drh | beae319 | 2001-09-22 18:12:08 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** 2001 September 22 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** This is the implementation of generic hash-tables |
| 13 | ** used in SQLite. |
| 14 | ** |
drh | 5a2c2c2 | 2001-11-21 02:21:11 +0000 | [diff] [blame^] | 15 | ** $Id: hash.c,v 1.4 2001/11/21 02:21:12 drh Exp $ |
drh | beae319 | 2001-09-22 18:12:08 +0000 | [diff] [blame] | 16 | */ |
| 17 | #include "sqliteInt.h" |
| 18 | #include <assert.h> |
| 19 | |
| 20 | /* Turn bulk memory into a hash table object by initializing the |
| 21 | ** fields of the Hash structure. |
| 22 | */ |
| 23 | void sqliteHashInit(Hash *new, int keyClass, int copyKey){ |
| 24 | assert( new!=0 ); |
| 25 | assert( keyClass>=SQLITE_HASH_INT && keyClass<=SQLITE_HASH_BINARY ); |
| 26 | new->keyClass = keyClass; |
| 27 | new->copyKey = copyKey && |
| 28 | (keyClass==SQLITE_HASH_STRING || keyClass==SQLITE_HASH_BINARY); |
| 29 | new->first = 0; |
| 30 | new->count = 0; |
| 31 | new->htsize = 0; |
| 32 | new->ht = 0; |
| 33 | } |
| 34 | |
| 35 | /* Remove all entries from a hash table. Reclaim all memory. |
| 36 | */ |
| 37 | void sqliteHashClear(Hash *pH){ |
| 38 | HashElem *elem; /* For looping over all elements of the table */ |
| 39 | |
| 40 | assert( pH!=0 ); |
| 41 | elem = pH->first; |
| 42 | pH->first = 0; |
| 43 | if( pH->ht ) sqliteFree(pH->ht); |
| 44 | pH->ht = 0; |
| 45 | pH->htsize = 0; |
| 46 | while( elem ){ |
| 47 | HashElem *next_elem = elem->next; |
| 48 | if( pH->copyKey && elem->pKey ){ |
| 49 | sqliteFree(elem->pKey); |
| 50 | } |
| 51 | sqliteFree(elem); |
| 52 | elem = next_elem; |
| 53 | } |
| 54 | pH->count = 0; |
| 55 | } |
| 56 | |
| 57 | /* |
| 58 | ** Hash and comparison functions when the mode is SQLITE_HASH_INT |
| 59 | */ |
| 60 | static int intHash(const void *pKey, int nKey){ |
| 61 | return nKey ^ (nKey<<8) ^ (nKey>>8); |
| 62 | } |
| 63 | static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
| 64 | return n2 - n1; |
| 65 | } |
| 66 | |
| 67 | /* |
| 68 | ** Hash and comparison functions when the mode is SQLITE_HASH_POINTER |
| 69 | */ |
| 70 | static int ptrHash(const void *pKey, int nKey){ |
drh | 5a2c2c2 | 2001-11-21 02:21:11 +0000 | [diff] [blame^] | 71 | uptr x = Addr(pKey); |
| 72 | return x ^ (x<<8) ^ (x>>8); |
drh | beae319 | 2001-09-22 18:12:08 +0000 | [diff] [blame] | 73 | } |
| 74 | static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
drh | 5a2c2c2 | 2001-11-21 02:21:11 +0000 | [diff] [blame^] | 75 | if( pKey1==pKey2 ) return 0; |
| 76 | if( pKey1<pKey2 ) return -1; |
| 77 | return 1; |
drh | beae319 | 2001-09-22 18:12:08 +0000 | [diff] [blame] | 78 | } |
| 79 | |
| 80 | /* |
| 81 | ** Hash and comparison functions when the mode is SQLITE_HASH_STRING |
| 82 | */ |
| 83 | static int strHash(const void *pKey, int nKey){ |
| 84 | return sqliteHashNoCase((const char*)pKey, nKey); |
| 85 | } |
| 86 | static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
| 87 | if( n1!=n2 ) return n2-n1; |
| 88 | return sqliteStrNICmp((const char*)pKey1,(const char*)pKey2,n1); |
| 89 | } |
| 90 | |
| 91 | /* |
| 92 | ** Hash and comparison functions when the mode is SQLITE_HASH_BINARY |
| 93 | */ |
| 94 | static int binHash(const void *pKey, int nKey){ |
| 95 | int h = 0; |
| 96 | const char *z = (const char *)pKey; |
| 97 | while( nKey-- > 0 ){ |
| 98 | h = (h<<3) ^ h ^ *(z++); |
| 99 | } |
| 100 | if( h<0 ) h = -h; |
| 101 | return h; |
| 102 | } |
| 103 | static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
| 104 | if( n1!=n2 ) return n2-n1; |
| 105 | return memcmp(pKey1,pKey2,n1); |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | ** Return a pointer to the appropriate hash function given the key class. |
| 110 | */ |
| 111 | static int (*hashFunction(int keyClass))(const void*,int){ |
| 112 | switch( keyClass ){ |
| 113 | case SQLITE_HASH_INT: return intHash; |
| 114 | case SQLITE_HASH_POINTER: return ptrHash; |
| 115 | case SQLITE_HASH_STRING: return strHash; |
| 116 | case SQLITE_HASH_BINARY: return binHash;; |
| 117 | default: break; |
| 118 | } |
| 119 | return 0; |
| 120 | } |
| 121 | |
| 122 | /* |
| 123 | ** Return a pointer to the appropriate hash function given the key class. |
| 124 | */ |
| 125 | static int (*compareFunction(int keyClass))(const void*,int,const void*,int){ |
| 126 | switch( keyClass ){ |
| 127 | case SQLITE_HASH_INT: return intCompare; |
| 128 | case SQLITE_HASH_POINTER: return ptrCompare; |
| 129 | case SQLITE_HASH_STRING: return strCompare; |
| 130 | case SQLITE_HASH_BINARY: return binCompare; |
| 131 | default: break; |
| 132 | } |
| 133 | return 0; |
| 134 | } |
| 135 | |
| 136 | |
| 137 | /* Resize the hash table. new_size must be a power of 2. |
| 138 | ** The hash table might fail to resize if sqliteMalloc() fails. |
| 139 | */ |
| 140 | static void rehash(Hash *pH, int new_size){ |
| 141 | struct _ht *new_ht; /* The new hash table */ |
| 142 | HashElem *elem, *next_elem; /* For looping over existing elements */ |
| 143 | HashElem *x; /* Element being copied to new hash table */ |
| 144 | int (*xHash)(const void*,int); /* The hash function */ |
| 145 | |
| 146 | assert( (new_size & (new_size-1))==0 ); |
| 147 | new_ht = (struct _ht *)sqliteMalloc( new_size*sizeof(struct _ht) ); |
| 148 | if( new_ht==0 ) return; |
| 149 | if( pH->ht ) sqliteFree(pH->ht); |
| 150 | pH->ht = new_ht; |
| 151 | pH->htsize = new_size; |
| 152 | xHash = hashFunction(pH->keyClass); |
| 153 | for(elem=pH->first, pH->first=0; elem; elem = next_elem){ |
| 154 | int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1); |
| 155 | next_elem = elem->next; |
| 156 | x = new_ht[h].chain; |
| 157 | if( x ){ |
| 158 | elem->next = x; |
| 159 | elem->prev = x->prev; |
| 160 | if( x->prev ) x->prev->next = elem; |
| 161 | else pH->first = elem; |
| 162 | x->prev = elem; |
| 163 | }else{ |
| 164 | elem->next = pH->first; |
| 165 | if( pH->first ) pH->first->prev = elem; |
| 166 | elem->prev = 0; |
| 167 | pH->first = elem; |
| 168 | } |
| 169 | new_ht[h].chain = elem; |
| 170 | new_ht[h].count++; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | /* This function (for internal use only) locates an element in an |
| 175 | ** pH that matches the given key. The hash for this key has |
| 176 | ** already been computed and is passed as the 3rd parameter. |
| 177 | */ |
| 178 | static HashElem *findElementGivenHash( |
| 179 | const Hash *pH, /* The pH to be searched */ |
| 180 | const void *pKey, /* The key we are searching for */ |
| 181 | int nKey, |
| 182 | int h /* The hash for this key. */ |
| 183 | ){ |
| 184 | HashElem *elem; /* Used to loop thru the element list */ |
| 185 | int count; /* Number of elements left to test */ |
| 186 | int (*xCompare)(const void*,int,const void*,int); /* comparison function */ |
| 187 | |
| 188 | if( pH->ht ){ |
| 189 | elem = pH->ht[h].chain; |
| 190 | count = pH->ht[h].count; |
| 191 | xCompare = compareFunction(pH->keyClass); |
| 192 | while( count-- && elem ){ |
| 193 | if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ |
| 194 | return elem; |
| 195 | } |
| 196 | elem = elem->next; |
| 197 | } |
| 198 | } |
| 199 | return 0; |
| 200 | } |
| 201 | |
drh | 81a20f2 | 2001-10-12 17:30:04 +0000 | [diff] [blame] | 202 | /* Remove a single entry from the hash table given a pointer to that |
drh | beae319 | 2001-09-22 18:12:08 +0000 | [diff] [blame] | 203 | ** element and a hash on the element's key. |
| 204 | */ |
| 205 | static void removeElementGivenHash( |
| 206 | Hash *pH, /* The pH containing "elem" */ |
| 207 | HashElem* elem, /* The element to be removed from the pH */ |
| 208 | int h /* Hash value for the element */ |
| 209 | ){ |
| 210 | if( elem->prev ){ |
| 211 | elem->prev->next = elem->next; |
| 212 | }else{ |
| 213 | pH->first = elem->next; |
| 214 | } |
| 215 | if( elem->next ){ |
| 216 | elem->next->prev = elem->prev; |
| 217 | } |
| 218 | if( pH->ht[h].chain==elem ){ |
| 219 | pH->ht[h].chain = elem->next; |
| 220 | } |
| 221 | pH->ht[h].count--; |
| 222 | if( pH->ht[h].count<=0 ){ |
| 223 | pH->ht[h].chain = 0; |
| 224 | } |
| 225 | if( pH->copyKey && elem->pKey ){ |
| 226 | sqliteFree(elem->pKey); |
| 227 | } |
| 228 | sqliteFree( elem ); |
| 229 | pH->count--; |
| 230 | } |
| 231 | |
| 232 | /* Attempt to locate an element of the associative pH with a key |
drh | 81a20f2 | 2001-10-12 17:30:04 +0000 | [diff] [blame] | 233 | ** that matches pKey,nKey. Return the data for this element if it is |
drh | beae319 | 2001-09-22 18:12:08 +0000 | [diff] [blame] | 234 | ** found, or NULL if no match is found. |
| 235 | */ |
| 236 | void *sqliteHashFind(const Hash *pH, const void *pKey, int nKey){ |
| 237 | int h; /* A hash on key */ |
| 238 | HashElem *elem; /* The element that matches key */ |
| 239 | int (*xHash)(const void*,int); /* The hash function */ |
| 240 | |
| 241 | if( pH==0 || pH->ht==0 ) return 0; |
| 242 | xHash = hashFunction(pH->keyClass); |
| 243 | assert( xHash!=0 ); |
| 244 | h = (*xHash)(pKey,nKey); |
| 245 | assert( (pH->htsize & (pH->htsize-1))==0 ); |
| 246 | elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1)); |
| 247 | return elem ? elem->data : 0; |
| 248 | } |
| 249 | |
drh | 81a20f2 | 2001-10-12 17:30:04 +0000 | [diff] [blame] | 250 | /* Insert an element into the hash table pH. The key is pKey,nKey |
| 251 | ** and the data is "data". |
drh | beae319 | 2001-09-22 18:12:08 +0000 | [diff] [blame] | 252 | ** |
drh | 81a20f2 | 2001-10-12 17:30:04 +0000 | [diff] [blame] | 253 | ** If no element exists with a matching key, then a new |
| 254 | ** element is created. A copy of the key is made if the copyKey |
| 255 | ** flag is set. NULL is returned. |
drh | beae319 | 2001-09-22 18:12:08 +0000 | [diff] [blame] | 256 | ** |
| 257 | ** If another element already exists with the same key, then the |
| 258 | ** new data replaces the old data and the old data is returned. |
drh | 6d4abfb | 2001-10-22 02:58:08 +0000 | [diff] [blame] | 259 | ** The key is not copied in this instance. If a malloc fails, then |
| 260 | ** new data is returned. |
drh | beae319 | 2001-09-22 18:12:08 +0000 | [diff] [blame] | 261 | ** |
| 262 | ** If the "data" parameter to this function is NULL, then the |
drh | 81a20f2 | 2001-10-12 17:30:04 +0000 | [diff] [blame] | 263 | ** element corresponding to "key" is removed from the hash table. |
drh | beae319 | 2001-09-22 18:12:08 +0000 | [diff] [blame] | 264 | */ |
| 265 | void *sqliteHashInsert(Hash *pH, void *pKey, int nKey, void *data){ |
| 266 | int hraw; /* Raw hash value of the key */ |
| 267 | int h; /* the hash of the key modulo hash table size */ |
| 268 | HashElem *elem; /* Used to loop thru the element list */ |
| 269 | HashElem *new_elem; /* New element added to the pH */ |
| 270 | int (*xHash)(const void*,int); /* The hash function */ |
| 271 | |
| 272 | assert( pH!=0 ); |
| 273 | xHash = hashFunction(pH->keyClass); |
| 274 | assert( xHash!=0 ); |
| 275 | hraw = (*xHash)(pKey, nKey); |
| 276 | assert( (pH->htsize & (pH->htsize-1))==0 ); |
| 277 | h = hraw & (pH->htsize-1); |
| 278 | elem = findElementGivenHash(pH,pKey,nKey,h); |
| 279 | if( elem ){ |
| 280 | void *old_data = elem->data; |
| 281 | if( data==0 ){ |
| 282 | removeElementGivenHash(pH,elem,h); |
| 283 | }else{ |
| 284 | elem->data = data; |
| 285 | } |
| 286 | return old_data; |
| 287 | } |
| 288 | if( data==0 ) return 0; |
| 289 | new_elem = (HashElem*)sqliteMalloc( sizeof(HashElem) ); |
drh | 6d4abfb | 2001-10-22 02:58:08 +0000 | [diff] [blame] | 290 | if( new_elem==0 ) return data; |
drh | beae319 | 2001-09-22 18:12:08 +0000 | [diff] [blame] | 291 | if( pH->copyKey && pKey!=0 ){ |
| 292 | new_elem->pKey = sqliteMalloc( nKey ); |
| 293 | if( new_elem->pKey==0 ){ |
| 294 | sqliteFree(new_elem); |
drh | 6d4abfb | 2001-10-22 02:58:08 +0000 | [diff] [blame] | 295 | return data; |
drh | beae319 | 2001-09-22 18:12:08 +0000 | [diff] [blame] | 296 | } |
| 297 | memcpy((void*)new_elem->pKey, pKey, nKey); |
| 298 | }else{ |
| 299 | new_elem->pKey = pKey; |
| 300 | } |
| 301 | new_elem->nKey = nKey; |
| 302 | pH->count++; |
| 303 | if( pH->htsize==0 ) rehash(pH,8); |
| 304 | if( pH->htsize==0 ){ |
| 305 | pH->count = 0; |
| 306 | sqliteFree(new_elem); |
drh | 6d4abfb | 2001-10-22 02:58:08 +0000 | [diff] [blame] | 307 | return data; |
drh | beae319 | 2001-09-22 18:12:08 +0000 | [diff] [blame] | 308 | } |
| 309 | if( pH->count > pH->htsize ){ |
| 310 | rehash(pH,pH->htsize*2); |
| 311 | } |
| 312 | assert( (pH->htsize & (pH->htsize-1))==0 ); |
| 313 | h = hraw & (pH->htsize-1); |
| 314 | elem = pH->ht[h].chain; |
| 315 | if( elem ){ |
| 316 | new_elem->next = elem; |
| 317 | new_elem->prev = elem->prev; |
| 318 | if( elem->prev ){ elem->prev->next = new_elem; } |
| 319 | else { pH->first = new_elem; } |
| 320 | elem->prev = new_elem; |
| 321 | }else{ |
| 322 | new_elem->next = pH->first; |
| 323 | new_elem->prev = 0; |
| 324 | if( pH->first ){ pH->first->prev = new_elem; } |
| 325 | pH->first = new_elem; |
| 326 | } |
| 327 | pH->ht[h].count++; |
| 328 | pH->ht[h].chain = new_elem; |
| 329 | new_elem->data = data; |
| 330 | return 0; |
| 331 | } |