blob: 7171d7a0fd6be75bf36cd0c1ab6caf1af2aca194 [file] [log] [blame]
drh4f26d6c2004-05-26 23:25:30 +00001/*
2** 2004 May 26
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** This file contains code use to manipulate "Mem" structure. A "Mem"
14** stores a single value in the VDBE. Mem is an opaque structure visible
15** only within the VDBE. Interface routines refer to a Mem using the
16** name sqlite_value
17*/
18#include "sqliteInt.h"
drh4f26d6c2004-05-26 23:25:30 +000019#include "vdbeInt.h"
20
21/*
danielk19771cc5ed82007-05-16 17:28:43 +000022** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
23** P if required.
24*/
drhb21c8cd2007-08-21 19:33:56 +000025#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
danielk19771cc5ed82007-05-16 17:28:43 +000026
27/*
danielk1977bfd6cce2004-06-18 04:24:54 +000028** If pMem is an object with a valid string representation, this routine
29** ensures the internal encoding for the string representation is
30** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
drh4f26d6c2004-05-26 23:25:30 +000031**
danielk1977bfd6cce2004-06-18 04:24:54 +000032** If pMem is not a string object, or the encoding of the string
33** representation is already stored using the requested encoding, then this
34** routine is a no-op.
drh4f26d6c2004-05-26 23:25:30 +000035**
36** SQLITE_OK is returned if the conversion is successful (or not required).
37** SQLITE_NOMEM may be returned if a malloc() fails during conversion
38** between formats.
39*/
drhb21c8cd2007-08-21 19:33:56 +000040int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
danielk19772c336542005-01-13 02:14:23 +000041 int rc;
drh3d4501e2008-12-04 20:40:10 +000042 assert( (pMem->flags&MEM_RowSet)==0 );
drhb27b7f52008-12-10 18:03:45 +000043 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
44 || desiredEnc==SQLITE_UTF16BE );
drheb2e1762004-05-27 01:53:56 +000045 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
drh4f26d6c2004-05-26 23:25:30 +000046 return SQLITE_OK;
47 }
drhb21c8cd2007-08-21 19:33:56 +000048 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh6c626082004-11-14 21:56:29 +000049#ifdef SQLITE_OMIT_UTF16
50 return SQLITE_ERROR;
51#else
danielk197700fd9572005-12-07 06:27:43 +000052
53 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
54 ** then the encoding of the value may not have changed.
55 */
drhb27b7f52008-12-10 18:03:45 +000056 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
danielk197700fd9572005-12-07 06:27:43 +000057 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
58 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
59 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
danielk19772c336542005-01-13 02:14:23 +000060 return rc;
drh6c626082004-11-14 21:56:29 +000061#endif
drh4f26d6c2004-05-26 23:25:30 +000062}
63
drheb2e1762004-05-27 01:53:56 +000064/*
danielk1977a7a8e142008-02-13 18:25:27 +000065** Make sure pMem->z points to a writable allocation of at least
66** n bytes.
67**
68** If the memory cell currently contains string or blob data
69** and the third argument passed to this function is true, the
70** current content of the cell is preserved. Otherwise, it may
71** be discarded.
72**
73** This function sets the MEM_Dyn flag and clears any xDel callback.
74** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
75** not set, Mem.n is zeroed.
76*/
77int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
danielk19775f096132008-03-28 15:44:09 +000078 assert( 1 >=
79 ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
80 (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) +
81 ((pMem->flags&MEM_Ephem) ? 1 : 0) +
82 ((pMem->flags&MEM_Static) ? 1 : 0)
danielk1977a7a8e142008-02-13 18:25:27 +000083 );
drh3d4501e2008-12-04 20:40:10 +000084 assert( (pMem->flags&MEM_RowSet)==0 );
danielk1977a7a8e142008-02-13 18:25:27 +000085
drhaf005fb2008-07-09 16:51:51 +000086 if( n<32 ) n = 32;
drh633e6d52008-07-28 19:34:53 +000087 if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
danielk19775f096132008-03-28 15:44:09 +000088 if( preserve && pMem->z==pMem->zMalloc ){
89 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
90 preserve = 0;
91 }else{
drh633e6d52008-07-28 19:34:53 +000092 sqlite3DbFree(pMem->db, pMem->zMalloc);
danielk19775f096132008-03-28 15:44:09 +000093 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
danielk1977a7a8e142008-02-13 18:25:27 +000094 }
danielk1977a7a8e142008-02-13 18:25:27 +000095 }
danielk19775f096132008-03-28 15:44:09 +000096
drh4c8555f2009-06-25 01:47:11 +000097 if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){
danielk19775f096132008-03-28 15:44:09 +000098 memcpy(pMem->zMalloc, pMem->z, pMem->n);
99 }
drhb08c2a72008-04-16 00:28:13 +0000100 if( pMem->flags&MEM_Dyn && pMem->xDel ){
danielk19775f096132008-03-28 15:44:09 +0000101 pMem->xDel((void *)(pMem->z));
102 }
103
104 pMem->z = pMem->zMalloc;
drh753cc102008-11-11 00:21:30 +0000105 if( pMem->z==0 ){
106 pMem->flags = MEM_Null;
107 }else{
108 pMem->flags &= ~(MEM_Ephem|MEM_Static);
109 }
danielk19775f096132008-03-28 15:44:09 +0000110 pMem->xDel = 0;
111 return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
danielk1977a7a8e142008-02-13 18:25:27 +0000112}
113
114/*
drhdab898f2008-07-30 13:14:55 +0000115** Make the given Mem object MEM_Dyn. In other words, make it so
116** that any TEXT or BLOB content is stored in memory obtained from
117** malloc(). In this way, we know that the memory is safe to be
118** overwritten or altered.
drheb2e1762004-05-27 01:53:56 +0000119**
120** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
121*/
drhdab898f2008-07-30 13:14:55 +0000122int sqlite3VdbeMemMakeWriteable(Mem *pMem){
danielk1977a7a8e142008-02-13 18:25:27 +0000123 int f;
drhb21c8cd2007-08-21 19:33:56 +0000124 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh3d4501e2008-12-04 20:40:10 +0000125 assert( (pMem->flags&MEM_RowSet)==0 );
drhb21c8cd2007-08-21 19:33:56 +0000126 expandBlob(pMem);
danielk1977a7a8e142008-02-13 18:25:27 +0000127 f = pMem->flags;
danielk19775f096132008-03-28 15:44:09 +0000128 if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
danielk1977a7a8e142008-02-13 18:25:27 +0000129 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
130 return SQLITE_NOMEM;
131 }
132 pMem->z[pMem->n] = 0;
133 pMem->z[pMem->n+1] = 0;
134 pMem->flags |= MEM_Term;
drheb2e1762004-05-27 01:53:56 +0000135 }
danielk1977a7a8e142008-02-13 18:25:27 +0000136
drhf4479502004-05-27 03:12:53 +0000137 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000138}
139
140/*
drhfdf972a2007-05-02 13:30:27 +0000141** If the given Mem* has a zero-filled tail, turn it into an ordinary
drhb026e052007-05-02 01:34:31 +0000142** blob stored in dynamically allocated space.
143*/
danielk1977246ad312007-05-16 14:23:00 +0000144#ifndef SQLITE_OMIT_INCRBLOB
drhb21c8cd2007-08-21 19:33:56 +0000145int sqlite3VdbeMemExpandBlob(Mem *pMem){
drhb026e052007-05-02 01:34:31 +0000146 if( pMem->flags & MEM_Zero ){
drh98640a32007-06-07 19:08:32 +0000147 int nByte;
danielk1977a7a8e142008-02-13 18:25:27 +0000148 assert( pMem->flags&MEM_Blob );
drh3d4501e2008-12-04 20:40:10 +0000149 assert( (pMem->flags&MEM_RowSet)==0 );
drhb21c8cd2007-08-21 19:33:56 +0000150 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk1977a7a8e142008-02-13 18:25:27 +0000151
152 /* Set nByte to the number of bytes required to store the expanded blob. */
drh8df32842008-12-09 02:51:23 +0000153 nByte = pMem->n + pMem->u.nZero;
danielk1977a7a8e142008-02-13 18:25:27 +0000154 if( nByte<=0 ){
155 nByte = 1;
156 }
157 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
drhb026e052007-05-02 01:34:31 +0000158 return SQLITE_NOMEM;
159 }
danielk1977a7a8e142008-02-13 18:25:27 +0000160
drh8df32842008-12-09 02:51:23 +0000161 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
162 pMem->n += pMem->u.nZero;
danielk1977a7a8e142008-02-13 18:25:27 +0000163 pMem->flags &= ~(MEM_Zero|MEM_Term);
drhb026e052007-05-02 01:34:31 +0000164 }
165 return SQLITE_OK;
166}
danielk1977246ad312007-05-16 14:23:00 +0000167#endif
drhb026e052007-05-02 01:34:31 +0000168
169
170/*
drheb2e1762004-05-27 01:53:56 +0000171** Make sure the given Mem is \u0000 terminated.
172*/
drhb21c8cd2007-08-21 19:33:56 +0000173int sqlite3VdbeMemNulTerminate(Mem *pMem){
174 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk197713073932004-06-30 11:54:06 +0000175 if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
drheb2e1762004-05-27 01:53:56 +0000176 return SQLITE_OK; /* Nothing to do */
177 }
danielk1977a7a8e142008-02-13 18:25:27 +0000178 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
179 return SQLITE_NOMEM;
danielk19773f6b0872004-06-17 05:36:44 +0000180 }
danielk1977a7a8e142008-02-13 18:25:27 +0000181 pMem->z[pMem->n] = 0;
182 pMem->z[pMem->n+1] = 0;
183 pMem->flags |= MEM_Term;
danielk19773f6b0872004-06-17 05:36:44 +0000184 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000185}
186
187/*
danielk197713073932004-06-30 11:54:06 +0000188** Add MEM_Str to the set of representations for the given Mem. Numbers
189** are converted using sqlite3_snprintf(). Converting a BLOB to a string
190** is a no-op.
drheb2e1762004-05-27 01:53:56 +0000191**
192** Existing representations MEM_Int and MEM_Real are *not* invalidated.
danielk197713073932004-06-30 11:54:06 +0000193**
194** A MEM_Null value will never be passed to this function. This function is
195** used for converting values to text for returning to the user (i.e. via
196** sqlite3_value_text()), or for ensuring that values to be used as btree
197** keys are strings. In the former case a NULL pointer is returned the
198** user and the later is an internal programming error.
drheb2e1762004-05-27 01:53:56 +0000199*/
drhb21c8cd2007-08-21 19:33:56 +0000200int sqlite3VdbeMemStringify(Mem *pMem, int enc){
drheb2e1762004-05-27 01:53:56 +0000201 int rc = SQLITE_OK;
202 int fg = pMem->flags;
danielk1977a7a8e142008-02-13 18:25:27 +0000203 const int nByte = 32;
drheb2e1762004-05-27 01:53:56 +0000204
drhb21c8cd2007-08-21 19:33:56 +0000205 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk1977def0fec2007-05-10 15:37:52 +0000206 assert( !(fg&MEM_Zero) );
drheb2e1762004-05-27 01:53:56 +0000207 assert( !(fg&(MEM_Str|MEM_Blob)) );
danielk197713073932004-06-30 11:54:06 +0000208 assert( fg&(MEM_Int|MEM_Real) );
drh3d4501e2008-12-04 20:40:10 +0000209 assert( (pMem->flags&MEM_RowSet)==0 );
drhea598cb2009-04-05 12:22:08 +0000210 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drh3d4501e2008-12-04 20:40:10 +0000211
drheb2e1762004-05-27 01:53:56 +0000212
danielk1977a7a8e142008-02-13 18:25:27 +0000213 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
214 return SQLITE_NOMEM;
215 }
216
217 /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
danielk197713073932004-06-30 11:54:06 +0000218 ** string representation of the value. Then, if the required encoding
219 ** is UTF-16le or UTF-16be do a translation.
220 **
221 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
222 */
drh8df447f2005-11-01 15:48:24 +0000223 if( fg & MEM_Int ){
danielk1977a7a8e142008-02-13 18:25:27 +0000224 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
drh8df447f2005-11-01 15:48:24 +0000225 }else{
226 assert( fg & MEM_Real );
danielk1977a7a8e142008-02-13 18:25:27 +0000227 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
drheb2e1762004-05-27 01:53:56 +0000228 }
drhea678832008-12-10 19:26:22 +0000229 pMem->n = sqlite3Strlen30(pMem->z);
danielk197713073932004-06-30 11:54:06 +0000230 pMem->enc = SQLITE_UTF8;
danielk1977a7a8e142008-02-13 18:25:27 +0000231 pMem->flags |= MEM_Str|MEM_Term;
drhb21c8cd2007-08-21 19:33:56 +0000232 sqlite3VdbeChangeEncoding(pMem, enc);
drheb2e1762004-05-27 01:53:56 +0000233 return rc;
234}
235
236/*
drhabfcea22005-09-06 20:36:48 +0000237** Memory cell pMem contains the context of an aggregate function.
238** This routine calls the finalize method for that function. The
239** result of the aggregate is stored back into pMem.
drh90669c12006-01-20 15:45:36 +0000240**
241** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
242** otherwise.
drhabfcea22005-09-06 20:36:48 +0000243*/
drh90669c12006-01-20 15:45:36 +0000244int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
245 int rc = SQLITE_OK;
drh4c8555f2009-06-25 01:47:11 +0000246 if( ALWAYS(pFunc && pFunc->xFinalize) ){
drha10a34b2005-09-07 22:09:48 +0000247 sqlite3_context ctx;
drh3c024d62007-03-30 11:23:45 +0000248 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
drhb21c8cd2007-08-21 19:33:56 +0000249 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh709b8cb2008-08-22 14:41:00 +0000250 memset(&ctx, 0, sizeof(ctx));
drha10a34b2005-09-07 22:09:48 +0000251 ctx.s.flags = MEM_Null;
drhb21c8cd2007-08-21 19:33:56 +0000252 ctx.s.db = pMem->db;
drha10a34b2005-09-07 22:09:48 +0000253 ctx.pMem = pMem;
254 ctx.pFunc = pFunc;
drhee9ff672010-09-03 18:50:48 +0000255 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
drhb08c2a72008-04-16 00:28:13 +0000256 assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
drh633e6d52008-07-28 19:34:53 +0000257 sqlite3DbFree(pMem->db, pMem->zMalloc);
drh092d5ef2008-12-10 11:49:06 +0000258 memcpy(pMem, &ctx.s, sizeof(ctx.s));
drh4c8555f2009-06-25 01:47:11 +0000259 rc = ctx.isError;
drhabfcea22005-09-06 20:36:48 +0000260 }
drh90669c12006-01-20 15:45:36 +0000261 return rc;
drhabfcea22005-09-06 20:36:48 +0000262}
263
264/*
danielk19775f096132008-03-28 15:44:09 +0000265** If the memory cell contains a string value that must be freed by
266** invoking an external callback, free it now. Calling this function
267** does not free any Mem.zMalloc buffer.
268*/
269void sqlite3VdbeMemReleaseExternal(Mem *p){
270 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
drh345ba7d2009-09-08 13:40:16 +0000271 testcase( p->flags & MEM_Agg );
272 testcase( p->flags & MEM_Dyn );
273 testcase( p->flags & MEM_RowSet );
274 testcase( p->flags & MEM_Frame );
dan165921a2009-08-28 18:53:45 +0000275 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){
danielk19771d461462009-04-21 09:02:45 +0000276 if( p->flags&MEM_Agg ){
277 sqlite3VdbeMemFinalize(p, p->u.pDef);
278 assert( (p->flags & MEM_Agg)==0 );
279 sqlite3VdbeMemRelease(p);
280 }else if( p->flags&MEM_Dyn && p->xDel ){
281 assert( (p->flags&MEM_RowSet)==0 );
282 p->xDel((void *)p->z);
283 p->xDel = 0;
284 }else if( p->flags&MEM_RowSet ){
285 sqlite3RowSetClear(p->u.pRowSet);
dan165921a2009-08-28 18:53:45 +0000286 }else if( p->flags&MEM_Frame ){
drh345ba7d2009-09-08 13:40:16 +0000287 sqlite3VdbeMemSetNull(p);
danielk19771d461462009-04-21 09:02:45 +0000288 }
danielk19775f096132008-03-28 15:44:09 +0000289 }
290}
291
292/*
danielk1977d8123362004-06-12 09:25:12 +0000293** Release any memory held by the Mem. This may leave the Mem in an
294** inconsistent state, for example with (Mem.z==0) and
295** (Mem.type==SQLITE_TEXT).
drhf4479502004-05-27 03:12:53 +0000296*/
danielk1977d8123362004-06-12 09:25:12 +0000297void sqlite3VdbeMemRelease(Mem *p){
danielk19775f096132008-03-28 15:44:09 +0000298 sqlite3VdbeMemReleaseExternal(p);
drh633e6d52008-07-28 19:34:53 +0000299 sqlite3DbFree(p->db, p->zMalloc);
danielk19775f096132008-03-28 15:44:09 +0000300 p->z = 0;
301 p->zMalloc = 0;
302 p->xDel = 0;
drhf4479502004-05-27 03:12:53 +0000303}
304
305/*
drhd8c303f2008-01-11 15:27:03 +0000306** Convert a 64-bit IEEE double into a 64-bit signed integer.
307** If the double is too large, return 0x8000000000000000.
308**
309** Most systems appear to do this simply by assigning
310** variables and without the extra range tests. But
311** there are reports that windows throws an expection
312** if the floating point value is out of range. (See ticket #2880.)
313** Because we do not completely understand the problem, we will
314** take the conservative approach and always do range tests
315** before attempting the conversion.
316*/
317static i64 doubleToInt64(double r){
drh52d14522010-01-13 15:15:40 +0000318#ifdef SQLITE_OMIT_FLOATING_POINT
319 /* When floating-point is omitted, double and int64 are the same thing */
320 return r;
321#else
drhd8c303f2008-01-11 15:27:03 +0000322 /*
323 ** Many compilers we encounter do not define constants for the
324 ** minimum and maximum 64-bit integers, or they define them
325 ** inconsistently. And many do not understand the "LL" notation.
326 ** So we define our own static constants here using nothing
327 ** larger than a 32-bit integer constant.
328 */
drh0f050352008-05-09 18:03:13 +0000329 static const i64 maxInt = LARGEST_INT64;
330 static const i64 minInt = SMALLEST_INT64;
drhd8c303f2008-01-11 15:27:03 +0000331
332 if( r<(double)minInt ){
333 return minInt;
334 }else if( r>(double)maxInt ){
drhf9e749c2009-03-29 15:12:09 +0000335 /* minInt is correct here - not maxInt. It turns out that assigning
336 ** a very large positive number to an integer results in a very large
337 ** negative integer. This makes no sense, but it is what x86 hardware
338 ** does so for compatibility we will do the same in software. */
drhd8c303f2008-01-11 15:27:03 +0000339 return minInt;
340 }else{
341 return (i64)r;
342 }
drh52d14522010-01-13 15:15:40 +0000343#endif
drhd8c303f2008-01-11 15:27:03 +0000344}
345
346/*
drh6a6124e2004-06-27 01:56:33 +0000347** Return some kind of integer value which is the best we can do
348** at representing the value that *pMem describes as an integer.
349** If pMem is an integer, then the value is exact. If pMem is
350** a floating-point then the value returned is the integer part.
351** If pMem is a string or blob, then we make an attempt to convert
drh347a7cb2009-03-23 21:37:04 +0000352** it into a integer and return that. If pMem represents an
353** an SQL-NULL value, return 0.
drh6a6124e2004-06-27 01:56:33 +0000354**
drh347a7cb2009-03-23 21:37:04 +0000355** If pMem represents a string value, its encoding might be changed.
drheb2e1762004-05-27 01:53:56 +0000356*/
drh6a6124e2004-06-27 01:56:33 +0000357i64 sqlite3VdbeIntValue(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000358 int flags;
359 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000360 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhb21c8cd2007-08-21 19:33:56 +0000361 flags = pMem->flags;
drh6fec0762004-05-30 01:38:43 +0000362 if( flags & MEM_Int ){
drh3c024d62007-03-30 11:23:45 +0000363 return pMem->u.i;
drh6fec0762004-05-30 01:38:43 +0000364 }else if( flags & MEM_Real ){
drhd8c303f2008-01-11 15:27:03 +0000365 return doubleToInt64(pMem->r);
drh6fec0762004-05-30 01:38:43 +0000366 }else if( flags & (MEM_Str|MEM_Blob) ){
drh6a6124e2004-06-27 01:56:33 +0000367 i64 value;
danielk19775b159dc2007-05-17 16:34:43 +0000368 pMem->flags |= MEM_Str;
drhb21c8cd2007-08-21 19:33:56 +0000369 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
370 || sqlite3VdbeMemNulTerminate(pMem) ){
drhc01be742005-11-03 14:29:55 +0000371 return 0;
drheb2e1762004-05-27 01:53:56 +0000372 }
373 assert( pMem->z );
drhb6a9ece2007-06-26 00:37:27 +0000374 sqlite3Atoi64(pMem->z, &value);
drh6a6124e2004-06-27 01:56:33 +0000375 return value;
drheb2e1762004-05-27 01:53:56 +0000376 }else{
drh6a6124e2004-06-27 01:56:33 +0000377 return 0;
drheb2e1762004-05-27 01:53:56 +0000378 }
drh6a6124e2004-06-27 01:56:33 +0000379}
380
381/*
drh6a6124e2004-06-27 01:56:33 +0000382** Return the best representation of pMem that we can get into a
383** double. If pMem is already a double or an integer, return its
384** value. If it is a string or blob, try to convert it to a double.
385** If it is a NULL, return 0.0.
drheb2e1762004-05-27 01:53:56 +0000386*/
drh6a6124e2004-06-27 01:56:33 +0000387double sqlite3VdbeRealValue(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000388 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000389 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
danielk1977f93bbbe2004-05-27 10:30:52 +0000390 if( pMem->flags & MEM_Real ){
drh6a6124e2004-06-27 01:56:33 +0000391 return pMem->r;
392 }else if( pMem->flags & MEM_Int ){
drh3c024d62007-03-30 11:23:45 +0000393 return (double)pMem->u.i;
drheb2e1762004-05-27 01:53:56 +0000394 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
shanefbd60f82009-02-04 03:59:25 +0000395 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
396 double val = (double)0;
danielk19775b159dc2007-05-17 16:34:43 +0000397 pMem->flags |= MEM_Str;
drhb21c8cd2007-08-21 19:33:56 +0000398 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
399 || sqlite3VdbeMemNulTerminate(pMem) ){
shanefbd60f82009-02-04 03:59:25 +0000400 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
401 return (double)0;
drheb2e1762004-05-27 01:53:56 +0000402 }
403 assert( pMem->z );
drh487e2622005-06-25 18:42:14 +0000404 sqlite3AtoF(pMem->z, &val);
405 return val;
drheb2e1762004-05-27 01:53:56 +0000406 }else{
shanefbd60f82009-02-04 03:59:25 +0000407 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
408 return (double)0;
drheb2e1762004-05-27 01:53:56 +0000409 }
drh6a6124e2004-06-27 01:56:33 +0000410}
411
412/*
drh8df447f2005-11-01 15:48:24 +0000413** The MEM structure is already a MEM_Real. Try to also make it a
414** MEM_Int if we can.
415*/
416void sqlite3VdbeIntegerAffinity(Mem *pMem){
417 assert( pMem->flags & MEM_Real );
drh3d4501e2008-12-04 20:40:10 +0000418 assert( (pMem->flags & MEM_RowSet)==0 );
drhb21c8cd2007-08-21 19:33:56 +0000419 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000420 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhefe3d652008-01-11 00:06:10 +0000421
drhd8c303f2008-01-11 15:27:03 +0000422 pMem->u.i = doubleToInt64(pMem->r);
drh94c3a2b2009-06-17 16:20:04 +0000423
424 /* Only mark the value as an integer if
425 **
426 ** (1) the round-trip conversion real->int->real is a no-op, and
427 ** (2) The integer is neither the largest nor the smallest
428 ** possible integer (ticket #3922)
429 **
drhe74871a2009-08-14 17:53:39 +0000430 ** The second and third terms in the following conditional enforces
431 ** the second condition under the assumption that addition overflow causes
432 ** values to wrap around. On x86 hardware, the third term is always
433 ** true and could be omitted. But we leave it in because other
434 ** architectures might behave differently.
drh94c3a2b2009-06-17 16:20:04 +0000435 */
drhe74871a2009-08-14 17:53:39 +0000436 if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64
437 && ALWAYS(pMem->u.i<LARGEST_INT64) ){
drh8df447f2005-11-01 15:48:24 +0000438 pMem->flags |= MEM_Int;
439 }
440}
441
drh8a512562005-11-14 22:29:05 +0000442/*
443** Convert pMem to type integer. Invalidate any prior representations.
444*/
445int sqlite3VdbeMemIntegerify(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000446 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh3d4501e2008-12-04 20:40:10 +0000447 assert( (pMem->flags & MEM_RowSet)==0 );
drhea598cb2009-04-05 12:22:08 +0000448 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
449
drh3c024d62007-03-30 11:23:45 +0000450 pMem->u.i = sqlite3VdbeIntValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000451 MemSetTypeFlag(pMem, MEM_Int);
drh8a512562005-11-14 22:29:05 +0000452 return SQLITE_OK;
453}
drh8df447f2005-11-01 15:48:24 +0000454
455/*
drh8a512562005-11-14 22:29:05 +0000456** Convert pMem so that it is of type MEM_Real.
457** Invalidate any prior representations.
drh6a6124e2004-06-27 01:56:33 +0000458*/
459int sqlite3VdbeMemRealify(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000460 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000461 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
462
drh6a6124e2004-06-27 01:56:33 +0000463 pMem->r = sqlite3VdbeRealValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000464 MemSetTypeFlag(pMem, MEM_Real);
drh8a512562005-11-14 22:29:05 +0000465 return SQLITE_OK;
466}
467
468/*
469** Convert pMem so that it has types MEM_Real or MEM_Int or both.
470** Invalidate any prior representations.
drh4b5db5a2010-01-21 01:53:07 +0000471**
472** Every effort is made to force the conversion, even if the input
473** is a string that does not look completely like a number. Convert
474** as much of the string as we can and ignore the rest.
drh8a512562005-11-14 22:29:05 +0000475*/
476int sqlite3VdbeMemNumerify(Mem *pMem){
drh4b5db5a2010-01-21 01:53:07 +0000477 int rc;
drhcd7b46d2007-05-16 11:55:56 +0000478 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
479 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
drhb21c8cd2007-08-21 19:33:56 +0000480 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh4b5db5a2010-01-21 01:53:07 +0000481 rc = sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8);
482 if( rc ) return rc;
483 rc = sqlite3VdbeMemNulTerminate(pMem);
484 if( rc ) return rc;
485 if( sqlite3Atoi64(pMem->z, &pMem->u.i) ){
486 MemSetTypeFlag(pMem, MEM_Int);
drhcd7b46d2007-05-16 11:55:56 +0000487 }else{
drh4b5db5a2010-01-21 01:53:07 +0000488 pMem->r = sqlite3VdbeRealValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000489 MemSetTypeFlag(pMem, MEM_Real);
drh4b5db5a2010-01-21 01:53:07 +0000490 sqlite3VdbeIntegerAffinity(pMem);
drhcd7b46d2007-05-16 11:55:56 +0000491 }
drhf4479502004-05-27 03:12:53 +0000492 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +0000493}
494
495/*
496** Delete any previous value and set the value stored in *pMem to NULL.
497*/
498void sqlite3VdbeMemSetNull(Mem *pMem){
dan165921a2009-08-28 18:53:45 +0000499 if( pMem->flags & MEM_Frame ){
500 sqlite3VdbeFrameDelete(pMem->u.pFrame);
501 }
drh3d4501e2008-12-04 20:40:10 +0000502 if( pMem->flags & MEM_RowSet ){
503 sqlite3RowSetClear(pMem->u.pRowSet);
504 }
505 MemSetTypeFlag(pMem, MEM_Null);
drh9c054832004-05-31 18:51:57 +0000506 pMem->type = SQLITE_NULL;
drh4f26d6c2004-05-26 23:25:30 +0000507}
508
509/*
drhb026e052007-05-02 01:34:31 +0000510** Delete any previous value and set the value to be a BLOB of length
511** n containing all zeros.
512*/
513void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
514 sqlite3VdbeMemRelease(pMem);
danielk1977a7a8e142008-02-13 18:25:27 +0000515 pMem->flags = MEM_Blob|MEM_Zero;
drhb026e052007-05-02 01:34:31 +0000516 pMem->type = SQLITE_BLOB;
517 pMem->n = 0;
drh98640a32007-06-07 19:08:32 +0000518 if( n<0 ) n = 0;
drh8df32842008-12-09 02:51:23 +0000519 pMem->u.nZero = n;
danielk1977def0fec2007-05-10 15:37:52 +0000520 pMem->enc = SQLITE_UTF8;
danielk1977f16c6242009-07-18 14:36:23 +0000521
522#ifdef SQLITE_OMIT_INCRBLOB
523 sqlite3VdbeMemGrow(pMem, n, 0);
524 if( pMem->z ){
525 pMem->n = n;
526 memset(pMem->z, 0, n);
527 }
528#endif
drhb026e052007-05-02 01:34:31 +0000529}
530
531/*
drh4f26d6c2004-05-26 23:25:30 +0000532** Delete any previous value and set the value stored in *pMem to val,
533** manifest type INTEGER.
534*/
drheb2e1762004-05-27 01:53:56 +0000535void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
danielk1977d8123362004-06-12 09:25:12 +0000536 sqlite3VdbeMemRelease(pMem);
drh3c024d62007-03-30 11:23:45 +0000537 pMem->u.i = val;
drh4f26d6c2004-05-26 23:25:30 +0000538 pMem->flags = MEM_Int;
drh9c054832004-05-31 18:51:57 +0000539 pMem->type = SQLITE_INTEGER;
drh4f26d6c2004-05-26 23:25:30 +0000540}
541
drh7ec5ea92010-01-13 00:04:13 +0000542#ifndef SQLITE_OMIT_FLOATING_POINT
drh4f26d6c2004-05-26 23:25:30 +0000543/*
544** Delete any previous value and set the value stored in *pMem to val,
545** manifest type REAL.
546*/
drheb2e1762004-05-27 01:53:56 +0000547void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
drh0de3ae92008-04-28 16:55:26 +0000548 if( sqlite3IsNaN(val) ){
drh53c14022007-05-10 17:23:11 +0000549 sqlite3VdbeMemSetNull(pMem);
550 }else{
551 sqlite3VdbeMemRelease(pMem);
552 pMem->r = val;
553 pMem->flags = MEM_Real;
554 pMem->type = SQLITE_FLOAT;
555 }
drh4f26d6c2004-05-26 23:25:30 +0000556}
drh7ec5ea92010-01-13 00:04:13 +0000557#endif
drh4f26d6c2004-05-26 23:25:30 +0000558
559/*
drh3d4501e2008-12-04 20:40:10 +0000560** Delete any previous value and set the value of pMem to be an
561** empty boolean index.
562*/
563void sqlite3VdbeMemSetRowSet(Mem *pMem){
564 sqlite3 *db = pMem->db;
565 assert( db!=0 );
drh4c8555f2009-06-25 01:47:11 +0000566 assert( (pMem->flags & MEM_RowSet)==0 );
567 sqlite3VdbeMemRelease(pMem);
568 pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
drh8d993632008-12-04 22:17:55 +0000569 if( db->mallocFailed ){
570 pMem->flags = MEM_Null;
571 }else{
drh3d4501e2008-12-04 20:40:10 +0000572 assert( pMem->zMalloc );
573 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc,
574 sqlite3DbMallocSize(db, pMem->zMalloc));
575 assert( pMem->u.pRowSet!=0 );
drh8d993632008-12-04 22:17:55 +0000576 pMem->flags = MEM_RowSet;
drh3d4501e2008-12-04 20:40:10 +0000577 }
578}
579
580/*
drh023ae032007-05-08 12:12:16 +0000581** Return true if the Mem object contains a TEXT or BLOB that is
582** too large - whose size exceeds SQLITE_MAX_LENGTH.
583*/
584int sqlite3VdbeMemTooBig(Mem *p){
drhfa4a4b92008-03-19 21:45:51 +0000585 assert( p->db!=0 );
drh023ae032007-05-08 12:12:16 +0000586 if( p->flags & (MEM_Str|MEM_Blob) ){
587 int n = p->n;
588 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000589 n += p->u.nZero;
drh023ae032007-05-08 12:12:16 +0000590 }
drhbb4957f2008-03-20 14:03:29 +0000591 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
drh023ae032007-05-08 12:12:16 +0000592 }
593 return 0;
594}
595
danielk1977e5f5b8f2008-03-28 18:11:16 +0000596/*
597** Size of struct Mem not including the Mem.zMalloc member.
598*/
mlcreechfe3f4e82008-03-29 23:25:27 +0000599#define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
danielk19775f096132008-03-28 15:44:09 +0000600
drh023ae032007-05-08 12:12:16 +0000601/*
drhfebe1062004-08-28 18:17:48 +0000602** Make an shallow copy of pFrom into pTo. Prior contents of
drha05a7222008-01-19 03:35:58 +0000603** pTo are freed. The pFrom->z field is not duplicated. If
drhfebe1062004-08-28 18:17:48 +0000604** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
605** and flags gets srcType (either MEM_Ephem or MEM_Static).
drh4f26d6c2004-05-26 23:25:30 +0000606*/
drhfebe1062004-08-28 18:17:48 +0000607void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
drh3d4501e2008-12-04 20:40:10 +0000608 assert( (pFrom->flags & MEM_RowSet)==0 );
danielk19775f096132008-03-28 15:44:09 +0000609 sqlite3VdbeMemReleaseExternal(pTo);
610 memcpy(pTo, pFrom, MEMCELLSIZE);
danielk1977d8123362004-06-12 09:25:12 +0000611 pTo->xDel = 0;
dan5fea9072010-03-05 18:46:12 +0000612 if( (pFrom->flags&MEM_Static)==0 ){
danielk1977a7a8e142008-02-13 18:25:27 +0000613 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
drhfebe1062004-08-28 18:17:48 +0000614 assert( srcType==MEM_Ephem || srcType==MEM_Static );
615 pTo->flags |= srcType;
616 }
617}
618
619/*
620** Make a full copy of pFrom into pTo. Prior contents of pTo are
621** freed before the copy is made.
622*/
drhb21c8cd2007-08-21 19:33:56 +0000623int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
danielk1977a7a8e142008-02-13 18:25:27 +0000624 int rc = SQLITE_OK;
danielk1977a7a8e142008-02-13 18:25:27 +0000625
drh3d4501e2008-12-04 20:40:10 +0000626 assert( (pFrom->flags & MEM_RowSet)==0 );
danielk19775f096132008-03-28 15:44:09 +0000627 sqlite3VdbeMemReleaseExternal(pTo);
628 memcpy(pTo, pFrom, MEMCELLSIZE);
629 pTo->flags &= ~MEM_Dyn;
630
631 if( pTo->flags&(MEM_Str|MEM_Blob) ){
632 if( 0==(pFrom->flags&MEM_Static) ){
633 pTo->flags |= MEM_Ephem;
634 rc = sqlite3VdbeMemMakeWriteable(pTo);
danielk19779172fd82008-02-14 15:31:52 +0000635 }
danielk1977a7a8e142008-02-13 18:25:27 +0000636 }
637
drh71c697e2004-08-08 23:39:19 +0000638 return rc;
drh4f26d6c2004-05-26 23:25:30 +0000639}
640
drheb2e1762004-05-27 01:53:56 +0000641/*
danielk1977369f27e2004-06-15 11:40:04 +0000642** Transfer the contents of pFrom to pTo. Any existing value in pTo is
drhfebe1062004-08-28 18:17:48 +0000643** freed. If pFrom contains ephemeral data, a copy is made.
644**
drh643167f2008-01-22 21:30:53 +0000645** pFrom contains an SQL NULL when this routine returns.
danielk1977369f27e2004-06-15 11:40:04 +0000646*/
drh643167f2008-01-22 21:30:53 +0000647void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
drhb21c8cd2007-08-21 19:33:56 +0000648 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
649 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
650 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
danielk19775f096132008-03-28 15:44:09 +0000651
652 sqlite3VdbeMemRelease(pTo);
danielk197713073932004-06-30 11:54:06 +0000653 memcpy(pTo, pFrom, sizeof(Mem));
danielk197713073932004-06-30 11:54:06 +0000654 pFrom->flags = MEM_Null;
655 pFrom->xDel = 0;
danielk19775f096132008-03-28 15:44:09 +0000656 pFrom->zMalloc = 0;
danielk1977369f27e2004-06-15 11:40:04 +0000657}
658
659/*
drheb2e1762004-05-27 01:53:56 +0000660** Change the value of a Mem to be a string or a BLOB.
danielk1977a7a8e142008-02-13 18:25:27 +0000661**
662** The memory management strategy depends on the value of the xDel
663** parameter. If the value passed is SQLITE_TRANSIENT, then the
664** string is copied into a (possibly existing) buffer managed by the
665** Mem structure. Otherwise, any existing buffer is freed and the
666** pointer copied.
drh9a65f2c2009-06-22 19:05:40 +0000667**
668** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
669** size limit) then no memory allocation occurs. If the string can be
670** stored without allocating memory, then it is. If a memory allocation
671** is required to store the string, then value of pMem is unchanged. In
672** either case, SQLITE_TOOBIG is returned.
drheb2e1762004-05-27 01:53:56 +0000673*/
drh4f26d6c2004-05-26 23:25:30 +0000674int sqlite3VdbeMemSetStr(
675 Mem *pMem, /* Memory cell to set to string value */
676 const char *z, /* String pointer */
677 int n, /* Bytes in string, or negative */
drheb2e1762004-05-27 01:53:56 +0000678 u8 enc, /* Encoding of z. 0 for BLOBs */
danielk1977d8123362004-06-12 09:25:12 +0000679 void (*xDel)(void*) /* Destructor function */
drh4f26d6c2004-05-26 23:25:30 +0000680){
danielk1977a7a8e142008-02-13 18:25:27 +0000681 int nByte = n; /* New value for pMem->n */
drh0a687d12008-07-08 14:52:07 +0000682 int iLimit; /* Maximum allowed string or blob size */
drh8df32842008-12-09 02:51:23 +0000683 u16 flags = 0; /* New value for pMem->flags */
danielk1977a7a8e142008-02-13 18:25:27 +0000684
drhb21c8cd2007-08-21 19:33:56 +0000685 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh3d4501e2008-12-04 20:40:10 +0000686 assert( (pMem->flags & MEM_RowSet)==0 );
danielk1977a7a8e142008-02-13 18:25:27 +0000687
688 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
drh4f26d6c2004-05-26 23:25:30 +0000689 if( !z ){
danielk1977a7a8e142008-02-13 18:25:27 +0000690 sqlite3VdbeMemSetNull(pMem);
drh4f26d6c2004-05-26 23:25:30 +0000691 return SQLITE_OK;
692 }
danielk1977a7a8e142008-02-13 18:25:27 +0000693
drh0a687d12008-07-08 14:52:07 +0000694 if( pMem->db ){
695 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
696 }else{
697 iLimit = SQLITE_MAX_LENGTH;
698 }
danielk1977a7a8e142008-02-13 18:25:27 +0000699 flags = (enc==0?MEM_Blob:MEM_Str);
700 if( nByte<0 ){
701 assert( enc!=0 );
drh8fd38972008-02-19 15:44:09 +0000702 if( enc==SQLITE_UTF8 ){
drh0a687d12008-07-08 14:52:07 +0000703 for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
drh8fd38972008-02-19 15:44:09 +0000704 }else{
drh0a687d12008-07-08 14:52:07 +0000705 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
drh8fd38972008-02-19 15:44:09 +0000706 }
danielk1977a7a8e142008-02-13 18:25:27 +0000707 flags |= MEM_Term;
drh4f26d6c2004-05-26 23:25:30 +0000708 }
danielk1977d8123362004-06-12 09:25:12 +0000709
danielk1977a7a8e142008-02-13 18:25:27 +0000710 /* The following block sets the new values of Mem.z and Mem.xDel. It
711 ** also sets a flag in local variable "flags" to indicate the memory
712 ** management (one of MEM_Dyn or MEM_Static).
713 */
714 if( xDel==SQLITE_TRANSIENT ){
715 int nAlloc = nByte;
716 if( flags&MEM_Term ){
717 nAlloc += (enc==SQLITE_UTF8?1:2);
718 }
drh0793f1b2008-11-05 17:41:19 +0000719 if( nByte>iLimit ){
720 return SQLITE_TOOBIG;
721 }
danielk1977a7a8e142008-02-13 18:25:27 +0000722 if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
723 return SQLITE_NOMEM;
724 }
725 memcpy(pMem->z, z, nAlloc);
drh633e6d52008-07-28 19:34:53 +0000726 }else if( xDel==SQLITE_DYNAMIC ){
727 sqlite3VdbeMemRelease(pMem);
728 pMem->zMalloc = pMem->z = (char *)z;
729 pMem->xDel = 0;
danielk1977a7a8e142008-02-13 18:25:27 +0000730 }else{
731 sqlite3VdbeMemRelease(pMem);
732 pMem->z = (char *)z;
drhc890fec2008-08-01 20:10:08 +0000733 pMem->xDel = xDel;
734 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
danielk1977a7a8e142008-02-13 18:25:27 +0000735 }
danielk1977d8123362004-06-12 09:25:12 +0000736
danielk1977a7a8e142008-02-13 18:25:27 +0000737 pMem->n = nByte;
738 pMem->flags = flags;
739 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
740 pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
drh4f26d6c2004-05-26 23:25:30 +0000741
drh6c626082004-11-14 21:56:29 +0000742#ifndef SQLITE_OMIT_UTF16
danielk1977a7a8e142008-02-13 18:25:27 +0000743 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
744 return SQLITE_NOMEM;
drh4f26d6c2004-05-26 23:25:30 +0000745 }
danielk1977a7a8e142008-02-13 18:25:27 +0000746#endif
747
drh9a65f2c2009-06-22 19:05:40 +0000748 if( nByte>iLimit ){
749 return SQLITE_TOOBIG;
750 }
751
drhf4479502004-05-27 03:12:53 +0000752 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +0000753}
754
755/*
756** Compare the values contained by the two memory cells, returning
757** negative, zero or positive if pMem1 is less than, equal to, or greater
758** than pMem2. Sorting order is NULL's first, followed by numbers (integers
759** and reals) sorted numerically, followed by text ordered by the collating
760** sequence pColl and finally blob's ordered by memcmp().
761**
762** Two NULL values are considered equal by this function.
763*/
764int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
765 int rc;
766 int f1, f2;
767 int combined_flags;
768
drh4f26d6c2004-05-26 23:25:30 +0000769 f1 = pMem1->flags;
770 f2 = pMem2->flags;
771 combined_flags = f1|f2;
drh3d4501e2008-12-04 20:40:10 +0000772 assert( (combined_flags & MEM_RowSet)==0 );
drh4f26d6c2004-05-26 23:25:30 +0000773
774 /* If one value is NULL, it is less than the other. If both values
775 ** are NULL, return 0.
776 */
777 if( combined_flags&MEM_Null ){
778 return (f2&MEM_Null) - (f1&MEM_Null);
779 }
780
781 /* If one value is a number and the other is not, the number is less.
782 ** If both are numbers, compare as reals if one is a real, or as integers
783 ** if both values are integers.
784 */
785 if( combined_flags&(MEM_Int|MEM_Real) ){
786 if( !(f1&(MEM_Int|MEM_Real)) ){
787 return 1;
788 }
789 if( !(f2&(MEM_Int|MEM_Real)) ){
790 return -1;
791 }
792 if( (f1 & f2 & MEM_Int)==0 ){
793 double r1, r2;
794 if( (f1&MEM_Real)==0 ){
drh8df32842008-12-09 02:51:23 +0000795 r1 = (double)pMem1->u.i;
drh4f26d6c2004-05-26 23:25:30 +0000796 }else{
797 r1 = pMem1->r;
798 }
799 if( (f2&MEM_Real)==0 ){
drh8df32842008-12-09 02:51:23 +0000800 r2 = (double)pMem2->u.i;
drh4f26d6c2004-05-26 23:25:30 +0000801 }else{
802 r2 = pMem2->r;
803 }
804 if( r1<r2 ) return -1;
805 if( r1>r2 ) return 1;
806 return 0;
807 }else{
808 assert( f1&MEM_Int );
809 assert( f2&MEM_Int );
drh3c024d62007-03-30 11:23:45 +0000810 if( pMem1->u.i < pMem2->u.i ) return -1;
811 if( pMem1->u.i > pMem2->u.i ) return 1;
drh4f26d6c2004-05-26 23:25:30 +0000812 return 0;
813 }
814 }
815
816 /* If one value is a string and the other is a blob, the string is less.
817 ** If both are strings, compare using the collating functions.
818 */
819 if( combined_flags&MEM_Str ){
820 if( (f1 & MEM_Str)==0 ){
821 return 1;
822 }
823 if( (f2 & MEM_Str)==0 ){
824 return -1;
825 }
danielk19770202b292004-06-09 09:55:16 +0000826
827 assert( pMem1->enc==pMem2->enc );
danielk1977dc8453f2004-06-12 00:42:34 +0000828 assert( pMem1->enc==SQLITE_UTF8 ||
829 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
danielk19770202b292004-06-09 09:55:16 +0000830
danielk1977b3bf5562006-01-10 17:58:23 +0000831 /* The collation sequence must be defined at this point, even if
832 ** the user deletes the collation sequence after the vdbe program is
833 ** compiled (this was not always the case).
danielk19770202b292004-06-09 09:55:16 +0000834 */
danielk1977466be562004-06-10 02:16:01 +0000835 assert( !pColl || pColl->xCmp );
danielk19770202b292004-06-09 09:55:16 +0000836
837 if( pColl ){
danielk1977466be562004-06-10 02:16:01 +0000838 if( pMem1->enc==pColl->enc ){
drh7d9bd4e2006-02-16 18:16:36 +0000839 /* The strings are already in the correct encoding. Call the
840 ** comparison function directly */
danielk1977466be562004-06-10 02:16:01 +0000841 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
danielk19770202b292004-06-09 09:55:16 +0000842 }else{
drh7d9bd4e2006-02-16 18:16:36 +0000843 const void *v1, *v2;
844 int n1, n2;
danielk19777eae4f52008-09-16 12:06:08 +0000845 Mem c1;
846 Mem c2;
847 memset(&c1, 0, sizeof(c1));
848 memset(&c2, 0, sizeof(c2));
849 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
850 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
851 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
852 n1 = v1==0 ? 0 : c1.n;
853 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
854 n2 = v2==0 ? 0 : c2.n;
drh7d9bd4e2006-02-16 18:16:36 +0000855 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
danielk19777eae4f52008-09-16 12:06:08 +0000856 sqlite3VdbeMemRelease(&c1);
857 sqlite3VdbeMemRelease(&c2);
danielk1977f4618892004-06-28 13:09:11 +0000858 return rc;
danielk19770202b292004-06-09 09:55:16 +0000859 }
drh4f26d6c2004-05-26 23:25:30 +0000860 }
danielk19770202b292004-06-09 09:55:16 +0000861 /* If a NULL pointer was passed as the collate function, fall through
danielk19774e6af132004-06-10 14:01:08 +0000862 ** to the blob case and use memcmp(). */
drh4f26d6c2004-05-26 23:25:30 +0000863 }
864
danielk19774e6af132004-06-10 14:01:08 +0000865 /* Both values must be blobs. Compare using memcmp(). */
drh4f26d6c2004-05-26 23:25:30 +0000866 rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
867 if( rc==0 ){
868 rc = pMem1->n - pMem2->n;
869 }
870 return rc;
871}
danielk1977c572ef72004-05-27 09:28:41 +0000872
drhd5788202004-05-28 08:21:05 +0000873/*
874** Move data out of a btree key or data field and into a Mem structure.
875** The data or key is taken from the entry that pCur is currently pointing
876** to. offset and amt determine what portion of the data or key to retrieve.
877** key is true to get the key or false to get data. The result is written
878** into the pMem element.
879**
880** The pMem structure is assumed to be uninitialized. Any prior content
881** is overwritten without being freed.
882**
883** If this routine fails for any reason (malloc returns NULL or unable
884** to read from the disk) then the pMem is left in an inconsistent state.
885*/
886int sqlite3VdbeMemFromBtree(
887 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
888 int offset, /* Offset from the start of data to return bytes from. */
889 int amt, /* Number of bytes to return. */
890 int key, /* If true, retrieve from the btree key, not data. */
891 Mem *pMem /* OUT: Return data in this Mem structure. */
892){
danielk19774b0aa4c2009-05-28 11:05:57 +0000893 char *zData; /* Data from the btree layer */
894 int available = 0; /* Number of bytes available on the local btree page */
895 int rc = SQLITE_OK; /* Return code */
drhd5788202004-05-28 08:21:05 +0000896
drh5d1a8722009-07-22 18:07:40 +0000897 assert( sqlite3BtreeCursorIsValid(pCur) );
898
danielk19774b0aa4c2009-05-28 11:05:57 +0000899 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
900 ** that both the BtShared and database handle mutexes are held. */
drh3d4501e2008-12-04 20:40:10 +0000901 assert( (pMem->flags & MEM_RowSet)==0 );
drhd5788202004-05-28 08:21:05 +0000902 if( key ){
drhe51c44f2004-05-30 20:46:09 +0000903 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
drhd5788202004-05-28 08:21:05 +0000904 }else{
drhe51c44f2004-05-30 20:46:09 +0000905 zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
drhd5788202004-05-28 08:21:05 +0000906 }
drh61fc5952007-04-01 23:49:51 +0000907 assert( zData!=0 );
drhd5788202004-05-28 08:21:05 +0000908
drh4c8555f2009-06-25 01:47:11 +0000909 if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){
danielk1977a7a8e142008-02-13 18:25:27 +0000910 sqlite3VdbeMemRelease(pMem);
drhd5788202004-05-28 08:21:05 +0000911 pMem->z = &zData[offset];
912 pMem->flags = MEM_Blob|MEM_Ephem;
danielk1977a7a8e142008-02-13 18:25:27 +0000913 }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
914 pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
drhd5788202004-05-28 08:21:05 +0000915 pMem->enc = 0;
drh9c054832004-05-31 18:51:57 +0000916 pMem->type = SQLITE_BLOB;
drhd5788202004-05-28 08:21:05 +0000917 if( key ){
danielk1977a7a8e142008-02-13 18:25:27 +0000918 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
drhd5788202004-05-28 08:21:05 +0000919 }else{
danielk1977a7a8e142008-02-13 18:25:27 +0000920 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
drhd5788202004-05-28 08:21:05 +0000921 }
danielk1977a7a8e142008-02-13 18:25:27 +0000922 pMem->z[amt] = 0;
923 pMem->z[amt+1] = 0;
drhd5788202004-05-28 08:21:05 +0000924 if( rc!=SQLITE_OK ){
danielk1977a7a8e142008-02-13 18:25:27 +0000925 sqlite3VdbeMemRelease(pMem);
drhd5788202004-05-28 08:21:05 +0000926 }
927 }
danielk1977a7a8e142008-02-13 18:25:27 +0000928 pMem->n = amt;
drhd5788202004-05-28 08:21:05 +0000929
danielk1977a7a8e142008-02-13 18:25:27 +0000930 return rc;
drhd5788202004-05-28 08:21:05 +0000931}
932
danielk19774e6af132004-06-10 14:01:08 +0000933/* This function is only available internally, it is not part of the
934** external API. It works in a similar way to sqlite3_value_text(),
935** except the data returned is in the encoding specified by the second
936** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
937** SQLITE_UTF8.
drh7d9bd4e2006-02-16 18:16:36 +0000938**
939** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
940** If that is the case, then the result must be aligned on an even byte
941** boundary.
danielk19774e6af132004-06-10 14:01:08 +0000942*/
drhb21c8cd2007-08-21 19:33:56 +0000943const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
danielk1977bfd6cce2004-06-18 04:24:54 +0000944 if( !pVal ) return 0;
drhb21c8cd2007-08-21 19:33:56 +0000945
946 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
drh7d9bd4e2006-02-16 18:16:36 +0000947 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
drh3d4501e2008-12-04 20:40:10 +0000948 assert( (pVal->flags & MEM_RowSet)==0 );
danielk1977bfd6cce2004-06-18 04:24:54 +0000949
danielk19774e6af132004-06-10 14:01:08 +0000950 if( pVal->flags&MEM_Null ){
danielk19774e6af132004-06-10 14:01:08 +0000951 return 0;
952 }
drhf1f6c582006-01-12 19:42:41 +0000953 assert( (MEM_Blob>>3) == MEM_Str );
954 pVal->flags |= (pVal->flags & MEM_Blob)>>3;
drhb21c8cd2007-08-21 19:33:56 +0000955 expandBlob(pVal);
danielk19774e6af132004-06-10 14:01:08 +0000956 if( pVal->flags&MEM_Str ){
drhb21c8cd2007-08-21 19:33:56 +0000957 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
shane1fc41292008-07-08 22:28:48 +0000958 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
drh7d9bd4e2006-02-16 18:16:36 +0000959 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
drhb21c8cd2007-08-21 19:33:56 +0000960 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
drh7d9bd4e2006-02-16 18:16:36 +0000961 return 0;
962 }
963 }
drhb21c8cd2007-08-21 19:33:56 +0000964 sqlite3VdbeMemNulTerminate(pVal);
drhf0313812006-09-04 15:53:53 +0000965 }else{
966 assert( (pVal->flags&MEM_Blob)==0 );
drhb21c8cd2007-08-21 19:33:56 +0000967 sqlite3VdbeMemStringify(pVal, enc);
drh8df32842008-12-09 02:51:23 +0000968 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
danielk19774e6af132004-06-10 14:01:08 +0000969 }
drhb21c8cd2007-08-21 19:33:56 +0000970 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
971 || pVal->db->mallocFailed );
drh7d9bd4e2006-02-16 18:16:36 +0000972 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
973 return pVal->z;
974 }else{
975 return 0;
976 }
danielk19774e6af132004-06-10 14:01:08 +0000977}
978
drh6a6124e2004-06-27 01:56:33 +0000979/*
980** Create a new sqlite3_value object.
981*/
drh17435752007-08-16 04:30:38 +0000982sqlite3_value *sqlite3ValueNew(sqlite3 *db){
danielk197726783a52007-08-29 14:06:22 +0000983 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
danielk19774e6af132004-06-10 14:01:08 +0000984 if( p ){
985 p->flags = MEM_Null;
986 p->type = SQLITE_NULL;
drhb21c8cd2007-08-21 19:33:56 +0000987 p->db = db;
danielk19774e6af132004-06-10 14:01:08 +0000988 }
989 return p;
990}
991
drh6a6124e2004-06-27 01:56:33 +0000992/*
danielk1977aee18ef2005-03-09 12:26:50 +0000993** Create a new sqlite3_value object, containing the value of pExpr.
994**
995** This only works for very simple expressions that consist of one constant
drhc4dd3fd2008-01-22 01:48:05 +0000996** token (i.e. "5", "5.1", "'a string'"). If the expression can
danielk1977aee18ef2005-03-09 12:26:50 +0000997** be converted directly into a value, then the value is allocated and
998** a pointer written to *ppVal. The caller is responsible for deallocating
999** the value by passing it to sqlite3ValueFree() later on. If the expression
1000** cannot be converted to a value, then *ppVal is set to NULL.
1001*/
1002int sqlite3ValueFromExpr(
drhb21c8cd2007-08-21 19:33:56 +00001003 sqlite3 *db, /* The database connection */
drh17435752007-08-16 04:30:38 +00001004 Expr *pExpr, /* The expression to evaluate */
1005 u8 enc, /* Encoding to use */
1006 u8 affinity, /* Affinity to use */
1007 sqlite3_value **ppVal /* Write the new value here */
danielk1977aee18ef2005-03-09 12:26:50 +00001008){
1009 int op;
1010 char *zVal = 0;
1011 sqlite3_value *pVal = 0;
1012
1013 if( !pExpr ){
1014 *ppVal = 0;
1015 return SQLITE_OK;
1016 }
1017 op = pExpr->op;
drh4a466d32010-06-25 14:17:58 +00001018
drha3388cc2010-07-30 16:54:25 +00001019 /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT2.
drh4a466d32010-06-25 14:17:58 +00001020 ** The ifdef here is to enable us to achieve 100% branch test coverage even
1021 ** when SQLITE_ENABLE_STAT2 is omitted.
1022 */
1023#ifdef SQLITE_ENABLE_STAT2
1024 if( op==TK_REGISTER ) op = pExpr->op2;
1025#else
1026 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1027#endif
danielk1977aee18ef2005-03-09 12:26:50 +00001028
1029 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
drh17435752007-08-16 04:30:38 +00001030 pVal = sqlite3ValueNew(db);
drh33e619f2009-05-28 01:00:55 +00001031 if( pVal==0 ) goto no_mem;
1032 if( ExprHasProperty(pExpr, EP_IntValue) ){
1033 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue);
1034 }else{
1035 zVal = sqlite3DbStrDup(db, pExpr->u.zToken);
1036 if( zVal==0 ) goto no_mem;
1037 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
drh3995c262009-08-19 22:14:17 +00001038 if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
drh33e619f2009-05-28 01:00:55 +00001039 }
danielk1977aee18ef2005-03-09 12:26:50 +00001040 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
drhe3b9bfe2009-05-05 12:54:50 +00001041 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
danielk1977aee18ef2005-03-09 12:26:50 +00001042 }else{
drhe3b9bfe2009-05-05 12:54:50 +00001043 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1044 }
1045 if( enc!=SQLITE_UTF8 ){
1046 sqlite3VdbeChangeEncoding(pVal, enc);
danielk1977aee18ef2005-03-09 12:26:50 +00001047 }
1048 }else if( op==TK_UMINUS ) {
drhb21c8cd2007-08-21 19:33:56 +00001049 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
drh3c024d62007-03-30 11:23:45 +00001050 pVal->u.i = -1 * pVal->u.i;
shanefbd60f82009-02-04 03:59:25 +00001051 /* (double)-1 In case of SQLITE_OMIT_FLOATING_POINT... */
1052 pVal->r = (double)-1 * pVal->r;
danielk1977aee18ef2005-03-09 12:26:50 +00001053 }
1054 }
1055#ifndef SQLITE_OMIT_BLOB_LITERAL
1056 else if( op==TK_BLOB ){
1057 int nVal;
drh33e619f2009-05-28 01:00:55 +00001058 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1059 assert( pExpr->u.zToken[1]=='\'' );
danielk19771e536952007-08-16 10:09:01 +00001060 pVal = sqlite3ValueNew(db);
danielk1977f150c9d2008-10-30 17:21:12 +00001061 if( !pVal ) goto no_mem;
drh33e619f2009-05-28 01:00:55 +00001062 zVal = &pExpr->u.zToken[2];
drhb7916a72009-05-27 10:31:29 +00001063 nVal = sqlite3Strlen30(zVal)-1;
1064 assert( zVal[nVal]=='\'' );
drhca48c902008-01-18 14:08:24 +00001065 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
drh633e6d52008-07-28 19:34:53 +00001066 0, SQLITE_DYNAMIC);
danielk1977aee18ef2005-03-09 12:26:50 +00001067 }
1068#endif
1069
dan937d0de2009-10-15 18:35:38 +00001070 if( pVal ){
1071 sqlite3VdbeMemStoreType(pVal);
1072 }
danielk1977aee18ef2005-03-09 12:26:50 +00001073 *ppVal = pVal;
1074 return SQLITE_OK;
1075
1076no_mem:
drh17435752007-08-16 04:30:38 +00001077 db->mallocFailed = 1;
drh633e6d52008-07-28 19:34:53 +00001078 sqlite3DbFree(db, zVal);
danielk1977aee18ef2005-03-09 12:26:50 +00001079 sqlite3ValueFree(pVal);
1080 *ppVal = 0;
1081 return SQLITE_NOMEM;
1082}
1083
1084/*
drh6a6124e2004-06-27 01:56:33 +00001085** Change the string value of an sqlite3_value object
1086*/
danielk1977bfd6cce2004-06-18 04:24:54 +00001087void sqlite3ValueSetStr(
drh17435752007-08-16 04:30:38 +00001088 sqlite3_value *v, /* Value to be set */
1089 int n, /* Length of string z */
1090 const void *z, /* Text of the new string */
1091 u8 enc, /* Encoding to use */
1092 void (*xDel)(void*) /* Destructor for the string */
danielk1977bfd6cce2004-06-18 04:24:54 +00001093){
drhb21c8cd2007-08-21 19:33:56 +00001094 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
danielk19774e6af132004-06-10 14:01:08 +00001095}
1096
drh6a6124e2004-06-27 01:56:33 +00001097/*
1098** Free an sqlite3_value object
1099*/
danielk19774e6af132004-06-10 14:01:08 +00001100void sqlite3ValueFree(sqlite3_value *v){
danielk1977bfd6cce2004-06-18 04:24:54 +00001101 if( !v ) return;
danielk1977a7a8e142008-02-13 18:25:27 +00001102 sqlite3VdbeMemRelease((Mem *)v);
drh633e6d52008-07-28 19:34:53 +00001103 sqlite3DbFree(((Mem*)v)->db, v);
danielk19774e6af132004-06-10 14:01:08 +00001104}
1105
drh6a6124e2004-06-27 01:56:33 +00001106/*
1107** Return the number of bytes in the sqlite3_value object assuming
1108** that it uses the encoding "enc"
1109*/
drhb21c8cd2007-08-21 19:33:56 +00001110int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
danielk19774e6af132004-06-10 14:01:08 +00001111 Mem *p = (Mem*)pVal;
drhb21c8cd2007-08-21 19:33:56 +00001112 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
drhb026e052007-05-02 01:34:31 +00001113 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00001114 return p->n + p->u.nZero;
drhb026e052007-05-02 01:34:31 +00001115 }else{
1116 return p->n;
1117 }
danielk19774e6af132004-06-10 14:01:08 +00001118 }
1119 return 0;
1120}