blob: a4160209840767befe1ab2fc38c95bbe2c14c2eb [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh9a324642003-09-06 20:12:01 +000012** The code in this file implements execution method of the
13** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14** handles housekeeping details such as creating and deleting
15** VDBE instances. This file is solely interested in executing
16** the VDBE program.
17**
danielk1977fc57d7b2004-05-26 02:04:57 +000018** In the external interface, an "sqlite3_stmt*" is an opaque pointer
drh9a324642003-09-06 20:12:01 +000019** to a VDBE.
drh75897232000-05-29 14:26:00 +000020**
21** The SQL parser generates a program which is then executed by
22** the VDBE to do the work of the SQL statement. VDBE programs are
23** similar in form to assembly language. The program consists of
24** a linear sequence of operations. Each operation has an opcode
drh9cbf3422008-01-17 16:22:13 +000025** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26** is a null-terminated string. Operand P5 is an unsigned character.
27** Few opcodes use all 5 operands.
drh75897232000-05-29 14:26:00 +000028**
drh9cbf3422008-01-17 16:22:13 +000029** Computation results are stored on a set of registers numbered beginning
30** with 1 and going up to Vdbe.nMem. Each register can store
31** either an integer, a null-terminated string, a floating point
shane21e7feb2008-05-30 15:59:49 +000032** number, or the SQL "NULL" value. An implicit conversion from one
drhb19a2bc2001-09-16 00:13:26 +000033** type to the other occurs as necessary.
drh75897232000-05-29 14:26:00 +000034**
danielk19774adee202004-05-08 08:23:19 +000035** Most of the code in this file is taken up by the sqlite3VdbeExec()
drh75897232000-05-29 14:26:00 +000036** function which does the work of interpreting a VDBE program.
37** But other routines are also provided to help in building up
38** a program instruction by instruction.
39**
drhac82fcf2002-09-08 17:23:41 +000040** Various scripts scan this source file in order to generate HTML
41** documentation, headers files, or other derived files. The formatting
42** of the code in this file is, therefore, important. See other comments
43** in this file for details. If in doubt, do not deviate from existing
44** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000045*/
46#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000047#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000048
49/*
drh487ab3c2001-11-08 00:45:21 +000050** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000051** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000052** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000053** working correctly. This variable has no function other than to
54** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000055*/
drh0f7eb612006-08-08 13:51:43 +000056#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000057int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000058#endif
drh487ab3c2001-11-08 00:45:21 +000059
drhf6038712004-02-08 18:07:34 +000060/*
61** When this global variable is positive, it gets decremented once before
drh881feaa2006-07-26 01:39:30 +000062** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
63** field of the sqlite3 structure is set in order to simulate and interrupt.
drhf6038712004-02-08 18:07:34 +000064**
65** This facility is used for testing purposes only. It does not function
66** in an ordinary build.
67*/
drh0f7eb612006-08-08 13:51:43 +000068#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000069int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000070#endif
drh1350b032002-02-27 19:00:20 +000071
danielk19777e18c252004-05-25 11:47:24 +000072/*
drh6bf89572004-11-03 16:27:01 +000073** The next global variable is incremented each type the OP_Sort opcode
74** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000075** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000076** has no function other than to help verify the correct operation of the
77** library.
78*/
drh0f7eb612006-08-08 13:51:43 +000079#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000080int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000081#endif
drh6bf89572004-11-03 16:27:01 +000082
83/*
drhae7e1512007-05-02 16:51:59 +000084** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000085** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000086** use this information to make sure that the zero-blob functionality
87** is working correctly. This variable has no function other than to
88** help verify the correct operation of the library.
89*/
90#ifdef SQLITE_TEST
91int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000092static void updateMaxBlobsize(Mem *p){
93 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
94 sqlite3_max_blobsize = p->n;
95 }
96}
drhae7e1512007-05-02 16:51:59 +000097#endif
98
99/*
dan0ff297e2009-09-25 17:03:14 +0000100** The next global variable is incremented each type the OP_Found opcode
101** is executed. This is used to test whether or not the foreign key
102** operation implemented using OP_FkIsZero is working. This variable
103** has no function other than to help verify the correct operation of the
104** library.
105*/
106#ifdef SQLITE_TEST
107int sqlite3_found_count = 0;
108#endif
109
110/*
drhb7654112008-01-12 12:48:07 +0000111** Test a register to see if it exceeds the current maximum blob size.
112** If it does, record the new maximum blob size.
113*/
drh678ccce2008-03-31 18:19:54 +0000114#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000115# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000116#else
117# define UPDATE_MAX_BLOBSIZE(P)
118#endif
119
120/*
drh9cbf3422008-01-17 16:22:13 +0000121** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000122** already. Return non-zero if a malloc() fails.
123*/
drhb21c8cd2007-08-21 19:33:56 +0000124#define Stringify(P, enc) \
125 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
drhf4479502004-05-27 03:12:53 +0000126 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000127
128/*
danielk1977bd7e4602004-05-24 07:34:48 +0000129** An ephemeral string value (signified by the MEM_Ephem flag) contains
130** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000131** is responsible for deallocating that string. Because the register
132** does not control the string, it might be deleted without the register
133** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000134**
135** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000136** string that the register itself controls. In other words, it
danielk1977bd7e4602004-05-24 07:34:48 +0000137** converts an MEM_Ephem string into an MEM_Dyn string.
138*/
drhb21c8cd2007-08-21 19:33:56 +0000139#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000140 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000141 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000142
143/*
danielk19771cc5ed82007-05-16 17:28:43 +0000144** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
145** P if required.
146*/
drhb21c8cd2007-08-21 19:33:56 +0000147#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
danielk19771cc5ed82007-05-16 17:28:43 +0000148
149/*
shane21e7feb2008-05-30 15:59:49 +0000150** Argument pMem points at a register that will be passed to a
danielk1977c572ef72004-05-27 09:28:41 +0000151** user-defined function or returned to the user as the result of a query.
dan937d0de2009-10-15 18:35:38 +0000152** This routine sets the pMem->type variable used by the sqlite3_value_*()
153** routines.
danielk1977c572ef72004-05-27 09:28:41 +0000154*/
dan937d0de2009-10-15 18:35:38 +0000155void sqlite3VdbeMemStoreType(Mem *pMem){
danielk1977c572ef72004-05-27 09:28:41 +0000156 int flags = pMem->flags;
157 if( flags & MEM_Null ){
drh9c054832004-05-31 18:51:57 +0000158 pMem->type = SQLITE_NULL;
danielk1977c572ef72004-05-27 09:28:41 +0000159 }
160 else if( flags & MEM_Int ){
drh9c054832004-05-31 18:51:57 +0000161 pMem->type = SQLITE_INTEGER;
danielk1977c572ef72004-05-27 09:28:41 +0000162 }
163 else if( flags & MEM_Real ){
drh9c054832004-05-31 18:51:57 +0000164 pMem->type = SQLITE_FLOAT;
danielk1977c572ef72004-05-27 09:28:41 +0000165 }
166 else if( flags & MEM_Str ){
drh9c054832004-05-31 18:51:57 +0000167 pMem->type = SQLITE_TEXT;
danielk1977c572ef72004-05-27 09:28:41 +0000168 }else{
drh9c054832004-05-31 18:51:57 +0000169 pMem->type = SQLITE_BLOB;
danielk1977c572ef72004-05-27 09:28:41 +0000170 }
171}
danielk19778a6b5412004-05-24 07:04:25 +0000172
173/*
drhdfe88ec2008-11-03 20:55:06 +0000174** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000175** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000176*/
drhdfe88ec2008-11-03 20:55:06 +0000177static VdbeCursor *allocateCursor(
178 Vdbe *p, /* The virtual machine */
179 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000180 int nField, /* Number of fields in the table or index */
drh3d4501e2008-12-04 20:40:10 +0000181 int iDb, /* When database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000182 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000183){
184 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000185 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000186 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000187 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000188 **
189 ** * Sometimes cursor numbers are used for a couple of different
190 ** purposes in a vdbe program. The different uses might require
191 ** different sized allocations. Memory cells provide growable
192 ** allocations.
193 **
194 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
195 ** be freed lazily via the sqlite3_release_memory() API. This
196 ** minimizes the number of malloc calls made by the system.
197 **
198 ** Memory cells for cursors are allocated at the top of the address
199 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
200 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
201 */
202 Mem *pMem = &p->aMem[p->nMem-iCur];
203
danielk19775f096132008-03-28 15:44:09 +0000204 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000205 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000206 nByte =
drhc54055b2009-11-13 17:05:53 +0000207 ROUND8(sizeof(VdbeCursor)) +
danielk1977cd3e8f72008-03-25 09:47:35 +0000208 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
209 2*nField*sizeof(u32);
210
drh290c1942004-08-21 17:54:45 +0000211 assert( iCur<p->nCursor );
212 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000213 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000214 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000215 }
danielk1977cd3e8f72008-03-25 09:47:35 +0000216 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
drhdfe88ec2008-11-03 20:55:06 +0000217 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000218 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000219 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000220 pCx->nField = nField;
221 if( nField ){
drhc54055b2009-11-13 17:05:53 +0000222 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
danielk1977cd3e8f72008-03-25 09:47:35 +0000223 }
224 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000225 pCx->pCursor = (BtCursor*)
drhc54055b2009-11-13 17:05:53 +0000226 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
drhf25a5072009-11-18 23:01:25 +0000227 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000228 }
danielk197794eb6a12005-12-15 15:22:08 +0000229 }
drh4774b132004-06-12 20:12:51 +0000230 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000231}
232
danielk19773d1bfea2004-05-14 11:00:53 +0000233/*
drh29d72102006-02-09 22:13:41 +0000234** Try to convert a value into a numeric representation if we can
235** do so without loss of information. In other words, if the string
236** looks like a number, convert it into a number. If it does not
237** look like a number, leave it alone.
238*/
drhb21c8cd2007-08-21 19:33:56 +0000239static void applyNumericAffinity(Mem *pRec){
drh29d72102006-02-09 22:13:41 +0000240 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
241 int realnum;
danb7dca7d2010-03-05 16:32:12 +0000242 u8 enc = pRec->enc;
drhb21c8cd2007-08-21 19:33:56 +0000243 sqlite3VdbeMemNulTerminate(pRec);
danb7dca7d2010-03-05 16:32:12 +0000244 if( (pRec->flags&MEM_Str) && sqlite3IsNumber(pRec->z, &realnum, enc) ){
drh29d72102006-02-09 22:13:41 +0000245 i64 value;
danb7dca7d2010-03-05 16:32:12 +0000246 char *zUtf8 = pRec->z;
247#ifndef SQLITE_OMIT_UTF16
248 if( enc!=SQLITE_UTF8 ){
249 assert( pRec->db );
250 zUtf8 = sqlite3Utf16to8(pRec->db, pRec->z, pRec->n, enc);
251 if( !zUtf8 ) return;
252 }
253#endif
254 if( !realnum && sqlite3Atoi64(zUtf8, &value) ){
drh3c024d62007-03-30 11:23:45 +0000255 pRec->u.i = value;
danielk1977a7a8e142008-02-13 18:25:27 +0000256 MemSetTypeFlag(pRec, MEM_Int);
drh29d72102006-02-09 22:13:41 +0000257 }else{
danb7dca7d2010-03-05 16:32:12 +0000258 sqlite3AtoF(zUtf8, &pRec->r);
259 MemSetTypeFlag(pRec, MEM_Real);
drh29d72102006-02-09 22:13:41 +0000260 }
danb7dca7d2010-03-05 16:32:12 +0000261#ifndef SQLITE_OMIT_UTF16
262 if( enc!=SQLITE_UTF8 ){
263 sqlite3DbFree(pRec->db, zUtf8);
264 }
265#endif
drh29d72102006-02-09 22:13:41 +0000266 }
267 }
268}
269
270/*
drh8a512562005-11-14 22:29:05 +0000271** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000272**
drh8a512562005-11-14 22:29:05 +0000273** SQLITE_AFF_INTEGER:
274** SQLITE_AFF_REAL:
275** SQLITE_AFF_NUMERIC:
276** Try to convert pRec to an integer representation or a
277** floating-point representation if an integer representation
278** is not possible. Note that the integer representation is
279** always preferred, even if the affinity is REAL, because
280** an integer representation is more space efficient on disk.
281**
282** SQLITE_AFF_TEXT:
283** Convert pRec to a text representation.
284**
285** SQLITE_AFF_NONE:
286** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000287*/
drh17435752007-08-16 04:30:38 +0000288static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000289 Mem *pRec, /* The value to apply affinity to */
290 char affinity, /* The affinity to be applied */
291 u8 enc /* Use this text encoding */
292){
drh8a512562005-11-14 22:29:05 +0000293 if( affinity==SQLITE_AFF_TEXT ){
drh17c40292004-07-21 02:53:29 +0000294 /* Only attempt the conversion to TEXT if there is an integer or real
295 ** representation (blob and NULL do not get converted) but no string
296 ** representation.
297 */
298 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
drhb21c8cd2007-08-21 19:33:56 +0000299 sqlite3VdbeMemStringify(pRec, enc);
drh17c40292004-07-21 02:53:29 +0000300 }
301 pRec->flags &= ~(MEM_Real|MEM_Int);
drh8a512562005-11-14 22:29:05 +0000302 }else if( affinity!=SQLITE_AFF_NONE ){
303 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
304 || affinity==SQLITE_AFF_NUMERIC );
drhb21c8cd2007-08-21 19:33:56 +0000305 applyNumericAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000306 if( pRec->flags & MEM_Real ){
drh8df447f2005-11-01 15:48:24 +0000307 sqlite3VdbeIntegerAffinity(pRec);
drh17c40292004-07-21 02:53:29 +0000308 }
danielk19773d1bfea2004-05-14 11:00:53 +0000309 }
310}
311
danielk1977aee18ef2005-03-09 12:26:50 +0000312/*
drh29d72102006-02-09 22:13:41 +0000313** Try to convert the type of a function argument or a result column
314** into a numeric representation. Use either INTEGER or REAL whichever
315** is appropriate. But only do the conversion if it is possible without
316** loss of information and return the revised type of the argument.
317**
318** This is an EXPERIMENTAL api and is subject to change or removal.
319*/
320int sqlite3_value_numeric_type(sqlite3_value *pVal){
321 Mem *pMem = (Mem*)pVal;
drhb21c8cd2007-08-21 19:33:56 +0000322 applyNumericAffinity(pMem);
dan937d0de2009-10-15 18:35:38 +0000323 sqlite3VdbeMemStoreType(pMem);
drh29d72102006-02-09 22:13:41 +0000324 return pMem->type;
325}
326
327/*
danielk1977aee18ef2005-03-09 12:26:50 +0000328** Exported version of applyAffinity(). This one works on sqlite3_value*,
329** not the internal Mem* type.
330*/
danielk19771e536952007-08-16 10:09:01 +0000331void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000332 sqlite3_value *pVal,
333 u8 affinity,
334 u8 enc
335){
drhb21c8cd2007-08-21 19:33:56 +0000336 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000337}
338
danielk1977b5402fb2005-01-12 07:15:04 +0000339#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000340/*
danielk1977ca6b2912004-05-21 10:49:47 +0000341** Write a nice string representation of the contents of cell pMem
342** into buffer zBuf, length nBuf.
343*/
drh74161702006-02-24 02:53:49 +0000344void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000345 char *zCsr = zBuf;
346 int f = pMem->flags;
347
drh57196282004-10-06 15:41:16 +0000348 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000349
danielk1977ca6b2912004-05-21 10:49:47 +0000350 if( f&MEM_Blob ){
351 int i;
352 char c;
353 if( f & MEM_Dyn ){
354 c = 'z';
355 assert( (f & (MEM_Static|MEM_Ephem))==0 );
356 }else if( f & MEM_Static ){
357 c = 't';
358 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
359 }else if( f & MEM_Ephem ){
360 c = 'e';
361 assert( (f & (MEM_Static|MEM_Dyn))==0 );
362 }else{
363 c = 's';
364 }
365
drh5bb3eb92007-05-04 13:15:55 +0000366 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000367 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000368 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000369 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000370 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000371 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000372 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000373 }
374 for(i=0; i<16 && i<pMem->n; i++){
375 char z = pMem->z[i];
376 if( z<32 || z>126 ) *zCsr++ = '.';
377 else *zCsr++ = z;
378 }
379
drhe718efe2007-05-10 21:14:03 +0000380 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000381 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000382 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000383 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000384 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000385 }
danielk1977b1bc9532004-05-22 03:05:33 +0000386 *zCsr = '\0';
387 }else if( f & MEM_Str ){
388 int j, k;
389 zBuf[0] = ' ';
390 if( f & MEM_Dyn ){
391 zBuf[1] = 'z';
392 assert( (f & (MEM_Static|MEM_Ephem))==0 );
393 }else if( f & MEM_Static ){
394 zBuf[1] = 't';
395 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
396 }else if( f & MEM_Ephem ){
397 zBuf[1] = 'e';
398 assert( (f & (MEM_Static|MEM_Dyn))==0 );
399 }else{
400 zBuf[1] = 's';
401 }
402 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000403 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000404 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000405 zBuf[k++] = '[';
406 for(j=0; j<15 && j<pMem->n; j++){
407 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000408 if( c>=0x20 && c<0x7f ){
409 zBuf[k++] = c;
410 }else{
411 zBuf[k++] = '.';
412 }
413 }
414 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000415 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000416 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000417 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000418 }
danielk1977ca6b2912004-05-21 10:49:47 +0000419}
420#endif
421
drh5b6afba2008-01-05 16:29:28 +0000422#ifdef SQLITE_DEBUG
423/*
424** Print the value of a register for tracing purposes:
425*/
426static void memTracePrint(FILE *out, Mem *p){
427 if( p->flags & MEM_Null ){
428 fprintf(out, " NULL");
429 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
430 fprintf(out, " si:%lld", p->u.i);
431 }else if( p->flags & MEM_Int ){
432 fprintf(out, " i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000433#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000434 }else if( p->flags & MEM_Real ){
435 fprintf(out, " r:%g", p->r);
drh0b3bf922009-06-15 20:45:34 +0000436#endif
drh733bf1b2009-04-22 00:47:00 +0000437 }else if( p->flags & MEM_RowSet ){
438 fprintf(out, " (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000439 }else{
440 char zBuf[200];
441 sqlite3VdbeMemPrettyPrint(p, zBuf);
442 fprintf(out, " ");
443 fprintf(out, "%s", zBuf);
444 }
445}
446static void registerTrace(FILE *out, int iReg, Mem *p){
447 fprintf(out, "REG[%d] = ", iReg);
448 memTracePrint(out, p);
449 fprintf(out, "\n");
450}
451#endif
452
453#ifdef SQLITE_DEBUG
drhb21e7c72008-06-22 12:37:57 +0000454# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
drh5b6afba2008-01-05 16:29:28 +0000455#else
456# define REGISTER_TRACE(R,M)
457#endif
458
danielk197784ac9d02004-05-18 09:58:06 +0000459
drh7b396862003-01-01 23:06:20 +0000460#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000461
462/*
463** hwtime.h contains inline assembler code for implementing
464** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000465*/
shane9bcbdad2008-05-29 20:22:37 +0000466#include "hwtime.h"
467
drh7b396862003-01-01 23:06:20 +0000468#endif
469
drh8c74a8c2002-08-25 19:20:40 +0000470/*
drhcaec2f12003-01-07 02:47:47 +0000471** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
danielk19776f8a5032004-05-10 10:34:51 +0000472** sqlite3_interrupt() routine has been called. If it has been, then
drhcaec2f12003-01-07 02:47:47 +0000473** processing of the VDBE program is interrupted.
474**
475** This macro added to every instruction that does a jump in order to
476** implement a loop. This test used to be on every single instruction,
477** but that meant we more testing that we needed. By only testing the
478** flag on jump instructions, we get a (small) speed improvement.
479*/
480#define CHECK_FOR_INTERRUPT \
drh881feaa2006-07-26 01:39:30 +0000481 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drhcaec2f12003-01-07 02:47:47 +0000482
483
danielk1977fd7f0452008-12-17 17:30:26 +0000484#ifndef NDEBUG
485/*
486** This function is only called from within an assert() expression. It
487** checks that the sqlite3.nTransaction variable is correctly set to
488** the number of non-transaction savepoints currently in the
489** linked list starting at sqlite3.pSavepoint.
490**
491** Usage:
492**
493** assert( checkSavepointCount(db) );
494*/
495static int checkSavepointCount(sqlite3 *db){
496 int n = 0;
497 Savepoint *p;
498 for(p=db->pSavepoint; p; p=p->pNext) n++;
499 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
500 return 1;
501}
502#endif
503
drhcaec2f12003-01-07 02:47:47 +0000504/*
drhb9755982010-07-24 16:34:37 +0000505** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
506** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
507** in memory obtained from sqlite3DbMalloc).
508*/
509static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
510 sqlite3 *db = p->db;
511 sqlite3DbFree(db, p->zErrMsg);
512 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
513 sqlite3_free(pVtab->zErrMsg);
514 pVtab->zErrMsg = 0;
515}
516
517
518/*
drhb86ccfb2003-01-28 23:13:10 +0000519** Execute as much of a VDBE program as we can then return.
520**
danielk19774adee202004-05-08 08:23:19 +0000521** sqlite3VdbeMakeReady() must be called before this routine in order to
drhb86ccfb2003-01-28 23:13:10 +0000522** close the program with a final OP_Halt and to set up the callbacks
523** and the error message pointer.
524**
525** Whenever a row or result data is available, this routine will either
526** invoke the result callback (if there is one) or return with
drh326dce72003-01-29 14:06:07 +0000527** SQLITE_ROW.
drhb86ccfb2003-01-28 23:13:10 +0000528**
529** If an attempt is made to open a locked database, then this routine
530** will either invoke the busy callback (if there is one) or it will
531** return SQLITE_BUSY.
532**
533** If an error occurs, an error message is written to memory obtained
drh17435752007-08-16 04:30:38 +0000534** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
drhb86ccfb2003-01-28 23:13:10 +0000535** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
536**
537** If the callback ever returns non-zero, then the program exits
538** immediately. There will be no error message but the p->rc field is
539** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
540**
drh9468c7f2003-03-07 19:50:07 +0000541** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
542** routine to return SQLITE_ERROR.
drhb86ccfb2003-01-28 23:13:10 +0000543**
544** Other fatal errors return SQLITE_ERROR.
545**
danielk19774adee202004-05-08 08:23:19 +0000546** After this routine has finished, sqlite3VdbeFinalize() should be
drhb86ccfb2003-01-28 23:13:10 +0000547** used to clean up the mess that was left behind.
548*/
danielk19774adee202004-05-08 08:23:19 +0000549int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000550 Vdbe *p /* The VDBE */
551){
shaneh84f4b2f2010-02-26 01:46:54 +0000552 int pc=0; /* The program counter */
drhbbe879d2009-11-14 18:04:35 +0000553 Op *aOp = p->aOp; /* Copy of p->aOp */
drhb86ccfb2003-01-28 23:13:10 +0000554 Op *pOp; /* Current operation */
555 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000556 sqlite3 *db = p->db; /* The database */
drh32783152009-11-20 15:02:34 +0000557 u8 resetSchemaOnFault = 0; /* Reset schema after an error if true */
drh8079a0d2006-01-12 17:20:50 +0000558 u8 encoding = ENC(db); /* The database encoding */
drha6c2ed92009-11-14 23:22:23 +0000559#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
shaneh5e17e8b2009-12-03 04:40:47 +0000560 int checkProgress; /* True if progress callbacks are enabled */
drha6c2ed92009-11-14 23:22:23 +0000561 int nProgressOps = 0; /* Opcodes executed since progress callback. */
562#endif
563 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000564 Mem *pIn1 = 0; /* 1st input operand */
565 Mem *pIn2 = 0; /* 2nd input operand */
566 Mem *pIn3 = 0; /* 3rd input operand */
567 Mem *pOut = 0; /* Output operand */
drh0acb7e42008-06-25 00:12:41 +0000568 int iCompare = 0; /* Result of last OP_Compare operation */
shanebe217792009-03-05 04:20:31 +0000569 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drhb86ccfb2003-01-28 23:13:10 +0000570#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000571 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000572 int origPc; /* Program counter at start of opcode */
573#endif
drh856c1032009-06-02 15:21:42 +0000574 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000575
drhca48c902008-01-18 14:08:24 +0000576 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
danielk1977f7590db2009-04-10 12:55:16 +0000577 sqlite3VdbeMutexArrayEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000578 if( p->rc==SQLITE_NOMEM ){
579 /* This happens if a malloc() inside a call to sqlite3_column_text() or
580 ** sqlite3_column_text16() failed. */
581 goto no_mem;
582 }
drh3a840692003-01-29 22:58:26 +0000583 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
584 p->rc = SQLITE_OK;
drhb86ccfb2003-01-28 23:13:10 +0000585 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000586 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000587 db->busyHandler.nBusy = 0;
drh93581642004-02-12 13:02:55 +0000588 CHECK_FOR_INTERRUPT;
drh602c2372007-03-01 00:29:13 +0000589 sqlite3VdbeIOTraceSql(p);
drha6c2ed92009-11-14 23:22:23 +0000590#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
591 checkProgress = db->xProgress!=0;
592#endif
drh3c23a882007-01-09 14:01:13 +0000593#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000594 sqlite3BeginBenignMalloc();
drh42224412010-05-31 14:28:25 +0000595 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
drh3c23a882007-01-09 14:01:13 +0000596 int i;
597 printf("VDBE Program Listing:\n");
598 sqlite3VdbePrintSql(p);
599 for(i=0; i<p->nOp; i++){
drhbbe879d2009-11-14 18:04:35 +0000600 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
drh3c23a882007-01-09 14:01:13 +0000601 }
602 }
danielk19772d1d86f2008-06-20 14:59:51 +0000603 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000604#endif
drhb86ccfb2003-01-28 23:13:10 +0000605 for(pc=p->pc; rc==SQLITE_OK; pc++){
drhcaec2f12003-01-07 02:47:47 +0000606 assert( pc>=0 && pc<p->nOp );
drh17435752007-08-16 04:30:38 +0000607 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000608#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +0000609 origPc = pc;
shane9bcbdad2008-05-29 20:22:37 +0000610 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000611#endif
drhbbe879d2009-11-14 18:04:35 +0000612 pOp = &aOp[pc];
drh6e142f52000-06-08 13:36:40 +0000613
danielk19778b60e0f2005-01-12 09:10:39 +0000614 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000615 */
danielk19778b60e0f2005-01-12 09:10:39 +0000616#ifdef SQLITE_DEBUG
drh75897232000-05-29 14:26:00 +0000617 if( p->trace ){
drh3f7d4e42004-07-24 14:35:58 +0000618 if( pc==0 ){
619 printf("VDBE Execution Trace:\n");
620 sqlite3VdbePrintSql(p);
621 }
danielk19774adee202004-05-08 08:23:19 +0000622 sqlite3VdbePrintOp(p->trace, pc, pOp);
drh75897232000-05-29 14:26:00 +0000623 }
drh3f7d4e42004-07-24 14:35:58 +0000624#endif
625
drh6e142f52000-06-08 13:36:40 +0000626
drhf6038712004-02-08 18:07:34 +0000627 /* Check to see if we need to simulate an interrupt. This only happens
628 ** if we have a special test build.
629 */
630#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000631 if( sqlite3_interrupt_count>0 ){
632 sqlite3_interrupt_count--;
633 if( sqlite3_interrupt_count==0 ){
634 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000635 }
636 }
637#endif
638
danielk1977348bb5d2003-10-18 09:37:26 +0000639#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
640 /* Call the progress callback if it is configured and the required number
641 ** of VDBE ops have been executed (either since this invocation of
danielk19774adee202004-05-08 08:23:19 +0000642 ** sqlite3VdbeExec() or since last time the progress callback was called).
danielk1977348bb5d2003-10-18 09:37:26 +0000643 ** If the progress callback returns non-zero, exit the virtual machine with
644 ** a return code SQLITE_ABORT.
645 */
drha6c2ed92009-11-14 23:22:23 +0000646 if( checkProgress ){
drh3914aed2004-01-31 20:40:42 +0000647 if( db->nProgressOps==nProgressOps ){
danielk1977de523ac2007-06-15 14:53:53 +0000648 int prc;
drh9978c972010-02-23 17:36:32 +0000649 prc = db->xProgress(db->pProgressArg);
danielk1977de523ac2007-06-15 14:53:53 +0000650 if( prc!=0 ){
651 rc = SQLITE_INTERRUPT;
drha05a7222008-01-19 03:35:58 +0000652 goto vdbe_error_halt;
danielk1977de523ac2007-06-15 14:53:53 +0000653 }
danielk19773fe11f32007-06-13 16:49:48 +0000654 nProgressOps = 0;
danielk1977348bb5d2003-10-18 09:37:26 +0000655 }
drh3914aed2004-01-31 20:40:42 +0000656 nProgressOps++;
danielk1977348bb5d2003-10-18 09:37:26 +0000657 }
danielk1977348bb5d2003-10-18 09:37:26 +0000658#endif
659
drh3c657212009-11-17 23:59:58 +0000660 /* On any opcode with the "out2-prerelase" tag, free any
661 ** external allocations out of mem[p2] and set mem[p2] to be
662 ** an undefined integer. Opcodes will either fill in the integer
663 ** value or convert mem[p2] to a different type.
drh4c583122008-01-04 22:01:03 +0000664 */
drha6c2ed92009-11-14 23:22:23 +0000665 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000666 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
667 assert( pOp->p2>0 );
668 assert( pOp->p2<=p->nMem );
669 pOut = &aMem[pOp->p2];
670 sqlite3VdbeMemReleaseExternal(pOut);
671 pOut->flags = MEM_Int;
drh4c583122008-01-04 22:01:03 +0000672 }
drh3c657212009-11-17 23:59:58 +0000673
674 /* Sanity checking on other operands */
675#ifdef SQLITE_DEBUG
676 if( (pOp->opflags & OPFLG_IN1)!=0 ){
677 assert( pOp->p1>0 );
678 assert( pOp->p1<=p->nMem );
679 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
680 }
681 if( (pOp->opflags & OPFLG_IN2)!=0 ){
682 assert( pOp->p2>0 );
683 assert( pOp->p2<=p->nMem );
684 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
685 }
686 if( (pOp->opflags & OPFLG_IN3)!=0 ){
687 assert( pOp->p3>0 );
688 assert( pOp->p3<=p->nMem );
689 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
690 }
691 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
692 assert( pOp->p2>0 );
693 assert( pOp->p2<=p->nMem );
694 }
695 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
696 assert( pOp->p3>0 );
697 assert( pOp->p3<=p->nMem );
698 }
699#endif
drh93952eb2009-11-13 19:43:43 +0000700
drh75897232000-05-29 14:26:00 +0000701 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000702
drh5e00f6c2001-09-13 13:46:56 +0000703/*****************************************************************************
704** What follows is a massive switch statement where each case implements a
705** separate instruction in the virtual machine. If we follow the usual
706** indentation conventions, each case should be indented by 6 spaces. But
707** that is a lot of wasted space on the left margin. So the code within
708** the switch statement will break with convention and be flush-left. Another
709** big comment (similar to this one) will mark the point in the code where
710** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000711**
712** The formatting of each case is important. The makefile for SQLite
713** generates two C files "opcodes.h" and "opcodes.c" by scanning this
714** file looking for lines that begin with "case OP_". The opcodes.h files
715** will be filled with #defines that give unique integer values to each
716** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000717** each string is the symbolic name for the corresponding opcode. If the
718** case statement is followed by a comment of the form "/# same as ... #/"
719** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000720**
drh9cbf3422008-01-17 16:22:13 +0000721** Other keywords in the comment that follows each case are used to
722** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
723** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
724** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000725**
drhac82fcf2002-09-08 17:23:41 +0000726** Documentation about VDBE opcodes is generated by scanning this file
727** for lines of that contain "Opcode:". That line and all subsequent
728** comment lines are used in the generation of the opcode.html documentation
729** file.
730**
731** SUMMARY:
732**
733** Formatting is important to scripts that scan this file.
734** Do not deviate from the formatting style currently in use.
735**
drh5e00f6c2001-09-13 13:46:56 +0000736*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000737
drh9cbf3422008-01-17 16:22:13 +0000738/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000739**
740** An unconditional jump to address P2.
741** The next instruction executed will be
742** the one at index P2 from the beginning of
743** the program.
744*/
drh9cbf3422008-01-17 16:22:13 +0000745case OP_Goto: { /* jump */
drhcaec2f12003-01-07 02:47:47 +0000746 CHECK_FOR_INTERRUPT;
drh5e00f6c2001-09-13 13:46:56 +0000747 pc = pOp->p2 - 1;
748 break;
749}
drh75897232000-05-29 14:26:00 +0000750
drh2eb95372008-06-06 15:04:36 +0000751/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000752**
drh2eb95372008-06-06 15:04:36 +0000753** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000754** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000755*/
drh93952eb2009-11-13 19:43:43 +0000756case OP_Gosub: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +0000757 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000758 assert( (pIn1->flags & MEM_Dyn)==0 );
759 pIn1->flags = MEM_Int;
760 pIn1->u.i = pc;
761 REGISTER_TRACE(pOp->p1, pIn1);
drh8c74a8c2002-08-25 19:20:40 +0000762 pc = pOp->p2 - 1;
763 break;
764}
765
drh2eb95372008-06-06 15:04:36 +0000766/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000767**
drh2eb95372008-06-06 15:04:36 +0000768** Jump to the next instruction after the address in register P1.
drh8c74a8c2002-08-25 19:20:40 +0000769*/
drh2eb95372008-06-06 15:04:36 +0000770case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000771 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000772 assert( pIn1->flags & MEM_Int );
drh9c1905f2008-12-10 22:32:56 +0000773 pc = (int)pIn1->u.i;
drh8c74a8c2002-08-25 19:20:40 +0000774 break;
775}
776
drhe00ee6e2008-06-20 15:24:01 +0000777/* Opcode: Yield P1 * * * *
778**
779** Swap the program counter with the value in register P1.
780*/
danielk1977f73ab8b2008-12-29 10:39:53 +0000781case OP_Yield: { /* in1 */
drhe00ee6e2008-06-20 15:24:01 +0000782 int pcDest;
drh3c657212009-11-17 23:59:58 +0000783 pIn1 = &aMem[pOp->p1];
drhe00ee6e2008-06-20 15:24:01 +0000784 assert( (pIn1->flags & MEM_Dyn)==0 );
785 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000786 pcDest = (int)pIn1->u.i;
drhe00ee6e2008-06-20 15:24:01 +0000787 pIn1->u.i = pc;
788 REGISTER_TRACE(pOp->p1, pIn1);
789 pc = pcDest;
790 break;
791}
792
drh5053a792009-02-20 03:02:23 +0000793/* Opcode: HaltIfNull P1 P2 P3 P4 *
794**
795** Check the value in register P3. If is is NULL then Halt using
796** parameter P1, P2, and P4 as if this were a Halt instruction. If the
797** value in register P3 is not NULL, then this routine is a no-op.
798*/
799case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000800 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000801 if( (pIn3->flags & MEM_Null)==0 ) break;
802 /* Fall through into OP_Halt */
803}
drhe00ee6e2008-06-20 15:24:01 +0000804
drh9cbf3422008-01-17 16:22:13 +0000805/* Opcode: Halt P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +0000806**
drh3d4501e2008-12-04 20:40:10 +0000807** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000808** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000809**
drh92f02c32004-09-02 14:57:08 +0000810** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
811** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
812** For errors, it can be some other value. If P1!=0 then P2 will determine
813** whether or not to rollback the current transaction. Do not rollback
814** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
815** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000816** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000817**
drh66a51672008-01-03 00:01:23 +0000818** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000819**
drh9cfcf5d2002-01-29 18:41:24 +0000820** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000821** every program. So a jump past the last instruction of the program
822** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000823*/
drh9cbf3422008-01-17 16:22:13 +0000824case OP_Halt: {
dan165921a2009-08-28 18:53:45 +0000825 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000826 /* Halt the sub-program. Return control to the parent frame. */
dan165921a2009-08-28 18:53:45 +0000827 VdbeFrame *pFrame = p->pFrame;
828 p->pFrame = pFrame->pParent;
829 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000830 sqlite3VdbeSetChanges(db, p->nChange);
dan165921a2009-08-28 18:53:45 +0000831 pc = sqlite3VdbeFrameRestore(pFrame);
832 if( pOp->p2==OE_Ignore ){
dan2832ad42009-08-31 15:27:27 +0000833 /* Instruction pc is the OP_Program that invoked the sub-program
834 ** currently being halted. If the p2 instruction of this OP_Halt
835 ** instruction is set to OE_Ignore, then the sub-program is throwing
836 ** an IGNORE exception. In this case jump to the address specified
837 ** as the p2 of the calling OP_Program. */
dan76d462e2009-08-30 11:42:51 +0000838 pc = p->aOp[pc].p2-1;
dan165921a2009-08-28 18:53:45 +0000839 }
drhbbe879d2009-11-14 18:04:35 +0000840 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000841 aMem = p->aMem;
dan165921a2009-08-28 18:53:45 +0000842 break;
843 }
dan2832ad42009-08-31 15:27:27 +0000844
drh92f02c32004-09-02 14:57:08 +0000845 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000846 p->errorAction = (u8)pOp->p2;
dan165921a2009-08-28 18:53:45 +0000847 p->pc = pc;
danielk19772dca4ac2008-01-03 11:50:29 +0000848 if( pOp->p4.z ){
drh413c3d32010-02-23 20:11:56 +0000849 assert( p->rc!=SQLITE_OK );
drhf089aa42008-07-08 19:34:06 +0000850 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drhaf46dc12010-02-24 21:44:07 +0000851 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +0000852 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
drhcda455b2010-02-24 19:23:56 +0000853 }else if( p->rc ){
drhaf46dc12010-02-24 21:44:07 +0000854 testcase( sqlite3GlobalConfig.xLog!=0 );
drhcda455b2010-02-24 19:23:56 +0000855 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
drh9cfcf5d2002-01-29 18:41:24 +0000856 }
drh92f02c32004-09-02 14:57:08 +0000857 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000858 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000859 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000860 p->rc = rc = SQLITE_BUSY;
861 }else{
dan1da40a32009-09-19 17:00:31 +0000862 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
863 assert( rc==SQLITE_OK || db->nDeferredCons>0 );
drh900b31e2007-08-28 02:27:51 +0000864 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000865 }
drh900b31e2007-08-28 02:27:51 +0000866 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000867}
drhc61053b2000-06-04 12:58:36 +0000868
drh4c583122008-01-04 22:01:03 +0000869/* Opcode: Integer P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000870**
drh9cbf3422008-01-17 16:22:13 +0000871** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000872*/
drh4c583122008-01-04 22:01:03 +0000873case OP_Integer: { /* out2-prerelease */
drh4c583122008-01-04 22:01:03 +0000874 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000875 break;
876}
877
drh4c583122008-01-04 22:01:03 +0000878/* Opcode: Int64 * P2 * P4 *
drh29dda4a2005-07-21 18:23:20 +0000879**
drh66a51672008-01-03 00:01:23 +0000880** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +0000881** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +0000882*/
drh4c583122008-01-04 22:01:03 +0000883case OP_Int64: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000884 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +0000885 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +0000886 break;
887}
drh4f26d6c2004-05-26 23:25:30 +0000888
drh13573c72010-01-12 17:04:07 +0000889#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +0000890/* Opcode: Real * P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000891**
drh4c583122008-01-04 22:01:03 +0000892** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +0000893** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +0000894*/
drh4c583122008-01-04 22:01:03 +0000895case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
896 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +0000897 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh4c583122008-01-04 22:01:03 +0000898 pOut->r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +0000899 break;
900}
drh13573c72010-01-12 17:04:07 +0000901#endif
danielk1977cbb18d22004-05-28 11:37:27 +0000902
drh3c84ddf2008-01-09 02:15:38 +0000903/* Opcode: String8 * P2 * P4 *
danielk1977cbb18d22004-05-28 11:37:27 +0000904**
drh66a51672008-01-03 00:01:23 +0000905** P4 points to a nul terminated UTF-8 string. This opcode is transformed
danielk19770f69c1e2004-05-29 11:24:50 +0000906** into an OP_String before it is executed for the first time.
danielk1977cbb18d22004-05-28 11:37:27 +0000907*/
drh4c583122008-01-04 22:01:03 +0000908case OP_String8: { /* same as TK_STRING, out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000909 assert( pOp->p4.z!=0 );
drhed2df7f2005-11-16 04:34:32 +0000910 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +0000911 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +0000912
913#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +0000914 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +0000915 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
916 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +0000917 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh3a9cf172009-06-17 21:42:33 +0000918 assert( pOut->zMalloc==pOut->z );
919 assert( pOut->flags & MEM_Dyn );
danielk19775f096132008-03-28 15:44:09 +0000920 pOut->zMalloc = 0;
drh4c583122008-01-04 22:01:03 +0000921 pOut->flags |= MEM_Static;
drh191b54c2008-04-15 12:14:21 +0000922 pOut->flags &= ~MEM_Dyn;
drh66a51672008-01-03 00:01:23 +0000923 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000924 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +0000925 }
drh66a51672008-01-03 00:01:23 +0000926 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +0000927 pOp->p4.z = pOut->z;
928 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +0000929 }
danielk197793758c82005-01-21 08:13:14 +0000930#endif
drhbb4957f2008-03-20 14:03:29 +0000931 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +0000932 goto too_big;
933 }
934 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +0000935}
drhf4479502004-05-27 03:12:53 +0000936
drh4c583122008-01-04 22:01:03 +0000937/* Opcode: String P1 P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000938**
drh9cbf3422008-01-17 16:22:13 +0000939** The string value P4 of length P1 (bytes) is stored in register P2.
drhf4479502004-05-27 03:12:53 +0000940*/
drh4c583122008-01-04 22:01:03 +0000941case OP_String: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000942 assert( pOp->p4.z!=0 );
drh4c583122008-01-04 22:01:03 +0000943 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
944 pOut->z = pOp->p4.z;
945 pOut->n = pOp->p1;
946 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000947 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977c572ef72004-05-27 09:28:41 +0000948 break;
949}
950
drh4c583122008-01-04 22:01:03 +0000951/* Opcode: Null * P2 * * *
drhf0863fe2005-06-12 21:35:51 +0000952**
drh9cbf3422008-01-17 16:22:13 +0000953** Write a NULL into register P2.
drhf0863fe2005-06-12 21:35:51 +0000954*/
drh4c583122008-01-04 22:01:03 +0000955case OP_Null: { /* out2-prerelease */
drh3c657212009-11-17 23:59:58 +0000956 pOut->flags = MEM_Null;
drhf0863fe2005-06-12 21:35:51 +0000957 break;
958}
959
960
drh9de221d2008-01-05 06:51:30 +0000961/* Opcode: Blob P1 P2 * P4
danielk1977c572ef72004-05-27 09:28:41 +0000962**
drh9de221d2008-01-05 06:51:30 +0000963** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +0000964** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +0000965*/
drh4c583122008-01-04 22:01:03 +0000966case OP_Blob: { /* out2-prerelease */
drhcbd2da92007-12-17 16:20:06 +0000967 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh4c583122008-01-04 22:01:03 +0000968 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +0000969 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000970 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +0000971 break;
972}
973
drheaf52d82010-05-12 13:50:23 +0000974/* Opcode: Variable P1 P2 * P4 *
drh50457892003-09-06 01:10:47 +0000975**
drheaf52d82010-05-12 13:50:23 +0000976** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +0000977**
978** If the parameter is named, then its name appears in P4 and P3==1.
979** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +0000980*/
drheaf52d82010-05-12 13:50:23 +0000981case OP_Variable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +0000982 Mem *pVar; /* Value being transferred */
983
drheaf52d82010-05-12 13:50:23 +0000984 assert( pOp->p1>0 && pOp->p1<=p->nVar );
985 pVar = &p->aVar[pOp->p1 - 1];
986 if( sqlite3VdbeMemTooBig(pVar) ){
987 goto too_big;
drh023ae032007-05-08 12:12:16 +0000988 }
drheaf52d82010-05-12 13:50:23 +0000989 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
990 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +0000991 break;
992}
danielk1977295ba552004-05-19 10:34:51 +0000993
drhb21e7c72008-06-22 12:37:57 +0000994/* Opcode: Move P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +0000995**
drhb21e7c72008-06-22 12:37:57 +0000996** Move the values in register P1..P1+P3-1 over into
997** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
998** left holding a NULL. It is an error for register ranges
999** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
drh5e00f6c2001-09-13 13:46:56 +00001000*/
drhe1349cb2008-04-01 00:36:10 +00001001case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001002 char *zMalloc; /* Holding variable for allocated memory */
1003 int n; /* Number of registers left to copy */
1004 int p1; /* Register to copy from */
1005 int p2; /* Register to copy to */
1006
1007 n = pOp->p3;
1008 p1 = pOp->p1;
1009 p2 = pOp->p2;
danielk19776ab3a2e2009-02-19 14:39:25 +00001010 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001011 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001012
drha6c2ed92009-11-14 23:22:23 +00001013 pIn1 = &aMem[p1];
1014 pOut = &aMem[p2];
drhb21e7c72008-06-22 12:37:57 +00001015 while( n-- ){
drha6c2ed92009-11-14 23:22:23 +00001016 assert( pOut<=&aMem[p->nMem] );
1017 assert( pIn1<=&aMem[p->nMem] );
drhb21e7c72008-06-22 12:37:57 +00001018 zMalloc = pOut->zMalloc;
1019 pOut->zMalloc = 0;
1020 sqlite3VdbeMemMove(pOut, pIn1);
1021 pIn1->zMalloc = zMalloc;
1022 REGISTER_TRACE(p2++, pOut);
1023 pIn1++;
1024 pOut++;
1025 }
drhe1349cb2008-04-01 00:36:10 +00001026 break;
1027}
1028
drhb1fdb2a2008-01-05 04:06:03 +00001029/* Opcode: Copy P1 P2 * * *
1030**
drh9cbf3422008-01-17 16:22:13 +00001031** Make a copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001032**
1033** This instruction makes a deep copy of the value. A duplicate
1034** is made of any string or blob constant. See also OP_SCopy.
1035*/
drh93952eb2009-11-13 19:43:43 +00001036case OP_Copy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001037 pIn1 = &aMem[pOp->p1];
1038 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001039 assert( pOut!=pIn1 );
1040 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1041 Deephemeralize(pOut);
1042 REGISTER_TRACE(pOp->p2, pOut);
1043 break;
1044}
1045
drhb1fdb2a2008-01-05 04:06:03 +00001046/* Opcode: SCopy P1 P2 * * *
1047**
drh9cbf3422008-01-17 16:22:13 +00001048** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001049**
1050** This instruction makes a shallow copy of the value. If the value
1051** is a string or blob, then the copy is only a pointer to the
1052** original and hence if the original changes so will the copy.
1053** Worse, if the original is deallocated, the copy becomes invalid.
1054** Thus the program must guarantee that the original will not change
1055** during the lifetime of the copy. Use OP_Copy to make a complete
1056** copy.
1057*/
drh93952eb2009-11-13 19:43:43 +00001058case OP_SCopy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001059 pIn1 = &aMem[pOp->p1];
1060 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001061 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001062 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh5b6afba2008-01-05 16:29:28 +00001063 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00001064 break;
1065}
drh75897232000-05-29 14:26:00 +00001066
drh9cbf3422008-01-17 16:22:13 +00001067/* Opcode: ResultRow P1 P2 * * *
drhd4e70eb2008-01-02 00:34:36 +00001068**
shane21e7feb2008-05-30 15:59:49 +00001069** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001070** results. This opcode causes the sqlite3_step() call to terminate
1071** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1072** structure to provide access to the top P1 values as the result
drh9cbf3422008-01-17 16:22:13 +00001073** row.
drhd4e70eb2008-01-02 00:34:36 +00001074*/
drh9cbf3422008-01-17 16:22:13 +00001075case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001076 Mem *pMem;
1077 int i;
1078 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001079 assert( pOp->p1>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001080 assert( pOp->p1+pOp->p2<=p->nMem+1 );
drhd4e70eb2008-01-02 00:34:36 +00001081
dan32b09f22009-09-23 17:29:59 +00001082 /* If this statement has violated immediate foreign key constraints, do
1083 ** not return the number of rows modified. And do not RELEASE the statement
1084 ** transaction. It needs to be rolled back. */
1085 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1086 assert( db->flags&SQLITE_CountRows );
1087 assert( p->usesStmtJournal );
1088 break;
1089 }
1090
danielk1977bd434552009-03-18 10:33:00 +00001091 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1092 ** DML statements invoke this opcode to return the number of rows
1093 ** modified to the user. This is the only way that a VM that
1094 ** opens a statement transaction may invoke this opcode.
1095 **
1096 ** In case this is such a statement, close any statement transaction
1097 ** opened by this VM before returning control to the user. This is to
1098 ** ensure that statement-transactions are always nested, not overlapping.
1099 ** If the open statement-transaction is not closed here, then the user
1100 ** may step another VM that opens its own statement transaction. This
1101 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001102 **
1103 ** The statement transaction is never a top-level transaction. Hence
1104 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001105 */
1106 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001107 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1108 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001109 break;
1110 }
1111
drhd4e70eb2008-01-02 00:34:36 +00001112 /* Invalidate all ephemeral cursor row caches */
1113 p->cacheCtr = (p->cacheCtr + 2)|1;
1114
1115 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001116 ** and have an assigned type. The results are de-ephemeralized as
drhd4e70eb2008-01-02 00:34:36 +00001117 ** as side effect.
1118 */
drha6c2ed92009-11-14 23:22:23 +00001119 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001120 for(i=0; i<pOp->p2; i++){
1121 sqlite3VdbeMemNulTerminate(&pMem[i]);
dan937d0de2009-10-15 18:35:38 +00001122 sqlite3VdbeMemStoreType(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001123 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001124 }
drh28039692008-03-17 16:54:01 +00001125 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001126
1127 /* Return SQLITE_ROW
1128 */
drhd4e70eb2008-01-02 00:34:36 +00001129 p->pc = pc + 1;
drhd4e70eb2008-01-02 00:34:36 +00001130 rc = SQLITE_ROW;
1131 goto vdbe_return;
1132}
1133
drh5b6afba2008-01-05 16:29:28 +00001134/* Opcode: Concat P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001135**
drh5b6afba2008-01-05 16:29:28 +00001136** Add the text in register P1 onto the end of the text in
1137** register P2 and store the result in register P3.
1138** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001139**
1140** P3 = P2 || P1
1141**
1142** It is illegal for P1 and P3 to be the same register. Sometimes,
1143** if P3 is the same register as P2, the implementation is able
1144** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001145*/
drh5b6afba2008-01-05 16:29:28 +00001146case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001147 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001148
drh3c657212009-11-17 23:59:58 +00001149 pIn1 = &aMem[pOp->p1];
1150 pIn2 = &aMem[pOp->p2];
1151 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001152 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001153 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001154 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001155 break;
drh5e00f6c2001-09-13 13:46:56 +00001156 }
drha0c06522009-06-17 22:50:41 +00001157 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001158 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001159 Stringify(pIn2, encoding);
1160 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001161 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001162 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001163 }
danielk1977a7a8e142008-02-13 18:25:27 +00001164 MemSetTypeFlag(pOut, MEM_Str);
drh9c1905f2008-12-10 22:32:56 +00001165 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001166 goto no_mem;
1167 }
danielk1977a7a8e142008-02-13 18:25:27 +00001168 if( pOut!=pIn2 ){
1169 memcpy(pOut->z, pIn2->z, pIn2->n);
1170 }
1171 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1172 pOut->z[nByte] = 0;
1173 pOut->z[nByte+1] = 0;
1174 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001175 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001176 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001177 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001178 break;
1179}
drh75897232000-05-29 14:26:00 +00001180
drh3c84ddf2008-01-09 02:15:38 +00001181/* Opcode: Add P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001182**
drh60a713c2008-01-21 16:22:45 +00001183** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001184** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001185** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001186*/
drh3c84ddf2008-01-09 02:15:38 +00001187/* Opcode: Multiply P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001188**
drh3c84ddf2008-01-09 02:15:38 +00001189**
shane21e7feb2008-05-30 15:59:49 +00001190** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001191** and store the result in register P3.
1192** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001193*/
drh3c84ddf2008-01-09 02:15:38 +00001194/* Opcode: Subtract P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001195**
drh60a713c2008-01-21 16:22:45 +00001196** Subtract the value in register P1 from the value in register P2
1197** and store the result in register P3.
1198** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001199*/
drh9cbf3422008-01-17 16:22:13 +00001200/* Opcode: Divide P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001201**
drh60a713c2008-01-21 16:22:45 +00001202** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001203** and store the result in register P3 (P3=P2/P1). If the value in
1204** register P1 is zero, then the result is NULL. If either input is
1205** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001206*/
drh9cbf3422008-01-17 16:22:13 +00001207/* Opcode: Remainder P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001208**
drh3c84ddf2008-01-09 02:15:38 +00001209** Compute the remainder after integer division of the value in
1210** register P1 by the value in register P2 and store the result in P3.
1211** If the value in register P2 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001212** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001213*/
drh5b6afba2008-01-05 16:29:28 +00001214case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1215case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1216case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1217case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1218case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001219 int flags; /* Combined MEM_* flags from both inputs */
1220 i64 iA; /* Integer value of left operand */
1221 i64 iB; /* Integer value of right operand */
1222 double rA; /* Real value of left operand */
1223 double rB; /* Real value of right operand */
1224
drh3c657212009-11-17 23:59:58 +00001225 pIn1 = &aMem[pOp->p1];
drh61669b32008-07-30 13:27:10 +00001226 applyNumericAffinity(pIn1);
drh3c657212009-11-17 23:59:58 +00001227 pIn2 = &aMem[pOp->p2];
drh61669b32008-07-30 13:27:10 +00001228 applyNumericAffinity(pIn2);
drh3c657212009-11-17 23:59:58 +00001229 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001230 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001231 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1232 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
drh856c1032009-06-02 15:21:42 +00001233 iA = pIn1->u.i;
1234 iB = pIn2->u.i;
drh5e00f6c2001-09-13 13:46:56 +00001235 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001236 case OP_Add: iB += iA; break;
1237 case OP_Subtract: iB -= iA; break;
1238 case OP_Multiply: iB *= iA; break;
drhbf4133c2001-10-13 02:59:08 +00001239 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001240 if( iA==0 ) goto arithmetic_result_is_null;
danielk197742d4ef22007-06-26 11:13:25 +00001241 /* Dividing the largest possible negative 64-bit integer (1<<63) by
drh0f050352008-05-09 18:03:13 +00001242 ** -1 returns an integer too large to store in a 64-bit data-type. On
danielk197742d4ef22007-06-26 11:13:25 +00001243 ** some architectures, the value overflows to (1<<63). On others,
1244 ** a SIGFPE is issued. The following statement normalizes this
shane21e7feb2008-05-30 15:59:49 +00001245 ** behavior so that all architectures behave as if integer
1246 ** overflow occurred.
danielk197742d4ef22007-06-26 11:13:25 +00001247 */
drh856c1032009-06-02 15:21:42 +00001248 if( iA==-1 && iB==SMALLEST_INT64 ) iA = 1;
1249 iB /= iA;
drh75897232000-05-29 14:26:00 +00001250 break;
1251 }
drhbf4133c2001-10-13 02:59:08 +00001252 default: {
drh856c1032009-06-02 15:21:42 +00001253 if( iA==0 ) goto arithmetic_result_is_null;
1254 if( iA==-1 ) iA = 1;
1255 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001256 break;
1257 }
drh75897232000-05-29 14:26:00 +00001258 }
drh856c1032009-06-02 15:21:42 +00001259 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001260 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001261 }else{
drh856c1032009-06-02 15:21:42 +00001262 rA = sqlite3VdbeRealValue(pIn1);
1263 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001264 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001265 case OP_Add: rB += rA; break;
1266 case OP_Subtract: rB -= rA; break;
1267 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001268 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001269 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001270 if( rA==(double)0 ) goto arithmetic_result_is_null;
1271 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001272 break;
1273 }
drhbf4133c2001-10-13 02:59:08 +00001274 default: {
shane75ac1de2009-06-09 18:58:52 +00001275 iA = (i64)rA;
1276 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001277 if( iA==0 ) goto arithmetic_result_is_null;
1278 if( iA==-1 ) iA = 1;
1279 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001280 break;
1281 }
drh5e00f6c2001-09-13 13:46:56 +00001282 }
drhc5a7b512010-01-13 16:25:42 +00001283#ifdef SQLITE_OMIT_FLOATING_POINT
1284 pOut->u.i = rB;
1285 MemSetTypeFlag(pOut, MEM_Int);
1286#else
drh856c1032009-06-02 15:21:42 +00001287 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001288 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001289 }
drh856c1032009-06-02 15:21:42 +00001290 pOut->r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001291 MemSetTypeFlag(pOut, MEM_Real);
drh8a512562005-11-14 22:29:05 +00001292 if( (flags & MEM_Real)==0 ){
drh5b6afba2008-01-05 16:29:28 +00001293 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001294 }
drhc5a7b512010-01-13 16:25:42 +00001295#endif
drh5e00f6c2001-09-13 13:46:56 +00001296 }
1297 break;
1298
drha05a7222008-01-19 03:35:58 +00001299arithmetic_result_is_null:
1300 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001301 break;
1302}
1303
drh66a51672008-01-03 00:01:23 +00001304/* Opcode: CollSeq * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001305**
drh66a51672008-01-03 00:01:23 +00001306** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001307** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1308** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001309** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001310**
1311** The interface used by the implementation of the aforementioned functions
1312** to retrieve the collation sequence set by this opcode is not available
1313** publicly, only to user functions defined in func.c.
1314*/
drh9cbf3422008-01-17 16:22:13 +00001315case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001316 assert( pOp->p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001317 break;
1318}
1319
drh98757152008-01-09 23:04:12 +00001320/* Opcode: Function P1 P2 P3 P4 P5
drh8e0a2f92002-02-23 23:45:45 +00001321**
drh66a51672008-01-03 00:01:23 +00001322** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001323** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001324** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001325** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001326**
drh13449892005-09-07 21:22:45 +00001327** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001328** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001329** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001330** whether meta data associated with a user function argument using the
1331** sqlite3_set_auxdata() API may be safely retained until the next
1332** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001333**
drh13449892005-09-07 21:22:45 +00001334** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001335*/
drh0bce8352002-02-28 00:41:10 +00001336case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001337 int i;
drh6810ce62004-01-31 19:22:56 +00001338 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001339 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001340 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001341 int n;
drh1350b032002-02-27 19:00:20 +00001342
drh856c1032009-06-02 15:21:42 +00001343 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001344 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001345 assert( apVal || n==0 );
1346
danielk19776ab3a2e2009-02-19 14:39:25 +00001347 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001348 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001349 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001350 for(i=0; i<n; i++, pArg++){
danielk197751ad0ec2004-05-24 12:39:02 +00001351 apVal[i] = pArg;
dan937d0de2009-10-15 18:35:38 +00001352 sqlite3VdbeMemStoreType(pArg);
drhab5cd702010-04-07 14:32:11 +00001353 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001354 }
danielk197751ad0ec2004-05-24 12:39:02 +00001355
drh66a51672008-01-03 00:01:23 +00001356 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1357 if( pOp->p4type==P4_FUNCDEF ){
danielk19772dca4ac2008-01-03 11:50:29 +00001358 ctx.pFunc = pOp->p4.pFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001359 ctx.pVdbeFunc = 0;
1360 }else{
danielk19772dca4ac2008-01-03 11:50:29 +00001361 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001362 ctx.pFunc = ctx.pVdbeFunc->pFunc;
1363 }
1364
danielk1977a7a8e142008-02-13 18:25:27 +00001365 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00001366 pOut = &aMem[pOp->p3];
drh00706be2004-01-30 14:49:16 +00001367 ctx.s.flags = MEM_Null;
drhfa4a4b92008-03-19 21:45:51 +00001368 ctx.s.db = db;
danielk19775f096132008-03-28 15:44:09 +00001369 ctx.s.xDel = 0;
1370 ctx.s.zMalloc = 0;
danielk1977a7a8e142008-02-13 18:25:27 +00001371
1372 /* The output cell may already have a buffer allocated. Move
1373 ** the pointer to ctx.s so in case the user-function can use
1374 ** the already allocated buffer instead of allocating a new one.
1375 */
1376 sqlite3VdbeMemMove(&ctx.s, pOut);
1377 MemSetTypeFlag(&ctx.s, MEM_Null);
1378
drh8e0a2f92002-02-23 23:45:45 +00001379 ctx.isError = 0;
drhe82f5d02008-10-07 19:53:14 +00001380 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
drhbbe879d2009-11-14 18:04:35 +00001381 assert( pOp>aOp );
drh66a51672008-01-03 00:01:23 +00001382 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001383 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00001384 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00001385 }
drhee9ff672010-09-03 18:50:48 +00001386 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh17435752007-08-16 04:30:38 +00001387 if( db->mallocFailed ){
danielk1977e0fc5262007-07-26 06:50:05 +00001388 /* Even though a malloc() has failed, the implementation of the
1389 ** user function may have called an sqlite3_result_XXX() function
1390 ** to return a value. The following call releases any resources
1391 ** associated with such a value.
danielk1977e0fc5262007-07-26 06:50:05 +00001392 */
1393 sqlite3VdbeMemRelease(&ctx.s);
1394 goto no_mem;
1395 }
danielk19777e18c252004-05-25 11:47:24 +00001396
shane21e7feb2008-05-30 15:59:49 +00001397 /* If any auxiliary data functions have been called by this user function,
danielk1977682f68b2004-06-05 10:22:17 +00001398 ** immediately call the destructor for any non-static values.
1399 */
1400 if( ctx.pVdbeFunc ){
drh13449892005-09-07 21:22:45 +00001401 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
danielk19772dca4ac2008-01-03 11:50:29 +00001402 pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
drh66a51672008-01-03 00:01:23 +00001403 pOp->p4type = P4_VDBEFUNC;
danielk1977682f68b2004-06-05 10:22:17 +00001404 }
1405
drh90669c12006-01-20 15:45:36 +00001406 /* If the function returned an error, throw an exception */
1407 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00001408 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00001409 rc = ctx.isError;
drh90669c12006-01-20 15:45:36 +00001410 }
1411
drh9cbf3422008-01-17 16:22:13 +00001412 /* Copy the result of the function into register P3 */
drhb21c8cd2007-08-21 19:33:56 +00001413 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
drh98757152008-01-09 23:04:12 +00001414 sqlite3VdbeMemMove(pOut, &ctx.s);
1415 if( sqlite3VdbeMemTooBig(pOut) ){
drh023ae032007-05-08 12:12:16 +00001416 goto too_big;
1417 }
drh2dcef112008-01-12 19:03:48 +00001418 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00001419 UPDATE_MAX_BLOBSIZE(pOut);
drh8e0a2f92002-02-23 23:45:45 +00001420 break;
1421}
1422
drh98757152008-01-09 23:04:12 +00001423/* Opcode: BitAnd P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001424**
drh98757152008-01-09 23:04:12 +00001425** Take the bit-wise AND of the values in register P1 and P2 and
1426** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001427** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001428*/
drh98757152008-01-09 23:04:12 +00001429/* Opcode: BitOr P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001430**
drh98757152008-01-09 23:04:12 +00001431** Take the bit-wise OR of the values in register P1 and P2 and
1432** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001433** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001434*/
drh98757152008-01-09 23:04:12 +00001435/* Opcode: ShiftLeft P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001436**
drh98757152008-01-09 23:04:12 +00001437** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001438** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001439** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001440** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001441*/
drh98757152008-01-09 23:04:12 +00001442/* Opcode: ShiftRight P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001443**
drh98757152008-01-09 23:04:12 +00001444** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001445** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001446** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001447** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001448*/
drh5b6afba2008-01-05 16:29:28 +00001449case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1450case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1451case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1452case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001453 i64 a;
1454 i64 b;
drh6810ce62004-01-31 19:22:56 +00001455
drh3c657212009-11-17 23:59:58 +00001456 pIn1 = &aMem[pOp->p1];
1457 pIn2 = &aMem[pOp->p2];
1458 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001459 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001460 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001461 break;
1462 }
drh5b6afba2008-01-05 16:29:28 +00001463 a = sqlite3VdbeIntValue(pIn2);
1464 b = sqlite3VdbeIntValue(pIn1);
drhbf4133c2001-10-13 02:59:08 +00001465 switch( pOp->opcode ){
1466 case OP_BitAnd: a &= b; break;
1467 case OP_BitOr: a |= b; break;
1468 case OP_ShiftLeft: a <<= b; break;
drha05a7222008-01-19 03:35:58 +00001469 default: assert( pOp->opcode==OP_ShiftRight );
1470 a >>= b; break;
drhbf4133c2001-10-13 02:59:08 +00001471 }
drh5b6afba2008-01-05 16:29:28 +00001472 pOut->u.i = a;
danielk1977a7a8e142008-02-13 18:25:27 +00001473 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001474 break;
1475}
1476
drh8558cde2008-01-05 05:20:10 +00001477/* Opcode: AddImm P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001478**
danielk19770cdc0222008-06-26 18:04:03 +00001479** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001480** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001481**
drh8558cde2008-01-05 05:20:10 +00001482** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001483*/
drh9cbf3422008-01-17 16:22:13 +00001484case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001485 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001486 sqlite3VdbeMemIntegerify(pIn1);
1487 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001488 break;
1489}
1490
drh9cbf3422008-01-17 16:22:13 +00001491/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001492**
drh9cbf3422008-01-17 16:22:13 +00001493** Force the value in register P1 to be an integer. If the value
1494** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001495** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001496** raise an SQLITE_MISMATCH exception.
1497*/
drh9cbf3422008-01-17 16:22:13 +00001498case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001499 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001500 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1501 if( (pIn1->flags & MEM_Int)==0 ){
drh17c40292004-07-21 02:53:29 +00001502 if( pOp->p2==0 ){
1503 rc = SQLITE_MISMATCH;
1504 goto abort_due_to_error;
drh3c84ddf2008-01-09 02:15:38 +00001505 }else{
drh17c40292004-07-21 02:53:29 +00001506 pc = pOp->p2 - 1;
drh8aff1012001-12-22 14:49:24 +00001507 }
drh8aff1012001-12-22 14:49:24 +00001508 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00001509 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001510 }
1511 break;
1512}
1513
drh13573c72010-01-12 17:04:07 +00001514#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001515/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001516**
drh2133d822008-01-03 18:44:59 +00001517** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001518**
drh8a512562005-11-14 22:29:05 +00001519** This opcode is used when extracting information from a column that
1520** has REAL affinity. Such column values may still be stored as
1521** integers, for space efficiency, but after extraction we want them
1522** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001523*/
drh9cbf3422008-01-17 16:22:13 +00001524case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001525 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001526 if( pIn1->flags & MEM_Int ){
1527 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001528 }
drh487e2622005-06-25 18:42:14 +00001529 break;
1530}
drh13573c72010-01-12 17:04:07 +00001531#endif
drh487e2622005-06-25 18:42:14 +00001532
drh8df447f2005-11-01 15:48:24 +00001533#ifndef SQLITE_OMIT_CAST
drh8558cde2008-01-05 05:20:10 +00001534/* Opcode: ToText P1 * * * *
drh487e2622005-06-25 18:42:14 +00001535**
drh8558cde2008-01-05 05:20:10 +00001536** Force the value in register P1 to be text.
drh31beae92005-11-24 14:34:36 +00001537** If the value is numeric, convert it to a string using the
drh487e2622005-06-25 18:42:14 +00001538** equivalent of printf(). Blob values are unchanged and
1539** are afterwards simply interpreted as text.
1540**
1541** A NULL value is not changed by this routine. It remains NULL.
1542*/
drh9cbf3422008-01-17 16:22:13 +00001543case OP_ToText: { /* same as TK_TO_TEXT, in1 */
drh3c657212009-11-17 23:59:58 +00001544 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001545 if( pIn1->flags & MEM_Null ) break;
drh487e2622005-06-25 18:42:14 +00001546 assert( MEM_Str==(MEM_Blob>>3) );
drh8558cde2008-01-05 05:20:10 +00001547 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1548 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1549 rc = ExpandBlob(pIn1);
danielk1977a7a8e142008-02-13 18:25:27 +00001550 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drh68ac65e2009-01-05 18:02:27 +00001551 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
drhb7654112008-01-12 12:48:07 +00001552 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001553 break;
1554}
1555
drh8558cde2008-01-05 05:20:10 +00001556/* Opcode: ToBlob P1 * * * *
drh487e2622005-06-25 18:42:14 +00001557**
drh8558cde2008-01-05 05:20:10 +00001558** Force the value in register P1 to be a BLOB.
drh487e2622005-06-25 18:42:14 +00001559** If the value is numeric, convert it to a string first.
1560** Strings are simply reinterpreted as blobs with no change
1561** to the underlying data.
1562**
1563** A NULL value is not changed by this routine. It remains NULL.
1564*/
drh9cbf3422008-01-17 16:22:13 +00001565case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
drh3c657212009-11-17 23:59:58 +00001566 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001567 if( pIn1->flags & MEM_Null ) break;
1568 if( (pIn1->flags & MEM_Blob)==0 ){
1569 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
danielk1977a7a8e142008-02-13 18:25:27 +00001570 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drhde58ddb2009-01-05 22:30:38 +00001571 MemSetTypeFlag(pIn1, MEM_Blob);
1572 }else{
1573 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
drh487e2622005-06-25 18:42:14 +00001574 }
drhb7654112008-01-12 12:48:07 +00001575 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001576 break;
1577}
drh8a512562005-11-14 22:29:05 +00001578
drh8558cde2008-01-05 05:20:10 +00001579/* Opcode: ToNumeric P1 * * * *
drh8a512562005-11-14 22:29:05 +00001580**
drh8558cde2008-01-05 05:20:10 +00001581** Force the value in register P1 to be numeric (either an
drh8a512562005-11-14 22:29:05 +00001582** integer or a floating-point number.)
1583** If the value is text or blob, try to convert it to an using the
1584** equivalent of atoi() or atof() and store 0 if no such conversion
1585** is possible.
1586**
1587** A NULL value is not changed by this routine. It remains NULL.
1588*/
drh9cbf3422008-01-17 16:22:13 +00001589case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
drh3c657212009-11-17 23:59:58 +00001590 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001591 if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
1592 sqlite3VdbeMemNumerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001593 }
1594 break;
1595}
1596#endif /* SQLITE_OMIT_CAST */
1597
drh8558cde2008-01-05 05:20:10 +00001598/* Opcode: ToInt P1 * * * *
drh8a512562005-11-14 22:29:05 +00001599**
drh710c4842010-08-30 01:17:20 +00001600** Force the value in register P1 to be an integer. If
drh8a512562005-11-14 22:29:05 +00001601** The value is currently a real number, drop its fractional part.
1602** If the value is text or blob, try to convert it to an integer using the
1603** equivalent of atoi() and store 0 if no such conversion is possible.
1604**
1605** A NULL value is not changed by this routine. It remains NULL.
1606*/
drh9cbf3422008-01-17 16:22:13 +00001607case OP_ToInt: { /* same as TK_TO_INT, in1 */
drh3c657212009-11-17 23:59:58 +00001608 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001609 if( (pIn1->flags & MEM_Null)==0 ){
1610 sqlite3VdbeMemIntegerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001611 }
1612 break;
1613}
1614
drh13573c72010-01-12 17:04:07 +00001615#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
drh8558cde2008-01-05 05:20:10 +00001616/* Opcode: ToReal P1 * * * *
drh8a512562005-11-14 22:29:05 +00001617**
drh8558cde2008-01-05 05:20:10 +00001618** Force the value in register P1 to be a floating point number.
drh8a512562005-11-14 22:29:05 +00001619** If The value is currently an integer, convert it.
1620** If the value is text or blob, try to convert it to an integer using the
drh60a713c2008-01-21 16:22:45 +00001621** equivalent of atoi() and store 0.0 if no such conversion is possible.
drh8a512562005-11-14 22:29:05 +00001622**
1623** A NULL value is not changed by this routine. It remains NULL.
1624*/
drh9cbf3422008-01-17 16:22:13 +00001625case OP_ToReal: { /* same as TK_TO_REAL, in1 */
drh3c657212009-11-17 23:59:58 +00001626 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001627 if( (pIn1->flags & MEM_Null)==0 ){
1628 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001629 }
1630 break;
1631}
drh13573c72010-01-12 17:04:07 +00001632#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
drh487e2622005-06-25 18:42:14 +00001633
drh35573352008-01-08 23:54:25 +00001634/* Opcode: Lt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001635**
drh35573352008-01-08 23:54:25 +00001636** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1637** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001638**
drh35573352008-01-08 23:54:25 +00001639** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1640** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001641** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001642**
drh35573352008-01-08 23:54:25 +00001643** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001644** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001645** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001646** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001647** affinity is used. Note that the affinity conversions are stored
1648** back into the input registers P1 and P3. So this opcode can cause
1649** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001650**
1651** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001652** the values are compared. If both values are blobs then memcmp() is
1653** used to determine the results of the comparison. If both values
1654** are text, then the appropriate collating function specified in
1655** P4 is used to do the comparison. If P4 is not specified then
1656** memcmp() is used to compare text string. If both values are
1657** numeric, then a numeric comparison is used. If the two values
1658** are of different types, then numbers are considered less than
1659** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001660**
drh35573352008-01-08 23:54:25 +00001661** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1662** store a boolean result (either 0, or 1, or NULL) in register P2.
drh5e00f6c2001-09-13 13:46:56 +00001663*/
drh9cbf3422008-01-17 16:22:13 +00001664/* Opcode: Ne P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001665**
drh35573352008-01-08 23:54:25 +00001666** This works just like the Lt opcode except that the jump is taken if
1667** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001668** additional information.
drh6a2fe092009-09-23 02:29:36 +00001669**
1670** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1671** true or false and is never NULL. If both operands are NULL then the result
1672** of comparison is false. If either operand is NULL then the result is true.
1673** If neither operand is NULL the the result is the same as it would be if
1674** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001675*/
drh9cbf3422008-01-17 16:22:13 +00001676/* Opcode: Eq P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001677**
drh35573352008-01-08 23:54:25 +00001678** This works just like the Lt opcode except that the jump is taken if
1679** the operands in registers P1 and P3 are equal.
1680** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001681**
1682** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1683** true or false and is never NULL. If both operands are NULL then the result
1684** of comparison is true. If either operand is NULL then the result is false.
1685** If neither operand is NULL the the result is the same as it would be if
1686** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001687*/
drh9cbf3422008-01-17 16:22:13 +00001688/* Opcode: Le P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001689**
drh35573352008-01-08 23:54:25 +00001690** This works just like the Lt opcode except that the jump is taken if
1691** the content of register P3 is less than or equal to the content of
1692** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001693*/
drh9cbf3422008-01-17 16:22:13 +00001694/* Opcode: Gt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001695**
drh35573352008-01-08 23:54:25 +00001696** This works just like the Lt opcode except that the jump is taken if
1697** the content of register P3 is greater than the content of
1698** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001699*/
drh9cbf3422008-01-17 16:22:13 +00001700/* Opcode: Ge P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001701**
drh35573352008-01-08 23:54:25 +00001702** This works just like the Lt opcode except that the jump is taken if
1703** the content of register P3 is greater than or equal to the content of
1704** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001705*/
drh9cbf3422008-01-17 16:22:13 +00001706case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1707case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1708case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1709case OP_Le: /* same as TK_LE, jump, in1, in3 */
1710case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1711case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001712 int res; /* Result of the comparison of pIn1 against pIn3 */
1713 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001714 u16 flags1; /* Copy of initial value of pIn1->flags */
1715 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001716
drh3c657212009-11-17 23:59:58 +00001717 pIn1 = &aMem[pOp->p1];
1718 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001719 flags1 = pIn1->flags;
1720 flags3 = pIn3->flags;
drh6a2fe092009-09-23 02:29:36 +00001721 if( (pIn1->flags | pIn3->flags)&MEM_Null ){
1722 /* One or both operands are NULL */
1723 if( pOp->p5 & SQLITE_NULLEQ ){
1724 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1725 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1726 ** or not both operands are null.
1727 */
1728 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1729 res = (pIn1->flags & pIn3->flags & MEM_Null)==0;
1730 }else{
1731 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1732 ** then the result is always NULL.
1733 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1734 */
1735 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001736 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001737 MemSetTypeFlag(pOut, MEM_Null);
1738 REGISTER_TRACE(pOp->p2, pOut);
1739 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1740 pc = pOp->p2-1;
1741 }
1742 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001743 }
drh6a2fe092009-09-23 02:29:36 +00001744 }else{
1745 /* Neither operand is NULL. Do a comparison. */
1746 affinity = pOp->p5 & SQLITE_AFF_MASK;
1747 if( affinity ){
1748 applyAffinity(pIn1, affinity, encoding);
1749 applyAffinity(pIn3, affinity, encoding);
1750 if( db->mallocFailed ) goto no_mem;
1751 }
danielk1977a37cdde2004-05-16 11:15:36 +00001752
drh6a2fe092009-09-23 02:29:36 +00001753 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1754 ExpandBlob(pIn1);
1755 ExpandBlob(pIn3);
1756 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001757 }
danielk1977a37cdde2004-05-16 11:15:36 +00001758 switch( pOp->opcode ){
1759 case OP_Eq: res = res==0; break;
1760 case OP_Ne: res = res!=0; break;
1761 case OP_Lt: res = res<0; break;
1762 case OP_Le: res = res<=0; break;
1763 case OP_Gt: res = res>0; break;
1764 default: res = res>=0; break;
1765 }
1766
drh35573352008-01-08 23:54:25 +00001767 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001768 pOut = &aMem[pOp->p2];
danielk1977a7a8e142008-02-13 18:25:27 +00001769 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001770 pOut->u.i = res;
1771 REGISTER_TRACE(pOp->p2, pOut);
1772 }else if( res ){
1773 pc = pOp->p2-1;
danielk1977a37cdde2004-05-16 11:15:36 +00001774 }
danb7dca7d2010-03-05 16:32:12 +00001775
1776 /* Undo any changes made by applyAffinity() to the input registers. */
1777 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1778 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
danielk1977a37cdde2004-05-16 11:15:36 +00001779 break;
1780}
drhc9b84a12002-06-20 11:36:48 +00001781
drh0acb7e42008-06-25 00:12:41 +00001782/* Opcode: Permutation * * * P4 *
1783**
shanebe217792009-03-05 04:20:31 +00001784** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001785** of integers in P4.
1786**
1787** The permutation is only valid until the next OP_Permutation, OP_Compare,
1788** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
1789** immediately prior to the OP_Compare.
1790*/
1791case OP_Permutation: {
1792 assert( pOp->p4type==P4_INTARRAY );
1793 assert( pOp->p4.ai );
1794 aPermute = pOp->p4.ai;
1795 break;
1796}
1797
drh16ee60f2008-06-20 18:13:25 +00001798/* Opcode: Compare P1 P2 P3 P4 *
1799**
drh710c4842010-08-30 01:17:20 +00001800** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1801** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00001802** the comparison for use by the next OP_Jump instruct.
1803**
drh0acb7e42008-06-25 00:12:41 +00001804** P4 is a KeyInfo structure that defines collating sequences and sort
1805** orders for the comparison. The permutation applies to registers
1806** only. The KeyInfo elements are used sequentially.
1807**
1808** The comparison is a sort comparison, so NULLs compare equal,
1809** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00001810** and strings are less than blobs.
1811*/
1812case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00001813 int n;
1814 int i;
1815 int p1;
1816 int p2;
1817 const KeyInfo *pKeyInfo;
1818 int idx;
1819 CollSeq *pColl; /* Collating sequence to use on this term */
1820 int bRev; /* True for DESCENDING sort order */
1821
1822 n = pOp->p3;
1823 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00001824 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00001825 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00001826 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00001827 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00001828#if SQLITE_DEBUG
1829 if( aPermute ){
1830 int k, mx = 0;
1831 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1832 assert( p1>0 && p1+mx<=p->nMem+1 );
1833 assert( p2>0 && p2+mx<=p->nMem+1 );
1834 }else{
1835 assert( p1>0 && p1+n<=p->nMem+1 );
1836 assert( p2>0 && p2+n<=p->nMem+1 );
1837 }
1838#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00001839 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00001840 idx = aPermute ? aPermute[i] : i;
drha6c2ed92009-11-14 23:22:23 +00001841 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1842 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00001843 assert( i<pKeyInfo->nField );
1844 pColl = pKeyInfo->aColl[i];
1845 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00001846 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00001847 if( iCompare ){
1848 if( bRev ) iCompare = -iCompare;
1849 break;
1850 }
drh16ee60f2008-06-20 18:13:25 +00001851 }
drh0acb7e42008-06-25 00:12:41 +00001852 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00001853 break;
1854}
1855
1856/* Opcode: Jump P1 P2 P3 * *
1857**
1858** Jump to the instruction at address P1, P2, or P3 depending on whether
1859** in the most recent OP_Compare instruction the P1 vector was less than
1860** equal to, or greater than the P2 vector, respectively.
1861*/
drh0acb7e42008-06-25 00:12:41 +00001862case OP_Jump: { /* jump */
1863 if( iCompare<0 ){
drh16ee60f2008-06-20 18:13:25 +00001864 pc = pOp->p1 - 1;
drh0acb7e42008-06-25 00:12:41 +00001865 }else if( iCompare==0 ){
drh16ee60f2008-06-20 18:13:25 +00001866 pc = pOp->p2 - 1;
1867 }else{
1868 pc = pOp->p3 - 1;
1869 }
1870 break;
1871}
1872
drh5b6afba2008-01-05 16:29:28 +00001873/* Opcode: And P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001874**
drh5b6afba2008-01-05 16:29:28 +00001875** Take the logical AND of the values in registers P1 and P2 and
1876** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00001877**
drh5b6afba2008-01-05 16:29:28 +00001878** If either P1 or P2 is 0 (false) then the result is 0 even if
1879** the other input is NULL. A NULL and true or two NULLs give
1880** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00001881*/
drh5b6afba2008-01-05 16:29:28 +00001882/* Opcode: Or P1 P2 P3 * *
1883**
1884** Take the logical OR of the values in register P1 and P2 and
1885** store the answer in register P3.
1886**
1887** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1888** even if the other input is NULL. A NULL and false or two NULLs
1889** give a NULL output.
1890*/
1891case OP_And: /* same as TK_AND, in1, in2, out3 */
1892case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001893 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1894 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00001895
drh3c657212009-11-17 23:59:58 +00001896 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00001897 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001898 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00001899 }else{
drh5b6afba2008-01-05 16:29:28 +00001900 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00001901 }
drh3c657212009-11-17 23:59:58 +00001902 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00001903 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001904 v2 = 2;
1905 }else{
drh5b6afba2008-01-05 16:29:28 +00001906 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00001907 }
1908 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00001909 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00001910 v1 = and_logic[v1*3+v2];
1911 }else{
drh5b6afba2008-01-05 16:29:28 +00001912 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00001913 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00001914 }
drh3c657212009-11-17 23:59:58 +00001915 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00001916 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00001917 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00001918 }else{
drh5b6afba2008-01-05 16:29:28 +00001919 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00001920 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00001921 }
drh5e00f6c2001-09-13 13:46:56 +00001922 break;
1923}
1924
drhe99fa2a2008-12-15 15:27:51 +00001925/* Opcode: Not P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001926**
drhe99fa2a2008-12-15 15:27:51 +00001927** Interpret the value in register P1 as a boolean value. Store the
1928** boolean complement in register P2. If the value in register P1 is
1929** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00001930*/
drh93952eb2009-11-13 19:43:43 +00001931case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00001932 pIn1 = &aMem[pOp->p1];
1933 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00001934 if( pIn1->flags & MEM_Null ){
1935 sqlite3VdbeMemSetNull(pOut);
1936 }else{
1937 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
1938 }
drh5e00f6c2001-09-13 13:46:56 +00001939 break;
1940}
1941
drhe99fa2a2008-12-15 15:27:51 +00001942/* Opcode: BitNot P1 P2 * * *
drhbf4133c2001-10-13 02:59:08 +00001943**
drhe99fa2a2008-12-15 15:27:51 +00001944** Interpret the content of register P1 as an integer. Store the
1945** ones-complement of the P1 value into register P2. If P1 holds
1946** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00001947*/
drh93952eb2009-11-13 19:43:43 +00001948case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00001949 pIn1 = &aMem[pOp->p1];
1950 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00001951 if( pIn1->flags & MEM_Null ){
1952 sqlite3VdbeMemSetNull(pOut);
1953 }else{
1954 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
1955 }
drhbf4133c2001-10-13 02:59:08 +00001956 break;
1957}
1958
drh3c84ddf2008-01-09 02:15:38 +00001959/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001960**
drh3c84ddf2008-01-09 02:15:38 +00001961** Jump to P2 if the value in register P1 is true. The value is
1962** is considered true if it is numeric and non-zero. If the value
1963** in P1 is NULL then take the jump if P3 is true.
drh5e00f6c2001-09-13 13:46:56 +00001964*/
drh3c84ddf2008-01-09 02:15:38 +00001965/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00001966**
drh3c84ddf2008-01-09 02:15:38 +00001967** Jump to P2 if the value in register P1 is False. The value is
1968** is considered true if it has a numeric value of zero. If the value
1969** in P1 is NULL then take the jump if P3 is true.
drhf5905aa2002-05-26 20:54:33 +00001970*/
drh9cbf3422008-01-17 16:22:13 +00001971case OP_If: /* jump, in1 */
1972case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00001973 int c;
drh3c657212009-11-17 23:59:58 +00001974 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001975 if( pIn1->flags & MEM_Null ){
1976 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00001977 }else{
drhba0232a2005-06-06 17:27:19 +00001978#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00001979 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00001980#else
drh3c84ddf2008-01-09 02:15:38 +00001981 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00001982#endif
drhf5905aa2002-05-26 20:54:33 +00001983 if( pOp->opcode==OP_IfNot ) c = !c;
1984 }
drh3c84ddf2008-01-09 02:15:38 +00001985 if( c ){
1986 pc = pOp->p2-1;
1987 }
drh5e00f6c2001-09-13 13:46:56 +00001988 break;
1989}
1990
drh830ecf92009-06-18 00:41:55 +00001991/* Opcode: IsNull P1 P2 * * *
drh477df4b2008-01-05 18:48:24 +00001992**
drh830ecf92009-06-18 00:41:55 +00001993** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00001994*/
drh9cbf3422008-01-17 16:22:13 +00001995case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00001996 pIn1 = &aMem[pOp->p1];
drh830ecf92009-06-18 00:41:55 +00001997 if( (pIn1->flags & MEM_Null)!=0 ){
1998 pc = pOp->p2 - 1;
1999 }
drh477df4b2008-01-05 18:48:24 +00002000 break;
2001}
2002
drh98757152008-01-09 23:04:12 +00002003/* Opcode: NotNull P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002004**
drh6a288a32008-01-07 19:20:24 +00002005** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002006*/
drh9cbf3422008-01-17 16:22:13 +00002007case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002008 pIn1 = &aMem[pOp->p1];
drh6a288a32008-01-07 19:20:24 +00002009 if( (pIn1->flags & MEM_Null)==0 ){
2010 pc = pOp->p2 - 1;
2011 }
drh5e00f6c2001-09-13 13:46:56 +00002012 break;
2013}
2014
drh3e9ca092009-09-08 01:14:48 +00002015/* Opcode: Column P1 P2 P3 P4 P5
danielk1977192ac1d2004-05-10 07:17:30 +00002016**
danielk1977cfcdaef2004-05-12 07:33:33 +00002017** Interpret the data that cursor P1 points to as a structure built using
2018** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002019** information about the format of the data.) Extract the P2-th column
2020** from this record. If there are less that (P2+1)
2021** values in the record, extract a NULL.
2022**
drh9cbf3422008-01-17 16:22:13 +00002023** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002024**
danielk19771f4aa332008-01-03 09:51:55 +00002025** If the column contains fewer than P2 fields, then extract a NULL. Or,
2026** if the P4 argument is a P4_MEM use the value of the P4 argument as
2027** the result.
drh3e9ca092009-09-08 01:14:48 +00002028**
2029** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2030** then the cache of the cursor is reset prior to extracting the column.
2031** The first OP_Column against a pseudo-table after the value of the content
2032** register has changed should have this bit set.
danielk1977192ac1d2004-05-10 07:17:30 +00002033*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002034case OP_Column: {
drh35cd6432009-06-05 14:17:21 +00002035 u32 payloadSize; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002036 i64 payloadSize64; /* Number of bytes in the record */
2037 int p1; /* P1 value of the opcode */
2038 int p2; /* column number to retrieve */
2039 VdbeCursor *pC; /* The VDBE cursor */
drhe61cffc2004-06-12 18:12:15 +00002040 char *zRec; /* Pointer to complete record-data */
drhd3194f52004-05-27 19:59:32 +00002041 BtCursor *pCrsr; /* The BTree cursor */
2042 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2043 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk197764202cf2008-11-17 15:31:47 +00002044 int nField; /* number of fields in the record */
danielk1977cfcdaef2004-05-12 07:33:33 +00002045 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002046 int i; /* Loop counter */
2047 char *zData; /* Part of the record being decoded */
drhd4e70eb2008-01-02 00:34:36 +00002048 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002049 Mem sMem; /* For storing the record being decoded */
drh35cd6432009-06-05 14:17:21 +00002050 u8 *zIdx; /* Index into header */
2051 u8 *zEndHdr; /* Pointer to first byte after the header */
2052 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002053 u32 szField; /* Number of bytes in the content of a field */
drh35cd6432009-06-05 14:17:21 +00002054 int szHdr; /* Size of the header size field at start of record */
2055 int avail; /* Number of bytes of available data */
drh3e9ca092009-09-08 01:14:48 +00002056 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002057
drh856c1032009-06-02 15:21:42 +00002058
2059 p1 = pOp->p1;
2060 p2 = pOp->p2;
2061 pC = 0;
drhb27b7f52008-12-10 18:03:45 +00002062 memset(&sMem, 0, sizeof(sMem));
drhd3194f52004-05-27 19:59:32 +00002063 assert( p1<p->nCursor );
drh9cbf3422008-01-17 16:22:13 +00002064 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00002065 pDest = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00002066 MemSetTypeFlag(pDest, MEM_Null);
shane36840fd2009-06-26 16:32:13 +00002067 zRec = 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00002068
drhe61cffc2004-06-12 18:12:15 +00002069 /* This block sets the variable payloadSize to be the total number of
2070 ** bytes in the record.
2071 **
2072 ** zRec is set to be the complete text of the record if it is available.
drhb73857f2006-03-17 00:25:59 +00002073 ** The complete record text is always available for pseudo-tables
2074 ** If the record is stored in a cursor, the complete record text
2075 ** might be available in the pC->aRow cache. Or it might not be.
2076 ** If the data is unavailable, zRec is set to NULL.
drhd3194f52004-05-27 19:59:32 +00002077 **
2078 ** We also compute the number of columns in the record. For cursors,
drhdfe88ec2008-11-03 20:55:06 +00002079 ** the number of columns is stored in the VdbeCursor.nField element.
danielk1977cfcdaef2004-05-12 07:33:33 +00002080 */
drhb73857f2006-03-17 00:25:59 +00002081 pC = p->apCsr[p1];
danielk19776c924092007-11-12 08:09:34 +00002082 assert( pC!=0 );
danielk19770817d0d2007-02-14 09:19:36 +00002083#ifndef SQLITE_OMIT_VIRTUALTABLE
2084 assert( pC->pVtabCursor==0 );
2085#endif
shane36840fd2009-06-26 16:32:13 +00002086 pCrsr = pC->pCursor;
2087 if( pCrsr!=0 ){
drhe61cffc2004-06-12 18:12:15 +00002088 /* The record is stored in a B-Tree */
drh536065a2005-01-26 21:55:31 +00002089 rc = sqlite3VdbeCursorMoveto(pC);
drh52f159e2005-01-27 00:33:21 +00002090 if( rc ) goto abort_due_to_error;
danielk1977192ac1d2004-05-10 07:17:30 +00002091 if( pC->nullRow ){
2092 payloadSize = 0;
drh76873ab2006-01-07 18:48:26 +00002093 }else if( pC->cacheStatus==p->cacheCtr ){
drh9188b382004-05-14 21:12:22 +00002094 payloadSize = pC->payloadSize;
drh2646da72005-12-09 20:02:05 +00002095 zRec = (char*)pC->aRow;
drhf0863fe2005-06-12 21:35:51 +00002096 }else if( pC->isIndex ){
drhea8ffdf2009-07-22 00:35:23 +00002097 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhc27ae612009-07-14 18:35:44 +00002098 rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2099 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhaa736092009-06-22 00:55:30 +00002100 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2101 ** payload size, so it is impossible for payloadSize64 to be
2102 ** larger than 32 bits. */
2103 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
drh35cd6432009-06-05 14:17:21 +00002104 payloadSize = (u32)payloadSize64;
danielk1977192ac1d2004-05-10 07:17:30 +00002105 }else{
drhea8ffdf2009-07-22 00:35:23 +00002106 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhc27ae612009-07-14 18:35:44 +00002107 rc = sqlite3BtreeDataSize(pCrsr, &payloadSize);
drhea8ffdf2009-07-22 00:35:23 +00002108 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
danielk1977192ac1d2004-05-10 07:17:30 +00002109 }
drh3e9ca092009-09-08 01:14:48 +00002110 }else if( pC->pseudoTableReg>0 ){
drha6c2ed92009-11-14 23:22:23 +00002111 pReg = &aMem[pC->pseudoTableReg];
drh3e9ca092009-09-08 01:14:48 +00002112 assert( pReg->flags & MEM_Blob );
2113 payloadSize = pReg->n;
2114 zRec = pReg->z;
2115 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002116 assert( payloadSize==0 || zRec!=0 );
drh9a65f2c2009-06-22 19:05:40 +00002117 }else{
2118 /* Consider the row to be NULL */
2119 payloadSize = 0;
danielk1977192ac1d2004-05-10 07:17:30 +00002120 }
2121
drh9cbf3422008-01-17 16:22:13 +00002122 /* If payloadSize is 0, then just store a NULL */
danielk1977192ac1d2004-05-10 07:17:30 +00002123 if( payloadSize==0 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002124 assert( pDest->flags&MEM_Null );
drhd4e70eb2008-01-02 00:34:36 +00002125 goto op_column_out;
danielk1977192ac1d2004-05-10 07:17:30 +00002126 }
drh35cd6432009-06-05 14:17:21 +00002127 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2128 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002129 goto too_big;
2130 }
danielk1977192ac1d2004-05-10 07:17:30 +00002131
shane36840fd2009-06-26 16:32:13 +00002132 nField = pC->nField;
drhd3194f52004-05-27 19:59:32 +00002133 assert( p2<nField );
danielk1977b4964b72004-05-18 01:23:38 +00002134
drh9188b382004-05-14 21:12:22 +00002135 /* Read and parse the table header. Store the results of the parse
2136 ** into the record header cache fields of the cursor.
danielk1977192ac1d2004-05-10 07:17:30 +00002137 */
danielk1977cd3e8f72008-03-25 09:47:35 +00002138 aType = pC->aType;
drha05a7222008-01-19 03:35:58 +00002139 if( pC->cacheStatus==p->cacheCtr ){
drhd3194f52004-05-27 19:59:32 +00002140 aOffset = pC->aOffset;
2141 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00002142 assert(aType);
drh856c1032009-06-02 15:21:42 +00002143 avail = 0;
drhb73857f2006-03-17 00:25:59 +00002144 pC->aOffset = aOffset = &aType[nField];
2145 pC->payloadSize = payloadSize;
2146 pC->cacheStatus = p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002147
drhd3194f52004-05-27 19:59:32 +00002148 /* Figure out how many bytes are in the header */
danielk197784ac9d02004-05-18 09:58:06 +00002149 if( zRec ){
2150 zData = zRec;
2151 }else{
drhf0863fe2005-06-12 21:35:51 +00002152 if( pC->isIndex ){
drhe51c44f2004-05-30 20:46:09 +00002153 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
drhd3194f52004-05-27 19:59:32 +00002154 }else{
drhe51c44f2004-05-30 20:46:09 +00002155 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002156 }
drhe61cffc2004-06-12 18:12:15 +00002157 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2158 ** save the payload in the pC->aRow cache. That will save us from
2159 ** having to make additional calls to fetch the content portion of
2160 ** the record.
2161 */
drh35cd6432009-06-05 14:17:21 +00002162 assert( avail>=0 );
2163 if( payloadSize <= (u32)avail ){
drh2646da72005-12-09 20:02:05 +00002164 zRec = zData;
2165 pC->aRow = (u8*)zData;
drhe61cffc2004-06-12 18:12:15 +00002166 }else{
2167 pC->aRow = 0;
2168 }
drhd3194f52004-05-27 19:59:32 +00002169 }
drh588f5bc2007-01-02 18:41:54 +00002170 /* The following assert is true in all cases accept when
2171 ** the database file has been corrupted externally.
2172 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
drh35cd6432009-06-05 14:17:21 +00002173 szHdr = getVarint32((u8*)zData, offset);
2174
2175 /* Make sure a corrupt database has not given us an oversize header.
2176 ** Do this now to avoid an oversize memory allocation.
2177 **
2178 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2179 ** types use so much data space that there can only be 4096 and 32 of
2180 ** them, respectively. So the maximum header length results from a
2181 ** 3-byte type for each of the maximum of 32768 columns plus three
2182 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2183 */
2184 if( offset > 98307 ){
2185 rc = SQLITE_CORRUPT_BKPT;
2186 goto op_column_out;
2187 }
2188
2189 /* Compute in len the number of bytes of data we need to read in order
2190 ** to get nField type values. offset is an upper bound on this. But
2191 ** nField might be significantly less than the true number of columns
2192 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2193 ** We want to minimize len in order to limit the size of the memory
2194 ** allocation, especially if a corrupt database file has caused offset
2195 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2196 ** still exceed Robson memory allocation limits on some configurations.
2197 ** On systems that cannot tolerate large memory allocations, nField*5+3
2198 ** will likely be much smaller since nField will likely be less than
2199 ** 20 or so. This insures that Robson memory allocation limits are
2200 ** not exceeded even for corrupt database files.
2201 */
2202 len = nField*5 + 3;
shane75ac1de2009-06-09 18:58:52 +00002203 if( len > (int)offset ) len = (int)offset;
drhe61cffc2004-06-12 18:12:15 +00002204
2205 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2206 ** record header in most cases. But they will fail to get the complete
2207 ** record header if the record header does not fit on a single page
2208 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2209 ** acquire the complete header text.
2210 */
drh35cd6432009-06-05 14:17:21 +00002211 if( !zRec && avail<len ){
danielk1977a7a8e142008-02-13 18:25:27 +00002212 sMem.flags = 0;
2213 sMem.db = 0;
drh35cd6432009-06-05 14:17:21 +00002214 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
danielk197784ac9d02004-05-18 09:58:06 +00002215 if( rc!=SQLITE_OK ){
danielk19773c9cc8d2005-01-17 03:40:08 +00002216 goto op_column_out;
drh9188b382004-05-14 21:12:22 +00002217 }
drhb6f54522004-05-20 02:42:16 +00002218 zData = sMem.z;
drh9188b382004-05-14 21:12:22 +00002219 }
drh35cd6432009-06-05 14:17:21 +00002220 zEndHdr = (u8 *)&zData[len];
2221 zIdx = (u8 *)&zData[szHdr];
drh9188b382004-05-14 21:12:22 +00002222
drhd3194f52004-05-27 19:59:32 +00002223 /* Scan the header and use it to fill in the aType[] and aOffset[]
2224 ** arrays. aType[i] will contain the type integer for the i-th
2225 ** column and aOffset[i] will contain the offset from the beginning
2226 ** of the record to the start of the data for the i-th column
drh9188b382004-05-14 21:12:22 +00002227 */
danielk1977dedf45b2006-01-13 17:12:01 +00002228 for(i=0; i<nField; i++){
2229 if( zIdx<zEndHdr ){
drh6658cd92010-02-05 14:12:53 +00002230 aOffset[i] = offset;
shane3f8d5cf2008-04-24 19:15:09 +00002231 zIdx += getVarint32(zIdx, aType[i]);
drh6658cd92010-02-05 14:12:53 +00002232 szField = sqlite3VdbeSerialTypeLen(aType[i]);
2233 offset += szField;
2234 if( offset<szField ){ /* True if offset overflows */
2235 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2236 break;
2237 }
danielk1977dedf45b2006-01-13 17:12:01 +00002238 }else{
2239 /* If i is less that nField, then there are less fields in this
2240 ** record than SetNumColumns indicated there are columns in the
2241 ** table. Set the offset for any extra columns not present in
drh9cbf3422008-01-17 16:22:13 +00002242 ** the record to 0. This tells code below to store a NULL
2243 ** instead of deserializing a value from the record.
danielk1977dedf45b2006-01-13 17:12:01 +00002244 */
2245 aOffset[i] = 0;
2246 }
drh9188b382004-05-14 21:12:22 +00002247 }
danielk19775f096132008-03-28 15:44:09 +00002248 sqlite3VdbeMemRelease(&sMem);
drhd3194f52004-05-27 19:59:32 +00002249 sMem.flags = MEM_Null;
2250
danielk19779792eef2006-01-13 15:58:43 +00002251 /* If we have read more header data than was contained in the header,
2252 ** or if the end of the last field appears to be past the end of the
shane2ca8bc02008-05-07 18:59:28 +00002253 ** record, or if the end of the last field appears to be before the end
2254 ** of the record (when all fields present), then we must be dealing
2255 ** with a corrupt database.
drhd3194f52004-05-27 19:59:32 +00002256 */
drh6658cd92010-02-05 14:12:53 +00002257 if( (zIdx > zEndHdr) || (offset > payloadSize)
2258 || (zIdx==zEndHdr && offset!=payloadSize) ){
drh49285702005-09-17 15:20:26 +00002259 rc = SQLITE_CORRUPT_BKPT;
danielk19773c9cc8d2005-01-17 03:40:08 +00002260 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002261 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002262 }
danielk1977192ac1d2004-05-10 07:17:30 +00002263
danielk197736963fd2005-02-19 08:18:05 +00002264 /* Get the column information. If aOffset[p2] is non-zero, then
2265 ** deserialize the value from the record. If aOffset[p2] is zero,
2266 ** then there are not enough fields in the record to satisfy the
drh66a51672008-01-03 00:01:23 +00002267 ** request. In this case, set the value NULL or to P4 if P4 is
drh29dda4a2005-07-21 18:23:20 +00002268 ** a pointer to a Mem object.
drh9188b382004-05-14 21:12:22 +00002269 */
danielk197736963fd2005-02-19 08:18:05 +00002270 if( aOffset[p2] ){
2271 assert( rc==SQLITE_OK );
2272 if( zRec ){
danielk1977808ec7c2008-07-29 10:18:57 +00002273 sqlite3VdbeMemReleaseExternal(pDest);
2274 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
danielk197736963fd2005-02-19 08:18:05 +00002275 }else{
2276 len = sqlite3VdbeSerialTypeLen(aType[p2]);
danielk1977a7a8e142008-02-13 18:25:27 +00002277 sqlite3VdbeMemMove(&sMem, pDest);
drhb21c8cd2007-08-21 19:33:56 +00002278 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
danielk197736963fd2005-02-19 08:18:05 +00002279 if( rc!=SQLITE_OK ){
2280 goto op_column_out;
2281 }
2282 zData = sMem.z;
danielk1977a7a8e142008-02-13 18:25:27 +00002283 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
danielk19777701e812005-01-10 12:59:51 +00002284 }
drhd4e70eb2008-01-02 00:34:36 +00002285 pDest->enc = encoding;
danielk197736963fd2005-02-19 08:18:05 +00002286 }else{
danielk197760585dd2008-01-03 08:08:40 +00002287 if( pOp->p4type==P4_MEM ){
danielk19772dca4ac2008-01-03 11:50:29 +00002288 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
danielk1977aee18ef2005-03-09 12:26:50 +00002289 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00002290 assert( pDest->flags&MEM_Null );
danielk1977aee18ef2005-03-09 12:26:50 +00002291 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002292 }
drhfebe1062004-08-28 18:17:48 +00002293
2294 /* If we dynamically allocated space to hold the data (in the
2295 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
drhd4e70eb2008-01-02 00:34:36 +00002296 ** dynamically allocated space over to the pDest structure.
drhfebe1062004-08-28 18:17:48 +00002297 ** This prevents a memory copy.
2298 */
danielk19775f096132008-03-28 15:44:09 +00002299 if( sMem.zMalloc ){
2300 assert( sMem.z==sMem.zMalloc );
danielk1977a7a8e142008-02-13 18:25:27 +00002301 assert( !(pDest->flags & MEM_Dyn) );
2302 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2303 pDest->flags &= ~(MEM_Ephem|MEM_Static);
danielk19775f096132008-03-28 15:44:09 +00002304 pDest->flags |= MEM_Term;
danielk1977a7a8e142008-02-13 18:25:27 +00002305 pDest->z = sMem.z;
danielk19775f096132008-03-28 15:44:09 +00002306 pDest->zMalloc = sMem.zMalloc;
danielk1977b1bc9532004-05-22 03:05:33 +00002307 }
drhfebe1062004-08-28 18:17:48 +00002308
drhd4e70eb2008-01-02 00:34:36 +00002309 rc = sqlite3VdbeMemMakeWriteable(pDest);
drhd3194f52004-05-27 19:59:32 +00002310
danielk19773c9cc8d2005-01-17 03:40:08 +00002311op_column_out:
drhb7654112008-01-12 12:48:07 +00002312 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002313 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002314 break;
2315}
2316
danielk1977751de562008-04-18 09:01:15 +00002317/* Opcode: Affinity P1 P2 * P4 *
2318**
2319** Apply affinities to a range of P2 registers starting with P1.
2320**
2321** P4 is a string that is P2 characters long. The nth character of the
2322** string indicates the column affinity that should be used for the nth
2323** memory cell in the range.
2324*/
2325case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002326 const char *zAffinity; /* The affinity to be applied */
2327 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002328
drh856c1032009-06-02 15:21:42 +00002329 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002330 assert( zAffinity!=0 );
2331 assert( zAffinity[pOp->p2]==0 );
2332 pIn1 = &aMem[pOp->p1];
2333 while( (cAff = *(zAffinity++))!=0 ){
2334 assert( pIn1 <= &p->aMem[p->nMem] );
2335 ExpandBlob(pIn1);
2336 applyAffinity(pIn1, cAff, encoding);
2337 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002338 }
2339 break;
2340}
2341
drh1db639c2008-01-17 02:36:28 +00002342/* Opcode: MakeRecord P1 P2 P3 P4 *
drh7a224de2004-06-02 01:22:02 +00002343**
drh710c4842010-08-30 01:17:20 +00002344** Convert P2 registers beginning with P1 into the [record format]
2345** use as a data record in a database table or as a key
2346** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002347**
danielk1977751de562008-04-18 09:01:15 +00002348** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002349** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002350** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002351**
drh8a512562005-11-14 22:29:05 +00002352** The mapping from character to affinity is given by the SQLITE_AFF_
2353** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002354**
drh66a51672008-01-03 00:01:23 +00002355** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002356*/
drh1db639c2008-01-17 02:36:28 +00002357case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002358 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2359 Mem *pRec; /* The new record */
2360 u64 nData; /* Number of bytes of data space */
2361 int nHdr; /* Number of bytes of header space */
2362 i64 nByte; /* Data space required for this record */
2363 int nZero; /* Number of zero bytes at the end of the record */
2364 int nVarint; /* Number of bytes in a varint */
2365 u32 serial_type; /* Type field */
2366 Mem *pData0; /* First field to be combined into the record */
2367 Mem *pLast; /* Last field of the record */
2368 int nField; /* Number of fields in the record */
2369 char *zAffinity; /* The affinity string for the record */
2370 int file_format; /* File format to use for encoding */
2371 int i; /* Space used in zNewRecord[] */
2372 int len; /* Length of a field */
2373
drhf3218fe2004-05-28 08:21:02 +00002374 /* Assuming the record contains N fields, the record format looks
2375 ** like this:
2376 **
drh7a224de2004-06-02 01:22:02 +00002377 ** ------------------------------------------------------------------------
2378 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2379 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002380 **
drh9cbf3422008-01-17 16:22:13 +00002381 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2382 ** and so froth.
drhf3218fe2004-05-28 08:21:02 +00002383 **
2384 ** Each type field is a varint representing the serial type of the
2385 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002386 ** hdr-size field is also a varint which is the offset from the beginning
2387 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002388 */
drh856c1032009-06-02 15:21:42 +00002389 nData = 0; /* Number of bytes of data space */
2390 nHdr = 0; /* Number of bytes of header space */
2391 nByte = 0; /* Data space required for this record */
2392 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002393 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002394 zAffinity = pOp->p4.z;
danielk19776ab3a2e2009-02-19 14:39:25 +00002395 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
drha6c2ed92009-11-14 23:22:23 +00002396 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002397 nField = pOp->p2;
2398 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002399 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002400
drhf3218fe2004-05-28 08:21:02 +00002401 /* Loop through the elements that will make up the record to figure
2402 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002403 */
drha2a49dc2008-01-02 14:28:13 +00002404 for(pRec=pData0; pRec<=pLast; pRec++){
drhd3d39e92004-05-20 22:16:29 +00002405 if( zAffinity ){
drhb21c8cd2007-08-21 19:33:56 +00002406 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
drhd3d39e92004-05-20 22:16:29 +00002407 }
danielk1977d908f5a2007-05-11 07:08:28 +00002408 if( pRec->flags&MEM_Zero && pRec->n>0 ){
drha05a7222008-01-19 03:35:58 +00002409 sqlite3VdbeMemExpandBlob(pRec);
danielk1977d908f5a2007-05-11 07:08:28 +00002410 }
drhd946db02005-12-29 19:23:06 +00002411 serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002412 len = sqlite3VdbeSerialTypeLen(serial_type);
2413 nData += len;
drhf3218fe2004-05-28 08:21:02 +00002414 nHdr += sqlite3VarintLen(serial_type);
drhfdf972a2007-05-02 13:30:27 +00002415 if( pRec->flags & MEM_Zero ){
2416 /* Only pure zero-filled BLOBs can be input to this Opcode.
2417 ** We do not allow blobs with a prefix and a zero-filled tail. */
drh8df32842008-12-09 02:51:23 +00002418 nZero += pRec->u.nZero;
drhae7e1512007-05-02 16:51:59 +00002419 }else if( len ){
drhfdf972a2007-05-02 13:30:27 +00002420 nZero = 0;
2421 }
danielk19778d059842004-05-12 11:24:02 +00002422 }
danielk19773d1bfea2004-05-14 11:00:53 +00002423
drhf3218fe2004-05-28 08:21:02 +00002424 /* Add the initial header varint and total the size */
drhcb9882a2005-03-17 03:15:40 +00002425 nHdr += nVarint = sqlite3VarintLen(nHdr);
2426 if( nVarint<sqlite3VarintLen(nHdr) ){
2427 nHdr++;
2428 }
drhfdf972a2007-05-02 13:30:27 +00002429 nByte = nHdr+nData-nZero;
drhbb4957f2008-03-20 14:03:29 +00002430 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002431 goto too_big;
2432 }
drhf3218fe2004-05-28 08:21:02 +00002433
danielk1977a7a8e142008-02-13 18:25:27 +00002434 /* Make sure the output register has a buffer large enough to store
2435 ** the new record. The output register (pOp->p3) is not allowed to
2436 ** be one of the input registers (because the following call to
2437 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2438 */
2439 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
drha6c2ed92009-11-14 23:22:23 +00002440 pOut = &aMem[pOp->p3];
drh9c1905f2008-12-10 22:32:56 +00002441 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002442 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002443 }
danielk1977a7a8e142008-02-13 18:25:27 +00002444 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002445
2446 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002447 i = putVarint32(zNewRecord, nHdr);
drha2a49dc2008-01-02 14:28:13 +00002448 for(pRec=pData0; pRec<=pLast; pRec++){
drhd946db02005-12-29 19:23:06 +00002449 serial_type = sqlite3VdbeSerialType(pRec, file_format);
shane3f8d5cf2008-04-24 19:15:09 +00002450 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
danielk19778d059842004-05-12 11:24:02 +00002451 }
drha2a49dc2008-01-02 14:28:13 +00002452 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
drh9c1905f2008-12-10 22:32:56 +00002453 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
drhf3218fe2004-05-28 08:21:02 +00002454 }
drhfdf972a2007-05-02 13:30:27 +00002455 assert( i==nByte );
drhf3218fe2004-05-28 08:21:02 +00002456
drh9cbf3422008-01-17 16:22:13 +00002457 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drh9c1905f2008-12-10 22:32:56 +00002458 pOut->n = (int)nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00002459 pOut->flags = MEM_Blob | MEM_Dyn;
2460 pOut->xDel = 0;
drhfdf972a2007-05-02 13:30:27 +00002461 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002462 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002463 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002464 }
drh477df4b2008-01-05 18:48:24 +00002465 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002466 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002467 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002468 break;
2469}
2470
danielk1977a5533162009-02-24 10:01:51 +00002471/* Opcode: Count P1 P2 * * *
2472**
2473** Store the number of entries (an integer value) in the table or index
2474** opened by cursor P1 in register P2
2475*/
2476#ifndef SQLITE_OMIT_BTREECOUNT
2477case OP_Count: { /* out2-prerelease */
2478 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002479 BtCursor *pCrsr;
2480
2481 pCrsr = p->apCsr[pOp->p1]->pCursor;
drh818e39a2009-04-02 20:27:28 +00002482 if( pCrsr ){
2483 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2484 }else{
2485 nEntry = 0;
2486 }
danielk1977a5533162009-02-24 10:01:51 +00002487 pOut->u.i = nEntry;
2488 break;
2489}
2490#endif
2491
danielk1977fd7f0452008-12-17 17:30:26 +00002492/* Opcode: Savepoint P1 * * P4 *
2493**
2494** Open, release or rollback the savepoint named by parameter P4, depending
2495** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2496** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2497*/
2498case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002499 int p1; /* Value of P1 operand */
2500 char *zName; /* Name of savepoint */
2501 int nName;
2502 Savepoint *pNew;
2503 Savepoint *pSavepoint;
2504 Savepoint *pTmp;
2505 int iSavepoint;
2506 int ii;
2507
2508 p1 = pOp->p1;
2509 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002510
2511 /* Assert that the p1 parameter is valid. Also that if there is no open
2512 ** transaction, then there cannot be any savepoints.
2513 */
2514 assert( db->pSavepoint==0 || db->autoCommit==0 );
2515 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2516 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2517 assert( checkSavepointCount(db) );
2518
2519 if( p1==SAVEPOINT_BEGIN ){
danielk197734cf35d2008-12-18 18:31:38 +00002520 if( db->writeVdbeCnt>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002521 /* A new savepoint cannot be created if there are active write
2522 ** statements (i.e. open read/write incremental blob handles).
2523 */
2524 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2525 "SQL statements in progress");
2526 rc = SQLITE_BUSY;
2527 }else{
drh856c1032009-06-02 15:21:42 +00002528 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002529
2530 /* Create a new savepoint structure. */
2531 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2532 if( pNew ){
2533 pNew->zName = (char *)&pNew[1];
2534 memcpy(pNew->zName, zName, nName+1);
2535
2536 /* If there is no open transaction, then mark this as a special
2537 ** "transaction savepoint". */
2538 if( db->autoCommit ){
2539 db->autoCommit = 0;
2540 db->isTransactionSavepoint = 1;
2541 }else{
2542 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002543 }
danielk1977fd7f0452008-12-17 17:30:26 +00002544
2545 /* Link the new savepoint into the database handle's list. */
2546 pNew->pNext = db->pSavepoint;
2547 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002548 pNew->nDeferredCons = db->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002549 }
2550 }
2551 }else{
drh856c1032009-06-02 15:21:42 +00002552 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002553
2554 /* Find the named savepoint. If there is no such savepoint, then an
2555 ** an error is returned to the user. */
2556 for(
drh856c1032009-06-02 15:21:42 +00002557 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002558 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002559 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002560 ){
2561 iSavepoint++;
2562 }
2563 if( !pSavepoint ){
2564 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2565 rc = SQLITE_ERROR;
2566 }else if(
2567 db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1)
2568 ){
2569 /* It is not possible to release (commit) a savepoint if there are
2570 ** active write statements. It is not possible to rollback a savepoint
2571 ** if there are any active statements at all.
2572 */
2573 sqlite3SetString(&p->zErrMsg, db,
2574 "cannot %s savepoint - SQL statements in progress",
2575 (p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
2576 );
2577 rc = SQLITE_BUSY;
2578 }else{
2579
2580 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002581 ** and this is a RELEASE command, then the current transaction
2582 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002583 */
2584 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2585 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002586 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002587 goto vdbe_return;
2588 }
danielk1977fd7f0452008-12-17 17:30:26 +00002589 db->autoCommit = 1;
2590 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2591 p->pc = pc;
2592 db->autoCommit = 0;
2593 p->rc = rc = SQLITE_BUSY;
2594 goto vdbe_return;
2595 }
danielk197734cf35d2008-12-18 18:31:38 +00002596 db->isTransactionSavepoint = 0;
2597 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002598 }else{
danielk1977fd7f0452008-12-17 17:30:26 +00002599 iSavepoint = db->nSavepoint - iSavepoint - 1;
2600 for(ii=0; ii<db->nDb; ii++){
2601 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2602 if( rc!=SQLITE_OK ){
2603 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002604 }
danielk1977fd7f0452008-12-17 17:30:26 +00002605 }
drh9f0bbf92009-01-02 21:08:09 +00002606 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002607 sqlite3ExpirePreparedStatements(db);
2608 sqlite3ResetInternalSchema(db, 0);
danc311fee2010-08-31 16:25:19 +00002609 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002610 }
2611 }
2612
2613 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2614 ** savepoints nested inside of the savepoint being operated on. */
2615 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002616 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002617 db->pSavepoint = pTmp->pNext;
2618 sqlite3DbFree(db, pTmp);
2619 db->nSavepoint--;
2620 }
2621
dan1da40a32009-09-19 17:00:31 +00002622 /* If it is a RELEASE, then destroy the savepoint being operated on
2623 ** too. If it is a ROLLBACK TO, then set the number of deferred
2624 ** constraint violations present in the database to the value stored
2625 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002626 if( p1==SAVEPOINT_RELEASE ){
2627 assert( pSavepoint==db->pSavepoint );
2628 db->pSavepoint = pSavepoint->pNext;
2629 sqlite3DbFree(db, pSavepoint);
2630 if( !isTransaction ){
2631 db->nSavepoint--;
2632 }
dan1da40a32009-09-19 17:00:31 +00002633 }else{
2634 db->nDeferredCons = pSavepoint->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002635 }
2636 }
2637 }
2638
2639 break;
2640}
2641
drh98757152008-01-09 23:04:12 +00002642/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002643**
2644** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002645** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002646** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2647** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002648**
2649** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002650*/
drh9cbf3422008-01-17 16:22:13 +00002651case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002652 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002653 int iRollback;
drh856c1032009-06-02 15:21:42 +00002654 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002655
drh856c1032009-06-02 15:21:42 +00002656 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002657 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002658 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002659 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002660 assert( desiredAutoCommit==1 || iRollback==0 );
drh92f02c32004-09-02 14:57:08 +00002661 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
danielk197746c43ed2004-06-30 06:30:25 +00002662
shane68c02732009-06-09 18:14:18 +00002663 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
drhad4a4b82008-11-05 16:37:34 +00002664 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002665 ** still running, and a transaction is active, return an error indicating
2666 ** that the other VMs must complete first.
2667 */
drhad4a4b82008-11-05 16:37:34 +00002668 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2669 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002670 rc = SQLITE_BUSY;
drh9eb8cbe2009-06-19 22:23:41 +00002671 }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
drhad4a4b82008-11-05 16:37:34 +00002672 /* If this instruction implements a COMMIT and other VMs are writing
2673 ** return an error indicating that the other VMs must complete first.
2674 */
2675 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2676 "SQL statements in progress");
2677 rc = SQLITE_BUSY;
2678 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002679 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002680 assert( desiredAutoCommit==1 );
danielk19771d850a72004-05-31 08:26:49 +00002681 sqlite3RollbackAll(db);
danielk1977f3f06bb2005-12-16 15:24:28 +00002682 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002683 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002684 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002685 }else{
shane7d3846a2008-12-11 02:58:26 +00002686 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002687 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
danielk1977f3f06bb2005-12-16 15:24:28 +00002688 p->pc = pc;
drh9c1905f2008-12-10 22:32:56 +00002689 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002690 p->rc = rc = SQLITE_BUSY;
2691 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002692 }
danielk19771d850a72004-05-31 08:26:49 +00002693 }
danielk1977bd434552009-03-18 10:33:00 +00002694 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002695 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002696 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002697 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002698 }else{
drh900b31e2007-08-28 02:27:51 +00002699 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002700 }
drh900b31e2007-08-28 02:27:51 +00002701 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002702 }else{
drhf089aa42008-07-08 19:34:06 +00002703 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002704 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002705 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002706 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002707
2708 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002709 }
2710 break;
2711}
2712
drh98757152008-01-09 23:04:12 +00002713/* Opcode: Transaction P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002714**
2715** Begin a transaction. The transaction ends when a Commit or Rollback
drh663fc632002-02-02 18:49:19 +00002716** opcode is encountered. Depending on the ON CONFLICT setting, the
2717** transaction might also be rolled back if an error is encountered.
drh5e00f6c2001-09-13 13:46:56 +00002718**
drh001bbcb2003-03-19 03:14:00 +00002719** P1 is the index of the database file on which the transaction is
2720** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00002721** file used for temporary tables. Indices of 2 or more are used for
2722** attached databases.
drhcabb0812002-09-14 13:47:32 +00002723**
drh80242052004-06-09 00:48:12 +00002724** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
danielk1977ee5741e2004-05-31 10:01:34 +00002725** obtained on the database file when a write-transaction is started. No
drh80242052004-06-09 00:48:12 +00002726** other process can start another write transaction while this transaction is
2727** underway. Starting a write transaction also creates a rollback journal. A
2728** write transaction must be started before any changes can be made to the
drh684917c2004-10-05 02:41:42 +00002729** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2730** on the file.
danielk1977ee5741e2004-05-31 10:01:34 +00002731**
dane0af83a2009-09-08 19:15:01 +00002732** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2733** true (this flag is set if the Vdbe may modify more than one row and may
2734** throw an ABORT exception), a statement transaction may also be opened.
2735** More specifically, a statement transaction is opened iff the database
2736** connection is currently not in autocommit mode, or if there are other
2737** active statements. A statement transaction allows the affects of this
2738** VDBE to be rolled back after an error without having to roll back the
2739** entire transaction. If no error is encountered, the statement transaction
2740** will automatically commit when the VDBE halts.
2741**
danielk1977ee5741e2004-05-31 10:01:34 +00002742** If P2 is zero, then a read-lock is obtained on the database file.
drh5e00f6c2001-09-13 13:46:56 +00002743*/
drh9cbf3422008-01-17 16:22:13 +00002744case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00002745 Btree *pBt;
2746
drh653b82a2009-06-22 11:10:47 +00002747 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2748 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
2749 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00002750
danielk197724162fe2004-06-04 06:22:00 +00002751 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00002752 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00002753 if( rc==SQLITE_BUSY ){
danielk19772a764eb2004-06-12 01:43:26 +00002754 p->pc = pc;
drh900b31e2007-08-28 02:27:51 +00002755 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00002756 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00002757 }
drh9e9f1bd2009-10-13 15:36:51 +00002758 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00002759 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00002760 }
dane0af83a2009-09-08 19:15:01 +00002761
2762 if( pOp->p2 && p->usesStmtJournal
2763 && (db->autoCommit==0 || db->activeVdbeCnt>1)
2764 ){
2765 assert( sqlite3BtreeIsInTrans(pBt) );
2766 if( p->iStatement==0 ){
2767 assert( db->nStatement>=0 && db->nSavepoint>=0 );
2768 db->nStatement++;
2769 p->iStatement = db->nSavepoint + db->nStatement;
2770 }
2771 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
dan1da40a32009-09-19 17:00:31 +00002772
2773 /* Store the current value of the database handles deferred constraint
2774 ** counter. If the statement transaction needs to be rolled back,
2775 ** the value of this counter needs to be restored too. */
2776 p->nStmtDefCons = db->nDeferredCons;
dane0af83a2009-09-08 19:15:01 +00002777 }
drhb86ccfb2003-01-28 23:13:10 +00002778 }
drh5e00f6c2001-09-13 13:46:56 +00002779 break;
2780}
2781
drhb1fdb2a2008-01-05 04:06:03 +00002782/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002783**
drh9cbf3422008-01-17 16:22:13 +00002784** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00002785** P3==1 is the schema version. P3==2 is the database format.
2786** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00002787** the main database file and P1==1 is the database file used to store
2788** temporary tables.
drh4a324312001-12-21 14:30:42 +00002789**
drh50e5dad2001-09-15 00:57:28 +00002790** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00002791** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00002792** executing this instruction.
2793*/
drh4c583122008-01-04 22:01:03 +00002794case OP_ReadCookie: { /* out2-prerelease */
drhf328bc82004-05-10 23:29:49 +00002795 int iMeta;
drh856c1032009-06-02 15:21:42 +00002796 int iDb;
2797 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00002798
drh856c1032009-06-02 15:21:42 +00002799 iDb = pOp->p1;
2800 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00002801 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00002802 assert( iDb>=0 && iDb<db->nDb );
2803 assert( db->aDb[iDb].pBt!=0 );
drhfb982642007-08-30 01:19:59 +00002804 assert( (p->btreeMask & (1<<iDb))!=0 );
danielk19770d19f7a2009-06-03 11:25:07 +00002805
danielk1977602b4662009-07-02 07:47:33 +00002806 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh4c583122008-01-04 22:01:03 +00002807 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00002808 break;
2809}
2810
drh98757152008-01-09 23:04:12 +00002811/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002812**
drh98757152008-01-09 23:04:12 +00002813** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00002814** into cookie number P2 of database P1. P2==1 is the schema version.
2815** P2==2 is the database format. P2==3 is the recommended pager cache
2816** size, and so forth. P1==0 is the main database file and P1==1 is the
2817** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00002818**
2819** A transaction must be started before executing this opcode.
2820*/
drh9cbf3422008-01-17 16:22:13 +00002821case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00002822 Db *pDb;
drh4a324312001-12-21 14:30:42 +00002823 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00002824 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhfb982642007-08-30 01:19:59 +00002825 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
drh3f7d4e42004-07-24 14:35:58 +00002826 pDb = &db->aDb[pOp->p1];
2827 assert( pDb->pBt!=0 );
drh3c657212009-11-17 23:59:58 +00002828 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00002829 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00002830 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00002831 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
2832 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00002833 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00002834 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002835 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00002836 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00002837 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00002838 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002839 }
drhfd426c62006-01-30 15:34:22 +00002840 if( pOp->p1==1 ){
2841 /* Invalidate all prepared statements whenever the TEMP database
2842 ** schema is changed. Ticket #1644 */
2843 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00002844 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00002845 }
drh50e5dad2001-09-15 00:57:28 +00002846 break;
2847}
2848
drh4a324312001-12-21 14:30:42 +00002849/* Opcode: VerifyCookie P1 P2 *
drh50e5dad2001-09-15 00:57:28 +00002850**
drh001bbcb2003-03-19 03:14:00 +00002851** Check the value of global database parameter number 0 (the
2852** schema version) and make sure it is equal to P2.
2853** P1 is the database number which is 0 for the main database file
2854** and 1 for the file holding temporary tables and some higher number
2855** for auxiliary databases.
drh50e5dad2001-09-15 00:57:28 +00002856**
2857** The cookie changes its value whenever the database schema changes.
drhb19a2bc2001-09-16 00:13:26 +00002858** This operation is used to detect when that the cookie has changed
drh50e5dad2001-09-15 00:57:28 +00002859** and that the current process needs to reread the schema.
2860**
2861** Either a transaction needs to have been started or an OP_Open needs
2862** to be executed (to establish a read lock) before this opcode is
2863** invoked.
2864*/
drh9cbf3422008-01-17 16:22:13 +00002865case OP_VerifyCookie: {
drhf328bc82004-05-10 23:29:49 +00002866 int iMeta;
drhc275b4e2004-07-19 17:25:24 +00002867 Btree *pBt;
drh001bbcb2003-03-19 03:14:00 +00002868 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhfb982642007-08-30 01:19:59 +00002869 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
drhc275b4e2004-07-19 17:25:24 +00002870 pBt = db->aDb[pOp->p1].pBt;
2871 if( pBt ){
danielk1977602b4662009-07-02 07:47:33 +00002872 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
drhc275b4e2004-07-19 17:25:24 +00002873 }else{
drhc275b4e2004-07-19 17:25:24 +00002874 iMeta = 0;
2875 }
danielk1977602b4662009-07-02 07:47:33 +00002876 if( iMeta!=pOp->p2 ){
drh633e6d52008-07-28 19:34:53 +00002877 sqlite3DbFree(db, p->zErrMsg);
danielk1977a1644fd2007-08-29 12:31:25 +00002878 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
danielk1977896e7922007-04-17 08:32:33 +00002879 /* If the schema-cookie from the database file matches the cookie
2880 ** stored with the in-memory representation of the schema, do
2881 ** not reload the schema from the database file.
2882 **
shane21e7feb2008-05-30 15:59:49 +00002883 ** If virtual-tables are in use, this is not just an optimization.
danielk1977896e7922007-04-17 08:32:33 +00002884 ** Often, v-tables store their data in other SQLite tables, which
2885 ** are queried from within xNext() and other v-table methods using
2886 ** prepared queries. If such a query is out-of-date, we do not want to
2887 ** discard the database schema, as the user code implementing the
2888 ** v-table would have to be ready for the sqlite3_vtab structure itself
2889 ** to be invalidated whenever sqlite3_step() is called from within
2890 ** a v-table method.
2891 */
2892 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
2893 sqlite3ResetInternalSchema(db, pOp->p1);
2894 }
2895
drhf6d8ab82007-01-12 23:43:42 +00002896 sqlite3ExpirePreparedStatements(db);
drh50e5dad2001-09-15 00:57:28 +00002897 rc = SQLITE_SCHEMA;
2898 }
2899 break;
2900}
2901
drh98757152008-01-09 23:04:12 +00002902/* Opcode: OpenRead P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00002903**
drhecdc7532001-09-23 02:35:53 +00002904** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00002905** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00002906** P3==0 means the main database, P3==1 means the database used for
2907** temporary tables, and P3>1 means used the corresponding attached
2908** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00002909** values need not be contiguous but all P1 values should be small integers.
2910** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00002911**
drh98757152008-01-09 23:04:12 +00002912** If P5!=0 then use the content of register P2 as the root page, not
2913** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00002914**
drhb19a2bc2001-09-16 00:13:26 +00002915** There will be a read lock on the database whenever there is an
2916** open cursor. If the database was unlocked prior to this instruction
2917** then a read lock is acquired as part of this instruction. A read
2918** lock allows other processes to read the database but prohibits
2919** any other process from modifying the database. The read lock is
2920** released when all cursors are closed. If this instruction attempts
2921** to get a read lock but fails, the script terminates with an
2922** SQLITE_BUSY error code.
2923**
danielk1977d336e222009-02-20 10:58:41 +00002924** The P4 value may be either an integer (P4_INT32) or a pointer to
2925** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
2926** structure, then said structure defines the content and collating
2927** sequence of the index being opened. Otherwise, if P4 is an integer
2928** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00002929**
drh001bbcb2003-03-19 03:14:00 +00002930** See also OpenWrite.
drh5e00f6c2001-09-13 13:46:56 +00002931*/
drh98757152008-01-09 23:04:12 +00002932/* Opcode: OpenWrite P1 P2 P3 P4 P5
drhecdc7532001-09-23 02:35:53 +00002933**
2934** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00002935** page is P2. Or if P5!=0 use the content of register P2 to find the
2936** root page.
drhecdc7532001-09-23 02:35:53 +00002937**
danielk1977d336e222009-02-20 10:58:41 +00002938** The P4 value may be either an integer (P4_INT32) or a pointer to
2939** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
2940** structure, then said structure defines the content and collating
2941** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00002942** value, it is set to the number of columns in the table, or to the
2943** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00002944**
drh001bbcb2003-03-19 03:14:00 +00002945** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00002946** in read/write mode. For a given table, there can be one or more read-only
2947** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00002948**
drh001bbcb2003-03-19 03:14:00 +00002949** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00002950*/
drh9cbf3422008-01-17 16:22:13 +00002951case OP_OpenRead:
2952case OP_OpenWrite: {
drh856c1032009-06-02 15:21:42 +00002953 int nField;
2954 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00002955 int p2;
2956 int iDb;
drhf57b3392001-10-08 13:22:32 +00002957 int wrFlag;
2958 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00002959 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00002960 Db *pDb;
drh856c1032009-06-02 15:21:42 +00002961
danfa401de2009-10-16 14:55:03 +00002962 if( p->expired ){
2963 rc = SQLITE_ABORT;
2964 break;
2965 }
2966
drh856c1032009-06-02 15:21:42 +00002967 nField = 0;
2968 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00002969 p2 = pOp->p2;
2970 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00002971 assert( iDb>=0 && iDb<db->nDb );
drhfb982642007-08-30 01:19:59 +00002972 assert( (p->btreeMask & (1<<iDb))!=0 );
drhd946db02005-12-29 19:23:06 +00002973 pDb = &db->aDb[iDb];
2974 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00002975 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00002976 if( pOp->opcode==OP_OpenWrite ){
2977 wrFlag = 1;
danielk1977da184232006-01-05 11:34:32 +00002978 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
2979 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00002980 }
2981 }else{
2982 wrFlag = 0;
2983 }
drh98757152008-01-09 23:04:12 +00002984 if( pOp->p5 ){
drh9cbf3422008-01-17 16:22:13 +00002985 assert( p2>0 );
2986 assert( p2<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00002987 pIn2 = &aMem[p2];
drh9cbf3422008-01-17 16:22:13 +00002988 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00002989 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00002990 /* The p2 value always comes from a prior OP_CreateTable opcode and
2991 ** that opcode will always set the p2 value to 2 or more or else fail.
2992 ** If there were a failure, the prepared statement would have halted
2993 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00002994 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00002995 rc = SQLITE_CORRUPT_BKPT;
2996 goto abort_due_to_error;
2997 }
drh5edc3122001-09-13 21:53:09 +00002998 }
danielk1977d336e222009-02-20 10:58:41 +00002999 if( pOp->p4type==P4_KEYINFO ){
3000 pKeyInfo = pOp->p4.pKeyInfo;
3001 pKeyInfo->enc = ENC(p->db);
3002 nField = pKeyInfo->nField+1;
3003 }else if( pOp->p4type==P4_INT32 ){
3004 nField = pOp->p4.i;
3005 }
drh653b82a2009-06-22 11:10:47 +00003006 assert( pOp->p1>=0 );
3007 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003008 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003009 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003010 pCur->isOrdered = 1;
danielk1977d336e222009-02-20 10:58:41 +00003011 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3012 pCur->pKeyInfo = pKeyInfo;
3013
danielk1977172114a2009-07-07 15:47:12 +00003014 /* Since it performs no memory allocation or IO, the only values that
3015 ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK.
3016 ** SQLITE_EMPTY is only returned when attempting to open the table
3017 ** rooted at page 1 of a zero-byte database. */
3018 assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
3019 if( rc==SQLITE_EMPTY ){
3020 pCur->pCursor = 0;
3021 rc = SQLITE_OK;
danielk197724162fe2004-06-04 06:22:00 +00003022 }
danielk1977172114a2009-07-07 15:47:12 +00003023
3024 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3025 ** SQLite used to check if the root-page flags were sane at this point
3026 ** and report database corruption if they were not, but this check has
3027 ** since moved into the btree layer. */
3028 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3029 pCur->isIndex = !pCur->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003030 break;
3031}
3032
drh98757152008-01-09 23:04:12 +00003033/* Opcode: OpenEphemeral P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00003034**
drhb9bb7c12006-06-11 23:41:55 +00003035** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003036** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003037** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003038** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003039**
drh25d3adb2010-04-05 15:11:08 +00003040** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003041** The cursor points to a BTree table if P4==0 and to a BTree index
3042** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003043** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003044**
3045** This opcode was once called OpenTemp. But that created
3046** confusion because the term "temp table", might refer either
3047** to a TEMP table at the SQL level, or to a table opened by
3048** this opcode. Then this opcode was call OpenVirtual. But
3049** that created confusion with the whole virtual-table idea.
drh5e00f6c2001-09-13 13:46:56 +00003050*/
drha21a64d2010-04-06 22:33:55 +00003051/* Opcode: OpenAutoindex P1 P2 * P4 *
3052**
3053** This opcode works the same as OP_OpenEphemeral. It has a
3054** different name to distinguish its use. Tables created using
3055** by this opcode will be used for automatically created transient
3056** indices in joins.
3057*/
3058case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003059case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003060 VdbeCursor *pCx;
drhd4187c72010-08-30 22:15:45 +00003061 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003062 SQLITE_OPEN_READWRITE |
3063 SQLITE_OPEN_CREATE |
3064 SQLITE_OPEN_EXCLUSIVE |
3065 SQLITE_OPEN_DELETEONCLOSE |
3066 SQLITE_OPEN_TRANSIENT_DB;
3067
drh653b82a2009-06-22 11:10:47 +00003068 assert( pOp->p1>=0 );
3069 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003070 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003071 pCx->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003072 rc = sqlite3BtreeOpen(0, db, &pCx->pBt,
3073 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003074 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003075 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003076 }
3077 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003078 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003079 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003080 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003081 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003082 */
danielk19772dca4ac2008-01-03 11:50:29 +00003083 if( pOp->p4.pKeyInfo ){
drhc6b52df2002-01-04 03:09:29 +00003084 int pgno;
drh66a51672008-01-03 00:01:23 +00003085 assert( pOp->p4type==P4_KEYINFO );
drhd4187c72010-08-30 22:15:45 +00003086 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY);
drhc6b52df2002-01-04 03:09:29 +00003087 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003088 assert( pgno==MASTER_ROOT+1 );
drh1e968a02008-03-25 00:22:21 +00003089 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
danielk1977cd3e8f72008-03-25 09:47:35 +00003090 (KeyInfo*)pOp->p4.z, pCx->pCursor);
danielk19772dca4ac2008-01-03 11:50:29 +00003091 pCx->pKeyInfo = pOp->p4.pKeyInfo;
danielk197714db2662006-01-09 16:12:04 +00003092 pCx->pKeyInfo->enc = ENC(p->db);
drhc6b52df2002-01-04 03:09:29 +00003093 }
drhf0863fe2005-06-12 21:35:51 +00003094 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003095 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003096 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003097 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003098 }
drh5e00f6c2001-09-13 13:46:56 +00003099 }
drhd4187c72010-08-30 22:15:45 +00003100 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
drhf0863fe2005-06-12 21:35:51 +00003101 pCx->isIndex = !pCx->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003102 break;
3103}
3104
danielk1977d336e222009-02-20 10:58:41 +00003105/* Opcode: OpenPseudo P1 P2 P3 * *
drh70ce3f02003-04-15 19:22:22 +00003106**
3107** Open a new cursor that points to a fake table that contains a single
drh3e9ca092009-09-08 01:14:48 +00003108** row of data. The content of that one row in the content of memory
3109** register P2. In other words, cursor P1 becomes an alias for the
3110** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003111**
drh2d8d7ce2010-02-15 15:17:05 +00003112** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003113** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003114** individual columns using the OP_Column opcode. The OP_Column opcode
3115** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003116**
3117** P3 is the number of fields in the records that will be stored by
3118** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003119*/
drh9cbf3422008-01-17 16:22:13 +00003120case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003121 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003122
drh653b82a2009-06-22 11:10:47 +00003123 assert( pOp->p1>=0 );
3124 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003125 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003126 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003127 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003128 pCx->isTable = 1;
3129 pCx->isIndex = 0;
drh70ce3f02003-04-15 19:22:22 +00003130 break;
3131}
3132
drh98757152008-01-09 23:04:12 +00003133/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003134**
3135** Close a cursor previously opened as P1. If P1 is not
3136** currently open, this instruction is a no-op.
3137*/
drh9cbf3422008-01-17 16:22:13 +00003138case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003139 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3140 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3141 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003142 break;
3143}
3144
drh959403f2008-12-12 17:56:16 +00003145/* Opcode: SeekGe P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003146**
danielk1977b790c6c2008-04-18 10:25:24 +00003147** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003148** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003149** to an SQL index, then P3 is the first in an array of P4 registers
3150** that are used as an unpacked index key.
3151**
3152** Reposition cursor P1 so that it points to the smallest entry that
3153** is greater than or equal to the key value. If there are no records
3154** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003155**
drh959403f2008-12-12 17:56:16 +00003156** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003157*/
drh959403f2008-12-12 17:56:16 +00003158/* Opcode: SeekGt P1 P2 P3 P4 *
drh7cf6e4d2004-05-19 14:56:55 +00003159**
danielk1977b790c6c2008-04-18 10:25:24 +00003160** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003161** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003162** to an SQL index, then P3 is the first in an array of P4 registers
3163** that are used as an unpacked index key.
3164**
3165** Reposition cursor P1 so that it points to the smallest entry that
3166** is greater than the key value. If there are no records greater than
3167** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003168**
drh959403f2008-12-12 17:56:16 +00003169** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003170*/
drh959403f2008-12-12 17:56:16 +00003171/* Opcode: SeekLt P1 P2 P3 P4 *
drhc045ec52002-12-04 20:01:06 +00003172**
danielk1977b790c6c2008-04-18 10:25:24 +00003173** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003174** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003175** to an SQL index, then P3 is the first in an array of P4 registers
3176** that are used as an unpacked index key.
3177**
3178** Reposition cursor P1 so that it points to the largest entry that
3179** is less than the key value. If there are no records less than
3180** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003181**
drh959403f2008-12-12 17:56:16 +00003182** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003183*/
drh959403f2008-12-12 17:56:16 +00003184/* Opcode: SeekLe P1 P2 P3 P4 *
danielk19773d1bfea2004-05-14 11:00:53 +00003185**
danielk1977b790c6c2008-04-18 10:25:24 +00003186** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003187** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003188** to an SQL index, then P3 is the first in an array of P4 registers
3189** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003190**
danielk1977b790c6c2008-04-18 10:25:24 +00003191** Reposition cursor P1 so that it points to the largest entry that
3192** is less than or equal to the key value. If there are no records
3193** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003194**
drh959403f2008-12-12 17:56:16 +00003195** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003196*/
drh959403f2008-12-12 17:56:16 +00003197case OP_SeekLt: /* jump, in3 */
3198case OP_SeekLe: /* jump, in3 */
3199case OP_SeekGe: /* jump, in3 */
3200case OP_SeekGt: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003201 int res;
3202 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003203 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003204 UnpackedRecord r;
3205 int nField;
3206 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003207
drh653b82a2009-06-22 11:10:47 +00003208 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003209 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003210 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003211 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003212 assert( pC->pseudoTableReg==0 );
drh1f350122009-11-13 20:52:43 +00003213 assert( OP_SeekLe == OP_SeekLt+1 );
3214 assert( OP_SeekGe == OP_SeekLt+2 );
3215 assert( OP_SeekGt == OP_SeekLt+3 );
drhd4187c72010-08-30 22:15:45 +00003216 assert( pC->isOrdered );
drh70ce3f02003-04-15 19:22:22 +00003217 if( pC->pCursor!=0 ){
drh7cf6e4d2004-05-19 14:56:55 +00003218 oc = pOp->opcode;
drha11846b2004-01-07 18:52:56 +00003219 pC->nullRow = 0;
drhf0863fe2005-06-12 21:35:51 +00003220 if( pC->isTable ){
drh959403f2008-12-12 17:56:16 +00003221 /* The input value in P3 might be of any type: integer, real, string,
3222 ** blob, or NULL. But it needs to be an integer before we can do
3223 ** the seek, so covert it. */
drh3c657212009-11-17 23:59:58 +00003224 pIn3 = &aMem[pOp->p3];
drh959403f2008-12-12 17:56:16 +00003225 applyNumericAffinity(pIn3);
3226 iKey = sqlite3VdbeIntValue(pIn3);
3227 pC->rowidIsValid = 0;
3228
3229 /* If the P3 value could not be converted into an integer without
3230 ** loss of information, then special processing is required... */
3231 if( (pIn3->flags & MEM_Int)==0 ){
3232 if( (pIn3->flags & MEM_Real)==0 ){
3233 /* If the P3 value cannot be converted into any kind of a number,
3234 ** then the seek is not possible, so jump to P2 */
3235 pc = pOp->p2 - 1;
3236 break;
3237 }
3238 /* If we reach this point, then the P3 value must be a floating
3239 ** point number. */
3240 assert( (pIn3->flags & MEM_Real)!=0 );
3241
3242 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
drhaa736092009-06-22 00:55:30 +00003243 /* The P3 value is too large in magnitude to be expressed as an
drh959403f2008-12-12 17:56:16 +00003244 ** integer. */
3245 res = 1;
3246 if( pIn3->r<0 ){
drh1f350122009-11-13 20:52:43 +00003247 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003248 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3249 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3250 }
3251 }else{
drh1f350122009-11-13 20:52:43 +00003252 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
drh959403f2008-12-12 17:56:16 +00003253 rc = sqlite3BtreeLast(pC->pCursor, &res);
3254 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3255 }
3256 }
3257 if( res ){
3258 pc = pOp->p2 - 1;
3259 }
3260 break;
3261 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3262 /* Use the ceiling() function to convert real->int */
3263 if( pIn3->r > (double)iKey ) iKey++;
3264 }else{
3265 /* Use the floor() function to convert real->int */
3266 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3267 if( pIn3->r < (double)iKey ) iKey--;
3268 }
3269 }
drhe63d9992008-08-13 19:11:48 +00003270 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003271 if( rc!=SQLITE_OK ){
3272 goto abort_due_to_error;
3273 }
drh959403f2008-12-12 17:56:16 +00003274 if( res==0 ){
3275 pC->rowidIsValid = 1;
3276 pC->lastRowid = iKey;
3277 }
drh5e00f6c2001-09-13 13:46:56 +00003278 }else{
drh856c1032009-06-02 15:21:42 +00003279 nField = pOp->p4.i;
danielk1977b790c6c2008-04-18 10:25:24 +00003280 assert( pOp->p4type==P4_INT32 );
3281 assert( nField>0 );
3282 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00003283 r.nField = (u16)nField;
drh1f350122009-11-13 20:52:43 +00003284
3285 /* The next line of code computes as follows, only faster:
3286 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3287 ** r.flags = UNPACKED_INCRKEY;
3288 ** }else{
3289 ** r.flags = 0;
3290 ** }
3291 */
shaneh5e17e8b2009-12-03 04:40:47 +00003292 r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
drh1f350122009-11-13 20:52:43 +00003293 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3294 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3295 assert( oc!=OP_SeekGe || r.flags==0 );
3296 assert( oc!=OP_SeekLt || r.flags==0 );
3297
drha6c2ed92009-11-14 23:22:23 +00003298 r.aMem = &aMem[pOp->p3];
drh039fc322009-11-17 18:31:47 +00003299 ExpandBlob(r.aMem);
drhe63d9992008-08-13 19:11:48 +00003300 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003301 if( rc!=SQLITE_OK ){
3302 goto abort_due_to_error;
3303 }
drhf0863fe2005-06-12 21:35:51 +00003304 pC->rowidIsValid = 0;
drh5e00f6c2001-09-13 13:46:56 +00003305 }
drha11846b2004-01-07 18:52:56 +00003306 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003307 pC->cacheStatus = CACHE_STALE;
drh0f7eb612006-08-08 13:51:43 +00003308#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +00003309 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00003310#endif
drh1f350122009-11-13 20:52:43 +00003311 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003312 if( res<0 || (res==0 && oc==OP_SeekGt) ){
danielk197728129562005-01-11 10:25:06 +00003313 rc = sqlite3BtreeNext(pC->pCursor, &res);
danielk197701427a62005-01-11 13:02:33 +00003314 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003315 pC->rowidIsValid = 0;
drh1af3fdb2004-07-18 21:33:01 +00003316 }else{
3317 res = 0;
drh8721ce42001-11-07 14:22:00 +00003318 }
drh7cf6e4d2004-05-19 14:56:55 +00003319 }else{
drh959403f2008-12-12 17:56:16 +00003320 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3321 if( res>0 || (res==0 && oc==OP_SeekLt) ){
danielk197701427a62005-01-11 13:02:33 +00003322 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3323 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003324 pC->rowidIsValid = 0;
drh1a844c32002-12-04 22:29:28 +00003325 }else{
3326 /* res might be negative because the table is empty. Check to
3327 ** see if this is the case.
3328 */
drhf328bc82004-05-10 23:29:49 +00003329 res = sqlite3BtreeEof(pC->pCursor);
drh1a844c32002-12-04 22:29:28 +00003330 }
drh1af3fdb2004-07-18 21:33:01 +00003331 }
drh91fd4d42008-01-19 20:11:25 +00003332 assert( pOp->p2>0 );
drh1af3fdb2004-07-18 21:33:01 +00003333 if( res ){
drh91fd4d42008-01-19 20:11:25 +00003334 pc = pOp->p2 - 1;
drh8721ce42001-11-07 14:22:00 +00003335 }
drhaa736092009-06-22 00:55:30 +00003336 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003337 /* This happens when attempting to open the sqlite3_master table
3338 ** for read access returns SQLITE_EMPTY. In this case always
3339 ** take the jump (since there are no records in the table).
3340 */
3341 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00003342 }
drh5e00f6c2001-09-13 13:46:56 +00003343 break;
3344}
3345
drh959403f2008-12-12 17:56:16 +00003346/* Opcode: Seek P1 P2 * * *
3347**
3348** P1 is an open table cursor and P2 is a rowid integer. Arrange
3349** for P1 to move so that it points to the rowid given by P2.
3350**
3351** This is actually a deferred seek. Nothing actually happens until
3352** the cursor is used to read a record. That way, if no reads
3353** occur, no unnecessary I/O happens.
3354*/
3355case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003356 VdbeCursor *pC;
3357
drh653b82a2009-06-22 11:10:47 +00003358 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3359 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003360 assert( pC!=0 );
drhaa736092009-06-22 00:55:30 +00003361 if( ALWAYS(pC->pCursor!=0) ){
drh959403f2008-12-12 17:56:16 +00003362 assert( pC->isTable );
3363 pC->nullRow = 0;
drh3c657212009-11-17 23:59:58 +00003364 pIn2 = &aMem[pOp->p2];
drh959403f2008-12-12 17:56:16 +00003365 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3366 pC->rowidIsValid = 0;
3367 pC->deferredMoveto = 1;
3368 }
3369 break;
3370}
3371
3372
drh8cff69d2009-11-12 19:59:44 +00003373/* Opcode: Found P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003374**
drh8cff69d2009-11-12 19:59:44 +00003375** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3376** P4>0 then register P3 is the first of P4 registers that form an unpacked
3377** record.
3378**
3379** Cursor P1 is on an index btree. If the record identified by P3 and P4
3380** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003381** P1 is left pointing at the matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003382*/
drh8cff69d2009-11-12 19:59:44 +00003383/* Opcode: NotFound P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003384**
drh8cff69d2009-11-12 19:59:44 +00003385** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3386** P4>0 then register P3 is the first of P4 registers that form an unpacked
3387** record.
3388**
3389** Cursor P1 is on an index btree. If the record identified by P3 and P4
3390** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3391** does contain an entry whose prefix matches the P3/P4 record then control
3392** falls through to the next instruction and P1 is left pointing at the
3393** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003394**
drhcb6d50e2008-08-21 19:28:30 +00003395** See also: Found, NotExists, IsUnique
drh5e00f6c2001-09-13 13:46:56 +00003396*/
drh9cbf3422008-01-17 16:22:13 +00003397case OP_NotFound: /* jump, in3 */
3398case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003399 int alreadyExists;
drhdfe88ec2008-11-03 20:55:06 +00003400 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003401 int res;
3402 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003403 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00003404 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3405
dan0ff297e2009-09-25 17:03:14 +00003406#ifdef SQLITE_TEST
3407 sqlite3_found_count++;
3408#endif
3409
drh856c1032009-06-02 15:21:42 +00003410 alreadyExists = 0;
drhaa736092009-06-22 00:55:30 +00003411 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003412 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003413 pC = p->apCsr[pOp->p1];
3414 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00003415 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003416 if( ALWAYS(pC->pCursor!=0) ){
drhe63d9992008-08-13 19:11:48 +00003417
drhf0863fe2005-06-12 21:35:51 +00003418 assert( pC->isTable==0 );
drh8cff69d2009-11-12 19:59:44 +00003419 if( pOp->p4.i>0 ){
3420 r.pKeyInfo = pC->pKeyInfo;
shaneh5e17e8b2009-12-03 04:40:47 +00003421 r.nField = (u16)pOp->p4.i;
drh8cff69d2009-11-12 19:59:44 +00003422 r.aMem = pIn3;
3423 r.flags = UNPACKED_PREFIX_MATCH;
3424 pIdxKey = &r;
3425 }else{
3426 assert( pIn3->flags & MEM_Blob );
3427 ExpandBlob(pIn3);
3428 pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z,
3429 aTempRec, sizeof(aTempRec));
3430 if( pIdxKey==0 ){
3431 goto no_mem;
3432 }
3433 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
danielk19779a96b662007-11-29 17:05:18 +00003434 }
drhe63d9992008-08-13 19:11:48 +00003435 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drh8cff69d2009-11-12 19:59:44 +00003436 if( pOp->p4.i==0 ){
3437 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
3438 }
danielk197777519402007-08-30 11:48:31 +00003439 if( rc!=SQLITE_OK ){
3440 break;
3441 }
3442 alreadyExists = (res==0);
drha11846b2004-01-07 18:52:56 +00003443 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003444 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003445 }
3446 if( pOp->opcode==OP_Found ){
3447 if( alreadyExists ) pc = pOp->p2 - 1;
3448 }else{
3449 if( !alreadyExists ) pc = pOp->p2 - 1;
3450 }
drh5e00f6c2001-09-13 13:46:56 +00003451 break;
3452}
3453
drh98757152008-01-09 23:04:12 +00003454/* Opcode: IsUnique P1 P2 P3 P4 *
drh9cfcf5d2002-01-29 18:41:24 +00003455**
drh8cff69d2009-11-12 19:59:44 +00003456** Cursor P1 is open on an index b-tree - that is to say, a btree which
3457** no data and where the key are records generated by OP_MakeRecord with
3458** the list field being the integer ROWID of the entry that the index
3459** entry refers to.
danielk1977de630352009-05-04 11:42:29 +00003460**
3461** The P3 register contains an integer record number. Call this record
3462** number R. Register P4 is the first in a set of N contiguous registers
3463** that make up an unpacked index key that can be used with cursor P1.
3464** The value of N can be inferred from the cursor. N includes the rowid
3465** value appended to the end of the index record. This rowid value may
3466** or may not be the same as R.
3467**
3468** If any of the N registers beginning with register P4 contains a NULL
3469** value, jump immediately to P2.
3470**
3471** Otherwise, this instruction checks if cursor P1 contains an entry
3472** where the first (N-1) fields match but the rowid value at the end
3473** of the index entry is not R. If there is no such entry, control jumps
3474** to instruction P2. Otherwise, the rowid of the conflicting index
3475** entry is copied to register P3 and control falls through to the next
3476** instruction.
drh9cfcf5d2002-01-29 18:41:24 +00003477**
drh9cbf3422008-01-17 16:22:13 +00003478** See also: NotFound, NotExists, Found
drh9cfcf5d2002-01-29 18:41:24 +00003479*/
drh9cbf3422008-01-17 16:22:13 +00003480case OP_IsUnique: { /* jump, in3 */
shane60a4b532009-05-06 18:57:09 +00003481 u16 ii;
drhdfe88ec2008-11-03 20:55:06 +00003482 VdbeCursor *pCx;
drh9cfcf5d2002-01-29 18:41:24 +00003483 BtCursor *pCrsr;
shane60a4b532009-05-06 18:57:09 +00003484 u16 nField;
drha6c2ed92009-11-14 23:22:23 +00003485 Mem *aMx;
drh856c1032009-06-02 15:21:42 +00003486 UnpackedRecord r; /* B-Tree index search key */
3487 i64 R; /* Rowid stored in register P3 */
drh9cfcf5d2002-01-29 18:41:24 +00003488
drh3c657212009-11-17 23:59:58 +00003489 pIn3 = &aMem[pOp->p3];
drha6c2ed92009-11-14 23:22:23 +00003490 aMx = &aMem[pOp->p4.i];
danielk1977de630352009-05-04 11:42:29 +00003491 /* Assert that the values of parameters P1 and P4 are in range. */
drh98757152008-01-09 23:04:12 +00003492 assert( pOp->p4type==P4_INT32 );
drh9cbf3422008-01-17 16:22:13 +00003493 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
danielk1977de630352009-05-04 11:42:29 +00003494 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3495
3496 /* Find the index cursor. */
3497 pCx = p->apCsr[pOp->p1];
3498 assert( pCx->deferredMoveto==0 );
3499 pCx->seekResult = 0;
3500 pCx->cacheStatus = CACHE_STALE;
drhf328bc82004-05-10 23:29:49 +00003501 pCrsr = pCx->pCursor;
danielk1977de630352009-05-04 11:42:29 +00003502
3503 /* If any of the values are NULL, take the jump. */
3504 nField = pCx->pKeyInfo->nField;
3505 for(ii=0; ii<nField; ii++){
drha6c2ed92009-11-14 23:22:23 +00003506 if( aMx[ii].flags & MEM_Null ){
danielk1977de630352009-05-04 11:42:29 +00003507 pc = pOp->p2 - 1;
3508 pCrsr = 0;
3509 break;
3510 }
3511 }
drha6c2ed92009-11-14 23:22:23 +00003512 assert( (aMx[nField].flags & MEM_Null)==0 );
danielk1977de630352009-05-04 11:42:29 +00003513
drhf328bc82004-05-10 23:29:49 +00003514 if( pCrsr!=0 ){
danielk1977de630352009-05-04 11:42:29 +00003515 /* Populate the index search key. */
3516 r.pKeyInfo = pCx->pKeyInfo;
3517 r.nField = nField + 1;
3518 r.flags = UNPACKED_PREFIX_SEARCH;
drha6c2ed92009-11-14 23:22:23 +00003519 r.aMem = aMx;
danielk1977452c9892004-05-13 05:16:15 +00003520
danielk1977de630352009-05-04 11:42:29 +00003521 /* Extract the value of R from register P3. */
3522 sqlite3VdbeMemIntegerify(pIn3);
3523 R = pIn3->u.i;
3524
3525 /* Search the B-Tree index. If no conflicting record is found, jump
3526 ** to P2. Otherwise, copy the rowid of the conflicting record to
3527 ** register P3 and fall through to the next instruction. */
3528 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3529 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
drh9cfcf5d2002-01-29 18:41:24 +00003530 pc = pOp->p2 - 1;
danielk1977de630352009-05-04 11:42:29 +00003531 }else{
3532 pIn3->u.i = r.rowid;
drh9cfcf5d2002-01-29 18:41:24 +00003533 }
drh9cfcf5d2002-01-29 18:41:24 +00003534 }
3535 break;
3536}
3537
drh9cbf3422008-01-17 16:22:13 +00003538/* Opcode: NotExists P1 P2 P3 * *
drh6b125452002-01-28 15:53:03 +00003539**
drh9cbf3422008-01-17 16:22:13 +00003540** Use the content of register P3 as a integer key. If a record
danielk197796cb76f2008-01-04 13:24:28 +00003541** with that key does not exist in table of P1, then jump to P2.
drh710c4842010-08-30 01:17:20 +00003542** If the record does exist, then fall through. The cursor is left
drh9cbf3422008-01-17 16:22:13 +00003543** pointing to the record if it exists.
drh6b125452002-01-28 15:53:03 +00003544**
3545** The difference between this operation and NotFound is that this
drhf0863fe2005-06-12 21:35:51 +00003546** operation assumes the key is an integer and that P1 is a table whereas
3547** NotFound assumes key is a blob constructed from MakeRecord and
3548** P1 is an index.
drh6b125452002-01-28 15:53:03 +00003549**
drhcb6d50e2008-08-21 19:28:30 +00003550** See also: Found, NotFound, IsUnique
drh6b125452002-01-28 15:53:03 +00003551*/
drh9cbf3422008-01-17 16:22:13 +00003552case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003553 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003554 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003555 int res;
3556 u64 iKey;
3557
drh3c657212009-11-17 23:59:58 +00003558 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003559 assert( pIn3->flags & MEM_Int );
3560 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3561 pC = p->apCsr[pOp->p1];
3562 assert( pC!=0 );
3563 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003564 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003565 pCrsr = pC->pCursor;
3566 if( pCrsr!=0 ){
drh856c1032009-06-02 15:21:42 +00003567 res = 0;
drhaa736092009-06-22 00:55:30 +00003568 iKey = pIn3->u.i;
danielk1977de630352009-05-04 11:42:29 +00003569 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drh98757152008-01-09 23:04:12 +00003570 pC->lastRowid = pIn3->u.i;
drh9c1905f2008-12-10 22:32:56 +00003571 pC->rowidIsValid = res==0 ?1:0;
drh9188b382004-05-14 21:12:22 +00003572 pC->nullRow = 0;
drh76873ab2006-01-07 18:48:26 +00003573 pC->cacheStatus = CACHE_STALE;
danielk19771d461462009-04-21 09:02:45 +00003574 pC->deferredMoveto = 0;
danielk197728129562005-01-11 10:25:06 +00003575 if( res!=0 ){
drh17f71932002-02-21 12:01:27 +00003576 pc = pOp->p2 - 1;
drh91fd4d42008-01-19 20:11:25 +00003577 assert( pC->rowidIsValid==0 );
drh6b125452002-01-28 15:53:03 +00003578 }
danielk1977de630352009-05-04 11:42:29 +00003579 pC->seekResult = res;
drhaa736092009-06-22 00:55:30 +00003580 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003581 /* This happens when an attempt to open a read cursor on the
3582 ** sqlite_master table returns SQLITE_EMPTY.
3583 */
danielk1977f7b9d662008-06-23 18:49:43 +00003584 pc = pOp->p2 - 1;
3585 assert( pC->rowidIsValid==0 );
danielk1977de630352009-05-04 11:42:29 +00003586 pC->seekResult = 0;
drh6b125452002-01-28 15:53:03 +00003587 }
drh6b125452002-01-28 15:53:03 +00003588 break;
3589}
3590
drh4c583122008-01-04 22:01:03 +00003591/* Opcode: Sequence P1 P2 * * *
drh4db38a72005-09-01 12:16:28 +00003592**
drh4c583122008-01-04 22:01:03 +00003593** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003594** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003595** The sequence number on the cursor is incremented after this
3596** instruction.
drh4db38a72005-09-01 12:16:28 +00003597*/
drh4c583122008-01-04 22:01:03 +00003598case OP_Sequence: { /* out2-prerelease */
drh653b82a2009-06-22 11:10:47 +00003599 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3600 assert( p->apCsr[pOp->p1]!=0 );
3601 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003602 break;
3603}
3604
3605
drh98757152008-01-09 23:04:12 +00003606/* Opcode: NewRowid P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00003607**
drhf0863fe2005-06-12 21:35:51 +00003608** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003609** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003610** table that cursor P1 points to. The new record number is written
3611** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003612**
dan76d462e2009-08-30 11:42:51 +00003613** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3614** the largest previously generated record number. No new record numbers are
3615** allowed to be less than this value. When this value reaches its maximum,
3616** a SQLITE_FULL error is generated. The P3 register is updated with the '
3617** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003618** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003619*/
drh4c583122008-01-04 22:01:03 +00003620case OP_NewRowid: { /* out2-prerelease */
drhaa736092009-06-22 00:55:30 +00003621 i64 v; /* The new rowid */
3622 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3623 int res; /* Result of an sqlite3BtreeLast() */
3624 int cnt; /* Counter to limit the number of searches */
3625 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003626 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003627
drh856c1032009-06-02 15:21:42 +00003628 v = 0;
3629 res = 0;
drhaa736092009-06-22 00:55:30 +00003630 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3631 pC = p->apCsr[pOp->p1];
3632 assert( pC!=0 );
3633 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00003634 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00003635 }else{
drh5cf8e8c2002-02-19 22:42:05 +00003636 /* The next rowid or record number (different terms for the same
3637 ** thing) is obtained in a two-step algorithm.
3638 **
3639 ** First we attempt to find the largest existing rowid and add one
3640 ** to that. But if the largest existing rowid is already the maximum
3641 ** positive integer, we have to fall through to the second
3642 ** probabilistic algorithm
3643 **
3644 ** The second algorithm is to select a rowid at random and see if
3645 ** it already exists in the table. If it does not exist, we have
3646 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00003647 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00003648 */
drhaa736092009-06-22 00:55:30 +00003649 assert( pC->isTable );
drh5e00f6c2001-09-13 13:46:56 +00003650 cnt = 0;
drhfe2093d2005-01-20 22:48:47 +00003651
drh75f86a42005-02-17 00:03:06 +00003652#ifdef SQLITE_32BIT_ROWID
3653# define MAX_ROWID 0x7fffffff
3654#else
drhfe2093d2005-01-20 22:48:47 +00003655 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3656 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3657 ** to provide the constant while making all compilers happy.
3658 */
danielk197764202cf2008-11-17 15:31:47 +00003659# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00003660#endif
drhfe2093d2005-01-20 22:48:47 +00003661
drh5cf8e8c2002-02-19 22:42:05 +00003662 if( !pC->useRandomRowid ){
drh7f751222009-03-17 22:33:00 +00003663 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3664 if( v==0 ){
danielk1977261919c2005-12-06 12:52:59 +00003665 rc = sqlite3BtreeLast(pC->pCursor, &res);
3666 if( rc!=SQLITE_OK ){
3667 goto abort_due_to_error;
3668 }
drh32fbe342002-10-19 20:16:37 +00003669 if( res ){
drhc79c7612010-01-01 18:57:48 +00003670 v = 1; /* IMP: R-61914-48074 */
drh5cf8e8c2002-02-19 22:42:05 +00003671 }else{
drhea8ffdf2009-07-22 00:35:23 +00003672 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
drhc27ae612009-07-14 18:35:44 +00003673 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3674 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
drh75f86a42005-02-17 00:03:06 +00003675 if( v==MAX_ROWID ){
drh32fbe342002-10-19 20:16:37 +00003676 pC->useRandomRowid = 1;
3677 }else{
drhc79c7612010-01-01 18:57:48 +00003678 v++; /* IMP: R-29538-34987 */
drh32fbe342002-10-19 20:16:37 +00003679 }
drh5cf8e8c2002-02-19 22:42:05 +00003680 }
drh3fc190c2001-09-14 03:24:23 +00003681 }
drh205f48e2004-11-05 00:43:11 +00003682
3683#ifndef SQLITE_OMIT_AUTOINCREMENT
drh4c583122008-01-04 22:01:03 +00003684 if( pOp->p3 ){
shaneabc6b892009-09-10 19:09:03 +00003685 /* Assert that P3 is a valid memory cell. */
3686 assert( pOp->p3>0 );
dan76d462e2009-08-30 11:42:51 +00003687 if( p->pFrame ){
3688 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00003689 /* Assert that P3 is a valid memory cell. */
3690 assert( pOp->p3<=pFrame->nMem );
dan76d462e2009-08-30 11:42:51 +00003691 pMem = &pFrame->aMem[pOp->p3];
3692 }else{
shaneabc6b892009-09-10 19:09:03 +00003693 /* Assert that P3 is a valid memory cell. */
3694 assert( pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003695 pMem = &aMem[pOp->p3];
dan76d462e2009-08-30 11:42:51 +00003696 }
dan76d462e2009-08-30 11:42:51 +00003697
3698 REGISTER_TRACE(pOp->p3, pMem);
drh8a512562005-11-14 22:29:05 +00003699 sqlite3VdbeMemIntegerify(pMem);
drh4c583122008-01-04 22:01:03 +00003700 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
drh3c024d62007-03-30 11:23:45 +00003701 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhc79c7612010-01-01 18:57:48 +00003702 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
drh205f48e2004-11-05 00:43:11 +00003703 goto abort_due_to_error;
3704 }
drh3c024d62007-03-30 11:23:45 +00003705 if( v<pMem->u.i+1 ){
3706 v = pMem->u.i + 1;
drh205f48e2004-11-05 00:43:11 +00003707 }
drh3c024d62007-03-30 11:23:45 +00003708 pMem->u.i = v;
drh205f48e2004-11-05 00:43:11 +00003709 }
3710#endif
3711
drh7f751222009-03-17 22:33:00 +00003712 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
drh5cf8e8c2002-02-19 22:42:05 +00003713 }
3714 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00003715 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00003716 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00003717 ** engine starts picking positive candidate ROWIDs at random until
3718 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00003719 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3720 ** an AUTOINCREMENT table. */
shanehc4d340a2010-09-01 02:37:56 +00003721 /* on the first attempt, simply do one more than previous */
drh9ed7a992009-06-26 15:14:55 +00003722 v = db->lastRowid;
shanehc4d340a2010-09-01 02:37:56 +00003723 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3724 v++; /* ensure non-zero */
drh5cf8e8c2002-02-19 22:42:05 +00003725 cnt = 0;
drh748a52c2010-09-01 11:50:08 +00003726 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3727 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00003728 && (res==0)
3729 && (++cnt<100)){
3730 /* collision - try another random rowid */
3731 sqlite3_randomness(sizeof(v), &v);
3732 if( cnt<5 ){
3733 /* try "small" random rowids for the initial attempts */
3734 v &= 0xffffff;
drh91fd4d42008-01-19 20:11:25 +00003735 }else{
shanehc4d340a2010-09-01 02:37:56 +00003736 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
drh5cf8e8c2002-02-19 22:42:05 +00003737 }
shanehc4d340a2010-09-01 02:37:56 +00003738 v++; /* ensure non-zero */
3739 }
drhaa736092009-06-22 00:55:30 +00003740 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00003741 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00003742 goto abort_due_to_error;
3743 }
drh748a52c2010-09-01 11:50:08 +00003744 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00003745 }
drhf0863fe2005-06-12 21:35:51 +00003746 pC->rowidIsValid = 0;
drha11846b2004-01-07 18:52:56 +00003747 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003748 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003749 }
drh4c583122008-01-04 22:01:03 +00003750 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00003751 break;
3752}
3753
danielk19771f4aa332008-01-03 09:51:55 +00003754/* Opcode: Insert P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003755**
jplyon5a564222003-06-02 06:15:58 +00003756** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00003757** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00003758** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00003759** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00003760** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00003761**
danielk19771f4aa332008-01-03 09:51:55 +00003762** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3763** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00003764** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00003765** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00003766**
drh3e9ca092009-09-08 01:14:48 +00003767** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
3768** the last seek operation (OP_NotExists) was a success, then this
3769** operation will not attempt to find the appropriate row before doing
3770** the insert but will instead overwrite the row that the cursor is
3771** currently pointing to. Presumably, the prior OP_NotExists opcode
3772** has already positioned the cursor correctly. This is an optimization
3773** that boosts performance by avoiding redundant seeks.
3774**
3775** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
3776** UPDATE operation. Otherwise (if the flag is clear) then this opcode
3777** is part of an INSERT operation. The difference is only important to
3778** the update hook.
3779**
drh66a51672008-01-03 00:01:23 +00003780** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00003781** may be NULL. If it is not NULL, then the update-hook
3782** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3783**
drh93aed5a2008-01-16 17:46:38 +00003784** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3785** allocated, then ownership of P2 is transferred to the pseudo-cursor
3786** and register P2 becomes ephemeral. If the cursor is changed, the
3787** value of register P2 will then change. Make sure this does not
3788** cause any problems.)
3789**
drhf0863fe2005-06-12 21:35:51 +00003790** This instruction only works on tables. The equivalent instruction
3791** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00003792*/
drhe05c9292009-10-29 13:48:10 +00003793/* Opcode: InsertInt P1 P2 P3 P4 P5
3794**
3795** This works exactly like OP_Insert except that the key is the
3796** integer value P3, not the value of the integer stored in register P3.
3797*/
3798case OP_Insert:
3799case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00003800 Mem *pData; /* MEM cell holding data for the record to be inserted */
3801 Mem *pKey; /* MEM cell holding key for the record */
3802 i64 iKey; /* The integer ROWID or key for the record to be inserted */
3803 VdbeCursor *pC; /* Cursor to table into which insert is written */
3804 int nZero; /* Number of zero-bytes to append */
3805 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
3806 const char *zDb; /* database name - used by the update hook */
3807 const char *zTbl; /* Table name - used by the opdate hook */
3808 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00003809
drha6c2ed92009-11-14 23:22:23 +00003810 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00003811 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3812 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00003813 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003814 assert( pC->pCursor!=0 );
3815 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00003816 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00003817 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00003818
drhe05c9292009-10-29 13:48:10 +00003819 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00003820 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00003821 assert( pKey->flags & MEM_Int );
3822 REGISTER_TRACE(pOp->p3, pKey);
3823 iKey = pKey->u.i;
3824 }else{
3825 assert( pOp->opcode==OP_InsertInt );
3826 iKey = pOp->p3;
3827 }
3828
drha05a7222008-01-19 03:35:58 +00003829 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhe05c9292009-10-29 13:48:10 +00003830 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00003831 if( pData->flags & MEM_Null ){
3832 pData->z = 0;
3833 pData->n = 0;
3834 }else{
3835 assert( pData->flags & (MEM_Blob|MEM_Str) );
3836 }
drh3e9ca092009-09-08 01:14:48 +00003837 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
3838 if( pData->flags & MEM_Zero ){
3839 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00003840 }else{
drh3e9ca092009-09-08 01:14:48 +00003841 nZero = 0;
drha05a7222008-01-19 03:35:58 +00003842 }
drh3e9ca092009-09-08 01:14:48 +00003843 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
3844 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
3845 pData->z, pData->n, nZero,
3846 pOp->p5 & OPFLAG_APPEND, seekResult
3847 );
drha05a7222008-01-19 03:35:58 +00003848 pC->rowidIsValid = 0;
3849 pC->deferredMoveto = 0;
3850 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00003851
drha05a7222008-01-19 03:35:58 +00003852 /* Invoke the update-hook if required. */
3853 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00003854 zDb = db->aDb[pC->iDb].zName;
3855 zTbl = pOp->p4.z;
3856 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00003857 assert( pC->isTable );
3858 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
3859 assert( pC->iDb>=0 );
3860 }
drh5e00f6c2001-09-13 13:46:56 +00003861 break;
3862}
3863
drh98757152008-01-09 23:04:12 +00003864/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00003865**
drh5edc3122001-09-13 21:53:09 +00003866** Delete the record at which the P1 cursor is currently pointing.
3867**
3868** The cursor will be left pointing at either the next or the previous
3869** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00003870** the next Next instruction will be a no-op. Hence it is OK to delete
3871** a record from within an Next loop.
drhc8d30ac2002-04-12 10:08:59 +00003872**
rdcb0c374f2004-02-20 22:53:38 +00003873** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00003874** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00003875**
drh91fd4d42008-01-19 20:11:25 +00003876** P1 must not be pseudo-table. It has to be a real table with
3877** multiple rows.
3878**
3879** If P4 is not NULL, then it is the name of the table that P1 is
3880** pointing to. The update hook will be invoked, if it exists.
3881** If P4 is not NULL then the P1 cursor must have been positioned
3882** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00003883*/
drh9cbf3422008-01-17 16:22:13 +00003884case OP_Delete: {
drh856c1032009-06-02 15:21:42 +00003885 i64 iKey;
drhdfe88ec2008-11-03 20:55:06 +00003886 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00003887
drh856c1032009-06-02 15:21:42 +00003888 iKey = 0;
drh653b82a2009-06-22 11:10:47 +00003889 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3890 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003891 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00003892 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
danielk197794eb6a12005-12-15 15:22:08 +00003893
drh91fd4d42008-01-19 20:11:25 +00003894 /* If the update-hook will be invoked, set iKey to the rowid of the
3895 ** row being deleted.
3896 */
3897 if( db->xUpdateCallback && pOp->p4.z ){
3898 assert( pC->isTable );
3899 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
3900 iKey = pC->lastRowid;
3901 }
danielk197794eb6a12005-12-15 15:22:08 +00003902
drh9a65f2c2009-06-22 19:05:40 +00003903 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
3904 ** OP_Column on the same table without any intervening operations that
3905 ** might move or invalidate the cursor. Hence cursor pC is always pointing
3906 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
3907 ** below is always a no-op and cannot fail. We will run it anyhow, though,
3908 ** to guard against future changes to the code generator.
3909 **/
3910 assert( pC->deferredMoveto==0 );
drh91fd4d42008-01-19 20:11:25 +00003911 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00003912 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
3913
drh7f751222009-03-17 22:33:00 +00003914 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
drh91fd4d42008-01-19 20:11:25 +00003915 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00003916 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00003917
drh91fd4d42008-01-19 20:11:25 +00003918 /* Invoke the update-hook if required. */
3919 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
3920 const char *zDb = db->aDb[pC->iDb].zName;
3921 const char *zTbl = pOp->p4.z;
3922 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
3923 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00003924 }
danielk1977b28af712004-06-21 06:50:26 +00003925 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00003926 break;
3927}
drhb7f1d9a2009-09-08 02:27:58 +00003928/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00003929**
drhb7f1d9a2009-09-08 02:27:58 +00003930** The value of the change counter is copied to the database handle
3931** change counter (returned by subsequent calls to sqlite3_changes()).
3932** Then the VMs internal change counter resets to 0.
3933** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00003934*/
drh9cbf3422008-01-17 16:22:13 +00003935case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00003936 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00003937 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00003938 break;
3939}
3940
drh98757152008-01-09 23:04:12 +00003941/* Opcode: RowData P1 P2 * * *
drh70ce3f02003-04-15 19:22:22 +00003942**
drh98757152008-01-09 23:04:12 +00003943** Write into register P2 the complete row data for cursor P1.
3944** There is no interpretation of the data.
3945** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00003946** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00003947**
drhde4fcfd2008-01-19 23:50:26 +00003948** If the P1 cursor must be pointing to a valid row (not a NULL row)
3949** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003950*/
drh98757152008-01-09 23:04:12 +00003951/* Opcode: RowKey P1 P2 * * *
drh143f3c42004-01-07 20:37:52 +00003952**
drh98757152008-01-09 23:04:12 +00003953** Write into register P2 the complete row key for cursor P1.
3954** There is no interpretation of the data.
drh9cbf3422008-01-17 16:22:13 +00003955** The key is copied onto the P3 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00003956** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00003957**
drhde4fcfd2008-01-19 23:50:26 +00003958** If the P1 cursor must be pointing to a valid row (not a NULL row)
3959** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00003960*/
danielk1977a7a8e142008-02-13 18:25:27 +00003961case OP_RowKey:
3962case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00003963 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00003964 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00003965 u32 n;
drh856c1032009-06-02 15:21:42 +00003966 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00003967
drha6c2ed92009-11-14 23:22:23 +00003968 pOut = &aMem[pOp->p2];
danielk1977a7a8e142008-02-13 18:25:27 +00003969
drhf0863fe2005-06-12 21:35:51 +00003970 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00003971 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3972 pC = p->apCsr[pOp->p1];
drhf0863fe2005-06-12 21:35:51 +00003973 assert( pC->isTable || pOp->opcode==OP_RowKey );
3974 assert( pC->isIndex || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00003975 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00003976 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00003977 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00003978 assert( pC->pCursor!=0 );
3979 pCrsr = pC->pCursor;
drhea8ffdf2009-07-22 00:35:23 +00003980 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drh9a65f2c2009-06-22 19:05:40 +00003981
3982 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
3983 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
3984 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
3985 ** a no-op and can never fail. But we leave it in place as a safety.
3986 */
3987 assert( pC->deferredMoveto==0 );
drhde4fcfd2008-01-19 23:50:26 +00003988 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00003989 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
3990
drhde4fcfd2008-01-19 23:50:26 +00003991 if( pC->isIndex ){
drhde4fcfd2008-01-19 23:50:26 +00003992 assert( !pC->isTable );
drhc27ae612009-07-14 18:35:44 +00003993 rc = sqlite3BtreeKeySize(pCrsr, &n64);
3994 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00003995 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00003996 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00003997 }
drhbfb19dc2009-06-05 16:46:53 +00003998 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00003999 }else{
drhc27ae612009-07-14 18:35:44 +00004000 rc = sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004001 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004002 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004003 goto too_big;
4004 }
drhde4fcfd2008-01-19 23:50:26 +00004005 }
danielk1977a7a8e142008-02-13 18:25:27 +00004006 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4007 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004008 }
danielk1977a7a8e142008-02-13 18:25:27 +00004009 pOut->n = n;
4010 MemSetTypeFlag(pOut, MEM_Blob);
drhde4fcfd2008-01-19 23:50:26 +00004011 if( pC->isIndex ){
4012 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4013 }else{
4014 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004015 }
danielk197796cb76f2008-01-04 13:24:28 +00004016 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004017 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00004018 break;
4019}
4020
drh2133d822008-01-03 18:44:59 +00004021/* Opcode: Rowid P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004022**
drh2133d822008-01-03 18:44:59 +00004023** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004024** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004025**
4026** P1 can be either an ordinary table or a virtual table. There used to
4027** be a separate OP_VRowid opcode for use with virtual tables, but this
4028** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004029*/
drh4c583122008-01-04 22:01:03 +00004030case OP_Rowid: { /* out2-prerelease */
drhdfe88ec2008-11-03 20:55:06 +00004031 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004032 i64 v;
drh856c1032009-06-02 15:21:42 +00004033 sqlite3_vtab *pVtab;
4034 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004035
drh653b82a2009-06-22 11:10:47 +00004036 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4037 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004038 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004039 assert( pC->pseudoTableReg==0 );
drh044925b2009-04-22 17:15:02 +00004040 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004041 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004042 break;
4043 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004044 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004045#ifndef SQLITE_OMIT_VIRTUALTABLE
4046 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004047 pVtab = pC->pVtabCursor->pVtab;
4048 pModule = pVtab->pModule;
4049 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004050 rc = pModule->xRowid(pC->pVtabCursor, &v);
drhb9755982010-07-24 16:34:37 +00004051 importVtabErrMsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004052#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004053 }else{
drh6be240e2009-07-14 02:33:02 +00004054 assert( pC->pCursor!=0 );
drh61495262009-04-22 15:32:59 +00004055 rc = sqlite3VdbeCursorMoveto(pC);
4056 if( rc ) goto abort_due_to_error;
4057 if( pC->rowidIsValid ){
4058 v = pC->lastRowid;
drh61495262009-04-22 15:32:59 +00004059 }else{
drhc27ae612009-07-14 18:35:44 +00004060 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4061 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
drh61495262009-04-22 15:32:59 +00004062 }
drh5e00f6c2001-09-13 13:46:56 +00004063 }
drh4c583122008-01-04 22:01:03 +00004064 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004065 break;
4066}
4067
drh9cbf3422008-01-17 16:22:13 +00004068/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004069**
4070** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004071** that occur while the cursor is on the null row will always
4072** write a NULL.
drh17f71932002-02-21 12:01:27 +00004073*/
drh9cbf3422008-01-17 16:22:13 +00004074case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004075 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004076
drh653b82a2009-06-22 11:10:47 +00004077 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4078 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004079 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004080 pC->nullRow = 1;
drhf0863fe2005-06-12 21:35:51 +00004081 pC->rowidIsValid = 0;
danielk1977be51a652008-10-08 17:58:48 +00004082 if( pC->pCursor ){
4083 sqlite3BtreeClearCursor(pC->pCursor);
4084 }
drh17f71932002-02-21 12:01:27 +00004085 break;
4086}
4087
drh9cbf3422008-01-17 16:22:13 +00004088/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004089**
drhf0863fe2005-06-12 21:35:51 +00004090** The next use of the Rowid or Column or Next instruction for P1
drh9562b552002-02-19 15:00:07 +00004091** will refer to the last entry in the database table or index.
4092** If the table or index is empty and P2>0, then jump immediately to P2.
4093** If P2 is 0 or if the table or index is not empty, fall through
4094** to the following instruction.
4095*/
drh9cbf3422008-01-17 16:22:13 +00004096case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004097 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004098 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004099 int res;
drh9562b552002-02-19 15:00:07 +00004100
drh653b82a2009-06-22 11:10:47 +00004101 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4102 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004103 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004104 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004105 if( pCrsr==0 ){
4106 res = 1;
4107 }else{
4108 rc = sqlite3BtreeLast(pCrsr, &res);
4109 }
drh9c1905f2008-12-10 22:32:56 +00004110 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004111 pC->deferredMoveto = 0;
drha7e77062009-01-14 00:55:09 +00004112 pC->rowidIsValid = 0;
drha05a7222008-01-19 03:35:58 +00004113 pC->cacheStatus = CACHE_STALE;
drh9a65f2c2009-06-22 19:05:40 +00004114 if( pOp->p2>0 && res ){
drha05a7222008-01-19 03:35:58 +00004115 pc = pOp->p2 - 1;
drh9562b552002-02-19 15:00:07 +00004116 }
4117 break;
4118}
4119
drh0342b1f2005-09-01 03:07:44 +00004120
drh9cbf3422008-01-17 16:22:13 +00004121/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004122**
4123** This opcode does exactly the same thing as OP_Rewind except that
4124** it increments an undocumented global variable used for testing.
4125**
4126** Sorting is accomplished by writing records into a sorting index,
4127** then rewinding that index and playing it back from beginning to
4128** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4129** rewinding so that the global variable will be incremented and
4130** regression tests can determine whether or not the optimizer is
4131** correctly optimizing out sorts.
4132*/
drh9cbf3422008-01-17 16:22:13 +00004133case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004134#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004135 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004136 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004137#endif
drhd1d38482008-10-07 23:46:38 +00004138 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
drh0342b1f2005-09-01 03:07:44 +00004139 /* Fall through into OP_Rewind */
4140}
drh9cbf3422008-01-17 16:22:13 +00004141/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004142**
drhf0863fe2005-06-12 21:35:51 +00004143** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004144** will refer to the first entry in the database table or index.
4145** If the table or index is empty and P2>0, then jump immediately to P2.
4146** If P2 is 0 or if the table or index is not empty, fall through
4147** to the following instruction.
drh5e00f6c2001-09-13 13:46:56 +00004148*/
drh9cbf3422008-01-17 16:22:13 +00004149case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004150 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004151 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004152 int res;
drh5e00f6c2001-09-13 13:46:56 +00004153
drh653b82a2009-06-22 11:10:47 +00004154 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4155 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004156 assert( pC!=0 );
dan2411dea2010-07-03 05:56:09 +00004157 res = 1;
drh70ce3f02003-04-15 19:22:22 +00004158 if( (pCrsr = pC->pCursor)!=0 ){
danielk19774adee202004-05-08 08:23:19 +00004159 rc = sqlite3BtreeFirst(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004160 pC->atFirst = res==0 ?1:0;
drha11846b2004-01-07 18:52:56 +00004161 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004162 pC->cacheStatus = CACHE_STALE;
drha7e77062009-01-14 00:55:09 +00004163 pC->rowidIsValid = 0;
drhf4dada72004-05-11 09:57:35 +00004164 }
drh9c1905f2008-12-10 22:32:56 +00004165 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004166 assert( pOp->p2>0 && pOp->p2<p->nOp );
4167 if( res ){
drhf4dada72004-05-11 09:57:35 +00004168 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00004169 }
4170 break;
4171}
4172
drhafc266a2010-03-31 17:47:44 +00004173/* Opcode: Next P1 P2 * * P5
drh5e00f6c2001-09-13 13:46:56 +00004174**
4175** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004176** table or index. If there are no more key/value pairs then fall through
4177** to the following instruction. But if the cursor advance was successful,
4178** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004179**
drh60a713c2008-01-21 16:22:45 +00004180** The P1 cursor must be for a real table, not a pseudo-table.
4181**
drhafc266a2010-03-31 17:47:44 +00004182** If P5 is positive and the jump is taken, then event counter
4183** number P5-1 in the prepared statement is incremented.
4184**
drhc045ec52002-12-04 20:01:06 +00004185** See also: Prev
drh8721ce42001-11-07 14:22:00 +00004186*/
drhafc266a2010-03-31 17:47:44 +00004187/* Opcode: Prev P1 P2 * * P5
drhc045ec52002-12-04 20:01:06 +00004188**
4189** Back up cursor P1 so that it points to the previous key/data pair in its
4190** table or index. If there is no previous key/value pairs then fall through
4191** to the following instruction. But if the cursor backup was successful,
4192** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004193**
4194** The P1 cursor must be for a real table, not a pseudo-table.
drhafc266a2010-03-31 17:47:44 +00004195**
4196** If P5 is positive and the jump is taken, then event counter
4197** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004198*/
drh9cbf3422008-01-17 16:22:13 +00004199case OP_Prev: /* jump */
4200case OP_Next: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004201 VdbeCursor *pC;
drh8721ce42001-11-07 14:22:00 +00004202 BtCursor *pCrsr;
drha3460582008-07-11 21:02:53 +00004203 int res;
drh8721ce42001-11-07 14:22:00 +00004204
drhcaec2f12003-01-07 02:47:47 +00004205 CHECK_FOR_INTERRUPT;
drh70ce3f02003-04-15 19:22:22 +00004206 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drhafc266a2010-03-31 17:47:44 +00004207 assert( pOp->p5<=ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004208 pC = p->apCsr[pOp->p1];
drh72e8fa42007-03-28 14:30:06 +00004209 if( pC==0 ){
4210 break; /* See ticket #2273 */
4211 }
drh60a713c2008-01-21 16:22:45 +00004212 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004213 if( pCrsr==0 ){
4214 pC->nullRow = 1;
4215 break;
4216 }
drha3460582008-07-11 21:02:53 +00004217 res = 1;
4218 assert( pC->deferredMoveto==0 );
4219 rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
4220 sqlite3BtreePrevious(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004221 pC->nullRow = (u8)res;
drha3460582008-07-11 21:02:53 +00004222 pC->cacheStatus = CACHE_STALE;
4223 if( res==0 ){
4224 pc = pOp->p2 - 1;
drhd1d38482008-10-07 23:46:38 +00004225 if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
drh0f7eb612006-08-08 13:51:43 +00004226#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004227 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004228#endif
drh8721ce42001-11-07 14:22:00 +00004229 }
drhf0863fe2005-06-12 21:35:51 +00004230 pC->rowidIsValid = 0;
drh8721ce42001-11-07 14:22:00 +00004231 break;
4232}
4233
danielk1977de630352009-05-04 11:42:29 +00004234/* Opcode: IdxInsert P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004235**
drhaa9b8962008-01-08 02:57:55 +00004236** Register P2 holds a SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004237** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004238** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004239**
drhaa9b8962008-01-08 02:57:55 +00004240** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004241** insert is likely to be an append.
4242**
drhf0863fe2005-06-12 21:35:51 +00004243** This instruction only works for indices. The equivalent instruction
4244** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004245*/
drh9cbf3422008-01-17 16:22:13 +00004246case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004247 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004248 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004249 int nKey;
4250 const char *zKey;
4251
drh653b82a2009-06-22 11:10:47 +00004252 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4253 pC = p->apCsr[pOp->p1];
4254 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00004255 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004256 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004257 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004258 if( ALWAYS(pCrsr!=0) ){
drhf0863fe2005-06-12 21:35:51 +00004259 assert( pC->isTable==0 );
drhaa9b8962008-01-08 02:57:55 +00004260 rc = ExpandBlob(pIn2);
danielk1977d908f5a2007-05-11 07:08:28 +00004261 if( rc==SQLITE_OK ){
drh856c1032009-06-02 15:21:42 +00004262 nKey = pIn2->n;
4263 zKey = pIn2->z;
danielk1977de630352009-05-04 11:42:29 +00004264 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4265 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4266 );
danielk1977d908f5a2007-05-11 07:08:28 +00004267 assert( pC->deferredMoveto==0 );
4268 pC->cacheStatus = CACHE_STALE;
4269 }
drh5e00f6c2001-09-13 13:46:56 +00004270 }
drh5e00f6c2001-09-13 13:46:56 +00004271 break;
4272}
4273
drhd1d38482008-10-07 23:46:38 +00004274/* Opcode: IdxDelete P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004275**
drhe14006d2008-03-25 17:23:32 +00004276** The content of P3 registers starting at register P2 form
4277** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004278** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004279*/
drhe14006d2008-03-25 17:23:32 +00004280case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004281 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004282 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004283 int res;
4284 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004285
drhe14006d2008-03-25 17:23:32 +00004286 assert( pOp->p3>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00004287 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
drh653b82a2009-06-22 11:10:47 +00004288 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4289 pC = p->apCsr[pOp->p1];
4290 assert( pC!=0 );
4291 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004292 if( ALWAYS(pCrsr!=0) ){
drhe14006d2008-03-25 17:23:32 +00004293 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004294 r.nField = (u16)pOp->p3;
drhe63d9992008-08-13 19:11:48 +00004295 r.flags = 0;
drha6c2ed92009-11-14 23:22:23 +00004296 r.aMem = &aMem[pOp->p2];
drhe63d9992008-08-13 19:11:48 +00004297 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
danielk197775bab7d2006-01-23 13:09:45 +00004298 if( rc==SQLITE_OK && res==0 ){
danielk19774adee202004-05-08 08:23:19 +00004299 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004300 }
drh9188b382004-05-14 21:12:22 +00004301 assert( pC->deferredMoveto==0 );
drh76873ab2006-01-07 18:48:26 +00004302 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004303 }
drh5e00f6c2001-09-13 13:46:56 +00004304 break;
4305}
4306
drh2133d822008-01-03 18:44:59 +00004307/* Opcode: IdxRowid P1 P2 * * *
drh8721ce42001-11-07 14:22:00 +00004308**
drh2133d822008-01-03 18:44:59 +00004309** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004310** the end of the index key pointed to by cursor P1. This integer should be
4311** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004312**
drh9437bd22009-02-01 00:29:56 +00004313** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004314*/
drh4c583122008-01-04 22:01:03 +00004315case OP_IdxRowid: { /* out2-prerelease */
drh8721ce42001-11-07 14:22:00 +00004316 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004317 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004318 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004319
drh653b82a2009-06-22 11:10:47 +00004320 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4321 pC = p->apCsr[pOp->p1];
4322 assert( pC!=0 );
4323 pCrsr = pC->pCursor;
drh3c657212009-11-17 23:59:58 +00004324 pOut->flags = MEM_Null;
drh9a65f2c2009-06-22 19:05:40 +00004325 if( ALWAYS(pCrsr!=0) ){
danielk1977c4d201c2009-04-07 09:16:56 +00004326 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004327 if( NEVER(rc) ) goto abort_due_to_error;
drhd7556d22004-05-14 21:59:40 +00004328 assert( pC->deferredMoveto==0 );
drhf0863fe2005-06-12 21:35:51 +00004329 assert( pC->isTable==0 );
drh4c583122008-01-04 22:01:03 +00004330 if( !pC->nullRow ){
drh35f6b932009-06-23 14:15:04 +00004331 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
danielk19771d850a72004-05-31 08:26:49 +00004332 if( rc!=SQLITE_OK ){
4333 goto abort_due_to_error;
4334 }
drh4c583122008-01-04 22:01:03 +00004335 pOut->u.i = rowid;
drh3c657212009-11-17 23:59:58 +00004336 pOut->flags = MEM_Int;
danielk19773d1bfea2004-05-14 11:00:53 +00004337 }
drh8721ce42001-11-07 14:22:00 +00004338 }
4339 break;
4340}
4341
danielk197761dd5832008-04-18 11:31:12 +00004342/* Opcode: IdxGE P1 P2 P3 P4 P5
drh8721ce42001-11-07 14:22:00 +00004343**
danielk197761dd5832008-04-18 11:31:12 +00004344** The P4 register values beginning with P3 form an unpacked index
4345** key that omits the ROWID. Compare this key value against the index
4346** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004347**
danielk197761dd5832008-04-18 11:31:12 +00004348** If the P1 index entry is greater than or equal to the key value
4349** then jump to P2. Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004350**
danielk197761dd5832008-04-18 11:31:12 +00004351** If P5 is non-zero then the key value is increased by an epsilon
4352** prior to the comparison. This make the opcode work like IdxGT except
4353** that if the key from register P3 is a prefix of the key in the cursor,
4354** the result is false whereas it would be true with IdxGT.
drh8721ce42001-11-07 14:22:00 +00004355*/
drh3bb9b932010-08-06 02:10:00 +00004356/* Opcode: IdxLT P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004357**
danielk197761dd5832008-04-18 11:31:12 +00004358** The P4 register values beginning with P3 form an unpacked index
4359** key that omits the ROWID. Compare this key value against the index
4360** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004361**
danielk197761dd5832008-04-18 11:31:12 +00004362** If the P1 index entry is less than the key value then jump to P2.
4363** Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004364**
danielk197761dd5832008-04-18 11:31:12 +00004365** If P5 is non-zero then the key value is increased by an epsilon prior
4366** to the comparison. This makes the opcode work like IdxLE.
drhc045ec52002-12-04 20:01:06 +00004367*/
drh93952eb2009-11-13 19:43:43 +00004368case OP_IdxLT: /* jump */
4369case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004370 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004371 int res;
4372 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004373
drh653b82a2009-06-22 11:10:47 +00004374 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4375 pC = p->apCsr[pOp->p1];
4376 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004377 assert( pC->isOrdered );
drh9a65f2c2009-06-22 19:05:40 +00004378 if( ALWAYS(pC->pCursor!=0) ){
drhd7556d22004-05-14 21:59:40 +00004379 assert( pC->deferredMoveto==0 );
drha05a7222008-01-19 03:35:58 +00004380 assert( pOp->p5==0 || pOp->p5==1 );
danielk197761dd5832008-04-18 11:31:12 +00004381 assert( pOp->p4type==P4_INT32 );
4382 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004383 r.nField = (u16)pOp->p4.i;
drhe63d9992008-08-13 19:11:48 +00004384 if( pOp->p5 ){
4385 r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
4386 }else{
4387 r.flags = UNPACKED_IGNORE_ROWID;
4388 }
drha6c2ed92009-11-14 23:22:23 +00004389 r.aMem = &aMem[pOp->p3];
drhe63d9992008-08-13 19:11:48 +00004390 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
drhc045ec52002-12-04 20:01:06 +00004391 if( pOp->opcode==OP_IdxLT ){
4392 res = -res;
drha05a7222008-01-19 03:35:58 +00004393 }else{
4394 assert( pOp->opcode==OP_IdxGE );
drh8721ce42001-11-07 14:22:00 +00004395 res++;
4396 }
4397 if( res>0 ){
4398 pc = pOp->p2 - 1 ;
4399 }
4400 }
4401 break;
4402}
4403
drh98757152008-01-09 23:04:12 +00004404/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004405**
4406** Delete an entire database table or index whose root page in the database
4407** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004408**
drh98757152008-01-09 23:04:12 +00004409** The table being destroyed is in the main database file if P3==0. If
4410** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004411** that is used to store tables create using CREATE TEMPORARY TABLE.
4412**
drh205f48e2004-11-05 00:43:11 +00004413** If AUTOVACUUM is enabled then it is possible that another root page
4414** might be moved into the newly deleted root page in order to keep all
4415** root pages contiguous at the beginning of the database. The former
4416** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004417** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004418** movement was required (because the table being dropped was already
4419** the last one in the database) then a zero is stored in register P2.
4420** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004421**
drhb19a2bc2001-09-16 00:13:26 +00004422** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004423*/
drh98757152008-01-09 23:04:12 +00004424case OP_Destroy: { /* out2-prerelease */
danielk1977a0bf2652004-11-04 14:30:04 +00004425 int iMoved;
drh3765df42006-06-28 18:18:09 +00004426 int iCnt;
drh5a91a532007-01-05 16:39:43 +00004427 Vdbe *pVdbe;
drh856c1032009-06-02 15:21:42 +00004428 int iDb;
4429#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk1977212b2182006-06-23 14:32:08 +00004430 iCnt = 0;
drh856c1032009-06-02 15:21:42 +00004431 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
danielk1977212b2182006-06-23 14:32:08 +00004432 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4433 iCnt++;
4434 }
4435 }
drh3765df42006-06-28 18:18:09 +00004436#else
4437 iCnt = db->activeVdbeCnt;
danielk1977212b2182006-06-23 14:32:08 +00004438#endif
drh3c657212009-11-17 23:59:58 +00004439 pOut->flags = MEM_Null;
danielk1977212b2182006-06-23 14:32:08 +00004440 if( iCnt>1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004441 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004442 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004443 }else{
drh856c1032009-06-02 15:21:42 +00004444 iDb = pOp->p3;
danielk1977212b2182006-06-23 14:32:08 +00004445 assert( iCnt==1 );
drh98757152008-01-09 23:04:12 +00004446 assert( (p->btreeMask & (1<<iDb))!=0 );
4447 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004448 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004449 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004450#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004451 if( rc==SQLITE_OK && iMoved!=0 ){
drh98757152008-01-09 23:04:12 +00004452 sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1);
drh32783152009-11-20 15:02:34 +00004453 resetSchemaOnFault = 1;
danielk1977e6efa742004-11-10 11:55:10 +00004454 }
drh3765df42006-06-28 18:18:09 +00004455#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004456 }
drh5e00f6c2001-09-13 13:46:56 +00004457 break;
4458}
4459
danielk1977c7af4842008-10-27 13:59:33 +00004460/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004461**
4462** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004463** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004464** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004465**
drhf57b3392001-10-08 13:22:32 +00004466** The table being clear is in the main database file if P2==0. If
4467** P2==1 then the table to be clear is in the auxiliary database file
4468** that is used to store tables create using CREATE TEMPORARY TABLE.
4469**
shanebe217792009-03-05 04:20:31 +00004470** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00004471** intkey table (an SQL table, not an index). In this case the row change
4472** count is incremented by the number of rows in the table being cleared.
4473** If P3 is greater than zero, then the value stored in register P3 is
4474** also incremented by the number of rows in the table being cleared.
4475**
drhb19a2bc2001-09-16 00:13:26 +00004476** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00004477*/
drh9cbf3422008-01-17 16:22:13 +00004478case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00004479 int nChange;
4480
4481 nChange = 0;
drhfb982642007-08-30 01:19:59 +00004482 assert( (p->btreeMask & (1<<pOp->p2))!=0 );
danielk1977c7af4842008-10-27 13:59:33 +00004483 rc = sqlite3BtreeClearTable(
4484 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4485 );
4486 if( pOp->p3 ){
4487 p->nChange += nChange;
4488 if( pOp->p3>0 ){
drha6c2ed92009-11-14 23:22:23 +00004489 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00004490 }
4491 }
drh5edc3122001-09-13 21:53:09 +00004492 break;
4493}
4494
drh4c583122008-01-04 22:01:03 +00004495/* Opcode: CreateTable P1 P2 * * *
drh5b2fd562001-09-13 15:21:31 +00004496**
drh4c583122008-01-04 22:01:03 +00004497** Allocate a new table in the main database file if P1==0 or in the
4498** auxiliary database file if P1==1 or in an attached database if
4499** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004500** register P2
drh5b2fd562001-09-13 15:21:31 +00004501**
drhc6b52df2002-01-04 03:09:29 +00004502** The difference between a table and an index is this: A table must
4503** have a 4-byte integer key and can have arbitrary data. An index
4504** has an arbitrary key but no data.
4505**
drhb19a2bc2001-09-16 00:13:26 +00004506** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00004507*/
drh4c583122008-01-04 22:01:03 +00004508/* Opcode: CreateIndex P1 P2 * * *
drhf57b3392001-10-08 13:22:32 +00004509**
drh4c583122008-01-04 22:01:03 +00004510** Allocate a new index in the main database file if P1==0 or in the
4511** auxiliary database file if P1==1 or in an attached database if
4512** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004513** register P2.
drhf57b3392001-10-08 13:22:32 +00004514**
drhc6b52df2002-01-04 03:09:29 +00004515** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00004516*/
drh4c583122008-01-04 22:01:03 +00004517case OP_CreateIndex: /* out2-prerelease */
4518case OP_CreateTable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00004519 int pgno;
drhf328bc82004-05-10 23:29:49 +00004520 int flags;
drh234c39d2004-07-24 03:30:47 +00004521 Db *pDb;
drh856c1032009-06-02 15:21:42 +00004522
4523 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00004524 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhfb982642007-08-30 01:19:59 +00004525 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
drh234c39d2004-07-24 03:30:47 +00004526 pDb = &db->aDb[pOp->p1];
4527 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00004528 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00004529 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00004530 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00004531 }else{
drhd4187c72010-08-30 22:15:45 +00004532 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00004533 }
drh234c39d2004-07-24 03:30:47 +00004534 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00004535 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00004536 break;
4537}
4538
drh98757152008-01-09 23:04:12 +00004539/* Opcode: ParseSchema P1 P2 * P4 *
drh234c39d2004-07-24 03:30:47 +00004540**
4541** Read and parse all entries from the SQLITE_MASTER table of database P1
drh66a51672008-01-03 00:01:23 +00004542** that match the WHERE clause P4. P2 is the "force" flag. Always do
drh3c23a882007-01-09 14:01:13 +00004543** the parsing if P2 is true. If P2 is false, then this routine is a
4544** no-op if the schema is not currently loaded. In other words, if P2
4545** is false, the SQLITE_MASTER table is only parsed if the rest of the
4546** schema is already loaded into the symbol table.
drh234c39d2004-07-24 03:30:47 +00004547**
4548** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00004549** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00004550*/
drh9cbf3422008-01-17 16:22:13 +00004551case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00004552 int iDb;
4553 const char *zMaster;
4554 char *zSql;
4555 InitData initData;
4556
4557 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00004558 assert( iDb>=0 && iDb<db->nDb );
danielk1977a8bbef82009-03-23 17:11:26 +00004559
4560 /* If pOp->p2 is 0, then this opcode is being executed to read a
4561 ** single row, for example the row corresponding to a new index
4562 ** created by this VDBE, from the sqlite_master table. It only
4563 ** does this if the corresponding in-memory schema is currently
4564 ** loaded. Otherwise, the new index definition can be loaded along
4565 ** with the rest of the schema when it is required.
4566 **
4567 ** Although the mutex on the BtShared object that corresponds to
4568 ** database iDb (the database containing the sqlite_master table
4569 ** read by this instruction) is currently held, it is necessary to
4570 ** obtain the mutexes on all attached databases before checking if
4571 ** the schema of iDb is loaded. This is because, at the start of
4572 ** the sqlite3_exec() call below, SQLite will invoke
4573 ** sqlite3BtreeEnterAll(). If all mutexes are not already held, the
4574 ** iDb mutex may be temporarily released to avoid deadlock. If
4575 ** this happens, then some other thread may delete the in-memory
4576 ** schema of database iDb before the SQL statement runs. The schema
4577 ** will not be reloaded becuase the db->init.busy flag is set. This
4578 ** can result in a "no such table: sqlite_master" or "malformed
4579 ** database schema" error being returned to the user.
4580 */
4581 assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4582 sqlite3BtreeEnterAll(db);
drh46bbabd2009-06-24 13:16:03 +00004583 if( pOp->p2 || DbHasProperty(db, iDb, DB_SchemaLoaded) ){
drh856c1032009-06-02 15:21:42 +00004584 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00004585 initData.db = db;
4586 initData.iDb = pOp->p1;
4587 initData.pzErrMsg = &p->zErrMsg;
4588 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00004589 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00004590 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4591 if( zSql==0 ){
4592 rc = SQLITE_NOMEM;
4593 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00004594 assert( db->init.busy==0 );
4595 db->init.busy = 1;
4596 initData.rc = SQLITE_OK;
4597 assert( !db->mallocFailed );
4598 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4599 if( rc==SQLITE_OK ) rc = initData.rc;
4600 sqlite3DbFree(db, zSql);
4601 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00004602 }
drh3c23a882007-01-09 14:01:13 +00004603 }
danielk1977a8bbef82009-03-23 17:11:26 +00004604 sqlite3BtreeLeaveAll(db);
danielk1977261919c2005-12-06 12:52:59 +00004605 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00004606 goto no_mem;
4607 }
drh234c39d2004-07-24 03:30:47 +00004608 break;
4609}
4610
drh8bfdf722009-06-19 14:06:03 +00004611#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00004612/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00004613**
4614** Read the sqlite_stat1 table for database P1 and load the content
4615** of that table into the internal index hash table. This will cause
4616** the analysis to be used when preparing all subsequent queries.
4617*/
drh9cbf3422008-01-17 16:22:13 +00004618case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00004619 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4620 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00004621 break;
4622}
drh8bfdf722009-06-19 14:06:03 +00004623#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00004624
drh98757152008-01-09 23:04:12 +00004625/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004626**
4627** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004628** the table named P4 in database P1. This is called after a table
drh956bc922004-07-24 17:38:29 +00004629** is dropped in order to keep the internal representation of the
4630** schema consistent with what is on disk.
4631*/
drh9cbf3422008-01-17 16:22:13 +00004632case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00004633 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004634 break;
4635}
4636
drh98757152008-01-09 23:04:12 +00004637/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004638**
4639** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004640** the index named P4 in database P1. This is called after an index
drh956bc922004-07-24 17:38:29 +00004641** is dropped in order to keep the internal representation of the
4642** schema consistent with what is on disk.
4643*/
drh9cbf3422008-01-17 16:22:13 +00004644case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00004645 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004646 break;
4647}
4648
drh98757152008-01-09 23:04:12 +00004649/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004650**
4651** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004652** the trigger named P4 in database P1. This is called after a trigger
drh956bc922004-07-24 17:38:29 +00004653** is dropped in order to keep the internal representation of the
4654** schema consistent with what is on disk.
4655*/
drh9cbf3422008-01-17 16:22:13 +00004656case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00004657 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004658 break;
4659}
4660
drh234c39d2004-07-24 03:30:47 +00004661
drhb7f91642004-10-31 02:22:47 +00004662#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00004663/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004664**
drh98757152008-01-09 23:04:12 +00004665** Do an analysis of the currently open database. Store in
4666** register P1 the text of an error message describing any problems.
4667** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00004668**
drh98757152008-01-09 23:04:12 +00004669** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00004670** At most reg(P3) errors will be reported.
4671** In other words, the analysis stops as soon as reg(P1) errors are
4672** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00004673**
drh79069752004-05-22 21:30:40 +00004674** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00004675** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00004676** total.
drh21504322002-06-25 13:16:02 +00004677**
drh98757152008-01-09 23:04:12 +00004678** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00004679** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00004680**
drh1dcdbc02007-01-27 02:24:54 +00004681** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00004682*/
drhaaab5722002-02-19 13:39:21 +00004683case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00004684 int nRoot; /* Number of tables to check. (Number of root pages.) */
4685 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4686 int j; /* Loop counter */
4687 int nErr; /* Number of errors reported */
4688 char *z; /* Text of the error report */
4689 Mem *pnErr; /* Register keeping track of errors remaining */
4690
4691 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00004692 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00004693 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00004694 if( aRoot==0 ) goto no_mem;
drh98757152008-01-09 23:04:12 +00004695 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00004696 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00004697 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00004698 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00004699 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00004700 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00004701 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00004702 }
4703 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00004704 assert( pOp->p5<db->nDb );
4705 assert( (p->btreeMask & (1<<pOp->p5))!=0 );
4706 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00004707 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00004708 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00004709 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00004710 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00004711 if( nErr==0 ){
4712 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00004713 }else if( z==0 ){
4714 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00004715 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00004716 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00004717 }
drhb7654112008-01-12 12:48:07 +00004718 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00004719 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00004720 break;
4721}
drhb7f91642004-10-31 02:22:47 +00004722#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00004723
drh3d4501e2008-12-04 20:40:10 +00004724/* Opcode: RowSetAdd P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004725**
drh3d4501e2008-12-04 20:40:10 +00004726** Insert the integer value held by register P2 into a boolean index
4727** held in register P1.
4728**
4729** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00004730*/
drh93952eb2009-11-13 19:43:43 +00004731case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00004732 pIn1 = &aMem[pOp->p1];
4733 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00004734 assert( (pIn2->flags & MEM_Int)!=0 );
4735 if( (pIn1->flags & MEM_RowSet)==0 ){
4736 sqlite3VdbeMemSetRowSet(pIn1);
4737 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00004738 }
drh93952eb2009-11-13 19:43:43 +00004739 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00004740 break;
4741}
4742
4743/* Opcode: RowSetRead P1 P2 P3 * *
4744**
4745** Extract the smallest value from boolean index P1 and put that value into
4746** register P3. Or, if boolean index P1 is initially empty, leave P3
4747** unchanged and jump to instruction P2.
4748*/
drh93952eb2009-11-13 19:43:43 +00004749case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00004750 i64 val;
drh3d4501e2008-12-04 20:40:10 +00004751 CHECK_FOR_INTERRUPT;
drh3c657212009-11-17 23:59:58 +00004752 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00004753 if( (pIn1->flags & MEM_RowSet)==0
4754 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00004755 ){
4756 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00004757 sqlite3VdbeMemSetNull(pIn1);
drh3d4501e2008-12-04 20:40:10 +00004758 pc = pOp->p2 - 1;
4759 }else{
4760 /* A value was pulled from the index */
drh3c657212009-11-17 23:59:58 +00004761 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00004762 }
drh5e00f6c2001-09-13 13:46:56 +00004763 break;
4764}
4765
drh1b26c7c2009-04-22 02:15:47 +00004766/* Opcode: RowSetTest P1 P2 P3 P4
danielk19771d461462009-04-21 09:02:45 +00004767**
drhade97602009-04-21 15:05:18 +00004768** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00004769** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00004770** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00004771** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00004772** next opcode.
danielk19771d461462009-04-21 09:02:45 +00004773**
drh1b26c7c2009-04-22 02:15:47 +00004774** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00004775** of integers, where each set contains no duplicates. Each set
4776** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00004777** must have P4==0, the final set P4=-1. P4 must be either -1 or
4778** non-negative. For non-negative values of P4 only the lower 4
4779** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00004780**
4781** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00004782** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00004783** (b) when P4==-1 there is no need to insert the value, as it will
4784** never be tested for, and (c) when a value that is part of set X is
4785** inserted, there is no need to search to see if the same value was
4786** previously inserted as part of set X (only if it was previously
4787** inserted as part of some other set).
4788*/
drh1b26c7c2009-04-22 02:15:47 +00004789case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00004790 int iSet;
4791 int exists;
4792
drh3c657212009-11-17 23:59:58 +00004793 pIn1 = &aMem[pOp->p1];
4794 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00004795 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00004796 assert( pIn3->flags&MEM_Int );
4797
drh1b26c7c2009-04-22 02:15:47 +00004798 /* If there is anything other than a rowset object in memory cell P1,
4799 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00004800 */
drh733bf1b2009-04-22 00:47:00 +00004801 if( (pIn1->flags & MEM_RowSet)==0 ){
4802 sqlite3VdbeMemSetRowSet(pIn1);
4803 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00004804 }
4805
4806 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00004807 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00004808 if( iSet ){
shane60a4b532009-05-06 18:57:09 +00004809 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
4810 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
drh733bf1b2009-04-22 00:47:00 +00004811 pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00004812 if( exists ){
4813 pc = pOp->p2 - 1;
4814 break;
4815 }
4816 }
4817 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00004818 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00004819 }
4820 break;
4821}
4822
drh5e00f6c2001-09-13 13:46:56 +00004823
danielk197793758c82005-01-21 08:13:14 +00004824#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00004825
4826/* Opcode: Program P1 P2 P3 P4 *
4827**
dan76d462e2009-08-30 11:42:51 +00004828** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00004829**
dan76d462e2009-08-30 11:42:51 +00004830** P1 contains the address of the memory cell that contains the first memory
4831** cell in an array of values used as arguments to the sub-program. P2
4832** contains the address to jump to if the sub-program throws an IGNORE
4833** exception using the RAISE() function. Register P3 contains the address
4834** of a memory cell in this (the parent) VM that is used to allocate the
4835** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00004836**
4837** P4 is a pointer to the VM containing the trigger program.
4838*/
dan76d462e2009-08-30 11:42:51 +00004839case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00004840 int nMem; /* Number of memory registers for sub-program */
4841 int nByte; /* Bytes of runtime space required for sub-program */
4842 Mem *pRt; /* Register to allocate runtime space */
4843 Mem *pMem; /* Used to iterate through memory cells */
4844 Mem *pEnd; /* Last memory cell in new array */
4845 VdbeFrame *pFrame; /* New vdbe frame to execute in */
4846 SubProgram *pProgram; /* Sub-program to execute */
4847 void *t; /* Token identifying trigger */
4848
4849 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00004850 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00004851 assert( pProgram->nOp>0 );
4852
dan1da40a32009-09-19 17:00:31 +00004853 /* If the p5 flag is clear, then recursive invocation of triggers is
4854 ** disabled for backwards compatibility (p5 is set if this sub-program
4855 ** is really a trigger, not a foreign key action, and the flag set
4856 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00004857 **
4858 ** It is recursive invocation of triggers, at the SQL level, that is
4859 ** disabled. In some cases a single trigger may generate more than one
4860 ** SubProgram (if the trigger may be executed with more than one different
4861 ** ON CONFLICT algorithm). SubProgram structures associated with a
4862 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00004863 ** variable. */
4864 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00004865 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00004866 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
4867 if( pFrame ) break;
4868 }
4869
danf5894502009-10-07 18:41:19 +00004870 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00004871 rc = SQLITE_ERROR;
4872 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
4873 break;
4874 }
4875
4876 /* Register pRt is used to store the memory required to save the state
4877 ** of the current program, and the memory required at runtime to execute
4878 ** the trigger program. If this trigger has been fired before, then pRt
4879 ** is already allocated. Otherwise, it must be initialized. */
4880 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00004881 /* SubProgram.nMem is set to the number of memory cells used by the
4882 ** program stored in SubProgram.aOp. As well as these, one memory
4883 ** cell is required for each cursor used by the program. Set local
4884 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
4885 */
dan65a7cd12009-09-01 12:16:01 +00004886 nMem = pProgram->nMem + pProgram->nCsr;
4887 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00004888 + nMem * sizeof(Mem)
4889 + pProgram->nCsr * sizeof(VdbeCursor *);
4890 pFrame = sqlite3DbMallocZero(db, nByte);
4891 if( !pFrame ){
4892 goto no_mem;
4893 }
4894 sqlite3VdbeMemRelease(pRt);
4895 pRt->flags = MEM_Frame;
4896 pRt->u.pFrame = pFrame;
4897
4898 pFrame->v = p;
4899 pFrame->nChildMem = nMem;
4900 pFrame->nChildCsr = pProgram->nCsr;
4901 pFrame->pc = pc;
4902 pFrame->aMem = p->aMem;
4903 pFrame->nMem = p->nMem;
4904 pFrame->apCsr = p->apCsr;
4905 pFrame->nCursor = p->nCursor;
4906 pFrame->aOp = p->aOp;
4907 pFrame->nOp = p->nOp;
4908 pFrame->token = pProgram->token;
4909
4910 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
4911 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
4912 pMem->flags = MEM_Null;
4913 pMem->db = db;
4914 }
4915 }else{
4916 pFrame = pRt->u.pFrame;
4917 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
4918 assert( pProgram->nCsr==pFrame->nChildCsr );
4919 assert( pc==pFrame->pc );
4920 }
4921
4922 p->nFrame++;
4923 pFrame->pParent = p->pFrame;
dan76d462e2009-08-30 11:42:51 +00004924 pFrame->lastRowid = db->lastRowid;
4925 pFrame->nChange = p->nChange;
dan2832ad42009-08-31 15:27:27 +00004926 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00004927 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00004928 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00004929 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00004930 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00004931 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00004932 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00004933 p->nOp = pProgram->nOp;
4934 pc = -1;
4935
4936 break;
4937}
4938
dan76d462e2009-08-30 11:42:51 +00004939/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00004940**
dan76d462e2009-08-30 11:42:51 +00004941** This opcode is only ever present in sub-programs called via the
4942** OP_Program instruction. Copy a value currently stored in a memory
4943** cell of the calling (parent) frame to cell P2 in the current frames
4944** address space. This is used by trigger programs to access the new.*
4945** and old.* values.
dan165921a2009-08-28 18:53:45 +00004946**
dan76d462e2009-08-30 11:42:51 +00004947** The address of the cell in the parent frame is determined by adding
4948** the value of the P1 argument to the value of the P1 argument to the
4949** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00004950*/
dan76d462e2009-08-30 11:42:51 +00004951case OP_Param: { /* out2-prerelease */
dan65a7cd12009-09-01 12:16:01 +00004952 VdbeFrame *pFrame;
4953 Mem *pIn;
4954 pFrame = p->pFrame;
4955 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00004956 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
4957 break;
4958}
4959
danielk197793758c82005-01-21 08:13:14 +00004960#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00004961
dan1da40a32009-09-19 17:00:31 +00004962#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00004963/* Opcode: FkCounter P1 P2 * * *
dan1da40a32009-09-19 17:00:31 +00004964**
dan0ff297e2009-09-25 17:03:14 +00004965** Increment a "constraint counter" by P2 (P2 may be negative or positive).
4966** If P1 is non-zero, the database constraint counter is incremented
4967** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00004968** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00004969*/
dan32b09f22009-09-23 17:29:59 +00004970case OP_FkCounter: {
dan0ff297e2009-09-25 17:03:14 +00004971 if( pOp->p1 ){
4972 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00004973 }else{
dan0ff297e2009-09-25 17:03:14 +00004974 p->nFkConstraint += pOp->p2;
4975 }
4976 break;
4977}
4978
4979/* Opcode: FkIfZero P1 P2 * * *
4980**
4981** This opcode tests if a foreign key constraint-counter is currently zero.
4982** If so, jump to instruction P2. Otherwise, fall through to the next
4983** instruction.
4984**
4985** If P1 is non-zero, then the jump is taken if the database constraint-counter
4986** is zero (the one that counts deferred constraint violations). If P1 is
4987** zero, the jump is taken if the statement constraint-counter is zero
4988** (immediate foreign key constraint violations).
4989*/
4990case OP_FkIfZero: { /* jump */
4991 if( pOp->p1 ){
4992 if( db->nDeferredCons==0 ) pc = pOp->p2-1;
4993 }else{
4994 if( p->nFkConstraint==0 ) pc = pOp->p2-1;
dan32b09f22009-09-23 17:29:59 +00004995 }
dan1da40a32009-09-19 17:00:31 +00004996 break;
4997}
4998#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
4999
drh205f48e2004-11-05 00:43:11 +00005000#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005001/* Opcode: MemMax P1 P2 * * *
drh205f48e2004-11-05 00:43:11 +00005002**
dan76d462e2009-08-30 11:42:51 +00005003** P1 is a register in the root frame of this VM (the root frame is
5004** different from the current frame if this instruction is being executed
5005** within a sub-program). Set the value of register P1 to the maximum of
5006** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005007**
5008** This instruction throws an error if the memory cell is not initially
5009** an integer.
5010*/
dan76d462e2009-08-30 11:42:51 +00005011case OP_MemMax: { /* in2 */
5012 Mem *pIn1;
5013 VdbeFrame *pFrame;
5014 if( p->pFrame ){
5015 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5016 pIn1 = &pFrame->aMem[pOp->p1];
5017 }else{
drha6c2ed92009-11-14 23:22:23 +00005018 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005019 }
drh98757152008-01-09 23:04:12 +00005020 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005021 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005022 sqlite3VdbeMemIntegerify(pIn2);
5023 if( pIn1->u.i<pIn2->u.i){
5024 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005025 }
5026 break;
5027}
5028#endif /* SQLITE_OMIT_AUTOINCREMENT */
5029
drh98757152008-01-09 23:04:12 +00005030/* Opcode: IfPos P1 P2 * * *
danielk1977a2dc3b12005-02-05 12:48:48 +00005031**
drh98757152008-01-09 23:04:12 +00005032** If the value of register P1 is 1 or greater, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005033**
drh98757152008-01-09 23:04:12 +00005034** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005035** not contain an integer. An assertion fault will result if you try.
danielk1977a2dc3b12005-02-05 12:48:48 +00005036*/
drh9cbf3422008-01-17 16:22:13 +00005037case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005038 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005039 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005040 if( pIn1->u.i>0 ){
drhec7429a2005-10-06 16:53:14 +00005041 pc = pOp->p2 - 1;
5042 }
5043 break;
5044}
5045
drh98757152008-01-09 23:04:12 +00005046/* Opcode: IfNeg P1 P2 * * *
drh15007a92006-01-08 18:10:17 +00005047**
drh98757152008-01-09 23:04:12 +00005048** If the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005049**
drh98757152008-01-09 23:04:12 +00005050** It is illegal to use this instruction on a register that does
drh15007a92006-01-08 18:10:17 +00005051** not contain an integer. An assertion fault will result if you try.
5052*/
drh9cbf3422008-01-17 16:22:13 +00005053case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005054 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005055 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005056 if( pIn1->u.i<0 ){
drh15007a92006-01-08 18:10:17 +00005057 pc = pOp->p2 - 1;
5058 }
5059 break;
5060}
5061
drh9b918ed2009-11-12 03:13:26 +00005062/* Opcode: IfZero P1 P2 P3 * *
drhec7429a2005-10-06 16:53:14 +00005063**
drh9b918ed2009-11-12 03:13:26 +00005064** The register P1 must contain an integer. Add literal P3 to the
5065** value in register P1. If the result is exactly 0, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005066**
drh98757152008-01-09 23:04:12 +00005067** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005068** not contain an integer. An assertion fault will result if you try.
drhec7429a2005-10-06 16:53:14 +00005069*/
drh9cbf3422008-01-17 16:22:13 +00005070case OP_IfZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005071 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005072 assert( pIn1->flags&MEM_Int );
drh9b918ed2009-11-12 03:13:26 +00005073 pIn1->u.i += pOp->p3;
drh3c84ddf2008-01-09 02:15:38 +00005074 if( pIn1->u.i==0 ){
drha2a49dc2008-01-02 14:28:13 +00005075 pc = pOp->p2 - 1;
5076 }
5077 break;
5078}
5079
drh98757152008-01-09 23:04:12 +00005080/* Opcode: AggStep * P2 P3 P4 P5
drhe5095352002-02-24 03:25:14 +00005081**
drh0bce8352002-02-28 00:41:10 +00005082** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005083** function has P5 arguments. P4 is a pointer to the FuncDef
5084** structure that specifies the function. Use register
5085** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005086**
drh98757152008-01-09 23:04:12 +00005087** The P5 arguments are taken from register P2 and its
5088** successors.
drhe5095352002-02-24 03:25:14 +00005089*/
drh9cbf3422008-01-17 16:22:13 +00005090case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005091 int n;
drhe5095352002-02-24 03:25:14 +00005092 int i;
drhc54a6172009-06-02 16:06:03 +00005093 Mem *pMem;
5094 Mem *pRec;
danielk197722322fd2004-05-25 23:35:17 +00005095 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005096 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005097
drh856c1032009-06-02 15:21:42 +00005098 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005099 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005100 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005101 apVal = p->apArg;
5102 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005103 for(i=0; i<n; i++, pRec++){
danielk1977c572ef72004-05-27 09:28:41 +00005104 apVal[i] = pRec;
dan937d0de2009-10-15 18:35:38 +00005105 sqlite3VdbeMemStoreType(pRec);
drhe5095352002-02-24 03:25:14 +00005106 }
danielk19772dca4ac2008-01-03 11:50:29 +00005107 ctx.pFunc = pOp->p4.pFunc;
drh98757152008-01-09 23:04:12 +00005108 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005109 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005110 pMem->n++;
drh90669c12006-01-20 15:45:36 +00005111 ctx.s.flags = MEM_Null;
5112 ctx.s.z = 0;
danielk19775f096132008-03-28 15:44:09 +00005113 ctx.s.zMalloc = 0;
drh90669c12006-01-20 15:45:36 +00005114 ctx.s.xDel = 0;
drhb21c8cd2007-08-21 19:33:56 +00005115 ctx.s.db = db;
drh1350b032002-02-27 19:00:20 +00005116 ctx.isError = 0;
danielk1977dc1bdc42004-06-11 10:51:27 +00005117 ctx.pColl = 0;
drhe82f5d02008-10-07 19:53:14 +00005118 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
danielk1977dc1bdc42004-06-11 10:51:27 +00005119 assert( pOp>p->aOp );
drh66a51672008-01-03 00:01:23 +00005120 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00005121 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00005122 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00005123 }
drhee9ff672010-09-03 18:50:48 +00005124 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005125 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00005126 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00005127 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005128 }
drh90669c12006-01-20 15:45:36 +00005129 sqlite3VdbeMemRelease(&ctx.s);
drh5e00f6c2001-09-13 13:46:56 +00005130 break;
5131}
5132
drh98757152008-01-09 23:04:12 +00005133/* Opcode: AggFinal P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00005134**
drh13449892005-09-07 21:22:45 +00005135** Execute the finalizer function for an aggregate. P1 is
5136** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005137**
5138** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005139** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005140** argument is not used by this opcode. It is only there to disambiguate
5141** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005142** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005143** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005144*/
drh9cbf3422008-01-17 16:22:13 +00005145case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005146 Mem *pMem;
drh0a07c102008-01-03 18:03:08 +00005147 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005148 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005149 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005150 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005151 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005152 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005153 }
drh2dca8682008-03-21 17:13:13 +00005154 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005155 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005156 if( sqlite3VdbeMemTooBig(pMem) ){
5157 goto too_big;
5158 }
drh5e00f6c2001-09-13 13:46:56 +00005159 break;
5160}
5161
dan5cf53532010-05-01 16:40:20 +00005162#ifndef SQLITE_OMIT_WAL
danf05c86d2010-04-13 11:56:03 +00005163/* Opcode: Checkpoint P1 * * * *
dane04dc882010-04-20 18:53:15 +00005164**
5165** Checkpoint database P1. This is a no-op if P1 is not currently in
5166** WAL mode.
dan7c246102010-04-12 19:00:29 +00005167*/
5168case OP_Checkpoint: {
dan586b9c82010-05-03 08:04:49 +00005169 rc = sqlite3Checkpoint(db, pOp->p1);
dan7c246102010-04-12 19:00:29 +00005170 break;
5171};
dan5cf53532010-05-01 16:40:20 +00005172#endif
drh5e00f6c2001-09-13 13:46:56 +00005173
drhcac29a62010-07-02 19:36:52 +00005174#ifndef SQLITE_OMIT_PRAGMA
drhab9b7442010-05-10 11:20:05 +00005175/* Opcode: JournalMode P1 P2 P3 * P5
dane04dc882010-04-20 18:53:15 +00005176**
5177** Change the journal mode of database P1 to P3. P3 must be one of the
5178** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5179** modes (delete, truncate, persist, off and memory), this is a simple
5180** operation. No IO is required.
5181**
5182** If changing into or out of WAL mode the procedure is more complicated.
5183**
5184** Write a string containing the final journal-mode to register P2.
5185*/
drhd80b2332010-05-01 00:59:37 +00005186case OP_JournalMode: { /* out2-prerelease */
dane04dc882010-04-20 18:53:15 +00005187 Btree *pBt; /* Btree to change journal mode of */
5188 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005189 int eNew; /* New journal mode */
5190 int eOld; /* The old journal mode */
drhd80b2332010-05-01 00:59:37 +00005191 const char *zFilename; /* Name of database file for pPager */
dane04dc882010-04-20 18:53:15 +00005192
drhd80b2332010-05-01 00:59:37 +00005193 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005194 assert( eNew==PAGER_JOURNALMODE_DELETE
5195 || eNew==PAGER_JOURNALMODE_TRUNCATE
5196 || eNew==PAGER_JOURNALMODE_PERSIST
5197 || eNew==PAGER_JOURNALMODE_OFF
5198 || eNew==PAGER_JOURNALMODE_MEMORY
5199 || eNew==PAGER_JOURNALMODE_WAL
5200 || eNew==PAGER_JOURNALMODE_QUERY
5201 );
5202 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh3ebaee92010-05-06 21:37:22 +00005203
5204 /* This opcode is used in two places: PRAGMA journal_mode and ATTACH.
5205 ** In PRAGMA journal_mode, the sqlite3VdbeUsesBtree() routine is called
5206 ** when the statment is prepared and so p->aMutex.nMutex>0. All mutexes
5207 ** are already acquired. But when used in ATTACH, sqlite3VdbeUsesBtree()
5208 ** is not called when the statement is prepared because it requires the
5209 ** iDb index of the database as a parameter, and the database has not
5210 ** yet been attached so that index is unavailable. We have to wait
5211 ** until runtime (now) to get the mutex on the newly attached database.
5212 ** No other mutexes are required by the ATTACH command so this is safe
5213 ** to do.
5214 */
5215 assert( (p->btreeMask & (1<<pOp->p1))!=0 || p->aMutex.nMutex==0 );
5216 if( p->aMutex.nMutex==0 ){
5217 /* This occurs right after ATTACH. Get a mutex on the newly ATTACHed
5218 ** database. */
5219 sqlite3VdbeUsesBtree(p, pOp->p1);
5220 sqlite3VdbeMutexArrayEnter(p);
5221 }
dane04dc882010-04-20 18:53:15 +00005222
5223 pBt = db->aDb[pOp->p1].pBt;
5224 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005225 eOld = sqlite3PagerGetJournalMode(pPager);
5226 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5227 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005228
5229#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005230 zFilename = sqlite3PagerFilename(pPager);
dane04dc882010-04-20 18:53:15 +00005231
drhd80b2332010-05-01 00:59:37 +00005232 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005233 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005234 */
5235 if( eNew==PAGER_JOURNALMODE_WAL
drhd9e5c4f2010-05-12 18:01:39 +00005236 && (zFilename[0]==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005237 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005238 ){
drh0b9b4302010-06-11 17:01:24 +00005239 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005240 }
5241
drh0b9b4302010-06-11 17:01:24 +00005242 if( (eNew!=eOld)
5243 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5244 ){
5245 if( !db->autoCommit || db->activeVdbeCnt>1 ){
5246 rc = SQLITE_ERROR;
5247 sqlite3SetString(&p->zErrMsg, db,
5248 "cannot change %s wal mode from within a transaction",
5249 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5250 );
5251 break;
5252 }else{
5253
5254 if( eOld==PAGER_JOURNALMODE_WAL ){
5255 /* If leaving WAL mode, close the log file. If successful, the call
5256 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5257 ** file. An EXCLUSIVE lock may still be held on the database file
5258 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005259 */
drh0b9b4302010-06-11 17:01:24 +00005260 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005261 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005262 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005263 }
drh242c4f72010-06-22 14:49:39 +00005264 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5265 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5266 ** as an intermediate */
5267 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005268 }
5269
5270 /* Open a transaction on the database file. Regardless of the journal
5271 ** mode, this transaction always uses a rollback journal.
5272 */
5273 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5274 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005275 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005276 }
5277 }
5278 }
dan5cf53532010-05-01 16:40:20 +00005279#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005280
dand956efe2010-06-18 16:13:45 +00005281 if( rc ){
dand956efe2010-06-18 16:13:45 +00005282 eNew = eOld;
5283 }
drh0b9b4302010-06-11 17:01:24 +00005284 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005285
dane04dc882010-04-20 18:53:15 +00005286 pOut = &aMem[pOp->p2];
5287 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005288 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005289 pOut->n = sqlite3Strlen30(pOut->z);
5290 pOut->enc = SQLITE_UTF8;
5291 sqlite3VdbeChangeEncoding(pOut, encoding);
5292 break;
drhcac29a62010-07-02 19:36:52 +00005293};
5294#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005295
drhfdbcdee2007-03-27 14:44:50 +00005296#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005297/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005298**
5299** Vacuum the entire database. This opcode will cause other virtual
5300** machines to be created and run. It may not be called from within
5301** a transaction.
5302*/
drh9cbf3422008-01-17 16:22:13 +00005303case OP_Vacuum: {
danielk19774adee202004-05-08 08:23:19 +00005304 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005305 break;
5306}
drh154d4b22006-09-21 11:02:16 +00005307#endif
drh6f8c91c2003-12-07 00:24:35 +00005308
danielk1977dddbcdc2007-04-26 14:42:34 +00005309#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005310/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005311**
5312** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005313** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005314** P2. Otherwise, fall through to the next instruction.
5315*/
drh9cbf3422008-01-17 16:22:13 +00005316case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005317 Btree *pBt;
5318
5319 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhfb982642007-08-30 01:19:59 +00005320 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
drhca5557f2007-05-04 18:30:40 +00005321 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005322 rc = sqlite3BtreeIncrVacuum(pBt);
5323 if( rc==SQLITE_DONE ){
5324 pc = pOp->p2 - 1;
5325 rc = SQLITE_OK;
5326 }
5327 break;
5328}
5329#endif
5330
drh98757152008-01-09 23:04:12 +00005331/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005332**
5333** Cause precompiled statements to become expired. An expired statement
5334** fails with an error code of SQLITE_SCHEMA if it is ever executed
5335** (via sqlite3_step()).
5336**
5337** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5338** then only the currently executing statement is affected.
5339*/
drh9cbf3422008-01-17 16:22:13 +00005340case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005341 if( !pOp->p1 ){
5342 sqlite3ExpirePreparedStatements(db);
5343 }else{
5344 p->expired = 1;
5345 }
5346 break;
5347}
5348
danielk1977c00da102006-01-07 13:21:04 +00005349#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005350/* Opcode: TableLock P1 P2 P3 P4 *
danielk1977c00da102006-01-07 13:21:04 +00005351**
5352** Obtain a lock on a particular table. This instruction is only used when
5353** the shared-cache feature is enabled.
5354**
danielk197796d48e92009-06-29 06:00:37 +00005355** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005356** on which the lock is acquired. A readlock is obtained if P3==0 or
5357** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005358**
5359** P2 contains the root-page of the table to lock.
5360**
drh66a51672008-01-03 00:01:23 +00005361** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005362** used to generate an error message if the lock cannot be obtained.
5363*/
drh9cbf3422008-01-17 16:22:13 +00005364case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005365 u8 isWriteLock = (u8)pOp->p3;
5366 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5367 int p1 = pOp->p1;
5368 assert( p1>=0 && p1<db->nDb );
5369 assert( (p->btreeMask & (1<<p1))!=0 );
5370 assert( isWriteLock==0 || isWriteLock==1 );
5371 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5372 if( (rc&0xFF)==SQLITE_LOCKED ){
5373 const char *z = pOp->p4.z;
5374 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5375 }
danielk1977c00da102006-01-07 13:21:04 +00005376 }
5377 break;
5378}
drhb9bb7c12006-06-11 23:41:55 +00005379#endif /* SQLITE_OMIT_SHARED_CACHE */
5380
5381#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005382/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005383**
danielk19773e3a84d2008-08-01 17:37:40 +00005384** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5385** xBegin method for that table.
5386**
5387** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00005388** within a callback to a virtual table xSync() method. If it is, the error
5389** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00005390*/
drh9cbf3422008-01-17 16:22:13 +00005391case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00005392 VTable *pVTab;
5393 pVTab = pOp->p4.pVtab;
5394 rc = sqlite3VtabBegin(db, pVTab);
drhb9755982010-07-24 16:34:37 +00005395 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00005396 break;
5397}
5398#endif /* SQLITE_OMIT_VIRTUALTABLE */
5399
5400#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005401/* Opcode: VCreate P1 * * P4 *
danielk1977f9e7dda2006-06-16 16:08:53 +00005402**
drh66a51672008-01-03 00:01:23 +00005403** P4 is the name of a virtual table in database P1. Call the xCreate method
danielk1977f9e7dda2006-06-16 16:08:53 +00005404** for that table.
5405*/
drh9cbf3422008-01-17 16:22:13 +00005406case OP_VCreate: {
danielk19772dca4ac2008-01-03 11:50:29 +00005407 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
drhb9bb7c12006-06-11 23:41:55 +00005408 break;
5409}
5410#endif /* SQLITE_OMIT_VIRTUALTABLE */
5411
5412#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005413/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005414**
drh66a51672008-01-03 00:01:23 +00005415** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00005416** of that table.
drhb9bb7c12006-06-11 23:41:55 +00005417*/
drh9cbf3422008-01-17 16:22:13 +00005418case OP_VDestroy: {
danielk1977212b2182006-06-23 14:32:08 +00005419 p->inVtabMethod = 2;
danielk19772dca4ac2008-01-03 11:50:29 +00005420 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
danielk1977212b2182006-06-23 14:32:08 +00005421 p->inVtabMethod = 0;
drhb9bb7c12006-06-11 23:41:55 +00005422 break;
5423}
5424#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00005425
drh9eff6162006-06-12 21:59:13 +00005426#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005427/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00005428**
drh66a51672008-01-03 00:01:23 +00005429** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00005430** P1 is a cursor number. This opcode opens a cursor to the virtual
5431** table and stores that cursor in P1.
5432*/
drh9cbf3422008-01-17 16:22:13 +00005433case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00005434 VdbeCursor *pCur;
5435 sqlite3_vtab_cursor *pVtabCursor;
5436 sqlite3_vtab *pVtab;
5437 sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005438
drh856c1032009-06-02 15:21:42 +00005439 pCur = 0;
5440 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00005441 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005442 pModule = (sqlite3_module *)pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005443 assert(pVtab && pModule);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005444 rc = pModule->xOpen(pVtab, &pVtabCursor);
drhb9755982010-07-24 16:34:37 +00005445 importVtabErrMsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005446 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00005447 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005448 pVtabCursor->pVtab = pVtab;
5449
5450 /* Initialise vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00005451 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00005452 if( pCur ){
5453 pCur->pVtabCursor = pVtabCursor;
5454 pCur->pModule = pVtabCursor->pVtab->pModule;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005455 }else{
drh17435752007-08-16 04:30:38 +00005456 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005457 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00005458 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005459 }
drh9eff6162006-06-12 21:59:13 +00005460 break;
5461}
5462#endif /* SQLITE_OMIT_VIRTUALTABLE */
5463
5464#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00005465/* Opcode: VFilter P1 P2 P3 P4 *
drh9eff6162006-06-12 21:59:13 +00005466**
5467** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5468** the filtered result set is empty.
5469**
drh66a51672008-01-03 00:01:23 +00005470** P4 is either NULL or a string that was generated by the xBestIndex
5471** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00005472** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00005473**
drh9eff6162006-06-12 21:59:13 +00005474** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00005475** by P1. The integer query plan parameter to xFilter is stored in register
5476** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00005477** xFilter method. Registers P3+2..P3+1+argc are the argc
5478** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00005479** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00005480**
danielk19776dbee812008-01-03 18:39:41 +00005481** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00005482*/
drh9cbf3422008-01-17 16:22:13 +00005483case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005484 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00005485 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005486 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00005487 Mem *pQuery;
5488 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00005489 sqlite3_vtab_cursor *pVtabCursor;
5490 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00005491 VdbeCursor *pCur;
5492 int res;
5493 int i;
5494 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005495
drha6c2ed92009-11-14 23:22:23 +00005496 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005497 pArgc = &pQuery[1];
5498 pCur = p->apCsr[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00005499 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005500 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00005501 pVtabCursor = pCur->pVtabCursor;
5502 pVtab = pVtabCursor->pVtab;
5503 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005504
drh9cbf3422008-01-17 16:22:13 +00005505 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00005506 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00005507 nArg = (int)pArgc->u.i;
5508 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005509
drh644a5292006-12-20 14:53:38 +00005510 /* Invoke the xFilter method */
5511 {
drh856c1032009-06-02 15:21:42 +00005512 res = 0;
5513 apArg = p->apArg;
drh4be8b512006-06-13 23:51:34 +00005514 for(i = 0; i<nArg; i++){
danielk19776dbee812008-01-03 18:39:41 +00005515 apArg[i] = &pArgc[i+1];
dan937d0de2009-10-15 18:35:38 +00005516 sqlite3VdbeMemStoreType(apArg[i]);
danielk19775fac9f82006-06-13 14:16:58 +00005517 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005518
danielk1977be718892006-06-23 08:05:19 +00005519 p->inVtabMethod = 1;
drh4dc754d2008-07-23 18:17:32 +00005520 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
danielk1977be718892006-06-23 08:05:19 +00005521 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005522 importVtabErrMsg(p, pVtab);
danielk1977a298e902006-06-22 09:53:48 +00005523 if( rc==SQLITE_OK ){
drh4dc754d2008-07-23 18:17:32 +00005524 res = pModule->xEof(pVtabCursor);
danielk1977a298e902006-06-22 09:53:48 +00005525 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005526
danielk1977a298e902006-06-22 09:53:48 +00005527 if( res ){
danielk1977b7a7b9a2006-06-13 10:24:42 +00005528 pc = pOp->p2 - 1;
5529 }
5530 }
drh1d454a32008-01-31 19:34:51 +00005531 pCur->nullRow = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005532
drh9eff6162006-06-12 21:59:13 +00005533 break;
5534}
5535#endif /* SQLITE_OMIT_VIRTUALTABLE */
5536
5537#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005538/* Opcode: VColumn P1 P2 P3 * *
drh9eff6162006-06-12 21:59:13 +00005539**
drh2133d822008-01-03 18:44:59 +00005540** Store the value of the P2-th column of
5541** the row of the virtual-table that the
5542** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00005543*/
5544case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00005545 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005546 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00005547 Mem *pDest;
5548 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005549
drhdfe88ec2008-11-03 20:55:06 +00005550 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005551 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005552 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005553 pDest = &aMem[pOp->p3];
drh2945b4a2008-01-31 15:53:45 +00005554 if( pCur->nullRow ){
5555 sqlite3VdbeMemSetNull(pDest);
5556 break;
5557 }
danielk19773e3a84d2008-08-01 17:37:40 +00005558 pVtab = pCur->pVtabCursor->pVtab;
5559 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005560 assert( pModule->xColumn );
5561 memset(&sContext, 0, sizeof(sContext));
danielk1977a7a8e142008-02-13 18:25:27 +00005562
5563 /* The output cell may already have a buffer allocated. Move
5564 ** the current contents to sContext.s so in case the user-function
5565 ** can use the already allocated buffer instead of allocating a
5566 ** new one.
5567 */
5568 sqlite3VdbeMemMove(&sContext.s, pDest);
5569 MemSetTypeFlag(&sContext.s, MEM_Null);
5570
drhde4fcfd2008-01-19 23:50:26 +00005571 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
drhb9755982010-07-24 16:34:37 +00005572 importVtabErrMsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00005573 if( sContext.isError ){
5574 rc = sContext.isError;
5575 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005576
drhde4fcfd2008-01-19 23:50:26 +00005577 /* Copy the result of the function to the P3 register. We
shanebe217792009-03-05 04:20:31 +00005578 ** do this regardless of whether or not an error occurred to ensure any
drhde4fcfd2008-01-19 23:50:26 +00005579 ** dynamic allocation in sContext.s (a Mem struct) is released.
5580 */
5581 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
drhde4fcfd2008-01-19 23:50:26 +00005582 sqlite3VdbeMemMove(pDest, &sContext.s);
drh5ff44372009-11-24 16:26:17 +00005583 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00005584 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005585
drhde4fcfd2008-01-19 23:50:26 +00005586 if( sqlite3VdbeMemTooBig(pDest) ){
5587 goto too_big;
5588 }
drh9eff6162006-06-12 21:59:13 +00005589 break;
5590}
5591#endif /* SQLITE_OMIT_VIRTUALTABLE */
5592
5593#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005594/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00005595**
5596** Advance virtual table P1 to the next row in its result set and
5597** jump to instruction P2. Or, if the virtual table has reached
5598** the end of its result set, then fall through to the next instruction.
5599*/
drh9cbf3422008-01-17 16:22:13 +00005600case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00005601 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005602 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00005603 int res;
drh856c1032009-06-02 15:21:42 +00005604 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005605
drhc54a6172009-06-02 16:06:03 +00005606 res = 0;
drh856c1032009-06-02 15:21:42 +00005607 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005608 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005609 if( pCur->nullRow ){
5610 break;
5611 }
danielk19773e3a84d2008-08-01 17:37:40 +00005612 pVtab = pCur->pVtabCursor->pVtab;
5613 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005614 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00005615
drhde4fcfd2008-01-19 23:50:26 +00005616 /* Invoke the xNext() method of the module. There is no way for the
5617 ** underlying implementation to return an error if one occurs during
5618 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5619 ** data is available) and the error code returned when xColumn or
5620 ** some other method is next invoked on the save virtual table cursor.
5621 */
drhde4fcfd2008-01-19 23:50:26 +00005622 p->inVtabMethod = 1;
5623 rc = pModule->xNext(pCur->pVtabCursor);
5624 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005625 importVtabErrMsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00005626 if( rc==SQLITE_OK ){
5627 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005628 }
5629
drhde4fcfd2008-01-19 23:50:26 +00005630 if( !res ){
5631 /* If there is data, jump to P2 */
5632 pc = pOp->p2 - 1;
5633 }
drh9eff6162006-06-12 21:59:13 +00005634 break;
5635}
5636#endif /* SQLITE_OMIT_VIRTUALTABLE */
5637
danielk1977182c4ba2007-06-27 15:53:34 +00005638#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005639/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00005640**
drh66a51672008-01-03 00:01:23 +00005641** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00005642** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00005643** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00005644*/
drh9cbf3422008-01-17 16:22:13 +00005645case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00005646 sqlite3_vtab *pVtab;
5647 Mem *pName;
5648
danielk1977595a5232009-07-24 17:58:53 +00005649 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00005650 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00005651 assert( pVtab->pModule->xRename );
drh5b6afba2008-01-05 16:29:28 +00005652 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00005653 assert( pName->flags & MEM_Str );
danielk19776dbee812008-01-03 18:39:41 +00005654 rc = pVtab->pModule->xRename(pVtab, pName->z);
drhb9755982010-07-24 16:34:37 +00005655 importVtabErrMsg(p, pVtab);
dana235d0c2010-08-24 16:59:47 +00005656 p->expired = 0;
danielk1977182c4ba2007-06-27 15:53:34 +00005657
danielk1977182c4ba2007-06-27 15:53:34 +00005658 break;
5659}
5660#endif
drh4cbdda92006-06-14 19:00:20 +00005661
5662#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005663/* Opcode: VUpdate P1 P2 P3 P4 *
danielk1977399918f2006-06-14 13:03:23 +00005664**
drh66a51672008-01-03 00:01:23 +00005665** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00005666** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00005667** are contiguous memory cells starting at P3 to pass to the xUpdate
5668** invocation. The value in register (P3+P2-1) corresponds to the
5669** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00005670**
5671** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00005672** The argv[0] element (which corresponds to memory cell P3)
5673** is the rowid of a row to delete. If argv[0] is NULL then no
5674** deletion occurs. The argv[1] element is the rowid of the new
5675** row. This can be NULL to have the virtual table select the new
5676** rowid for itself. The subsequent elements in the array are
5677** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00005678**
5679** If P2==1 then no insert is performed. argv[0] is the rowid of
5680** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00005681**
5682** P1 is a boolean flag. If it is set to true and the xUpdate call
5683** is successful, then the value returned by sqlite3_last_insert_rowid()
5684** is set to the value of the rowid for the row just inserted.
danielk1977399918f2006-06-14 13:03:23 +00005685*/
drh9cbf3422008-01-17 16:22:13 +00005686case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00005687 sqlite3_vtab *pVtab;
5688 sqlite3_module *pModule;
5689 int nArg;
5690 int i;
5691 sqlite_int64 rowid;
5692 Mem **apArg;
5693 Mem *pX;
5694
danielk1977595a5232009-07-24 17:58:53 +00005695 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005696 pModule = (sqlite3_module *)pVtab->pModule;
5697 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00005698 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00005699 if( ALWAYS(pModule->xUpdate) ){
drh856c1032009-06-02 15:21:42 +00005700 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00005701 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00005702 for(i=0; i<nArg; i++){
dan937d0de2009-10-15 18:35:38 +00005703 sqlite3VdbeMemStoreType(pX);
drh9c419382006-06-16 21:13:21 +00005704 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00005705 pX++;
danielk1977399918f2006-06-14 13:03:23 +00005706 }
danielk19771f6eec52006-06-16 06:17:47 +00005707 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
drhb9755982010-07-24 16:34:37 +00005708 importVtabErrMsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00005709 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00005710 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
5711 db->lastRowid = rowid;
5712 }
drhb5df1442008-04-10 14:00:09 +00005713 p->nChange++;
danielk1977399918f2006-06-14 13:03:23 +00005714 }
drh4cbdda92006-06-14 19:00:20 +00005715 break;
danielk1977399918f2006-06-14 13:03:23 +00005716}
5717#endif /* SQLITE_OMIT_VIRTUALTABLE */
5718
danielk197759a93792008-05-15 17:48:20 +00005719#ifndef SQLITE_OMIT_PAGER_PRAGMAS
5720/* Opcode: Pagecount P1 P2 * * *
5721**
5722** Write the current number of pages in database P1 to memory cell P2.
5723*/
5724case OP_Pagecount: { /* out2-prerelease */
drhb1299152010-03-30 22:58:33 +00005725 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00005726 break;
5727}
5728#endif
5729
drh949f9cd2008-01-12 21:35:57 +00005730#ifndef SQLITE_OMIT_TRACE
5731/* Opcode: Trace * * * P4 *
5732**
5733** If tracing is enabled (by the sqlite3_trace()) interface, then
5734** the UTF-8 string contained in P4 is emitted on the trace callback.
5735*/
5736case OP_Trace: {
drh856c1032009-06-02 15:21:42 +00005737 char *zTrace;
5738
5739 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
danielk19776ab3a2e2009-02-19 14:39:25 +00005740 if( zTrace ){
drh949f9cd2008-01-12 21:35:57 +00005741 if( db->xTrace ){
drhc7bc4fd2009-11-25 18:03:42 +00005742 char *z = sqlite3VdbeExpandSql(p, zTrace);
5743 db->xTrace(db->pTraceArg, z);
5744 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00005745 }
5746#ifdef SQLITE_DEBUG
5747 if( (db->flags & SQLITE_SqlTrace)!=0 ){
danielk19776ab3a2e2009-02-19 14:39:25 +00005748 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
drh949f9cd2008-01-12 21:35:57 +00005749 }
5750#endif /* SQLITE_DEBUG */
5751 }
5752 break;
5753}
5754#endif
5755
drh91fd4d42008-01-19 20:11:25 +00005756
5757/* Opcode: Noop * * * * *
5758**
5759** Do nothing. This instruction is often useful as a jump
5760** destination.
drh5e00f6c2001-09-13 13:46:56 +00005761*/
drh91fd4d42008-01-19 20:11:25 +00005762/*
5763** The magic Explain opcode are only inserted when explain==2 (which
5764** is to say when the EXPLAIN QUERY PLAN syntax is used.)
5765** This opcode records information from the optimizer. It is the
5766** the same as a no-op. This opcodesnever appears in a real VM program.
5767*/
5768default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00005769 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00005770 break;
5771}
5772
5773/*****************************************************************************
5774** The cases of the switch statement above this line should all be indented
5775** by 6 spaces. But the left-most 6 spaces have been removed to improve the
5776** readability. From this point on down, the normal indentation rules are
5777** restored.
5778*****************************************************************************/
5779 }
drh6e142f52000-06-08 13:36:40 +00005780
drh7b396862003-01-01 23:06:20 +00005781#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00005782 {
shane9bcbdad2008-05-29 20:22:37 +00005783 u64 elapsed = sqlite3Hwtime() - start;
5784 pOp->cycles += elapsed;
drh8178a752003-01-05 21:41:40 +00005785 pOp->cnt++;
5786#if 0
shane9bcbdad2008-05-29 20:22:37 +00005787 fprintf(stdout, "%10llu ", elapsed);
drhbbe879d2009-11-14 18:04:35 +00005788 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
drh8178a752003-01-05 21:41:40 +00005789#endif
5790 }
drh7b396862003-01-01 23:06:20 +00005791#endif
5792
drh6e142f52000-06-08 13:36:40 +00005793 /* The following code adds nothing to the actual functionality
5794 ** of the program. It is only here for testing and debugging.
5795 ** On the other hand, it does burn CPU cycles every time through
5796 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
5797 */
5798#ifndef NDEBUG
drha6110402005-07-28 20:51:19 +00005799 assert( pc>=-1 && pc<p->nOp );
drhae7e1512007-05-02 16:51:59 +00005800
drhcf1023c2007-05-08 20:59:49 +00005801#ifdef SQLITE_DEBUG
drh5b6afba2008-01-05 16:29:28 +00005802 if( p->trace ){
5803 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
drh3c657212009-11-17 23:59:58 +00005804 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
5805 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00005806 }
drh3c657212009-11-17 23:59:58 +00005807 if( pOp->opflags & OPFLG_OUT3 ){
5808 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00005809 }
drh75897232000-05-29 14:26:00 +00005810 }
danielk1977b5402fb2005-01-12 07:15:04 +00005811#endif /* SQLITE_DEBUG */
5812#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00005813 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00005814
drha05a7222008-01-19 03:35:58 +00005815 /* If we reach this point, it means that execution is finished with
5816 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00005817 */
drha05a7222008-01-19 03:35:58 +00005818vdbe_error_halt:
5819 assert( rc );
5820 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00005821 testcase( sqlite3GlobalConfig.xLog!=0 );
5822 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
5823 pc, p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00005824 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00005825 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
5826 rc = SQLITE_ERROR;
drh32783152009-11-20 15:02:34 +00005827 if( resetSchemaOnFault ) sqlite3ResetInternalSchema(db, 0);
drh900b31e2007-08-28 02:27:51 +00005828
5829 /* This is the only way out of this procedure. We have to
5830 ** release the mutexes on btrees that were acquired at the
5831 ** top. */
5832vdbe_return:
drh4cf7c7f2007-08-28 23:28:07 +00005833 sqlite3BtreeMutexArrayLeave(&p->aMutex);
drhb86ccfb2003-01-28 23:13:10 +00005834 return rc;
5835
drh023ae032007-05-08 12:12:16 +00005836 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
5837 ** is encountered.
5838 */
5839too_big:
drhf089aa42008-07-08 19:34:06 +00005840 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00005841 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00005842 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00005843
drh98640a32007-06-07 19:08:32 +00005844 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00005845 */
5846no_mem:
drh17435752007-08-16 04:30:38 +00005847 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00005848 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00005849 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00005850 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00005851
drhb86ccfb2003-01-28 23:13:10 +00005852 /* Jump to here for any other kind of fatal error. The "rc" variable
5853 ** should hold the error number.
5854 */
5855abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00005856 assert( p->zErrMsg==0 );
5857 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00005858 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00005859 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00005860 }
drha05a7222008-01-19 03:35:58 +00005861 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00005862
danielk19776f8a5032004-05-10 10:34:51 +00005863 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00005864 ** flag.
5865 */
5866abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00005867 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00005868 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00005869 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00005870 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00005871 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00005872}