blob: 276c7979be89da94121e3b967d1a6bfd455273c3 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh0fd61352014-02-07 02:29:45 +000012** The code in this file implements the function that runs the
13** bytecode of a prepared statement.
drh75897232000-05-29 14:26:00 +000014**
drhac82fcf2002-09-08 17:23:41 +000015** Various scripts scan this source file in order to generate HTML
16** documentation, headers files, or other derived files. The formatting
17** of the code in this file is, therefore, important. See other comments
18** in this file for details. If in doubt, do not deviate from existing
19** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000022#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000023
24/*
drh2b4ded92010-09-27 21:09:31 +000025** Invoke this macro on memory cells just prior to changing the
26** value of the cell. This macro verifies that shallow copies are
drh0fd61352014-02-07 02:29:45 +000027** not misused. A shallow copy of a string or blob just copies a
28** pointer to the string or blob, not the content. If the original
29** is changed while the copy is still in use, the string or blob might
30** be changed out from under the copy. This macro verifies that nothing
drhb6e8fd12014-03-06 01:56:33 +000031** like that ever happens.
drh2b4ded92010-09-27 21:09:31 +000032*/
33#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000034# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000035#else
36# define memAboutToChange(P,M)
37#endif
38
39/*
drh487ab3c2001-11-08 00:45:21 +000040** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000041** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000042** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000043** working correctly. This variable has no function other than to
44** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000045*/
drh0f7eb612006-08-08 13:51:43 +000046#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000047int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000048#endif
drh487ab3c2001-11-08 00:45:21 +000049
drhf6038712004-02-08 18:07:34 +000050/*
51** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000052** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000054**
55** This facility is used for testing purposes only. It does not function
56** in an ordinary build.
57*/
drh0f7eb612006-08-08 13:51:43 +000058#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000059int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000060#endif
drh1350b032002-02-27 19:00:20 +000061
danielk19777e18c252004-05-25 11:47:24 +000062/*
drh6bf89572004-11-03 16:27:01 +000063** The next global variable is incremented each type the OP_Sort opcode
64** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000065** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000066** has no function other than to help verify the correct operation of the
67** library.
68*/
drh0f7eb612006-08-08 13:51:43 +000069#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000070int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000071#endif
drh6bf89572004-11-03 16:27:01 +000072
73/*
drhae7e1512007-05-02 16:51:59 +000074** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000075** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000076** use this information to make sure that the zero-blob functionality
77** is working correctly. This variable has no function other than to
78** help verify the correct operation of the library.
79*/
80#ifdef SQLITE_TEST
81int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000082static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86}
drhae7e1512007-05-02 16:51:59 +000087#endif
88
89/*
drh9b1c62d2011-03-30 21:04:43 +000090** This macro evaluates to true if either the update hook or the preupdate
91** hook are enabled for database connect DB.
92*/
93#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
drh74c33022016-03-30 12:56:55 +000094# define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000095#else
drh74c33022016-03-30 12:56:55 +000096# define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000097#endif
98
99/*
drh0fd61352014-02-07 02:29:45 +0000100** The next global variable is incremented each time the OP_Found opcode
dan0ff297e2009-09-25 17:03:14 +0000101** is executed. This is used to test whether or not the foreign key
102** operation implemented using OP_FkIsZero is working. This variable
103** has no function other than to help verify the correct operation of the
104** library.
105*/
106#ifdef SQLITE_TEST
107int sqlite3_found_count = 0;
108#endif
109
110/*
drhb7654112008-01-12 12:48:07 +0000111** Test a register to see if it exceeds the current maximum blob size.
112** If it does, record the new maximum blob size.
113*/
drhd12602a2016-12-07 15:49:02 +0000114#if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
drhca48c902008-01-18 14:08:24 +0000115# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000116#else
117# define UPDATE_MAX_BLOBSIZE(P)
118#endif
119
drh52f11b82020-01-02 13:26:49 +0000120#ifdef SQLITE_DEBUG
121/* This routine provides a convenient place to set a breakpoint during
122** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
123** each opcode is printed. Variables "pc" (program counter) and pOp are
124** available to add conditionals to the breakpoint. GDB example:
125**
126** break test_trace_breakpoint if pc=22
127**
128** Other useful labels for breakpoints include:
129** test_addop_breakpoint(pc,pOp)
130** sqlite3CorruptError(lineno)
131** sqlite3MisuseError(lineno)
132** sqlite3CantopenError(lineno)
133*/
drh22e95fb2020-01-02 14:42:42 +0000134static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
drh52f11b82020-01-02 13:26:49 +0000135 static int n = 0;
136 n++;
137}
138#endif
139
drhb7654112008-01-12 12:48:07 +0000140/*
drh5655c542014-02-19 19:14:34 +0000141** Invoke the VDBE coverage callback, if that callback is defined. This
142** feature is used for test suite validation only and does not appear an
143** production builds.
144**
drhc9065332019-04-01 14:01:21 +0000145** M is the type of branch. I is the direction taken for this instance of
146** the branch.
147**
148** M: 2 - two-way branch (I=0: fall-thru 1: jump )
149** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
150** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
151**
152** In other words, if M is 2, then I is either 0 (for fall-through) or
153** 1 (for when the branch is taken). If M is 3, the I is 0 for an
154** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155** if the result of comparison is NULL. For M=3, I=2 the jump may or
156** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
158** depending on if the operands are less than, equal, or greater than.
drh4336b0e2014-08-05 00:53:51 +0000159**
160** iSrcLine is the source code line (from the __LINE__ macro) that
drh7083a482018-07-10 16:04:04 +0000161** generated the VDBE instruction combined with flag bits. The source
162** code line number is in the lower 24 bits of iSrcLine and the upper
163** 8 bytes are flags. The lower three bits of the flags indicate
164** values for I that should never occur. For example, if the branch is
165** always taken, the flags should be 0x05 since the fall-through and
166** alternate branch are never taken. If a branch is never taken then
167** flags should be 0x06 since only the fall-through approach is allowed.
168**
drhc9065332019-04-01 14:01:21 +0000169** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
drh7083a482018-07-10 16:04:04 +0000170** interested in equal or not-equal. In other words, I==0 and I==2
drhc9065332019-04-01 14:01:21 +0000171** should be treated as equivalent
drh7083a482018-07-10 16:04:04 +0000172**
173** Since only a line number is retained, not the filename, this macro
174** only works for amalgamation builds. But that is ok, since these macros
175** should be no-ops except for special builds used to measure test coverage.
drh688852a2014-02-17 22:40:43 +0000176*/
177#if !defined(SQLITE_VDBE_COVERAGE)
178# define VdbeBranchTaken(I,M)
179#else
drh5655c542014-02-19 19:14:34 +0000180# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
drh7083a482018-07-10 16:04:04 +0000181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
182 u8 mNever;
183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */
186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
187 I = 1<<I;
188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of
189 ** the flags indicate directions that the branch can never go. If
190 ** a branch really does go in one of those directions, assert right
191 ** away. */
192 mNever = iSrcLine >> 24;
193 assert( (I & mNever)==0 );
194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
drhc9065332019-04-01 14:01:21 +0000195 /* Invoke the branch coverage callback with three arguments:
196 ** iSrcLine - the line number of the VdbeCoverage() macro, with
197 ** flags removed.
198 ** I - Mask of bits 0x07 indicating which cases are are
199 ** fulfilled by this instance of the jump. 0x01 means
200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any
201 ** impossible cases (ex: if the comparison is never NULL)
202 ** are filled in automatically so that the coverage
203 ** measurement logic does not flag those impossible cases
204 ** as missed coverage.
205 ** M - Type of jump. Same as M argument above
206 */
drh7083a482018-07-10 16:04:04 +0000207 I |= mNever;
208 if( M==2 ) I |= 0x04;
209 if( M==4 ){
210 I |= 0x08;
drh6ccbd272018-07-10 17:10:44 +0000211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
drh5655c542014-02-19 19:14:34 +0000212 }
drh7083a482018-07-10 16:04:04 +0000213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
214 iSrcLine&0xffffff, I, M);
drh5655c542014-02-19 19:14:34 +0000215 }
drh688852a2014-02-17 22:40:43 +0000216#endif
217
218/*
danielk1977bd7e4602004-05-24 07:34:48 +0000219** An ephemeral string value (signified by the MEM_Ephem flag) contains
220** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000221** is responsible for deallocating that string. Because the register
222** does not control the string, it might be deleted without the register
223** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000224**
225** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000226** string that the register itself controls. In other words, it
drhc91b2fd2014-03-01 18:13:23 +0000227** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
danielk1977bd7e4602004-05-24 07:34:48 +0000228*/
drhb21c8cd2007-08-21 19:33:56 +0000229#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000230 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000232
dan689ab892011-08-12 15:02:00 +0000233/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
drhc960dcb2015-11-20 19:22:01 +0000234#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
danielk19778a6b5412004-05-24 07:04:25 +0000235
236/*
drhdfe88ec2008-11-03 20:55:06 +0000237** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000238** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000239*/
drhdfe88ec2008-11-03 20:55:06 +0000240static VdbeCursor *allocateCursor(
241 Vdbe *p, /* The virtual machine */
242 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000243 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000244 int iDb, /* Database the cursor belongs to, or -1 */
drhc960dcb2015-11-20 19:22:01 +0000245 u8 eCurType /* Type of the new cursor */
danielk1977cd3e8f72008-03-25 09:47:35 +0000246){
247 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000248 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000249 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000250 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000251 **
252 ** * Sometimes cursor numbers are used for a couple of different
253 ** purposes in a vdbe program. The different uses might require
254 ** different sized allocations. Memory cells provide growable
255 ** allocations.
256 **
257 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
258 ** be freed lazily via the sqlite3_release_memory() API. This
259 ** minimizes the number of malloc calls made by the system.
260 **
drh3cdce922016-03-21 00:30:40 +0000261 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
drh9f6168b2016-03-19 23:32:58 +0000262 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
263 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
danielk1977cd3e8f72008-03-25 09:47:35 +0000264 */
drh9f6168b2016-03-19 23:32:58 +0000265 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
danielk1977cd3e8f72008-03-25 09:47:35 +0000266
danielk19775f096132008-03-28 15:44:09 +0000267 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000268 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000269 nByte =
drh5cc10232013-11-21 01:04:02 +0000270 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
drhc960dcb2015-11-20 19:22:01 +0000271 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
danielk1977cd3e8f72008-03-25 09:47:35 +0000272
drh9f6168b2016-03-19 23:32:58 +0000273 assert( iCur>=0 && iCur<p->nCursor );
drha3fa1402016-04-29 02:55:05 +0000274 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
dan97c8cb32019-01-01 18:00:17 +0000275 /* Before calling sqlite3VdbeFreeCursor(), ensure the isEphemeral flag
276 ** is clear. Otherwise, if this is an ephemeral cursor created by
277 ** OP_OpenDup, the cursor will not be closed and will still be part
278 ** of a BtShared.pCursor list. */
dana5129722019-05-03 18:50:24 +0000279 if( p->apCsr[iCur]->pBtx==0 ) p->apCsr[iCur]->isEphemeral = 0;
danielk1977be718892006-06-23 08:05:19 +0000280 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000281 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000282 }
drh322f2852014-09-19 00:43:39 +0000283 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drhdfe88ec2008-11-03 20:55:06 +0000284 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhfbd8cbd2016-12-10 12:58:15 +0000285 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
drhc960dcb2015-11-20 19:22:01 +0000286 pCx->eCurType = eCurType;
danielk197794eb6a12005-12-15 15:22:08 +0000287 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000288 pCx->nField = nField;
drhb53a5a92014-10-12 22:37:22 +0000289 pCx->aOffset = &pCx->aType[nField];
drhc960dcb2015-11-20 19:22:01 +0000290 if( eCurType==CURTYPE_BTREE ){
291 pCx->uc.pCursor = (BtCursor*)
drh5cc10232013-11-21 01:04:02 +0000292 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
drhc960dcb2015-11-20 19:22:01 +0000293 sqlite3BtreeCursorZero(pCx->uc.pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000294 }
danielk197794eb6a12005-12-15 15:22:08 +0000295 }
drh4774b132004-06-12 20:12:51 +0000296 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000297}
298
danielk19773d1bfea2004-05-14 11:00:53 +0000299/*
drh8a3884e2019-05-29 21:18:27 +0000300** The string in pRec is known to look like an integer and to have a
301** floating point value of rValue. Return true and set *piValue to the
302** integer value if the string is in range to be an integer. Otherwise,
303** return false.
304*/
305static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
306 i64 iValue = (double)rValue;
307 if( sqlite3RealSameAsInt(rValue,iValue) ){
drhc285ded2019-06-10 18:33:16 +0000308 *piValue = iValue;
309 return 1;
drh8a3884e2019-05-29 21:18:27 +0000310 }
311 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
312}
313
314/*
drh29d72102006-02-09 22:13:41 +0000315** Try to convert a value into a numeric representation if we can
316** do so without loss of information. In other words, if the string
317** looks like a number, convert it into a number. If it does not
318** look like a number, leave it alone.
drhbd9507c2014-08-23 17:21:37 +0000319**
320** If the bTryForInt flag is true, then extra effort is made to give
321** an integer representation. Strings that look like floating point
322** values but which have no fractional component (example: '48.00')
323** will have a MEM_Int representation when bTryForInt is true.
324**
325** If bTryForInt is false, then if the input string contains a decimal
326** point or exponential notation, the result is only MEM_Real, even
327** if there is an exact integer representation of the quantity.
drh29d72102006-02-09 22:13:41 +0000328*/
drhbd9507c2014-08-23 17:21:37 +0000329static void applyNumericAffinity(Mem *pRec, int bTryForInt){
drh975b4c62014-07-26 16:47:23 +0000330 double rValue;
drh975b4c62014-07-26 16:47:23 +0000331 u8 enc = pRec->enc;
drh8a3884e2019-05-29 21:18:27 +0000332 int rc;
drh169f0772019-05-02 21:36:26 +0000333 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
drh8a3884e2019-05-29 21:18:27 +0000334 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
drh9a278222019-06-07 22:26:08 +0000335 if( rc<=0 ) return;
drh8a3884e2019-05-29 21:18:27 +0000336 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
drh975b4c62014-07-26 16:47:23 +0000337 pRec->flags |= MEM_Int;
338 }else{
drh74eaba42014-09-18 17:52:15 +0000339 pRec->u.r = rValue;
drh975b4c62014-07-26 16:47:23 +0000340 pRec->flags |= MEM_Real;
drhbd9507c2014-08-23 17:21:37 +0000341 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000342 }
drh06b3bd52018-02-01 01:13:33 +0000343 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
344 ** string representation after computing a numeric equivalent, because the
345 ** string representation might not be the canonical representation for the
346 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
347 pRec->flags &= ~MEM_Str;
drh29d72102006-02-09 22:13:41 +0000348}
349
350/*
drh8a512562005-11-14 22:29:05 +0000351** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000352**
drh8a512562005-11-14 22:29:05 +0000353** SQLITE_AFF_INTEGER:
354** SQLITE_AFF_REAL:
355** SQLITE_AFF_NUMERIC:
356** Try to convert pRec to an integer representation or a
357** floating-point representation if an integer representation
358** is not possible. Note that the integer representation is
359** always preferred, even if the affinity is REAL, because
360** an integer representation is more space efficient on disk.
361**
362** SQLITE_AFF_TEXT:
363** Convert pRec to a text representation.
364**
drh05883a32015-06-02 15:32:08 +0000365** SQLITE_AFF_BLOB:
drh96fb16e2019-08-06 14:37:24 +0000366** SQLITE_AFF_NONE:
drh8a512562005-11-14 22:29:05 +0000367** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000368*/
drh17435752007-08-16 04:30:38 +0000369static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000370 Mem *pRec, /* The value to apply affinity to */
371 char affinity, /* The affinity to be applied */
372 u8 enc /* Use this text encoding */
373){
drh7ea31cc2014-09-18 14:36:00 +0000374 if( affinity>=SQLITE_AFF_NUMERIC ){
drh8a512562005-11-14 22:29:05 +0000375 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
376 || affinity==SQLITE_AFF_NUMERIC );
drha3fa1402016-04-29 02:55:05 +0000377 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
drhbd9507c2014-08-23 17:21:37 +0000378 if( (pRec->flags & MEM_Real)==0 ){
drh11a6eee2014-09-19 22:01:54 +0000379 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
drhbd9507c2014-08-23 17:21:37 +0000380 }else{
381 sqlite3VdbeIntegerAffinity(pRec);
382 }
drh17c40292004-07-21 02:53:29 +0000383 }
drh7ea31cc2014-09-18 14:36:00 +0000384 }else if( affinity==SQLITE_AFF_TEXT ){
danielk19773d1bfea2004-05-14 11:00:53 +0000385 /* Only attempt the conversion to TEXT if there is an integer or real
drhf4479502004-05-27 03:12:53 +0000386 ** representation (blob and NULL do not get converted) but no string
drha3fa1402016-04-29 02:55:05 +0000387 ** representation. It would be harmless to repeat the conversion if
388 ** there is already a string rep, but it is pointless to waste those
389 ** CPU cycles. */
390 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
drh169f0772019-05-02 21:36:26 +0000391 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
drh3242c692019-05-04 01:29:13 +0000392 testcase( pRec->flags & MEM_Int );
393 testcase( pRec->flags & MEM_Real );
394 testcase( pRec->flags & MEM_IntReal );
drha3fa1402016-04-29 02:55:05 +0000395 sqlite3VdbeMemStringify(pRec, enc, 1);
396 }
danielk19773d1bfea2004-05-14 11:00:53 +0000397 }
drh169f0772019-05-02 21:36:26 +0000398 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
danielk19773d1bfea2004-05-14 11:00:53 +0000399 }
400}
401
danielk1977aee18ef2005-03-09 12:26:50 +0000402/*
drh29d72102006-02-09 22:13:41 +0000403** Try to convert the type of a function argument or a result column
404** into a numeric representation. Use either INTEGER or REAL whichever
405** is appropriate. But only do the conversion if it is possible without
406** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000407*/
408int sqlite3_value_numeric_type(sqlite3_value *pVal){
drh1b27b8c2014-02-10 03:21:57 +0000409 int eType = sqlite3_value_type(pVal);
410 if( eType==SQLITE_TEXT ){
411 Mem *pMem = (Mem*)pVal;
drhbd9507c2014-08-23 17:21:37 +0000412 applyNumericAffinity(pMem, 0);
drh1b27b8c2014-02-10 03:21:57 +0000413 eType = sqlite3_value_type(pVal);
drhe5a8a1d2010-11-18 12:31:24 +0000414 }
drh1b27b8c2014-02-10 03:21:57 +0000415 return eType;
drh29d72102006-02-09 22:13:41 +0000416}
417
418/*
danielk1977aee18ef2005-03-09 12:26:50 +0000419** Exported version of applyAffinity(). This one works on sqlite3_value*,
420** not the internal Mem* type.
421*/
danielk19771e536952007-08-16 10:09:01 +0000422void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000423 sqlite3_value *pVal,
424 u8 affinity,
425 u8 enc
426){
drhb21c8cd2007-08-21 19:33:56 +0000427 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000428}
429
drh3d1d90a2014-03-24 15:00:15 +0000430/*
drhf1a89ed2014-08-23 17:41:15 +0000431** pMem currently only holds a string type (or maybe a BLOB that we can
432** interpret as a string if we want to). Compute its corresponding
drh74eaba42014-09-18 17:52:15 +0000433** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
drhf1a89ed2014-08-23 17:41:15 +0000434** accordingly.
435*/
436static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
drh9a278222019-06-07 22:26:08 +0000437 int rc;
438 sqlite3_int64 ix;
drh169f0772019-05-02 21:36:26 +0000439 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
drhf1a89ed2014-08-23 17:41:15 +0000440 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
drh0814acd2019-01-25 20:09:04 +0000441 ExpandBlob(pMem);
drh9a278222019-06-07 22:26:08 +0000442 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
443 if( rc<=0 ){
444 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
445 pMem->u.i = ix;
446 return MEM_Int;
447 }else{
448 return MEM_Real;
449 }
450 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
451 pMem->u.i = ix;
drhf1a89ed2014-08-23 17:41:15 +0000452 return MEM_Int;
453 }
454 return MEM_Real;
455}
456
457/*
drh3d1d90a2014-03-24 15:00:15 +0000458** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
459** none.
460**
461** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
drh74eaba42014-09-18 17:52:15 +0000462** But it does set pMem->u.r and pMem->u.i appropriately.
drh3d1d90a2014-03-24 15:00:15 +0000463*/
464static u16 numericType(Mem *pMem){
drh169f0772019-05-02 21:36:26 +0000465 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){
drh3242c692019-05-04 01:29:13 +0000466 testcase( pMem->flags & MEM_Int );
467 testcase( pMem->flags & MEM_Real );
468 testcase( pMem->flags & MEM_IntReal );
drh169f0772019-05-02 21:36:26 +0000469 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal);
drh3d1d90a2014-03-24 15:00:15 +0000470 }
471 if( pMem->flags & (MEM_Str|MEM_Blob) ){
drh3242c692019-05-04 01:29:13 +0000472 testcase( pMem->flags & MEM_Str );
473 testcase( pMem->flags & MEM_Blob );
drhf1a89ed2014-08-23 17:41:15 +0000474 return computeNumericType(pMem);
drh3d1d90a2014-03-24 15:00:15 +0000475 }
476 return 0;
477}
478
danielk1977b5402fb2005-01-12 07:15:04 +0000479#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000480/*
danielk1977ca6b2912004-05-21 10:49:47 +0000481** Write a nice string representation of the contents of cell pMem
482** into buffer zBuf, length nBuf.
483*/
drh5ca06322020-01-06 19:23:41 +0000484void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
danielk1977ca6b2912004-05-21 10:49:47 +0000485 int f = pMem->flags;
drh57196282004-10-06 15:41:16 +0000486 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977ca6b2912004-05-21 10:49:47 +0000487 if( f&MEM_Blob ){
488 int i;
489 char c;
490 if( f & MEM_Dyn ){
491 c = 'z';
492 assert( (f & (MEM_Static|MEM_Ephem))==0 );
493 }else if( f & MEM_Static ){
494 c = 't';
495 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
496 }else if( f & MEM_Ephem ){
497 c = 'e';
498 assert( (f & (MEM_Static|MEM_Dyn))==0 );
499 }else{
500 c = 's';
501 }
drhded33cc2020-01-08 11:36:30 +0000502 sqlite3_str_appendf(pStr, "%cx[", c);
drhefb5f9a2019-08-30 21:52:13 +0000503 for(i=0; i<25 && i<pMem->n; i++){
drh5ca06322020-01-06 19:23:41 +0000504 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
danielk1977ca6b2912004-05-21 10:49:47 +0000505 }
drh5ca06322020-01-06 19:23:41 +0000506 sqlite3_str_appendf(pStr, "|");
drhefb5f9a2019-08-30 21:52:13 +0000507 for(i=0; i<25 && i<pMem->n; i++){
danielk1977ca6b2912004-05-21 10:49:47 +0000508 char z = pMem->z[i];
drh5ca06322020-01-06 19:23:41 +0000509 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
danielk1977ca6b2912004-05-21 10:49:47 +0000510 }
drh5ca06322020-01-06 19:23:41 +0000511 sqlite3_str_appendf(pStr,"]");
drhfdf972a2007-05-02 13:30:27 +0000512 if( f & MEM_Zero ){
drh5ca06322020-01-06 19:23:41 +0000513 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
drhfdf972a2007-05-02 13:30:27 +0000514 }
danielk1977b1bc9532004-05-22 03:05:33 +0000515 }else if( f & MEM_Str ){
drh5ca06322020-01-06 19:23:41 +0000516 int j;
mistachkin59171172020-01-18 19:02:20 +0000517 u8 c;
danielk1977b1bc9532004-05-22 03:05:33 +0000518 if( f & MEM_Dyn ){
drh5ca06322020-01-06 19:23:41 +0000519 c = 'z';
danielk1977b1bc9532004-05-22 03:05:33 +0000520 assert( (f & (MEM_Static|MEM_Ephem))==0 );
521 }else if( f & MEM_Static ){
drh5ca06322020-01-06 19:23:41 +0000522 c = 't';
danielk1977b1bc9532004-05-22 03:05:33 +0000523 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
524 }else if( f & MEM_Ephem ){
drh5ca06322020-01-06 19:23:41 +0000525 c = 'e';
danielk1977b1bc9532004-05-22 03:05:33 +0000526 assert( (f & (MEM_Static|MEM_Dyn))==0 );
527 }else{
drh5ca06322020-01-06 19:23:41 +0000528 c = 's';
danielk1977b1bc9532004-05-22 03:05:33 +0000529 }
drh5ca06322020-01-06 19:23:41 +0000530 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
drhefb5f9a2019-08-30 21:52:13 +0000531 for(j=0; j<25 && j<pMem->n; j++){
mistachkin59171172020-01-18 19:02:20 +0000532 c = pMem->z[j];
drh5ca06322020-01-06 19:23:41 +0000533 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
danielk1977b1bc9532004-05-22 03:05:33 +0000534 }
drh5ca06322020-01-06 19:23:41 +0000535 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
danielk1977ca6b2912004-05-21 10:49:47 +0000536 }
danielk1977ca6b2912004-05-21 10:49:47 +0000537}
538#endif
539
drh5b6afba2008-01-05 16:29:28 +0000540#ifdef SQLITE_DEBUG
541/*
542** Print the value of a register for tracing purposes:
543*/
drh84e55a82013-11-13 17:58:23 +0000544static void memTracePrint(Mem *p){
drha5750cf2014-02-07 13:20:31 +0000545 if( p->flags & MEM_Undefined ){
drh84e55a82013-11-13 17:58:23 +0000546 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000547 }else if( p->flags & MEM_Null ){
drhce2fbd12018-01-12 21:00:14 +0000548 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
drh5b6afba2008-01-05 16:29:28 +0000549 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000550 printf(" si:%lld", p->u.i);
drh169f0772019-05-02 21:36:26 +0000551 }else if( (p->flags & (MEM_IntReal))!=0 ){
drh83a1daf2019-05-01 18:59:33 +0000552 printf(" ir:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000553 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000554 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000555#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000556 }else if( p->flags & MEM_Real ){
drhd1c472d2019-10-03 14:51:59 +0000557 printf(" r:%.17g", p->u.r);
drh0b3bf922009-06-15 20:45:34 +0000558#endif
drh9d67afc2018-08-29 20:24:03 +0000559 }else if( sqlite3VdbeMemIsRowSet(p) ){
drh84e55a82013-11-13 17:58:23 +0000560 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000561 }else{
drh5ca06322020-01-06 19:23:41 +0000562 StrAccum acc;
563 char zBuf[1000];
564 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
565 sqlite3VdbeMemPrettyPrint(p, &acc);
566 printf(" %s", sqlite3StrAccumFinish(&acc));
drh5b6afba2008-01-05 16:29:28 +0000567 }
dan5b6c8e42016-01-30 15:46:03 +0000568 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
drh5b6afba2008-01-05 16:29:28 +0000569}
drh84e55a82013-11-13 17:58:23 +0000570static void registerTrace(int iReg, Mem *p){
drh22e95fb2020-01-02 14:42:42 +0000571 printf("R[%d] = ", iReg);
drh84e55a82013-11-13 17:58:23 +0000572 memTracePrint(p);
drh22e95fb2020-01-02 14:42:42 +0000573 if( p->pScopyFrom ){
574 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
575 }
drh84e55a82013-11-13 17:58:23 +0000576 printf("\n");
drhe2bc6552017-04-17 20:50:34 +0000577 sqlite3VdbeCheckMemInvariants(p);
drh5b6afba2008-01-05 16:29:28 +0000578}
579#endif
580
581#ifdef SQLITE_DEBUG
drh22e95fb2020-01-02 14:42:42 +0000582/*
583** Show the values of all registers in the virtual machine. Used for
584** interactive debugging.
585*/
586void sqlite3VdbeRegisterDump(Vdbe *v){
587 int i;
588 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
589}
590#endif /* SQLITE_DEBUG */
591
592
593#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000594# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000595#else
596# define REGISTER_TRACE(R,M)
597#endif
598
danielk197784ac9d02004-05-18 09:58:06 +0000599
drh7b396862003-01-01 23:06:20 +0000600#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000601
602/*
603** hwtime.h contains inline assembler code for implementing
604** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000605*/
shane9bcbdad2008-05-29 20:22:37 +0000606#include "hwtime.h"
607
drh7b396862003-01-01 23:06:20 +0000608#endif
609
danielk1977fd7f0452008-12-17 17:30:26 +0000610#ifndef NDEBUG
611/*
612** This function is only called from within an assert() expression. It
613** checks that the sqlite3.nTransaction variable is correctly set to
614** the number of non-transaction savepoints currently in the
615** linked list starting at sqlite3.pSavepoint.
616**
617** Usage:
618**
619** assert( checkSavepointCount(db) );
620*/
621static int checkSavepointCount(sqlite3 *db){
622 int n = 0;
623 Savepoint *p;
624 for(p=db->pSavepoint; p; p=p->pNext) n++;
625 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
626 return 1;
627}
628#endif
629
drh27a348c2015-04-13 19:14:06 +0000630/*
631** Return the register of pOp->p2 after first preparing it to be
632** overwritten with an integer value.
drh9eef8c62015-10-15 17:31:41 +0000633*/
634static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
635 sqlite3VdbeMemSetNull(pOut);
636 pOut->flags = MEM_Int;
637 return pOut;
638}
drh27a348c2015-04-13 19:14:06 +0000639static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
640 Mem *pOut;
641 assert( pOp->p2>0 );
drh9f6168b2016-03-19 23:32:58 +0000642 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
drh27a348c2015-04-13 19:14:06 +0000643 pOut = &p->aMem[pOp->p2];
644 memAboutToChange(p, pOut);
drha3fa1402016-04-29 02:55:05 +0000645 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
drh9eef8c62015-10-15 17:31:41 +0000646 return out2PrereleaseWithClear(pOut);
647 }else{
648 pOut->flags = MEM_Int;
649 return pOut;
650 }
drh27a348c2015-04-13 19:14:06 +0000651}
652
drhb9755982010-07-24 16:34:37 +0000653
654/*
drh0fd61352014-02-07 02:29:45 +0000655** Execute as much of a VDBE program as we can.
656** This is the core of sqlite3_step().
drhb86ccfb2003-01-28 23:13:10 +0000657*/
danielk19774adee202004-05-08 08:23:19 +0000658int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000659 Vdbe *p /* The VDBE */
660){
drhbbe879d2009-11-14 18:04:35 +0000661 Op *aOp = p->aOp; /* Copy of p->aOp */
mistachkin5f7b95f2017-02-01 23:03:54 +0000662 Op *pOp = aOp; /* Current operation */
drh6dc41482015-04-16 17:31:02 +0000663#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
664 Op *pOrigOp; /* Value of pOp at the top of the loop */
665#endif
drhb89aeb62016-01-27 15:49:32 +0000666#ifdef SQLITE_DEBUG
drhdef19e32016-01-27 16:26:25 +0000667 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
drhb89aeb62016-01-27 15:49:32 +0000668#endif
drhb86ccfb2003-01-28 23:13:10 +0000669 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000670 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000671 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000672 u8 encoding = ENC(db); /* The database encoding */
drh0f825a72016-08-13 14:17:02 +0000673 int iCompare = 0; /* Result of last comparison */
drhbf159fa2013-06-25 22:01:22 +0000674 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000675#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh2ab792e2017-05-30 18:34:07 +0000676 unsigned nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000677#endif
drha6c2ed92009-11-14 23:22:23 +0000678 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000679 Mem *pIn1 = 0; /* 1st input operand */
680 Mem *pIn2 = 0; /* 2nd input operand */
681 Mem *pIn3 = 0; /* 3rd input operand */
682 Mem *pOut = 0; /* Output operand */
drhb86ccfb2003-01-28 23:13:10 +0000683#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000684 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000685#endif
drh856c1032009-06-02 15:21:42 +0000686 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000687
drhca48c902008-01-18 14:08:24 +0000688 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000689 sqlite3VdbeEnter(p);
drh82642f82019-02-12 22:58:32 +0000690#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
691 if( db->xProgress ){
692 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
693 assert( 0 < db->nProgressOps );
694 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
695 }else{
696 nProgressLimit = 0xffffffff;
697 }
698#endif
danielk19772e588c72005-12-09 14:25:08 +0000699 if( p->rc==SQLITE_NOMEM ){
700 /* This happens if a malloc() inside a call to sqlite3_column_text() or
701 ** sqlite3_column_text16() failed. */
702 goto no_mem;
703 }
drhcbd8db32015-08-20 17:18:32 +0000704 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000705 assert( p->bIsReader || p->readOnly!=0 );
drh95a7b3e2013-09-16 12:57:19 +0000706 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000707 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000708 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000709 db->busyHandler.nBusy = 0;
dan892edb62020-03-30 13:35:05 +0000710 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
drh602c2372007-03-01 00:29:13 +0000711 sqlite3VdbeIOTraceSql(p);
drh3c23a882007-01-09 14:01:13 +0000712#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000713 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000714 if( p->pc==0
715 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
716 ){
drh3c23a882007-01-09 14:01:13 +0000717 int i;
drh84e55a82013-11-13 17:58:23 +0000718 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000719 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000720 if( p->db->flags & SQLITE_VdbeListing ){
721 printf("VDBE Program Listing:\n");
722 for(i=0; i<p->nOp; i++){
723 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
724 }
drh3c23a882007-01-09 14:01:13 +0000725 }
drh84e55a82013-11-13 17:58:23 +0000726 if( p->db->flags & SQLITE_VdbeEQP ){
727 for(i=0; i<p->nOp; i++){
728 if( aOp[i].opcode==OP_Explain ){
729 if( once ) printf("VDBE Query Plan:\n");
730 printf("%s\n", aOp[i].p4.z);
731 once = 0;
732 }
733 }
734 }
735 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000736 }
danielk19772d1d86f2008-06-20 14:59:51 +0000737 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000738#endif
drh9467abf2016-02-17 18:44:11 +0000739 for(pOp=&aOp[p->pc]; 1; pOp++){
740 /* Errors are detected by individual opcodes, with an immediate
741 ** jumps to abort_due_to_error. */
742 assert( rc==SQLITE_OK );
743
drhf56fa462015-04-13 21:39:54 +0000744 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
drh7b396862003-01-01 23:06:20 +0000745#ifdef VDBE_PROFILE
drh35043cc2018-02-12 20:27:34 +0000746 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000747#endif
drhbf159fa2013-06-25 22:01:22 +0000748 nVmStep++;
dan6f9702e2014-11-01 20:38:06 +0000749#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drhf56fa462015-04-13 21:39:54 +0000750 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
dan6f9702e2014-11-01 20:38:06 +0000751#endif
drh6e142f52000-06-08 13:36:40 +0000752
danielk19778b60e0f2005-01-12 09:10:39 +0000753 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000754 */
danielk19778b60e0f2005-01-12 09:10:39 +0000755#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000756 if( db->flags & SQLITE_VdbeTrace ){
drhf56fa462015-04-13 21:39:54 +0000757 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
drh22e95fb2020-01-02 14:42:42 +0000758 test_trace_breakpoint((int)(pOp - aOp),pOp,p);
drh75897232000-05-29 14:26:00 +0000759 }
drh3f7d4e42004-07-24 14:35:58 +0000760#endif
761
drh6e142f52000-06-08 13:36:40 +0000762
drhf6038712004-02-08 18:07:34 +0000763 /* Check to see if we need to simulate an interrupt. This only happens
764 ** if we have a special test build.
765 */
766#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000767 if( sqlite3_interrupt_count>0 ){
768 sqlite3_interrupt_count--;
769 if( sqlite3_interrupt_count==0 ){
770 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000771 }
772 }
773#endif
774
drh3c657212009-11-17 23:59:58 +0000775 /* Sanity checking on other operands */
776#ifdef SQLITE_DEBUG
drh7cc84c22016-04-11 13:36:42 +0000777 {
778 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
779 if( (opProperty & OPFLG_IN1)!=0 ){
780 assert( pOp->p1>0 );
781 assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
782 assert( memIsValid(&aMem[pOp->p1]) );
783 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
784 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
785 }
786 if( (opProperty & OPFLG_IN2)!=0 ){
787 assert( pOp->p2>0 );
788 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
789 assert( memIsValid(&aMem[pOp->p2]) );
790 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
791 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
792 }
793 if( (opProperty & OPFLG_IN3)!=0 ){
794 assert( pOp->p3>0 );
795 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
796 assert( memIsValid(&aMem[pOp->p3]) );
797 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
798 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
799 }
800 if( (opProperty & OPFLG_OUT2)!=0 ){
801 assert( pOp->p2>0 );
802 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
803 memAboutToChange(p, &aMem[pOp->p2]);
804 }
805 if( (opProperty & OPFLG_OUT3)!=0 ){
806 assert( pOp->p3>0 );
807 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
808 memAboutToChange(p, &aMem[pOp->p3]);
809 }
drh3c657212009-11-17 23:59:58 +0000810 }
811#endif
drh6dc41482015-04-16 17:31:02 +0000812#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
813 pOrigOp = pOp;
814#endif
drh93952eb2009-11-13 19:43:43 +0000815
drh75897232000-05-29 14:26:00 +0000816 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000817
drh5e00f6c2001-09-13 13:46:56 +0000818/*****************************************************************************
819** What follows is a massive switch statement where each case implements a
820** separate instruction in the virtual machine. If we follow the usual
821** indentation conventions, each case should be indented by 6 spaces. But
822** that is a lot of wasted space on the left margin. So the code within
823** the switch statement will break with convention and be flush-left. Another
824** big comment (similar to this one) will mark the point in the code where
825** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000826**
827** The formatting of each case is important. The makefile for SQLite
828** generates two C files "opcodes.h" and "opcodes.c" by scanning this
829** file looking for lines that begin with "case OP_". The opcodes.h files
830** will be filled with #defines that give unique integer values to each
831** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000832** each string is the symbolic name for the corresponding opcode. If the
833** case statement is followed by a comment of the form "/# same as ... #/"
834** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000835**
drh9cbf3422008-01-17 16:22:13 +0000836** Other keywords in the comment that follows each case are used to
837** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
drh27a348c2015-04-13 19:14:06 +0000838** Keywords include: in1, in2, in3, out2, out3. See
drh9cbf3422008-01-17 16:22:13 +0000839** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000840**
drhac82fcf2002-09-08 17:23:41 +0000841** Documentation about VDBE opcodes is generated by scanning this file
842** for lines of that contain "Opcode:". That line and all subsequent
843** comment lines are used in the generation of the opcode.html documentation
844** file.
845**
846** SUMMARY:
847**
848** Formatting is important to scripts that scan this file.
849** Do not deviate from the formatting style currently in use.
850**
drh5e00f6c2001-09-13 13:46:56 +0000851*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000852
drh9cbf3422008-01-17 16:22:13 +0000853/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000854**
855** An unconditional jump to address P2.
856** The next instruction executed will be
857** the one at index P2 from the beginning of
858** the program.
drhfe705102014-03-06 13:38:37 +0000859**
860** The P1 parameter is not actually used by this opcode. However, it
861** is sometimes set to 1 instead of 0 as a hint to the command-line shell
862** that this Goto is the bottom of a loop and that the lines from P2 down
863** to the current line should be indented for EXPLAIN output.
drh5e00f6c2001-09-13 13:46:56 +0000864*/
drh9cbf3422008-01-17 16:22:13 +0000865case OP_Goto: { /* jump */
drhd9670ab2019-12-28 01:52:46 +0000866
867#ifdef SQLITE_DEBUG
868 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
869 ** means we should really jump back to the preceeding OP_ReleaseReg
870 ** instruction. */
871 if( pOp->p5 ){
872 assert( pOp->p2 < (int)(pOp - aOp) );
873 assert( pOp->p2 > 1 );
874 pOp = &aOp[pOp->p2 - 2];
875 assert( pOp[1].opcode==OP_ReleaseReg );
876 goto check_for_interrupt;
877 }
878#endif
879
drhf56fa462015-04-13 21:39:54 +0000880jump_to_p2_and_check_for_interrupt:
881 pOp = &aOp[pOp->p2 - 1];
drh49afe3a2013-07-10 03:05:14 +0000882
883 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
drhbb6783b2017-04-29 18:02:49 +0000884 ** OP_VNext, or OP_SorterNext) all jump here upon
drh49afe3a2013-07-10 03:05:14 +0000885 ** completion. Check to see if sqlite3_interrupt() has been called
886 ** or if the progress callback needs to be invoked.
887 **
888 ** This code uses unstructured "goto" statements and does not look clean.
889 ** But that is not due to sloppy coding habits. The code is written this
890 ** way for performance, to avoid having to run the interrupt and progress
891 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
892 ** faster according to "valgrind --tool=cachegrind" */
893check_for_interrupt:
dan892edb62020-03-30 13:35:05 +0000894 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
drh49afe3a2013-07-10 03:05:14 +0000895#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
896 /* Call the progress callback if it is configured and the required number
897 ** of VDBE ops have been executed (either since this invocation of
898 ** sqlite3VdbeExec() or since last time the progress callback was called).
899 ** If the progress callback returns non-zero, exit the virtual machine with
900 ** a return code SQLITE_ABORT.
901 */
drhb1af9c62019-02-20 13:55:45 +0000902 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
drh400fcba2013-11-14 00:09:48 +0000903 assert( db->nProgressOps!=0 );
drhb1af9c62019-02-20 13:55:45 +0000904 nProgressLimit += db->nProgressOps;
drh400fcba2013-11-14 00:09:48 +0000905 if( db->xProgress(db->pProgressArg) ){
drhc332e042019-02-12 21:04:33 +0000906 nProgressLimit = 0xffffffff;
drh49afe3a2013-07-10 03:05:14 +0000907 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +0000908 goto abort_due_to_error;
drh49afe3a2013-07-10 03:05:14 +0000909 }
drh49afe3a2013-07-10 03:05:14 +0000910 }
911#endif
912
drh5e00f6c2001-09-13 13:46:56 +0000913 break;
914}
drh75897232000-05-29 14:26:00 +0000915
drh2eb95372008-06-06 15:04:36 +0000916/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000917**
drh2eb95372008-06-06 15:04:36 +0000918** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000919** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000920*/
drhb8475df2011-12-09 16:21:19 +0000921case OP_Gosub: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000922 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000923 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000924 assert( VdbeMemDynamic(pIn1)==0 );
drh2b4ded92010-09-27 21:09:31 +0000925 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000926 pIn1->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000927 pIn1->u.i = (int)(pOp-aOp);
drh2eb95372008-06-06 15:04:36 +0000928 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000929
930 /* Most jump operations do a goto to this spot in order to update
931 ** the pOp pointer. */
932jump_to_p2:
933 pOp = &aOp[pOp->p2 - 1];
drh8c74a8c2002-08-25 19:20:40 +0000934 break;
935}
936
drh2eb95372008-06-06 15:04:36 +0000937/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000938**
drh81cf13e2014-02-07 18:27:53 +0000939** Jump to the next instruction after the address in register P1. After
940** the jump, register P1 becomes undefined.
drh8c74a8c2002-08-25 19:20:40 +0000941*/
drh2eb95372008-06-06 15:04:36 +0000942case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000943 pIn1 = &aMem[pOp->p1];
drh81cf13e2014-02-07 18:27:53 +0000944 assert( pIn1->flags==MEM_Int );
drhf56fa462015-04-13 21:39:54 +0000945 pOp = &aOp[pIn1->u.i];
drh81cf13e2014-02-07 18:27:53 +0000946 pIn1->flags = MEM_Undefined;
drh8c74a8c2002-08-25 19:20:40 +0000947 break;
948}
949
drhed71a832014-02-07 19:18:10 +0000950/* Opcode: InitCoroutine P1 P2 P3 * *
drh81cf13e2014-02-07 18:27:53 +0000951**
drh5dad9a32014-07-25 18:37:42 +0000952** Set up register P1 so that it will Yield to the coroutine
drhed71a832014-02-07 19:18:10 +0000953** located at address P3.
954**
drh5dad9a32014-07-25 18:37:42 +0000955** If P2!=0 then the coroutine implementation immediately follows
956** this opcode. So jump over the coroutine implementation to
drhed71a832014-02-07 19:18:10 +0000957** address P2.
drh5dad9a32014-07-25 18:37:42 +0000958**
959** See also: EndCoroutine
drh81cf13e2014-02-07 18:27:53 +0000960*/
961case OP_InitCoroutine: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000962 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drhed71a832014-02-07 19:18:10 +0000963 assert( pOp->p2>=0 && pOp->p2<p->nOp );
964 assert( pOp->p3>=0 && pOp->p3<p->nOp );
drh81cf13e2014-02-07 18:27:53 +0000965 pOut = &aMem[pOp->p1];
drhed71a832014-02-07 19:18:10 +0000966 assert( !VdbeMemDynamic(pOut) );
967 pOut->u.i = pOp->p3 - 1;
drh81cf13e2014-02-07 18:27:53 +0000968 pOut->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000969 if( pOp->p2 ) goto jump_to_p2;
drh81cf13e2014-02-07 18:27:53 +0000970 break;
971}
972
973/* Opcode: EndCoroutine P1 * * * *
974**
drhbc5cf382014-08-06 01:08:07 +0000975** The instruction at the address in register P1 is a Yield.
drh5dad9a32014-07-25 18:37:42 +0000976** Jump to the P2 parameter of that Yield.
drh81cf13e2014-02-07 18:27:53 +0000977** After the jump, register P1 becomes undefined.
drh5dad9a32014-07-25 18:37:42 +0000978**
979** See also: InitCoroutine
drh81cf13e2014-02-07 18:27:53 +0000980*/
981case OP_EndCoroutine: { /* in1 */
982 VdbeOp *pCaller;
983 pIn1 = &aMem[pOp->p1];
984 assert( pIn1->flags==MEM_Int );
985 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
986 pCaller = &aOp[pIn1->u.i];
987 assert( pCaller->opcode==OP_Yield );
988 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
drhf56fa462015-04-13 21:39:54 +0000989 pOp = &aOp[pCaller->p2 - 1];
drh81cf13e2014-02-07 18:27:53 +0000990 pIn1->flags = MEM_Undefined;
991 break;
992}
993
994/* Opcode: Yield P1 P2 * * *
drhe00ee6e2008-06-20 15:24:01 +0000995**
drh5dad9a32014-07-25 18:37:42 +0000996** Swap the program counter with the value in register P1. This
997** has the effect of yielding to a coroutine.
drh81cf13e2014-02-07 18:27:53 +0000998**
drh5dad9a32014-07-25 18:37:42 +0000999** If the coroutine that is launched by this instruction ends with
1000** Yield or Return then continue to the next instruction. But if
1001** the coroutine launched by this instruction ends with
1002** EndCoroutine, then jump to P2 rather than continuing with the
1003** next instruction.
1004**
1005** See also: InitCoroutine
drhe00ee6e2008-06-20 15:24:01 +00001006*/
drh81cf13e2014-02-07 18:27:53 +00001007case OP_Yield: { /* in1, jump */
drhe00ee6e2008-06-20 15:24:01 +00001008 int pcDest;
drh3c657212009-11-17 23:59:58 +00001009 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +00001010 assert( VdbeMemDynamic(pIn1)==0 );
drhe00ee6e2008-06-20 15:24:01 +00001011 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +00001012 pcDest = (int)pIn1->u.i;
drhf56fa462015-04-13 21:39:54 +00001013 pIn1->u.i = (int)(pOp - aOp);
drhe00ee6e2008-06-20 15:24:01 +00001014 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +00001015 pOp = &aOp[pcDest];
drhe00ee6e2008-06-20 15:24:01 +00001016 break;
1017}
1018
drhf9c8ce32013-11-05 13:33:55 +00001019/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +00001020** Synopsis: if r[P3]=null halt
drh5053a792009-02-20 03:02:23 +00001021**
drhef8662b2011-06-20 21:47:58 +00001022** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +00001023** parameter P1, P2, and P4 as if this were a Halt instruction. If the
1024** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +00001025** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +00001026*/
1027case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +00001028 pIn3 = &aMem[pOp->p3];
drh4031baf2018-05-28 17:31:20 +00001029#ifdef SQLITE_DEBUG
1030 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1031#endif
drh5053a792009-02-20 03:02:23 +00001032 if( (pIn3->flags & MEM_Null)==0 ) break;
1033 /* Fall through into OP_Halt */
1034}
drhe00ee6e2008-06-20 15:24:01 +00001035
drhf9c8ce32013-11-05 13:33:55 +00001036/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001037**
drh3d4501e2008-12-04 20:40:10 +00001038** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +00001039** automatically.
drhb19a2bc2001-09-16 00:13:26 +00001040**
drh92f02c32004-09-02 14:57:08 +00001041** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1042** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
1043** For errors, it can be some other value. If P1!=0 then P2 will determine
1044** whether or not to rollback the current transaction. Do not rollback
1045** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
1046** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +00001047** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +00001048**
drh66a51672008-01-03 00:01:23 +00001049** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +00001050**
drhf9c8ce32013-11-05 13:33:55 +00001051** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1052**
1053** 0: (no change)
1054** 1: NOT NULL contraint failed: P4
1055** 2: UNIQUE constraint failed: P4
1056** 3: CHECK constraint failed: P4
1057** 4: FOREIGN KEY constraint failed: P4
1058**
1059** If P5 is not zero and P4 is NULL, then everything after the ":" is
1060** omitted.
1061**
drh9cfcf5d2002-01-29 18:41:24 +00001062** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +00001063** every program. So a jump past the last instruction of the program
1064** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +00001065*/
drh9cbf3422008-01-17 16:22:13 +00001066case OP_Halt: {
drhf56fa462015-04-13 21:39:54 +00001067 VdbeFrame *pFrame;
1068 int pcx;
drhf9c8ce32013-11-05 13:33:55 +00001069
drhf56fa462015-04-13 21:39:54 +00001070 pcx = (int)(pOp - aOp);
drh4031baf2018-05-28 17:31:20 +00001071#ifdef SQLITE_DEBUG
1072 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1073#endif
dan165921a2009-08-28 18:53:45 +00001074 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +00001075 /* Halt the sub-program. Return control to the parent frame. */
drhf56fa462015-04-13 21:39:54 +00001076 pFrame = p->pFrame;
dan165921a2009-08-28 18:53:45 +00001077 p->pFrame = pFrame->pParent;
1078 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +00001079 sqlite3VdbeSetChanges(db, p->nChange);
drhf56fa462015-04-13 21:39:54 +00001080 pcx = sqlite3VdbeFrameRestore(pFrame);
dan165921a2009-08-28 18:53:45 +00001081 if( pOp->p2==OE_Ignore ){
drhf56fa462015-04-13 21:39:54 +00001082 /* Instruction pcx is the OP_Program that invoked the sub-program
dan2832ad42009-08-31 15:27:27 +00001083 ** currently being halted. If the p2 instruction of this OP_Halt
1084 ** instruction is set to OE_Ignore, then the sub-program is throwing
1085 ** an IGNORE exception. In this case jump to the address specified
1086 ** as the p2 of the calling OP_Program. */
drhf56fa462015-04-13 21:39:54 +00001087 pcx = p->aOp[pcx].p2-1;
dan165921a2009-08-28 18:53:45 +00001088 }
drhbbe879d2009-11-14 18:04:35 +00001089 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +00001090 aMem = p->aMem;
drhf56fa462015-04-13 21:39:54 +00001091 pOp = &aOp[pcx];
dan165921a2009-08-28 18:53:45 +00001092 break;
1093 }
drh92f02c32004-09-02 14:57:08 +00001094 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +00001095 p->errorAction = (u8)pOp->p2;
drhf56fa462015-04-13 21:39:54 +00001096 p->pc = pcx;
drhfb4e3a32016-12-30 00:09:14 +00001097 assert( pOp->p5<=4 );
drhf9c8ce32013-11-05 13:33:55 +00001098 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +00001099 if( pOp->p5 ){
1100 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1101 "FOREIGN KEY" };
drhd9b7ec92013-11-06 14:05:21 +00001102 testcase( pOp->p5==1 );
1103 testcase( pOp->p5==2 );
1104 testcase( pOp->p5==3 );
1105 testcase( pOp->p5==4 );
drh99f5de72016-04-30 02:59:15 +00001106 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1107 if( pOp->p4.z ){
1108 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1109 }
drhd9b7ec92013-11-06 14:05:21 +00001110 }else{
drh22c17b82015-05-15 04:13:15 +00001111 sqlite3VdbeError(p, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +00001112 }
drh99f5de72016-04-30 02:59:15 +00001113 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +00001114 }
drh92f02c32004-09-02 14:57:08 +00001115 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +00001116 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +00001117 if( rc==SQLITE_BUSY ){
drh99f5de72016-04-30 02:59:15 +00001118 p->rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00001119 }else{
drhd91c1a12013-02-09 13:58:25 +00001120 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
dancb3e4b72013-07-03 19:53:05 +00001121 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +00001122 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +00001123 }
drh900b31e2007-08-28 02:27:51 +00001124 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +00001125}
drhc61053b2000-06-04 12:58:36 +00001126
drh4c583122008-01-04 22:01:03 +00001127/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001128** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +00001129**
drh9cbf3422008-01-17 16:22:13 +00001130** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +00001131*/
drh27a348c2015-04-13 19:14:06 +00001132case OP_Integer: { /* out2 */
1133 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001134 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +00001135 break;
1136}
1137
drh4c583122008-01-04 22:01:03 +00001138/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001139** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +00001140**
drh66a51672008-01-03 00:01:23 +00001141** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +00001142** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +00001143*/
drh27a348c2015-04-13 19:14:06 +00001144case OP_Int64: { /* out2 */
1145 pOut = out2Prerelease(p, pOp);
danielk19772dca4ac2008-01-03 11:50:29 +00001146 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +00001147 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +00001148 break;
1149}
drh4f26d6c2004-05-26 23:25:30 +00001150
drh13573c72010-01-12 17:04:07 +00001151#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +00001152/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001153** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +00001154**
drh4c583122008-01-04 22:01:03 +00001155** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +00001156** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +00001157*/
drh27a348c2015-04-13 19:14:06 +00001158case OP_Real: { /* same as TK_FLOAT, out2 */
1159 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001160 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +00001161 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh74eaba42014-09-18 17:52:15 +00001162 pOut->u.r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +00001163 break;
1164}
drh13573c72010-01-12 17:04:07 +00001165#endif
danielk1977cbb18d22004-05-28 11:37:27 +00001166
drh3c84ddf2008-01-09 02:15:38 +00001167/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001168** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +00001169**
drh66a51672008-01-03 00:01:23 +00001170** P4 points to a nul terminated UTF-8 string. This opcode is transformed
drhf07cf6e2015-03-06 16:45:16 +00001171** into a String opcode before it is executed for the first time. During
drh0fd61352014-02-07 02:29:45 +00001172** this transformation, the length of string P4 is computed and stored
1173** as the P1 parameter.
danielk1977cbb18d22004-05-28 11:37:27 +00001174*/
drh27a348c2015-04-13 19:14:06 +00001175case OP_String8: { /* same as TK_STRING, out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001176 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001177 pOut = out2Prerelease(p, pOp);
drhea678832008-12-10 19:26:22 +00001178 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +00001179
1180#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +00001181 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +00001182 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
drh2f555112016-04-30 18:10:34 +00001183 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
drhdbdddc92019-02-21 16:41:34 +00001184 if( rc ) goto too_big;
drh4c583122008-01-04 22:01:03 +00001185 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh17bcb102014-09-18 21:25:33 +00001186 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
drhc91b2fd2014-03-01 18:13:23 +00001187 assert( VdbeMemDynamic(pOut)==0 );
drh17bcb102014-09-18 21:25:33 +00001188 pOut->szMalloc = 0;
drh4c583122008-01-04 22:01:03 +00001189 pOut->flags |= MEM_Static;
drh66a51672008-01-03 00:01:23 +00001190 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +00001191 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +00001192 }
drh66a51672008-01-03 00:01:23 +00001193 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +00001194 pOp->p4.z = pOut->z;
1195 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +00001196 }
danielk197793758c82005-01-21 08:13:14 +00001197#endif
drhbb4957f2008-03-20 14:03:29 +00001198 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +00001199 goto too_big;
1200 }
drhec722c12019-09-17 21:28:54 +00001201 pOp->opcode = OP_String;
drh2f555112016-04-30 18:10:34 +00001202 assert( rc==SQLITE_OK );
drhcbd2da92007-12-17 16:20:06 +00001203 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +00001204}
drhf4479502004-05-27 03:12:53 +00001205
drhf07cf6e2015-03-06 16:45:16 +00001206/* Opcode: String P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00001207** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +00001208**
drh9cbf3422008-01-17 16:22:13 +00001209** The string value P4 of length P1 (bytes) is stored in register P2.
drhf07cf6e2015-03-06 16:45:16 +00001210**
drh44aebff2016-05-02 10:25:42 +00001211** If P3 is not zero and the content of register P3 is equal to P5, then
drha9c18a92015-03-06 20:49:52 +00001212** the datatype of the register P2 is converted to BLOB. The content is
1213** the same sequence of bytes, it is merely interpreted as a BLOB instead
drh44aebff2016-05-02 10:25:42 +00001214** of a string, as if it had been CAST. In other words:
1215**
1216** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
drhf4479502004-05-27 03:12:53 +00001217*/
drh27a348c2015-04-13 19:14:06 +00001218case OP_String: { /* out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001219 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001220 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001221 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1222 pOut->z = pOp->p4.z;
1223 pOut->n = pOp->p1;
1224 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001225 UPDATE_MAX_BLOBSIZE(pOut);
drh41d2e662015-12-01 21:23:07 +00001226#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
drh44aebff2016-05-02 10:25:42 +00001227 if( pOp->p3>0 ){
drh9f6168b2016-03-19 23:32:58 +00001228 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhf07cf6e2015-03-06 16:45:16 +00001229 pIn3 = &aMem[pOp->p3];
1230 assert( pIn3->flags & MEM_Int );
drh44aebff2016-05-02 10:25:42 +00001231 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
drhf07cf6e2015-03-06 16:45:16 +00001232 }
drh41d2e662015-12-01 21:23:07 +00001233#endif
danielk1977c572ef72004-05-27 09:28:41 +00001234 break;
1235}
1236
drh053a1282012-09-19 21:15:46 +00001237/* Opcode: Null P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001238** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001239**
drhb8475df2011-12-09 16:21:19 +00001240** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001241** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001242** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001243** set to NULL.
1244**
1245** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1246** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1247** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001248*/
drh27a348c2015-04-13 19:14:06 +00001249case OP_Null: { /* out2 */
drhb8475df2011-12-09 16:21:19 +00001250 int cnt;
drh053a1282012-09-19 21:15:46 +00001251 u16 nullFlag;
drh27a348c2015-04-13 19:14:06 +00001252 pOut = out2Prerelease(p, pOp);
drhb8475df2011-12-09 16:21:19 +00001253 cnt = pOp->p3-pOp->p2;
drh9f6168b2016-03-19 23:32:58 +00001254 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001255 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drh2a1df932016-09-30 17:46:44 +00001256 pOut->n = 0;
drh2c885d02018-07-07 19:36:04 +00001257#ifdef SQLITE_DEBUG
1258 pOut->uTemp = 0;
1259#endif
drhb8475df2011-12-09 16:21:19 +00001260 while( cnt>0 ){
1261 pOut++;
1262 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +00001263 sqlite3VdbeMemSetNull(pOut);
drh053a1282012-09-19 21:15:46 +00001264 pOut->flags = nullFlag;
drh2a1df932016-09-30 17:46:44 +00001265 pOut->n = 0;
drhb8475df2011-12-09 16:21:19 +00001266 cnt--;
1267 }
drhf0863fe2005-06-12 21:35:51 +00001268 break;
1269}
1270
drh05a86c52014-02-16 01:55:49 +00001271/* Opcode: SoftNull P1 * * * *
drh72e26de2016-08-24 21:24:04 +00001272** Synopsis: r[P1]=NULL
drh05a86c52014-02-16 01:55:49 +00001273**
1274** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1275** instruction, but do not free any string or blob memory associated with
1276** the register, so that if the value was a string or blob that was
1277** previously copied using OP_SCopy, the copies will continue to be valid.
1278*/
1279case OP_SoftNull: {
drh9f6168b2016-03-19 23:32:58 +00001280 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh05a86c52014-02-16 01:55:49 +00001281 pOut = &aMem[pOp->p1];
drhe2bc6552017-04-17 20:50:34 +00001282 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
drh05a86c52014-02-16 01:55:49 +00001283 break;
1284}
drhf0863fe2005-06-12 21:35:51 +00001285
drha5750cf2014-02-07 13:20:31 +00001286/* Opcode: Blob P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001287** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001288**
drh9de221d2008-01-05 06:51:30 +00001289** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001290** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001291*/
drh27a348c2015-04-13 19:14:06 +00001292case OP_Blob: { /* out2 */
drhcbd2da92007-12-17 16:20:06 +00001293 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh27a348c2015-04-13 19:14:06 +00001294 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001295 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001296 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001297 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001298 break;
1299}
1300
drheaf52d82010-05-12 13:50:23 +00001301/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001302** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001303**
drheaf52d82010-05-12 13:50:23 +00001304** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001305**
drh0fd61352014-02-07 02:29:45 +00001306** If the parameter is named, then its name appears in P4.
drh08de1492009-02-20 03:55:05 +00001307** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001308*/
drh27a348c2015-04-13 19:14:06 +00001309case OP_Variable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00001310 Mem *pVar; /* Value being transferred */
1311
drheaf52d82010-05-12 13:50:23 +00001312 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh9bf755c2016-12-23 03:59:31 +00001313 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
drheaf52d82010-05-12 13:50:23 +00001314 pVar = &p->aVar[pOp->p1 - 1];
1315 if( sqlite3VdbeMemTooBig(pVar) ){
1316 goto too_big;
drh023ae032007-05-08 12:12:16 +00001317 }
drh7441df72017-01-09 19:27:04 +00001318 pOut = &aMem[pOp->p2];
drhe0f20b42019-04-01 20:57:11 +00001319 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1320 memcpy(pOut, pVar, MEMCELLSIZE);
1321 pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1322 pOut->flags |= MEM_Static|MEM_FromBind;
drheaf52d82010-05-12 13:50:23 +00001323 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001324 break;
1325}
danielk1977295ba552004-05-19 10:34:51 +00001326
drhb21e7c72008-06-22 12:37:57 +00001327/* Opcode: Move P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001328** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001329**
drh079a3072014-03-19 14:10:55 +00001330** Move the P3 values in register P1..P1+P3-1 over into
1331** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
drhb21e7c72008-06-22 12:37:57 +00001332** left holding a NULL. It is an error for register ranges
drh079a3072014-03-19 14:10:55 +00001333** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1334** for P3 to be less than 1.
drh5e00f6c2001-09-13 13:46:56 +00001335*/
drhe1349cb2008-04-01 00:36:10 +00001336case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001337 int n; /* Number of registers left to copy */
1338 int p1; /* Register to copy from */
1339 int p2; /* Register to copy to */
1340
drhe09f43f2013-11-21 04:18:31 +00001341 n = pOp->p3;
drh856c1032009-06-02 15:21:42 +00001342 p1 = pOp->p1;
1343 p2 = pOp->p2;
drh079a3072014-03-19 14:10:55 +00001344 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001345 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001346
drha6c2ed92009-11-14 23:22:23 +00001347 pIn1 = &aMem[p1];
1348 pOut = &aMem[p2];
drhe09f43f2013-11-21 04:18:31 +00001349 do{
drh9f6168b2016-03-19 23:32:58 +00001350 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1351 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001352 assert( memIsValid(pIn1) );
1353 memAboutToChange(p, pOut);
drh17bcb102014-09-18 21:25:33 +00001354 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001355#ifdef SQLITE_DEBUG
drh4cbd8472020-01-02 15:02:08 +00001356 pIn1->pScopyFrom = 0;
1357 { int i;
1358 for(i=1; i<p->nMem; i++){
1359 if( aMem[i].pScopyFrom==pIn1 ){
1360 aMem[i].pScopyFrom = pOut;
1361 }
1362 }
drh52043d72011-08-03 16:40:15 +00001363 }
1364#endif
drhbd6789e2015-04-28 14:00:02 +00001365 Deephemeralize(pOut);
drhb21e7c72008-06-22 12:37:57 +00001366 REGISTER_TRACE(p2++, pOut);
1367 pIn1++;
1368 pOut++;
drh079a3072014-03-19 14:10:55 +00001369 }while( --n );
drhe1349cb2008-04-01 00:36:10 +00001370 break;
1371}
1372
drhe8e4af72012-09-21 00:04:28 +00001373/* Opcode: Copy P1 P2 P3 * *
drh4eded602013-12-20 15:59:20 +00001374** Synopsis: r[P2@P3+1]=r[P1@P3+1]
drhb1fdb2a2008-01-05 04:06:03 +00001375**
drhe8e4af72012-09-21 00:04:28 +00001376** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001377**
1378** This instruction makes a deep copy of the value. A duplicate
1379** is made of any string or blob constant. See also OP_SCopy.
1380*/
drhe8e4af72012-09-21 00:04:28 +00001381case OP_Copy: {
1382 int n;
1383
1384 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001385 pIn1 = &aMem[pOp->p1];
1386 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001387 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001388 while( 1 ){
drh58773a52018-06-12 13:52:23 +00001389 memAboutToChange(p, pOut);
drhe8e4af72012-09-21 00:04:28 +00001390 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1391 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001392#ifdef SQLITE_DEBUG
1393 pOut->pScopyFrom = 0;
1394#endif
drhe8e4af72012-09-21 00:04:28 +00001395 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1396 if( (n--)==0 ) break;
1397 pOut++;
1398 pIn1++;
1399 }
drhe1349cb2008-04-01 00:36:10 +00001400 break;
1401}
1402
drhb1fdb2a2008-01-05 04:06:03 +00001403/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001404** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001405**
drh9cbf3422008-01-17 16:22:13 +00001406** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001407**
1408** This instruction makes a shallow copy of the value. If the value
1409** is a string or blob, then the copy is only a pointer to the
1410** original and hence if the original changes so will the copy.
1411** Worse, if the original is deallocated, the copy becomes invalid.
1412** Thus the program must guarantee that the original will not change
1413** during the lifetime of the copy. Use OP_Copy to make a complete
1414** copy.
1415*/
drh26198bb2013-10-31 11:15:09 +00001416case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001417 pIn1 = &aMem[pOp->p1];
1418 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001419 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001420 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001421#ifdef SQLITE_DEBUG
drh58773a52018-06-12 13:52:23 +00001422 pOut->pScopyFrom = pIn1;
1423 pOut->mScopyFlags = pIn1->flags;
drh2b4ded92010-09-27 21:09:31 +00001424#endif
drh5e00f6c2001-09-13 13:46:56 +00001425 break;
1426}
drh75897232000-05-29 14:26:00 +00001427
drhfed7ac62015-10-15 18:04:59 +00001428/* Opcode: IntCopy P1 P2 * * *
1429** Synopsis: r[P2]=r[P1]
1430**
1431** Transfer the integer value held in register P1 into register P2.
1432**
1433** This is an optimized version of SCopy that works only for integer
1434** values.
1435*/
1436case OP_IntCopy: { /* out2 */
1437 pIn1 = &aMem[pOp->p1];
1438 assert( (pIn1->flags & MEM_Int)!=0 );
1439 pOut = &aMem[pOp->p2];
1440 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1441 break;
1442}
1443
drh9cbf3422008-01-17 16:22:13 +00001444/* Opcode: ResultRow P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00001445** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001446**
shane21e7feb2008-05-30 15:59:49 +00001447** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001448** results. This opcode causes the sqlite3_step() call to terminate
1449** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
drh4d87aae2014-02-20 19:42:00 +00001450** structure to provide access to the r(P1)..r(P1+P2-1) values as
drh0fd61352014-02-07 02:29:45 +00001451** the result row.
drhd4e70eb2008-01-02 00:34:36 +00001452*/
drh9cbf3422008-01-17 16:22:13 +00001453case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001454 Mem *pMem;
1455 int i;
1456 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001457 assert( pOp->p1>0 );
drh9f6168b2016-03-19 23:32:58 +00001458 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001459
dan32b09f22009-09-23 17:29:59 +00001460 /* If this statement has violated immediate foreign key constraints, do
1461 ** not return the number of rows modified. And do not RELEASE the statement
1462 ** transaction. It needs to be rolled back. */
1463 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1464 assert( db->flags&SQLITE_CountRows );
1465 assert( p->usesStmtJournal );
drh9467abf2016-02-17 18:44:11 +00001466 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00001467 }
1468
danielk1977bd434552009-03-18 10:33:00 +00001469 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1470 ** DML statements invoke this opcode to return the number of rows
1471 ** modified to the user. This is the only way that a VM that
1472 ** opens a statement transaction may invoke this opcode.
1473 **
1474 ** In case this is such a statement, close any statement transaction
1475 ** opened by this VM before returning control to the user. This is to
1476 ** ensure that statement-transactions are always nested, not overlapping.
1477 ** If the open statement-transaction is not closed here, then the user
1478 ** may step another VM that opens its own statement transaction. This
1479 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001480 **
1481 ** The statement transaction is never a top-level transaction. Hence
1482 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001483 */
1484 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001485 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
drh9467abf2016-02-17 18:44:11 +00001486 assert( rc==SQLITE_OK );
danielk1977bd434552009-03-18 10:33:00 +00001487
drhd4e70eb2008-01-02 00:34:36 +00001488 /* Invalidate all ephemeral cursor row caches */
1489 p->cacheCtr = (p->cacheCtr + 2)|1;
1490
1491 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001492 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001493 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001494 */
drha6c2ed92009-11-14 23:22:23 +00001495 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001496 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001497 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001498 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001499 assert( (pMem[i].flags & MEM_Ephem)==0
1500 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001501 sqlite3VdbeMemNulTerminate(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001502 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drh02ff7472019-12-31 12:18:24 +00001503#ifdef SQLITE_DEBUG
1504 /* The registers in the result will not be used again when the
1505 ** prepared statement restarts. This is because sqlite3_column()
1506 ** APIs might have caused type conversions of made other changes to
1507 ** the register values. Therefore, we can go ahead and break any
1508 ** OP_SCopy dependencies. */
1509 pMem[i].pScopyFrom = 0;
1510#endif
drhd4e70eb2008-01-02 00:34:36 +00001511 }
drh28039692008-03-17 16:54:01 +00001512 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001513
drh3d2a5292016-07-13 22:55:01 +00001514 if( db->mTrace & SQLITE_TRACE_ROW ){
1515 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1516 }
1517
drh02ff7472019-12-31 12:18:24 +00001518
drhd4e70eb2008-01-02 00:34:36 +00001519 /* Return SQLITE_ROW
1520 */
drhf56fa462015-04-13 21:39:54 +00001521 p->pc = (int)(pOp - aOp) + 1;
drhd4e70eb2008-01-02 00:34:36 +00001522 rc = SQLITE_ROW;
1523 goto vdbe_return;
1524}
1525
drh5b6afba2008-01-05 16:29:28 +00001526/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001527** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001528**
drh5b6afba2008-01-05 16:29:28 +00001529** Add the text in register P1 onto the end of the text in
1530** register P2 and store the result in register P3.
1531** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001532**
1533** P3 = P2 || P1
1534**
1535** It is illegal for P1 and P3 to be the same register. Sometimes,
1536** if P3 is the same register as P2, the implementation is able
1537** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001538*/
drh5b6afba2008-01-05 16:29:28 +00001539case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh8a7e11f2019-05-01 15:32:40 +00001540 i64 nByte; /* Total size of the output string or blob */
1541 u16 flags1; /* Initial flags for P1 */
1542 u16 flags2; /* Initial flags for P2 */
danielk19778a6b5412004-05-24 07:04:25 +00001543
drh3c657212009-11-17 23:59:58 +00001544 pIn1 = &aMem[pOp->p1];
1545 pIn2 = &aMem[pOp->p2];
1546 pOut = &aMem[pOp->p3];
drh8a7e11f2019-05-01 15:32:40 +00001547 testcase( pOut==pIn2 );
danielk1977a7a8e142008-02-13 18:25:27 +00001548 assert( pIn1!=pOut );
drh8a7e11f2019-05-01 15:32:40 +00001549 flags1 = pIn1->flags;
1550 testcase( flags1 & MEM_Null );
1551 testcase( pIn2->flags & MEM_Null );
1552 if( (flags1 | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001553 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001554 break;
drh5e00f6c2001-09-13 13:46:56 +00001555 }
drh8a7e11f2019-05-01 15:32:40 +00001556 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1557 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
drh01325a32019-05-02 00:52:50 +00001558 flags1 = pIn1->flags & ~MEM_Str;
drh8a7e11f2019-05-01 15:32:40 +00001559 }else if( (flags1 & MEM_Zero)!=0 ){
1560 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
drh01325a32019-05-02 00:52:50 +00001561 flags1 = pIn1->flags & ~MEM_Str;
drh8a7e11f2019-05-01 15:32:40 +00001562 }
1563 flags2 = pIn2->flags;
1564 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1565 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
drh01325a32019-05-02 00:52:50 +00001566 flags2 = pIn2->flags & ~MEM_Str;
drh8a7e11f2019-05-01 15:32:40 +00001567 }else if( (flags2 & MEM_Zero)!=0 ){
1568 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
drh01325a32019-05-02 00:52:50 +00001569 flags2 = pIn2->flags & ~MEM_Str;
drh8a7e11f2019-05-01 15:32:40 +00001570 }
drh5b6afba2008-01-05 16:29:28 +00001571 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001572 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001573 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001574 }
drhdf82afc2019-05-16 01:22:21 +00001575 if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001576 goto no_mem;
1577 }
drhc91b2fd2014-03-01 18:13:23 +00001578 MemSetTypeFlag(pOut, MEM_Str);
danielk1977a7a8e142008-02-13 18:25:27 +00001579 if( pOut!=pIn2 ){
1580 memcpy(pOut->z, pIn2->z, pIn2->n);
drh8a7e11f2019-05-01 15:32:40 +00001581 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1582 pIn2->flags = flags2;
danielk1977a7a8e142008-02-13 18:25:27 +00001583 }
1584 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh8a7e11f2019-05-01 15:32:40 +00001585 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1586 pIn1->flags = flags1;
drh81316f82013-10-29 20:40:47 +00001587 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001588 pOut->z[nByte+1] = 0;
drhdf82afc2019-05-16 01:22:21 +00001589 pOut->z[nByte+2] = 0;
danielk1977a7a8e142008-02-13 18:25:27 +00001590 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001591 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001592 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001593 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001594 break;
1595}
drh75897232000-05-29 14:26:00 +00001596
drh3c84ddf2008-01-09 02:15:38 +00001597/* Opcode: Add P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001598** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001599**
drh60a713c2008-01-21 16:22:45 +00001600** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001601** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001602** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001603*/
drh3c84ddf2008-01-09 02:15:38 +00001604/* Opcode: Multiply P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001605** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001606**
drh3c84ddf2008-01-09 02:15:38 +00001607**
shane21e7feb2008-05-30 15:59:49 +00001608** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001609** and store the result in register P3.
1610** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001611*/
drh3c84ddf2008-01-09 02:15:38 +00001612/* Opcode: Subtract P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001613** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001614**
drh60a713c2008-01-21 16:22:45 +00001615** Subtract the value in register P1 from the value in register P2
1616** and store the result in register P3.
1617** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001618*/
drh9cbf3422008-01-17 16:22:13 +00001619/* Opcode: Divide P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001620** Synopsis: r[P3]=r[P2]/r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001621**
drh60a713c2008-01-21 16:22:45 +00001622** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001623** and store the result in register P3 (P3=P2/P1). If the value in
1624** register P1 is zero, then the result is NULL. If either input is
1625** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001626*/
drh9cbf3422008-01-17 16:22:13 +00001627/* Opcode: Remainder P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001628** Synopsis: r[P3]=r[P2]%r[P1]
drhbf4133c2001-10-13 02:59:08 +00001629**
drh40864a12013-11-15 18:58:37 +00001630** Compute the remainder after integer register P2 is divided by
1631** register P1 and store the result in register P3.
1632** If the value in register P1 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001633** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001634*/
drh5b6afba2008-01-05 16:29:28 +00001635case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1636case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1637case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1638case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1639case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drh3d1d90a2014-03-24 15:00:15 +00001640 u16 flags; /* Combined MEM_* flags from both inputs */
1641 u16 type1; /* Numeric type of left operand */
1642 u16 type2; /* Numeric type of right operand */
drh856c1032009-06-02 15:21:42 +00001643 i64 iA; /* Integer value of left operand */
1644 i64 iB; /* Integer value of right operand */
1645 double rA; /* Real value of left operand */
1646 double rB; /* Real value of right operand */
1647
drh3c657212009-11-17 23:59:58 +00001648 pIn1 = &aMem[pOp->p1];
drh3d1d90a2014-03-24 15:00:15 +00001649 type1 = numericType(pIn1);
drh3c657212009-11-17 23:59:58 +00001650 pIn2 = &aMem[pOp->p2];
drh3d1d90a2014-03-24 15:00:15 +00001651 type2 = numericType(pIn2);
drh3c657212009-11-17 23:59:58 +00001652 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001653 flags = pIn1->flags | pIn2->flags;
drh3d1d90a2014-03-24 15:00:15 +00001654 if( (type1 & type2 & MEM_Int)!=0 ){
drh856c1032009-06-02 15:21:42 +00001655 iA = pIn1->u.i;
1656 iB = pIn2->u.i;
drh5e00f6c2001-09-13 13:46:56 +00001657 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001658 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1659 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1660 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001661 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001662 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001663 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001664 iB /= iA;
drh75897232000-05-29 14:26:00 +00001665 break;
1666 }
drhbf4133c2001-10-13 02:59:08 +00001667 default: {
drh856c1032009-06-02 15:21:42 +00001668 if( iA==0 ) goto arithmetic_result_is_null;
1669 if( iA==-1 ) iA = 1;
1670 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001671 break;
1672 }
drh75897232000-05-29 14:26:00 +00001673 }
drh856c1032009-06-02 15:21:42 +00001674 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001675 MemSetTypeFlag(pOut, MEM_Int);
drhcfcca022017-04-17 23:23:17 +00001676 }else if( (flags & MEM_Null)!=0 ){
1677 goto arithmetic_result_is_null;
drh5e00f6c2001-09-13 13:46:56 +00001678 }else{
drh158b9cb2011-03-05 20:59:46 +00001679fp_math:
drh856c1032009-06-02 15:21:42 +00001680 rA = sqlite3VdbeRealValue(pIn1);
1681 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001682 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001683 case OP_Add: rB += rA; break;
1684 case OP_Subtract: rB -= rA; break;
1685 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001686 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001687 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001688 if( rA==(double)0 ) goto arithmetic_result_is_null;
1689 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001690 break;
1691 }
drhbf4133c2001-10-13 02:59:08 +00001692 default: {
drhe3b89d22019-01-18 17:53:50 +00001693 iA = sqlite3VdbeIntValue(pIn1);
1694 iB = sqlite3VdbeIntValue(pIn2);
drh856c1032009-06-02 15:21:42 +00001695 if( iA==0 ) goto arithmetic_result_is_null;
1696 if( iA==-1 ) iA = 1;
1697 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001698 break;
1699 }
drh5e00f6c2001-09-13 13:46:56 +00001700 }
drhc5a7b512010-01-13 16:25:42 +00001701#ifdef SQLITE_OMIT_FLOATING_POINT
1702 pOut->u.i = rB;
1703 MemSetTypeFlag(pOut, MEM_Int);
1704#else
drh856c1032009-06-02 15:21:42 +00001705 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001706 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001707 }
drh74eaba42014-09-18 17:52:15 +00001708 pOut->u.r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001709 MemSetTypeFlag(pOut, MEM_Real);
drhc5a7b512010-01-13 16:25:42 +00001710#endif
drh5e00f6c2001-09-13 13:46:56 +00001711 }
1712 break;
1713
drha05a7222008-01-19 03:35:58 +00001714arithmetic_result_is_null:
1715 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001716 break;
1717}
1718
drh7a957892012-02-02 17:35:43 +00001719/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001720**
drhbb6783b2017-04-29 18:02:49 +00001721** P4 is a pointer to a CollSeq object. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001722** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1723** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001724** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001725**
drh7a957892012-02-02 17:35:43 +00001726** If P1 is not zero, then it is a register that a subsequent min() or
1727** max() aggregate will set to 1 if the current row is not the minimum or
1728** maximum. The P1 register is initialized to 0 by this instruction.
1729**
danielk1977dc1bdc42004-06-11 10:51:27 +00001730** The interface used by the implementation of the aforementioned functions
1731** to retrieve the collation sequence set by this opcode is not available
drh0a0d0562015-03-12 05:08:34 +00001732** publicly. Only built-in functions have access to this feature.
danielk1977dc1bdc42004-06-11 10:51:27 +00001733*/
drh9cbf3422008-01-17 16:22:13 +00001734case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001735 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001736 if( pOp->p1 ){
1737 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1738 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001739 break;
1740}
1741
drh98757152008-01-09 23:04:12 +00001742/* Opcode: BitAnd P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001743** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001744**
drh98757152008-01-09 23:04:12 +00001745** Take the bit-wise AND of the values in register P1 and P2 and
1746** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001747** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001748*/
drh98757152008-01-09 23:04:12 +00001749/* Opcode: BitOr P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001750** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001751**
drh98757152008-01-09 23:04:12 +00001752** Take the bit-wise OR of the values in register P1 and P2 and
1753** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001754** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001755*/
drh98757152008-01-09 23:04:12 +00001756/* Opcode: ShiftLeft P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001757** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001758**
drh98757152008-01-09 23:04:12 +00001759** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001760** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001761** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001762** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001763*/
drh98757152008-01-09 23:04:12 +00001764/* Opcode: ShiftRight P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001765** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001766**
drh98757152008-01-09 23:04:12 +00001767** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001768** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001769** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001770** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001771*/
drh5b6afba2008-01-05 16:29:28 +00001772case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1773case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1774case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1775case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001776 i64 iA;
1777 u64 uA;
1778 i64 iB;
1779 u8 op;
drh6810ce62004-01-31 19:22:56 +00001780
drh3c657212009-11-17 23:59:58 +00001781 pIn1 = &aMem[pOp->p1];
1782 pIn2 = &aMem[pOp->p2];
1783 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001784 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001785 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001786 break;
1787 }
drh158b9cb2011-03-05 20:59:46 +00001788 iA = sqlite3VdbeIntValue(pIn2);
1789 iB = sqlite3VdbeIntValue(pIn1);
1790 op = pOp->opcode;
1791 if( op==OP_BitAnd ){
1792 iA &= iB;
1793 }else if( op==OP_BitOr ){
1794 iA |= iB;
1795 }else if( iB!=0 ){
1796 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1797
1798 /* If shifting by a negative amount, shift in the other direction */
1799 if( iB<0 ){
1800 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1801 op = 2*OP_ShiftLeft + 1 - op;
1802 iB = iB>(-64) ? -iB : 64;
1803 }
1804
1805 if( iB>=64 ){
1806 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1807 }else{
1808 memcpy(&uA, &iA, sizeof(uA));
1809 if( op==OP_ShiftLeft ){
1810 uA <<= iB;
1811 }else{
1812 uA >>= iB;
1813 /* Sign-extend on a right shift of a negative number */
1814 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1815 }
1816 memcpy(&iA, &uA, sizeof(iA));
1817 }
drhbf4133c2001-10-13 02:59:08 +00001818 }
drh158b9cb2011-03-05 20:59:46 +00001819 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001820 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001821 break;
1822}
1823
drh8558cde2008-01-05 05:20:10 +00001824/* Opcode: AddImm P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00001825** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001826**
danielk19770cdc0222008-06-26 18:04:03 +00001827** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001828** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001829**
drh8558cde2008-01-05 05:20:10 +00001830** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001831*/
drh9cbf3422008-01-17 16:22:13 +00001832case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001833 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001834 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001835 sqlite3VdbeMemIntegerify(pIn1);
1836 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001837 break;
1838}
1839
dane5166e02019-03-19 11:56:39 +00001840/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001841**
dane5166e02019-03-19 11:56:39 +00001842** Force the value in register P1 to be an integer. If the value
1843** in P1 is not an integer and cannot be converted into an integer
1844** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001845** raise an SQLITE_MISMATCH exception.
1846*/
drh9cbf3422008-01-17 16:22:13 +00001847case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001848 pIn1 = &aMem[pOp->p1];
dane5166e02019-03-19 11:56:39 +00001849 if( (pIn1->flags & MEM_Int)==0 ){
drh83b301b2013-11-20 00:59:02 +00001850 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
dane5166e02019-03-19 11:56:39 +00001851 if( (pIn1->flags & MEM_Int)==0 ){
drhc9065332019-04-01 14:01:21 +00001852 VdbeBranchTaken(1, 2);
drh83b301b2013-11-20 00:59:02 +00001853 if( pOp->p2==0 ){
1854 rc = SQLITE_MISMATCH;
1855 goto abort_due_to_error;
1856 }else{
drhf56fa462015-04-13 21:39:54 +00001857 goto jump_to_p2;
drh83b301b2013-11-20 00:59:02 +00001858 }
drh8aff1012001-12-22 14:49:24 +00001859 }
drh8aff1012001-12-22 14:49:24 +00001860 }
drhc9065332019-04-01 14:01:21 +00001861 VdbeBranchTaken(0, 2);
dane5166e02019-03-19 11:56:39 +00001862 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001863 break;
1864}
1865
drh13573c72010-01-12 17:04:07 +00001866#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001867/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001868**
drh2133d822008-01-03 18:44:59 +00001869** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001870**
drh8a512562005-11-14 22:29:05 +00001871** This opcode is used when extracting information from a column that
1872** has REAL affinity. Such column values may still be stored as
1873** integers, for space efficiency, but after extraction we want them
1874** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001875*/
drh9cbf3422008-01-17 16:22:13 +00001876case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001877 pIn1 = &aMem[pOp->p1];
drh169f0772019-05-02 21:36:26 +00001878 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
drh3242c692019-05-04 01:29:13 +00001879 testcase( pIn1->flags & MEM_Int );
1880 testcase( pIn1->flags & MEM_IntReal );
drh8558cde2008-01-05 05:20:10 +00001881 sqlite3VdbeMemRealify(pIn1);
drhefb5f9a2019-08-30 21:52:13 +00001882 REGISTER_TRACE(pOp->p1, pIn1);
drh8a512562005-11-14 22:29:05 +00001883 }
drh487e2622005-06-25 18:42:14 +00001884 break;
1885}
drh13573c72010-01-12 17:04:07 +00001886#endif
drh487e2622005-06-25 18:42:14 +00001887
drh8df447f2005-11-01 15:48:24 +00001888#ifndef SQLITE_OMIT_CAST
drh4169e432014-08-25 20:11:52 +00001889/* Opcode: Cast P1 P2 * * *
mistachkina1dc42a2014-08-27 17:53:40 +00001890** Synopsis: affinity(r[P1])
drh487e2622005-06-25 18:42:14 +00001891**
drh4169e432014-08-25 20:11:52 +00001892** Force the value in register P1 to be the type defined by P2.
1893**
1894** <ul>
drhbb6783b2017-04-29 18:02:49 +00001895** <li> P2=='A' &rarr; BLOB
1896** <li> P2=='B' &rarr; TEXT
1897** <li> P2=='C' &rarr; NUMERIC
1898** <li> P2=='D' &rarr; INTEGER
1899** <li> P2=='E' &rarr; REAL
drh4169e432014-08-25 20:11:52 +00001900** </ul>
drh487e2622005-06-25 18:42:14 +00001901**
1902** A NULL value is not changed by this routine. It remains NULL.
1903*/
drh4169e432014-08-25 20:11:52 +00001904case OP_Cast: { /* in1 */
drh05883a32015-06-02 15:32:08 +00001905 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
drh05bbb2e2014-08-25 22:37:19 +00001906 testcase( pOp->p2==SQLITE_AFF_TEXT );
drh05883a32015-06-02 15:32:08 +00001907 testcase( pOp->p2==SQLITE_AFF_BLOB );
drh05bbb2e2014-08-25 22:37:19 +00001908 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1909 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1910 testcase( pOp->p2==SQLITE_AFF_REAL );
drh3c657212009-11-17 23:59:58 +00001911 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001912 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001913 rc = ExpandBlob(pIn1);
drh9467abf2016-02-17 18:44:11 +00001914 if( rc ) goto abort_due_to_error;
drh0af6ddd2019-12-23 03:37:46 +00001915 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1916 if( rc ) goto abort_due_to_error;
1917 UPDATE_MAX_BLOBSIZE(pIn1);
drh5d732722019-12-20 17:25:10 +00001918 REGISTER_TRACE(pOp->p1, pIn1);
drh487e2622005-06-25 18:42:14 +00001919 break;
1920}
drh8a512562005-11-14 22:29:05 +00001921#endif /* SQLITE_OMIT_CAST */
1922
drh79752b62016-08-13 10:02:17 +00001923/* Opcode: Eq P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001924** Synopsis: IF r[P3]==r[P1]
drh79752b62016-08-13 10:02:17 +00001925**
1926** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
1927** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then
1928** store the result of comparison in register P2.
1929**
1930** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1931** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1932** to coerce both inputs according to this affinity before the
1933** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1934** affinity is used. Note that the affinity conversions are stored
1935** back into the input registers P1 and P3. So this opcode can cause
1936** persistent changes to registers P1 and P3.
1937**
1938** Once any conversions have taken place, and neither value is NULL,
1939** the values are compared. If both values are blobs then memcmp() is
1940** used to determine the results of the comparison. If both values
1941** are text, then the appropriate collating function specified in
1942** P4 is used to do the comparison. If P4 is not specified then
1943** memcmp() is used to compare text string. If both values are
1944** numeric, then a numeric comparison is used. If the two values
1945** are of different types, then numbers are considered less than
1946** strings and strings are considered less than blobs.
1947**
1948** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1949** true or false and is never NULL. If both operands are NULL then the result
1950** of comparison is true. If either operand is NULL then the result is false.
1951** If neither operand is NULL the result is the same as it would be if
1952** the SQLITE_NULLEQ flag were omitted from P5.
1953**
1954** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
drh3fffbf92016-09-05 15:02:41 +00001955** content of r[P2] is only changed if the new value is NULL or 0 (false).
1956** In other words, a prior r[P2] value will not be overwritten by 1 (true).
drh79752b62016-08-13 10:02:17 +00001957*/
1958/* Opcode: Ne P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001959** Synopsis: IF r[P3]!=r[P1]
drh79752b62016-08-13 10:02:17 +00001960**
1961** This works just like the Eq opcode except that the jump is taken if
1962** the operands in registers P1 and P3 are not equal. See the Eq opcode for
1963** additional information.
1964**
1965** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
drh3fffbf92016-09-05 15:02:41 +00001966** content of r[P2] is only changed if the new value is NULL or 1 (true).
1967** In other words, a prior r[P2] value will not be overwritten by 0 (false).
drh79752b62016-08-13 10:02:17 +00001968*/
drh35573352008-01-08 23:54:25 +00001969/* Opcode: Lt P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001970** Synopsis: IF r[P3]<r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001971**
drh35573352008-01-08 23:54:25 +00001972** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
drh79752b62016-08-13 10:02:17 +00001973** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store
1974** the result of comparison (0 or 1 or NULL) into register P2.
drhf5905aa2002-05-26 20:54:33 +00001975**
drh35573352008-01-08 23:54:25 +00001976** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
drh79752b62016-08-13 10:02:17 +00001977** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001978** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001979**
drh35573352008-01-08 23:54:25 +00001980** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001981** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001982** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001983** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001984** affinity is used. Note that the affinity conversions are stored
1985** back into the input registers P1 and P3. So this opcode can cause
1986** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001987**
1988** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001989** the values are compared. If both values are blobs then memcmp() is
1990** used to determine the results of the comparison. If both values
1991** are text, then the appropriate collating function specified in
1992** P4 is used to do the comparison. If P4 is not specified then
1993** memcmp() is used to compare text string. If both values are
1994** numeric, then a numeric comparison is used. If the two values
1995** are of different types, then numbers are considered less than
1996** strings and strings are considered less than blobs.
drh5e00f6c2001-09-13 13:46:56 +00001997*/
drh9cbf3422008-01-17 16:22:13 +00001998/* Opcode: Le P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001999** Synopsis: IF r[P3]<=r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002000**
drh35573352008-01-08 23:54:25 +00002001** This works just like the Lt opcode except that the jump is taken if
2002** the content of register P3 is less than or equal to the content of
2003** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00002004*/
drh9cbf3422008-01-17 16:22:13 +00002005/* Opcode: Gt P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00002006** Synopsis: IF r[P3]>r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002007**
drh35573352008-01-08 23:54:25 +00002008** This works just like the Lt opcode except that the jump is taken if
2009** the content of register P3 is greater than the content of
2010** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00002011*/
drh9cbf3422008-01-17 16:22:13 +00002012/* Opcode: Ge P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00002013** Synopsis: IF r[P3]>=r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002014**
drh35573352008-01-08 23:54:25 +00002015** This works just like the Lt opcode except that the jump is taken if
2016** the content of register P3 is greater than or equal to the content of
2017** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00002018*/
drh9cbf3422008-01-17 16:22:13 +00002019case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
2020case OP_Ne: /* same as TK_NE, jump, in1, in3 */
2021case OP_Lt: /* same as TK_LT, jump, in1, in3 */
2022case OP_Le: /* same as TK_LE, jump, in1, in3 */
2023case OP_Gt: /* same as TK_GT, jump, in1, in3 */
2024case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh4910a762016-09-03 01:46:15 +00002025 int res, res2; /* Result of the comparison of pIn1 against pIn3 */
drh6a2fe092009-09-23 02:29:36 +00002026 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00002027 u16 flags1; /* Copy of initial value of pIn1->flags */
2028 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00002029
drh3c657212009-11-17 23:59:58 +00002030 pIn1 = &aMem[pOp->p1];
2031 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00002032 flags1 = pIn1->flags;
2033 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00002034 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00002035 /* One or both operands are NULL */
2036 if( pOp->p5 & SQLITE_NULLEQ ){
2037 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2038 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2039 ** or not both operands are null.
2040 */
drh053a1282012-09-19 21:15:46 +00002041 assert( (flags1 & MEM_Cleared)==0 );
drha42325e2018-12-22 00:34:30 +00002042 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2043 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
drhc3191d22016-10-18 16:36:15 +00002044 if( (flags1&flags3&MEM_Null)!=0
drh053a1282012-09-19 21:15:46 +00002045 && (flags3&MEM_Cleared)==0
2046 ){
drh4910a762016-09-03 01:46:15 +00002047 res = 0; /* Operands are equal */
drh053a1282012-09-19 21:15:46 +00002048 }else{
danbdabe742019-03-18 16:51:24 +00002049 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */
drh053a1282012-09-19 21:15:46 +00002050 }
drh6a2fe092009-09-23 02:29:36 +00002051 }else{
2052 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2053 ** then the result is always NULL.
2054 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2055 */
drh688852a2014-02-17 22:40:43 +00002056 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00002057 pOut = &aMem[pOp->p2];
drh4910a762016-09-03 01:46:15 +00002058 iCompare = 1; /* Operands are not equal */
danb1d6b532015-12-14 19:42:19 +00002059 memAboutToChange(p, pOut);
drh6a2fe092009-09-23 02:29:36 +00002060 MemSetTypeFlag(pOut, MEM_Null);
2061 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00002062 }else{
drhf4345e42014-02-18 11:31:59 +00002063 VdbeBranchTaken(2,3);
drh688852a2014-02-17 22:40:43 +00002064 if( pOp->p5 & SQLITE_JUMPIFNULL ){
drhf56fa462015-04-13 21:39:54 +00002065 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00002066 }
drh6a2fe092009-09-23 02:29:36 +00002067 }
2068 break;
danielk1977a37cdde2004-05-16 11:15:36 +00002069 }
drh6a2fe092009-09-23 02:29:36 +00002070 }else{
2071 /* Neither operand is NULL. Do a comparison. */
2072 affinity = pOp->p5 & SQLITE_AFF_MASK;
drh24a09622014-09-18 16:28:59 +00002073 if( affinity>=SQLITE_AFF_NUMERIC ){
drh5fd0c122016-04-04 13:46:24 +00002074 if( (flags1 | flags3)&MEM_Str ){
drh169f0772019-05-02 21:36:26 +00002075 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
drh5fd0c122016-04-04 13:46:24 +00002076 applyNumericAffinity(pIn1,0);
drh9dce0ef2020-02-01 21:03:27 +00002077 assert( flags3==pIn3->flags );
drh4b37cd42016-06-25 11:43:47 +00002078 flags3 = pIn3->flags;
drh5fd0c122016-04-04 13:46:24 +00002079 }
drh169f0772019-05-02 21:36:26 +00002080 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
drh5fd0c122016-04-04 13:46:24 +00002081 applyNumericAffinity(pIn3,0);
2082 }
drh24a09622014-09-18 16:28:59 +00002083 }
drh64caee42016-09-09 19:33:00 +00002084 /* Handle the common case of integer comparison here, as an
2085 ** optimization, to avoid a call to sqlite3MemCompare() */
2086 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
2087 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
2088 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
2089 res = 0;
2090 goto compare_op;
2091 }
drh24a09622014-09-18 16:28:59 +00002092 }else if( affinity==SQLITE_AFF_TEXT ){
drh169f0772019-05-02 21:36:26 +00002093 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
drhe7a34662014-09-19 22:44:20 +00002094 testcase( pIn1->flags & MEM_Int );
2095 testcase( pIn1->flags & MEM_Real );
drh169f0772019-05-02 21:36:26 +00002096 testcase( pIn1->flags & MEM_IntReal );
drh24a09622014-09-18 16:28:59 +00002097 sqlite3VdbeMemStringify(pIn1, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00002098 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2099 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
drh9dce0ef2020-02-01 21:03:27 +00002100 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
drh24a09622014-09-18 16:28:59 +00002101 }
drhb44fec62019-12-24 21:42:22 +00002102 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
drhe7a34662014-09-19 22:44:20 +00002103 testcase( pIn3->flags & MEM_Int );
2104 testcase( pIn3->flags & MEM_Real );
drh169f0772019-05-02 21:36:26 +00002105 testcase( pIn3->flags & MEM_IntReal );
drh24a09622014-09-18 16:28:59 +00002106 sqlite3VdbeMemStringify(pIn3, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00002107 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2108 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00002109 }
drh6a2fe092009-09-23 02:29:36 +00002110 }
drh6a2fe092009-09-23 02:29:36 +00002111 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
drh4910a762016-09-03 01:46:15 +00002112 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00002113 }
drh64caee42016-09-09 19:33:00 +00002114compare_op:
drh58596362017-08-03 00:29:23 +00002115 /* At this point, res is negative, zero, or positive if reg[P1] is
2116 ** less than, equal to, or greater than reg[P3], respectively. Compute
2117 ** the answer to this operator in res2, depending on what the comparison
2118 ** operator actually is. The next block of code depends on the fact
2119 ** that the 6 comparison operators are consecutive integers in this
2120 ** order: NE, EQ, GT, LE, LT, GE */
2121 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2122 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2123 if( res<0 ){ /* ne, eq, gt, le, lt, ge */
2124 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 };
2125 res2 = aLTb[pOp->opcode - OP_Ne];
2126 }else if( res==0 ){
2127 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 };
2128 res2 = aEQb[pOp->opcode - OP_Ne];
2129 }else{
2130 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 };
2131 res2 = aGTb[pOp->opcode - OP_Ne];
danielk1977a37cdde2004-05-16 11:15:36 +00002132 }
2133
drhf56fa462015-04-13 21:39:54 +00002134 /* Undo any changes made by applyAffinity() to the input registers. */
drhf56fa462015-04-13 21:39:54 +00002135 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2136 pIn3->flags = flags3;
drhb44fec62019-12-24 21:42:22 +00002137 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2138 pIn1->flags = flags1;
drhf56fa462015-04-13 21:39:54 +00002139
drh35573352008-01-08 23:54:25 +00002140 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00002141 pOut = &aMem[pOp->p2];
drh4910a762016-09-03 01:46:15 +00002142 iCompare = res;
drh3fffbf92016-09-05 15:02:41 +00002143 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
drh79752b62016-08-13 10:02:17 +00002144 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
drh3fffbf92016-09-05 15:02:41 +00002145 ** and prevents OP_Ne from overwriting NULL with 0. This flag
2146 ** is only used in contexts where either:
2147 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2148 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2149 ** Therefore it is not necessary to check the content of r[P2] for
2150 ** NULL. */
drh79752b62016-08-13 10:02:17 +00002151 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
drh4910a762016-09-03 01:46:15 +00002152 assert( res2==0 || res2==1 );
drh3fffbf92016-09-05 15:02:41 +00002153 testcase( res2==0 && pOp->opcode==OP_Eq );
2154 testcase( res2==1 && pOp->opcode==OP_Eq );
2155 testcase( res2==0 && pOp->opcode==OP_Ne );
2156 testcase( res2==1 && pOp->opcode==OP_Ne );
drh4910a762016-09-03 01:46:15 +00002157 if( (pOp->opcode==OP_Eq)==res2 ) break;
drh79752b62016-08-13 10:02:17 +00002158 }
drh2b4ded92010-09-27 21:09:31 +00002159 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00002160 MemSetTypeFlag(pOut, MEM_Int);
drh4910a762016-09-03 01:46:15 +00002161 pOut->u.i = res2;
drh35573352008-01-08 23:54:25 +00002162 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00002163 }else{
drh6cbbcd82019-04-01 13:06:19 +00002164 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
drh4910a762016-09-03 01:46:15 +00002165 if( res2 ){
drhf56fa462015-04-13 21:39:54 +00002166 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00002167 }
danielk1977a37cdde2004-05-16 11:15:36 +00002168 }
2169 break;
2170}
drhc9b84a12002-06-20 11:36:48 +00002171
drh79752b62016-08-13 10:02:17 +00002172/* Opcode: ElseNotEq * P2 * * *
2173**
drh13d79502019-12-23 02:18:49 +00002174** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
2175** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2176** opcodes are allowed to occur between this instruction and the previous
2177** OP_Lt or OP_Gt. Furthermore, the prior OP_Lt or OP_Gt must have the
2178** SQLITE_STOREP2 bit set in the P5 field.
2179**
2180** If result of an OP_Eq comparison on the same two operands as the
2181** prior OP_Lt or OP_Gt would have been NULL or false (0), then then
2182** jump to P2. If the result of an OP_Eq comparison on the two previous
2183** operands would have been true (1), then fall through.
drh79752b62016-08-13 10:02:17 +00002184*/
2185case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */
drh13d79502019-12-23 02:18:49 +00002186
2187#ifdef SQLITE_DEBUG
2188 /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2189 ** OP_Gt with the SQLITE_STOREP2 flag set, with zero or more intervening
2190 ** OP_ReleaseReg opcodes */
2191 int iAddr;
2192 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2193 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2194 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2195 assert( aOp[iAddr].p5 & SQLITE_STOREP2 );
2196 break;
2197 }
2198#endif /* SQLITE_DEBUG */
drh0f825a72016-08-13 14:17:02 +00002199 VdbeBranchTaken(iCompare!=0, 2);
2200 if( iCompare!=0 ) goto jump_to_p2;
drh79752b62016-08-13 10:02:17 +00002201 break;
2202}
2203
2204
drh0acb7e42008-06-25 00:12:41 +00002205/* Opcode: Permutation * * * P4 *
2206**
drhb7dab702017-01-26 18:00:00 +00002207** Set the permutation used by the OP_Compare operator in the next
2208** instruction. The permutation is stored in the P4 operand.
drh0acb7e42008-06-25 00:12:41 +00002209**
drh953f7612012-12-07 22:18:54 +00002210** The permutation is only valid until the next OP_Compare that has
2211** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2212** occur immediately prior to the OP_Compare.
drhb1702022016-01-30 00:45:18 +00002213**
2214** The first integer in the P4 integer array is the length of the array
2215** and does not become part of the permutation.
drh0acb7e42008-06-25 00:12:41 +00002216*/
2217case OP_Permutation: {
2218 assert( pOp->p4type==P4_INTARRAY );
2219 assert( pOp->p4.ai );
drhb7dab702017-01-26 18:00:00 +00002220 assert( pOp[1].opcode==OP_Compare );
2221 assert( pOp[1].p5 & OPFLAG_PERMUTE );
drh0acb7e42008-06-25 00:12:41 +00002222 break;
2223}
2224
drh953f7612012-12-07 22:18:54 +00002225/* Opcode: Compare P1 P2 P3 P4 P5
drh079a3072014-03-19 14:10:55 +00002226** Synopsis: r[P1@P3] <-> r[P2@P3]
drh16ee60f2008-06-20 18:13:25 +00002227**
drh710c4842010-08-30 01:17:20 +00002228** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2229** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00002230** the comparison for use by the next OP_Jump instruct.
2231**
drh0ca10df2012-12-08 13:26:23 +00002232** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2233** determined by the most recent OP_Permutation operator. If the
2234** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2235** order.
2236**
drh0acb7e42008-06-25 00:12:41 +00002237** P4 is a KeyInfo structure that defines collating sequences and sort
2238** orders for the comparison. The permutation applies to registers
2239** only. The KeyInfo elements are used sequentially.
2240**
2241** The comparison is a sort comparison, so NULLs compare equal,
2242** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00002243** and strings are less than blobs.
2244*/
2245case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00002246 int n;
2247 int i;
2248 int p1;
2249 int p2;
2250 const KeyInfo *pKeyInfo;
2251 int idx;
2252 CollSeq *pColl; /* Collating sequence to use on this term */
2253 int bRev; /* True for DESCENDING sort order */
drhb7dab702017-01-26 18:00:00 +00002254 int *aPermute; /* The permutation */
drh856c1032009-06-02 15:21:42 +00002255
drhb7dab702017-01-26 18:00:00 +00002256 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2257 aPermute = 0;
2258 }else{
2259 assert( pOp>aOp );
2260 assert( pOp[-1].opcode==OP_Permutation );
2261 assert( pOp[-1].p4type==P4_INTARRAY );
2262 aPermute = pOp[-1].p4.ai + 1;
2263 assert( aPermute!=0 );
2264 }
drh856c1032009-06-02 15:21:42 +00002265 n = pOp->p3;
2266 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002267 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002268 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002269 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002270 p2 = pOp->p2;
drhd879e3e2017-02-13 13:35:55 +00002271#ifdef SQLITE_DEBUG
drh6a2fe092009-09-23 02:29:36 +00002272 if( aPermute ){
2273 int k, mx = 0;
2274 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
drh9f6168b2016-03-19 23:32:58 +00002275 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2276 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002277 }else{
drh9f6168b2016-03-19 23:32:58 +00002278 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2279 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002280 }
2281#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002282 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002283 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002284 assert( memIsValid(&aMem[p1+idx]) );
2285 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002286 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2287 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drha485ad12017-08-02 22:43:14 +00002288 assert( i<pKeyInfo->nKeyField );
drh93a960a2008-07-10 00:32:42 +00002289 pColl = pKeyInfo->aColl[i];
dan6e118922019-08-12 16:36:38 +00002290 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
drha6c2ed92009-11-14 23:22:23 +00002291 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002292 if( iCompare ){
dan6e118922019-08-12 16:36:38 +00002293 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2294 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2295 ){
2296 iCompare = -iCompare;
2297 }
drh0acb7e42008-06-25 00:12:41 +00002298 if( bRev ) iCompare = -iCompare;
2299 break;
2300 }
drh16ee60f2008-06-20 18:13:25 +00002301 }
2302 break;
2303}
2304
2305/* Opcode: Jump P1 P2 P3 * *
2306**
2307** Jump to the instruction at address P1, P2, or P3 depending on whether
2308** in the most recent OP_Compare instruction the P1 vector was less than
2309** equal to, or greater than the P2 vector, respectively.
2310*/
drh0acb7e42008-06-25 00:12:41 +00002311case OP_Jump: { /* jump */
2312 if( iCompare<0 ){
drh7083a482018-07-10 16:04:04 +00002313 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
drh0acb7e42008-06-25 00:12:41 +00002314 }else if( iCompare==0 ){
drh7083a482018-07-10 16:04:04 +00002315 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
drh16ee60f2008-06-20 18:13:25 +00002316 }else{
drh7083a482018-07-10 16:04:04 +00002317 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
drh16ee60f2008-06-20 18:13:25 +00002318 }
2319 break;
2320}
2321
drh5b6afba2008-01-05 16:29:28 +00002322/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002323** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002324**
drh5b6afba2008-01-05 16:29:28 +00002325** Take the logical AND of the values in registers P1 and P2 and
2326** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002327**
drh5b6afba2008-01-05 16:29:28 +00002328** If either P1 or P2 is 0 (false) then the result is 0 even if
2329** the other input is NULL. A NULL and true or two NULLs give
2330** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002331*/
drh5b6afba2008-01-05 16:29:28 +00002332/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002333** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002334**
2335** Take the logical OR of the values in register P1 and P2 and
2336** store the answer in register P3.
2337**
2338** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2339** even if the other input is NULL. A NULL and false or two NULLs
2340** give a NULL output.
2341*/
2342case OP_And: /* same as TK_AND, in1, in2, out3 */
2343case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002344 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2345 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002346
drh1fcfa722018-02-26 15:27:31 +00002347 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2348 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
drhbb113512002-05-27 01:04:51 +00002349 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002350 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002351 v1 = and_logic[v1*3+v2];
2352 }else{
drh5b6afba2008-01-05 16:29:28 +00002353 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002354 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002355 }
drh3c657212009-11-17 23:59:58 +00002356 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002357 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002358 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002359 }else{
drh5b6afba2008-01-05 16:29:28 +00002360 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002361 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002362 }
drh5e00f6c2001-09-13 13:46:56 +00002363 break;
2364}
2365
drh8abed7b2018-02-26 18:49:05 +00002366/* Opcode: IsTrue P1 P2 P3 P4 *
2367** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2368**
2369** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2370** IS NOT FALSE operators.
2371**
drh96acafb2018-02-27 14:49:25 +00002372** Interpret the value in register P1 as a boolean value. Store that
drh8abed7b2018-02-26 18:49:05 +00002373** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
2374** NULL, then the P3 is stored in register P2. Invert the answer if P4
2375** is 1.
2376**
2377** The logic is summarized like this:
2378**
2379** <ul>
drh96acafb2018-02-27 14:49:25 +00002380** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
2381** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
2382** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
2383** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
drh8abed7b2018-02-26 18:49:05 +00002384** </ul>
2385*/
2386case OP_IsTrue: { /* in1, out2 */
2387 assert( pOp->p4type==P4_INT32 );
2388 assert( pOp->p4.i==0 || pOp->p4.i==1 );
drh96acafb2018-02-27 14:49:25 +00002389 assert( pOp->p3==0 || pOp->p3==1 );
drh8abed7b2018-02-26 18:49:05 +00002390 sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2391 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2392 break;
2393}
2394
drhe99fa2a2008-12-15 15:27:51 +00002395/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002396** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002397**
drhe99fa2a2008-12-15 15:27:51 +00002398** Interpret the value in register P1 as a boolean value. Store the
2399** boolean complement in register P2. If the value in register P1 is
2400** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002401*/
drh93952eb2009-11-13 19:43:43 +00002402case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002403 pIn1 = &aMem[pOp->p1];
2404 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002405 if( (pIn1->flags & MEM_Null)==0 ){
drhbc8f68a2018-02-26 15:31:39 +00002406 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
drh007c8432018-02-26 03:20:18 +00002407 }else{
2408 sqlite3VdbeMemSetNull(pOut);
drhe99fa2a2008-12-15 15:27:51 +00002409 }
drh5e00f6c2001-09-13 13:46:56 +00002410 break;
2411}
2412
drhe99fa2a2008-12-15 15:27:51 +00002413/* Opcode: BitNot P1 P2 * * *
drhcd9e0142018-06-12 13:16:57 +00002414** Synopsis: r[P2]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002415**
drhe99fa2a2008-12-15 15:27:51 +00002416** Interpret the content of register P1 as an integer. Store the
2417** ones-complement of the P1 value into register P2. If P1 holds
2418** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002419*/
drh93952eb2009-11-13 19:43:43 +00002420case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002421 pIn1 = &aMem[pOp->p1];
2422 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002423 sqlite3VdbeMemSetNull(pOut);
2424 if( (pIn1->flags & MEM_Null)==0 ){
2425 pOut->flags = MEM_Int;
2426 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002427 }
drhbf4133c2001-10-13 02:59:08 +00002428 break;
2429}
2430
drh48f2d3b2011-09-16 01:34:43 +00002431/* Opcode: Once P1 P2 * * *
2432**
drhab087d42017-03-24 17:59:56 +00002433** Fall through to the next instruction the first time this opcode is
2434** encountered on each invocation of the byte-code program. Jump to P2
2435** on the second and all subsequent encounters during the same invocation.
2436**
2437** Top-level programs determine first invocation by comparing the P1
2438** operand against the P1 operand on the OP_Init opcode at the beginning
2439** of the program. If the P1 values differ, then fall through and make
2440** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
2441** the same then take the jump.
2442**
2443** For subprograms, there is a bitmask in the VdbeFrame that determines
2444** whether or not the jump should be taken. The bitmask is necessary
2445** because the self-altering code trick does not work for recursive
2446** triggers.
drh48f2d3b2011-09-16 01:34:43 +00002447*/
dan1d8cb212011-12-09 13:24:16 +00002448case OP_Once: { /* jump */
drhab087d42017-03-24 17:59:56 +00002449 u32 iAddr; /* Address of this instruction */
drh9e5eb9c2016-09-18 16:08:10 +00002450 assert( p->aOp[0].opcode==OP_Init );
drhab087d42017-03-24 17:59:56 +00002451 if( p->pFrame ){
2452 iAddr = (int)(pOp - p->aOp);
2453 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2454 VdbeBranchTaken(1, 2);
drhab087d42017-03-24 17:59:56 +00002455 goto jump_to_p2;
2456 }
drh18333ef2017-03-24 18:38:41 +00002457 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
dan1d8cb212011-12-09 13:24:16 +00002458 }else{
drhab087d42017-03-24 17:59:56 +00002459 if( p->aOp[0].p1==pOp->p1 ){
2460 VdbeBranchTaken(1, 2);
2461 goto jump_to_p2;
2462 }
dan1d8cb212011-12-09 13:24:16 +00002463 }
drhab087d42017-03-24 17:59:56 +00002464 VdbeBranchTaken(0, 2);
2465 pOp->p1 = p->aOp[0].p1;
dan1d8cb212011-12-09 13:24:16 +00002466 break;
2467}
2468
drh3c84ddf2008-01-09 02:15:38 +00002469/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002470**
drhef8662b2011-06-20 21:47:58 +00002471** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002472** is considered true if it is numeric and non-zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002473** in P1 is NULL then take the jump if and only if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002474*/
drh1fcfa722018-02-26 15:27:31 +00002475case OP_If: { /* jump, in1 */
2476 int c;
2477 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2478 VdbeBranchTaken(c!=0, 2);
2479 if( c ) goto jump_to_p2;
2480 break;
2481}
2482
drh3c84ddf2008-01-09 02:15:38 +00002483/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002484**
drhef8662b2011-06-20 21:47:58 +00002485** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002486** is considered false if it has a numeric value of zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002487** in P1 is NULL then take the jump if and only if P3 is non-zero.
drhf5905aa2002-05-26 20:54:33 +00002488*/
drh9cbf3422008-01-17 16:22:13 +00002489case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002490 int c;
drh1fcfa722018-02-26 15:27:31 +00002491 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
drh688852a2014-02-17 22:40:43 +00002492 VdbeBranchTaken(c!=0, 2);
drh1fcfa722018-02-26 15:27:31 +00002493 if( c ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00002494 break;
2495}
2496
drh830ecf92009-06-18 00:41:55 +00002497/* Opcode: IsNull P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00002498** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002499**
drh830ecf92009-06-18 00:41:55 +00002500** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002501*/
drh9cbf3422008-01-17 16:22:13 +00002502case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002503 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002504 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
drh830ecf92009-06-18 00:41:55 +00002505 if( (pIn1->flags & MEM_Null)!=0 ){
drhf56fa462015-04-13 21:39:54 +00002506 goto jump_to_p2;
drh830ecf92009-06-18 00:41:55 +00002507 }
drh477df4b2008-01-05 18:48:24 +00002508 break;
2509}
2510
drh98757152008-01-09 23:04:12 +00002511/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002512** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002513**
drh6a288a32008-01-07 19:20:24 +00002514** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002515*/
drh9cbf3422008-01-17 16:22:13 +00002516case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002517 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002518 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
drh6a288a32008-01-07 19:20:24 +00002519 if( (pIn1->flags & MEM_Null)==0 ){
drhf56fa462015-04-13 21:39:54 +00002520 goto jump_to_p2;
drh6a288a32008-01-07 19:20:24 +00002521 }
drh5e00f6c2001-09-13 13:46:56 +00002522 break;
2523}
2524
drh31d6fd52017-04-14 19:03:10 +00002525/* Opcode: IfNullRow P1 P2 P3 * *
2526** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2527**
2528** Check the cursor P1 to see if it is currently pointing at a NULL row.
2529** If it is, then set register P3 to NULL and jump immediately to P2.
2530** If P1 is not on a NULL row, then fall through without making any
2531** changes.
2532*/
2533case OP_IfNullRow: { /* jump */
2534 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh3f1e9e02017-05-23 01:21:07 +00002535 assert( p->apCsr[pOp->p1]!=0 );
drh31d6fd52017-04-14 19:03:10 +00002536 if( p->apCsr[pOp->p1]->nullRow ){
2537 sqlite3VdbeMemSetNull(aMem + pOp->p3);
2538 goto jump_to_p2;
2539 }
2540 break;
2541}
2542
drh092457b2017-12-29 15:04:49 +00002543#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2544/* Opcode: Offset P1 P2 P3 * *
2545** Synopsis: r[P3] = sqlite_offset(P1)
drh2fc865c2017-12-16 20:20:37 +00002546**
drh092457b2017-12-29 15:04:49 +00002547** Store in register r[P3] the byte offset into the database file that is the
drh2fc865c2017-12-16 20:20:37 +00002548** start of the payload for the record at which that cursor P1 is currently
2549** pointing.
drhfe6d20e2017-12-29 14:33:54 +00002550**
drh092457b2017-12-29 15:04:49 +00002551** P2 is the column number for the argument to the sqlite_offset() function.
drhfe6d20e2017-12-29 14:33:54 +00002552** This opcode does not use P2 itself, but the P2 value is used by the
2553** code generator. The P1, P2, and P3 operands to this opcode are the
mistachkin5e9825e2018-03-01 18:09:02 +00002554** same as for OP_Column.
drh092457b2017-12-29 15:04:49 +00002555**
2556** This opcode is only available if SQLite is compiled with the
2557** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
drh2fc865c2017-12-16 20:20:37 +00002558*/
drh092457b2017-12-29 15:04:49 +00002559case OP_Offset: { /* out3 */
drh2fc865c2017-12-16 20:20:37 +00002560 VdbeCursor *pC; /* The VDBE cursor */
2561 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2562 pC = p->apCsr[pOp->p1];
drhfe6d20e2017-12-29 14:33:54 +00002563 pOut = &p->aMem[pOp->p3];
drhc64487b2017-12-29 17:21:21 +00002564 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){
drhfe6d20e2017-12-29 14:33:54 +00002565 sqlite3VdbeMemSetNull(pOut);
drh2fc865c2017-12-16 20:20:37 +00002566 }else{
drh092457b2017-12-29 15:04:49 +00002567 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
drh2fc865c2017-12-16 20:20:37 +00002568 }
2569 break;
2570}
drh092457b2017-12-29 15:04:49 +00002571#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00002572
drh3e9ca092009-09-08 01:14:48 +00002573/* Opcode: Column P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +00002574** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002575**
danielk1977cfcdaef2004-05-12 07:33:33 +00002576** Interpret the data that cursor P1 points to as a structure built using
2577** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002578** information about the format of the data.) Extract the P2-th column
2579** from this record. If there are less that (P2+1)
2580** values in the record, extract a NULL.
2581**
drh9cbf3422008-01-17 16:22:13 +00002582** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002583**
drh1cc3a362017-04-03 13:17:31 +00002584** If the record contains fewer than P2 fields, then extract a NULL. Or,
danielk19771f4aa332008-01-03 09:51:55 +00002585** if the P4 argument is a P4_MEM use the value of the P4 argument as
2586** the result.
drh3e9ca092009-09-08 01:14:48 +00002587**
drh1cc3a362017-04-03 13:17:31 +00002588** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
drhdda5c082012-03-28 13:41:10 +00002589** the result is guaranteed to only be used as the argument of a length()
2590** or typeof() function, respectively. The loading of large blobs can be
2591** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002592*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002593case OP_Column: {
drh856c1032009-06-02 15:21:42 +00002594 int p2; /* column number to retrieve */
2595 VdbeCursor *pC; /* The VDBE cursor */
drhd3194f52004-05-27 19:59:32 +00002596 BtCursor *pCrsr; /* The BTree cursor */
drhd3194f52004-05-27 19:59:32 +00002597 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk1977cfcdaef2004-05-12 07:33:33 +00002598 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002599 int i; /* Loop counter */
drhd4e70eb2008-01-02 00:34:36 +00002600 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002601 Mem sMem; /* For storing the record being decoded */
drh399af1d2013-11-20 17:25:55 +00002602 const u8 *zData; /* Part of the record being decoded */
2603 const u8 *zHdr; /* Next unparsed byte of the header */
2604 const u8 *zEndHdr; /* Pointer to first byte after the header */
drhc6ce38832015-10-15 21:30:24 +00002605 u64 offset64; /* 64-bit offset */
drh5a077b72011-08-29 02:16:18 +00002606 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002607 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002608
drh8c7715d2019-12-20 14:37:56 +00002609 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
dande892d92016-01-29 19:29:45 +00002610 pC = p->apCsr[pOp->p1];
drh8c7715d2019-12-20 14:37:56 +00002611 assert( pC!=0 );
drh856c1032009-06-02 15:21:42 +00002612 p2 = pOp->p2;
dande892d92016-01-29 19:29:45 +00002613
drh170ad682017-06-02 15:44:22 +00002614 /* If the cursor cache is stale (meaning it is not currently point at
2615 ** the correct row) then bring it up-to-date by doing the necessary
2616 ** B-Tree seek. */
dande892d92016-01-29 19:29:45 +00002617 rc = sqlite3VdbeCursorMoveto(&pC, &p2);
drh4ca239f2016-05-19 11:12:43 +00002618 if( rc ) goto abort_due_to_error;
dande892d92016-01-29 19:29:45 +00002619
drh9f6168b2016-03-19 23:32:58 +00002620 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002621 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002622 memAboutToChange(p, pDest);
danielk19776c924092007-11-12 08:09:34 +00002623 assert( pC!=0 );
drhc8606e42013-11-20 19:28:03 +00002624 assert( p2<pC->nField );
drhb53a5a92014-10-12 22:37:22 +00002625 aOffset = pC->aOffset;
drh62aaa6c2015-11-21 17:27:42 +00002626 assert( pC->eCurType!=CURTYPE_VTAB );
drhc960dcb2015-11-20 19:22:01 +00002627 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2628 assert( pC->eCurType!=CURTYPE_SORTER );
drh399af1d2013-11-20 17:25:55 +00002629
drha43a02e2016-05-19 17:51:19 +00002630 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
danielk1977192ac1d2004-05-10 07:17:30 +00002631 if( pC->nullRow ){
drhc960dcb2015-11-20 19:22:01 +00002632 if( pC->eCurType==CURTYPE_PSEUDO ){
drhfe0cf7a2017-08-16 19:20:20 +00002633 /* For the special case of as pseudo-cursor, the seekResult field
2634 ** identifies the register that holds the record */
2635 assert( pC->seekResult>0 );
2636 pReg = &aMem[pC->seekResult];
drhc8606e42013-11-20 19:28:03 +00002637 assert( pReg->flags & MEM_Blob );
2638 assert( memIsValid(pReg) );
drh6cd8c8c2017-08-15 14:14:36 +00002639 pC->payloadSize = pC->szRow = pReg->n;
drhc8606e42013-11-20 19:28:03 +00002640 pC->aRow = (u8*)pReg->z;
2641 }else{
drh6b5631e2014-11-05 15:57:39 +00002642 sqlite3VdbeMemSetNull(pDest);
drh399af1d2013-11-20 17:25:55 +00002643 goto op_column_out;
2644 }
danielk1977192ac1d2004-05-10 07:17:30 +00002645 }else{
drh06a09a82016-11-25 17:03:03 +00002646 pCrsr = pC->uc.pCursor;
drhc960dcb2015-11-20 19:22:01 +00002647 assert( pC->eCurType==CURTYPE_BTREE );
drhc8606e42013-11-20 19:28:03 +00002648 assert( pCrsr );
drha7c90c42016-06-04 20:37:10 +00002649 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2650 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
drh6cd8c8c2017-08-15 14:14:36 +00002651 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2652 assert( pC->szRow<=pC->payloadSize );
2653 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */
2654 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5f7dacb2015-11-20 13:33:56 +00002655 goto too_big;
drh399af1d2013-11-20 17:25:55 +00002656 }
danielk1977192ac1d2004-05-10 07:17:30 +00002657 }
drhb73857f2006-03-17 00:25:59 +00002658 pC->cacheStatus = p->cacheCtr;
drh1f613c42017-08-16 14:16:19 +00002659 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
drh399af1d2013-11-20 17:25:55 +00002660 pC->nHdrParsed = 0;
drh35cd6432009-06-05 14:17:21 +00002661
drhc81aa2e2014-10-11 23:31:52 +00002662
drh1f613c42017-08-16 14:16:19 +00002663 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/
drhc81aa2e2014-10-11 23:31:52 +00002664 /* pC->aRow does not have to hold the entire row, but it does at least
2665 ** need to cover the header of the record. If pC->aRow does not contain
2666 ** the complete header, then set it to zero, forcing the header to be
2667 ** dynamically allocated. */
2668 pC->aRow = 0;
2669 pC->szRow = 0;
drh848a3322015-10-16 12:53:47 +00002670
2671 /* Make sure a corrupt database has not given us an oversize header.
2672 ** Do this now to avoid an oversize memory allocation.
2673 **
2674 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2675 ** types use so much data space that there can only be 4096 and 32 of
2676 ** them, respectively. So the maximum header length results from a
2677 ** 3-byte type for each of the maximum of 32768 columns plus three
2678 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2679 */
drh1f613c42017-08-16 14:16:19 +00002680 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
drh74588ce2017-09-13 00:13:05 +00002681 goto op_column_corrupt;
drh848a3322015-10-16 12:53:47 +00002682 }
drh95b225a2017-08-16 11:04:22 +00002683 }else{
2684 /* This is an optimization. By skipping over the first few tests
2685 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2686 ** measurable performance gain.
2687 **
drh1f613c42017-08-16 14:16:19 +00002688 ** This branch is taken even if aOffset[0]==0. Such a record is never
drh95b225a2017-08-16 11:04:22 +00002689 ** generated by SQLite, and could be considered corruption, but we
drh1f613c42017-08-16 14:16:19 +00002690 ** accept it for historical reasons. When aOffset[0]==0, the code this
drh95b225a2017-08-16 11:04:22 +00002691 ** branch jumps to reads past the end of the record, but never more
2692 ** than a few bytes. Even if the record occurs at the end of the page
2693 ** content area, the "page header" comes after the page content and so
2694 ** this overread is harmless. Similar overreads can occur for a corrupt
2695 ** database file.
drh0eda6cd2016-05-19 16:58:42 +00002696 */
2697 zData = pC->aRow;
2698 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
drh1f613c42017-08-16 14:16:19 +00002699 testcase( aOffset[0]==0 );
drh0eda6cd2016-05-19 16:58:42 +00002700 goto op_column_read_header;
drhc81aa2e2014-10-11 23:31:52 +00002701 }
drh399af1d2013-11-20 17:25:55 +00002702 }
drh35cd6432009-06-05 14:17:21 +00002703
drh399af1d2013-11-20 17:25:55 +00002704 /* Make sure at least the first p2+1 entries of the header have been
drh0c8f7602014-09-19 16:56:45 +00002705 ** parsed and valid information is in aOffset[] and pC->aType[].
drh399af1d2013-11-20 17:25:55 +00002706 */
drhc8606e42013-11-20 19:28:03 +00002707 if( pC->nHdrParsed<=p2 ){
drh380d6852013-11-20 20:58:00 +00002708 /* If there is more header available for parsing in the record, try
2709 ** to extract additional fields up through the p2+1-th field
drh35cd6432009-06-05 14:17:21 +00002710 */
drhc8606e42013-11-20 19:28:03 +00002711 if( pC->iHdrOffset<aOffset[0] ){
2712 /* Make sure zData points to enough of the record to cover the header. */
2713 if( pC->aRow==0 ){
2714 memset(&sMem, 0, sizeof(sMem));
drh2a740062020-02-05 18:28:17 +00002715 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
drh9467abf2016-02-17 18:44:11 +00002716 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhc8606e42013-11-20 19:28:03 +00002717 zData = (u8*)sMem.z;
2718 }else{
2719 zData = pC->aRow;
drh9188b382004-05-14 21:12:22 +00002720 }
drhc8606e42013-11-20 19:28:03 +00002721
drh0c8f7602014-09-19 16:56:45 +00002722 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
drh0eda6cd2016-05-19 16:58:42 +00002723 op_column_read_header:
drhc8606e42013-11-20 19:28:03 +00002724 i = pC->nHdrParsed;
drhc6ce38832015-10-15 21:30:24 +00002725 offset64 = aOffset[i];
drhc8606e42013-11-20 19:28:03 +00002726 zHdr = zData + pC->iHdrOffset;
2727 zEndHdr = zData + aOffset[0];
drh95b225a2017-08-16 11:04:22 +00002728 testcase( zHdr>=zEndHdr );
drhc8606e42013-11-20 19:28:03 +00002729 do{
drhc332e042019-02-12 21:04:33 +00002730 if( (pC->aType[i] = t = zHdr[0])<0x80 ){
drhc8606e42013-11-20 19:28:03 +00002731 zHdr++;
drhfaf37272015-10-16 14:23:42 +00002732 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002733 }else{
drhc8606e42013-11-20 19:28:03 +00002734 zHdr += sqlite3GetVarint32(zHdr, &t);
drhc332e042019-02-12 21:04:33 +00002735 pC->aType[i] = t;
drhfaf37272015-10-16 14:23:42 +00002736 offset64 += sqlite3VdbeSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002737 }
drhc332e042019-02-12 21:04:33 +00002738 aOffset[++i] = (u32)(offset64 & 0xffffffff);
drhc8606e42013-11-20 19:28:03 +00002739 }while( i<=p2 && zHdr<zEndHdr );
drh170c2762016-05-20 21:40:11 +00002740
drh8dd83622014-10-13 23:39:02 +00002741 /* The record is corrupt if any of the following are true:
2742 ** (1) the bytes of the header extend past the declared header size
drh8dd83622014-10-13 23:39:02 +00002743 ** (2) the entire header was used but not all data was used
drh8dd83622014-10-13 23:39:02 +00002744 ** (3) the end of the data extends beyond the end of the record.
drhc8606e42013-11-20 19:28:03 +00002745 */
drhc6ce38832015-10-15 21:30:24 +00002746 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2747 || (offset64 > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002748 ){
drh95b225a2017-08-16 11:04:22 +00002749 if( aOffset[0]==0 ){
2750 i = 0;
2751 zHdr = zEndHdr;
2752 }else{
2753 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
drh74588ce2017-09-13 00:13:05 +00002754 goto op_column_corrupt;
drh95b225a2017-08-16 11:04:22 +00002755 }
danielk1977dedf45b2006-01-13 17:12:01 +00002756 }
drhddb2b4a2016-03-25 12:10:32 +00002757
drh170c2762016-05-20 21:40:11 +00002758 pC->nHdrParsed = i;
2759 pC->iHdrOffset = (u32)(zHdr - zData);
2760 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
mistachkin8c7cd6a2015-12-16 21:09:53 +00002761 }else{
drh9fbc8852016-01-04 03:48:46 +00002762 t = 0;
drh9188b382004-05-14 21:12:22 +00002763 }
drhd3194f52004-05-27 19:59:32 +00002764
drhf2db3382015-04-30 20:33:25 +00002765 /* If after trying to extract new entries from the header, nHdrParsed is
drh380d6852013-11-20 20:58:00 +00002766 ** still not up to p2, that means that the record has fewer than p2
2767 ** columns. So the result will be either the default value or a NULL.
drhd3194f52004-05-27 19:59:32 +00002768 */
drhc8606e42013-11-20 19:28:03 +00002769 if( pC->nHdrParsed<=p2 ){
2770 if( pOp->p4type==P4_MEM ){
2771 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2772 }else{
drh22e8d832014-10-29 00:58:38 +00002773 sqlite3VdbeMemSetNull(pDest);
drhc8606e42013-11-20 19:28:03 +00002774 }
danielk19773c9cc8d2005-01-17 03:40:08 +00002775 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002776 }
drh95fa6062015-10-16 13:50:08 +00002777 }else{
2778 t = pC->aType[p2];
danielk1977cfcdaef2004-05-12 07:33:33 +00002779 }
danielk1977192ac1d2004-05-10 07:17:30 +00002780
drh380d6852013-11-20 20:58:00 +00002781 /* Extract the content for the p2+1-th column. Control can only
drh0c8f7602014-09-19 16:56:45 +00002782 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
drh380d6852013-11-20 20:58:00 +00002783 ** all valid.
drh9188b382004-05-14 21:12:22 +00002784 */
drhc8606e42013-11-20 19:28:03 +00002785 assert( p2<pC->nHdrParsed );
2786 assert( rc==SQLITE_OK );
drh75fd0542014-03-01 16:24:44 +00002787 assert( sqlite3VdbeCheckMemInvariants(pDest) );
drha1851ef2016-05-20 19:51:28 +00002788 if( VdbeMemDynamic(pDest) ){
2789 sqlite3VdbeMemSetNull(pDest);
2790 }
drh95fa6062015-10-16 13:50:08 +00002791 assert( t==pC->aType[p2] );
drhc8606e42013-11-20 19:28:03 +00002792 if( pC->szRow>=aOffset[p2+1] ){
drh380d6852013-11-20 20:58:00 +00002793 /* This is the common case where the desired content fits on the original
2794 ** page - where the content is not on an overflow page */
drh69f6e252016-01-11 18:05:00 +00002795 zData = pC->aRow + aOffset[p2];
2796 if( t<12 ){
2797 sqlite3VdbeSerialGet(zData, t, pDest);
2798 }else{
2799 /* If the column value is a string, we need a persistent value, not
2800 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
2801 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2802 */
2803 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2804 pDest->n = len = (t-12)/2;
drha1851ef2016-05-20 19:51:28 +00002805 pDest->enc = encoding;
drh69f6e252016-01-11 18:05:00 +00002806 if( pDest->szMalloc < len+2 ){
2807 pDest->flags = MEM_Null;
2808 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2809 }else{
2810 pDest->z = pDest->zMalloc;
2811 }
2812 memcpy(pDest->z, zData, len);
2813 pDest->z[len] = 0;
2814 pDest->z[len+1] = 0;
2815 pDest->flags = aFlag[t&1];
2816 }
danielk197736963fd2005-02-19 08:18:05 +00002817 }else{
drha1851ef2016-05-20 19:51:28 +00002818 pDest->enc = encoding;
drh58c96082013-12-23 11:33:32 +00002819 /* This branch happens only when content is on overflow pages */
drh380d6852013-11-20 20:58:00 +00002820 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2821 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2822 || (len = sqlite3VdbeSerialTypeLen(t))==0
drhc8606e42013-11-20 19:28:03 +00002823 ){
drh2a2a6962014-09-16 18:22:44 +00002824 /* Content is irrelevant for
2825 ** 1. the typeof() function,
2826 ** 2. the length(X) function if X is a blob, and
2827 ** 3. if the content length is zero.
2828 ** So we might as well use bogus content rather than reading
dan1f9144e2017-03-17 13:59:06 +00002829 ** content from disk.
2830 **
2831 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2832 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
drhcbae3f82020-01-06 20:48:45 +00002833 ** read more. Use the global constant sqlite3CtypeMap[] as the array,
2834 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
2835 ** and it begins with a bunch of zeros.
dan1f9144e2017-03-17 13:59:06 +00002836 */
drhcbae3f82020-01-06 20:48:45 +00002837 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
danielk1977aee18ef2005-03-09 12:26:50 +00002838 }else{
drhcb3cabd2016-11-25 19:18:28 +00002839 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
drh9467abf2016-02-17 18:44:11 +00002840 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2841 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2842 pDest->flags &= ~MEM_Ephem;
danielk1977aee18ef2005-03-09 12:26:50 +00002843 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002844 }
drhd3194f52004-05-27 19:59:32 +00002845
danielk19773c9cc8d2005-01-17 03:40:08 +00002846op_column_out:
drhb7654112008-01-12 12:48:07 +00002847 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002848 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002849 break;
drh74588ce2017-09-13 00:13:05 +00002850
2851op_column_corrupt:
2852 if( aOp[0].p3>0 ){
2853 pOp = &aOp[aOp[0].p3-1];
2854 break;
2855 }else{
2856 rc = SQLITE_CORRUPT_BKPT;
2857 goto abort_due_to_error;
2858 }
danielk1977192ac1d2004-05-10 07:17:30 +00002859}
2860
danielk1977751de562008-04-18 09:01:15 +00002861/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002862** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002863**
2864** Apply affinities to a range of P2 registers starting with P1.
2865**
drhbb6783b2017-04-29 18:02:49 +00002866** P4 is a string that is P2 characters long. The N-th character of the
2867** string indicates the column affinity that should be used for the N-th
danielk1977751de562008-04-18 09:01:15 +00002868** memory cell in the range.
2869*/
2870case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002871 const char *zAffinity; /* The affinity to be applied */
danielk1977751de562008-04-18 09:01:15 +00002872
drh856c1032009-06-02 15:21:42 +00002873 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002874 assert( zAffinity!=0 );
drh662c50e2017-04-01 20:14:01 +00002875 assert( pOp->p2>0 );
drh039fc322009-11-17 18:31:47 +00002876 assert( zAffinity[pOp->p2]==0 );
2877 pIn1 = &aMem[pOp->p1];
drh122c5142019-07-29 05:23:01 +00002878 while( 1 /*exit-by-break*/ ){
drh9f6168b2016-03-19 23:32:58 +00002879 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
drhb5f62432019-12-10 02:48:41 +00002880 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
drh83a1daf2019-05-01 18:59:33 +00002881 applyAffinity(pIn1, zAffinity[0], encoding);
2882 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
drh337cc392019-07-29 06:06:53 +00002883 /* When applying REAL affinity, if the result is still an MEM_Int
2884 ** that will fit in 6 bytes, then change the type to MEM_IntReal
2885 ** so that we keep the high-resolution integer value but know that
2886 ** the type really wants to be REAL. */
2887 testcase( pIn1->u.i==140737488355328LL );
2888 testcase( pIn1->u.i==140737488355327LL );
2889 testcase( pIn1->u.i==-140737488355328LL );
2890 testcase( pIn1->u.i==-140737488355329LL );
2891 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
2892 pIn1->flags |= MEM_IntReal;
2893 pIn1->flags &= ~MEM_Int;
2894 }else{
2895 pIn1->u.r = (double)pIn1->u.i;
2896 pIn1->flags |= MEM_Real;
2897 pIn1->flags &= ~MEM_Int;
2898 }
drh83a1daf2019-05-01 18:59:33 +00002899 }
drh6fcc1ec2019-05-01 14:41:47 +00002900 REGISTER_TRACE((int)(pIn1-aMem), pIn1);
drh83a1daf2019-05-01 18:59:33 +00002901 zAffinity++;
2902 if( zAffinity[0]==0 ) break;
drh039fc322009-11-17 18:31:47 +00002903 pIn1++;
drh83a1daf2019-05-01 18:59:33 +00002904 }
danielk1977751de562008-04-18 09:01:15 +00002905 break;
2906}
2907
drh1db639c2008-01-17 02:36:28 +00002908/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002909** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002910**
drh710c4842010-08-30 01:17:20 +00002911** Convert P2 registers beginning with P1 into the [record format]
2912** use as a data record in a database table or as a key
2913** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002914**
drhbb6783b2017-04-29 18:02:49 +00002915** P4 may be a string that is P2 characters long. The N-th character of the
2916** string indicates the column affinity that should be used for the N-th
drh9cbf3422008-01-17 16:22:13 +00002917** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002918**
drh8a512562005-11-14 22:29:05 +00002919** The mapping from character to affinity is given by the SQLITE_AFF_
2920** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002921**
drh05883a32015-06-02 15:32:08 +00002922** If P4 is NULL then all index fields have the affinity BLOB.
drh7f057c92005-06-24 03:53:06 +00002923*/
drh1db639c2008-01-17 02:36:28 +00002924case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002925 Mem *pRec; /* The new record */
2926 u64 nData; /* Number of bytes of data space */
2927 int nHdr; /* Number of bytes of header space */
2928 i64 nByte; /* Data space required for this record */
drh4a335072015-04-11 02:08:48 +00002929 i64 nZero; /* Number of zero bytes at the end of the record */
drh856c1032009-06-02 15:21:42 +00002930 int nVarint; /* Number of bytes in a varint */
2931 u32 serial_type; /* Type field */
2932 Mem *pData0; /* First field to be combined into the record */
2933 Mem *pLast; /* Last field of the record */
2934 int nField; /* Number of fields in the record */
2935 char *zAffinity; /* The affinity string for the record */
2936 int file_format; /* File format to use for encoding */
drhbe37c122015-10-16 14:54:17 +00002937 u32 len; /* Length of a field */
drhb70b0df2019-04-30 01:08:42 +00002938 u8 *zHdr; /* Where to write next byte of the header */
2939 u8 *zPayload; /* Where to write next byte of the payload */
drh856c1032009-06-02 15:21:42 +00002940
drhf3218fe2004-05-28 08:21:02 +00002941 /* Assuming the record contains N fields, the record format looks
2942 ** like this:
2943 **
drh7a224de2004-06-02 01:22:02 +00002944 ** ------------------------------------------------------------------------
2945 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2946 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002947 **
drh9cbf3422008-01-17 16:22:13 +00002948 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
peter.d.reid60ec9142014-09-06 16:39:46 +00002949 ** and so forth.
drhf3218fe2004-05-28 08:21:02 +00002950 **
2951 ** Each type field is a varint representing the serial type of the
2952 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002953 ** hdr-size field is also a varint which is the offset from the beginning
2954 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002955 */
drh856c1032009-06-02 15:21:42 +00002956 nData = 0; /* Number of bytes of data space */
2957 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002958 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002959 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002960 zAffinity = pOp->p4.z;
drh9f6168b2016-03-19 23:32:58 +00002961 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002962 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002963 nField = pOp->p2;
2964 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002965 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002966
drh2b4ded92010-09-27 21:09:31 +00002967 /* Identify the output register */
2968 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2969 pOut = &aMem[pOp->p3];
2970 memAboutToChange(p, pOut);
2971
drh3e6c0602013-12-10 20:53:01 +00002972 /* Apply the requested affinity to all inputs
2973 */
2974 assert( pData0<=pLast );
2975 if( zAffinity ){
2976 pRec = pData0;
2977 do{
drh5ad12512019-05-09 16:22:51 +00002978 applyAffinity(pRec, zAffinity[0], encoding);
danbe812622019-05-17 15:59:11 +00002979 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
2980 pRec->flags |= MEM_IntReal;
2981 pRec->flags &= ~(MEM_Int);
2982 }
drh5ad12512019-05-09 16:22:51 +00002983 REGISTER_TRACE((int)(pRec-aMem), pRec);
2984 zAffinity++;
2985 pRec++;
drh57bf4a82014-02-17 14:59:22 +00002986 assert( zAffinity[0]==0 || pRec<=pLast );
2987 }while( zAffinity[0] );
drh3e6c0602013-12-10 20:53:01 +00002988 }
2989
drhd447dce2017-01-25 20:55:11 +00002990#ifdef SQLITE_ENABLE_NULL_TRIM
drh585ce192017-01-25 14:58:27 +00002991 /* NULLs can be safely trimmed from the end of the record, as long as
2992 ** as the schema format is 2 or more and none of the omitted columns
2993 ** have a non-NULL default value. Also, the record must be left with
2994 ** at least one field. If P5>0 then it will be one more than the
2995 ** index of the right-most column with a non-NULL default value */
2996 if( pOp->p5 ){
2997 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
2998 pLast--;
2999 nField--;
3000 }
3001 }
drhd447dce2017-01-25 20:55:11 +00003002#endif
drh585ce192017-01-25 14:58:27 +00003003
drhf3218fe2004-05-28 08:21:02 +00003004 /* Loop through the elements that will make up the record to figure
drh76fd7be2019-07-11 19:50:18 +00003005 ** out how much space is required for the new record. After this loop,
3006 ** the Mem.uTemp field of each term should hold the serial-type that will
3007 ** be used for that term in the generated record:
3008 **
3009 ** Mem.uTemp value type
3010 ** --------------- ---------------
3011 ** 0 NULL
3012 ** 1 1-byte signed integer
3013 ** 2 2-byte signed integer
3014 ** 3 3-byte signed integer
3015 ** 4 4-byte signed integer
3016 ** 5 6-byte signed integer
3017 ** 6 8-byte signed integer
3018 ** 7 IEEE float
3019 ** 8 Integer constant 0
3020 ** 9 Integer constant 1
3021 ** 10,11 reserved for expansion
3022 ** N>=12 and even BLOB
3023 ** N>=13 and odd text
3024 **
3025 ** The following additional values are computed:
3026 ** nHdr Number of bytes needed for the record header
3027 ** nData Number of bytes of data space needed for the record
3028 ** nZero Zero bytes at the end of the record
danielk19778d059842004-05-12 11:24:02 +00003029 */
drh038b7bc2013-12-09 23:17:22 +00003030 pRec = pLast;
drh59bf00c2013-12-08 23:33:28 +00003031 do{
drh2b4ded92010-09-27 21:09:31 +00003032 assert( memIsValid(pRec) );
drhc1da4392019-07-11 19:22:36 +00003033 if( pRec->flags & MEM_Null ){
3034 if( pRec->flags & MEM_Zero ){
drh41fb3672018-01-12 23:18:38 +00003035 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3036 ** table methods that never invoke sqlite3_result_xxxxx() while
3037 ** computing an unchanging column value in an UPDATE statement.
3038 ** Give such values a special internal-use-only serial-type of 10
3039 ** so that they can be passed through to xUpdate and have
3040 ** a true sqlite3_value_nochange(). */
3041 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
drhc1da4392019-07-11 19:22:36 +00003042 pRec->uTemp = 10;
drh038b7bc2013-12-09 23:17:22 +00003043 }else{
drh76fd7be2019-07-11 19:50:18 +00003044 pRec->uTemp = 0;
drh038b7bc2013-12-09 23:17:22 +00003045 }
drhc1da4392019-07-11 19:22:36 +00003046 nHdr++;
3047 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3048 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3049 i64 i = pRec->u.i;
drh9c3bb592019-07-30 21:00:13 +00003050 u64 uu;
drhc1da4392019-07-11 19:22:36 +00003051 testcase( pRec->flags & MEM_Int );
3052 testcase( pRec->flags & MEM_IntReal );
3053 if( i<0 ){
drh9c3bb592019-07-30 21:00:13 +00003054 uu = ~i;
drhc1da4392019-07-11 19:22:36 +00003055 }else{
drh9c3bb592019-07-30 21:00:13 +00003056 uu = i;
drhc1da4392019-07-11 19:22:36 +00003057 }
3058 nHdr++;
drh9c3bb592019-07-30 21:00:13 +00003059 testcase( uu==127 ); testcase( uu==128 );
3060 testcase( uu==32767 ); testcase( uu==32768 );
3061 testcase( uu==8388607 ); testcase( uu==8388608 );
3062 testcase( uu==2147483647 ); testcase( uu==2147483648 );
3063 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3064 if( uu<=127 ){
drhc1da4392019-07-11 19:22:36 +00003065 if( (i&1)==i && file_format>=4 ){
drh9c3bb592019-07-30 21:00:13 +00003066 pRec->uTemp = 8+(u32)uu;
drhc1da4392019-07-11 19:22:36 +00003067 }else{
3068 nData++;
3069 pRec->uTemp = 1;
3070 }
drh9c3bb592019-07-30 21:00:13 +00003071 }else if( uu<=32767 ){
drhc1da4392019-07-11 19:22:36 +00003072 nData += 2;
3073 pRec->uTemp = 2;
drh9c3bb592019-07-30 21:00:13 +00003074 }else if( uu<=8388607 ){
drhc1da4392019-07-11 19:22:36 +00003075 nData += 3;
3076 pRec->uTemp = 3;
drh9c3bb592019-07-30 21:00:13 +00003077 }else if( uu<=2147483647 ){
drhc1da4392019-07-11 19:22:36 +00003078 nData += 4;
3079 pRec->uTemp = 4;
drh9c3bb592019-07-30 21:00:13 +00003080 }else if( uu<=140737488355327LL ){
drhc1da4392019-07-11 19:22:36 +00003081 nData += 6;
3082 pRec->uTemp = 5;
3083 }else{
3084 nData += 8;
3085 if( pRec->flags & MEM_IntReal ){
3086 /* If the value is IntReal and is going to take up 8 bytes to store
3087 ** as an integer, then we might as well make it an 8-byte floating
3088 ** point value */
3089 pRec->u.r = (double)pRec->u.i;
3090 pRec->flags &= ~MEM_IntReal;
3091 pRec->flags |= MEM_Real;
3092 pRec->uTemp = 7;
3093 }else{
3094 pRec->uTemp = 6;
3095 }
3096 }
3097 }else if( pRec->flags & MEM_Real ){
3098 nHdr++;
3099 nData += 8;
3100 pRec->uTemp = 7;
3101 }else{
3102 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3103 assert( pRec->n>=0 );
3104 len = (u32)pRec->n;
3105 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3106 if( pRec->flags & MEM_Zero ){
3107 serial_type += pRec->u.nZero*2;
3108 if( nData ){
3109 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3110 len += pRec->u.nZero;
3111 }else{
3112 nZero += pRec->u.nZero;
3113 }
3114 }
3115 nData += len;
3116 nHdr += sqlite3VarintLen(serial_type);
3117 pRec->uTemp = serial_type;
drhfdf972a2007-05-02 13:30:27 +00003118 }
drh45c3c662016-04-07 14:16:16 +00003119 if( pRec==pData0 ) break;
3120 pRec--;
3121 }while(1);
danielk19773d1bfea2004-05-14 11:00:53 +00003122
drh654858d2014-11-20 02:18:14 +00003123 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3124 ** which determines the total number of bytes in the header. The varint
3125 ** value is the size of the header in bytes including the size varint
3126 ** itself. */
drh59bf00c2013-12-08 23:33:28 +00003127 testcase( nHdr==126 );
3128 testcase( nHdr==127 );
drh2a242872013-12-08 22:59:29 +00003129 if( nHdr<=126 ){
3130 /* The common case */
3131 nHdr += 1;
3132 }else{
3133 /* Rare case of a really large header */
3134 nVarint = sqlite3VarintLen(nHdr);
3135 nHdr += nVarint;
3136 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
drhcb9882a2005-03-17 03:15:40 +00003137 }
drh038b7bc2013-12-09 23:17:22 +00003138 nByte = nHdr+nData;
drhf3218fe2004-05-28 08:21:02 +00003139
danielk1977a7a8e142008-02-13 18:25:27 +00003140 /* Make sure the output register has a buffer large enough to store
3141 ** the new record. The output register (pOp->p3) is not allowed to
3142 ** be one of the input registers (because the following call to
drh322f2852014-09-19 00:43:39 +00003143 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
danielk1977a7a8e142008-02-13 18:25:27 +00003144 */
drh0d7f0cc2018-09-21 13:07:14 +00003145 if( nByte+nZero<=pOut->szMalloc ){
3146 /* The output register is already large enough to hold the record.
3147 ** No error checks or buffer enlargement is required */
3148 pOut->z = pOut->zMalloc;
3149 }else{
3150 /* Need to make sure that the output is not too big and then enlarge
3151 ** the output register to hold the full result */
3152 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3153 goto too_big;
3154 }
3155 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3156 goto no_mem;
3157 }
danielk19778d059842004-05-12 11:24:02 +00003158 }
drh9c1905f2008-12-10 22:32:56 +00003159 pOut->n = (int)nByte;
drhc91b2fd2014-03-01 18:13:23 +00003160 pOut->flags = MEM_Blob;
drhfdf972a2007-05-02 13:30:27 +00003161 if( nZero ){
drh8df32842008-12-09 02:51:23 +00003162 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00003163 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00003164 }
drhb7654112008-01-12 12:48:07 +00003165 UPDATE_MAX_BLOBSIZE(pOut);
drhb70b0df2019-04-30 01:08:42 +00003166 zHdr = (u8 *)pOut->z;
3167 zPayload = zHdr + nHdr;
3168
3169 /* Write the record */
3170 zHdr += putVarint32(zHdr, nHdr);
3171 assert( pData0<=pLast );
3172 pRec = pData0;
3173 do{
3174 serial_type = pRec->uTemp;
3175 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3176 ** additional varints, one per column. */
3177 zHdr += putVarint32(zHdr, serial_type); /* serial type */
3178 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
3179 ** immediately follow the header. */
3180 zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */
3181 }while( (++pRec)<=pLast );
3182 assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3183 assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3184
3185 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3186 REGISTER_TRACE(pOp->p3, pOut);
danielk19778d059842004-05-12 11:24:02 +00003187 break;
3188}
3189
drh9f274632020-03-17 17:11:23 +00003190/* Opcode: Count P1 P2 p3 * *
drh81316f82013-10-29 20:40:47 +00003191** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00003192**
3193** Store the number of entries (an integer value) in the table or index
drh9f274632020-03-17 17:11:23 +00003194** opened by cursor P1 in register P2.
3195**
3196** If P3==0, then an exact count is obtained, which involves visiting
3197** every btree page of the table. But if P3 is non-zero, an estimate
3198** is returned based on the current cursor position.
danielk1977a5533162009-02-24 10:01:51 +00003199*/
drh27a348c2015-04-13 19:14:06 +00003200case OP_Count: { /* out2 */
danielk1977a5533162009-02-24 10:01:51 +00003201 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00003202 BtCursor *pCrsr;
3203
drhc960dcb2015-11-20 19:22:01 +00003204 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3205 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00003206 assert( pCrsr );
drh9f274632020-03-17 17:11:23 +00003207 if( pOp->p3 ){
3208 nEntry = sqlite3BtreeRowCountEst(pCrsr);
3209 }else{
3210 nEntry = 0; /* Not needed. Only used to silence a warning. */
3211 rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3212 if( rc ) goto abort_due_to_error;
3213 }
drh27a348c2015-04-13 19:14:06 +00003214 pOut = out2Prerelease(p, pOp);
danielk1977a5533162009-02-24 10:01:51 +00003215 pOut->u.i = nEntry;
drh21f6daa2019-10-11 14:21:48 +00003216 goto check_for_interrupt;
danielk1977a5533162009-02-24 10:01:51 +00003217}
danielk1977a5533162009-02-24 10:01:51 +00003218
danielk1977fd7f0452008-12-17 17:30:26 +00003219/* Opcode: Savepoint P1 * * P4 *
3220**
3221** Open, release or rollback the savepoint named by parameter P4, depending
drh2ce9b6b2019-05-10 14:03:07 +00003222** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3223** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3224** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
danielk1977fd7f0452008-12-17 17:30:26 +00003225*/
3226case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00003227 int p1; /* Value of P1 operand */
3228 char *zName; /* Name of savepoint */
3229 int nName;
3230 Savepoint *pNew;
3231 Savepoint *pSavepoint;
3232 Savepoint *pTmp;
3233 int iSavepoint;
3234 int ii;
3235
3236 p1 = pOp->p1;
3237 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00003238
3239 /* Assert that the p1 parameter is valid. Also that if there is no open
3240 ** transaction, then there cannot be any savepoints.
3241 */
3242 assert( db->pSavepoint==0 || db->autoCommit==0 );
3243 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3244 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3245 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00003246 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00003247
3248 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00003249 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00003250 /* A new savepoint cannot be created if there are active write
3251 ** statements (i.e. open read/write incremental blob handles).
3252 */
drh22c17b82015-05-15 04:13:15 +00003253 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00003254 rc = SQLITE_BUSY;
3255 }else{
drh856c1032009-06-02 15:21:42 +00003256 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00003257
drhbe07ec52011-06-03 12:15:26 +00003258#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00003259 /* This call is Ok even if this savepoint is actually a transaction
3260 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3261 ** If this is a transaction savepoint being opened, it is guaranteed
3262 ** that the db->aVTrans[] array is empty. */
3263 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00003264 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3265 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00003266 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00003267#endif
dand9495cd2011-04-27 12:08:04 +00003268
danielk1977fd7f0452008-12-17 17:30:26 +00003269 /* Create a new savepoint structure. */
drh575fad62016-02-05 13:38:36 +00003270 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
danielk1977fd7f0452008-12-17 17:30:26 +00003271 if( pNew ){
3272 pNew->zName = (char *)&pNew[1];
3273 memcpy(pNew->zName, zName, nName+1);
3274
3275 /* If there is no open transaction, then mark this as a special
3276 ** "transaction savepoint". */
3277 if( db->autoCommit ){
3278 db->autoCommit = 0;
3279 db->isTransactionSavepoint = 1;
3280 }else{
3281 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00003282 }
dan21e8d012011-03-03 20:05:59 +00003283
danielk1977fd7f0452008-12-17 17:30:26 +00003284 /* Link the new savepoint into the database handle's list. */
3285 pNew->pNext = db->pSavepoint;
3286 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00003287 pNew->nDeferredCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003288 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00003289 }
3290 }
3291 }else{
drh2ce9b6b2019-05-10 14:03:07 +00003292 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
drh856c1032009-06-02 15:21:42 +00003293 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00003294
3295 /* Find the named savepoint. If there is no such savepoint, then an
3296 ** an error is returned to the user. */
3297 for(
drh856c1032009-06-02 15:21:42 +00003298 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00003299 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00003300 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00003301 ){
3302 iSavepoint++;
3303 }
3304 if( !pSavepoint ){
drh22c17b82015-05-15 04:13:15 +00003305 sqlite3VdbeError(p, "no such savepoint: %s", zName);
danielk1977fd7f0452008-12-17 17:30:26 +00003306 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00003307 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00003308 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00003309 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00003310 */
drh22c17b82015-05-15 04:13:15 +00003311 sqlite3VdbeError(p, "cannot release savepoint - "
3312 "SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00003313 rc = SQLITE_BUSY;
3314 }else{
3315
3316 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00003317 ** and this is a RELEASE command, then the current transaction
3318 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00003319 */
3320 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3321 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00003322 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00003323 goto vdbe_return;
3324 }
danielk1977fd7f0452008-12-17 17:30:26 +00003325 db->autoCommit = 1;
3326 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00003327 p->pc = (int)(pOp - aOp);
danielk1977fd7f0452008-12-17 17:30:26 +00003328 db->autoCommit = 0;
3329 p->rc = rc = SQLITE_BUSY;
3330 goto vdbe_return;
3331 }
danielk197734cf35d2008-12-18 18:31:38 +00003332 rc = p->rc;
drh94649b62019-12-18 02:12:04 +00003333 if( rc ){
3334 db->autoCommit = 0;
3335 }else{
3336 db->isTransactionSavepoint = 0;
3337 }
danielk1977fd7f0452008-12-17 17:30:26 +00003338 }else{
drh47b7fc72014-11-11 01:33:57 +00003339 int isSchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00003340 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00003341 if( p1==SAVEPOINT_ROLLBACK ){
drh8257aa82017-07-26 19:59:13 +00003342 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
drh31f10052012-03-31 17:17:26 +00003343 for(ii=0; ii<db->nDb; ii++){
drh77b1dee2014-11-17 17:13:06 +00003344 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3345 SQLITE_ABORT_ROLLBACK,
drh47b7fc72014-11-11 01:33:57 +00003346 isSchemaChange==0);
dan80231042014-11-12 14:56:02 +00003347 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh31f10052012-03-31 17:17:26 +00003348 }
drh47b7fc72014-11-11 01:33:57 +00003349 }else{
drh2ce9b6b2019-05-10 14:03:07 +00003350 assert( p1==SAVEPOINT_RELEASE );
drh47b7fc72014-11-11 01:33:57 +00003351 isSchemaChange = 0;
drh0f198a72012-02-13 16:43:16 +00003352 }
3353 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00003354 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3355 if( rc!=SQLITE_OK ){
3356 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00003357 }
danielk1977fd7f0452008-12-17 17:30:26 +00003358 }
drh47b7fc72014-11-11 01:33:57 +00003359 if( isSchemaChange ){
drhba968db2018-07-24 22:02:12 +00003360 sqlite3ExpirePreparedStatements(db, 0);
drh81028a42012-05-15 18:28:27 +00003361 sqlite3ResetAllSchemasOfConnection(db);
drh8257aa82017-07-26 19:59:13 +00003362 db->mDbFlags |= DBFLAG_SchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00003363 }
3364 }
drh95866af2019-12-15 00:36:33 +00003365 if( rc ) goto abort_due_to_error;
danielk1977fd7f0452008-12-17 17:30:26 +00003366
3367 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3368 ** savepoints nested inside of the savepoint being operated on. */
3369 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00003370 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00003371 db->pSavepoint = pTmp->pNext;
3372 sqlite3DbFree(db, pTmp);
3373 db->nSavepoint--;
3374 }
3375
dan1da40a32009-09-19 17:00:31 +00003376 /* If it is a RELEASE, then destroy the savepoint being operated on
3377 ** too. If it is a ROLLBACK TO, then set the number of deferred
3378 ** constraint violations present in the database to the value stored
3379 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00003380 if( p1==SAVEPOINT_RELEASE ){
3381 assert( pSavepoint==db->pSavepoint );
3382 db->pSavepoint = pSavepoint->pNext;
3383 sqlite3DbFree(db, pSavepoint);
3384 if( !isTransaction ){
3385 db->nSavepoint--;
3386 }
dan1da40a32009-09-19 17:00:31 +00003387 }else{
drh2ce9b6b2019-05-10 14:03:07 +00003388 assert( p1==SAVEPOINT_ROLLBACK );
dan1da40a32009-09-19 17:00:31 +00003389 db->nDeferredCons = pSavepoint->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003390 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00003391 }
dand9495cd2011-04-27 12:08:04 +00003392
danea8562e2015-04-18 16:25:54 +00003393 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
dand9495cd2011-04-27 12:08:04 +00003394 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3395 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3396 }
danielk1977fd7f0452008-12-17 17:30:26 +00003397 }
3398 }
drh9467abf2016-02-17 18:44:11 +00003399 if( rc ) goto abort_due_to_error;
danielk1977fd7f0452008-12-17 17:30:26 +00003400
3401 break;
3402}
3403
drh98757152008-01-09 23:04:12 +00003404/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00003405**
3406** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00003407** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00003408** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3409** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00003410**
3411** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00003412*/
drh9cbf3422008-01-17 16:22:13 +00003413case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00003414 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00003415 int iRollback;
danielk19771d850a72004-05-31 08:26:49 +00003416
drh856c1032009-06-02 15:21:42 +00003417 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00003418 iRollback = pOp->p2;
drhad4a4b82008-11-05 16:37:34 +00003419 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00003420 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00003421 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00003422 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00003423
drhb0c88652016-02-01 13:21:13 +00003424 if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00003425 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00003426 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00003427 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00003428 db->autoCommit = 1;
drhb0c88652016-02-01 13:21:13 +00003429 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3430 /* If this instruction implements a COMMIT and other VMs are writing
3431 ** return an error indicating that the other VMs must complete first.
3432 */
3433 sqlite3VdbeError(p, "cannot commit transaction - "
3434 "SQL statements in progress");
3435 rc = SQLITE_BUSY;
drh9467abf2016-02-17 18:44:11 +00003436 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00003437 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00003438 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00003439 }else{
shane7d3846a2008-12-11 02:58:26 +00003440 db->autoCommit = (u8)desiredAutoCommit;
drh8ff25872015-07-31 18:59:56 +00003441 }
3442 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3443 p->pc = (int)(pOp - aOp);
3444 db->autoCommit = (u8)(1-desiredAutoCommit);
3445 p->rc = rc = SQLITE_BUSY;
3446 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003447 }
danielk1977fd7f0452008-12-17 17:30:26 +00003448 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00003449 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00003450 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00003451 }else{
drh900b31e2007-08-28 02:27:51 +00003452 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00003453 }
drh900b31e2007-08-28 02:27:51 +00003454 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003455 }else{
drh22c17b82015-05-15 04:13:15 +00003456 sqlite3VdbeError(p,
drhad4a4b82008-11-05 16:37:34 +00003457 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00003458 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00003459 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00003460
3461 rc = SQLITE_ERROR;
drh9467abf2016-02-17 18:44:11 +00003462 goto abort_due_to_error;
drh663fc632002-02-02 18:49:19 +00003463 }
drh8616cff2019-07-13 16:15:23 +00003464 /*NOTREACHED*/ assert(0);
drh663fc632002-02-02 18:49:19 +00003465}
3466
drhb22f7c82014-02-06 23:56:27 +00003467/* Opcode: Transaction P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003468**
drh05a86c52014-02-16 01:55:49 +00003469** Begin a transaction on database P1 if a transaction is not already
3470** active.
3471** If P2 is non-zero, then a write-transaction is started, or if a
3472** read-transaction is already active, it is upgraded to a write-transaction.
3473** If P2 is zero, then a read-transaction is started.
drh5e00f6c2001-09-13 13:46:56 +00003474**
drh001bbcb2003-03-19 03:14:00 +00003475** P1 is the index of the database file on which the transaction is
3476** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00003477** file used for temporary tables. Indices of 2 or more are used for
3478** attached databases.
drhcabb0812002-09-14 13:47:32 +00003479**
dane0af83a2009-09-08 19:15:01 +00003480** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3481** true (this flag is set if the Vdbe may modify more than one row and may
3482** throw an ABORT exception), a statement transaction may also be opened.
3483** More specifically, a statement transaction is opened iff the database
3484** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00003485** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00003486** VDBE to be rolled back after an error without having to roll back the
3487** entire transaction. If no error is encountered, the statement transaction
3488** will automatically commit when the VDBE halts.
3489**
drhb22f7c82014-02-06 23:56:27 +00003490** If P5!=0 then this opcode also checks the schema cookie against P3
3491** and the schema generation counter against P4.
3492** The cookie changes its value whenever the database schema changes.
3493** This operation is used to detect when that the cookie has changed
drh05a86c52014-02-16 01:55:49 +00003494** and that the current process needs to reread the schema. If the schema
3495** cookie in P3 differs from the schema cookie in the database header or
3496** if the schema generation counter in P4 differs from the current
3497** generation counter, then an SQLITE_SCHEMA error is raised and execution
3498** halts. The sqlite3_step() wrapper function might then reprepare the
3499** statement and rerun it from the beginning.
drh5e00f6c2001-09-13 13:46:56 +00003500*/
drh9cbf3422008-01-17 16:22:13 +00003501case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00003502 Btree *pBt;
drhbb2d9b12018-06-06 16:28:40 +00003503 int iMeta = 0;
danielk19771d850a72004-05-31 08:26:49 +00003504
drh1713afb2013-06-28 01:24:57 +00003505 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003506 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00003507 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003508 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh13447bf2013-07-10 13:33:49 +00003509 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3510 rc = SQLITE_READONLY;
3511 goto abort_due_to_error;
3512 }
drh653b82a2009-06-22 11:10:47 +00003513 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003514
danielk197724162fe2004-06-04 06:22:00 +00003515 if( pBt ){
drhbb2d9b12018-06-06 16:28:40 +00003516 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
drhcbd8db32015-08-20 17:18:32 +00003517 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3518 testcase( rc==SQLITE_BUSY_RECOVERY );
drh9e9f1bd2009-10-13 15:36:51 +00003519 if( rc!=SQLITE_OK ){
drhfadd2b12016-09-19 23:39:34 +00003520 if( (rc&0xff)==SQLITE_BUSY ){
3521 p->pc = (int)(pOp - aOp);
3522 p->rc = rc;
3523 goto vdbe_return;
3524 }
danielk197724162fe2004-06-04 06:22:00 +00003525 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003526 }
dane0af83a2009-09-08 19:15:01 +00003527
drh4d294482019-10-05 15:28:24 +00003528 if( p->usesStmtJournal
3529 && pOp->p2
danc0537fe2013-06-28 19:41:43 +00003530 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003531 ){
3532 assert( sqlite3BtreeIsInTrans(pBt) );
3533 if( p->iStatement==0 ){
3534 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3535 db->nStatement++;
3536 p->iStatement = db->nSavepoint + db->nStatement;
3537 }
dana311b802011-04-26 19:21:34 +00003538
drh346506f2011-05-25 01:16:42 +00003539 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003540 if( rc==SQLITE_OK ){
3541 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3542 }
dan1da40a32009-09-19 17:00:31 +00003543
3544 /* Store the current value of the database handles deferred constraint
3545 ** counter. If the statement transaction needs to be rolled back,
3546 ** the value of this counter needs to be restored too. */
3547 p->nStmtDefCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003548 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003549 }
drh397776a2018-06-06 17:45:51 +00003550 }
3551 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3552 if( pOp->p5
3553 && (iMeta!=pOp->p3
3554 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i)
3555 ){
3556 /*
drh96fdcb42016-09-27 00:09:33 +00003557 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3558 ** version is checked to ensure that the schema has not changed since the
3559 ** SQL statement was prepared.
drh51a74d42015-02-28 01:04:27 +00003560 */
drhb22f7c82014-02-06 23:56:27 +00003561 sqlite3DbFree(db, p->zErrMsg);
3562 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3563 /* If the schema-cookie from the database file matches the cookie
3564 ** stored with the in-memory representation of the schema, do
3565 ** not reload the schema from the database file.
3566 **
3567 ** If virtual-tables are in use, this is not just an optimization.
3568 ** Often, v-tables store their data in other SQLite tables, which
3569 ** are queried from within xNext() and other v-table methods using
3570 ** prepared queries. If such a query is out-of-date, we do not want to
3571 ** discard the database schema, as the user code implementing the
3572 ** v-table would have to be ready for the sqlite3_vtab structure itself
3573 ** to be invalidated whenever sqlite3_step() is called from within
3574 ** a v-table method.
3575 */
3576 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3577 sqlite3ResetOneSchema(db, pOp->p1);
3578 }
3579 p->expired = 1;
3580 rc = SQLITE_SCHEMA;
drhb86ccfb2003-01-28 23:13:10 +00003581 }
drh9467abf2016-02-17 18:44:11 +00003582 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003583 break;
3584}
3585
drhb1fdb2a2008-01-05 04:06:03 +00003586/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003587**
drh9cbf3422008-01-17 16:22:13 +00003588** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003589** P3==1 is the schema version. P3==2 is the database format.
3590** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003591** the main database file and P1==1 is the database file used to store
3592** temporary tables.
drh4a324312001-12-21 14:30:42 +00003593**
drh50e5dad2001-09-15 00:57:28 +00003594** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003595** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003596** executing this instruction.
3597*/
drh27a348c2015-04-13 19:14:06 +00003598case OP_ReadCookie: { /* out2 */
drhf328bc82004-05-10 23:29:49 +00003599 int iMeta;
drh856c1032009-06-02 15:21:42 +00003600 int iDb;
3601 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003602
drh1713afb2013-06-28 01:24:57 +00003603 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003604 iDb = pOp->p1;
3605 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003606 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003607 assert( iDb>=0 && iDb<db->nDb );
3608 assert( db->aDb[iDb].pBt!=0 );
drha7ab6d82014-07-21 15:44:39 +00003609 assert( DbMaskTest(p->btreeMask, iDb) );
danielk19770d19f7a2009-06-03 11:25:07 +00003610
danielk1977602b4662009-07-02 07:47:33 +00003611 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh27a348c2015-04-13 19:14:06 +00003612 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00003613 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003614 break;
3615}
3616
drh98757152008-01-09 23:04:12 +00003617/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003618**
drh1861afc2016-02-01 21:48:34 +00003619** Write the integer value P3 into cookie number P2 of database P1.
3620** P2==1 is the schema version. P2==2 is the database format.
3621** P2==3 is the recommended pager cache
danielk19770d19f7a2009-06-03 11:25:07 +00003622** size, and so forth. P1==0 is the main database file and P1==1 is the
3623** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003624**
3625** A transaction must be started before executing this opcode.
3626*/
drh1861afc2016-02-01 21:48:34 +00003627case OP_SetCookie: {
drh3f7d4e42004-07-24 14:35:58 +00003628 Db *pDb;
drh4031baf2018-05-28 17:31:20 +00003629
3630 sqlite3VdbeIncrWriteCounter(p, 0);
drh4a324312001-12-21 14:30:42 +00003631 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003632 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003633 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00003634 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003635 pDb = &db->aDb[pOp->p1];
3636 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003637 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drha3b321d2004-05-11 09:31:31 +00003638 /* See note about index shifting on OP_ReadCookie */
drh1861afc2016-02-01 21:48:34 +00003639 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
danielk19770d19f7a2009-06-03 11:25:07 +00003640 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003641 /* When the schema cookie changes, record the new cookie internally */
drh1861afc2016-02-01 21:48:34 +00003642 pDb->pSchema->schema_cookie = pOp->p3;
drh8257aa82017-07-26 19:59:13 +00003643 db->mDbFlags |= DBFLAG_SchemaChange;
danielk19770d19f7a2009-06-03 11:25:07 +00003644 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003645 /* Record changes in the file format */
drh1861afc2016-02-01 21:48:34 +00003646 pDb->pSchema->file_format = pOp->p3;
drh3f7d4e42004-07-24 14:35:58 +00003647 }
drhfd426c62006-01-30 15:34:22 +00003648 if( pOp->p1==1 ){
3649 /* Invalidate all prepared statements whenever the TEMP database
3650 ** schema is changed. Ticket #1644 */
drhba968db2018-07-24 22:02:12 +00003651 sqlite3ExpirePreparedStatements(db, 0);
danfa401de2009-10-16 14:55:03 +00003652 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003653 }
drh9467abf2016-02-17 18:44:11 +00003654 if( rc ) goto abort_due_to_error;
drh50e5dad2001-09-15 00:57:28 +00003655 break;
3656}
3657
drh98757152008-01-09 23:04:12 +00003658/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003659** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003660**
drhecdc7532001-09-23 02:35:53 +00003661** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003662** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003663** P3==0 means the main database, P3==1 means the database used for
3664** temporary tables, and P3>1 means used the corresponding attached
3665** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003666** values need not be contiguous but all P1 values should be small integers.
3667** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003668**
drh8e9deb62018-06-05 13:43:02 +00003669** Allowed P5 bits:
3670** <ul>
3671** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3672** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
drh576d0a92020-03-12 17:28:27 +00003673** of OP_SeekLE/OP_IdxLT)
drh8e9deb62018-06-05 13:43:02 +00003674** </ul>
drhb19a2bc2001-09-16 00:13:26 +00003675**
danielk1977d336e222009-02-20 10:58:41 +00003676** The P4 value may be either an integer (P4_INT32) or a pointer to
3677** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
drh8e9deb62018-06-05 13:43:02 +00003678** object, then table being opened must be an [index b-tree] where the
3679** KeyInfo object defines the content and collating
3680** sequence of that index b-tree. Otherwise, if P4 is an integer
3681** value, then the table being opened must be a [table b-tree] with a
3682** number of columns no less than the value of P4.
drhf57b3392001-10-08 13:22:32 +00003683**
drh35263192014-07-22 20:02:19 +00003684** See also: OpenWrite, ReopenIdx
3685*/
3686/* Opcode: ReopenIdx P1 P2 P3 P4 P5
3687** Synopsis: root=P2 iDb=P3
3688**
drh8e9deb62018-06-05 13:43:02 +00003689** The ReopenIdx opcode works like OP_OpenRead except that it first
3690** checks to see if the cursor on P1 is already open on the same
3691** b-tree and if it is this opcode becomes a no-op. In other words,
drh35263192014-07-22 20:02:19 +00003692** if the cursor is already open, do not reopen it.
3693**
drh8e9deb62018-06-05 13:43:02 +00003694** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
3695** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
3696** be the same as every other ReopenIdx or OpenRead for the same cursor
3697** number.
drh35263192014-07-22 20:02:19 +00003698**
drh8e9deb62018-06-05 13:43:02 +00003699** Allowed P5 bits:
3700** <ul>
3701** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3702** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
drh576d0a92020-03-12 17:28:27 +00003703** of OP_SeekLE/OP_IdxLT)
drh8e9deb62018-06-05 13:43:02 +00003704** </ul>
3705**
3706** See also: OP_OpenRead, OP_OpenWrite
drh5e00f6c2001-09-13 13:46:56 +00003707*/
drh98757152008-01-09 23:04:12 +00003708/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003709** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003710**
3711** Open a read/write cursor named P1 on the table or index whose root
drh8e9deb62018-06-05 13:43:02 +00003712** page is P2 (or whose root page is held in register P2 if the
3713** OPFLAG_P2ISREG bit is set in P5 - see below).
drhecdc7532001-09-23 02:35:53 +00003714**
danielk1977d336e222009-02-20 10:58:41 +00003715** The P4 value may be either an integer (P4_INT32) or a pointer to
3716** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
drh8e9deb62018-06-05 13:43:02 +00003717** object, then table being opened must be an [index b-tree] where the
3718** KeyInfo object defines the content and collating
3719** sequence of that index b-tree. Otherwise, if P4 is an integer
3720** value, then the table being opened must be a [table b-tree] with a
3721** number of columns no less than the value of P4.
jplyon5a564222003-06-02 06:15:58 +00003722**
drh8e9deb62018-06-05 13:43:02 +00003723** Allowed P5 bits:
3724** <ul>
3725** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3726** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
drh576d0a92020-03-12 17:28:27 +00003727** of OP_SeekLE/OP_IdxLT)
drh8e9deb62018-06-05 13:43:02 +00003728** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
3729** and subsequently delete entries in an index btree. This is a
3730** hint to the storage engine that the storage engine is allowed to
3731** ignore. The hint is not used by the official SQLite b*tree storage
3732** engine, but is used by COMDB2.
3733** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
3734** as the root page, not the value of P2 itself.
3735** </ul>
drhf57b3392001-10-08 13:22:32 +00003736**
drh8e9deb62018-06-05 13:43:02 +00003737** This instruction works like OpenRead except that it opens the cursor
3738** in read/write mode.
3739**
3740** See also: OP_OpenRead, OP_ReopenIdx
drhecdc7532001-09-23 02:35:53 +00003741*/
drh35263192014-07-22 20:02:19 +00003742case OP_ReopenIdx: {
drh856c1032009-06-02 15:21:42 +00003743 int nField;
3744 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003745 int p2;
3746 int iDb;
drhf57b3392001-10-08 13:22:32 +00003747 int wrFlag;
3748 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003749 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003750 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003751
drhe0997b32015-03-20 14:57:50 +00003752 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh35263192014-07-22 20:02:19 +00003753 assert( pOp->p4type==P4_KEYINFO );
3754 pCur = p->apCsr[pOp->p1];
drhe8f2c9d2014-08-06 17:49:13 +00003755 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
drh35263192014-07-22 20:02:19 +00003756 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
drhe0997b32015-03-20 14:57:50 +00003757 goto open_cursor_set_hints;
drh35263192014-07-22 20:02:19 +00003758 }
3759 /* If the cursor is not currently open or is open on a different
3760 ** index, then fall through into OP_OpenRead to force a reopen */
drh5e00f6c2001-09-13 13:46:56 +00003761case OP_OpenRead:
drh1fa509a2015-03-20 16:34:49 +00003762case OP_OpenWrite:
drh856c1032009-06-02 15:21:42 +00003763
drhe0997b32015-03-20 14:57:50 +00003764 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh1713afb2013-06-28 01:24:57 +00003765 assert( p->bIsReader );
drh35263192014-07-22 20:02:19 +00003766 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3767 || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003768
drhba968db2018-07-24 22:02:12 +00003769 if( p->expired==1 ){
drh47b7fc72014-11-11 01:33:57 +00003770 rc = SQLITE_ABORT_ROLLBACK;
drh9467abf2016-02-17 18:44:11 +00003771 goto abort_due_to_error;
danfa401de2009-10-16 14:55:03 +00003772 }
3773
drh856c1032009-06-02 15:21:42 +00003774 nField = 0;
3775 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003776 p2 = pOp->p2;
3777 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003778 assert( iDb>=0 && iDb<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003779 assert( DbMaskTest(p->btreeMask, iDb) );
drhd946db02005-12-29 19:23:06 +00003780 pDb = &db->aDb[iDb];
3781 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003782 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003783 if( pOp->opcode==OP_OpenWrite ){
danfd261ec2015-10-22 20:54:33 +00003784 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3785 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
drh21206082011-04-04 18:22:02 +00003786 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003787 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3788 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003789 }
3790 }else{
3791 wrFlag = 0;
3792 }
dan428c2182012-08-06 18:50:11 +00003793 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003794 assert( p2>0 );
drh9f6168b2016-03-19 23:32:58 +00003795 assert( p2<=(p->nMem+1 - p->nCursor) );
drh8e9deb62018-06-05 13:43:02 +00003796 assert( pOp->opcode==OP_OpenWrite );
drha6c2ed92009-11-14 23:22:23 +00003797 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003798 assert( memIsValid(pIn2) );
3799 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003800 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003801 p2 = (int)pIn2->u.i;
drh0f3f7662017-08-18 14:34:28 +00003802 /* The p2 value always comes from a prior OP_CreateBtree opcode and
drh9a65f2c2009-06-22 19:05:40 +00003803 ** that opcode will always set the p2 value to 2 or more or else fail.
3804 ** If there were a failure, the prepared statement would have halted
3805 ** before reaching this instruction. */
drh9467abf2016-02-17 18:44:11 +00003806 assert( p2>=2 );
drh5edc3122001-09-13 21:53:09 +00003807 }
danielk1977d336e222009-02-20 10:58:41 +00003808 if( pOp->p4type==P4_KEYINFO ){
3809 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003810 assert( pKeyInfo->enc==ENC(db) );
3811 assert( pKeyInfo->db==db );
drha485ad12017-08-02 22:43:14 +00003812 nField = pKeyInfo->nAllField;
danielk1977d336e222009-02-20 10:58:41 +00003813 }else if( pOp->p4type==P4_INT32 ){
3814 nField = pOp->p4.i;
3815 }
drh653b82a2009-06-22 11:10:47 +00003816 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003817 assert( nField>=0 );
3818 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
drhc960dcb2015-11-20 19:22:01 +00003819 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
drh4774b132004-06-12 20:12:51 +00003820 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003821 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003822 pCur->isOrdered = 1;
drh35263192014-07-22 20:02:19 +00003823 pCur->pgnoRoot = p2;
drhb89aeb62016-01-27 15:49:32 +00003824#ifdef SQLITE_DEBUG
3825 pCur->wrFlag = wrFlag;
3826#endif
drhc960dcb2015-11-20 19:22:01 +00003827 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
danielk1977d336e222009-02-20 10:58:41 +00003828 pCur->pKeyInfo = pKeyInfo;
drh14da87f2013-11-20 21:51:33 +00003829 /* Set the VdbeCursor.isTable variable. Previous versions of
danielk1977172114a2009-07-07 15:47:12 +00003830 ** SQLite used to check if the root-page flags were sane at this point
3831 ** and report database corruption if they were not, but this check has
3832 ** since moved into the btree layer. */
3833 pCur->isTable = pOp->p4type!=P4_KEYINFO;
drhe0997b32015-03-20 14:57:50 +00003834
3835open_cursor_set_hints:
3836 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3837 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
drh0403cb32015-08-14 23:57:04 +00003838 testcase( pOp->p5 & OPFLAG_BULKCSR );
drh0403cb32015-08-14 23:57:04 +00003839 testcase( pOp->p2 & OPFLAG_SEEKEQ );
drhc960dcb2015-11-20 19:22:01 +00003840 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
drhf7854c72015-10-27 13:24:37 +00003841 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
drh9467abf2016-02-17 18:44:11 +00003842 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003843 break;
3844}
3845
drhe08e8d62017-05-01 15:15:41 +00003846/* Opcode: OpenDup P1 P2 * * *
3847**
3848** Open a new cursor P1 that points to the same ephemeral table as
3849** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
3850** opcode. Only ephemeral cursors may be duplicated.
3851**
3852** Duplicate ephemeral cursors are used for self-joins of materialized views.
3853*/
3854case OP_OpenDup: {
3855 VdbeCursor *pOrig; /* The original cursor to be duplicated */
3856 VdbeCursor *pCx; /* The new cursor */
3857
3858 pOrig = p->apCsr[pOp->p2];
dan2811ea62019-12-23 14:20:46 +00003859 assert( pOrig );
drhe08e8d62017-05-01 15:15:41 +00003860 assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */
3861
3862 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
3863 if( pCx==0 ) goto no_mem;
3864 pCx->nullRow = 1;
3865 pCx->isEphemeral = 1;
3866 pCx->pKeyInfo = pOrig->pKeyInfo;
3867 pCx->isTable = pOrig->isTable;
drh2c041312018-12-24 02:34:49 +00003868 pCx->pgnoRoot = pOrig->pgnoRoot;
dana0f6b832019-03-14 16:36:20 +00003869 pCx->isOrdered = pOrig->isOrdered;
drh2c041312018-12-24 02:34:49 +00003870 rc = sqlite3BtreeCursor(pOrig->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
drhe08e8d62017-05-01 15:15:41 +00003871 pCx->pKeyInfo, pCx->uc.pCursor);
drh3f4df4c2017-05-02 17:54:19 +00003872 /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3873 ** opened for a database. Since there is already an open cursor when this
3874 ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3875 assert( rc==SQLITE_OK );
drhe08e8d62017-05-01 15:15:41 +00003876 break;
3877}
3878
3879
drh2a5d9902011-08-26 00:34:45 +00003880/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003881** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003882**
drhb9bb7c12006-06-11 23:41:55 +00003883** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003884** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003885** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003886** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003887**
drhdfe3b582019-01-04 12:35:50 +00003888** If the cursor P1 is already opened on an ephemeral table, the table
drh4afdfa12018-12-31 16:36:42 +00003889** is cleared (all content is erased).
3890**
drh25d3adb2010-04-05 15:11:08 +00003891** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003892** The cursor points to a BTree table if P4==0 and to a BTree index
3893** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003894** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003895**
drh2a5d9902011-08-26 00:34:45 +00003896** The P5 parameter can be a mask of the BTREE_* flags defined
3897** in btree.h. These flags control aspects of the operation of
3898** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3899** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003900*/
drha21a64d2010-04-06 22:33:55 +00003901/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003902** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003903**
3904** This opcode works the same as OP_OpenEphemeral. It has a
3905** different name to distinguish its use. Tables created using
3906** by this opcode will be used for automatically created transient
3907** indices in joins.
3908*/
3909case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003910case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003911 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003912 KeyInfo *pKeyInfo;
3913
drhd4187c72010-08-30 22:15:45 +00003914 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003915 SQLITE_OPEN_READWRITE |
3916 SQLITE_OPEN_CREATE |
3917 SQLITE_OPEN_EXCLUSIVE |
3918 SQLITE_OPEN_DELETEONCLOSE |
3919 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003920 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003921 assert( pOp->p2>=0 );
drh4afdfa12018-12-31 16:36:42 +00003922 pCx = p->apCsr[pOp->p1];
drh1ee02a12020-01-18 13:53:46 +00003923 if( pCx && pCx->pBtx ){
drh4afdfa12018-12-31 16:36:42 +00003924 /* If the ephermeral table is already open, erase all existing content
3925 ** so that the table is empty again, rather than creating a new table. */
dana5129722019-05-03 18:50:24 +00003926 assert( pCx->isEphemeral );
dan855b5d12019-06-26 21:04:30 +00003927 pCx->seqCount = 0;
3928 pCx->cacheStatus = CACHE_STALE;
drh1ee02a12020-01-18 13:53:46 +00003929 rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0);
drhd0fb7962018-12-31 17:58:05 +00003930 }else{
3931 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3932 if( pCx==0 ) goto no_mem;
drhd0fb7962018-12-31 17:58:05 +00003933 pCx->isEphemeral = 1;
3934 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
3935 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
3936 vfsFlags);
3937 if( rc==SQLITE_OK ){
3938 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0);
drhc6b52df2002-01-04 03:09:29 +00003939 }
drhd0fb7962018-12-31 17:58:05 +00003940 if( rc==SQLITE_OK ){
3941 /* If a transient index is required, create it by calling
3942 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3943 ** opening it. If a transient table is required, just use the
3944 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3945 */
3946 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3947 assert( pOp->p4type==P4_KEYINFO );
3948 rc = sqlite3BtreeCreateTable(pCx->pBtx, (int*)&pCx->pgnoRoot,
3949 BTREE_BLOBKEY | pOp->p5);
3950 if( rc==SQLITE_OK ){
3951 assert( pCx->pgnoRoot==MASTER_ROOT+1 );
3952 assert( pKeyInfo->db==db );
3953 assert( pKeyInfo->enc==ENC(db) );
3954 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
3955 pKeyInfo, pCx->uc.pCursor);
3956 }
3957 pCx->isTable = 0;
3958 }else{
3959 pCx->pgnoRoot = MASTER_ROOT;
3960 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
3961 0, pCx->uc.pCursor);
3962 pCx->isTable = 1;
3963 }
3964 }
3965 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
drh5e00f6c2001-09-13 13:46:56 +00003966 }
drh9467abf2016-02-17 18:44:11 +00003967 if( rc ) goto abort_due_to_error;
dan855b5d12019-06-26 21:04:30 +00003968 pCx->nullRow = 1;
dan5134d132011-09-02 10:31:11 +00003969 break;
3970}
3971
danfad9f9a2014-04-01 18:41:51 +00003972/* Opcode: SorterOpen P1 P2 P3 P4 *
dan5134d132011-09-02 10:31:11 +00003973**
3974** This opcode works like OP_OpenEphemeral except that it opens
3975** a transient index that is specifically designed to sort large
3976** tables using an external merge-sort algorithm.
danfad9f9a2014-04-01 18:41:51 +00003977**
3978** If argument P3 is non-zero, then it indicates that the sorter may
3979** assume that a stable sort considering the first P3 fields of each
3980** key is sufficient to produce the required results.
dan5134d132011-09-02 10:31:11 +00003981*/
drhca892a72011-09-03 00:17:51 +00003982case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003983 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003984
drh399af1d2013-11-20 17:25:55 +00003985 assert( pOp->p1>=0 );
3986 assert( pOp->p2>=0 );
drhc960dcb2015-11-20 19:22:01 +00003987 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
dan5134d132011-09-02 10:31:11 +00003988 if( pCx==0 ) goto no_mem;
3989 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003990 assert( pCx->pKeyInfo->db==db );
3991 assert( pCx->pKeyInfo->enc==ENC(db) );
danfad9f9a2014-04-01 18:41:51 +00003992 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
drh9467abf2016-02-17 18:44:11 +00003993 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003994 break;
3995}
3996
dan78d58432014-03-25 15:04:07 +00003997/* Opcode: SequenceTest P1 P2 * * *
3998** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3999**
4000** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4001** to P2. Regardless of whether or not the jump is taken, increment the
4002** the sequence value.
4003*/
4004case OP_SequenceTest: {
4005 VdbeCursor *pC;
4006 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4007 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00004008 assert( isSorter(pC) );
dan78d58432014-03-25 15:04:07 +00004009 if( (pC->seqCount++)==0 ){
drhf56fa462015-04-13 21:39:54 +00004010 goto jump_to_p2;
dan78d58432014-03-25 15:04:07 +00004011 }
drh5e00f6c2001-09-13 13:46:56 +00004012 break;
4013}
4014
drh5f612292014-02-08 23:20:32 +00004015/* Opcode: OpenPseudo P1 P2 P3 * *
drh60830e32014-02-10 15:56:34 +00004016** Synopsis: P3 columns in r[P2]
drh70ce3f02003-04-15 19:22:22 +00004017**
4018** Open a new cursor that points to a fake table that contains a single
drh5f612292014-02-08 23:20:32 +00004019** row of data. The content of that one row is the content of memory
4020** register P2. In other words, cursor P1 becomes an alias for the
4021** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00004022**
drh2d8d7ce2010-02-15 15:17:05 +00004023** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00004024** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00004025** individual columns using the OP_Column opcode. The OP_Column opcode
4026** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00004027**
4028** P3 is the number of fields in the records that will be stored by
4029** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004030*/
drh9cbf3422008-01-17 16:22:13 +00004031case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00004032 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00004033
drh653b82a2009-06-22 11:10:47 +00004034 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00004035 assert( pOp->p3>=0 );
drhc960dcb2015-11-20 19:22:01 +00004036 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
drh4774b132004-06-12 20:12:51 +00004037 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00004038 pCx->nullRow = 1;
drhfe0cf7a2017-08-16 19:20:20 +00004039 pCx->seekResult = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00004040 pCx->isTable = 1;
drhfe0cf7a2017-08-16 19:20:20 +00004041 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4042 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
4043 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4044 ** which is a performance optimization */
4045 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
drh5f612292014-02-08 23:20:32 +00004046 assert( pOp->p5==0 );
drh70ce3f02003-04-15 19:22:22 +00004047 break;
4048}
4049
drh98757152008-01-09 23:04:12 +00004050/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00004051**
4052** Close a cursor previously opened as P1. If P1 is not
4053** currently open, this instruction is a no-op.
4054*/
drh9cbf3422008-01-17 16:22:13 +00004055case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00004056 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4057 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4058 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00004059 break;
4060}
4061
drh97bae792015-06-05 15:59:57 +00004062#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4063/* Opcode: ColumnsUsed P1 * * P4 *
4064**
4065** This opcode (which only exists if SQLite was compiled with
4066** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4067** table or index for cursor P1 are used. P4 is a 64-bit integer
4068** (P4_INT64) in which the first 63 bits are one for each of the
4069** first 63 columns of the table or index that are actually used
4070** by the cursor. The high-order bit is set if any column after
4071** the 64th is used.
4072*/
4073case OP_ColumnsUsed: {
4074 VdbeCursor *pC;
4075 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00004076 assert( pC->eCurType==CURTYPE_BTREE );
drh97bae792015-06-05 15:59:57 +00004077 pC->maskUsed = *(u64*)pOp->p4.pI64;
4078 break;
4079}
4080#endif
4081
drh8af3f772014-07-25 18:01:06 +00004082/* Opcode: SeekGE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00004083** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00004084**
danielk1977b790c6c2008-04-18 10:25:24 +00004085** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00004086** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00004087** to an SQL index, then P3 is the first in an array of P4 registers
4088** that are used as an unpacked index key.
4089**
4090** Reposition cursor P1 so that it points to the smallest entry that
4091** is greater than or equal to the key value. If there are no records
4092** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00004093**
drhb1d607d2015-11-05 22:30:54 +00004094** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
drh576d0a92020-03-12 17:28:27 +00004095** opcode will either land on a record that exactly matches the key, or
4096** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4097** this opcode must be followed by an IdxLE opcode with the same arguments.
4098** The IdxGT opcode will be skipped if this opcode succeeds, but the
4099** IdxGT opcode will be used on subsequent loop iterations. The
4100** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4101** is an equality search.
drhb1d607d2015-11-05 22:30:54 +00004102**
drh8af3f772014-07-25 18:01:06 +00004103** This opcode leaves the cursor configured to move in forward order,
drhbc5cf382014-08-06 01:08:07 +00004104** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004105** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00004106**
drh935850e2014-05-24 17:15:15 +00004107** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00004108*/
drh8af3f772014-07-25 18:01:06 +00004109/* Opcode: SeekGT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00004110** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00004111**
danielk1977b790c6c2008-04-18 10:25:24 +00004112** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00004113** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00004114** to an SQL index, then P3 is the first in an array of P4 registers
4115** that are used as an unpacked index key.
4116**
drh576d0a92020-03-12 17:28:27 +00004117** Reposition cursor P1 so that it points to the smallest entry that
danielk1977b790c6c2008-04-18 10:25:24 +00004118** is greater than the key value. If there are no records greater than
4119** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00004120**
drh8af3f772014-07-25 18:01:06 +00004121** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00004122** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004123** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00004124**
drh935850e2014-05-24 17:15:15 +00004125** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00004126*/
drh8af3f772014-07-25 18:01:06 +00004127/* Opcode: SeekLT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00004128** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00004129**
danielk1977b790c6c2008-04-18 10:25:24 +00004130** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00004131** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00004132** to an SQL index, then P3 is the first in an array of P4 registers
4133** that are used as an unpacked index key.
4134**
4135** Reposition cursor P1 so that it points to the largest entry that
4136** is less than the key value. If there are no records less than
4137** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00004138**
drh8af3f772014-07-25 18:01:06 +00004139** This opcode leaves the cursor configured to move in reverse order,
4140** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004141** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00004142**
drh935850e2014-05-24 17:15:15 +00004143** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00004144*/
drh8af3f772014-07-25 18:01:06 +00004145/* Opcode: SeekLE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00004146** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00004147**
danielk1977b790c6c2008-04-18 10:25:24 +00004148** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00004149** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00004150** to an SQL index, then P3 is the first in an array of P4 registers
4151** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00004152**
danielk1977b790c6c2008-04-18 10:25:24 +00004153** Reposition cursor P1 so that it points to the largest entry that
4154** is less than or equal to the key value. If there are no records
4155** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00004156**
drh8af3f772014-07-25 18:01:06 +00004157** This opcode leaves the cursor configured to move in reverse order,
4158** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004159** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00004160**
drhb1d607d2015-11-05 22:30:54 +00004161** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
drh576d0a92020-03-12 17:28:27 +00004162** opcode will either land on a record that exactly matches the key, or
4163** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4164** this opcode must be followed by an IdxLE opcode with the same arguments.
drhb1d607d2015-11-05 22:30:54 +00004165** The IdxGE opcode will be skipped if this opcode succeeds, but the
drh576d0a92020-03-12 17:28:27 +00004166** IdxGE opcode will be used on subsequent loop iterations. The
4167** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4168** is an equality search.
drhb1d607d2015-11-05 22:30:54 +00004169**
drh935850e2014-05-24 17:15:15 +00004170** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00004171*/
mistachkin758784d2018-07-25 15:12:29 +00004172case OP_SeekLT: /* jump, in3, group */
4173case OP_SeekLE: /* jump, in3, group */
4174case OP_SeekGE: /* jump, in3, group */
4175case OP_SeekGT: { /* jump, in3, group */
drhb1d607d2015-11-05 22:30:54 +00004176 int res; /* Comparison result */
4177 int oc; /* Opcode */
4178 VdbeCursor *pC; /* The cursor to seek */
4179 UnpackedRecord r; /* The key to seek for */
4180 int nField; /* Number of columns or fields in the key */
4181 i64 iKey; /* The rowid we are to seek to */
drhd6b79462015-11-07 01:19:00 +00004182 int eqOnly; /* Only interested in == results */
drh80ff32f2001-11-04 18:32:46 +00004183
drh653b82a2009-06-22 11:10:47 +00004184 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00004185 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00004186 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004187 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004188 assert( pC->eCurType==CURTYPE_BTREE );
drh4a1d3652014-02-14 15:13:36 +00004189 assert( OP_SeekLE == OP_SeekLT+1 );
4190 assert( OP_SeekGE == OP_SeekLT+2 );
4191 assert( OP_SeekGT == OP_SeekLT+3 );
drhd4187c72010-08-30 22:15:45 +00004192 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00004193 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00004194 oc = pOp->opcode;
drhd6b79462015-11-07 01:19:00 +00004195 eqOnly = 0;
drh3da046d2013-11-11 03:24:11 +00004196 pC->nullRow = 0;
drh8af3f772014-07-25 18:01:06 +00004197#ifdef SQLITE_DEBUG
4198 pC->seekOp = pOp->opcode;
4199#endif
drhe0997b32015-03-20 14:57:50 +00004200
dana40cb962019-05-14 20:25:22 +00004201 pC->deferredMoveto = 0;
4202 pC->cacheStatus = CACHE_STALE;
drh3da046d2013-11-11 03:24:11 +00004203 if( pC->isTable ){
drh3e364802019-08-22 00:53:16 +00004204 u16 flags3, newType;
drh576d0a92020-03-12 17:28:27 +00004205 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
drh218c66e2016-12-27 12:35:36 +00004206 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4207 || CORRUPT_DB );
drhd6b79462015-11-07 01:19:00 +00004208
drh3da046d2013-11-11 03:24:11 +00004209 /* The input value in P3 might be of any type: integer, real, string,
4210 ** blob, or NULL. But it needs to be an integer before we can do
peter.d.reid60ec9142014-09-06 16:39:46 +00004211 ** the seek, so convert it. */
drh3da046d2013-11-11 03:24:11 +00004212 pIn3 = &aMem[pOp->p3];
drh3e364802019-08-22 00:53:16 +00004213 flags3 = pIn3->flags;
4214 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
drhbd9507c2014-08-23 17:21:37 +00004215 applyNumericAffinity(pIn3, 0);
4216 }
drh3e364802019-08-22 00:53:16 +00004217 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4218 newType = pIn3->flags; /* Record the type after applying numeric affinity */
4219 pIn3->flags = flags3; /* But convert the type back to its original */
drh959403f2008-12-12 17:56:16 +00004220
drh3da046d2013-11-11 03:24:11 +00004221 /* If the P3 value could not be converted into an integer without
4222 ** loss of information, then special processing is required... */
drh3e364802019-08-22 00:53:16 +00004223 if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4224 if( (newType & MEM_Real)==0 ){
4225 if( (newType & MEM_Null) || oc>=OP_SeekGE ){
drh8616cff2019-07-13 16:15:23 +00004226 VdbeBranchTaken(1,2);
4227 goto jump_to_p2;
dan9edd8c12019-05-08 11:42:49 +00004228 }else{
dan873b0192019-05-09 11:19:27 +00004229 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4230 if( rc!=SQLITE_OK ) goto abort_due_to_error;
dan9edd8c12019-05-08 11:42:49 +00004231 goto seek_not_found;
4232 }
4233 }else
drh959403f2008-12-12 17:56:16 +00004234
danaa1776f2013-11-26 18:22:59 +00004235 /* If the approximation iKey is larger than the actual real search
4236 ** term, substitute >= for > and < for <=. e.g. if the search term
4237 ** is 4.9 and the integer approximation 5:
4238 **
4239 ** (x > 4.9) -> (x >= 5)
4240 ** (x <= 4.9) -> (x < 5)
4241 */
drh74eaba42014-09-18 17:52:15 +00004242 if( pIn3->u.r<(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00004243 assert( OP_SeekGE==(OP_SeekGT-1) );
4244 assert( OP_SeekLT==(OP_SeekLE-1) );
4245 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4246 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
danaa1776f2013-11-26 18:22:59 +00004247 }
4248
4249 /* If the approximation iKey is smaller than the actual real search
4250 ** term, substitute <= for < and > for >=. */
drh74eaba42014-09-18 17:52:15 +00004251 else if( pIn3->u.r>(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00004252 assert( OP_SeekLE==(OP_SeekLT+1) );
4253 assert( OP_SeekGT==(OP_SeekGE+1) );
4254 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4255 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
drh8721ce42001-11-07 14:22:00 +00004256 }
dan9edd8c12019-05-08 11:42:49 +00004257 }
drhc960dcb2015-11-20 19:22:01 +00004258 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00004259 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00004260 if( rc!=SQLITE_OK ){
4261 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00004262 }
drhaa736092009-06-22 00:55:30 +00004263 }else{
drh576d0a92020-03-12 17:28:27 +00004264 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4265 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4266 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4267 ** with the same key.
drhd6b79462015-11-07 01:19:00 +00004268 */
drhc960dcb2015-11-20 19:22:01 +00004269 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
drhd6b79462015-11-07 01:19:00 +00004270 eqOnly = 1;
4271 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4272 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
drh576d0a92020-03-12 17:28:27 +00004273 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
4274 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
drhd6b79462015-11-07 01:19:00 +00004275 assert( pOp[1].p1==pOp[0].p1 );
4276 assert( pOp[1].p2==pOp[0].p2 );
4277 assert( pOp[1].p3==pOp[0].p3 );
4278 assert( pOp[1].p4.i==pOp[0].p4.i );
4279 }
4280
drh3da046d2013-11-11 03:24:11 +00004281 nField = pOp->p4.i;
4282 assert( pOp->p4type==P4_INT32 );
4283 assert( nField>0 );
4284 r.pKeyInfo = pC->pKeyInfo;
4285 r.nField = (u16)nField;
4286
4287 /* The next line of code computes as follows, only faster:
drh4a1d3652014-02-14 15:13:36 +00004288 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
dan1fed5da2014-02-25 21:01:25 +00004289 ** r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00004290 ** }else{
dan1fed5da2014-02-25 21:01:25 +00004291 ** r.default_rc = +1;
drh3da046d2013-11-11 03:24:11 +00004292 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00004293 */
dan1fed5da2014-02-25 21:01:25 +00004294 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4295 assert( oc!=OP_SeekGT || r.default_rc==-1 );
4296 assert( oc!=OP_SeekLE || r.default_rc==-1 );
4297 assert( oc!=OP_SeekGE || r.default_rc==+1 );
4298 assert( oc!=OP_SeekLT || r.default_rc==+1 );
drh3da046d2013-11-11 03:24:11 +00004299
4300 r.aMem = &aMem[pOp->p3];
4301#ifdef SQLITE_DEBUG
4302 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4303#endif
drh70528d72015-11-05 20:25:09 +00004304 r.eqSeen = 0;
drhc960dcb2015-11-20 19:22:01 +00004305 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
drh3da046d2013-11-11 03:24:11 +00004306 if( rc!=SQLITE_OK ){
4307 goto abort_due_to_error;
4308 }
drhb1d607d2015-11-05 22:30:54 +00004309 if( eqOnly && r.eqSeen==0 ){
4310 assert( res!=0 );
4311 goto seek_not_found;
drh70528d72015-11-05 20:25:09 +00004312 }
drh3da046d2013-11-11 03:24:11 +00004313 }
drh3da046d2013-11-11 03:24:11 +00004314#ifdef SQLITE_TEST
4315 sqlite3_search_count++;
4316#endif
drh4a1d3652014-02-14 15:13:36 +00004317 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
4318 if( res<0 || (res==0 && oc==OP_SeekGT) ){
drhe39a7322014-02-03 14:04:11 +00004319 res = 0;
drh2ab792e2017-05-30 18:34:07 +00004320 rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4321 if( rc!=SQLITE_OK ){
4322 if( rc==SQLITE_DONE ){
4323 rc = SQLITE_OK;
4324 res = 1;
4325 }else{
4326 goto abort_due_to_error;
4327 }
4328 }
drh3da046d2013-11-11 03:24:11 +00004329 }else{
4330 res = 0;
4331 }
4332 }else{
drh4a1d3652014-02-14 15:13:36 +00004333 assert( oc==OP_SeekLT || oc==OP_SeekLE );
4334 if( res>0 || (res==0 && oc==OP_SeekLT) ){
drhe39a7322014-02-03 14:04:11 +00004335 res = 0;
drh2ab792e2017-05-30 18:34:07 +00004336 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4337 if( rc!=SQLITE_OK ){
4338 if( rc==SQLITE_DONE ){
4339 rc = SQLITE_OK;
4340 res = 1;
4341 }else{
4342 goto abort_due_to_error;
4343 }
4344 }
drh3da046d2013-11-11 03:24:11 +00004345 }else{
4346 /* res might be negative because the table is empty. Check to
4347 ** see if this is the case.
4348 */
drhc960dcb2015-11-20 19:22:01 +00004349 res = sqlite3BtreeEof(pC->uc.pCursor);
drh3da046d2013-11-11 03:24:11 +00004350 }
4351 }
drhb1d607d2015-11-05 22:30:54 +00004352seek_not_found:
drh3da046d2013-11-11 03:24:11 +00004353 assert( pOp->p2>0 );
drh688852a2014-02-17 22:40:43 +00004354 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00004355 if( res ){
drhf56fa462015-04-13 21:39:54 +00004356 goto jump_to_p2;
drhb1d607d2015-11-05 22:30:54 +00004357 }else if( eqOnly ){
4358 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4359 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
drh5e00f6c2001-09-13 13:46:56 +00004360 }
drh5e00f6c2001-09-13 13:46:56 +00004361 break;
4362}
dan71c57db2016-07-09 20:23:55 +00004363
drh8c2b6d72018-06-05 20:45:20 +00004364/* Opcode: SeekHit P1 P2 * * *
4365** Synopsis: seekHit=P2
4366**
4367** Set the seekHit flag on cursor P1 to the value in P2.
dan74ebaad2020-01-04 16:55:57 +00004368* The seekHit flag is used by the IfNoHope opcode.
drh8c2b6d72018-06-05 20:45:20 +00004369**
4370** P1 must be a valid b-tree cursor. P2 must be a boolean value,
4371** either 0 or 1.
4372*/
4373case OP_SeekHit: {
4374 VdbeCursor *pC;
4375 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4376 pC = p->apCsr[pOp->p1];
4377 assert( pC!=0 );
4378 assert( pOp->p2==0 || pOp->p2==1 );
4379 pC->seekHit = pOp->p2 & 1;
4380 break;
4381}
4382
dan74ebaad2020-01-04 16:55:57 +00004383/* Opcode: IfNotOpen P1 P2 * * *
4384** Synopsis: if( !csr[P1] ) goto P2
4385**
4386** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through.
4387*/
4388case OP_IfNotOpen: { /* jump */
4389 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh56ea69b2020-01-04 18:33:20 +00004390 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2);
dan74ebaad2020-01-04 16:55:57 +00004391 if( !p->apCsr[pOp->p1] ){
4392 goto jump_to_p2_and_check_for_interrupt;
4393 }
4394 break;
4395}
4396
drh8cff69d2009-11-12 19:59:44 +00004397/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00004398** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00004399**
drh8cff69d2009-11-12 19:59:44 +00004400** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4401** P4>0 then register P3 is the first of P4 registers that form an unpacked
4402** record.
4403**
4404** Cursor P1 is on an index btree. If the record identified by P3 and P4
4405** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00004406** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00004407**
drhcefc87f2014-08-01 01:40:33 +00004408** This operation leaves the cursor in a state where it can be
4409** advanced in the forward direction. The Next instruction will work,
4410** but not the Prev instruction.
drh8af3f772014-07-25 18:01:06 +00004411**
drh6f225d02013-10-26 13:36:51 +00004412** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00004413*/
drh8cff69d2009-11-12 19:59:44 +00004414/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00004415** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00004416**
drh8cff69d2009-11-12 19:59:44 +00004417** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4418** P4>0 then register P3 is the first of P4 registers that form an unpacked
4419** record.
4420**
4421** Cursor P1 is on an index btree. If the record identified by P3 and P4
4422** is not the prefix of any entry in P1 then a jump is made to P2. If P1
4423** does contain an entry whose prefix matches the P3/P4 record then control
4424** falls through to the next instruction and P1 is left pointing at the
4425** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00004426**
drh8af3f772014-07-25 18:01:06 +00004427** This operation leaves the cursor in a state where it cannot be
4428** advanced in either direction. In other words, the Next and Prev
4429** opcodes do not work after this operation.
4430**
drh8c2b6d72018-06-05 20:45:20 +00004431** See also: Found, NotExists, NoConflict, IfNoHope
4432*/
4433/* Opcode: IfNoHope P1 P2 P3 P4 *
4434** Synopsis: key=r[P3@P4]
4435**
4436** Register P3 is the first of P4 registers that form an unpacked
4437** record.
4438**
4439** Cursor P1 is on an index btree. If the seekHit flag is set on P1, then
4440** this opcode is a no-op. But if the seekHit flag of P1 is clear, then
4441** check to see if there is any entry in P1 that matches the
4442** prefix identified by P3 and P4. If no entry matches the prefix,
4443** jump to P2. Otherwise fall through.
4444**
4445** This opcode behaves like OP_NotFound if the seekHit
4446** flag is clear and it behaves like OP_Noop if the seekHit flag is set.
4447**
4448** This opcode is used in IN clause processing for a multi-column key.
4449** If an IN clause is attached to an element of the key other than the
4450** left-most element, and if there are no matches on the most recent
4451** seek over the whole key, then it might be that one of the key element
4452** to the left is prohibiting a match, and hence there is "no hope" of
4453** any match regardless of how many IN clause elements are checked.
4454** In such a case, we abandon the IN clause search early, using this
4455** opcode. The opcode name comes from the fact that the
4456** jump is taken if there is "no hope" of achieving a match.
4457**
4458** See also: NotFound, SeekHit
drh5e00f6c2001-09-13 13:46:56 +00004459*/
drh6f225d02013-10-26 13:36:51 +00004460/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00004461** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00004462**
4463** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4464** P4>0 then register P3 is the first of P4 registers that form an unpacked
4465** record.
4466**
4467** Cursor P1 is on an index btree. If the record identified by P3 and P4
4468** contains any NULL value, jump immediately to P2. If all terms of the
4469** record are not-NULL then a check is done to determine if any row in the
4470** P1 index btree has a matching key prefix. If there are no matches, jump
4471** immediately to P2. If there is a match, fall through and leave the P1
4472** cursor pointing to the matching row.
4473**
4474** This opcode is similar to OP_NotFound with the exceptions that the
4475** branch is always taken if any part of the search key input is NULL.
4476**
drh8af3f772014-07-25 18:01:06 +00004477** This operation leaves the cursor in a state where it cannot be
4478** advanced in either direction. In other words, the Next and Prev
4479** opcodes do not work after this operation.
4480**
drh6f225d02013-10-26 13:36:51 +00004481** See also: NotFound, Found, NotExists
4482*/
drh8c2b6d72018-06-05 20:45:20 +00004483case OP_IfNoHope: { /* jump, in3 */
4484 VdbeCursor *pC;
4485 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4486 pC = p->apCsr[pOp->p1];
4487 assert( pC!=0 );
4488 if( pC->seekHit ) break;
4489 /* Fall through into OP_NotFound */
4490}
drh6f225d02013-10-26 13:36:51 +00004491case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00004492case OP_NotFound: /* jump, in3 */
4493case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00004494 int alreadyExists;
drhf56fa462015-04-13 21:39:54 +00004495 int takeJump;
drh6f225d02013-10-26 13:36:51 +00004496 int ii;
drhdfe88ec2008-11-03 20:55:06 +00004497 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004498 int res;
drha582b012016-12-21 19:45:54 +00004499 UnpackedRecord *pFree;
drh856c1032009-06-02 15:21:42 +00004500 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00004501 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004502
dan0ff297e2009-09-25 17:03:14 +00004503#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00004504 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00004505#endif
4506
drhaa736092009-06-22 00:55:30 +00004507 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00004508 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00004509 pC = p->apCsr[pOp->p1];
4510 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00004511#ifdef SQLITE_DEBUG
drhcefc87f2014-08-01 01:40:33 +00004512 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00004513#endif
drh3c657212009-11-17 23:59:58 +00004514 pIn3 = &aMem[pOp->p3];
drhc960dcb2015-11-20 19:22:01 +00004515 assert( pC->eCurType==CURTYPE_BTREE );
4516 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00004517 assert( pC->isTable==0 );
4518 if( pOp->p4.i>0 ){
4519 r.pKeyInfo = pC->pKeyInfo;
4520 r.nField = (u16)pOp->p4.i;
4521 r.aMem = pIn3;
drh8aaf7bc2016-09-20 01:19:18 +00004522#ifdef SQLITE_DEBUG
drh826af372014-02-08 19:12:21 +00004523 for(ii=0; ii<r.nField; ii++){
4524 assert( memIsValid(&r.aMem[ii]) );
drh8aaf7bc2016-09-20 01:19:18 +00004525 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
drh826af372014-02-08 19:12:21 +00004526 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
drh826af372014-02-08 19:12:21 +00004527 }
drh8aaf7bc2016-09-20 01:19:18 +00004528#endif
drh3da046d2013-11-11 03:24:11 +00004529 pIdxKey = &r;
drha582b012016-12-21 19:45:54 +00004530 pFree = 0;
drh3da046d2013-11-11 03:24:11 +00004531 }else{
drhe46515b2017-05-19 22:51:00 +00004532 assert( pIn3->flags & MEM_Blob );
4533 rc = ExpandBlob(pIn3);
4534 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4535 if( rc ) goto no_mem;
drha582b012016-12-21 19:45:54 +00004536 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
drh3da046d2013-11-11 03:24:11 +00004537 if( pIdxKey==0 ) goto no_mem;
drh3da046d2013-11-11 03:24:11 +00004538 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh5e00f6c2001-09-13 13:46:56 +00004539 }
dan1fed5da2014-02-25 21:01:25 +00004540 pIdxKey->default_rc = 0;
drhf56fa462015-04-13 21:39:54 +00004541 takeJump = 0;
drh3da046d2013-11-11 03:24:11 +00004542 if( pOp->opcode==OP_NoConflict ){
4543 /* For the OP_NoConflict opcode, take the jump if any of the
4544 ** input fields are NULL, since any key with a NULL will not
4545 ** conflict */
mistachkin7bb6e8e2015-01-12 18:52:41 +00004546 for(ii=0; ii<pIdxKey->nField; ii++){
4547 if( pIdxKey->aMem[ii].flags & MEM_Null ){
drhf56fa462015-04-13 21:39:54 +00004548 takeJump = 1;
drh3da046d2013-11-11 03:24:11 +00004549 break;
drh6f225d02013-10-26 13:36:51 +00004550 }
4551 }
drh5e00f6c2001-09-13 13:46:56 +00004552 }
drhc960dcb2015-11-20 19:22:01 +00004553 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
drhdbd6a7d2017-04-05 12:39:49 +00004554 if( pFree ) sqlite3DbFreeNN(db, pFree);
drh3da046d2013-11-11 03:24:11 +00004555 if( rc!=SQLITE_OK ){
drh9467abf2016-02-17 18:44:11 +00004556 goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00004557 }
4558 pC->seekResult = res;
4559 alreadyExists = (res==0);
4560 pC->nullRow = 1-alreadyExists;
4561 pC->deferredMoveto = 0;
4562 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004563 if( pOp->opcode==OP_Found ){
drh688852a2014-02-17 22:40:43 +00004564 VdbeBranchTaken(alreadyExists!=0,2);
drhf56fa462015-04-13 21:39:54 +00004565 if( alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004566 }else{
drhf56fa462015-04-13 21:39:54 +00004567 VdbeBranchTaken(takeJump||alreadyExists==0,2);
4568 if( takeJump || !alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004569 }
drh5e00f6c2001-09-13 13:46:56 +00004570 break;
4571}
4572
drheeb95652016-05-26 20:56:38 +00004573/* Opcode: SeekRowid P1 P2 P3 * *
4574** Synopsis: intkey=r[P3]
4575**
4576** P1 is the index of a cursor open on an SQL table btree (with integer
4577** keys). If register P3 does not contain an integer or if P1 does not
4578** contain a record with rowid P3 then jump immediately to P2.
4579** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4580** a record with rowid P3 then
4581** leave the cursor pointing at that record and fall through to the next
4582** instruction.
4583**
4584** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4585** the P3 register must be guaranteed to contain an integer value. With this
4586** opcode, register P3 might not contain an integer.
4587**
4588** The OP_NotFound opcode performs the same operation on index btrees
4589** (with arbitrary multi-value keys).
4590**
4591** This opcode leaves the cursor in a state where it cannot be advanced
4592** in either direction. In other words, the Next and Prev opcodes will
4593** not work following this opcode.
4594**
4595** See also: Found, NotFound, NoConflict, SeekRowid
4596*/
drh9cbf3422008-01-17 16:22:13 +00004597/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004598** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00004599**
drh261c02d2013-10-25 14:46:15 +00004600** P1 is the index of a cursor open on an SQL table btree (with integer
4601** keys). P3 is an integer rowid. If P1 does not contain a record with
danc6157e12015-09-14 09:23:47 +00004602** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
4603** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4604** leave the cursor pointing at that record and fall through to the next
4605** instruction.
drh6b125452002-01-28 15:53:03 +00004606**
drheeb95652016-05-26 20:56:38 +00004607** The OP_SeekRowid opcode performs the same operation but also allows the
4608** P3 register to contain a non-integer value, in which case the jump is
4609** always taken. This opcode requires that P3 always contain an integer.
4610**
drh261c02d2013-10-25 14:46:15 +00004611** The OP_NotFound opcode performs the same operation on index btrees
4612** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00004613**
drh8af3f772014-07-25 18:01:06 +00004614** This opcode leaves the cursor in a state where it cannot be advanced
4615** in either direction. In other words, the Next and Prev opcodes will
4616** not work following this opcode.
4617**
drheeb95652016-05-26 20:56:38 +00004618** See also: Found, NotFound, NoConflict, SeekRowid
drh6b125452002-01-28 15:53:03 +00004619*/
drheeb95652016-05-26 20:56:38 +00004620case OP_SeekRowid: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00004621 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00004622 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004623 int res;
4624 u64 iKey;
4625
drh3c657212009-11-17 23:59:58 +00004626 pIn3 = &aMem[pOp->p3];
drh3242c692019-05-04 01:29:13 +00004627 testcase( pIn3->flags & MEM_Int );
4628 testcase( pIn3->flags & MEM_IntReal );
drhb29ef5e2019-10-07 01:05:57 +00004629 testcase( pIn3->flags & MEM_Real );
4630 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
drh169f0772019-05-02 21:36:26 +00004631 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
drhb29ef5e2019-10-07 01:05:57 +00004632 /* If pIn3->u.i does not contain an integer, compute iKey as the
4633 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
4634 ** into an integer without loss of information. Take care to avoid
4635 ** changing the datatype of pIn3, however, as it is used by other
4636 ** parts of the prepared statement. */
4637 Mem x = pIn3[0];
4638 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
4639 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
4640 iKey = x.u.i;
4641 goto notExistsWithKey;
drheeb95652016-05-26 20:56:38 +00004642 }
4643 /* Fall through into OP_NotExists */
4644case OP_NotExists: /* jump, in3 */
4645 pIn3 = &aMem[pOp->p3];
drhe4fe6d42018-08-03 15:58:07 +00004646 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
drhaa736092009-06-22 00:55:30 +00004647 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drhb29ef5e2019-10-07 01:05:57 +00004648 iKey = pIn3->u.i;
4649notExistsWithKey:
drhaa736092009-06-22 00:55:30 +00004650 pC = p->apCsr[pOp->p1];
4651 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00004652#ifdef SQLITE_DEBUG
drh94f4f872018-12-20 22:08:32 +00004653 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
drh8af3f772014-07-25 18:01:06 +00004654#endif
drhaa736092009-06-22 00:55:30 +00004655 assert( pC->isTable );
drhc960dcb2015-11-20 19:22:01 +00004656 assert( pC->eCurType==CURTYPE_BTREE );
4657 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00004658 assert( pCrsr!=0 );
4659 res = 0;
drh3da046d2013-11-11 03:24:11 +00004660 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drhb79d5522015-09-14 19:26:37 +00004661 assert( rc==SQLITE_OK || res==0 );
drhb53a5a92014-10-12 22:37:22 +00004662 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00004663 pC->nullRow = 0;
4664 pC->cacheStatus = CACHE_STALE;
4665 pC->deferredMoveto = 0;
drh688852a2014-02-17 22:40:43 +00004666 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00004667 pC->seekResult = res;
danc6157e12015-09-14 09:23:47 +00004668 if( res!=0 ){
drhb79d5522015-09-14 19:26:37 +00004669 assert( rc==SQLITE_OK );
4670 if( pOp->p2==0 ){
4671 rc = SQLITE_CORRUPT_BKPT;
4672 }else{
4673 goto jump_to_p2;
4674 }
danc6157e12015-09-14 09:23:47 +00004675 }
drh9467abf2016-02-17 18:44:11 +00004676 if( rc ) goto abort_due_to_error;
drh6b125452002-01-28 15:53:03 +00004677 break;
4678}
4679
drh4c583122008-01-04 22:01:03 +00004680/* Opcode: Sequence P1 P2 * * *
drh079a3072014-03-19 14:10:55 +00004681** Synopsis: r[P2]=cursor[P1].ctr++
drh4db38a72005-09-01 12:16:28 +00004682**
drh4c583122008-01-04 22:01:03 +00004683** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00004684** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00004685** The sequence number on the cursor is incremented after this
4686** instruction.
drh4db38a72005-09-01 12:16:28 +00004687*/
drh27a348c2015-04-13 19:14:06 +00004688case OP_Sequence: { /* out2 */
drh653b82a2009-06-22 11:10:47 +00004689 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4690 assert( p->apCsr[pOp->p1]!=0 );
drhc960dcb2015-11-20 19:22:01 +00004691 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
drh27a348c2015-04-13 19:14:06 +00004692 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004693 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00004694 break;
4695}
4696
4697
drh98757152008-01-09 23:04:12 +00004698/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004699** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004700**
drhf0863fe2005-06-12 21:35:51 +00004701** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00004702** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00004703** table that cursor P1 points to. The new record number is written
4704** written to register P2.
drh205f48e2004-11-05 00:43:11 +00004705**
dan76d462e2009-08-30 11:42:51 +00004706** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4707** the largest previously generated record number. No new record numbers are
4708** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00004709** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00004710** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00004711** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00004712*/
drh27a348c2015-04-13 19:14:06 +00004713case OP_NewRowid: { /* out2 */
drhaa736092009-06-22 00:55:30 +00004714 i64 v; /* The new rowid */
4715 VdbeCursor *pC; /* Cursor of table to get the new rowid */
4716 int res; /* Result of an sqlite3BtreeLast() */
4717 int cnt; /* Counter to limit the number of searches */
4718 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00004719 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00004720
drh856c1032009-06-02 15:21:42 +00004721 v = 0;
4722 res = 0;
drh27a348c2015-04-13 19:14:06 +00004723 pOut = out2Prerelease(p, pOp);
drhaa736092009-06-22 00:55:30 +00004724 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4725 pC = p->apCsr[pOp->p1];
4726 assert( pC!=0 );
drh4c57e322018-05-23 17:53:07 +00004727 assert( pC->isTable );
drhc960dcb2015-11-20 19:22:01 +00004728 assert( pC->eCurType==CURTYPE_BTREE );
4729 assert( pC->uc.pCursor!=0 );
drh98ef0f62015-06-30 01:25:52 +00004730 {
drh5cf8e8c2002-02-19 22:42:05 +00004731 /* The next rowid or record number (different terms for the same
4732 ** thing) is obtained in a two-step algorithm.
4733 **
4734 ** First we attempt to find the largest existing rowid and add one
4735 ** to that. But if the largest existing rowid is already the maximum
4736 ** positive integer, we have to fall through to the second
4737 ** probabilistic algorithm
4738 **
4739 ** The second algorithm is to select a rowid at random and see if
4740 ** it already exists in the table. If it does not exist, we have
4741 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00004742 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00004743 */
drhaa736092009-06-22 00:55:30 +00004744 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00004745
drh75f86a42005-02-17 00:03:06 +00004746#ifdef SQLITE_32BIT_ROWID
4747# define MAX_ROWID 0x7fffffff
4748#else
drhfe2093d2005-01-20 22:48:47 +00004749 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4750 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4751 ** to provide the constant while making all compilers happy.
4752 */
danielk197764202cf2008-11-17 15:31:47 +00004753# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00004754#endif
drhfe2093d2005-01-20 22:48:47 +00004755
drh5cf8e8c2002-02-19 22:42:05 +00004756 if( !pC->useRandomRowid ){
drhc960dcb2015-11-20 19:22:01 +00004757 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
drhe0670b62014-02-12 21:31:12 +00004758 if( rc!=SQLITE_OK ){
4759 goto abort_due_to_error;
4760 }
4761 if( res ){
4762 v = 1; /* IMP: R-61914-48074 */
4763 }else{
drhc960dcb2015-11-20 19:22:01 +00004764 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
drha7c90c42016-06-04 20:37:10 +00004765 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drhe0670b62014-02-12 21:31:12 +00004766 if( v>=MAX_ROWID ){
4767 pC->useRandomRowid = 1;
drh5cf8e8c2002-02-19 22:42:05 +00004768 }else{
drhe0670b62014-02-12 21:31:12 +00004769 v++; /* IMP: R-29538-34987 */
drh5cf8e8c2002-02-19 22:42:05 +00004770 }
drh3fc190c2001-09-14 03:24:23 +00004771 }
drhe0670b62014-02-12 21:31:12 +00004772 }
drh205f48e2004-11-05 00:43:11 +00004773
4774#ifndef SQLITE_OMIT_AUTOINCREMENT
drhe0670b62014-02-12 21:31:12 +00004775 if( pOp->p3 ){
4776 /* Assert that P3 is a valid memory cell. */
4777 assert( pOp->p3>0 );
4778 if( p->pFrame ){
4779 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00004780 /* Assert that P3 is a valid memory cell. */
drhe0670b62014-02-12 21:31:12 +00004781 assert( pOp->p3<=pFrame->nMem );
4782 pMem = &pFrame->aMem[pOp->p3];
4783 }else{
4784 /* Assert that P3 is a valid memory cell. */
drh9f6168b2016-03-19 23:32:58 +00004785 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhe0670b62014-02-12 21:31:12 +00004786 pMem = &aMem[pOp->p3];
4787 memAboutToChange(p, pMem);
drh205f48e2004-11-05 00:43:11 +00004788 }
drhe0670b62014-02-12 21:31:12 +00004789 assert( memIsValid(pMem) );
drh205f48e2004-11-05 00:43:11 +00004790
drhe0670b62014-02-12 21:31:12 +00004791 REGISTER_TRACE(pOp->p3, pMem);
4792 sqlite3VdbeMemIntegerify(pMem);
4793 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4794 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhe77caa12016-11-02 13:18:46 +00004795 rc = SQLITE_FULL; /* IMP: R-17817-00630 */
drhe0670b62014-02-12 21:31:12 +00004796 goto abort_due_to_error;
4797 }
4798 if( v<pMem->u.i+1 ){
4799 v = pMem->u.i + 1;
4800 }
4801 pMem->u.i = v;
drh5cf8e8c2002-02-19 22:42:05 +00004802 }
drhe0670b62014-02-12 21:31:12 +00004803#endif
drh5cf8e8c2002-02-19 22:42:05 +00004804 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00004805 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00004806 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00004807 ** engine starts picking positive candidate ROWIDs at random until
4808 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00004809 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4810 ** an AUTOINCREMENT table. */
drh5cf8e8c2002-02-19 22:42:05 +00004811 cnt = 0;
drh2c4dc632014-09-25 12:31:28 +00004812 do{
4813 sqlite3_randomness(sizeof(v), &v);
drhd8633462014-09-25 17:42:41 +00004814 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
drhc960dcb2015-11-20 19:22:01 +00004815 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
drh748a52c2010-09-01 11:50:08 +00004816 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004817 && (res==0)
drh2c4dc632014-09-25 12:31:28 +00004818 && (++cnt<100));
drh9467abf2016-02-17 18:44:11 +00004819 if( rc ) goto abort_due_to_error;
4820 if( res==0 ){
drhc79c7612010-01-01 18:57:48 +00004821 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004822 goto abort_due_to_error;
4823 }
drh748a52c2010-09-01 11:50:08 +00004824 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004825 }
drha11846b2004-01-07 18:52:56 +00004826 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004827 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004828 }
drh4c583122008-01-04 22:01:03 +00004829 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004830 break;
4831}
4832
danielk19771f4aa332008-01-03 09:51:55 +00004833/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004834** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004835**
jplyon5a564222003-06-02 06:15:58 +00004836** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004837** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004838** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004839** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004840** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004841**
danielk19771f4aa332008-01-03 09:51:55 +00004842** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4843** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004844** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004845** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004846**
drheaf6ae22016-11-09 20:14:34 +00004847** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4848** run faster by avoiding an unnecessary seek on cursor P1. However,
4849** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4850** seeks on the cursor or if the most recent seek used a key equal to P3.
drh3e9ca092009-09-08 01:14:48 +00004851**
4852** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4853** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4854** is part of an INSERT operation. The difference is only important to
4855** the update hook.
4856**
dan319eeb72011-03-19 08:38:50 +00004857** Parameter P4 may point to a Table structure, or may be NULL. If it is
4858** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4859** following a successful insert.
danielk19771f6eec52006-06-16 06:17:47 +00004860**
drh93aed5a2008-01-16 17:46:38 +00004861** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4862** allocated, then ownership of P2 is transferred to the pseudo-cursor
4863** and register P2 becomes ephemeral. If the cursor is changed, the
4864** value of register P2 will then change. Make sure this does not
4865** cause any problems.)
4866**
drhf0863fe2005-06-12 21:35:51 +00004867** This instruction only works on tables. The equivalent instruction
4868** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004869*/
drh50ef6712019-02-22 23:29:56 +00004870case OP_Insert: {
drh3e9ca092009-09-08 01:14:48 +00004871 Mem *pData; /* MEM cell holding data for the record to be inserted */
4872 Mem *pKey; /* MEM cell holding key for the record */
drh3e9ca092009-09-08 01:14:48 +00004873 VdbeCursor *pC; /* Cursor to table into which insert is written */
drh3e9ca092009-09-08 01:14:48 +00004874 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4875 const char *zDb; /* database name - used by the update hook */
dan319eeb72011-03-19 08:38:50 +00004876 Table *pTab; /* Table structure - used by update and pre-update hooks */
drh8eeb4462016-05-21 20:03:42 +00004877 BtreePayload x; /* Payload to be inserted */
drh856c1032009-06-02 15:21:42 +00004878
drha6c2ed92009-11-14 23:22:23 +00004879 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004880 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004881 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004882 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004883 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004884 assert( pC->eCurType==CURTYPE_BTREE );
drhbe3da242019-12-29 00:52:41 +00004885 assert( pC->deferredMoveto==0 );
drhc960dcb2015-11-20 19:22:01 +00004886 assert( pC->uc.pCursor!=0 );
dancb9a3642017-01-30 19:44:53 +00004887 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
drhcbf1b8e2013-11-11 22:55:26 +00004888 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
drh5b6afba2008-01-05 16:29:28 +00004889 REGISTER_TRACE(pOp->p2, pData);
drh4031baf2018-05-28 17:31:20 +00004890 sqlite3VdbeIncrWriteCounter(p, pC);
danielk19775f8d8a82004-05-11 00:28:42 +00004891
drh50ef6712019-02-22 23:29:56 +00004892 pKey = &aMem[pOp->p3];
4893 assert( pKey->flags & MEM_Int );
4894 assert( memIsValid(pKey) );
4895 REGISTER_TRACE(pOp->p3, pKey);
4896 x.nKey = pKey->u.i;
drhe05c9292009-10-29 13:48:10 +00004897
drh9b1c62d2011-03-30 21:04:43 +00004898 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00004899 assert( pC->iDb>=0 );
drh69c33822016-08-18 14:33:11 +00004900 zDb = db->aDb[pC->iDb].zDbSName;
dan319eeb72011-03-19 08:38:50 +00004901 pTab = pOp->p4.pTab;
dancb9a3642017-01-30 19:44:53 +00004902 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
drh74c33022016-03-30 12:56:55 +00004903 }else{
drh4ec6f3a2018-01-12 19:33:18 +00004904 pTab = 0;
drh74c33022016-03-30 12:56:55 +00004905 zDb = 0; /* Not needed. Silence a compiler warning. */
dan46c47d42011-03-01 18:42:07 +00004906 }
4907
drh9b1c62d2011-03-30 21:04:43 +00004908#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004909 /* Invoke the pre-update hook, if any */
drh4ec6f3a2018-01-12 19:33:18 +00004910 if( pTab ){
drh84ebe2b2018-01-12 18:46:52 +00004911 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
4912 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2);
4913 }
drh4ec6f3a2018-01-12 19:33:18 +00004914 if( db->xUpdateCallback==0 || pTab->aCol==0 ){
4915 /* Prevent post-update hook from running in cases when it should not */
4916 pTab = 0;
drh84ebe2b2018-01-12 18:46:52 +00004917 }
dan46c47d42011-03-01 18:42:07 +00004918 }
dancb9a3642017-01-30 19:44:53 +00004919 if( pOp->p5 & OPFLAG_ISNOOP ) break;
drh9b1c62d2011-03-30 21:04:43 +00004920#endif
dan46c47d42011-03-01 18:42:07 +00004921
drha05a7222008-01-19 03:35:58 +00004922 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhfae58d52017-01-26 17:26:44 +00004923 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
dan21cd29a2017-10-23 16:03:54 +00004924 assert( pData->flags & (MEM_Blob|MEM_Str) );
4925 x.pData = pData->z;
4926 x.nData = pData->n;
drh3e9ca092009-09-08 01:14:48 +00004927 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4928 if( pData->flags & MEM_Zero ){
drh8eeb4462016-05-21 20:03:42 +00004929 x.nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004930 }else{
drh8eeb4462016-05-21 20:03:42 +00004931 x.nZero = 0;
drha05a7222008-01-19 03:35:58 +00004932 }
drh8eeb4462016-05-21 20:03:42 +00004933 x.pKey = 0;
4934 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
danf91c1312017-01-10 20:04:38 +00004935 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
drh3e9ca092009-09-08 01:14:48 +00004936 );
drha05a7222008-01-19 03:35:58 +00004937 pC->deferredMoveto = 0;
4938 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004939
drha05a7222008-01-19 03:35:58 +00004940 /* Invoke the update-hook if required. */
drh9467abf2016-02-17 18:44:11 +00004941 if( rc ) goto abort_due_to_error;
drh4ec6f3a2018-01-12 19:33:18 +00004942 if( pTab ){
4943 assert( db->xUpdateCallback!=0 );
4944 assert( pTab->aCol!=0 );
4945 db->xUpdateCallback(db->pUpdateArg,
4946 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
4947 zDb, pTab->zName, x.nKey);
drha05a7222008-01-19 03:35:58 +00004948 }
drh5e00f6c2001-09-13 13:46:56 +00004949 break;
4950}
4951
dan438b8812015-09-15 15:55:15 +00004952/* Opcode: Delete P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004953**
drh5edc3122001-09-13 21:53:09 +00004954** Delete the record at which the P1 cursor is currently pointing.
4955**
drhe807bdb2016-01-21 17:06:33 +00004956** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4957** the cursor will be left pointing at either the next or the previous
4958** record in the table. If it is left pointing at the next record, then
4959** the next Next instruction will be a no-op. As a result, in this case
4960** it is ok to delete a record from within a Next loop. If
4961** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4962** left in an undefined state.
drhc8d30ac2002-04-12 10:08:59 +00004963**
drhdef19e32016-01-27 16:26:25 +00004964** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4965** delete one of several associated with deleting a table row and all its
4966** associated index entries. Exactly one of those deletes is the "primary"
4967** delete. The others are all on OPFLAG_FORDELETE cursors or else are
4968** marked with the AUXDELETE flag.
drhe807bdb2016-01-21 17:06:33 +00004969**
4970** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4971** change count is incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004972**
drh91fd4d42008-01-19 20:11:25 +00004973** P1 must not be pseudo-table. It has to be a real table with
4974** multiple rows.
4975**
drh5e769a52016-09-28 16:05:53 +00004976** If P4 is not NULL then it points to a Table object. In this case either
dan319eeb72011-03-19 08:38:50 +00004977** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4978** have been positioned using OP_NotFound prior to invoking this opcode in
4979** this case. Specifically, if one is configured, the pre-update hook is
4980** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4981** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
dan46c47d42011-03-01 18:42:07 +00004982**
4983** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4984** of the memory cell that contains the value that the rowid of the row will
4985** be set to by the update.
drh5e00f6c2001-09-13 13:46:56 +00004986*/
drh9cbf3422008-01-17 16:22:13 +00004987case OP_Delete: {
drhdfe88ec2008-11-03 20:55:06 +00004988 VdbeCursor *pC;
dan46c47d42011-03-01 18:42:07 +00004989 const char *zDb;
dan319eeb72011-03-19 08:38:50 +00004990 Table *pTab;
dan46c47d42011-03-01 18:42:07 +00004991 int opflags;
drh91fd4d42008-01-19 20:11:25 +00004992
dan46c47d42011-03-01 18:42:07 +00004993 opflags = pOp->p2;
drh653b82a2009-06-22 11:10:47 +00004994 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4995 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004996 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004997 assert( pC->eCurType==CURTYPE_BTREE );
4998 assert( pC->uc.pCursor!=0 );
drh9a65f2c2009-06-22 19:05:40 +00004999 assert( pC->deferredMoveto==0 );
drh4031baf2018-05-28 17:31:20 +00005000 sqlite3VdbeIncrWriteCounter(p, pC);
drh9a65f2c2009-06-22 19:05:40 +00005001
drhb53a5a92014-10-12 22:37:22 +00005002#ifdef SQLITE_DEBUG
drh6b559f32020-01-02 19:50:50 +00005003 if( pOp->p4type==P4_TABLE
5004 && HasRowid(pOp->p4.pTab)
5005 && pOp->p5==0
5006 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5007 ){
dan438b8812015-09-15 15:55:15 +00005008 /* If p5 is zero, the seek operation that positioned the cursor prior to
5009 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5010 ** the row that is being deleted */
drha7c90c42016-06-04 20:37:10 +00005011 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
dan0971ef42019-05-16 20:13:32 +00005012 assert( CORRUPT_DB || pC->movetoTarget==iKey );
drhb53a5a92014-10-12 22:37:22 +00005013 }
5014#endif
drh91fd4d42008-01-19 20:11:25 +00005015
dan438b8812015-09-15 15:55:15 +00005016 /* If the update-hook or pre-update-hook will be invoked, set zDb to
5017 ** the name of the db to pass as to it. Also set local pTab to a copy
5018 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5019 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5020 ** VdbeCursor.movetoTarget to the current rowid. */
drhc556f3c2016-03-30 15:30:07 +00005021 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00005022 assert( pC->iDb>=0 );
drhc556f3c2016-03-30 15:30:07 +00005023 assert( pOp->p4.pTab!=0 );
drh69c33822016-08-18 14:33:11 +00005024 zDb = db->aDb[pC->iDb].zDbSName;
dan319eeb72011-03-19 08:38:50 +00005025 pTab = pOp->p4.pTab;
drhc556f3c2016-03-30 15:30:07 +00005026 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
drha7c90c42016-06-04 20:37:10 +00005027 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
dan438b8812015-09-15 15:55:15 +00005028 }
drh74c33022016-03-30 12:56:55 +00005029 }else{
5030 zDb = 0; /* Not needed. Silence a compiler warning. */
5031 pTab = 0; /* Not needed. Silence a compiler warning. */
drh92fe38e2014-10-14 13:41:32 +00005032 }
dan46c47d42011-03-01 18:42:07 +00005033
drh9b1c62d2011-03-30 21:04:43 +00005034#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00005035 /* Invoke the pre-update-hook if required. */
dancb9a3642017-01-30 19:44:53 +00005036 if( db->xPreUpdateCallback && pOp->p4.pTab ){
5037 assert( !(opflags & OPFLAG_ISUPDATE)
5038 || HasRowid(pTab)==0
5039 || (aMem[pOp->p3].flags & MEM_Int)
5040 );
dan46c47d42011-03-01 18:42:07 +00005041 sqlite3VdbePreUpdateHook(p, pC,
5042 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
drh92fe38e2014-10-14 13:41:32 +00005043 zDb, pTab, pC->movetoTarget,
dan37db03b2011-03-16 19:59:18 +00005044 pOp->p3
dan46c47d42011-03-01 18:42:07 +00005045 );
5046 }
dan46c47d42011-03-01 18:42:07 +00005047 if( opflags & OPFLAG_ISNOOP ) break;
drhc556f3c2016-03-30 15:30:07 +00005048#endif
drhb53a5a92014-10-12 22:37:22 +00005049
drhdef19e32016-01-27 16:26:25 +00005050 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5051 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
drhe807bdb2016-01-21 17:06:33 +00005052 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
drhdef19e32016-01-27 16:26:25 +00005053 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
drhb89aeb62016-01-27 15:49:32 +00005054
5055#ifdef SQLITE_DEBUG
dane61bbf42016-01-28 17:06:17 +00005056 if( p->pFrame==0 ){
5057 if( pC->isEphemeral==0
5058 && (pOp->p5 & OPFLAG_AUXDELETE)==0
5059 && (pC->wrFlag & OPFLAG_FORDELETE)==0
5060 ){
5061 nExtraDelete++;
5062 }
5063 if( pOp->p2 & OPFLAG_NCHANGE ){
5064 nExtraDelete--;
5065 }
drhb89aeb62016-01-27 15:49:32 +00005066 }
5067#endif
5068
drhc960dcb2015-11-20 19:22:01 +00005069 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
drh91fd4d42008-01-19 20:11:25 +00005070 pC->cacheStatus = CACHE_STALE;
dan3b908d42016-11-08 19:22:32 +00005071 pC->seekResult = 0;
drhd3e1af42016-02-25 18:54:30 +00005072 if( rc ) goto abort_due_to_error;
danielk197794eb6a12005-12-15 15:22:08 +00005073
drh91fd4d42008-01-19 20:11:25 +00005074 /* Invoke the update-hook if required. */
dan46c47d42011-03-01 18:42:07 +00005075 if( opflags & OPFLAG_NCHANGE ){
5076 p->nChange++;
drhc556f3c2016-03-30 15:30:07 +00005077 if( db->xUpdateCallback && HasRowid(pTab) ){
drh92fe38e2014-10-14 13:41:32 +00005078 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
dan438b8812015-09-15 15:55:15 +00005079 pC->movetoTarget);
5080 assert( pC->iDb>=0 );
dan46c47d42011-03-01 18:42:07 +00005081 }
drh5e00f6c2001-09-13 13:46:56 +00005082 }
dan438b8812015-09-15 15:55:15 +00005083
rdcb0c374f2004-02-20 22:53:38 +00005084 break;
5085}
drhb7f1d9a2009-09-08 02:27:58 +00005086/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00005087**
drhb7f1d9a2009-09-08 02:27:58 +00005088** The value of the change counter is copied to the database handle
5089** change counter (returned by subsequent calls to sqlite3_changes()).
5090** Then the VMs internal change counter resets to 0.
5091** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00005092*/
drh9cbf3422008-01-17 16:22:13 +00005093case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00005094 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00005095 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00005096 break;
5097}
5098
drh1153c7b2013-11-01 22:02:56 +00005099/* Opcode: SorterCompare P1 P2 P3 P4
drh72e26de2016-08-24 21:24:04 +00005100** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00005101**
drh1153c7b2013-11-01 22:02:56 +00005102** P1 is a sorter cursor. This instruction compares a prefix of the
drhbc5cf382014-08-06 01:08:07 +00005103** record blob in register P3 against a prefix of the entry that
drhac502322014-07-30 13:56:48 +00005104** the sorter cursor currently points to. Only the first P4 fields
5105** of r[P3] and the sorter record are compared.
drh1153c7b2013-11-01 22:02:56 +00005106**
5107** If either P3 or the sorter contains a NULL in one of their significant
5108** fields (not counting the P4 fields at the end which are ignored) then
5109** the comparison is assumed to be equal.
5110**
5111** Fall through to next instruction if the two records compare equal to
5112** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00005113*/
5114case OP_SorterCompare: {
5115 VdbeCursor *pC;
5116 int res;
drhac502322014-07-30 13:56:48 +00005117 int nKeyCol;
dan5134d132011-09-02 10:31:11 +00005118
5119 pC = p->apCsr[pOp->p1];
5120 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00005121 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00005122 pIn3 = &aMem[pOp->p3];
drhac502322014-07-30 13:56:48 +00005123 nKeyCol = pOp->p4.i;
drh958d2612014-04-18 13:40:07 +00005124 res = 0;
drhac502322014-07-30 13:56:48 +00005125 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
drh688852a2014-02-17 22:40:43 +00005126 VdbeBranchTaken(res!=0,2);
drh9467abf2016-02-17 18:44:11 +00005127 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00005128 if( res ) goto jump_to_p2;
dan5134d132011-09-02 10:31:11 +00005129 break;
5130};
5131
drh6cf4a7d2014-10-13 13:00:58 +00005132/* Opcode: SorterData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005133** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00005134**
5135** Write into register P2 the current sorter data for sorter cursor P1.
drh6cf4a7d2014-10-13 13:00:58 +00005136** Then clear the column header cache on cursor P3.
5137**
5138** This opcode is normally use to move a record out of the sorter and into
5139** a register that is the source for a pseudo-table cursor created using
5140** OpenPseudo. That pseudo-table cursor is the one that is identified by
5141** parameter P3. Clearing the P3 column cache as part of this opcode saves
5142** us from having to issue a separate NullRow instruction to clear that cache.
dan5134d132011-09-02 10:31:11 +00005143*/
5144case OP_SorterData: {
5145 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00005146
dan5134d132011-09-02 10:31:11 +00005147 pOut = &aMem[pOp->p2];
5148 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00005149 assert( isSorter(pC) );
dan5134d132011-09-02 10:31:11 +00005150 rc = sqlite3VdbeSorterRowkey(pC, pOut);
dan38524132014-05-01 20:26:48 +00005151 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
drh6cf4a7d2014-10-13 13:00:58 +00005152 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9467abf2016-02-17 18:44:11 +00005153 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00005154 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
dan5134d132011-09-02 10:31:11 +00005155 break;
5156}
5157
drhe7b554d2017-01-09 15:44:25 +00005158/* Opcode: RowData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005159** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00005160**
drh9057fc72016-11-25 19:32:32 +00005161** Write into register P2 the complete row content for the row at
5162** which cursor P1 is currently pointing.
drh98757152008-01-09 23:04:12 +00005163** There is no interpretation of the data.
5164** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00005165** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00005166**
drh9057fc72016-11-25 19:32:32 +00005167** If cursor P1 is an index, then the content is the key of the row.
5168** If cursor P2 is a table, then the content extracted is the data.
drh143f3c42004-01-07 20:37:52 +00005169**
drhde4fcfd2008-01-19 23:50:26 +00005170** If the P1 cursor must be pointing to a valid row (not a NULL row)
5171** of a real table, not a pseudo-table.
drhe7b554d2017-01-09 15:44:25 +00005172**
drh8cdafc32018-05-31 19:00:20 +00005173** If P3!=0 then this opcode is allowed to make an ephemeral pointer
drhe7b554d2017-01-09 15:44:25 +00005174** into the database page. That means that the content of the output
5175** register will be invalidated as soon as the cursor moves - including
drh416a8012018-05-31 19:14:52 +00005176** moves caused by other cursors that "save" the current cursors
drhe7b554d2017-01-09 15:44:25 +00005177** position in order that they can write to the same table. If P3==0
5178** then a copy of the data is made into memory. P3!=0 is faster, but
5179** P3==0 is safer.
5180**
5181** If P3!=0 then the content of the P2 register is unsuitable for use
5182** in OP_Result and any OP_Result will invalidate the P2 register content.
mistachkinab61cf72017-01-09 18:22:54 +00005183** The P2 register content is invalidated by opcodes like OP_Function or
drhe7b554d2017-01-09 15:44:25 +00005184** by any use of another cursor pointing to the same table.
drh143f3c42004-01-07 20:37:52 +00005185*/
danielk1977a7a8e142008-02-13 18:25:27 +00005186case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00005187 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00005188 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00005189 u32 n;
drh70ce3f02003-04-15 19:22:22 +00005190
drhe7b554d2017-01-09 15:44:25 +00005191 pOut = out2Prerelease(p, pOp);
danielk1977a7a8e142008-02-13 18:25:27 +00005192
drh653b82a2009-06-22 11:10:47 +00005193 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5194 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00005195 assert( pC!=0 );
5196 assert( pC->eCurType==CURTYPE_BTREE );
drh14da87f2013-11-20 21:51:33 +00005197 assert( isSorter(pC)==0 );
drhde4fcfd2008-01-19 23:50:26 +00005198 assert( pC->nullRow==0 );
drhc960dcb2015-11-20 19:22:01 +00005199 assert( pC->uc.pCursor!=0 );
5200 pCrsr = pC->uc.pCursor;
drh9a65f2c2009-06-22 19:05:40 +00005201
drh9057fc72016-11-25 19:32:32 +00005202 /* The OP_RowData opcodes always follow OP_NotExists or
drheeb95652016-05-26 20:56:38 +00005203 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5204 ** that might invalidate the cursor.
5205 ** If this where not the case, on of the following assert()s
drhc22284f2014-10-13 16:02:20 +00005206 ** would fail. Should this ever change (because of changes in the code
5207 ** generator) then the fix would be to insert a call to
5208 ** sqlite3VdbeCursorMoveto().
drh9a65f2c2009-06-22 19:05:40 +00005209 */
5210 assert( pC->deferredMoveto==0 );
drhc22284f2014-10-13 16:02:20 +00005211 assert( sqlite3BtreeCursorIsValid(pCrsr) );
5212#if 0 /* Not required due to the previous to assert() statements */
drhde4fcfd2008-01-19 23:50:26 +00005213 rc = sqlite3VdbeCursorMoveto(pC);
drhc22284f2014-10-13 16:02:20 +00005214 if( rc!=SQLITE_OK ) goto abort_due_to_error;
5215#endif
drh9a65f2c2009-06-22 19:05:40 +00005216
drha7c90c42016-06-04 20:37:10 +00005217 n = sqlite3BtreePayloadSize(pCrsr);
drhd66c4f82016-06-04 20:58:35 +00005218 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drha7c90c42016-06-04 20:37:10 +00005219 goto too_big;
drhde4fcfd2008-01-19 23:50:26 +00005220 }
drh722246e2014-10-07 23:02:24 +00005221 testcase( n==0 );
drh2a740062020-02-05 18:28:17 +00005222 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
drh9467abf2016-02-17 18:44:11 +00005223 if( rc ) goto abort_due_to_error;
drhe7b554d2017-01-09 15:44:25 +00005224 if( !pOp->p3 ) Deephemeralize(pOut);
drhb7654112008-01-12 12:48:07 +00005225 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00005226 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00005227 break;
5228}
5229
drh2133d822008-01-03 18:44:59 +00005230/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005231** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00005232**
drh2133d822008-01-03 18:44:59 +00005233** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00005234** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00005235**
5236** P1 can be either an ordinary table or a virtual table. There used to
5237** be a separate OP_VRowid opcode for use with virtual tables, but this
5238** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00005239*/
drh27a348c2015-04-13 19:14:06 +00005240case OP_Rowid: { /* out2 */
drhdfe88ec2008-11-03 20:55:06 +00005241 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00005242 i64 v;
drh856c1032009-06-02 15:21:42 +00005243 sqlite3_vtab *pVtab;
5244 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00005245
drh27a348c2015-04-13 19:14:06 +00005246 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00005247 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5248 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00005249 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005250 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00005251 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00005252 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00005253 break;
5254 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00005255 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00005256#ifndef SQLITE_OMIT_VIRTUALTABLE
drhc960dcb2015-11-20 19:22:01 +00005257 }else if( pC->eCurType==CURTYPE_VTAB ){
5258 assert( pC->uc.pVCur!=0 );
5259 pVtab = pC->uc.pVCur->pVtab;
drh044925b2009-04-22 17:15:02 +00005260 pModule = pVtab->pModule;
5261 assert( pModule->xRowid );
drhc960dcb2015-11-20 19:22:01 +00005262 rc = pModule->xRowid(pC->uc.pVCur, &v);
dan016f7812013-08-21 17:35:48 +00005263 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00005264 if( rc ) goto abort_due_to_error;
drh044925b2009-04-22 17:15:02 +00005265#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00005266 }else{
drhc960dcb2015-11-20 19:22:01 +00005267 assert( pC->eCurType==CURTYPE_BTREE );
5268 assert( pC->uc.pCursor!=0 );
drhc22284f2014-10-13 16:02:20 +00005269 rc = sqlite3VdbeCursorRestore(pC);
drh61495262009-04-22 15:32:59 +00005270 if( rc ) goto abort_due_to_error;
dan2b8669a2014-11-17 19:42:48 +00005271 if( pC->nullRow ){
5272 pOut->flags = MEM_Null;
5273 break;
5274 }
drha7c90c42016-06-04 20:37:10 +00005275 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drh5e00f6c2001-09-13 13:46:56 +00005276 }
drh4c583122008-01-04 22:01:03 +00005277 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00005278 break;
5279}
5280
drh9cbf3422008-01-17 16:22:13 +00005281/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00005282**
5283** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00005284** that occur while the cursor is on the null row will always
5285** write a NULL.
drh17f71932002-02-21 12:01:27 +00005286*/
drh9cbf3422008-01-17 16:22:13 +00005287case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00005288 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00005289
drh653b82a2009-06-22 11:10:47 +00005290 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5291 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00005292 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00005293 pC->nullRow = 1;
drh399af1d2013-11-20 17:25:55 +00005294 pC->cacheStatus = CACHE_STALE;
drhc960dcb2015-11-20 19:22:01 +00005295 if( pC->eCurType==CURTYPE_BTREE ){
5296 assert( pC->uc.pCursor!=0 );
5297 sqlite3BtreeClearCursor(pC->uc.pCursor);
danielk1977be51a652008-10-08 17:58:48 +00005298 }
drhcf025a82018-06-07 18:01:21 +00005299#ifdef SQLITE_DEBUG
5300 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5301#endif
drh17f71932002-02-21 12:01:27 +00005302 break;
5303}
5304
drh86b40df2017-08-01 19:53:43 +00005305/* Opcode: SeekEnd P1 * * * *
5306**
5307** Position cursor P1 at the end of the btree for the purpose of
5308** appending a new entry onto the btree.
5309**
5310** It is assumed that the cursor is used only for appending and so
5311** if the cursor is valid, then the cursor must already be pointing
5312** at the end of the btree and so no changes are made to
5313** the cursor.
5314*/
5315/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00005316**
drh8af3f772014-07-25 18:01:06 +00005317** The next use of the Rowid or Column or Prev instruction for P1
drh9562b552002-02-19 15:00:07 +00005318** will refer to the last entry in the database table or index.
5319** If the table or index is empty and P2>0, then jump immediately to P2.
5320** If P2 is 0 or if the table or index is not empty, fall through
5321** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00005322**
5323** This opcode leaves the cursor configured to move in reverse order,
5324** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00005325** configured to use Prev, not Next.
drh9562b552002-02-19 15:00:07 +00005326*/
drh86b40df2017-08-01 19:53:43 +00005327case OP_SeekEnd:
drh9cbf3422008-01-17 16:22:13 +00005328case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00005329 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00005330 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00005331 int res;
drh9562b552002-02-19 15:00:07 +00005332
drh653b82a2009-06-22 11:10:47 +00005333 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5334 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00005335 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005336 assert( pC->eCurType==CURTYPE_BTREE );
5337 pCrsr = pC->uc.pCursor;
drh7abc5402011-10-22 21:00:46 +00005338 res = 0;
drh3da046d2013-11-11 03:24:11 +00005339 assert( pCrsr!=0 );
drh8af3f772014-07-25 18:01:06 +00005340#ifdef SQLITE_DEBUG
drh86b40df2017-08-01 19:53:43 +00005341 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00005342#endif
drh86b40df2017-08-01 19:53:43 +00005343 if( pOp->opcode==OP_SeekEnd ){
drhd6ef5af2016-11-15 04:00:24 +00005344 assert( pOp->p2==0 );
drh86b40df2017-08-01 19:53:43 +00005345 pC->seekResult = -1;
5346 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5347 break;
5348 }
5349 }
5350 rc = sqlite3BtreeLast(pCrsr, &res);
5351 pC->nullRow = (u8)res;
5352 pC->deferredMoveto = 0;
5353 pC->cacheStatus = CACHE_STALE;
5354 if( rc ) goto abort_due_to_error;
5355 if( pOp->p2>0 ){
5356 VdbeBranchTaken(res!=0,2);
5357 if( res ) goto jump_to_p2;
drh9562b552002-02-19 15:00:07 +00005358 }
5359 break;
5360}
5361
drh5e98e832017-02-17 19:24:06 +00005362/* Opcode: IfSmaller P1 P2 P3 * *
5363**
5364** Estimate the number of rows in the table P1. Jump to P2 if that
5365** estimate is less than approximately 2**(0.1*P3).
5366*/
5367case OP_IfSmaller: { /* jump */
5368 VdbeCursor *pC;
5369 BtCursor *pCrsr;
5370 int res;
5371 i64 sz;
5372
5373 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5374 pC = p->apCsr[pOp->p1];
5375 assert( pC!=0 );
5376 pCrsr = pC->uc.pCursor;
5377 assert( pCrsr );
5378 rc = sqlite3BtreeFirst(pCrsr, &res);
5379 if( rc ) goto abort_due_to_error;
5380 if( res==0 ){
5381 sz = sqlite3BtreeRowCountEst(pCrsr);
5382 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5383 }
5384 VdbeBranchTaken(res!=0,2);
5385 if( res ) goto jump_to_p2;
5386 break;
5387}
5388
drh0342b1f2005-09-01 03:07:44 +00005389
drh6bd4dc62016-12-23 16:05:22 +00005390/* Opcode: SorterSort P1 P2 * * *
5391**
5392** After all records have been inserted into the Sorter object
5393** identified by P1, invoke this opcode to actually do the sorting.
5394** Jump to P2 if there are no records to be sorted.
5395**
5396** This opcode is an alias for OP_Sort and OP_Rewind that is used
5397** for Sorter objects.
5398*/
drh9cbf3422008-01-17 16:22:13 +00005399/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00005400**
5401** This opcode does exactly the same thing as OP_Rewind except that
5402** it increments an undocumented global variable used for testing.
5403**
5404** Sorting is accomplished by writing records into a sorting index,
5405** then rewinding that index and playing it back from beginning to
5406** end. We use the OP_Sort opcode instead of OP_Rewind to do the
5407** rewinding so that the global variable will be incremented and
5408** regression tests can determine whether or not the optimizer is
5409** correctly optimizing out sorts.
5410*/
drhc6aff302011-09-01 15:32:47 +00005411case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00005412case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00005413#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00005414 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00005415 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00005416#endif
drh9b47ee32013-08-20 03:13:51 +00005417 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00005418 /* Fall through into OP_Rewind */
5419}
drh038ebf62019-03-29 15:21:22 +00005420/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00005421**
drhf0863fe2005-06-12 21:35:51 +00005422** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00005423** will refer to the first entry in the database table or index.
dan04489b62014-10-31 20:11:32 +00005424** If the table or index is empty, jump immediately to P2.
5425** If the table or index is not empty, fall through to the following
5426** instruction.
drh8af3f772014-07-25 18:01:06 +00005427**
5428** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00005429** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00005430** configured to use Next, not Prev.
drh5e00f6c2001-09-13 13:46:56 +00005431*/
drh9cbf3422008-01-17 16:22:13 +00005432case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00005433 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00005434 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00005435 int res;
drh5e00f6c2001-09-13 13:46:56 +00005436
drh653b82a2009-06-22 11:10:47 +00005437 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh038ebf62019-03-29 15:21:22 +00005438 assert( pOp->p5==0 );
drh653b82a2009-06-22 11:10:47 +00005439 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00005440 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00005441 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00005442 res = 1;
drh8af3f772014-07-25 18:01:06 +00005443#ifdef SQLITE_DEBUG
5444 pC->seekOp = OP_Rewind;
5445#endif
dan689ab892011-08-12 15:02:00 +00005446 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00005447 rc = sqlite3VdbeSorterRewind(pC, &res);
dana205a482011-08-27 18:48:57 +00005448 }else{
drhc960dcb2015-11-20 19:22:01 +00005449 assert( pC->eCurType==CURTYPE_BTREE );
5450 pCrsr = pC->uc.pCursor;
dana205a482011-08-27 18:48:57 +00005451 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00005452 rc = sqlite3BtreeFirst(pCrsr, &res);
drha11846b2004-01-07 18:52:56 +00005453 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00005454 pC->cacheStatus = CACHE_STALE;
drhf4dada72004-05-11 09:57:35 +00005455 }
drh9467abf2016-02-17 18:44:11 +00005456 if( rc ) goto abort_due_to_error;
drh9c1905f2008-12-10 22:32:56 +00005457 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00005458 assert( pOp->p2>0 && pOp->p2<p->nOp );
drh688852a2014-02-17 22:40:43 +00005459 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00005460 if( res ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00005461 break;
5462}
5463
drh0fd61352014-02-07 02:29:45 +00005464/* Opcode: Next P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00005465**
5466** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00005467** table or index. If there are no more key/value pairs then fall through
5468** to the following instruction. But if the cursor advance was successful,
5469** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00005470**
drh5dad9a32014-07-25 18:37:42 +00005471** The Next opcode is only valid following an SeekGT, SeekGE, or
5472** OP_Rewind opcode used to position the cursor. Next is not allowed
5473** to follow SeekLT, SeekLE, or OP_Last.
drh8af3f772014-07-25 18:01:06 +00005474**
drhf93cd942013-11-21 03:12:25 +00005475** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
5476** been opened prior to this opcode or the program will segfault.
drh60a713c2008-01-21 16:22:45 +00005477**
drhe39a7322014-02-03 14:04:11 +00005478** The P3 value is a hint to the btree implementation. If P3==1, that
5479** means P1 is an SQL index and that this instruction could have been
5480** omitted if that index had been unique. P3 is usually 0. P3 is
5481** always either 0 or 1.
5482**
dana205a482011-08-27 18:48:57 +00005483** P4 is always of type P4_ADVANCE. The function pointer points to
5484** sqlite3BtreeNext().
5485**
drhafc266a2010-03-31 17:47:44 +00005486** If P5 is positive and the jump is taken, then event counter
5487** number P5-1 in the prepared statement is incremented.
5488**
drhf1949b62018-06-07 17:32:59 +00005489** See also: Prev
drh8721ce42001-11-07 14:22:00 +00005490*/
drh0fd61352014-02-07 02:29:45 +00005491/* Opcode: Prev P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00005492**
5493** Back up cursor P1 so that it points to the previous key/data pair in its
5494** table or index. If there is no previous key/value pairs then fall through
5495** to the following instruction. But if the cursor backup was successful,
5496** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00005497**
drh8af3f772014-07-25 18:01:06 +00005498**
drh5dad9a32014-07-25 18:37:42 +00005499** The Prev opcode is only valid following an SeekLT, SeekLE, or
5500** OP_Last opcode used to position the cursor. Prev is not allowed
5501** to follow SeekGT, SeekGE, or OP_Rewind.
drh8af3f772014-07-25 18:01:06 +00005502**
drhf93cd942013-11-21 03:12:25 +00005503** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
5504** not open then the behavior is undefined.
drhafc266a2010-03-31 17:47:44 +00005505**
drhe39a7322014-02-03 14:04:11 +00005506** The P3 value is a hint to the btree implementation. If P3==1, that
5507** means P1 is an SQL index and that this instruction could have been
5508** omitted if that index had been unique. P3 is usually 0. P3 is
5509** always either 0 or 1.
5510**
dana205a482011-08-27 18:48:57 +00005511** P4 is always of type P4_ADVANCE. The function pointer points to
5512** sqlite3BtreePrevious().
5513**
drhafc266a2010-03-31 17:47:44 +00005514** If P5 is positive and the jump is taken, then event counter
5515** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00005516*/
drh6bd4dc62016-12-23 16:05:22 +00005517/* Opcode: SorterNext P1 P2 * * P5
5518**
5519** This opcode works just like OP_Next except that P1 must be a
5520** sorter object for which the OP_SorterSort opcode has been
5521** invoked. This opcode advances the cursor to the next sorted
5522** record, or jumps to P2 if there are no more sorted records.
5523*/
drhf93cd942013-11-21 03:12:25 +00005524case OP_SorterNext: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00005525 VdbeCursor *pC;
drh8721ce42001-11-07 14:22:00 +00005526
drhf93cd942013-11-21 03:12:25 +00005527 pC = p->apCsr[pOp->p1];
5528 assert( isSorter(pC) );
drh2ab792e2017-05-30 18:34:07 +00005529 rc = sqlite3VdbeSorterNext(db, pC);
drhf93cd942013-11-21 03:12:25 +00005530 goto next_tail;
drhf93cd942013-11-21 03:12:25 +00005531case OP_Prev: /* jump */
5532case OP_Next: /* jump */
drh70ce3f02003-04-15 19:22:22 +00005533 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00005534 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00005535 pC = p->apCsr[pOp->p1];
drhf93cd942013-11-21 03:12:25 +00005536 assert( pC!=0 );
5537 assert( pC->deferredMoveto==0 );
drhc960dcb2015-11-20 19:22:01 +00005538 assert( pC->eCurType==CURTYPE_BTREE );
drhf93cd942013-11-21 03:12:25 +00005539 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5540 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
drh8af3f772014-07-25 18:01:06 +00005541
drhcf025a82018-06-07 18:01:21 +00005542 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found.
drh8af3f772014-07-25 18:01:06 +00005543 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
drhf1949b62018-06-07 17:32:59 +00005544 assert( pOp->opcode!=OP_Next
drh8af3f772014-07-25 18:01:06 +00005545 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
drh790b37a2019-08-27 17:01:07 +00005546 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
5547 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
5548 || pC->seekOp==OP_IfNoHope);
drhf1949b62018-06-07 17:32:59 +00005549 assert( pOp->opcode!=OP_Prev
drh8af3f772014-07-25 18:01:06 +00005550 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
drh790b37a2019-08-27 17:01:07 +00005551 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope
drhcf025a82018-06-07 18:01:21 +00005552 || pC->seekOp==OP_NullRow);
drh8af3f772014-07-25 18:01:06 +00005553
drh2ab792e2017-05-30 18:34:07 +00005554 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
drhf93cd942013-11-21 03:12:25 +00005555next_tail:
drha3460582008-07-11 21:02:53 +00005556 pC->cacheStatus = CACHE_STALE;
drh2ab792e2017-05-30 18:34:07 +00005557 VdbeBranchTaken(rc==SQLITE_OK,2);
5558 if( rc==SQLITE_OK ){
drhf93cd942013-11-21 03:12:25 +00005559 pC->nullRow = 0;
drh9b47ee32013-08-20 03:13:51 +00005560 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00005561#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00005562 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00005563#endif
drhf56fa462015-04-13 21:39:54 +00005564 goto jump_to_p2_and_check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00005565 }
drh2ab792e2017-05-30 18:34:07 +00005566 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5567 rc = SQLITE_OK;
5568 pC->nullRow = 1;
drh49afe3a2013-07-10 03:05:14 +00005569 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00005570}
5571
drh9b4eaeb2016-11-09 00:10:33 +00005572/* Opcode: IdxInsert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00005573** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005574**
drhef8662b2011-06-20 21:47:58 +00005575** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00005576** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00005577** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00005578**
drhfb8c56f2016-11-09 01:19:25 +00005579** If P4 is not zero, then it is the number of values in the unpacked
drh9b4eaeb2016-11-09 00:10:33 +00005580** key of reg(P2). In that case, P3 is the index of the first register
5581** for the unpacked key. The availability of the unpacked key can sometimes
5582** be an optimization.
5583**
5584** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5585** that this insert is likely to be an append.
drhe4d90812007-03-29 05:51:49 +00005586**
mistachkin21a919f2014-02-07 03:28:02 +00005587** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5588** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
5589** then the change counter is unchanged.
drh0fd61352014-02-07 02:29:45 +00005590**
drheaf6ae22016-11-09 20:14:34 +00005591** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5592** run faster by avoiding an unnecessary seek on cursor P1. However,
5593** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5594** seeks on the cursor or if the most recent seek used a key equivalent
5595** to P2.
drh0fd61352014-02-07 02:29:45 +00005596**
drhf0863fe2005-06-12 21:35:51 +00005597** This instruction only works for indices. The equivalent instruction
5598** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00005599*/
drh9cbf3422008-01-17 16:22:13 +00005600case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00005601 VdbeCursor *pC;
drh8eeb4462016-05-21 20:03:42 +00005602 BtreePayload x;
drh856c1032009-06-02 15:21:42 +00005603
drh653b82a2009-06-22 11:10:47 +00005604 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5605 pC = p->apCsr[pOp->p1];
drh4031baf2018-05-28 17:31:20 +00005606 sqlite3VdbeIncrWriteCounter(p, pC);
drh653b82a2009-06-22 11:10:47 +00005607 assert( pC!=0 );
drhc879c4e2020-02-06 13:57:08 +00005608 assert( !isSorter(pC) );
drh3c657212009-11-17 23:59:58 +00005609 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00005610 assert( pIn2->flags & MEM_Blob );
drh6546af12013-11-04 15:23:25 +00005611 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhc879c4e2020-02-06 13:57:08 +00005612 assert( pC->eCurType==CURTYPE_BTREE );
drh3da046d2013-11-11 03:24:11 +00005613 assert( pC->isTable==0 );
5614 rc = ExpandBlob(pIn2);
drh9467abf2016-02-17 18:44:11 +00005615 if( rc ) goto abort_due_to_error;
drhc879c4e2020-02-06 13:57:08 +00005616 x.nKey = pIn2->n;
5617 x.pKey = pIn2->z;
5618 x.aMem = aMem + pOp->p3;
5619 x.nMem = (u16)pOp->p4.i;
5620 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5621 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
5622 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5623 );
5624 assert( pC->deferredMoveto==0 );
5625 pC->cacheStatus = CACHE_STALE;
5626 if( rc) goto abort_due_to_error;
5627 break;
5628}
5629
5630/* Opcode: SorterInsert P1 P2 * * *
5631** Synopsis: key=r[P2]
5632**
5633** Register P2 holds an SQL index key made using the
5634** MakeRecord instructions. This opcode writes that key
5635** into the sorter P1. Data for the entry is nil.
5636*/
5637case OP_SorterInsert: { /* in2 */
5638 VdbeCursor *pC;
5639
5640 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5641 pC = p->apCsr[pOp->p1];
5642 sqlite3VdbeIncrWriteCounter(p, pC);
5643 assert( pC!=0 );
5644 assert( isSorter(pC) );
5645 pIn2 = &aMem[pOp->p2];
5646 assert( pIn2->flags & MEM_Blob );
5647 assert( pC->isTable==0 );
5648 rc = ExpandBlob(pIn2);
5649 if( rc ) goto abort_due_to_error;
5650 rc = sqlite3VdbeSorterWrite(pC, pIn2);
drh9467abf2016-02-17 18:44:11 +00005651 if( rc) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005652 break;
5653}
5654
drh85bd3532020-05-05 18:42:49 +00005655/* Opcode: IdxDelete P1 P2 P3 * P5
drhf63552b2013-10-30 00:25:03 +00005656** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00005657**
drhe14006d2008-03-25 17:23:32 +00005658** The content of P3 registers starting at register P2 form
5659** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00005660** index opened by cursor P1.
drh85bd3532020-05-05 18:42:49 +00005661**
5662** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
5663** if no matching index entry is found. This happens when running
5664** an UPDATE or DELETE statement and the index entry to be updated
5665** or deleted is not found. For some uses of IdxDelete
5666** (example: the EXCEPT operator) it does not matter that no matching
5667** entry is found. For those cases, P5 is zero.
drh5e00f6c2001-09-13 13:46:56 +00005668*/
drhe14006d2008-03-25 17:23:32 +00005669case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00005670 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00005671 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00005672 int res;
5673 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00005674
drhe14006d2008-03-25 17:23:32 +00005675 assert( pOp->p3>0 );
drh9f6168b2016-03-19 23:32:58 +00005676 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00005677 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5678 pC = p->apCsr[pOp->p1];
5679 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005680 assert( pC->eCurType==CURTYPE_BTREE );
drh4031baf2018-05-28 17:31:20 +00005681 sqlite3VdbeIncrWriteCounter(p, pC);
drhc960dcb2015-11-20 19:22:01 +00005682 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00005683 assert( pCrsr!=0 );
drh3da046d2013-11-11 03:24:11 +00005684 r.pKeyInfo = pC->pKeyInfo;
5685 r.nField = (u16)pOp->p3;
dan1fed5da2014-02-25 21:01:25 +00005686 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005687 r.aMem = &aMem[pOp->p2];
drh3da046d2013-11-11 03:24:11 +00005688 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
drh9467abf2016-02-17 18:44:11 +00005689 if( rc ) goto abort_due_to_error;
5690 if( res==0 ){
dane61bbf42016-01-28 17:06:17 +00005691 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
drh9467abf2016-02-17 18:44:11 +00005692 if( rc ) goto abort_due_to_error;
drh85bd3532020-05-05 18:42:49 +00005693 }else if( pOp->p5 ){
5694 rc = SQLITE_CORRUPT_INDEX;
5695 goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005696 }
drh3da046d2013-11-11 03:24:11 +00005697 assert( pC->deferredMoveto==0 );
5698 pC->cacheStatus = CACHE_STALE;
dan3b908d42016-11-08 19:22:32 +00005699 pC->seekResult = 0;
drh5e00f6c2001-09-13 13:46:56 +00005700 break;
5701}
5702
drh170ad682017-06-02 15:44:22 +00005703/* Opcode: DeferredSeek P1 * P3 P4 *
5704** Synopsis: Move P3 to P1.rowid if needed
drh784c1b92016-01-30 16:59:56 +00005705**
5706** P1 is an open index cursor and P3 is a cursor on the corresponding
5707** table. This opcode does a deferred seek of the P3 table cursor
5708** to the row that corresponds to the current row of P1.
5709**
5710** This is a deferred seek. Nothing actually happens until
5711** the cursor is used to read a record. That way, if no reads
5712** occur, no unnecessary I/O happens.
5713**
5714** P4 may be an array of integers (type P4_INTARRAY) containing
drh19d720d2016-02-03 19:52:06 +00005715** one entry for each column in the P3 table. If array entry a(i)
5716** is non-zero, then reading column a(i)-1 from cursor P3 is
drh784c1b92016-01-30 16:59:56 +00005717** equivalent to performing the deferred seek and then reading column i
5718** from P1. This information is stored in P3 and used to redirect
5719** reads against P3 over to P1, thus possibly avoiding the need to
5720** seek and read cursor P3.
5721*/
drh2133d822008-01-03 18:44:59 +00005722/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005723** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00005724**
drh2133d822008-01-03 18:44:59 +00005725** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00005726** the end of the index key pointed to by cursor P1. This integer should be
5727** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00005728**
drh9437bd22009-02-01 00:29:56 +00005729** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00005730*/
drh170ad682017-06-02 15:44:22 +00005731case OP_DeferredSeek:
5732case OP_IdxRowid: { /* out2 */
5733 VdbeCursor *pC; /* The P1 index cursor */
5734 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */
5735 i64 rowid; /* Rowid that P1 current points to */
drh8721ce42001-11-07 14:22:00 +00005736
drh653b82a2009-06-22 11:10:47 +00005737 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5738 pC = p->apCsr[pOp->p1];
5739 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005740 assert( pC->eCurType==CURTYPE_BTREE );
drh784c1b92016-01-30 16:59:56 +00005741 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00005742 assert( pC->isTable==0 );
drhc22284f2014-10-13 16:02:20 +00005743 assert( pC->deferredMoveto==0 );
drh784c1b92016-01-30 16:59:56 +00005744 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5745
5746 /* The IdxRowid and Seek opcodes are combined because of the commonality
5747 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5748 rc = sqlite3VdbeCursorRestore(pC);
drhc22284f2014-10-13 16:02:20 +00005749
5750 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
drh784c1b92016-01-30 16:59:56 +00005751 ** out from under the cursor. That will never happens for an IdxRowid
5752 ** or Seek opcode */
drhc22284f2014-10-13 16:02:20 +00005753 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5754
drh3da046d2013-11-11 03:24:11 +00005755 if( !pC->nullRow ){
drh2dc06482013-12-11 00:59:10 +00005756 rowid = 0; /* Not needed. Only used to silence a warning. */
drh784c1b92016-01-30 16:59:56 +00005757 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
drh3da046d2013-11-11 03:24:11 +00005758 if( rc!=SQLITE_OK ){
5759 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00005760 }
drh170ad682017-06-02 15:44:22 +00005761 if( pOp->opcode==OP_DeferredSeek ){
drh784c1b92016-01-30 16:59:56 +00005762 assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5763 pTabCur = p->apCsr[pOp->p3];
5764 assert( pTabCur!=0 );
5765 assert( pTabCur->eCurType==CURTYPE_BTREE );
5766 assert( pTabCur->uc.pCursor!=0 );
5767 assert( pTabCur->isTable );
5768 pTabCur->nullRow = 0;
5769 pTabCur->movetoTarget = rowid;
5770 pTabCur->deferredMoveto = 1;
5771 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5772 pTabCur->aAltMap = pOp->p4.ai;
5773 pTabCur->pAltCursor = pC;
5774 }else{
5775 pOut = out2Prerelease(p, pOp);
5776 pOut->u.i = rowid;
drh784c1b92016-01-30 16:59:56 +00005777 }
5778 }else{
5779 assert( pOp->opcode==OP_IdxRowid );
5780 sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
drh8721ce42001-11-07 14:22:00 +00005781 }
5782 break;
5783}
5784
drhbe3da242019-12-29 00:52:41 +00005785/* Opcode: FinishSeek P1 * * * *
5786**
5787** If cursor P1 was previously moved via OP_DeferredSeek, complete that
5788** seek operation now, without further delay. If the cursor seek has
5789** already occurred, this instruction is a no-op.
5790*/
5791case OP_FinishSeek: {
5792 VdbeCursor *pC; /* The P1 index cursor */
5793
5794 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5795 pC = p->apCsr[pOp->p1];
5796 if( pC->deferredMoveto ){
5797 rc = sqlite3VdbeFinishMoveto(pC);
5798 if( rc ) goto abort_due_to_error;
5799 }
5800 break;
5801}
5802
danielk197761dd5832008-04-18 11:31:12 +00005803/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005804** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00005805**
danielk197761dd5832008-04-18 11:31:12 +00005806** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005807** key that omits the PRIMARY KEY. Compare this key value against the index
5808** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5809** fields at the end.
drhf3218fe2004-05-28 08:21:02 +00005810**
danielk197761dd5832008-04-18 11:31:12 +00005811** If the P1 index entry is greater than or equal to the key value
5812** then jump to P2. Otherwise fall through to the next instruction.
drh4a1d3652014-02-14 15:13:36 +00005813*/
5814/* Opcode: IdxGT P1 P2 P3 P4 P5
5815** Synopsis: key=r[P3@P4]
drh772ae622004-05-19 13:13:08 +00005816**
drh4a1d3652014-02-14 15:13:36 +00005817** The P4 register values beginning with P3 form an unpacked index
5818** key that omits the PRIMARY KEY. Compare this key value against the index
5819** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5820** fields at the end.
5821**
5822** If the P1 index entry is greater than the key value
5823** then jump to P2. Otherwise fall through to the next instruction.
drh8721ce42001-11-07 14:22:00 +00005824*/
drh3bb9b932010-08-06 02:10:00 +00005825/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005826** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00005827**
danielk197761dd5832008-04-18 11:31:12 +00005828** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005829** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5830** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5831** ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00005832**
danielk197761dd5832008-04-18 11:31:12 +00005833** If the P1 index entry is less than the key value then jump to P2.
5834** Otherwise fall through to the next instruction.
drhc045ec52002-12-04 20:01:06 +00005835*/
drh4a1d3652014-02-14 15:13:36 +00005836/* Opcode: IdxLE P1 P2 P3 P4 P5
5837** Synopsis: key=r[P3@P4]
5838**
5839** The P4 register values beginning with P3 form an unpacked index
5840** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5841** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5842** ROWID on the P1 index.
5843**
5844** If the P1 index entry is less than or equal to the key value then jump
5845** to P2. Otherwise fall through to the next instruction.
5846*/
5847case OP_IdxLE: /* jump */
5848case OP_IdxGT: /* jump */
drh93952eb2009-11-13 19:43:43 +00005849case OP_IdxLT: /* jump */
drh4a1d3652014-02-14 15:13:36 +00005850case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00005851 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00005852 int res;
5853 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00005854
drh653b82a2009-06-22 11:10:47 +00005855 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5856 pC = p->apCsr[pOp->p1];
5857 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00005858 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00005859 assert( pC->eCurType==CURTYPE_BTREE );
5860 assert( pC->uc.pCursor!=0);
drh3da046d2013-11-11 03:24:11 +00005861 assert( pC->deferredMoveto==0 );
5862 assert( pOp->p5==0 || pOp->p5==1 );
5863 assert( pOp->p4type==P4_INT32 );
5864 r.pKeyInfo = pC->pKeyInfo;
5865 r.nField = (u16)pOp->p4.i;
drh4a1d3652014-02-14 15:13:36 +00005866 if( pOp->opcode<OP_IdxLT ){
5867 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
dan1fed5da2014-02-25 21:01:25 +00005868 r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00005869 }else{
drh4a1d3652014-02-14 15:13:36 +00005870 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
dan1fed5da2014-02-25 21:01:25 +00005871 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005872 }
5873 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005874#ifdef SQLITE_DEBUG
drh5eae9742018-08-03 13:56:26 +00005875 {
5876 int i;
5877 for(i=0; i<r.nField; i++){
5878 assert( memIsValid(&r.aMem[i]) );
5879 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
5880 }
5881 }
drh2b4ded92010-09-27 21:09:31 +00005882#endif
drh2dc06482013-12-11 00:59:10 +00005883 res = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00005884 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
drh4a1d3652014-02-14 15:13:36 +00005885 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5886 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5887 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
drh3da046d2013-11-11 03:24:11 +00005888 res = -res;
5889 }else{
drh4a1d3652014-02-14 15:13:36 +00005890 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
drh3da046d2013-11-11 03:24:11 +00005891 res++;
5892 }
drh688852a2014-02-17 22:40:43 +00005893 VdbeBranchTaken(res>0,2);
drh9467abf2016-02-17 18:44:11 +00005894 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00005895 if( res>0 ) goto jump_to_p2;
drh8721ce42001-11-07 14:22:00 +00005896 break;
5897}
5898
drh98757152008-01-09 23:04:12 +00005899/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00005900**
5901** Delete an entire database table or index whose root page in the database
5902** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00005903**
drh98757152008-01-09 23:04:12 +00005904** The table being destroyed is in the main database file if P3==0. If
5905** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00005906** that is used to store tables create using CREATE TEMPORARY TABLE.
5907**
drh205f48e2004-11-05 00:43:11 +00005908** If AUTOVACUUM is enabled then it is possible that another root page
5909** might be moved into the newly deleted root page in order to keep all
5910** root pages contiguous at the beginning of the database. The former
5911** value of the root page that moved - its value before the move occurred -
dana34adaf2017-04-08 14:11:47 +00005912** is stored in register P2. If no page movement was required (because the
5913** table being dropped was already the last one in the database) then a
5914** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
5915** is stored in register P2.
5916**
5917** This opcode throws an error if there are any active reader VMs when
5918** it is invoked. This is done to avoid the difficulty associated with
5919** updating existing cursors when a root page is moved in an AUTOVACUUM
5920** database. This error is thrown even if the database is not an AUTOVACUUM
5921** db in order to avoid introducing an incompatibility between autovacuum
5922** and non-autovacuum modes.
drh205f48e2004-11-05 00:43:11 +00005923**
drhb19a2bc2001-09-16 00:13:26 +00005924** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00005925*/
drh27a348c2015-04-13 19:14:06 +00005926case OP_Destroy: { /* out2 */
danielk1977a0bf2652004-11-04 14:30:04 +00005927 int iMoved;
drh856c1032009-06-02 15:21:42 +00005928 int iDb;
drh3a949872012-09-18 13:20:13 +00005929
drh4031baf2018-05-28 17:31:20 +00005930 sqlite3VdbeIncrWriteCounter(p, 0);
drh9e92a472013-06-27 17:40:30 +00005931 assert( p->readOnly==0 );
drh055f2982016-01-15 15:06:41 +00005932 assert( pOp->p1>1 );
drh27a348c2015-04-13 19:14:06 +00005933 pOut = out2Prerelease(p, pOp);
drh3c657212009-11-17 23:59:58 +00005934 pOut->flags = MEM_Null;
drh086723a2015-03-24 12:51:52 +00005935 if( db->nVdbeRead > db->nVDestroy+1 ){
danielk1977e6efa742004-11-10 11:55:10 +00005936 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00005937 p->errorAction = OE_Abort;
drh9467abf2016-02-17 18:44:11 +00005938 goto abort_due_to_error;
danielk1977e6efa742004-11-10 11:55:10 +00005939 }else{
drh856c1032009-06-02 15:21:42 +00005940 iDb = pOp->p3;
drha7ab6d82014-07-21 15:44:39 +00005941 assert( DbMaskTest(p->btreeMask, iDb) );
drh2dc06482013-12-11 00:59:10 +00005942 iMoved = 0; /* Not needed. Only to silence a warning. */
drh98757152008-01-09 23:04:12 +00005943 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00005944 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00005945 pOut->u.i = iMoved;
drh9467abf2016-02-17 18:44:11 +00005946 if( rc ) goto abort_due_to_error;
drh3765df42006-06-28 18:18:09 +00005947#ifndef SQLITE_OMIT_AUTOVACUUM
drh9467abf2016-02-17 18:44:11 +00005948 if( iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00005949 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5950 /* All OP_Destroy operations occur on the same btree */
5951 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5952 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00005953 }
drh3765df42006-06-28 18:18:09 +00005954#endif
danielk1977a0bf2652004-11-04 14:30:04 +00005955 }
drh5e00f6c2001-09-13 13:46:56 +00005956 break;
5957}
5958
danielk1977c7af4842008-10-27 13:59:33 +00005959/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00005960**
5961** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00005962** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00005963** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00005964**
drhf57b3392001-10-08 13:22:32 +00005965** The table being clear is in the main database file if P2==0. If
5966** P2==1 then the table to be clear is in the auxiliary database file
5967** that is used to store tables create using CREATE TEMPORARY TABLE.
5968**
shanebe217792009-03-05 04:20:31 +00005969** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00005970** intkey table (an SQL table, not an index). In this case the row change
5971** count is incremented by the number of rows in the table being cleared.
5972** If P3 is greater than zero, then the value stored in register P3 is
5973** also incremented by the number of rows in the table being cleared.
5974**
drhb19a2bc2001-09-16 00:13:26 +00005975** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00005976*/
drh9cbf3422008-01-17 16:22:13 +00005977case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00005978 int nChange;
5979
drh4031baf2018-05-28 17:31:20 +00005980 sqlite3VdbeIncrWriteCounter(p, 0);
drh856c1032009-06-02 15:21:42 +00005981 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00005982 assert( p->readOnly==0 );
drha7ab6d82014-07-21 15:44:39 +00005983 assert( DbMaskTest(p->btreeMask, pOp->p2) );
danielk1977c7af4842008-10-27 13:59:33 +00005984 rc = sqlite3BtreeClearTable(
5985 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5986 );
5987 if( pOp->p3 ){
5988 p->nChange += nChange;
5989 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00005990 assert( memIsValid(&aMem[pOp->p3]) );
5991 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00005992 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00005993 }
5994 }
drh9467abf2016-02-17 18:44:11 +00005995 if( rc ) goto abort_due_to_error;
drh5edc3122001-09-13 21:53:09 +00005996 break;
5997}
5998
drh65ea12c2014-03-19 17:41:36 +00005999/* Opcode: ResetSorter P1 * * * *
drh079a3072014-03-19 14:10:55 +00006000**
drh65ea12c2014-03-19 17:41:36 +00006001** Delete all contents from the ephemeral table or sorter
6002** that is open on cursor P1.
drh079a3072014-03-19 14:10:55 +00006003**
drh65ea12c2014-03-19 17:41:36 +00006004** This opcode only works for cursors used for sorting and
6005** opened with OP_OpenEphemeral or OP_SorterOpen.
drh079a3072014-03-19 14:10:55 +00006006*/
drh65ea12c2014-03-19 17:41:36 +00006007case OP_ResetSorter: {
drh079a3072014-03-19 14:10:55 +00006008 VdbeCursor *pC;
6009
6010 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6011 pC = p->apCsr[pOp->p1];
6012 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00006013 if( isSorter(pC) ){
6014 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
drh65ea12c2014-03-19 17:41:36 +00006015 }else{
drhc960dcb2015-11-20 19:22:01 +00006016 assert( pC->eCurType==CURTYPE_BTREE );
drh65ea12c2014-03-19 17:41:36 +00006017 assert( pC->isEphemeral );
drhc960dcb2015-11-20 19:22:01 +00006018 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
drh9467abf2016-02-17 18:44:11 +00006019 if( rc ) goto abort_due_to_error;
drh65ea12c2014-03-19 17:41:36 +00006020 }
drh079a3072014-03-19 14:10:55 +00006021 break;
6022}
6023
drh0f3f7662017-08-18 14:34:28 +00006024/* Opcode: CreateBtree P1 P2 P3 * *
6025** Synopsis: r[P2]=root iDb=P1 flags=P3
drh5b2fd562001-09-13 15:21:31 +00006026**
drh0f3f7662017-08-18 14:34:28 +00006027** Allocate a new b-tree in the main database file if P1==0 or in the
6028** TEMP database file if P1==1 or in an attached database if
6029** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
drh416a8012018-05-31 19:14:52 +00006030** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
drh0f3f7662017-08-18 14:34:28 +00006031** The root page number of the new b-tree is stored in register P2.
drh5b2fd562001-09-13 15:21:31 +00006032*/
drh0f3f7662017-08-18 14:34:28 +00006033case OP_CreateBtree: { /* out2 */
drh856c1032009-06-02 15:21:42 +00006034 int pgno;
drh234c39d2004-07-24 03:30:47 +00006035 Db *pDb;
drh856c1032009-06-02 15:21:42 +00006036
drh4031baf2018-05-28 17:31:20 +00006037 sqlite3VdbeIncrWriteCounter(p, 0);
drh27a348c2015-04-13 19:14:06 +00006038 pOut = out2Prerelease(p, pOp);
drh856c1032009-06-02 15:21:42 +00006039 pgno = 0;
drh0f3f7662017-08-18 14:34:28 +00006040 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
drh234c39d2004-07-24 03:30:47 +00006041 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006042 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00006043 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00006044 pDb = &db->aDb[pOp->p1];
6045 assert( pDb->pBt!=0 );
drh0f3f7662017-08-18 14:34:28 +00006046 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
drh9467abf2016-02-17 18:44:11 +00006047 if( rc ) goto abort_due_to_error;
drh88a003e2008-12-11 16:17:03 +00006048 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00006049 break;
6050}
6051
drh4a54bb52017-02-18 15:58:52 +00006052/* Opcode: SqlExec * * * P4 *
6053**
6054** Run the SQL statement or statements specified in the P4 string.
6055*/
6056case OP_SqlExec: {
drh4031baf2018-05-28 17:31:20 +00006057 sqlite3VdbeIncrWriteCounter(p, 0);
drhbce04142017-02-23 00:58:36 +00006058 db->nSqlExec++;
drh4a54bb52017-02-18 15:58:52 +00006059 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
drhbce04142017-02-23 00:58:36 +00006060 db->nSqlExec--;
drh4a54bb52017-02-18 15:58:52 +00006061 if( rc ) goto abort_due_to_error;
6062 break;
6063}
6064
drh22645842011-03-24 01:34:03 +00006065/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00006066**
6067** Read and parse all entries from the SQLITE_MASTER table of database P1
drh1595abc2018-08-14 19:27:51 +00006068** that match the WHERE clause P4. If P4 is a NULL pointer, then the
6069** entire schema for P1 is reparsed.
drh234c39d2004-07-24 03:30:47 +00006070**
6071** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00006072** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00006073*/
drh9cbf3422008-01-17 16:22:13 +00006074case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00006075 int iDb;
6076 const char *zMaster;
6077 char *zSql;
6078 InitData initData;
6079
drhbdaec522011-04-04 00:14:43 +00006080 /* Any prepared statement that invokes this opcode will hold mutexes
6081 ** on every btree. This is a prerequisite for invoking
6082 ** sqlite3InitCallback().
6083 */
6084#ifdef SQLITE_DEBUG
6085 for(iDb=0; iDb<db->nDb; iDb++){
6086 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6087 }
6088#endif
drhbdaec522011-04-04 00:14:43 +00006089
drh856c1032009-06-02 15:21:42 +00006090 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00006091 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00006092 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
dane325ffe2018-08-11 13:40:20 +00006093
6094#ifndef SQLITE_OMIT_ALTERTABLE
6095 if( pOp->p4.z==0 ){
6096 sqlite3SchemaClear(db->aDb[iDb].pSchema);
danb0c79202018-08-11 18:34:25 +00006097 db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
drh1595abc2018-08-14 19:27:51 +00006098 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, INITFLAG_AlterTable);
dane325ffe2018-08-11 13:40:20 +00006099 db->mDbFlags |= DBFLAG_SchemaChange;
dan0d5fa6b2018-08-24 17:55:49 +00006100 p->expired = 0;
dane325ffe2018-08-11 13:40:20 +00006101 }else
6102#endif
drh1595abc2018-08-14 19:27:51 +00006103 {
drhe0a04a32016-12-16 01:00:21 +00006104 zMaster = MASTER_NAME;
danielk1977a8bbef82009-03-23 17:11:26 +00006105 initData.db = db;
mistachkin1c06b472018-09-27 00:04:31 +00006106 initData.iDb = iDb;
danielk1977a8bbef82009-03-23 17:11:26 +00006107 initData.pzErrMsg = &p->zErrMsg;
drh9fd88e82018-09-07 11:08:31 +00006108 initData.mInitFlags = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00006109 zSql = sqlite3MPrintf(db,
drhc5a93d42019-08-12 00:08:07 +00006110 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
drh69c33822016-08-18 14:33:11 +00006111 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
danielk1977a8bbef82009-03-23 17:11:26 +00006112 if( zSql==0 ){
mistachkinfad30392016-02-13 23:43:46 +00006113 rc = SQLITE_NOMEM_BKPT;
danielk1977a8bbef82009-03-23 17:11:26 +00006114 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00006115 assert( db->init.busy==0 );
6116 db->init.busy = 1;
6117 initData.rc = SQLITE_OK;
drh6b86e512019-01-05 21:09:37 +00006118 initData.nInitRow = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00006119 assert( !db->mallocFailed );
6120 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6121 if( rc==SQLITE_OK ) rc = initData.rc;
drh6b86e512019-01-05 21:09:37 +00006122 if( rc==SQLITE_OK && initData.nInitRow==0 ){
6123 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6124 ** at least one SQL statement. Any less than that indicates that
6125 ** the sqlite_master table is corrupt. */
6126 rc = SQLITE_CORRUPT_BKPT;
6127 }
drhdbd6a7d2017-04-05 12:39:49 +00006128 sqlite3DbFreeNN(db, zSql);
danielk1977a8bbef82009-03-23 17:11:26 +00006129 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00006130 }
drh3c23a882007-01-09 14:01:13 +00006131 }
drh9467abf2016-02-17 18:44:11 +00006132 if( rc ){
6133 sqlite3ResetAllSchemasOfConnection(db);
6134 if( rc==SQLITE_NOMEM ){
6135 goto no_mem;
6136 }
6137 goto abort_due_to_error;
danielk1977261919c2005-12-06 12:52:59 +00006138 }
drh234c39d2004-07-24 03:30:47 +00006139 break;
6140}
6141
drh8bfdf722009-06-19 14:06:03 +00006142#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00006143/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00006144**
6145** Read the sqlite_stat1 table for database P1 and load the content
6146** of that table into the internal index hash table. This will cause
6147** the analysis to be used when preparing all subsequent queries.
6148*/
drh9cbf3422008-01-17 16:22:13 +00006149case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00006150 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6151 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00006152 if( rc ) goto abort_due_to_error;
drh497e4462005-07-23 03:18:40 +00006153 break;
6154}
drh8bfdf722009-06-19 14:06:03 +00006155#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00006156
drh98757152008-01-09 23:04:12 +00006157/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00006158**
6159** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00006160** the table named P4 in database P1. This is called after a table
drh5dad9a32014-07-25 18:37:42 +00006161** is dropped from disk (using the Destroy opcode) in order to keep
6162** the internal representation of the
drh956bc922004-07-24 17:38:29 +00006163** schema consistent with what is on disk.
6164*/
drh9cbf3422008-01-17 16:22:13 +00006165case OP_DropTable: {
drh4031baf2018-05-28 17:31:20 +00006166 sqlite3VdbeIncrWriteCounter(p, 0);
danielk19772dca4ac2008-01-03 11:50:29 +00006167 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00006168 break;
6169}
6170
drh98757152008-01-09 23:04:12 +00006171/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00006172**
6173** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00006174** the index named P4 in database P1. This is called after an index
drh5dad9a32014-07-25 18:37:42 +00006175** is dropped from disk (using the Destroy opcode)
6176** in order to keep the internal representation of the
drh956bc922004-07-24 17:38:29 +00006177** schema consistent with what is on disk.
6178*/
drh9cbf3422008-01-17 16:22:13 +00006179case OP_DropIndex: {
drh4031baf2018-05-28 17:31:20 +00006180 sqlite3VdbeIncrWriteCounter(p, 0);
danielk19772dca4ac2008-01-03 11:50:29 +00006181 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00006182 break;
6183}
6184
drh98757152008-01-09 23:04:12 +00006185/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00006186**
6187** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00006188** the trigger named P4 in database P1. This is called after a trigger
drh5dad9a32014-07-25 18:37:42 +00006189** is dropped from disk (using the Destroy opcode) in order to keep
6190** the internal representation of the
drh956bc922004-07-24 17:38:29 +00006191** schema consistent with what is on disk.
6192*/
drh9cbf3422008-01-17 16:22:13 +00006193case OP_DropTrigger: {
drh4031baf2018-05-28 17:31:20 +00006194 sqlite3VdbeIncrWriteCounter(p, 0);
danielk19772dca4ac2008-01-03 11:50:29 +00006195 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00006196 break;
6197}
6198
drh234c39d2004-07-24 03:30:47 +00006199
drhb7f91642004-10-31 02:22:47 +00006200#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98968b22016-03-15 22:00:39 +00006201/* Opcode: IntegrityCk P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00006202**
drh98757152008-01-09 23:04:12 +00006203** Do an analysis of the currently open database. Store in
6204** register P1 the text of an error message describing any problems.
6205** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00006206**
drh66accfc2017-02-22 18:04:42 +00006207** The register P3 contains one less than the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00006208** At most reg(P3) errors will be reported.
6209** In other words, the analysis stops as soon as reg(P1) errors are
6210** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00006211**
drh98968b22016-03-15 22:00:39 +00006212** The root page numbers of all tables in the database are integers
6213** stored in P4_INTARRAY argument.
drh21504322002-06-25 13:16:02 +00006214**
drh98757152008-01-09 23:04:12 +00006215** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00006216** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00006217**
drh1dcdbc02007-01-27 02:24:54 +00006218** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00006219*/
drhaaab5722002-02-19 13:39:21 +00006220case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00006221 int nRoot; /* Number of tables to check. (Number of root pages.) */
6222 int *aRoot; /* Array of rootpage numbers for tables to be checked */
drh98757152008-01-09 23:04:12 +00006223 int nErr; /* Number of errors reported */
6224 char *z; /* Text of the error report */
6225 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00006226
drh1713afb2013-06-28 01:24:57 +00006227 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00006228 nRoot = pOp->p2;
drh98968b22016-03-15 22:00:39 +00006229 aRoot = pOp->p4.ai;
drh79069752004-05-22 21:30:40 +00006230 assert( nRoot>0 );
drhb5c10632017-09-21 00:49:15 +00006231 assert( aRoot[0]==nRoot );
drh9f6168b2016-03-19 23:32:58 +00006232 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006233 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00006234 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00006235 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00006236 pIn1 = &aMem[pOp->p1];
drh98757152008-01-09 23:04:12 +00006237 assert( pOp->p5<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006238 assert( DbMaskTest(p->btreeMask, pOp->p5) );
drh21f6daa2019-10-11 14:21:48 +00006239 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
drh66accfc2017-02-22 18:04:42 +00006240 (int)pnErr->u.i+1, &nErr);
drha05a7222008-01-19 03:35:58 +00006241 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00006242 if( nErr==0 ){
6243 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00006244 }else if( z==0 ){
6245 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00006246 }else{
drh66accfc2017-02-22 18:04:42 +00006247 pnErr->u.i -= nErr-1;
danielk1977a7a8e142008-02-13 18:25:27 +00006248 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00006249 }
drhb7654112008-01-12 12:48:07 +00006250 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00006251 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh21f6daa2019-10-11 14:21:48 +00006252 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00006253}
drhb7f91642004-10-31 02:22:47 +00006254#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00006255
drh3d4501e2008-12-04 20:40:10 +00006256/* Opcode: RowSetAdd P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00006257** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00006258**
drhbb6783b2017-04-29 18:02:49 +00006259** Insert the integer value held by register P2 into a RowSet object
drh3d4501e2008-12-04 20:40:10 +00006260** held in register P1.
6261**
6262** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00006263*/
drh93952eb2009-11-13 19:43:43 +00006264case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00006265 pIn1 = &aMem[pOp->p1];
6266 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00006267 assert( (pIn2->flags & MEM_Int)!=0 );
drh9d67afc2018-08-29 20:24:03 +00006268 if( (pIn1->flags & MEM_Blob)==0 ){
6269 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00006270 }
drh9d67afc2018-08-29 20:24:03 +00006271 assert( sqlite3VdbeMemIsRowSet(pIn1) );
6272 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00006273 break;
6274}
6275
6276/* Opcode: RowSetRead P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00006277** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00006278**
drhbb6783b2017-04-29 18:02:49 +00006279** Extract the smallest value from the RowSet object in P1
6280** and put that value into register P3.
6281** Or, if RowSet object P1 is initially empty, leave P3
drh3d4501e2008-12-04 20:40:10 +00006282** unchanged and jump to instruction P2.
6283*/
drh93952eb2009-11-13 19:43:43 +00006284case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00006285 i64 val;
drh49afe3a2013-07-10 03:05:14 +00006286
drh3c657212009-11-17 23:59:58 +00006287 pIn1 = &aMem[pOp->p1];
drh9d67afc2018-08-29 20:24:03 +00006288 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
6289 if( (pIn1->flags & MEM_Blob)==0
6290 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
drh3d4501e2008-12-04 20:40:10 +00006291 ){
6292 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00006293 sqlite3VdbeMemSetNull(pIn1);
drh688852a2014-02-17 22:40:43 +00006294 VdbeBranchTaken(1,2);
drhf56fa462015-04-13 21:39:54 +00006295 goto jump_to_p2_and_check_for_interrupt;
drh3d4501e2008-12-04 20:40:10 +00006296 }else{
6297 /* A value was pulled from the index */
drh688852a2014-02-17 22:40:43 +00006298 VdbeBranchTaken(0,2);
drhf56fa462015-04-13 21:39:54 +00006299 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00006300 }
drh49afe3a2013-07-10 03:05:14 +00006301 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00006302}
6303
drh1b26c7c2009-04-22 02:15:47 +00006304/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00006305** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00006306**
drhade97602009-04-21 15:05:18 +00006307** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00006308** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00006309** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00006310** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00006311** next opcode.
danielk19771d461462009-04-21 09:02:45 +00006312**
drhbb6783b2017-04-29 18:02:49 +00006313** The RowSet object is optimized for the case where sets of integers
6314** are inserted in distinct phases, which each set contains no duplicates.
6315** Each set is identified by a unique P4 value. The first set
6316** must have P4==0, the final set must have P4==-1, and for all other sets
6317** must have P4>0.
danielk19771d461462009-04-21 09:02:45 +00006318**
6319** This allows optimizations: (a) when P4==0 there is no need to test
drhbb6783b2017-04-29 18:02:49 +00006320** the RowSet object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00006321** (b) when P4==-1 there is no need to insert the value, as it will
6322** never be tested for, and (c) when a value that is part of set X is
6323** inserted, there is no need to search to see if the same value was
6324** previously inserted as part of set X (only if it was previously
6325** inserted as part of some other set).
6326*/
drh1b26c7c2009-04-22 02:15:47 +00006327case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00006328 int iSet;
6329 int exists;
6330
drh3c657212009-11-17 23:59:58 +00006331 pIn1 = &aMem[pOp->p1];
6332 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00006333 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00006334 assert( pIn3->flags&MEM_Int );
6335
drh1b26c7c2009-04-22 02:15:47 +00006336 /* If there is anything other than a rowset object in memory cell P1,
6337 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00006338 */
drh9d67afc2018-08-29 20:24:03 +00006339 if( (pIn1->flags & MEM_Blob)==0 ){
6340 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00006341 }
drh9d67afc2018-08-29 20:24:03 +00006342 assert( sqlite3VdbeMemIsRowSet(pIn1) );
danielk19771d461462009-04-21 09:02:45 +00006343 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00006344 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00006345 if( iSet ){
drh9d67afc2018-08-29 20:24:03 +00006346 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
drh688852a2014-02-17 22:40:43 +00006347 VdbeBranchTaken(exists!=0,2);
drhf56fa462015-04-13 21:39:54 +00006348 if( exists ) goto jump_to_p2;
danielk19771d461462009-04-21 09:02:45 +00006349 }
6350 if( iSet>=0 ){
drh9d67afc2018-08-29 20:24:03 +00006351 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00006352 }
6353 break;
6354}
6355
drh5e00f6c2001-09-13 13:46:56 +00006356
danielk197793758c82005-01-21 08:13:14 +00006357#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00006358
drh0fd61352014-02-07 02:29:45 +00006359/* Opcode: Program P1 P2 P3 P4 P5
dan165921a2009-08-28 18:53:45 +00006360**
dan76d462e2009-08-30 11:42:51 +00006361** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00006362**
dan76d462e2009-08-30 11:42:51 +00006363** P1 contains the address of the memory cell that contains the first memory
6364** cell in an array of values used as arguments to the sub-program. P2
6365** contains the address to jump to if the sub-program throws an IGNORE
6366** exception using the RAISE() function. Register P3 contains the address
6367** of a memory cell in this (the parent) VM that is used to allocate the
6368** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00006369**
6370** P4 is a pointer to the VM containing the trigger program.
drh0fd61352014-02-07 02:29:45 +00006371**
6372** If P5 is non-zero, then recursive program invocation is enabled.
dan165921a2009-08-28 18:53:45 +00006373*/
dan76d462e2009-08-30 11:42:51 +00006374case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00006375 int nMem; /* Number of memory registers for sub-program */
6376 int nByte; /* Bytes of runtime space required for sub-program */
6377 Mem *pRt; /* Register to allocate runtime space */
6378 Mem *pMem; /* Used to iterate through memory cells */
6379 Mem *pEnd; /* Last memory cell in new array */
6380 VdbeFrame *pFrame; /* New vdbe frame to execute in */
6381 SubProgram *pProgram; /* Sub-program to execute */
6382 void *t; /* Token identifying trigger */
6383
6384 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00006385 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00006386 assert( pProgram->nOp>0 );
6387
dan1da40a32009-09-19 17:00:31 +00006388 /* If the p5 flag is clear, then recursive invocation of triggers is
6389 ** disabled for backwards compatibility (p5 is set if this sub-program
6390 ** is really a trigger, not a foreign key action, and the flag set
6391 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00006392 **
6393 ** It is recursive invocation of triggers, at the SQL level, that is
6394 ** disabled. In some cases a single trigger may generate more than one
6395 ** SubProgram (if the trigger may be executed with more than one different
6396 ** ON CONFLICT algorithm). SubProgram structures associated with a
6397 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00006398 ** variable. */
6399 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00006400 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00006401 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6402 if( pFrame ) break;
6403 }
6404
danf5894502009-10-07 18:41:19 +00006405 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00006406 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00006407 sqlite3VdbeError(p, "too many levels of trigger recursion");
drh9467abf2016-02-17 18:44:11 +00006408 goto abort_due_to_error;
dan165921a2009-08-28 18:53:45 +00006409 }
6410
6411 /* Register pRt is used to store the memory required to save the state
6412 ** of the current program, and the memory required at runtime to execute
6413 ** the trigger program. If this trigger has been fired before, then pRt
6414 ** is already allocated. Otherwise, it must be initialized. */
drh72f56ef2018-08-29 18:47:22 +00006415 if( (pRt->flags&MEM_Blob)==0 ){
dan165921a2009-08-28 18:53:45 +00006416 /* SubProgram.nMem is set to the number of memory cells used by the
6417 ** program stored in SubProgram.aOp. As well as these, one memory
6418 ** cell is required for each cursor used by the program. Set local
6419 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
6420 */
dan65a7cd12009-09-01 12:16:01 +00006421 nMem = pProgram->nMem + pProgram->nCsr;
drh3cdce922016-03-21 00:30:40 +00006422 assert( nMem>0 );
6423 if( pProgram->nCsr==0 ) nMem++;
dan65a7cd12009-09-01 12:16:01 +00006424 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00006425 + nMem * sizeof(Mem)
drhab087d42017-03-24 17:59:56 +00006426 + pProgram->nCsr * sizeof(VdbeCursor*)
6427 + (pProgram->nOp + 7)/8;
dan165921a2009-08-28 18:53:45 +00006428 pFrame = sqlite3DbMallocZero(db, nByte);
6429 if( !pFrame ){
6430 goto no_mem;
6431 }
6432 sqlite3VdbeMemRelease(pRt);
drh72f56ef2018-08-29 18:47:22 +00006433 pRt->flags = MEM_Blob|MEM_Dyn;
6434 pRt->z = (char*)pFrame;
6435 pRt->n = nByte;
6436 pRt->xDel = sqlite3VdbeFrameMemDel;
dan165921a2009-08-28 18:53:45 +00006437
6438 pFrame->v = p;
6439 pFrame->nChildMem = nMem;
6440 pFrame->nChildCsr = pProgram->nCsr;
drhf56fa462015-04-13 21:39:54 +00006441 pFrame->pc = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +00006442 pFrame->aMem = p->aMem;
6443 pFrame->nMem = p->nMem;
6444 pFrame->apCsr = p->apCsr;
6445 pFrame->nCursor = p->nCursor;
6446 pFrame->aOp = p->aOp;
6447 pFrame->nOp = p->nOp;
6448 pFrame->token = pProgram->token;
dane2f771b2014-11-03 15:33:17 +00006449#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00006450 pFrame->anExec = p->anExec;
dane2f771b2014-11-03 15:33:17 +00006451#endif
drh72f56ef2018-08-29 18:47:22 +00006452#ifdef SQLITE_DEBUG
6453 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
6454#endif
dan165921a2009-08-28 18:53:45 +00006455
6456 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
6457 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drha5750cf2014-02-07 13:20:31 +00006458 pMem->flags = MEM_Undefined;
dan165921a2009-08-28 18:53:45 +00006459 pMem->db = db;
6460 }
6461 }else{
drh72f56ef2018-08-29 18:47:22 +00006462 pFrame = (VdbeFrame*)pRt->z;
6463 assert( pRt->xDel==sqlite3VdbeFrameMemDel );
drh9f6168b2016-03-19 23:32:58 +00006464 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
6465 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
dan165921a2009-08-28 18:53:45 +00006466 assert( pProgram->nCsr==pFrame->nChildCsr );
drhf56fa462015-04-13 21:39:54 +00006467 assert( (int)(pOp - aOp)==pFrame->pc );
dan165921a2009-08-28 18:53:45 +00006468 }
6469
6470 p->nFrame++;
6471 pFrame->pParent = p->pFrame;
drhfae58d52017-01-26 17:26:44 +00006472 pFrame->lastRowid = db->lastRowid;
dan76d462e2009-08-30 11:42:51 +00006473 pFrame->nChange = p->nChange;
danc3da6672014-10-28 18:24:16 +00006474 pFrame->nDbChange = p->db->nChange;
dan32001322016-02-19 18:54:29 +00006475 assert( pFrame->pAuxData==0 );
6476 pFrame->pAuxData = p->pAuxData;
6477 p->pAuxData = 0;
dan2832ad42009-08-31 15:27:27 +00006478 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00006479 p->pFrame = pFrame;
drh9f6168b2016-03-19 23:32:58 +00006480 p->aMem = aMem = VdbeFrameMem(pFrame);
dan165921a2009-08-28 18:53:45 +00006481 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00006482 p->nCursor = (u16)pFrame->nChildCsr;
drh9f6168b2016-03-19 23:32:58 +00006483 p->apCsr = (VdbeCursor **)&aMem[p->nMem];
drhab087d42017-03-24 17:59:56 +00006484 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
drh18333ef2017-03-24 18:38:41 +00006485 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
drhbbe879d2009-11-14 18:04:35 +00006486 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00006487 p->nOp = pProgram->nOp;
dane2f771b2014-11-03 15:33:17 +00006488#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00006489 p->anExec = 0;
dane2f771b2014-11-03 15:33:17 +00006490#endif
drhb2e61bc2019-01-25 19:29:01 +00006491#ifdef SQLITE_DEBUG
6492 /* Verify that second and subsequent executions of the same trigger do not
6493 ** try to reuse register values from the first use. */
6494 {
6495 int i;
6496 for(i=0; i<p->nMem; i++){
6497 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */
drhf5cfe6f2020-03-03 20:48:12 +00006498 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
drhb2e61bc2019-01-25 19:29:01 +00006499 }
6500 }
6501#endif
drhf56fa462015-04-13 21:39:54 +00006502 pOp = &aOp[-1];
drhb1af9c62019-02-20 13:55:45 +00006503 goto check_for_interrupt;
dan165921a2009-08-28 18:53:45 +00006504}
6505
dan76d462e2009-08-30 11:42:51 +00006506/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00006507**
dan76d462e2009-08-30 11:42:51 +00006508** This opcode is only ever present in sub-programs called via the
6509** OP_Program instruction. Copy a value currently stored in a memory
6510** cell of the calling (parent) frame to cell P2 in the current frames
6511** address space. This is used by trigger programs to access the new.*
6512** and old.* values.
dan165921a2009-08-28 18:53:45 +00006513**
dan76d462e2009-08-30 11:42:51 +00006514** The address of the cell in the parent frame is determined by adding
6515** the value of the P1 argument to the value of the P1 argument to the
6516** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00006517*/
drh27a348c2015-04-13 19:14:06 +00006518case OP_Param: { /* out2 */
dan65a7cd12009-09-01 12:16:01 +00006519 VdbeFrame *pFrame;
6520 Mem *pIn;
drh27a348c2015-04-13 19:14:06 +00006521 pOut = out2Prerelease(p, pOp);
dan65a7cd12009-09-01 12:16:01 +00006522 pFrame = p->pFrame;
6523 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00006524 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
6525 break;
6526}
6527
danielk197793758c82005-01-21 08:13:14 +00006528#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00006529
dan1da40a32009-09-19 17:00:31 +00006530#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00006531/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00006532** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00006533**
dan0ff297e2009-09-25 17:03:14 +00006534** Increment a "constraint counter" by P2 (P2 may be negative or positive).
6535** If P1 is non-zero, the database constraint counter is incremented
6536** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00006537** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00006538*/
dan32b09f22009-09-23 17:29:59 +00006539case OP_FkCounter: {
drh963c74d2013-07-11 12:19:12 +00006540 if( db->flags & SQLITE_DeferFKs ){
dancb3e4b72013-07-03 19:53:05 +00006541 db->nDeferredImmCons += pOp->p2;
6542 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00006543 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00006544 }else{
dan0ff297e2009-09-25 17:03:14 +00006545 p->nFkConstraint += pOp->p2;
6546 }
6547 break;
6548}
6549
6550/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00006551** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00006552**
6553** This opcode tests if a foreign key constraint-counter is currently zero.
6554** If so, jump to instruction P2. Otherwise, fall through to the next
6555** instruction.
6556**
6557** If P1 is non-zero, then the jump is taken if the database constraint-counter
6558** is zero (the one that counts deferred constraint violations). If P1 is
6559** zero, the jump is taken if the statement constraint-counter is zero
6560** (immediate foreign key constraint violations).
6561*/
6562case OP_FkIfZero: { /* jump */
6563 if( pOp->p1 ){
drh688852a2014-02-17 22:40:43 +00006564 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00006565 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan0ff297e2009-09-25 17:03:14 +00006566 }else{
drh688852a2014-02-17 22:40:43 +00006567 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00006568 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan32b09f22009-09-23 17:29:59 +00006569 }
dan1da40a32009-09-19 17:00:31 +00006570 break;
6571}
6572#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
6573
drh205f48e2004-11-05 00:43:11 +00006574#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00006575/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00006576** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00006577**
dan76d462e2009-08-30 11:42:51 +00006578** P1 is a register in the root frame of this VM (the root frame is
6579** different from the current frame if this instruction is being executed
6580** within a sub-program). Set the value of register P1 to the maximum of
6581** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00006582**
6583** This instruction throws an error if the memory cell is not initially
6584** an integer.
6585*/
dan76d462e2009-08-30 11:42:51 +00006586case OP_MemMax: { /* in2 */
dan76d462e2009-08-30 11:42:51 +00006587 VdbeFrame *pFrame;
6588 if( p->pFrame ){
6589 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
6590 pIn1 = &pFrame->aMem[pOp->p1];
6591 }else{
drha6c2ed92009-11-14 23:22:23 +00006592 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00006593 }
drh2b4ded92010-09-27 21:09:31 +00006594 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00006595 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00006596 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00006597 sqlite3VdbeMemIntegerify(pIn2);
6598 if( pIn1->u.i<pIn2->u.i){
6599 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00006600 }
6601 break;
6602}
6603#endif /* SQLITE_OMIT_AUTOINCREMENT */
6604
drh8b0cf382015-10-06 21:07:06 +00006605/* Opcode: IfPos P1 P2 P3 * *
6606** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00006607**
drh16897072015-03-07 00:57:37 +00006608** Register P1 must contain an integer.
mistachkin91a3ecb2015-10-06 21:49:55 +00006609** If the value of register P1 is 1 or greater, subtract P3 from the
drh8b0cf382015-10-06 21:07:06 +00006610** value in P1 and jump to P2.
drh6f58f702006-01-08 05:26:41 +00006611**
drh16897072015-03-07 00:57:37 +00006612** If the initial value of register P1 is less than 1, then the
6613** value is unchanged and control passes through to the next instruction.
danielk1977a2dc3b12005-02-05 12:48:48 +00006614*/
drh9cbf3422008-01-17 16:22:13 +00006615case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00006616 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00006617 assert( pIn1->flags&MEM_Int );
drh688852a2014-02-17 22:40:43 +00006618 VdbeBranchTaken( pIn1->u.i>0, 2);
drh8b0cf382015-10-06 21:07:06 +00006619 if( pIn1->u.i>0 ){
6620 pIn1->u.i -= pOp->p3;
6621 goto jump_to_p2;
6622 }
drhec7429a2005-10-06 16:53:14 +00006623 break;
6624}
6625
drhcc2fa4c2016-01-25 15:57:29 +00006626/* Opcode: OffsetLimit P1 P2 P3 * *
6627** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
drh15007a92006-01-08 18:10:17 +00006628**
drhcc2fa4c2016-01-25 15:57:29 +00006629** This opcode performs a commonly used computation associated with
6630** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
6631** holds the offset counter. The opcode computes the combined value
6632** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
6633** value computed is the total number of rows that will need to be
6634** visited in order to complete the query.
6635**
6636** If r[P3] is zero or negative, that means there is no OFFSET
6637** and r[P2] is set to be the value of the LIMIT, r[P1].
6638**
6639** if r[P1] is zero or negative, that means there is no LIMIT
6640** and r[P2] is set to -1.
6641**
6642** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
drh15007a92006-01-08 18:10:17 +00006643*/
drhcc2fa4c2016-01-25 15:57:29 +00006644case OP_OffsetLimit: { /* in1, out2, in3 */
drh719da302016-12-10 04:06:49 +00006645 i64 x;
drh3c657212009-11-17 23:59:58 +00006646 pIn1 = &aMem[pOp->p1];
drhcc2fa4c2016-01-25 15:57:29 +00006647 pIn3 = &aMem[pOp->p3];
6648 pOut = out2Prerelease(p, pOp);
6649 assert( pIn1->flags & MEM_Int );
6650 assert( pIn3->flags & MEM_Int );
drh719da302016-12-10 04:06:49 +00006651 x = pIn1->u.i;
6652 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6653 /* If the LIMIT is less than or equal to zero, loop forever. This
6654 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
6655 ** also loop forever. This is undocumented. In fact, one could argue
6656 ** that the loop should terminate. But assuming 1 billion iterations
6657 ** per second (far exceeding the capabilities of any current hardware)
6658 ** it would take nearly 300 years to actually reach the limit. So
6659 ** looping forever is a reasonable approximation. */
6660 pOut->u.i = -1;
6661 }else{
6662 pOut->u.i = x;
6663 }
drh15007a92006-01-08 18:10:17 +00006664 break;
6665}
6666
drhf99dd352016-12-18 17:42:00 +00006667/* Opcode: IfNotZero P1 P2 * * *
6668** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
drhec7429a2005-10-06 16:53:14 +00006669**
drh16897072015-03-07 00:57:37 +00006670** Register P1 must contain an integer. If the content of register P1 is
drhf99dd352016-12-18 17:42:00 +00006671** initially greater than zero, then decrement the value in register P1.
6672** If it is non-zero (negative or positive) and then also jump to P2.
6673** If register P1 is initially zero, leave it unchanged and fall through.
drhec7429a2005-10-06 16:53:14 +00006674*/
drh16897072015-03-07 00:57:37 +00006675case OP_IfNotZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00006676 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00006677 assert( pIn1->flags&MEM_Int );
drh16897072015-03-07 00:57:37 +00006678 VdbeBranchTaken(pIn1->u.i<0, 2);
6679 if( pIn1->u.i ){
drhf99dd352016-12-18 17:42:00 +00006680 if( pIn1->u.i>0 ) pIn1->u.i--;
drhf56fa462015-04-13 21:39:54 +00006681 goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00006682 }
6683 break;
6684}
6685
6686/* Opcode: DecrJumpZero P1 P2 * * *
6687** Synopsis: if (--r[P1])==0 goto P2
6688**
drhab5be2e2016-11-30 05:08:59 +00006689** Register P1 must hold an integer. Decrement the value in P1
6690** and jump to P2 if the new value is exactly zero.
drh16897072015-03-07 00:57:37 +00006691*/
6692case OP_DecrJumpZero: { /* jump, in1 */
6693 pIn1 = &aMem[pOp->p1];
6694 assert( pIn1->flags&MEM_Int );
drhab5be2e2016-11-30 05:08:59 +00006695 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6696 VdbeBranchTaken(pIn1->u.i==0, 2);
6697 if( pIn1->u.i==0 ) goto jump_to_p2;
drha2a49dc2008-01-02 14:28:13 +00006698 break;
6699}
6700
drh16897072015-03-07 00:57:37 +00006701
drh8f26da62018-07-05 21:22:57 +00006702/* Opcode: AggStep * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006703** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00006704**
drh8f26da62018-07-05 21:22:57 +00006705** Execute the xStep function for an aggregate.
6706** The function has P5 arguments. P4 is a pointer to the
dan9a947222018-06-14 19:06:36 +00006707** FuncDef structure that specifies the function. Register P3 is the
drhe2d9e7c2015-06-26 18:47:53 +00006708** accumulator.
drhe5095352002-02-24 03:25:14 +00006709**
drh98757152008-01-09 23:04:12 +00006710** The P5 arguments are taken from register P2 and its
6711** successors.
drhe5095352002-02-24 03:25:14 +00006712*/
drh8f26da62018-07-05 21:22:57 +00006713/* Opcode: AggInverse * P2 P3 P4 P5
6714** Synopsis: accum=r[P3] inverse(r[P2@P5])
6715**
6716** Execute the xInverse function for an aggregate.
6717** The function has P5 arguments. P4 is a pointer to the
6718** FuncDef structure that specifies the function. Register P3 is the
6719** accumulator.
6720**
6721** The P5 arguments are taken from register P2 and its
6722** successors.
6723*/
6724/* Opcode: AggStep1 P1 P2 P3 P4 P5
drhe2d9e7c2015-06-26 18:47:53 +00006725** Synopsis: accum=r[P3] step(r[P2@P5])
6726**
dan9a947222018-06-14 19:06:36 +00006727** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
6728** aggregate. The function has P5 arguments. P4 is a pointer to the
6729** FuncDef structure that specifies the function. Register P3 is the
6730** accumulator.
drhe2d9e7c2015-06-26 18:47:53 +00006731**
6732** The P5 arguments are taken from register P2 and its
6733** successors.
6734**
6735** This opcode is initially coded as OP_AggStep0. On first evaluation,
6736** the FuncDef stored in P4 is converted into an sqlite3_context and
6737** the opcode is changed. In this way, the initialization of the
6738** sqlite3_context only happens once, instead of on each call to the
6739** step function.
6740*/
drh8f26da62018-07-05 21:22:57 +00006741case OP_AggInverse:
6742case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00006743 int n;
drh9c7c9132015-06-26 18:16:52 +00006744 sqlite3_context *pCtx;
drhe5095352002-02-24 03:25:14 +00006745
drh9c7c9132015-06-26 18:16:52 +00006746 assert( pOp->p4type==P4_FUNCDEF );
drh856c1032009-06-02 15:21:42 +00006747 n = pOp->p5;
drh9f6168b2016-03-19 23:32:58 +00006748 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6749 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
drh9c7c9132015-06-26 18:16:52 +00006750 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drhf09ac0b2018-01-23 03:44:06 +00006751 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
6752 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
drh9c7c9132015-06-26 18:16:52 +00006753 if( pCtx==0 ) goto no_mem;
6754 pCtx->pMem = 0;
drhf09ac0b2018-01-23 03:44:06 +00006755 pCtx->pOut = (Mem*)&(pCtx->argv[n]);
6756 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
drh9c7c9132015-06-26 18:16:52 +00006757 pCtx->pFunc = pOp->p4.pFunc;
6758 pCtx->iOp = (int)(pOp - aOp);
6759 pCtx->pVdbe = p;
drhf09ac0b2018-01-23 03:44:06 +00006760 pCtx->skipFlag = 0;
6761 pCtx->isError = 0;
drh9c7c9132015-06-26 18:16:52 +00006762 pCtx->argc = n;
6763 pOp->p4type = P4_FUNCCTX;
6764 pOp->p4.pCtx = pCtx;
drh2c885d02018-07-07 19:36:04 +00006765
6766 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
drh8f26da62018-07-05 21:22:57 +00006767 assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
drh2c885d02018-07-07 19:36:04 +00006768
drh8f26da62018-07-05 21:22:57 +00006769 pOp->opcode = OP_AggStep1;
drh9c7c9132015-06-26 18:16:52 +00006770 /* Fall through into OP_AggStep */
6771}
drh8f26da62018-07-05 21:22:57 +00006772case OP_AggStep1: {
drh9c7c9132015-06-26 18:16:52 +00006773 int i;
6774 sqlite3_context *pCtx;
6775 Mem *pMem;
drh9c7c9132015-06-26 18:16:52 +00006776
6777 assert( pOp->p4type==P4_FUNCCTX );
6778 pCtx = pOp->p4.pCtx;
6779 pMem = &aMem[pOp->p3];
6780
drh2c885d02018-07-07 19:36:04 +00006781#ifdef SQLITE_DEBUG
6782 if( pOp->p1 ){
6783 /* This is an OP_AggInverse call. Verify that xStep has always
6784 ** been called at least once prior to any xInverse call. */
6785 assert( pMem->uTemp==0x1122e0e3 );
6786 }else{
6787 /* This is an OP_AggStep call. Mark it as such. */
6788 pMem->uTemp = 0x1122e0e3;
6789 }
6790#endif
6791
drh9c7c9132015-06-26 18:16:52 +00006792 /* If this function is inside of a trigger, the register array in aMem[]
6793 ** might change from one evaluation to the next. The next block of code
6794 ** checks to see if the register array has changed, and if so it
6795 ** reinitializes the relavant parts of the sqlite3_context object */
6796 if( pCtx->pMem != pMem ){
6797 pCtx->pMem = pMem;
6798 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6799 }
6800
6801#ifdef SQLITE_DEBUG
6802 for(i=0; i<pCtx->argc; i++){
6803 assert( memIsValid(pCtx->argv[i]) );
6804 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6805 }
6806#endif
6807
drhabfcea22005-09-06 20:36:48 +00006808 pMem->n++;
drhf09ac0b2018-01-23 03:44:06 +00006809 assert( pCtx->pOut->flags==MEM_Null );
6810 assert( pCtx->isError==0 );
6811 assert( pCtx->skipFlag==0 );
dan67a9b8e2018-06-22 20:51:35 +00006812#ifndef SQLITE_OMIT_WINDOWFUNC
6813 if( pOp->p1 ){
6814 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
6815 }else
6816#endif
6817 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6818
drhf09ac0b2018-01-23 03:44:06 +00006819 if( pCtx->isError ){
6820 if( pCtx->isError>0 ){
6821 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
drh9c7c9132015-06-26 18:16:52 +00006822 rc = pCtx->isError;
6823 }
drhf09ac0b2018-01-23 03:44:06 +00006824 if( pCtx->skipFlag ){
6825 assert( pOp[-1].opcode==OP_CollSeq );
6826 i = pOp[-1].p1;
6827 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6828 pCtx->skipFlag = 0;
6829 }
6830 sqlite3VdbeMemRelease(pCtx->pOut);
6831 pCtx->pOut->flags = MEM_Null;
6832 pCtx->isError = 0;
drh9467abf2016-02-17 18:44:11 +00006833 if( rc ) goto abort_due_to_error;
drh1350b032002-02-27 19:00:20 +00006834 }
drhf09ac0b2018-01-23 03:44:06 +00006835 assert( pCtx->pOut->flags==MEM_Null );
6836 assert( pCtx->skipFlag==0 );
drh5e00f6c2001-09-13 13:46:56 +00006837 break;
6838}
6839
drh8f26da62018-07-05 21:22:57 +00006840/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00006841** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00006842**
dan9a947222018-06-14 19:06:36 +00006843** P1 is the memory location that is the accumulator for an aggregate
drh8f26da62018-07-05 21:22:57 +00006844** or window function. Execute the finalizer function
6845** for an aggregate and store the result in P1.
drha10a34b2005-09-07 22:09:48 +00006846**
6847** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00006848** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00006849** argument is not used by this opcode. It is only there to disambiguate
6850** functions that can take varying numbers of arguments. The
drh8be47a72018-07-05 20:05:29 +00006851** P4 argument is only needed for the case where
drha10a34b2005-09-07 22:09:48 +00006852** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00006853*/
drh8f26da62018-07-05 21:22:57 +00006854/* Opcode: AggValue * P2 P3 P4 *
6855** Synopsis: r[P3]=value N=P2
6856**
6857** Invoke the xValue() function and store the result in register P3.
6858**
6859** P2 is the number of arguments that the step function takes and
6860** P4 is a pointer to the FuncDef for this function. The P2
6861** argument is not used by this opcode. It is only there to disambiguate
6862** functions that can take varying numbers of arguments. The
6863** P4 argument is only needed for the case where
6864** the step function was not previously called.
6865*/
6866case OP_AggValue:
drh9cbf3422008-01-17 16:22:13 +00006867case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00006868 Mem *pMem;
drh9f6168b2016-03-19 23:32:58 +00006869 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh8f26da62018-07-05 21:22:57 +00006870 assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
drha6c2ed92009-11-14 23:22:23 +00006871 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00006872 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
dan67a9b8e2018-06-22 20:51:35 +00006873#ifndef SQLITE_OMIT_WINDOWFUNC
dan86fb6e12018-05-16 20:58:07 +00006874 if( pOp->p3 ){
dan108e6b22019-03-18 18:55:35 +00006875 memAboutToChange(p, &aMem[pOp->p3]);
dan86fb6e12018-05-16 20:58:07 +00006876 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
dan660af932018-06-18 16:55:22 +00006877 pMem = &aMem[pOp->p3];
dan67a9b8e2018-06-22 20:51:35 +00006878 }else
6879#endif
drh8f26da62018-07-05 21:22:57 +00006880 {
6881 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6882 }
dan67a9b8e2018-06-22 20:51:35 +00006883
drh4c8555f2009-06-25 01:47:11 +00006884 if( rc ){
drh22c17b82015-05-15 04:13:15 +00006885 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
drh9467abf2016-02-17 18:44:11 +00006886 goto abort_due_to_error;
drh90669c12006-01-20 15:45:36 +00006887 }
drh2dca8682008-03-21 17:13:13 +00006888 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00006889 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00006890 if( sqlite3VdbeMemTooBig(pMem) ){
6891 goto too_big;
6892 }
drh5e00f6c2001-09-13 13:46:56 +00006893 break;
6894}
6895
dan5cf53532010-05-01 16:40:20 +00006896#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00006897/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006898**
6899** Checkpoint database P1. This is a no-op if P1 is not currently in
drha25165f2014-12-04 04:50:59 +00006900** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6901** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
drh30aa3b92011-02-07 23:56:01 +00006902** SQLITE_BUSY or not, respectively. Write the number of pages in the
6903** WAL after the checkpoint into mem[P3+1] and the number of pages
6904** in the WAL that have been checkpointed after the checkpoint
6905** completes into mem[P3+2]. However on an error, mem[P3+1] and
6906** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00006907*/
6908case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00006909 int i; /* Loop counter */
6910 int aRes[3]; /* Results */
6911 Mem *pMem; /* Write results here */
6912
drh9e92a472013-06-27 17:40:30 +00006913 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00006914 aRes[0] = 0;
6915 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00006916 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6917 || pOp->p2==SQLITE_CHECKPOINT_FULL
6918 || pOp->p2==SQLITE_CHECKPOINT_RESTART
danf26a1542014-12-02 19:04:54 +00006919 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
dancdc1f042010-11-18 12:11:05 +00006920 );
drh30aa3b92011-02-07 23:56:01 +00006921 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
drh9467abf2016-02-17 18:44:11 +00006922 if( rc ){
6923 if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
dancdc1f042010-11-18 12:11:05 +00006924 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00006925 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00006926 }
drh30aa3b92011-02-07 23:56:01 +00006927 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6928 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6929 }
dan7c246102010-04-12 19:00:29 +00006930 break;
6931};
dan5cf53532010-05-01 16:40:20 +00006932#endif
drh5e00f6c2001-09-13 13:46:56 +00006933
drhcac29a62010-07-02 19:36:52 +00006934#ifndef SQLITE_OMIT_PRAGMA
drh0fd61352014-02-07 02:29:45 +00006935/* Opcode: JournalMode P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006936**
6937** Change the journal mode of database P1 to P3. P3 must be one of the
6938** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6939** modes (delete, truncate, persist, off and memory), this is a simple
6940** operation. No IO is required.
6941**
6942** If changing into or out of WAL mode the procedure is more complicated.
6943**
6944** Write a string containing the final journal-mode to register P2.
6945*/
drh27a348c2015-04-13 19:14:06 +00006946case OP_JournalMode: { /* out2 */
dane04dc882010-04-20 18:53:15 +00006947 Btree *pBt; /* Btree to change journal mode of */
6948 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00006949 int eNew; /* New journal mode */
6950 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00006951#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00006952 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00006953#endif
dane04dc882010-04-20 18:53:15 +00006954
drh27a348c2015-04-13 19:14:06 +00006955 pOut = out2Prerelease(p, pOp);
drhd80b2332010-05-01 00:59:37 +00006956 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00006957 assert( eNew==PAGER_JOURNALMODE_DELETE
6958 || eNew==PAGER_JOURNALMODE_TRUNCATE
6959 || eNew==PAGER_JOURNALMODE_PERSIST
6960 || eNew==PAGER_JOURNALMODE_OFF
6961 || eNew==PAGER_JOURNALMODE_MEMORY
6962 || eNew==PAGER_JOURNALMODE_WAL
6963 || eNew==PAGER_JOURNALMODE_QUERY
6964 );
6965 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00006966 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00006967
dane04dc882010-04-20 18:53:15 +00006968 pBt = db->aDb[pOp->p1].pBt;
6969 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00006970 eOld = sqlite3PagerGetJournalMode(pPager);
6971 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6972 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00006973
6974#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00006975 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00006976
drhd80b2332010-05-01 00:59:37 +00006977 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00006978 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00006979 */
6980 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00006981 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00006982 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00006983 ){
drh0b9b4302010-06-11 17:01:24 +00006984 eNew = eOld;
dane180c292010-04-26 17:42:56 +00006985 }
6986
drh0b9b4302010-06-11 17:01:24 +00006987 if( (eNew!=eOld)
6988 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6989 ){
danc0537fe2013-06-28 19:41:43 +00006990 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00006991 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00006992 sqlite3VdbeError(p,
drh0b9b4302010-06-11 17:01:24 +00006993 "cannot change %s wal mode from within a transaction",
6994 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6995 );
drh9467abf2016-02-17 18:44:11 +00006996 goto abort_due_to_error;
drh0b9b4302010-06-11 17:01:24 +00006997 }else{
6998
6999 if( eOld==PAGER_JOURNALMODE_WAL ){
7000 /* If leaving WAL mode, close the log file. If successful, the call
7001 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7002 ** file. An EXCLUSIVE lock may still be held on the database file
7003 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00007004 */
dan7fb89902016-08-12 16:21:15 +00007005 rc = sqlite3PagerCloseWal(pPager, db);
drhab9b7442010-05-10 11:20:05 +00007006 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00007007 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00007008 }
drh242c4f72010-06-22 14:49:39 +00007009 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
7010 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
7011 ** as an intermediate */
7012 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00007013 }
7014
7015 /* Open a transaction on the database file. Regardless of the journal
7016 ** mode, this transaction always uses a rollback journal.
7017 */
7018 assert( sqlite3BtreeIsInTrans(pBt)==0 );
7019 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00007020 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00007021 }
7022 }
7023 }
dan5cf53532010-05-01 16:40:20 +00007024#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00007025
drh9467abf2016-02-17 18:44:11 +00007026 if( rc ) eNew = eOld;
drh0b9b4302010-06-11 17:01:24 +00007027 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00007028
dane04dc882010-04-20 18:53:15 +00007029 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00007030 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00007031 pOut->n = sqlite3Strlen30(pOut->z);
7032 pOut->enc = SQLITE_UTF8;
7033 sqlite3VdbeChangeEncoding(pOut, encoding);
drh9467abf2016-02-17 18:44:11 +00007034 if( rc ) goto abort_due_to_error;
dane04dc882010-04-20 18:53:15 +00007035 break;
drhcac29a62010-07-02 19:36:52 +00007036};
7037#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00007038
drhfdbcdee2007-03-27 14:44:50 +00007039#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh2f6239e2018-12-08 00:43:08 +00007040/* Opcode: Vacuum P1 P2 * * *
drh6f8c91c2003-12-07 00:24:35 +00007041**
drh9ef5e772016-08-19 14:20:56 +00007042** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
7043** for an attached database. The "temp" database may not be vacuumed.
drhb0b7db92018-12-07 17:28:28 +00007044**
drh2f6239e2018-12-08 00:43:08 +00007045** If P2 is not zero, then it is a register holding a string which is
7046** the file into which the result of vacuum should be written. When
7047** P2 is zero, the vacuum overwrites the original database.
drh6f8c91c2003-12-07 00:24:35 +00007048*/
drh9cbf3422008-01-17 16:22:13 +00007049case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00007050 assert( p->readOnly==0 );
drh2f6239e2018-12-08 00:43:08 +00007051 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7052 pOp->p2 ? &aMem[pOp->p2] : 0);
drh9467abf2016-02-17 18:44:11 +00007053 if( rc ) goto abort_due_to_error;
drh6f8c91c2003-12-07 00:24:35 +00007054 break;
7055}
drh154d4b22006-09-21 11:02:16 +00007056#endif
drh6f8c91c2003-12-07 00:24:35 +00007057
danielk1977dddbcdc2007-04-26 14:42:34 +00007058#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00007059/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00007060**
7061** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00007062** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00007063** P2. Otherwise, fall through to the next instruction.
7064*/
drh9cbf3422008-01-17 16:22:13 +00007065case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00007066 Btree *pBt;
7067
7068 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00007069 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00007070 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00007071 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00007072 rc = sqlite3BtreeIncrVacuum(pBt);
drh688852a2014-02-17 22:40:43 +00007073 VdbeBranchTaken(rc==SQLITE_DONE,2);
drh9467abf2016-02-17 18:44:11 +00007074 if( rc ){
7075 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
danielk1977dddbcdc2007-04-26 14:42:34 +00007076 rc = SQLITE_OK;
drhf56fa462015-04-13 21:39:54 +00007077 goto jump_to_p2;
danielk1977dddbcdc2007-04-26 14:42:34 +00007078 }
7079 break;
7080}
7081#endif
7082
drhba968db2018-07-24 22:02:12 +00007083/* Opcode: Expire P1 P2 * * *
danielk1977a21c6b62005-01-24 10:25:59 +00007084**
drh25df48d2014-07-22 14:58:12 +00007085** Cause precompiled statements to expire. When an expired statement
7086** is executed using sqlite3_step() it will either automatically
7087** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7088** or it will fail with SQLITE_SCHEMA.
danielk1977a21c6b62005-01-24 10:25:59 +00007089**
7090** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
drh25df48d2014-07-22 14:58:12 +00007091** then only the currently executing statement is expired.
drhba968db2018-07-24 22:02:12 +00007092**
7093** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
7094** then running SQL statements are allowed to continue to run to completion.
7095** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7096** that might help the statement run faster but which does not affect the
7097** correctness of operation.
danielk1977a21c6b62005-01-24 10:25:59 +00007098*/
drh9cbf3422008-01-17 16:22:13 +00007099case OP_Expire: {
drhba968db2018-07-24 22:02:12 +00007100 assert( pOp->p2==0 || pOp->p2==1 );
danielk1977a21c6b62005-01-24 10:25:59 +00007101 if( !pOp->p1 ){
drhba968db2018-07-24 22:02:12 +00007102 sqlite3ExpirePreparedStatements(db, pOp->p2);
danielk1977a21c6b62005-01-24 10:25:59 +00007103 }else{
drhba968db2018-07-24 22:02:12 +00007104 p->expired = pOp->p2+1;
danielk1977a21c6b62005-01-24 10:25:59 +00007105 }
7106 break;
7107}
7108
drh7b14b652019-12-29 22:08:20 +00007109/* Opcode: CursorLock P1 * * * *
7110**
7111** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7112** written by an other cursor.
7113*/
7114case OP_CursorLock: {
7115 VdbeCursor *pC;
7116 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7117 pC = p->apCsr[pOp->p1];
7118 assert( pC!=0 );
7119 assert( pC->eCurType==CURTYPE_BTREE );
7120 sqlite3BtreeCursorPin(pC->uc.pCursor);
7121 break;
7122}
7123
7124/* Opcode: CursorUnlock P1 * * * *
7125**
7126** Unlock the btree to which cursor P1 is pointing so that it can be
7127** written by other cursors.
7128*/
7129case OP_CursorUnlock: {
7130 VdbeCursor *pC;
7131 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7132 pC = p->apCsr[pOp->p1];
7133 assert( pC!=0 );
7134 assert( pC->eCurType==CURTYPE_BTREE );
7135 sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7136 break;
7137}
7138
danielk1977c00da102006-01-07 13:21:04 +00007139#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00007140/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00007141** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00007142**
7143** Obtain a lock on a particular table. This instruction is only used when
7144** the shared-cache feature is enabled.
7145**
danielk197796d48e92009-06-29 06:00:37 +00007146** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00007147** on which the lock is acquired. A readlock is obtained if P3==0 or
7148** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00007149**
7150** P2 contains the root-page of the table to lock.
7151**
drh66a51672008-01-03 00:01:23 +00007152** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00007153** used to generate an error message if the lock cannot be obtained.
7154*/
drh9cbf3422008-01-17 16:22:13 +00007155case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00007156 u8 isWriteLock = (u8)pOp->p3;
drh169dd922017-06-26 13:57:49 +00007157 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
danielk1977e0d9e6f2009-07-03 16:25:06 +00007158 int p1 = pOp->p1;
7159 assert( p1>=0 && p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00007160 assert( DbMaskTest(p->btreeMask, p1) );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007161 assert( isWriteLock==0 || isWriteLock==1 );
7162 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
drh9467abf2016-02-17 18:44:11 +00007163 if( rc ){
7164 if( (rc&0xFF)==SQLITE_LOCKED ){
7165 const char *z = pOp->p4.z;
7166 sqlite3VdbeError(p, "database table is locked: %s", z);
7167 }
7168 goto abort_due_to_error;
danielk1977e0d9e6f2009-07-03 16:25:06 +00007169 }
danielk1977c00da102006-01-07 13:21:04 +00007170 }
7171 break;
7172}
drhb9bb7c12006-06-11 23:41:55 +00007173#endif /* SQLITE_OMIT_SHARED_CACHE */
7174
7175#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00007176/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00007177**
danielk19773e3a84d2008-08-01 17:37:40 +00007178** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7179** xBegin method for that table.
7180**
7181** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00007182** within a callback to a virtual table xSync() method. If it is, the error
7183** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00007184*/
drh9cbf3422008-01-17 16:22:13 +00007185case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00007186 VTable *pVTab;
7187 pVTab = pOp->p4.pVtab;
7188 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00007189 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
drh9467abf2016-02-17 18:44:11 +00007190 if( rc ) goto abort_due_to_error;
danielk1977f9e7dda2006-06-16 16:08:53 +00007191 break;
7192}
7193#endif /* SQLITE_OMIT_VIRTUALTABLE */
7194
7195#ifndef SQLITE_OMIT_VIRTUALTABLE
dan73779452015-03-19 18:56:17 +00007196/* Opcode: VCreate P1 P2 * * *
danielk1977f9e7dda2006-06-16 16:08:53 +00007197**
dan73779452015-03-19 18:56:17 +00007198** P2 is a register that holds the name of a virtual table in database
7199** P1. Call the xCreate method for that table.
danielk1977f9e7dda2006-06-16 16:08:53 +00007200*/
drh9cbf3422008-01-17 16:22:13 +00007201case OP_VCreate: {
dan73779452015-03-19 18:56:17 +00007202 Mem sMem; /* For storing the record being decoded */
drh47464062015-03-21 12:22:16 +00007203 const char *zTab; /* Name of the virtual table */
7204
dan73779452015-03-19 18:56:17 +00007205 memset(&sMem, 0, sizeof(sMem));
7206 sMem.db = db;
drh47464062015-03-21 12:22:16 +00007207 /* Because P2 is always a static string, it is impossible for the
7208 ** sqlite3VdbeMemCopy() to fail */
7209 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7210 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
dan73779452015-03-19 18:56:17 +00007211 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
drh47464062015-03-21 12:22:16 +00007212 assert( rc==SQLITE_OK );
7213 zTab = (const char*)sqlite3_value_text(&sMem);
7214 assert( zTab || db->mallocFailed );
7215 if( zTab ){
7216 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
dan73779452015-03-19 18:56:17 +00007217 }
7218 sqlite3VdbeMemRelease(&sMem);
drh9467abf2016-02-17 18:44:11 +00007219 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00007220 break;
7221}
7222#endif /* SQLITE_OMIT_VIRTUALTABLE */
7223
7224#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00007225/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00007226**
drh66a51672008-01-03 00:01:23 +00007227** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00007228** of that table.
drhb9bb7c12006-06-11 23:41:55 +00007229*/
drh9cbf3422008-01-17 16:22:13 +00007230case OP_VDestroy: {
drh086723a2015-03-24 12:51:52 +00007231 db->nVDestroy++;
danielk19772dca4ac2008-01-03 11:50:29 +00007232 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
drh086723a2015-03-24 12:51:52 +00007233 db->nVDestroy--;
dan1d4b1642018-12-28 17:45:08 +00007234 assert( p->errorAction==OE_Abort && p->usesStmtJournal );
drh9467abf2016-02-17 18:44:11 +00007235 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00007236 break;
7237}
7238#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00007239
drh9eff6162006-06-12 21:59:13 +00007240#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00007241/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00007242**
drh66a51672008-01-03 00:01:23 +00007243** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00007244** P1 is a cursor number. This opcode opens a cursor to the virtual
7245** table and stores that cursor in P1.
7246*/
drh9cbf3422008-01-17 16:22:13 +00007247case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00007248 VdbeCursor *pCur;
drhc960dcb2015-11-20 19:22:01 +00007249 sqlite3_vtab_cursor *pVCur;
drh856c1032009-06-02 15:21:42 +00007250 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00007251 const sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00007252
drh1713afb2013-06-28 01:24:57 +00007253 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00007254 pCur = 0;
drhc960dcb2015-11-20 19:22:01 +00007255 pVCur = 0;
danielk1977595a5232009-07-24 17:58:53 +00007256 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00007257 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7258 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00007259 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00007260 }
7261 pModule = pVtab->pModule;
drhc960dcb2015-11-20 19:22:01 +00007262 rc = pModule->xOpen(pVtab, &pVCur);
dan016f7812013-08-21 17:35:48 +00007263 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00007264 if( rc ) goto abort_due_to_error;
danielk1977b7a7b9a2006-06-13 10:24:42 +00007265
drh9467abf2016-02-17 18:44:11 +00007266 /* Initialize sqlite3_vtab_cursor base class */
7267 pVCur->pVtab = pVtab;
7268
7269 /* Initialize vdbe cursor object */
7270 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
7271 if( pCur ){
7272 pCur->uc.pVCur = pVCur;
7273 pVtab->nRef++;
7274 }else{
7275 assert( db->mallocFailed );
7276 pModule->xClose(pVCur);
7277 goto no_mem;
danielk1977b7a7b9a2006-06-13 10:24:42 +00007278 }
drh9eff6162006-06-12 21:59:13 +00007279 break;
7280}
7281#endif /* SQLITE_OMIT_VIRTUALTABLE */
7282
7283#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00007284/* Opcode: VFilter P1 P2 P3 P4 *
drh831116d2014-04-03 14:31:00 +00007285** Synopsis: iplan=r[P3] zplan='P4'
drh9eff6162006-06-12 21:59:13 +00007286**
7287** P1 is a cursor opened using VOpen. P2 is an address to jump to if
7288** the filtered result set is empty.
7289**
drh66a51672008-01-03 00:01:23 +00007290** P4 is either NULL or a string that was generated by the xBestIndex
7291** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00007292** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00007293**
drh9eff6162006-06-12 21:59:13 +00007294** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00007295** by P1. The integer query plan parameter to xFilter is stored in register
7296** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00007297** xFilter method. Registers P3+2..P3+1+argc are the argc
7298** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00007299** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00007300**
danielk19776dbee812008-01-03 18:39:41 +00007301** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00007302*/
drh9cbf3422008-01-17 16:22:13 +00007303case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00007304 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00007305 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00007306 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00007307 Mem *pQuery;
7308 Mem *pArgc;
drhc960dcb2015-11-20 19:22:01 +00007309 sqlite3_vtab_cursor *pVCur;
drh4dc754d2008-07-23 18:17:32 +00007310 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00007311 VdbeCursor *pCur;
7312 int res;
7313 int i;
7314 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00007315
drha6c2ed92009-11-14 23:22:23 +00007316 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00007317 pArgc = &pQuery[1];
7318 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00007319 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00007320 REGISTER_TRACE(pOp->p3, pQuery);
drhc960dcb2015-11-20 19:22:01 +00007321 assert( pCur->eCurType==CURTYPE_VTAB );
7322 pVCur = pCur->uc.pVCur;
7323 pVtab = pVCur->pVtab;
drh4dc754d2008-07-23 18:17:32 +00007324 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00007325
drh9cbf3422008-01-17 16:22:13 +00007326 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00007327 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00007328 nArg = (int)pArgc->u.i;
7329 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00007330
drh644a5292006-12-20 14:53:38 +00007331 /* Invoke the xFilter method */
drhf56fa462015-04-13 21:39:54 +00007332 res = 0;
7333 apArg = p->apArg;
7334 for(i = 0; i<nArg; i++){
7335 apArg[i] = &pArgc[i+1];
7336 }
drhc960dcb2015-11-20 19:22:01 +00007337 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
drhf56fa462015-04-13 21:39:54 +00007338 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00007339 if( rc ) goto abort_due_to_error;
7340 res = pModule->xEof(pVCur);
drh1d454a32008-01-31 19:34:51 +00007341 pCur->nullRow = 0;
drhf56fa462015-04-13 21:39:54 +00007342 VdbeBranchTaken(res!=0,2);
7343 if( res ) goto jump_to_p2;
drh9eff6162006-06-12 21:59:13 +00007344 break;
7345}
7346#endif /* SQLITE_OMIT_VIRTUALTABLE */
7347
7348#ifndef SQLITE_OMIT_VIRTUALTABLE
drhce2fbd12018-01-12 21:00:14 +00007349/* Opcode: VColumn P1 P2 P3 * P5
drh81316f82013-10-29 20:40:47 +00007350** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00007351**
drh6f390be2018-01-11 17:04:26 +00007352** Store in register P3 the value of the P2-th column of
7353** the current row of the virtual-table of cursor P1.
7354**
7355** If the VColumn opcode is being used to fetch the value of
drhce2fbd12018-01-12 21:00:14 +00007356** an unchanging column during an UPDATE operation, then the P5
drh09d00b22018-09-27 20:20:01 +00007357** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
7358** function to return true inside the xColumn method of the virtual
7359** table implementation. The P5 column might also contain other
7360** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
7361** unused by OP_VColumn.
drh9eff6162006-06-12 21:59:13 +00007362*/
7363case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00007364 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00007365 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00007366 Mem *pDest;
7367 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00007368
drhdfe88ec2008-11-03 20:55:06 +00007369 VdbeCursor *pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00007370 assert( pCur->eCurType==CURTYPE_VTAB );
drh9f6168b2016-03-19 23:32:58 +00007371 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00007372 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00007373 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00007374 if( pCur->nullRow ){
7375 sqlite3VdbeMemSetNull(pDest);
7376 break;
7377 }
drhc960dcb2015-11-20 19:22:01 +00007378 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00007379 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00007380 assert( pModule->xColumn );
7381 memset(&sContext, 0, sizeof(sContext));
drh9bd038f2014-08-27 14:14:06 +00007382 sContext.pOut = pDest;
drh75f10762019-12-14 18:08:22 +00007383 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
drh09d00b22018-09-27 20:20:01 +00007384 if( pOp->p5 & OPFLAG_NOCHNG ){
drhce2fbd12018-01-12 21:00:14 +00007385 sqlite3VdbeMemSetNull(pDest);
7386 pDest->flags = MEM_Null|MEM_Zero;
7387 pDest->u.nZero = 0;
7388 }else{
7389 MemSetTypeFlag(pDest, MEM_Null);
7390 }
drhc960dcb2015-11-20 19:22:01 +00007391 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00007392 sqlite3VtabImportErrmsg(p, pVtab);
drhf09ac0b2018-01-23 03:44:06 +00007393 if( sContext.isError>0 ){
dan099fa842018-01-30 18:33:23 +00007394 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
drh4c8555f2009-06-25 01:47:11 +00007395 rc = sContext.isError;
7396 }
drh9bd038f2014-08-27 14:14:06 +00007397 sqlite3VdbeChangeEncoding(pDest, encoding);
drh5ff44372009-11-24 16:26:17 +00007398 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00007399 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00007400
drhde4fcfd2008-01-19 23:50:26 +00007401 if( sqlite3VdbeMemTooBig(pDest) ){
7402 goto too_big;
7403 }
drh9467abf2016-02-17 18:44:11 +00007404 if( rc ) goto abort_due_to_error;
drh9eff6162006-06-12 21:59:13 +00007405 break;
7406}
7407#endif /* SQLITE_OMIT_VIRTUALTABLE */
7408
7409#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00007410/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00007411**
7412** Advance virtual table P1 to the next row in its result set and
7413** jump to instruction P2. Or, if the virtual table has reached
7414** the end of its result set, then fall through to the next instruction.
7415*/
drh9cbf3422008-01-17 16:22:13 +00007416case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00007417 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00007418 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00007419 int res;
drh856c1032009-06-02 15:21:42 +00007420 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00007421
drhc54a6172009-06-02 16:06:03 +00007422 res = 0;
drh856c1032009-06-02 15:21:42 +00007423 pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00007424 assert( pCur->eCurType==CURTYPE_VTAB );
drh2945b4a2008-01-31 15:53:45 +00007425 if( pCur->nullRow ){
7426 break;
7427 }
drhc960dcb2015-11-20 19:22:01 +00007428 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00007429 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00007430 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00007431
drhde4fcfd2008-01-19 23:50:26 +00007432 /* Invoke the xNext() method of the module. There is no way for the
7433 ** underlying implementation to return an error if one occurs during
7434 ** xNext(). Instead, if an error occurs, true is returned (indicating that
7435 ** data is available) and the error code returned when xColumn or
7436 ** some other method is next invoked on the save virtual table cursor.
7437 */
drhc960dcb2015-11-20 19:22:01 +00007438 rc = pModule->xNext(pCur->uc.pVCur);
dan016f7812013-08-21 17:35:48 +00007439 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00007440 if( rc ) goto abort_due_to_error;
7441 res = pModule->xEof(pCur->uc.pVCur);
drh688852a2014-02-17 22:40:43 +00007442 VdbeBranchTaken(!res,2);
drhde4fcfd2008-01-19 23:50:26 +00007443 if( !res ){
7444 /* If there is data, jump to P2 */
drhf56fa462015-04-13 21:39:54 +00007445 goto jump_to_p2_and_check_for_interrupt;
drhde4fcfd2008-01-19 23:50:26 +00007446 }
drh49afe3a2013-07-10 03:05:14 +00007447 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00007448}
7449#endif /* SQLITE_OMIT_VIRTUALTABLE */
7450
danielk1977182c4ba2007-06-27 15:53:34 +00007451#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00007452/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00007453**
drh66a51672008-01-03 00:01:23 +00007454** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00007455** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00007456** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00007457*/
drh9cbf3422008-01-17 16:22:13 +00007458case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00007459 sqlite3_vtab *pVtab;
7460 Mem *pName;
dan34566c42018-09-20 17:21:21 +00007461 int isLegacy;
7462
7463 isLegacy = (db->flags & SQLITE_LegacyAlter);
7464 db->flags |= SQLITE_LegacyAlter;
danielk1977595a5232009-07-24 17:58:53 +00007465 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00007466 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00007467 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00007468 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00007469 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00007470 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00007471 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00007472 testcase( pName->enc==SQLITE_UTF8 );
7473 testcase( pName->enc==SQLITE_UTF16BE );
7474 testcase( pName->enc==SQLITE_UTF16LE );
7475 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
drh9467abf2016-02-17 18:44:11 +00007476 if( rc ) goto abort_due_to_error;
7477 rc = pVtab->pModule->xRename(pVtab, pName->z);
drhd5b44d62018-12-06 17:06:02 +00007478 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
drh9467abf2016-02-17 18:44:11 +00007479 sqlite3VtabImportErrmsg(p, pVtab);
7480 p->expired = 0;
7481 if( rc ) goto abort_due_to_error;
danielk1977182c4ba2007-06-27 15:53:34 +00007482 break;
7483}
7484#endif
drh4cbdda92006-06-14 19:00:20 +00007485
7486#ifndef SQLITE_OMIT_VIRTUALTABLE
drh0fd61352014-02-07 02:29:45 +00007487/* Opcode: VUpdate P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00007488** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00007489**
drh66a51672008-01-03 00:01:23 +00007490** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00007491** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00007492** are contiguous memory cells starting at P3 to pass to the xUpdate
7493** invocation. The value in register (P3+P2-1) corresponds to the
7494** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00007495**
7496** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00007497** The argv[0] element (which corresponds to memory cell P3)
7498** is the rowid of a row to delete. If argv[0] is NULL then no
7499** deletion occurs. The argv[1] element is the rowid of the new
7500** row. This can be NULL to have the virtual table select the new
7501** rowid for itself. The subsequent elements in the array are
7502** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00007503**
7504** If P2==1 then no insert is performed. argv[0] is the rowid of
7505** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00007506**
7507** P1 is a boolean flag. If it is set to true and the xUpdate call
7508** is successful, then the value returned by sqlite3_last_insert_rowid()
7509** is set to the value of the rowid for the row just inserted.
drh0fd61352014-02-07 02:29:45 +00007510**
7511** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
7512** apply in the case of a constraint failure on an insert or update.
danielk1977399918f2006-06-14 13:03:23 +00007513*/
drh9cbf3422008-01-17 16:22:13 +00007514case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00007515 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00007516 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00007517 int nArg;
7518 int i;
7519 sqlite_int64 rowid;
7520 Mem **apArg;
7521 Mem *pX;
7522
danb061d052011-04-25 18:49:57 +00007523 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
7524 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
7525 );
drh9e92a472013-06-27 17:40:30 +00007526 assert( p->readOnly==0 );
dan466ea9b2018-06-13 11:11:13 +00007527 if( db->mallocFailed ) goto no_mem;
drh4031baf2018-05-28 17:31:20 +00007528 sqlite3VdbeIncrWriteCounter(p, 0);
danielk1977595a5232009-07-24 17:58:53 +00007529 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00007530 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7531 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00007532 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00007533 }
7534 pModule = pVtab->pModule;
drh856c1032009-06-02 15:21:42 +00007535 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00007536 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00007537 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00007538 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00007539 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00007540 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00007541 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00007542 assert( memIsValid(pX) );
7543 memAboutToChange(p, pX);
drh9c419382006-06-16 21:13:21 +00007544 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00007545 pX++;
danielk1977399918f2006-06-14 13:03:23 +00007546 }
danb061d052011-04-25 18:49:57 +00007547 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00007548 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00007549 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00007550 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00007551 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00007552 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drhfae58d52017-01-26 17:26:44 +00007553 db->lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00007554 }
drhd91c1a12013-02-09 13:58:25 +00007555 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00007556 if( pOp->p5==OE_Ignore ){
7557 rc = SQLITE_OK;
7558 }else{
7559 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
7560 }
7561 }else{
7562 p->nChange++;
7563 }
drh9467abf2016-02-17 18:44:11 +00007564 if( rc ) goto abort_due_to_error;
danielk1977399918f2006-06-14 13:03:23 +00007565 }
drh4cbdda92006-06-14 19:00:20 +00007566 break;
danielk1977399918f2006-06-14 13:03:23 +00007567}
7568#endif /* SQLITE_OMIT_VIRTUALTABLE */
7569
danielk197759a93792008-05-15 17:48:20 +00007570#ifndef SQLITE_OMIT_PAGER_PRAGMAS
7571/* Opcode: Pagecount P1 P2 * * *
7572**
7573** Write the current number of pages in database P1 to memory cell P2.
7574*/
drh27a348c2015-04-13 19:14:06 +00007575case OP_Pagecount: { /* out2 */
7576 pOut = out2Prerelease(p, pOp);
drhb1299152010-03-30 22:58:33 +00007577 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00007578 break;
7579}
7580#endif
7581
drh60ac3f42010-11-23 18:59:27 +00007582
7583#ifndef SQLITE_OMIT_PAGER_PRAGMAS
7584/* Opcode: MaxPgcnt P1 P2 P3 * *
7585**
7586** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00007587** Do not let the maximum page count fall below the current page count and
7588** do not change the maximum page count value if P3==0.
7589**
drh60ac3f42010-11-23 18:59:27 +00007590** Store the maximum page count after the change in register P2.
7591*/
drh27a348c2015-04-13 19:14:06 +00007592case OP_MaxPgcnt: { /* out2 */
drhc84e0332010-11-23 20:25:08 +00007593 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00007594 Btree *pBt;
7595
drh27a348c2015-04-13 19:14:06 +00007596 pOut = out2Prerelease(p, pOp);
drh60ac3f42010-11-23 18:59:27 +00007597 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00007598 newMax = 0;
7599 if( pOp->p3 ){
7600 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00007601 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00007602 }
7603 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00007604 break;
7605}
7606#endif
7607
drh920cf592019-10-30 16:29:02 +00007608/* Opcode: Function P1 P2 P3 P4 *
drhd7b10d72020-02-01 17:38:24 +00007609** Synopsis: r[P3]=func(r[P2@NP])
drh3e34eab2017-07-19 19:48:40 +00007610**
7611** Invoke a user function (P4 is a pointer to an sqlite3_context object that
drh920cf592019-10-30 16:29:02 +00007612** contains a pointer to the function to be run) with arguments taken
7613** from register P2 and successors. The number of arguments is in
7614** the sqlite3_context object that P4 points to.
7615** The result of the function is stored
drh3e34eab2017-07-19 19:48:40 +00007616** in register P3. Register P3 must not be one of the function inputs.
7617**
7618** P1 is a 32-bit bitmask indicating whether or not each argument to the
7619** function was determined to be constant at compile time. If the first
7620** argument was constant then bit 0 of P1 is set. This is used to determine
7621** whether meta data associated with a user function argument using the
7622** sqlite3_set_auxdata() API may be safely retained until the next
7623** invocation of this opcode.
7624**
drh920cf592019-10-30 16:29:02 +00007625** See also: AggStep, AggFinal, PureFunc
drh3e34eab2017-07-19 19:48:40 +00007626*/
drh920cf592019-10-30 16:29:02 +00007627/* Opcode: PureFunc P1 P2 P3 P4 *
drhd7b10d72020-02-01 17:38:24 +00007628** Synopsis: r[P3]=func(r[P2@NP])
drh920cf592019-10-30 16:29:02 +00007629**
7630** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7631** contains a pointer to the function to be run) with arguments taken
7632** from register P2 and successors. The number of arguments is in
7633** the sqlite3_context object that P4 points to.
7634** The result of the function is stored
7635** in register P3. Register P3 must not be one of the function inputs.
7636**
7637** P1 is a 32-bit bitmask indicating whether or not each argument to the
7638** function was determined to be constant at compile time. If the first
7639** argument was constant then bit 0 of P1 is set. This is used to determine
7640** whether meta data associated with a user function argument using the
7641** sqlite3_set_auxdata() API may be safely retained until the next
7642** invocation of this opcode.
7643**
7644** This opcode works exactly like OP_Function. The only difference is in
7645** its name. This opcode is used in places where the function must be
7646** purely non-deterministic. Some built-in date/time functions can be
7647** either determinitic of non-deterministic, depending on their arguments.
7648** When those function are used in a non-deterministic way, they will check
7649** to see if they were called using OP_PureFunc instead of OP_Function, and
7650** if they were, they throw an error.
7651**
7652** See also: AggStep, AggFinal, Function
7653*/
mistachkin758784d2018-07-25 15:12:29 +00007654case OP_PureFunc: /* group */
7655case OP_Function: { /* group */
drh3e34eab2017-07-19 19:48:40 +00007656 int i;
7657 sqlite3_context *pCtx;
7658
7659 assert( pOp->p4type==P4_FUNCCTX );
7660 pCtx = pOp->p4.pCtx;
7661
7662 /* If this function is inside of a trigger, the register array in aMem[]
7663 ** might change from one evaluation to the next. The next block of code
7664 ** checks to see if the register array has changed, and if so it
7665 ** reinitializes the relavant parts of the sqlite3_context object */
7666 pOut = &aMem[pOp->p3];
7667 if( pCtx->pOut != pOut ){
drh920cf592019-10-30 16:29:02 +00007668 pCtx->pVdbe = p;
drh3e34eab2017-07-19 19:48:40 +00007669 pCtx->pOut = pOut;
7670 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7671 }
drh920cf592019-10-30 16:29:02 +00007672 assert( pCtx->pVdbe==p );
drh3e34eab2017-07-19 19:48:40 +00007673
7674 memAboutToChange(p, pOut);
7675#ifdef SQLITE_DEBUG
7676 for(i=0; i<pCtx->argc; i++){
7677 assert( memIsValid(pCtx->argv[i]) );
7678 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7679 }
7680#endif
7681 MemSetTypeFlag(pOut, MEM_Null);
drhf09ac0b2018-01-23 03:44:06 +00007682 assert( pCtx->isError==0 );
drh3e34eab2017-07-19 19:48:40 +00007683 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
7684
7685 /* If the function returned an error, throw an exception */
drhf09ac0b2018-01-23 03:44:06 +00007686 if( pCtx->isError ){
7687 if( pCtx->isError>0 ){
drh3e34eab2017-07-19 19:48:40 +00007688 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
7689 rc = pCtx->isError;
7690 }
7691 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
drhf09ac0b2018-01-23 03:44:06 +00007692 pCtx->isError = 0;
drh3e34eab2017-07-19 19:48:40 +00007693 if( rc ) goto abort_due_to_error;
7694 }
7695
7696 /* Copy the result of the function into register P3 */
7697 if( pOut->flags & (MEM_Str|MEM_Blob) ){
7698 sqlite3VdbeChangeEncoding(pOut, encoding);
7699 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
7700 }
7701
7702 REGISTER_TRACE(pOp->p3, pOut);
7703 UPDATE_MAX_BLOBSIZE(pOut);
7704 break;
7705}
7706
drhf259df52017-12-27 20:38:35 +00007707/* Opcode: Trace P1 P2 * P4 *
7708**
7709** Write P4 on the statement trace output if statement tracing is
7710** enabled.
7711**
7712** Operand P1 must be 0x7fffffff and P2 must positive.
7713*/
drh74588ce2017-09-13 00:13:05 +00007714/* Opcode: Init P1 P2 P3 P4 *
drh72e26de2016-08-24 21:24:04 +00007715** Synopsis: Start at P2
drhaceb31b2014-02-08 01:40:27 +00007716**
7717** Programs contain a single instance of this opcode as the very first
7718** opcode.
drh949f9cd2008-01-12 21:35:57 +00007719**
7720** If tracing is enabled (by the sqlite3_trace()) interface, then
7721** the UTF-8 string contained in P4 is emitted on the trace callback.
drhaceb31b2014-02-08 01:40:27 +00007722** Or if P4 is blank, use the string returned by sqlite3_sql().
7723**
7724** If P2 is not zero, jump to instruction P2.
drh9e5eb9c2016-09-18 16:08:10 +00007725**
7726** Increment the value of P1 so that OP_Once opcodes will jump the
7727** first time they are evaluated for this run.
drh74588ce2017-09-13 00:13:05 +00007728**
7729** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
7730** error is encountered.
drh949f9cd2008-01-12 21:35:57 +00007731*/
drhf259df52017-12-27 20:38:35 +00007732case OP_Trace:
drhaceb31b2014-02-08 01:40:27 +00007733case OP_Init: { /* jump */
drh9e5eb9c2016-09-18 16:08:10 +00007734 int i;
drhb9f47992018-01-24 12:14:43 +00007735#ifndef SQLITE_OMIT_TRACE
7736 char *zTrace;
7737#endif
drh5fe63bf2016-07-25 02:42:22 +00007738
7739 /* If the P4 argument is not NULL, then it must be an SQL comment string.
7740 ** The "--" string is broken up to prevent false-positives with srcck1.c.
7741 **
7742 ** This assert() provides evidence for:
7743 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7744 ** would have been returned by the legacy sqlite3_trace() interface by
7745 ** using the X argument when X begins with "--" and invoking
7746 ** sqlite3_expanded_sql(P) otherwise.
7747 */
7748 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
drhf259df52017-12-27 20:38:35 +00007749
7750 /* OP_Init is always instruction 0 */
7751 assert( pOp==p->aOp || pOp->opcode==OP_Trace );
drh856c1032009-06-02 15:21:42 +00007752
drhaceb31b2014-02-08 01:40:27 +00007753#ifndef SQLITE_OMIT_TRACE
drhfca760c2016-07-14 01:09:08 +00007754 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
drh37f58e92012-09-04 21:34:26 +00007755 && !p->doingRerun
7756 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7757 ){
drh3d2a5292016-07-13 22:55:01 +00007758#ifndef SQLITE_OMIT_DEPRECATED
drhfca760c2016-07-14 01:09:08 +00007759 if( db->mTrace & SQLITE_TRACE_LEGACY ){
7760 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
drh5fe63bf2016-07-25 02:42:22 +00007761 char *z = sqlite3VdbeExpandSql(p, zTrace);
drhfca760c2016-07-14 01:09:08 +00007762 x(db->pTraceArg, z);
drhbd441f72016-07-25 02:31:48 +00007763 sqlite3_free(z);
drhfca760c2016-07-14 01:09:08 +00007764 }else
drh3d2a5292016-07-13 22:55:01 +00007765#endif
drh7adbcff2017-03-20 15:29:28 +00007766 if( db->nVdbeExec>1 ){
7767 char *z = sqlite3MPrintf(db, "-- %s", zTrace);
7768 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
7769 sqlite3DbFree(db, z);
7770 }else{
drhbd441f72016-07-25 02:31:48 +00007771 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
drh3d2a5292016-07-13 22:55:01 +00007772 }
drh949f9cd2008-01-12 21:35:57 +00007773 }
drh8f8b2312013-10-18 20:03:43 +00007774#ifdef SQLITE_USE_FCNTL_TRACE
7775 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
7776 if( zTrace ){
mistachkind8992ce2016-09-20 17:49:01 +00007777 int j;
7778 for(j=0; j<db->nDb; j++){
7779 if( DbMaskTest(p->btreeMask, j)==0 ) continue;
7780 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
drh8f8b2312013-10-18 20:03:43 +00007781 }
7782 }
7783#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00007784#ifdef SQLITE_DEBUG
7785 if( (db->flags & SQLITE_SqlTrace)!=0
7786 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7787 ){
7788 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
7789 }
7790#endif /* SQLITE_DEBUG */
drhaceb31b2014-02-08 01:40:27 +00007791#endif /* SQLITE_OMIT_TRACE */
drh4910a762016-09-03 01:46:15 +00007792 assert( pOp->p2>0 );
drh9e5eb9c2016-09-18 16:08:10 +00007793 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
drhf259df52017-12-27 20:38:35 +00007794 if( pOp->opcode==OP_Trace ) break;
drh9e5eb9c2016-09-18 16:08:10 +00007795 for(i=1; i<p->nOp; i++){
7796 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
7797 }
7798 pOp->p1 = 0;
7799 }
7800 pOp->p1++;
drh00d11d42017-06-29 12:49:18 +00007801 p->aCounter[SQLITE_STMTSTATUS_RUN]++;
drh4910a762016-09-03 01:46:15 +00007802 goto jump_to_p2;
drh949f9cd2008-01-12 21:35:57 +00007803}
drh949f9cd2008-01-12 21:35:57 +00007804
drh28935362013-12-07 20:39:19 +00007805#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh0df57012015-08-14 15:05:55 +00007806/* Opcode: CursorHint P1 * * P4 *
drh28935362013-12-07 20:39:19 +00007807**
7808** Provide a hint to cursor P1 that it only needs to return rows that
drh0df57012015-08-14 15:05:55 +00007809** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
7810** to values currently held in registers. TK_COLUMN terms in the P4
7811** expression refer to columns in the b-tree to which cursor P1 is pointing.
drh28935362013-12-07 20:39:19 +00007812*/
7813case OP_CursorHint: {
7814 VdbeCursor *pC;
7815
7816 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7817 assert( pOp->p4type==P4_EXPR );
7818 pC = p->apCsr[pOp->p1];
dan91d3a612014-07-15 11:59:44 +00007819 if( pC ){
drhc960dcb2015-11-20 19:22:01 +00007820 assert( pC->eCurType==CURTYPE_BTREE );
drh62aaa6c2015-11-21 17:27:42 +00007821 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
7822 pOp->p4.pExpr, aMem);
dan91d3a612014-07-15 11:59:44 +00007823 }
drh28935362013-12-07 20:39:19 +00007824 break;
7825}
7826#endif /* SQLITE_ENABLE_CURSOR_HINTS */
drh91fd4d42008-01-19 20:11:25 +00007827
drh4031baf2018-05-28 17:31:20 +00007828#ifdef SQLITE_DEBUG
7829/* Opcode: Abortable * * * * *
7830**
7831** Verify that an Abort can happen. Assert if an Abort at this point
7832** might cause database corruption. This opcode only appears in debugging
7833** builds.
7834**
7835** An Abort is safe if either there have been no writes, or if there is
7836** an active statement journal.
7837*/
7838case OP_Abortable: {
7839 sqlite3VdbeAssertAbortable(p);
7840 break;
7841}
7842#endif
7843
drh13d79502019-12-23 02:18:49 +00007844#ifdef SQLITE_DEBUG
drh3aef2fb2020-01-02 17:46:02 +00007845/* Opcode: ReleaseReg P1 P2 P3 * P5
drh13d79502019-12-23 02:18:49 +00007846** Synopsis: release r[P1@P2] mask P3
7847**
7848** Release registers from service. Any content that was in the
7849** the registers is unreliable after this opcode completes.
7850**
7851** The registers released will be the P2 registers starting at P1,
7852** except if bit ii of P3 set, then do not release register P1+ii.
7853** In other words, P3 is a mask of registers to preserve.
7854**
7855** Releasing a register clears the Mem.pScopyFrom pointer. That means
7856** that if the content of the released register was set using OP_SCopy,
7857** a change to the value of the source register for the OP_SCopy will no longer
7858** generate an assertion fault in sqlite3VdbeMemAboutToChange().
7859**
drh3aef2fb2020-01-02 17:46:02 +00007860** If P5 is set, then all released registers have their type set
7861** to MEM_Undefined so that any subsequent attempt to read the released
drh13d79502019-12-23 02:18:49 +00007862** register (before it is reinitialized) will generate an assertion fault.
drh3aef2fb2020-01-02 17:46:02 +00007863**
7864** P5 ought to be set on every call to this opcode.
7865** However, there are places in the code generator will release registers
drh13d79502019-12-23 02:18:49 +00007866** before their are used, under the (valid) assumption that the registers
7867** will not be reallocated for some other purpose before they are used and
7868** hence are safe to release.
7869**
7870** This opcode is only available in testing and debugging builds. It is
7871** not generated for release builds. The purpose of this opcode is to help
7872** validate the generated bytecode. This opcode does not actually contribute
7873** to computing an answer.
7874*/
7875case OP_ReleaseReg: {
7876 Mem *pMem;
7877 int i;
7878 u32 constMask;
7879 assert( pOp->p1>0 );
7880 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
7881 pMem = &aMem[pOp->p1];
7882 constMask = pOp->p3;
7883 for(i=0; i<pOp->p2; i++, pMem++){
drh7edce5e2019-12-23 13:24:34 +00007884 if( i>=32 || (constMask & MASKBIT32(i))==0 ){
drh13d79502019-12-23 02:18:49 +00007885 pMem->pScopyFrom = 0;
drh3aef2fb2020-01-02 17:46:02 +00007886 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
drh13d79502019-12-23 02:18:49 +00007887 }
7888 }
7889 break;
7890}
7891#endif
7892
drh91fd4d42008-01-19 20:11:25 +00007893/* Opcode: Noop * * * * *
7894**
7895** Do nothing. This instruction is often useful as a jump
7896** destination.
drh5e00f6c2001-09-13 13:46:56 +00007897*/
drh91fd4d42008-01-19 20:11:25 +00007898/*
7899** The magic Explain opcode are only inserted when explain==2 (which
7900** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7901** This opcode records information from the optimizer. It is the
7902** the same as a no-op. This opcodesnever appears in a real VM program.
7903*/
drh4031baf2018-05-28 17:31:20 +00007904default: { /* This is really OP_Noop, OP_Explain */
drh13573c72010-01-12 17:04:07 +00007905 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh4031baf2018-05-28 17:31:20 +00007906
drh5e00f6c2001-09-13 13:46:56 +00007907 break;
7908}
7909
7910/*****************************************************************************
7911** The cases of the switch statement above this line should all be indented
7912** by 6 spaces. But the left-most 6 spaces have been removed to improve the
7913** readability. From this point on down, the normal indentation rules are
7914** restored.
7915*****************************************************************************/
7916 }
drh6e142f52000-06-08 13:36:40 +00007917
drh7b396862003-01-01 23:06:20 +00007918#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00007919 {
drh35043cc2018-02-12 20:27:34 +00007920 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
drh6dc41482015-04-16 17:31:02 +00007921 if( endTime>start ) pOrigOp->cycles += endTime - start;
7922 pOrigOp->cnt++;
drh8178a752003-01-05 21:41:40 +00007923 }
drh7b396862003-01-01 23:06:20 +00007924#endif
7925
drh6e142f52000-06-08 13:36:40 +00007926 /* The following code adds nothing to the actual functionality
7927 ** of the program. It is only here for testing and debugging.
7928 ** On the other hand, it does burn CPU cycles every time through
7929 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
7930 */
7931#ifndef NDEBUG
drh6dc41482015-04-16 17:31:02 +00007932 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
drhae7e1512007-05-02 16:51:59 +00007933
drhcf1023c2007-05-08 20:59:49 +00007934#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00007935 if( db->flags & SQLITE_VdbeTrace ){
drh7cc84c22016-04-11 13:36:42 +00007936 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
drh84e55a82013-11-13 17:58:23 +00007937 if( rc!=0 ) printf("rc=%d\n",rc);
drh7cc84c22016-04-11 13:36:42 +00007938 if( opProperty & (OPFLG_OUT2) ){
drh6dc41482015-04-16 17:31:02 +00007939 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
drh75897232000-05-29 14:26:00 +00007940 }
drh7cc84c22016-04-11 13:36:42 +00007941 if( opProperty & OPFLG_OUT3 ){
drh6dc41482015-04-16 17:31:02 +00007942 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00007943 }
drh17aceeb2020-01-04 19:12:13 +00007944 if( opProperty==0xff ){
7945 /* Never happens. This code exists to avoid a harmless linkage
7946 ** warning aboud sqlite3VdbeRegisterDump() being defined but not
7947 ** used. */
7948 sqlite3VdbeRegisterDump(p);
7949 }
drh75897232000-05-29 14:26:00 +00007950 }
danielk1977b5402fb2005-01-12 07:15:04 +00007951#endif /* SQLITE_DEBUG */
7952#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00007953 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00007954
drha05a7222008-01-19 03:35:58 +00007955 /* If we reach this point, it means that execution is finished with
7956 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00007957 */
drh9467abf2016-02-17 18:44:11 +00007958abort_due_to_error:
7959 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
drha05a7222008-01-19 03:35:58 +00007960 assert( rc );
drh9467abf2016-02-17 18:44:11 +00007961 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7962 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7963 }
drha05a7222008-01-19 03:35:58 +00007964 p->rc = rc;
drhf68521c2016-03-21 12:28:02 +00007965 sqlite3SystemError(db, rc);
drha64fa912010-03-04 00:53:32 +00007966 testcase( sqlite3GlobalConfig.xLog!=0 );
7967 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
drhf56fa462015-04-13 21:39:54 +00007968 (int)(pOp - aOp), p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00007969 sqlite3VdbeHalt(p);
drh4a642b62016-02-05 01:55:27 +00007970 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
danielk19777eaabcd2008-07-07 14:56:56 +00007971 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00007972 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00007973 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00007974 }
drh900b31e2007-08-28 02:27:51 +00007975
7976 /* This is the only way out of this procedure. We have to
7977 ** release the mutexes on btrees that were acquired at the
7978 ** top. */
7979vdbe_return:
drhc332e042019-02-12 21:04:33 +00007980#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drhb1af9c62019-02-20 13:55:45 +00007981 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
7982 nProgressLimit += db->nProgressOps;
drhc332e042019-02-12 21:04:33 +00007983 if( db->xProgress(db->pProgressArg) ){
7984 nProgressLimit = 0xffffffff;
7985 rc = SQLITE_INTERRUPT;
7986 goto abort_due_to_error;
7987 }
7988 }
7989#endif
drh9b47ee32013-08-20 03:13:51 +00007990 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00007991 sqlite3VdbeLeave(p);
dan83f0ab82016-01-29 18:04:31 +00007992 assert( rc!=SQLITE_OK || nExtraDelete==0
7993 || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7994 );
drhb86ccfb2003-01-28 23:13:10 +00007995 return rc;
7996
drh023ae032007-05-08 12:12:16 +00007997 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7998 ** is encountered.
7999 */
8000too_big:
drh22c17b82015-05-15 04:13:15 +00008001 sqlite3VdbeError(p, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00008002 rc = SQLITE_TOOBIG;
drh9467abf2016-02-17 18:44:11 +00008003 goto abort_due_to_error;
drh023ae032007-05-08 12:12:16 +00008004
drh98640a32007-06-07 19:08:32 +00008005 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00008006 */
8007no_mem:
drh4a642b62016-02-05 01:55:27 +00008008 sqlite3OomFault(db);
drh22c17b82015-05-15 04:13:15 +00008009 sqlite3VdbeError(p, "out of memory");
mistachkinfad30392016-02-13 23:43:46 +00008010 rc = SQLITE_NOMEM_BKPT;
drh9467abf2016-02-17 18:44:11 +00008011 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00008012
danielk19776f8a5032004-05-10 10:34:51 +00008013 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00008014 ** flag.
8015 */
8016abort_due_to_interrupt:
dan892edb62020-03-30 13:35:05 +00008017 assert( AtomicLoad(&db->u1.isInterrupted) );
drh56f18732020-06-03 15:59:22 +00008018 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +00008019 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00008020}