );
3597 assert( szHdr<=(u32)nKey );
drhe1bb8022015-01-19 19:48:52 +00003598 while( idx<szHdr ){
3599 idx += getVarint32(aKey+idx, notUsed);
3600 nField++;
3601 }
3602 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3603}
drh1af3c642015-01-19 20:57:19 +00003604#else
3605# define vdbeAssertFieldCountWithinLimits(A,B,C)
drhe1bb8022015-01-19 19:48:52 +00003606#endif
3607
dan3833e932014-03-01 19:44:56 +00003608/*
3609** Both *pMem1 and *pMem2 contain string values. Compare the two values
3610** using the collation sequence pColl. As usual, return a negative , zero
3611** or positive value if *pMem1 is less than, equal to or greater than
3612** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3613*/
dan1fed5da2014-02-25 21:01:25 +00003614static int vdbeCompareMemString(
dan3833e932014-03-01 19:44:56 +00003615 const Mem *pMem1,
3616 const Mem *pMem2,
dan38fdead2014-04-01 10:19:02 +00003617 const CollSeq *pColl,
3618 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
dan1fed5da2014-02-25 21:01:25 +00003619){
3620 if( pMem1->enc==pColl->enc ){
3621 /* The strings are already in the correct encoding. Call the
3622 ** comparison function directly */
3623 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3624 }else{
3625 int rc;
3626 const void *v1, *v2;
3627 int n1, n2;
3628 Mem c1;
3629 Mem c2;
drh17bcb102014-09-18 21:25:33 +00003630 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3631 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
dan1fed5da2014-02-25 21:01:25 +00003632 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3633 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3634 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3635 n1 = v1==0 ? 0 : c1.n;
3636 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3637 n2 = v2==0 ? 0 : c2.n;
3638 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3639 sqlite3VdbeMemRelease(&c1);
3640 sqlite3VdbeMemRelease(&c2);
dan38fdead2014-04-01 10:19:02 +00003641 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
dan1fed5da2014-02-25 21:01:25 +00003642 return rc;
3643 }
3644}
3645
3646/*
drh982ff722014-09-16 03:24:43 +00003647** Compare two blobs. Return negative, zero, or positive if the first
3648** is less than, equal to, or greater than the second, respectively.
3649** If one blob is a prefix of the other, then the shorter is the lessor.
3650*/
3651static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3652 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
3653 if( c ) return c;
3654 return pB1->n - pB2->n;
3655}
3656
drh2ab410a2015-11-06 14:59:07 +00003657/*
3658** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3659** number. Return negative, zero, or positive if the first (i64) is less than,
3660** equal to, or greater than the second (double).
3661*/
3662static int sqlite3IntFloatCompare(i64 i, double r){
3663 if( sizeof(LONGDOUBLE_TYPE)>8 ){
3664 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3665 if( x<r ) return -1;
3666 if( x>r ) return +1;
3667 return 0;
3668 }else{
3669 i64 y;
3670 double s;
3671 if( r<-9223372036854775808.0 ) return +1;
3672 if( r>9223372036854775807.0 ) return -1;
3673 y = (i64)r;
3674 if( i<y ) return -1;
3675 if( i>y ){
3676 if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3677 return +1;
3678 }
3679 s = (double)i;
3680 if( s<r ) return -1;
3681 if( s>r ) return +1;
3682 return 0;
3683 }
3684}
drh982ff722014-09-16 03:24:43 +00003685
3686/*
dan1fed5da2014-02-25 21:01:25 +00003687** Compare the values contained by the two memory cells, returning
3688** negative, zero or positive if pMem1 is less than, equal to, or greater
3689** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3690** and reals) sorted numerically, followed by text ordered by the collating
3691** sequence pColl and finally blob's ordered by memcmp().
3692**
3693** Two NULL values are considered equal by this function.
3694*/
3695int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
dan1fed5da2014-02-25 21:01:25 +00003696 int f1, f2;
3697 int combined_flags;
3698
3699 f1 = pMem1->flags;
3700 f2 = pMem2->flags;
3701 combined_flags = f1|f2;
3702 assert( (combined_flags & MEM_RowSet)==0 );
drhec1fc802008-08-13 14:07:40 +00003703
dan1fed5da2014-02-25 21:01:25 +00003704 /* If one value is NULL, it is less than the other. If both values
3705 ** are NULL, return 0.
3706 */
3707 if( combined_flags&MEM_Null ){
3708 return (f2&MEM_Null) - (f1&MEM_Null);
3709 }
3710
drh2ab410a2015-11-06 14:59:07 +00003711 /* At least one of the two values is a number
dan1fed5da2014-02-25 21:01:25 +00003712 */
3713 if( combined_flags&(MEM_Int|MEM_Real) ){
dan1fed5da2014-02-25 21:01:25 +00003714 if( (f1 & f2 & MEM_Int)!=0 ){
3715 if( pMem1->u.i < pMem2->u.i ) return -1;
drh2ab410a2015-11-06 14:59:07 +00003716 if( pMem1->u.i > pMem2->u.i ) return +1;
dan1fed5da2014-02-25 21:01:25 +00003717 return 0;
3718 }
drh2ab410a2015-11-06 14:59:07 +00003719 if( (f1 & f2 & MEM_Real)!=0 ){
3720 if( pMem1->u.r < pMem2->u.r ) return -1;
3721 if( pMem1->u.r > pMem2->u.r ) return +1;
3722 return 0;
3723 }
3724 if( (f1&MEM_Int)!=0 ){
3725 if( (f2&MEM_Real)!=0 ){
3726 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3727 }else{
3728 return -1;
3729 }
3730 }
dan1fed5da2014-02-25 21:01:25 +00003731 if( (f1&MEM_Real)!=0 ){
drh2ab410a2015-11-06 14:59:07 +00003732 if( (f2&MEM_Int)!=0 ){
3733 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3734 }else{
3735 return -1;
3736 }
dan1fed5da2014-02-25 21:01:25 +00003737 }
drh2ab410a2015-11-06 14:59:07 +00003738 return +1;
dan1fed5da2014-02-25 21:01:25 +00003739 }
3740
3741 /* If one value is a string and the other is a blob, the string is less.
3742 ** If both are strings, compare using the collating functions.
3743 */
3744 if( combined_flags&MEM_Str ){
3745 if( (f1 & MEM_Str)==0 ){
3746 return 1;
3747 }
3748 if( (f2 & MEM_Str)==0 ){
3749 return -1;
3750 }
3751
3752 assert( pMem1->enc==pMem2->enc );
3753 assert( pMem1->enc==SQLITE_UTF8 ||
3754 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3755
3756 /* The collation sequence must be defined at this point, even if
3757 ** the user deletes the collation sequence after the vdbe program is
3758 ** compiled (this was not always the case).
3759 */
3760 assert( !pColl || pColl->xCmp );
3761
3762 if( pColl ){
dan38fdead2014-04-01 10:19:02 +00003763 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
dan1fed5da2014-02-25 21:01:25 +00003764 }
3765 /* If a NULL pointer was passed as the collate function, fall through
3766 ** to the blob case and use memcmp(). */
3767 }
3768
3769 /* Both values must be blobs. Compare using memcmp(). */
drh982ff722014-09-16 03:24:43 +00003770 return sqlite3BlobCompare(pMem1, pMem2);
dan1fed5da2014-02-25 21:01:25 +00003771}
3772
3773
dan3833e932014-03-01 19:44:56 +00003774/*
3775** The first argument passed to this function is a serial-type that
3776** corresponds to an integer - all values between 1 and 9 inclusive
3777** except 7. The second points to a buffer containing an integer value
3778** serialized according to serial_type. This function deserializes
3779** and returns the value.
3780*/
dan3b9330f2014-02-27 20:44:18 +00003781static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
drhf926d1e2014-03-04 04:04:33 +00003782 u32 y;
dan3833e932014-03-01 19:44:56 +00003783 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
dan3b9330f2014-02-27 20:44:18 +00003784 switch( serial_type ){
dan3833e932014-03-01 19:44:56 +00003785 case 0:
dan3b9330f2014-02-27 20:44:18 +00003786 case 1:
drhb6e8fd12014-03-06 01:56:33 +00003787 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003788 return ONE_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003789 case 2:
drhb6e8fd12014-03-06 01:56:33 +00003790 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003791 return TWO_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003792 case 3:
drhb6e8fd12014-03-06 01:56:33 +00003793 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003794 return THREE_BYTE_INT(aKey);
3795 case 4: {
drhb6e8fd12014-03-06 01:56:33 +00003796 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003797 y = FOUR_BYTE_UINT(aKey);
3798 return (i64)*(int*)&y;
3799 }
dan3b9330f2014-02-27 20:44:18 +00003800 case 5: {
drhb6e8fd12014-03-06 01:56:33 +00003801 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003802 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
danielk19779a96b662007-11-29 17:05:18 +00003803 }
dan3b9330f2014-02-27 20:44:18 +00003804 case 6: {
drhf926d1e2014-03-04 04:04:33 +00003805 u64 x = FOUR_BYTE_UINT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003806 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003807 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3808 return (i64)*(i64*)&x;
drh7a224de2004-06-02 01:22:02 +00003809 }
dan3b9330f2014-02-27 20:44:18 +00003810 }
danielk1977161546c2008-07-26 18:26:10 +00003811
dan3b9330f2014-02-27 20:44:18 +00003812 return (serial_type - 8);
drhd5788202004-05-28 08:21:05 +00003813}
danielk1977eb015e02004-05-18 01:31:14 +00003814
dan3833e932014-03-01 19:44:56 +00003815/*
3816** This function compares the two table rows or index records
3817** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3818** or positive integer if key1 is less than, equal to or
3819** greater than key2. The {nKey1, pKey1} key must be a blob
peter.d.reid60ec9142014-09-06 16:39:46 +00003820** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
dan3833e932014-03-01 19:44:56 +00003821** key must be a parsed key such as obtained from
3822** sqlite3VdbeParseRecord.
3823**
3824** If argument bSkip is non-zero, it is assumed that the caller has already
3825** determined that the first fields of the keys are equal.
3826**
3827** Key1 and Key2 do not have to contain the same number of fields. If all
3828** fields that appear in both keys are equal, then pPKey2->default_rc is
3829** returned.
drha1f7c0a2014-03-28 03:12:48 +00003830**
dan38fdead2014-04-01 10:19:02 +00003831** If database corruption is discovered, set pPKey2->errCode to
3832** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3833** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3834** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
dan3833e932014-03-01 19:44:56 +00003835*/
dan7004f3f2015-03-30 12:06:26 +00003836int sqlite3VdbeRecordCompareWithSkip(
dan3833e932014-03-01 19:44:56 +00003837 int nKey1, const void *pKey1, /* Left key */
drha1f7c0a2014-03-28 03:12:48 +00003838 UnpackedRecord *pPKey2, /* Right key */
dan3833e932014-03-01 19:44:56 +00003839 int bSkip /* If true, skip the first field */
dan1fed5da2014-02-25 21:01:25 +00003840){
dan3833e932014-03-01 19:44:56 +00003841 u32 d1; /* Offset into aKey[] of next data element */
3842 int i; /* Index of next field to compare */
mistachkinffe6bc22014-03-04 11:16:20 +00003843 u32 szHdr1; /* Size of record header in bytes */
dan3833e932014-03-01 19:44:56 +00003844 u32 idx1; /* Offset of first type in header */
3845 int rc = 0; /* Return value */
3846 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
dan1fed5da2014-02-25 21:01:25 +00003847 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3848 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3849 Mem mem1;
3850
dan3833e932014-03-01 19:44:56 +00003851 /* If bSkip is true, then the caller has already determined that the first
3852 ** two elements in the keys are equal. Fix the various stack variables so
dan3b9330f2014-02-27 20:44:18 +00003853 ** that this routine begins comparing at the second field. */
dan3833e932014-03-01 19:44:56 +00003854 if( bSkip ){
dan3b9330f2014-02-27 20:44:18 +00003855 u32 s1;
dan3b9330f2014-02-27 20:44:18 +00003856 idx1 = 1 + getVarint32(&aKey1[1], s1);
dan3833e932014-03-01 19:44:56 +00003857 szHdr1 = aKey1[0];
3858 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
dan3b9330f2014-02-27 20:44:18 +00003859 i = 1;
3860 pRhs++;
dan3833e932014-03-01 19:44:56 +00003861 }else{
3862 idx1 = getVarint32(aKey1, szHdr1);
3863 d1 = szHdr1;
drha1f7c0a2014-03-28 03:12:48 +00003864 if( d1>(unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003865 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003866 return 0; /* Corruption */
3867 }
dan3833e932014-03-01 19:44:56 +00003868 i = 0;
dan3b9330f2014-02-27 20:44:18 +00003869 }
3870
drh17bcb102014-09-18 21:25:33 +00003871 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
dan1fed5da2014-02-25 21:01:25 +00003872 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
3873 || CORRUPT_DB );
3874 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3875 assert( pPKey2->pKeyInfo->nField>0 );
3876 assert( idx1<=szHdr1 || CORRUPT_DB );
3877 do{
dan1fed5da2014-02-25 21:01:25 +00003878 u32 serial_type;
3879
3880 /* RHS is an integer */
3881 if( pRhs->flags & MEM_Int ){
3882 serial_type = aKey1[idx1];
drhb6e8fd12014-03-06 01:56:33 +00003883 testcase( serial_type==12 );
danb95e1192015-05-26 20:31:20 +00003884 if( serial_type>=10 ){
dan1fed5da2014-02-25 21:01:25 +00003885 rc = +1;
3886 }else if( serial_type==0 ){
3887 rc = -1;
dan3b9330f2014-02-27 20:44:18 +00003888 }else if( serial_type==7 ){
dan1fed5da2014-02-25 21:01:25 +00003889 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
drh2ab410a2015-11-06 14:59:07 +00003890 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
dan3b9330f2014-02-27 20:44:18 +00003891 }else{
3892 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
3893 i64 rhs = pRhs->u.i;
3894 if( lhs<rhs ){
3895 rc = -1;
3896 }else if( lhs>rhs ){
3897 rc = +1;
dan1fed5da2014-02-25 21:01:25 +00003898 }
3899 }
3900 }
3901
3902 /* RHS is real */
3903 else if( pRhs->flags & MEM_Real ){
3904 serial_type = aKey1[idx1];
dancc7aa1f2015-05-26 20:07:32 +00003905 if( serial_type>=10 ){
3906 /* Serial types 12 or greater are strings and blobs (greater than
3907 ** numbers). Types 10 and 11 are currently "reserved for future
3908 ** use", so it doesn't really matter what the results of comparing
3909 ** them to numberic values are. */
dan1fed5da2014-02-25 21:01:25 +00003910 rc = +1;
3911 }else if( serial_type==0 ){
3912 rc = -1;
3913 }else{
dan1fed5da2014-02-25 21:01:25 +00003914 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3915 if( serial_type==7 ){
drh2ab410a2015-11-06 14:59:07 +00003916 if( mem1.u.r<pRhs->u.r ){
3917 rc = -1;
3918 }else if( mem1.u.r>pRhs->u.r ){
3919 rc = +1;
3920 }
dan1fed5da2014-02-25 21:01:25 +00003921 }else{
drh2ab410a2015-11-06 14:59:07 +00003922 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
dan1fed5da2014-02-25 21:01:25 +00003923 }
3924 }
3925 }
3926
3927 /* RHS is a string */
3928 else if( pRhs->flags & MEM_Str ){
3929 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00003930 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00003931 if( serial_type<12 ){
3932 rc = -1;
3933 }else if( !(serial_type & 0x01) ){
3934 rc = +1;
3935 }else{
3936 mem1.n = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00003937 testcase( (d1+mem1.n)==(unsigned)nKey1 );
3938 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00003939 if( (d1+mem1.n) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003940 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003941 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00003942 }else if( pKeyInfo->aColl[i] ){
3943 mem1.enc = pKeyInfo->enc;
3944 mem1.db = pKeyInfo->db;
3945 mem1.flags = MEM_Str;
drhfcb44a82014-03-03 15:13:27 +00003946 mem1.z = (char*)&aKey1[d1];
dan38fdead2014-04-01 10:19:02 +00003947 rc = vdbeCompareMemString(
3948 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
3949 );
dan1fed5da2014-02-25 21:01:25 +00003950 }else{
3951 int nCmp = MIN(mem1.n, pRhs->n);
3952 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3953 if( rc==0 ) rc = mem1.n - pRhs->n;
3954 }
3955 }
3956 }
3957
3958 /* RHS is a blob */
3959 else if( pRhs->flags & MEM_Blob ){
3960 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00003961 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00003962 if( serial_type<12 || (serial_type & 0x01) ){
3963 rc = -1;
3964 }else{
3965 int nStr = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00003966 testcase( (d1+nStr)==(unsigned)nKey1 );
3967 testcase( (d1+nStr+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00003968 if( (d1+nStr) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003969 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003970 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00003971 }else{
3972 int nCmp = MIN(nStr, pRhs->n);
3973 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3974 if( rc==0 ) rc = nStr - pRhs->n;
3975 }
3976 }
3977 }
3978
3979 /* RHS is null */
3980 else{
3981 serial_type = aKey1[idx1];
3982 rc = (serial_type!=0);
3983 }
3984
3985 if( rc!=0 ){
dan1fed5da2014-02-25 21:01:25 +00003986 if( pKeyInfo->aSortOrder[i] ){
3987 rc = -rc;
dan1fed5da2014-02-25 21:01:25 +00003988 }
drh79211e12014-05-02 17:33:16 +00003989 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
drh17bcb102014-09-18 21:25:33 +00003990 assert( mem1.szMalloc==0 ); /* See comment below */
dan1fed5da2014-02-25 21:01:25 +00003991 return rc;
3992 }
3993
3994 i++;
dan3b9330f2014-02-27 20:44:18 +00003995 pRhs++;
dan1fed5da2014-02-25 21:01:25 +00003996 d1 += sqlite3VdbeSerialTypeLen(serial_type);
3997 idx1 += sqlite3VarintLen(serial_type);
drh295aedf2014-03-03 18:25:24 +00003998 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
dan1fed5da2014-02-25 21:01:25 +00003999
4000 /* No memory allocation is ever used on mem1. Prove this using
4001 ** the following assert(). If the assert() fails, it indicates a
dan3833e932014-03-01 19:44:56 +00004002 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
drh17bcb102014-09-18 21:25:33 +00004003 assert( mem1.szMalloc==0 );
dan1fed5da2014-02-25 21:01:25 +00004004
4005 /* rc==0 here means that one or both of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00004006 ** all the fields up to that point were equal. Return the default_rc
dan1fed5da2014-02-25 21:01:25 +00004007 ** value. */
dan3833e932014-03-01 19:44:56 +00004008 assert( CORRUPT_DB
drh66141812014-06-30 20:25:03 +00004009 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
dan6696ba32014-06-28 19:06:49 +00004010 || pKeyInfo->db->mallocFailed
dan3833e932014-03-01 19:44:56 +00004011 );
drh70528d72015-11-05 20:25:09 +00004012 pPKey2->eqSeen = 1;
dan1fed5da2014-02-25 21:01:25 +00004013 return pPKey2->default_rc;
4014}
drh75179de2014-09-16 14:37:35 +00004015int sqlite3VdbeRecordCompare(
4016 int nKey1, const void *pKey1, /* Left key */
4017 UnpackedRecord *pPKey2 /* Right key */
4018){
dan7004f3f2015-03-30 12:06:26 +00004019 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
drh75179de2014-09-16 14:37:35 +00004020}
4021
dan1fed5da2014-02-25 21:01:25 +00004022
dan3833e932014-03-01 19:44:56 +00004023/*
4024** This function is an optimized version of sqlite3VdbeRecordCompare()
4025** that (a) the first field of pPKey2 is an integer, and (b) the
4026** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4027** byte (i.e. is less than 128).
drhe2ac5062014-03-26 12:02:38 +00004028**
4029** To avoid concerns about buffer overreads, this routine is only used
4030** on schemas where the maximum valid header size is 63 bytes or less.
dan3833e932014-03-01 19:44:56 +00004031*/
dan3b9330f2014-02-27 20:44:18 +00004032static int vdbeRecordCompareInt(
4033 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00004034 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00004035){
dan9b8afef2014-03-03 20:48:50 +00004036 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
dan3b9330f2014-02-27 20:44:18 +00004037 int serial_type = ((const u8*)pKey1)[1];
4038 int res;
drhf926d1e2014-03-04 04:04:33 +00004039 u32 y;
4040 u64 x;
dan3b9330f2014-02-27 20:44:18 +00004041 i64 v = pPKey2->aMem[0].u.i;
4042 i64 lhs;
4043
drhe1bb8022015-01-19 19:48:52 +00004044 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
drhe2ac5062014-03-26 12:02:38 +00004045 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
dan3833e932014-03-01 19:44:56 +00004046 switch( serial_type ){
drhf926d1e2014-03-04 04:04:33 +00004047 case 1: { /* 1-byte signed integer */
4048 lhs = ONE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004049 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00004050 break;
4051 }
drhf926d1e2014-03-04 04:04:33 +00004052 case 2: { /* 2-byte signed integer */
4053 lhs = TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004054 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004055 break;
4056 }
4057 case 3: { /* 3-byte signed integer */
4058 lhs = THREE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004059 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004060 break;
4061 }
4062 case 4: { /* 4-byte signed integer */
4063 y = FOUR_BYTE_UINT(aKey);
4064 lhs = (i64)*(int*)&y;
drhb6e8fd12014-03-06 01:56:33 +00004065 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004066 break;
4067 }
4068 case 5: { /* 6-byte signed integer */
4069 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004070 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004071 break;
4072 }
4073 case 6: { /* 8-byte signed integer */
4074 x = FOUR_BYTE_UINT(aKey);
4075 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4076 lhs = *(i64*)&x;
drhb6e8fd12014-03-06 01:56:33 +00004077 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00004078 break;
4079 }
dan3b9330f2014-02-27 20:44:18 +00004080 case 8:
4081 lhs = 0;
4082 break;
dan3b9330f2014-02-27 20:44:18 +00004083 case 9:
4084 lhs = 1;
4085 break;
4086
dan063d4a02014-02-28 09:48:30 +00004087 /* This case could be removed without changing the results of running
4088 ** this code. Including it causes gcc to generate a faster switch
4089 ** statement (since the range of switch targets now starts at zero and
dan597515d2014-02-28 18:39:51 +00004090 ** is contiguous) but does not cause any duplicate code to be generated
dan063d4a02014-02-28 09:48:30 +00004091 ** (as gcc is clever enough to combine the two like cases). Other
4092 ** compilers might be similar. */
4093 case 0: case 7:
drh75179de2014-09-16 14:37:35 +00004094 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan063d4a02014-02-28 09:48:30 +00004095
dan3b9330f2014-02-27 20:44:18 +00004096 default:
drh75179de2014-09-16 14:37:35 +00004097 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan3b9330f2014-02-27 20:44:18 +00004098 }
4099
4100 if( v>lhs ){
4101 res = pPKey2->r1;
4102 }else if( v<lhs ){
4103 res = pPKey2->r2;
4104 }else if( pPKey2->nField>1 ){
dan063d4a02014-02-28 09:48:30 +00004105 /* The first fields of the two keys are equal. Compare the trailing
4106 ** fields. */
dan7004f3f2015-03-30 12:06:26 +00004107 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00004108 }else{
dan063d4a02014-02-28 09:48:30 +00004109 /* The first fields of the two keys are equal and there are no trailing
4110 ** fields. Return pPKey2->default_rc in this case. */
dan3b9330f2014-02-27 20:44:18 +00004111 res = pPKey2->default_rc;
drh70528d72015-11-05 20:25:09 +00004112 pPKey2->eqSeen = 1;
dan3b9330f2014-02-27 20:44:18 +00004113 }
4114
drh79211e12014-05-02 17:33:16 +00004115 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
dan3b9330f2014-02-27 20:44:18 +00004116 return res;
4117}
4118
dan3833e932014-03-01 19:44:56 +00004119/*
4120** This function is an optimized version of sqlite3VdbeRecordCompare()
4121** that (a) the first field of pPKey2 is a string, that (b) the first field
4122** uses the collation sequence BINARY and (c) that the size-of-header varint
4123** at the start of (pKey1/nKey1) fits in a single byte.
4124*/
dan3b9330f2014-02-27 20:44:18 +00004125static int vdbeRecordCompareString(
4126 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00004127 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00004128){
4129 const u8 *aKey1 = (const u8*)pKey1;
4130 int serial_type;
4131 int res;
4132
drh2ab410a2015-11-06 14:59:07 +00004133 assert( pPKey2->aMem[0].flags & MEM_Str );
drhe1bb8022015-01-19 19:48:52 +00004134 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
dan3b9330f2014-02-27 20:44:18 +00004135 getVarint32(&aKey1[1], serial_type);
dan3b9330f2014-02-27 20:44:18 +00004136 if( serial_type<12 ){
4137 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4138 }else if( !(serial_type & 0x01) ){
4139 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4140 }else{
4141 int nCmp;
4142 int nStr;
dan3833e932014-03-01 19:44:56 +00004143 int szHdr = aKey1[0];
dan3b9330f2014-02-27 20:44:18 +00004144
4145 nStr = (serial_type-12) / 2;
drha1f7c0a2014-03-28 03:12:48 +00004146 if( (szHdr + nStr) > nKey1 ){
dan38fdead2014-04-01 10:19:02 +00004147 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00004148 return 0; /* Corruption */
4149 }
dan3b9330f2014-02-27 20:44:18 +00004150 nCmp = MIN( pPKey2->aMem[0].n, nStr );
dan3833e932014-03-01 19:44:56 +00004151 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
dan3b9330f2014-02-27 20:44:18 +00004152
4153 if( res==0 ){
4154 res = nStr - pPKey2->aMem[0].n;
4155 if( res==0 ){
4156 if( pPKey2->nField>1 ){
dan7004f3f2015-03-30 12:06:26 +00004157 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00004158 }else{
4159 res = pPKey2->default_rc;
drh70528d72015-11-05 20:25:09 +00004160 pPKey2->eqSeen = 1;
dan3b9330f2014-02-27 20:44:18 +00004161 }
4162 }else if( res>0 ){
4163 res = pPKey2->r2;
4164 }else{
4165 res = pPKey2->r1;
4166 }
4167 }else if( res>0 ){
4168 res = pPKey2->r2;
4169 }else{
4170 res = pPKey2->r1;
4171 }
4172 }
4173
drh66141812014-06-30 20:25:03 +00004174 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
dan3b9330f2014-02-27 20:44:18 +00004175 || CORRUPT_DB
dan6696ba32014-06-28 19:06:49 +00004176 || pPKey2->pKeyInfo->db->mallocFailed
dan3b9330f2014-02-27 20:44:18 +00004177 );
4178 return res;
4179}
4180
dan3833e932014-03-01 19:44:56 +00004181/*
4182** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4183** suitable for comparing serialized records to the unpacked record passed
4184** as the only argument.
4185*/
dan1fed5da2014-02-25 21:01:25 +00004186RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
dan9b8afef2014-03-03 20:48:50 +00004187 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4188 ** that the size-of-header varint that occurs at the start of each record
4189 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4190 ** also assumes that it is safe to overread a buffer by at least the
4191 ** maximum possible legal header size plus 8 bytes. Because there is
4192 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4193 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4194 ** limit the size of the header to 64 bytes in cases where the first field
4195 ** is an integer.
4196 **
4197 ** The easiest way to enforce this limit is to consider only records with
4198 ** 13 fields or less. If the first field is an integer, the maximum legal
4199 ** header size is (12*5 + 1 + 1) bytes. */
4200 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
dan1fed5da2014-02-25 21:01:25 +00004201 int flags = p->aMem[0].flags;
dan3b9330f2014-02-27 20:44:18 +00004202 if( p->pKeyInfo->aSortOrder[0] ){
4203 p->r1 = 1;
4204 p->r2 = -1;
4205 }else{
4206 p->r1 = -1;
4207 p->r2 = 1;
4208 }
dan1fed5da2014-02-25 21:01:25 +00004209 if( (flags & MEM_Int) ){
4210 return vdbeRecordCompareInt;
dan3b9330f2014-02-27 20:44:18 +00004211 }
drhb6e8fd12014-03-06 01:56:33 +00004212 testcase( flags & MEM_Real );
4213 testcase( flags & MEM_Null );
4214 testcase( flags & MEM_Blob );
4215 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4216 assert( flags & MEM_Str );
dan1fed5da2014-02-25 21:01:25 +00004217 return vdbeRecordCompareString;
4218 }
4219 }
dan3b9330f2014-02-27 20:44:18 +00004220
dan3833e932014-03-01 19:44:56 +00004221 return sqlite3VdbeRecordCompare;
dan3b9330f2014-02-27 20:44:18 +00004222}
danielk1977eb015e02004-05-18 01:31:14 +00004223
4224/*
drh7a224de2004-06-02 01:22:02 +00004225** pCur points at an index entry created using the OP_MakeRecord opcode.
4226** Read the rowid (the last field in the record) and store it in *rowid.
4227** Return SQLITE_OK if everything works, or an error code otherwise.
drh88a003e2008-12-11 16:17:03 +00004228**
4229** pCur might be pointing to text obtained from a corrupt database file.
4230** So the content cannot be trusted. Do appropriate checks on the content.
danielk1977183f9f72004-05-13 05:20:26 +00004231*/
drh35f6b932009-06-23 14:15:04 +00004232int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
drh61fc5952007-04-01 23:49:51 +00004233 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004234 int rc;
drhd5788202004-05-28 08:21:05 +00004235 u32 szHdr; /* Size of the header */
4236 u32 typeRowid; /* Serial type of the rowid */
4237 u32 lenRowid; /* Size of the rowid */
4238 Mem m, v;
danielk1977183f9f72004-05-13 05:20:26 +00004239
drh88a003e2008-12-11 16:17:03 +00004240 /* Get the size of the index entry. Only indices entries of less
drh7b746032009-06-26 12:15:22 +00004241 ** than 2GiB are support - anything large must be database corruption.
4242 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
drhc27ae612009-07-14 18:35:44 +00004243 ** this code can safely assume that nCellKey is 32-bits
4244 */
drhea8ffdf2009-07-22 00:35:23 +00004245 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00004246 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00004247 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh7b746032009-06-26 12:15:22 +00004248 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
drh88a003e2008-12-11 16:17:03 +00004249
4250 /* Read in the complete content of the index entry */
drhd3b74202014-09-17 16:41:15 +00004251 sqlite3VdbeMemInit(&m, db, 0);
drh501932c2013-11-21 21:59:53 +00004252 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
drhd5788202004-05-28 08:21:05 +00004253 if( rc ){
danielk1977183f9f72004-05-13 05:20:26 +00004254 return rc;
4255 }
drh88a003e2008-12-11 16:17:03 +00004256
4257 /* The index entry must begin with a header size */
shane3f8d5cf2008-04-24 19:15:09 +00004258 (void)getVarint32((u8*)m.z, szHdr);
drh7b746032009-06-26 12:15:22 +00004259 testcase( szHdr==3 );
drh88a003e2008-12-11 16:17:03 +00004260 testcase( szHdr==m.n );
drh7b746032009-06-26 12:15:22 +00004261 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
drh88a003e2008-12-11 16:17:03 +00004262 goto idx_rowid_corruption;
4263 }
4264
4265 /* The last field of the index should be an integer - the ROWID.
4266 ** Verify that the last entry really is an integer. */
shane3f8d5cf2008-04-24 19:15:09 +00004267 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
drh88a003e2008-12-11 16:17:03 +00004268 testcase( typeRowid==1 );
4269 testcase( typeRowid==2 );
4270 testcase( typeRowid==3 );
4271 testcase( typeRowid==4 );
4272 testcase( typeRowid==5 );
4273 testcase( typeRowid==6 );
4274 testcase( typeRowid==8 );
4275 testcase( typeRowid==9 );
4276 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4277 goto idx_rowid_corruption;
4278 }
drhc5ef7152015-06-28 02:58:51 +00004279 lenRowid = sqlite3SmallTypeSizes[typeRowid];
drheeb844a2009-08-08 18:01:07 +00004280 testcase( (u32)m.n==szHdr+lenRowid );
4281 if( unlikely((u32)m.n<szHdr+lenRowid) ){
drh88a003e2008-12-11 16:17:03 +00004282 goto idx_rowid_corruption;
4283 }
4284
4285 /* Fetch the integer off the end of the index record */
drh2646da72005-12-09 20:02:05 +00004286 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
drh3c024d62007-03-30 11:23:45 +00004287 *rowid = v.u.i;
danielk1977d8123362004-06-12 09:25:12 +00004288 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004289 return SQLITE_OK;
drh88a003e2008-12-11 16:17:03 +00004290
4291 /* Jump here if database corruption is detected after m has been
4292 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4293idx_rowid_corruption:
drh17bcb102014-09-18 21:25:33 +00004294 testcase( m.szMalloc!=0 );
drh88a003e2008-12-11 16:17:03 +00004295 sqlite3VdbeMemRelease(&m);
4296 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004297}
4298
drh7cf6e4d2004-05-19 14:56:55 +00004299/*
drh5f82e3c2009-07-06 00:44:08 +00004300** Compare the key of the index entry that cursor pC is pointing to against
4301** the key string in pUnpacked. Write into *pRes a number
drh7cf6e4d2004-05-19 14:56:55 +00004302** that is negative, zero, or positive if pC is less than, equal to,
drh5f82e3c2009-07-06 00:44:08 +00004303** or greater than pUnpacked. Return SQLITE_OK on success.
drhd3d39e92004-05-20 22:16:29 +00004304**
drh5f82e3c2009-07-06 00:44:08 +00004305** pUnpacked is either created without a rowid or is truncated so that it
drhd5788202004-05-28 08:21:05 +00004306** omits the rowid at the end. The rowid at the end of the index entry
drhec1fc802008-08-13 14:07:40 +00004307** is ignored as well. Hence, this routine only compares the prefixes
4308** of the keys prior to the final rowid, not the entire key.
drh7cf6e4d2004-05-19 14:56:55 +00004309*/
danielk1977183f9f72004-05-13 05:20:26 +00004310int sqlite3VdbeIdxKeyCompare(
drhd3b74202014-09-17 16:41:15 +00004311 sqlite3 *db, /* Database connection */
drh295aedf2014-03-03 18:25:24 +00004312 VdbeCursor *pC, /* The cursor to compare against */
drha1f7c0a2014-03-28 03:12:48 +00004313 UnpackedRecord *pUnpacked, /* Unpacked version of key */
drh295aedf2014-03-03 18:25:24 +00004314 int *res /* Write the comparison result here */
danielk1977183f9f72004-05-13 05:20:26 +00004315){
drh61fc5952007-04-01 23:49:51 +00004316 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004317 int rc;
drhc960dcb2015-11-20 19:22:01 +00004318 BtCursor *pCur;
drhd5788202004-05-28 08:21:05 +00004319 Mem m;
danielk1977183f9f72004-05-13 05:20:26 +00004320
drhc960dcb2015-11-20 19:22:01 +00004321 assert( pC->eCurType==CURTYPE_BTREE );
4322 pCur = pC->uc.pCursor;
drhea8ffdf2009-07-22 00:35:23 +00004323 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00004324 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00004325 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh56689692014-03-03 19:29:28 +00004326 /* nCellKey will always be between 0 and 0xffffffff because of the way
drh407414c2009-07-14 14:15:27 +00004327 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
drhc27ae612009-07-14 18:35:44 +00004328 if( nCellKey<=0 || nCellKey>0x7fffffff ){
danielk1977183f9f72004-05-13 05:20:26 +00004329 *res = 0;
drh9978c972010-02-23 17:36:32 +00004330 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004331 }
drhd3b74202014-09-17 16:41:15 +00004332 sqlite3VdbeMemInit(&m, db, 0);
drhc960dcb2015-11-20 19:22:01 +00004333 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
drhec1fc802008-08-13 14:07:40 +00004334 if( rc ){
drhd5788202004-05-28 08:21:05 +00004335 return rc;
danielk1977183f9f72004-05-13 05:20:26 +00004336 }
drhe63d9992008-08-13 19:11:48 +00004337 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
danielk1977d8123362004-06-12 09:25:12 +00004338 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004339 return SQLITE_OK;
4340}
danielk1977b28af712004-06-21 06:50:26 +00004341
4342/*
4343** This routine sets the value to be returned by subsequent calls to
4344** sqlite3_changes() on the database handle 'db'.
4345*/
4346void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
drhb21c8cd2007-08-21 19:33:56 +00004347 assert( sqlite3_mutex_held(db->mutex) );
danielk1977b28af712004-06-21 06:50:26 +00004348 db->nChange = nChange;
4349 db->nTotalChange += nChange;
4350}
4351
4352/*
4353** Set a flag in the vdbe to update the change counter when it is finalised
4354** or reset.
4355*/
drh4794f732004-11-05 17:17:50 +00004356void sqlite3VdbeCountChanges(Vdbe *v){
4357 v->changeCntOn = 1;
danielk1977b28af712004-06-21 06:50:26 +00004358}
drhd89bd002005-01-22 03:03:54 +00004359
4360/*
4361** Mark every prepared statement associated with a database connection
4362** as expired.
4363**
4364** An expired statement means that recompilation of the statement is
4365** recommend. Statements expire when things happen that make their
4366** programs obsolete. Removing user-defined functions or collating
4367** sequences, or changing an authorization function are the types of
4368** things that make prepared statements obsolete.
4369*/
4370void sqlite3ExpirePreparedStatements(sqlite3 *db){
4371 Vdbe *p;
4372 for(p = db->pVdbe; p; p=p->pNext){
4373 p->expired = 1;
4374 }
4375}
danielk1977aee18ef2005-03-09 12:26:50 +00004376
4377/*
4378** Return the database associated with the Vdbe.
4379*/
4380sqlite3 *sqlite3VdbeDb(Vdbe *v){
4381 return v->db;
4382}
dan937d0de2009-10-15 18:35:38 +00004383
4384/*
4385** Return a pointer to an sqlite3_value structure containing the value bound
4386** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4387** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4388** constants) to the value before returning it.
4389**
4390** The returned value must be freed by the caller using sqlite3ValueFree().
4391*/
drhcf0fd4a2013-08-01 12:21:58 +00004392sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
dan937d0de2009-10-15 18:35:38 +00004393 assert( iVar>0 );
4394 if( v ){
4395 Mem *pMem = &v->aVar[iVar-1];
4396 if( 0==(pMem->flags & MEM_Null) ){
4397 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4398 if( pRet ){
4399 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4400 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
dan937d0de2009-10-15 18:35:38 +00004401 }
4402 return pRet;
4403 }
4404 }
4405 return 0;
4406}
4407
4408/*
4409** Configure SQL variable iVar so that binding a new value to it signals
4410** to sqlite3_reoptimize() that re-preparing the statement may result
4411** in a better query plan.
4412*/
dan1d2ce4f2009-10-19 18:11:09 +00004413void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
dan937d0de2009-10-15 18:35:38 +00004414 assert( iVar>0 );
4415 if( iVar>32 ){
dan1d2ce4f2009-10-19 18:11:09 +00004416 v->expmask = 0xffffffff;
dan937d0de2009-10-15 18:35:38 +00004417 }else{
dan1d2ce4f2009-10-19 18:11:09 +00004418 v->expmask |= ((u32)1 << (iVar-1));
dan937d0de2009-10-15 18:35:38 +00004419 }
4420}
dan016f7812013-08-21 17:35:48 +00004421
4422#ifndef SQLITE_OMIT_VIRTUALTABLE
4423/*
4424** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4425** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4426** in memory obtained from sqlite3DbMalloc).
4427*/
4428void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4429 sqlite3 *db = p->db;
4430 sqlite3DbFree(db, p->zErrMsg);
4431 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4432 sqlite3_free(pVtab->zErrMsg);
4433 pVtab->zErrMsg = 0;
4434}
4435#endif /* SQLITE_OMIT_VIRTUALTABLE */