blob: a52db1e2f4fc492e6b7d6a02034e375ebfb6bd6e [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
daneebf2f52017-11-18 17:30:08 +0000115/*
116** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118**
119** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122** with the page number and filename associated with the (MemPage*).
123*/
124#ifdef SQLITE_DEBUG
125int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000126 char *zMsg;
127 sqlite3BeginBenignMalloc();
128 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130 );
drh8bfe66a2018-01-22 15:45:12 +0000131 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000132 if( zMsg ){
133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134 }
135 sqlite3_free(zMsg);
136 return SQLITE_CORRUPT_BKPT;
137}
138# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139#else
140# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141#endif
142
drhe53831d2007-08-17 01:14:38 +0000143#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000144
145#ifdef SQLITE_DEBUG
146/*
drh0ee3dbe2009-10-16 15:05:18 +0000147**** This function is only used as part of an assert() statement. ***
148**
149** Check to see if pBtree holds the required locks to read or write to the
150** table with root page iRoot. Return 1 if it does and 0 if not.
151**
152** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000153** Btree connection pBtree:
154**
155** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156**
drh0ee3dbe2009-10-16 15:05:18 +0000157** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000158** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000159** the corresponding table. This makes things a bit more complicated,
160** as this module treats each table as a separate structure. To determine
161** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000162** function has to search through the database schema.
163**
drh0ee3dbe2009-10-16 15:05:18 +0000164** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000165** hold a write-lock on the schema table (root page 1). This is also
166** acceptable.
167*/
168static int hasSharedCacheTableLock(
169 Btree *pBtree, /* Handle that must hold lock */
170 Pgno iRoot, /* Root page of b-tree */
171 int isIndex, /* True if iRoot is the root of an index b-tree */
172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
173){
174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175 Pgno iTab = 0;
176 BtLock *pLock;
177
drh0ee3dbe2009-10-16 15:05:18 +0000178 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000179 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000180 ** Return true immediately.
181 */
danielk197796d48e92009-06-29 06:00:37 +0000182 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000184 ){
185 return 1;
186 }
187
drh0ee3dbe2009-10-16 15:05:18 +0000188 /* If the client is reading or writing an index and the schema is
189 ** not loaded, then it is too difficult to actually check to see if
190 ** the correct locks are held. So do not bother - just return true.
191 ** This case does not come up very often anyhow.
192 */
drh2c5e35f2014-08-05 11:04:21 +0000193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000194 return 1;
195 }
196
danielk197796d48e92009-06-29 06:00:37 +0000197 /* Figure out the root-page that the lock should be held on. For table
198 ** b-trees, this is just the root page of the b-tree being read or
199 ** written. For index b-trees, it is the root page of the associated
200 ** table. */
201 if( isIndex ){
202 HashElem *p;
203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000205 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000206 if( iTab ){
207 /* Two or more indexes share the same root page. There must
208 ** be imposter tables. So just return true. The assert is not
209 ** useful in that case. */
210 return 1;
211 }
shane5eff7cf2009-08-10 03:57:58 +0000212 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000213 }
214 }
215 }else{
216 iTab = iRoot;
217 }
218
219 /* Search for the required lock. Either a write-lock on root-page iTab, a
220 ** write-lock on the schema table, or (if the client is reading) a
221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223 if( pLock->pBtree==pBtree
224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225 && pLock->eLock>=eLockType
226 ){
227 return 1;
228 }
229 }
230
231 /* Failed to find the required lock. */
232 return 0;
233}
drh0ee3dbe2009-10-16 15:05:18 +0000234#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000235
drh0ee3dbe2009-10-16 15:05:18 +0000236#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000237/*
drh0ee3dbe2009-10-16 15:05:18 +0000238**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000239**
drh0ee3dbe2009-10-16 15:05:18 +0000240** Return true if it would be illegal for pBtree to write into the
241** table or index rooted at iRoot because other shared connections are
242** simultaneously reading that same table or index.
243**
244** It is illegal for pBtree to write if some other Btree object that
245** shares the same BtShared object is currently reading or writing
246** the iRoot table. Except, if the other Btree object has the
247** read-uncommitted flag set, then it is OK for the other object to
248** have a read cursor.
249**
250** For example, before writing to any part of the table or index
251** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000252**
253** assert( !hasReadConflicts(pBtree, iRoot) );
254*/
255static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256 BtCursor *p;
257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258 if( p->pgnoRoot==iRoot
259 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000261 ){
262 return 1;
263 }
264 }
265 return 0;
266}
267#endif /* #ifdef SQLITE_DEBUG */
268
danielk1977da184232006-01-05 11:34:32 +0000269/*
drh0ee3dbe2009-10-16 15:05:18 +0000270** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000271** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000272** SQLITE_OK if the lock may be obtained (by calling
273** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000274*/
drhc25eabe2009-02-24 18:57:31 +0000275static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000276 BtShared *pBt = p->pBt;
277 BtLock *pIter;
278
drh1fee73e2007-08-29 04:00:57 +0000279 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000283
danielk19775b413d72009-04-01 09:41:54 +0000284 /* If requesting a write-lock, then the Btree must have an open write
285 ** transaction on this file. And, obviously, for this to be so there
286 ** must be an open write transaction on the file itself.
287 */
288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290
drh0ee3dbe2009-10-16 15:05:18 +0000291 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000292 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000293 return SQLITE_OK;
294 }
295
danielk1977641b0f42007-12-21 04:47:25 +0000296 /* If some other connection is holding an exclusive lock, the
297 ** requested lock may not be obtained.
298 */
drhc9166342012-01-05 23:32:06 +0000299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000302 }
303
danielk1977e0d9e6f2009-07-03 16:25:06 +0000304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305 /* The condition (pIter->eLock!=eLock) in the following if(...)
306 ** statement is a simplification of:
307 **
308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309 **
310 ** since we know that if eLock==WRITE_LOCK, then no other connection
311 ** may hold a WRITE_LOCK on any table in this file (since there can
312 ** only be a single writer).
313 */
314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318 if( eLock==WRITE_LOCK ){
319 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000320 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000321 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000323 }
324 }
325 return SQLITE_OK;
326}
drhe53831d2007-08-17 01:14:38 +0000327#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000328
drhe53831d2007-08-17 01:14:38 +0000329#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000330/*
331** Add a lock on the table with root-page iTable to the shared-btree used
332** by Btree handle p. Parameter eLock must be either READ_LOCK or
333** WRITE_LOCK.
334**
danielk19779d104862009-07-09 08:27:14 +0000335** This function assumes the following:
336**
drh0ee3dbe2009-10-16 15:05:18 +0000337** (a) The specified Btree object p is connected to a sharable
338** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000339**
drh0ee3dbe2009-10-16 15:05:18 +0000340** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000341** with the requested lock (i.e. querySharedCacheTableLock() has
342** already been called and returned SQLITE_OK).
343**
344** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000346*/
drhc25eabe2009-02-24 18:57:31 +0000347static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000348 BtShared *pBt = p->pBt;
349 BtLock *pLock = 0;
350 BtLock *pIter;
351
drh1fee73e2007-08-29 04:00:57 +0000352 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000355
danielk1977e0d9e6f2009-07-03 16:25:06 +0000356 /* A connection with the read-uncommitted flag set will never try to
357 ** obtain a read-lock using this function. The only read-lock obtained
358 ** by a connection in read-uncommitted mode is on the sqlite_master
359 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000361
danielk19779d104862009-07-09 08:27:14 +0000362 /* This function should only be called on a sharable b-tree after it
363 ** has been determined that no other b-tree holds a conflicting lock. */
364 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000366
367 /* First search the list for an existing lock on this table. */
368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369 if( pIter->iTable==iTable && pIter->pBtree==p ){
370 pLock = pIter;
371 break;
372 }
373 }
374
375 /* If the above search did not find a BtLock struct associating Btree p
376 ** with table iTable, allocate one and link it into the list.
377 */
378 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000380 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000381 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000382 }
383 pLock->iTable = iTable;
384 pLock->pBtree = p;
385 pLock->pNext = pBt->pLock;
386 pBt->pLock = pLock;
387 }
388
389 /* Set the BtLock.eLock variable to the maximum of the current lock
390 ** and the requested lock. This means if a write-lock was already held
391 ** and a read-lock requested, we don't incorrectly downgrade the lock.
392 */
393 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000394 if( eLock>pLock->eLock ){
395 pLock->eLock = eLock;
396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397
398 return SQLITE_OK;
399}
drhe53831d2007-08-17 01:14:38 +0000400#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000401
drhe53831d2007-08-17 01:14:38 +0000402#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000403/*
drhc25eabe2009-02-24 18:57:31 +0000404** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000405** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000406**
drh0ee3dbe2009-10-16 15:05:18 +0000407** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000408** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000409** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000410*/
drhc25eabe2009-02-24 18:57:31 +0000411static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000412 BtShared *pBt = p->pBt;
413 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000414
drh1fee73e2007-08-29 04:00:57 +0000415 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000416 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000417 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000418
danielk1977aef0bf62005-12-30 16:28:01 +0000419 while( *ppIter ){
420 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000422 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000423 if( pLock->pBtree==p ){
424 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000425 assert( pLock->iTable!=1 || pLock==&p->lock );
426 if( pLock->iTable!=1 ){
427 sqlite3_free(pLock);
428 }
danielk1977aef0bf62005-12-30 16:28:01 +0000429 }else{
430 ppIter = &pLock->pNext;
431 }
432 }
danielk1977641b0f42007-12-21 04:47:25 +0000433
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000435 if( pBt->pWriter==p ){
436 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000438 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000439 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000440 ** transaction. If there currently exists a writer, and p is not
441 ** that writer, then the number of locks held by connections other
442 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000443 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000444 **
drhc9166342012-01-05 23:32:06 +0000445 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000446 ** be zero already. So this next line is harmless in that case.
447 */
drhc9166342012-01-05 23:32:06 +0000448 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000449 }
danielk1977aef0bf62005-12-30 16:28:01 +0000450}
danielk197794b30732009-07-02 17:21:57 +0000451
danielk1977e0d9e6f2009-07-03 16:25:06 +0000452/*
drh0ee3dbe2009-10-16 15:05:18 +0000453** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000454*/
danielk197794b30732009-07-02 17:21:57 +0000455static void downgradeAllSharedCacheTableLocks(Btree *p){
456 BtShared *pBt = p->pBt;
457 if( pBt->pWriter==p ){
458 BtLock *pLock;
459 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463 pLock->eLock = READ_LOCK;
464 }
465 }
466}
467
danielk1977aef0bf62005-12-30 16:28:01 +0000468#endif /* SQLITE_OMIT_SHARED_CACHE */
469
drh3908fe92017-09-01 14:50:19 +0000470static void releasePage(MemPage *pPage); /* Forward reference */
471static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000472static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000473
drh1fee73e2007-08-29 04:00:57 +0000474/*
drh0ee3dbe2009-10-16 15:05:18 +0000475***** This routine is used inside of assert() only ****
476**
477** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000478*/
drh0ee3dbe2009-10-16 15:05:18 +0000479#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000480static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000481 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000482}
drh5e08d0f2016-06-04 21:05:54 +0000483
484/* Verify that the cursor and the BtShared agree about what is the current
485** database connetion. This is important in shared-cache mode. If the database
486** connection pointers get out-of-sync, it is possible for routines like
487** btreeInitPage() to reference an stale connection pointer that references a
488** a connection that has already closed. This routine is used inside assert()
489** statements only and for the purpose of double-checking that the btree code
490** does keep the database connection pointers up-to-date.
491*/
dan7a2347e2016-01-07 16:43:54 +0000492static int cursorOwnsBtShared(BtCursor *p){
493 assert( cursorHoldsMutex(p) );
494 return (p->pBtree->db==p->pBt->db);
495}
drh1fee73e2007-08-29 04:00:57 +0000496#endif
497
danielk197792d4d7a2007-05-04 12:05:56 +0000498/*
dan5a500af2014-03-11 20:33:04 +0000499** Invalidate the overflow cache of the cursor passed as the first argument.
500** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000501*/
drh036dbec2014-03-11 23:40:44 +0000502#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000503
504/*
505** Invalidate the overflow page-list cache for all cursors opened
506** on the shared btree structure pBt.
507*/
508static void invalidateAllOverflowCache(BtShared *pBt){
509 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000510 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000511 for(p=pBt->pCursor; p; p=p->pNext){
512 invalidateOverflowCache(p);
513 }
514}
danielk197796d48e92009-06-29 06:00:37 +0000515
dan5a500af2014-03-11 20:33:04 +0000516#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000517/*
518** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000519** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000520** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000521**
522** If argument isClearTable is true, then the entire contents of the
523** table is about to be deleted. In this case invalidate all incrblob
524** cursors open on any row within the table with root-page pgnoRoot.
525**
526** Otherwise, if argument isClearTable is false, then the row with
527** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000528** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000529*/
530static void invalidateIncrblobCursors(
531 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000532 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000533 i64 iRow, /* The rowid that might be changing */
534 int isClearTable /* True if all rows are being deleted */
535){
536 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000537 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000538 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000539 pBtree->hasIncrblobCur = 0;
540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541 if( (p->curFlags & BTCF_Incrblob)!=0 ){
542 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000544 p->eState = CURSOR_INVALID;
545 }
danielk197796d48e92009-06-29 06:00:37 +0000546 }
547 }
548}
549
danielk197792d4d7a2007-05-04 12:05:56 +0000550#else
dan5a500af2014-03-11 20:33:04 +0000551 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000552 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000553#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000554
drh980b1a72006-08-16 16:42:48 +0000555/*
danielk1977bea2a942009-01-20 17:06:27 +0000556** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557** when a page that previously contained data becomes a free-list leaf
558** page.
559**
560** The BtShared.pHasContent bitvec exists to work around an obscure
561** bug caused by the interaction of two useful IO optimizations surrounding
562** free-list leaf pages:
563**
564** 1) When all data is deleted from a page and the page becomes
565** a free-list leaf page, the page is not written to the database
566** (as free-list leaf pages contain no meaningful data). Sometimes
567** such a page is not even journalled (as it will not be modified,
568** why bother journalling it?).
569**
570** 2) When a free-list leaf page is reused, its content is not read
571** from the database or written to the journal file (why should it
572** be, if it is not at all meaningful?).
573**
574** By themselves, these optimizations work fine and provide a handy
575** performance boost to bulk delete or insert operations. However, if
576** a page is moved to the free-list and then reused within the same
577** transaction, a problem comes up. If the page is not journalled when
578** it is moved to the free-list and it is also not journalled when it
579** is extracted from the free-list and reused, then the original data
580** may be lost. In the event of a rollback, it may not be possible
581** to restore the database to its original configuration.
582**
583** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584** moved to become a free-list leaf page, the corresponding bit is
585** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000586** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000587** set in BtShared.pHasContent. The contents of the bitvec are cleared
588** at the end of every transaction.
589*/
590static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591 int rc = SQLITE_OK;
592 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000593 assert( pgno<=pBt->nPage );
594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000595 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000596 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000597 }
598 }
599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601 }
602 return rc;
603}
604
605/*
606** Query the BtShared.pHasContent vector.
607**
608** This function is called when a free-list leaf page is removed from the
609** free-list for reuse. It returns false if it is safe to retrieve the
610** page from the pager layer with the 'no-content' flag set. True otherwise.
611*/
612static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613 Bitvec *p = pBt->pHasContent;
614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
615}
616
617/*
618** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619** invoked at the conclusion of each write-transaction.
620*/
621static void btreeClearHasContent(BtShared *pBt){
622 sqlite3BitvecDestroy(pBt->pHasContent);
623 pBt->pHasContent = 0;
624}
625
626/*
drh138eeeb2013-03-27 03:15:23 +0000627** Release all of the apPage[] pages for a cursor.
628*/
629static void btreeReleaseAllCursorPages(BtCursor *pCur){
630 int i;
drh352a35a2017-08-15 03:46:47 +0000631 if( pCur->iPage>=0 ){
632 for(i=0; i<pCur->iPage; i++){
633 releasePageNotNull(pCur->apPage[i]);
634 }
635 releasePageNotNull(pCur->pPage);
636 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000637 }
drh138eeeb2013-03-27 03:15:23 +0000638}
639
danf0ee1d32015-09-12 19:26:11 +0000640/*
641** The cursor passed as the only argument must point to a valid entry
642** when this function is called (i.e. have eState==CURSOR_VALID). This
643** function saves the current cursor key in variables pCur->nKey and
644** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645** code otherwise.
646**
647** If the cursor is open on an intkey table, then the integer key
648** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650** set to point to a malloced buffer pCur->nKey bytes in size containing
651** the key.
652*/
653static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000654 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000655 assert( CURSOR_VALID==pCur->eState );
656 assert( 0==pCur->pKey );
657 assert( cursorHoldsMutex(pCur) );
658
drha7c90c42016-06-04 20:37:10 +0000659 if( pCur->curIntKey ){
660 /* Only the rowid is required for a table btree */
661 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662 }else{
danfffaf232018-12-14 13:18:35 +0000663 /* For an index btree, save the complete key content. It is possible
664 ** that the current key is corrupt. In that case, it is possible that
665 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
666 ** up to the size of 1 varint plus 1 8-byte value when the cursor
667 ** position is restored. Hence the 17 bytes of padding allocated
668 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000669 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000670 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000671 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000672 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000673 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000674 if( rc==SQLITE_OK ){
drhe6c628e2019-01-21 16:01:17 +0000675 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
danf0ee1d32015-09-12 19:26:11 +0000676 pCur->pKey = pKey;
677 }else{
678 sqlite3_free(pKey);
679 }
680 }else{
mistachkinfad30392016-02-13 23:43:46 +0000681 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000682 }
683 }
684 assert( !pCur->curIntKey || !pCur->pKey );
685 return rc;
686}
drh138eeeb2013-03-27 03:15:23 +0000687
688/*
drh980b1a72006-08-16 16:42:48 +0000689** Save the current cursor position in the variables BtCursor.nKey
690** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000691**
692** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
693** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000694*/
695static int saveCursorPosition(BtCursor *pCur){
696 int rc;
697
drhd2f83132015-03-25 17:35:01 +0000698 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000699 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000700 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000701
drhd2f83132015-03-25 17:35:01 +0000702 if( pCur->eState==CURSOR_SKIPNEXT ){
703 pCur->eState = CURSOR_VALID;
704 }else{
705 pCur->skipNext = 0;
706 }
drh980b1a72006-08-16 16:42:48 +0000707
danf0ee1d32015-09-12 19:26:11 +0000708 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000709 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000710 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000711 pCur->eState = CURSOR_REQUIRESEEK;
712 }
713
dane755e102015-09-30 12:59:12 +0000714 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000715 return rc;
716}
717
drh637f3d82014-08-22 22:26:07 +0000718/* Forward reference */
719static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
720
drh980b1a72006-08-16 16:42:48 +0000721/*
drh0ee3dbe2009-10-16 15:05:18 +0000722** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000723** the table with root-page iRoot. "Saving the cursor position" means that
724** the location in the btree is remembered in such a way that it can be
725** moved back to the same spot after the btree has been modified. This
726** routine is called just before cursor pExcept is used to modify the
727** table, for example in BtreeDelete() or BtreeInsert().
728**
drh27fb7462015-06-30 02:47:36 +0000729** If there are two or more cursors on the same btree, then all such
730** cursors should have their BTCF_Multiple flag set. The btreeCursor()
731** routine enforces that rule. This routine only needs to be called in
732** the uncommon case when pExpect has the BTCF_Multiple flag set.
733**
734** If pExpect!=NULL and if no other cursors are found on the same root-page,
735** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
736** pointless call to this routine.
737**
drh637f3d82014-08-22 22:26:07 +0000738** Implementation note: This routine merely checks to see if any cursors
739** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
740** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000741*/
742static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
743 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000744 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000745 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000746 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000747 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
748 }
drh27fb7462015-06-30 02:47:36 +0000749 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
750 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
751 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000752}
753
754/* This helper routine to saveAllCursors does the actual work of saving
755** the cursors if and when a cursor is found that actually requires saving.
756** The common case is that no cursors need to be saved, so this routine is
757** broken out from its caller to avoid unnecessary stack pointer movement.
758*/
759static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000760 BtCursor *p, /* The first cursor that needs saving */
761 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
762 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000763){
764 do{
drh138eeeb2013-03-27 03:15:23 +0000765 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000766 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000767 int rc = saveCursorPosition(p);
768 if( SQLITE_OK!=rc ){
769 return rc;
770 }
771 }else{
drh85ef6302017-08-02 15:50:09 +0000772 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000773 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000774 }
775 }
drh637f3d82014-08-22 22:26:07 +0000776 p = p->pNext;
777 }while( p );
drh980b1a72006-08-16 16:42:48 +0000778 return SQLITE_OK;
779}
780
781/*
drhbf700f32007-03-31 02:36:44 +0000782** Clear the current cursor position.
783*/
danielk1977be51a652008-10-08 17:58:48 +0000784void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000785 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000786 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000787 pCur->pKey = 0;
788 pCur->eState = CURSOR_INVALID;
789}
790
791/*
danielk19773509a652009-07-06 18:56:13 +0000792** In this version of BtreeMoveto, pKey is a packed index record
793** such as is generated by the OP_MakeRecord opcode. Unpack the
794** record and then call BtreeMovetoUnpacked() to do the work.
795*/
796static int btreeMoveto(
797 BtCursor *pCur, /* Cursor open on the btree to be searched */
798 const void *pKey, /* Packed key if the btree is an index */
799 i64 nKey, /* Integer key for tables. Size of pKey for indices */
800 int bias, /* Bias search to the high end */
801 int *pRes /* Write search results here */
802){
803 int rc; /* Status code */
804 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000805
806 if( pKey ){
danb0c4c942019-01-24 15:16:17 +0000807 KeyInfo *pKeyInfo = pCur->pKeyInfo;
danielk19773509a652009-07-06 18:56:13 +0000808 assert( nKey==(i64)(int)nKey );
danb0c4c942019-01-24 15:16:17 +0000809 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000810 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
danb0c4c942019-01-24 15:16:17 +0000811 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
812 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
mistachkin88a79732017-09-04 19:31:54 +0000813 rc = SQLITE_CORRUPT_BKPT;
drha582b012016-12-21 19:45:54 +0000814 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000815 }
danielk19773509a652009-07-06 18:56:13 +0000816 }else{
817 pIdxKey = 0;
818 }
819 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000820moveto_done:
821 if( pIdxKey ){
822 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000823 }
824 return rc;
825}
826
827/*
drh980b1a72006-08-16 16:42:48 +0000828** Restore the cursor to the position it was in (or as close to as possible)
829** when saveCursorPosition() was called. Note that this call deletes the
830** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000831** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000832** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000833*/
danielk197730548662009-07-09 05:07:37 +0000834static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000835 int rc;
drhd2f83132015-03-25 17:35:01 +0000836 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000837 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000838 assert( pCur->eState>=CURSOR_REQUIRESEEK );
839 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000840 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000841 }
drh980b1a72006-08-16 16:42:48 +0000842 pCur->eState = CURSOR_INVALID;
drhb336d1a2019-03-30 19:17:35 +0000843 if( sqlite3FaultSim(410) ){
844 rc = SQLITE_IOERR;
845 }else{
846 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
847 }
drh980b1a72006-08-16 16:42:48 +0000848 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000849 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000850 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000851 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh0c873bf2019-01-28 00:42:06 +0000852 if( skipNext ) pCur->skipNext = skipNext;
drh9b47ee32013-08-20 03:13:51 +0000853 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
854 pCur->eState = CURSOR_SKIPNEXT;
855 }
drh980b1a72006-08-16 16:42:48 +0000856 }
857 return rc;
858}
859
drha3460582008-07-11 21:02:53 +0000860#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000861 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000862 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000863 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000864
drha3460582008-07-11 21:02:53 +0000865/*
drh6848dad2014-08-22 23:33:03 +0000866** Determine whether or not a cursor has moved from the position where
867** it was last placed, or has been invalidated for any other reason.
868** Cursors can move when the row they are pointing at is deleted out
869** from under them, for example. Cursor might also move if a btree
870** is rebalanced.
drha3460582008-07-11 21:02:53 +0000871**
drh6848dad2014-08-22 23:33:03 +0000872** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000873**
drh6848dad2014-08-22 23:33:03 +0000874** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
875** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000876*/
drh6848dad2014-08-22 23:33:03 +0000877int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000878 assert( EIGHT_BYTE_ALIGNMENT(pCur)
879 || pCur==sqlite3BtreeFakeValidCursor() );
880 assert( offsetof(BtCursor, eState)==0 );
881 assert( sizeof(pCur->eState)==1 );
882 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000883}
884
885/*
drhfe0cf7a2017-08-16 19:20:20 +0000886** Return a pointer to a fake BtCursor object that will always answer
887** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
888** cursor returned must not be used with any other Btree interface.
889*/
890BtCursor *sqlite3BtreeFakeValidCursor(void){
891 static u8 fakeCursor = CURSOR_VALID;
892 assert( offsetof(BtCursor, eState)==0 );
893 return (BtCursor*)&fakeCursor;
894}
895
896/*
drh6848dad2014-08-22 23:33:03 +0000897** This routine restores a cursor back to its original position after it
898** has been moved by some outside activity (such as a btree rebalance or
899** a row having been deleted out from under the cursor).
900**
901** On success, the *pDifferentRow parameter is false if the cursor is left
902** pointing at exactly the same row. *pDifferntRow is the row the cursor
903** was pointing to has been deleted, forcing the cursor to point to some
904** nearby row.
905**
906** This routine should only be called for a cursor that just returned
907** TRUE from sqlite3BtreeCursorHasMoved().
908*/
909int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000910 int rc;
911
drh6848dad2014-08-22 23:33:03 +0000912 assert( pCur!=0 );
913 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000914 rc = restoreCursorPosition(pCur);
915 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000916 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000917 return rc;
918 }
drh606a3572015-03-25 18:29:10 +0000919 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000920 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000921 }else{
drh6848dad2014-08-22 23:33:03 +0000922 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000923 }
924 return SQLITE_OK;
925}
926
drhf7854c72015-10-27 13:24:37 +0000927#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000928/*
drh0df57012015-08-14 15:05:55 +0000929** Provide hints to the cursor. The particular hint given (and the type
930** and number of the varargs parameters) is determined by the eHintType
931** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000932*/
drh0df57012015-08-14 15:05:55 +0000933void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000934 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000935}
drhf7854c72015-10-27 13:24:37 +0000936#endif
937
938/*
939** Provide flag hints to the cursor.
940*/
941void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
942 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
943 pCur->hints = x;
944}
945
drh28935362013-12-07 20:39:19 +0000946
danielk1977599fcba2004-11-08 07:13:13 +0000947#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000948/*
drha3152892007-05-05 11:48:52 +0000949** Given a page number of a regular database page, return the page
950** number for the pointer-map page that contains the entry for the
951** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000952**
953** Return 0 (not a valid page) for pgno==1 since there is
954** no pointer map associated with page 1. The integrity_check logic
955** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000956*/
danielk1977266664d2006-02-10 08:24:21 +0000957static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000958 int nPagesPerMapPage;
959 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000960 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000961 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000962 nPagesPerMapPage = (pBt->usableSize/5)+1;
963 iPtrMap = (pgno-2)/nPagesPerMapPage;
964 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000965 if( ret==PENDING_BYTE_PAGE(pBt) ){
966 ret++;
967 }
968 return ret;
969}
danielk1977a19df672004-11-03 11:37:07 +0000970
danielk1977afcdd022004-10-31 16:25:42 +0000971/*
danielk1977afcdd022004-10-31 16:25:42 +0000972** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000973**
974** This routine updates the pointer map entry for page number 'key'
975** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000976**
977** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
978** a no-op. If an error occurs, the appropriate error code is written
979** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000980*/
drh98add2e2009-07-20 17:11:49 +0000981static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000982 DbPage *pDbPage; /* The pointer map page */
983 u8 *pPtrmap; /* The pointer map data */
984 Pgno iPtrmap; /* The pointer map page number */
985 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000986 int rc; /* Return code from subfunctions */
987
988 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000989
drh1fee73e2007-08-29 04:00:57 +0000990 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000991 /* The master-journal page number must never be used as a pointer map page */
992 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
993
danielk1977ac11ee62005-01-15 12:45:51 +0000994 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000995 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000996 *pRC = SQLITE_CORRUPT_BKPT;
997 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000998 }
danielk1977266664d2006-02-10 08:24:21 +0000999 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001000 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00001001 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00001002 *pRC = rc;
1003 return;
danielk1977afcdd022004-10-31 16:25:42 +00001004 }
drh203b1ea2018-12-14 03:14:18 +00001005 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1006 /* The first byte of the extra data is the MemPage.isInit byte.
1007 ** If that byte is set, it means this page is also being used
1008 ** as a btree page. */
1009 *pRC = SQLITE_CORRUPT_BKPT;
1010 goto ptrmap_exit;
1011 }
danielk19778c666b12008-07-18 09:34:57 +00001012 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001013 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001014 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001015 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001016 }
drhfc243732011-05-17 15:21:56 +00001017 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001018 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001019
drh615ae552005-01-16 23:21:00 +00001020 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1021 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001022 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001023 if( rc==SQLITE_OK ){
1024 pPtrmap[offset] = eType;
1025 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001026 }
danielk1977afcdd022004-10-31 16:25:42 +00001027 }
1028
drh4925a552009-07-07 11:39:58 +00001029ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001030 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001031}
1032
1033/*
1034** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001035**
1036** This routine retrieves the pointer map entry for page 'key', writing
1037** the type and parent page number to *pEType and *pPgno respectively.
1038** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001039*/
danielk1977aef0bf62005-12-30 16:28:01 +00001040static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001041 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001042 int iPtrmap; /* Pointer map page index */
1043 u8 *pPtrmap; /* Pointer map page data */
1044 int offset; /* Offset of entry in pointer map */
1045 int rc;
1046
drh1fee73e2007-08-29 04:00:57 +00001047 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001048
danielk1977266664d2006-02-10 08:24:21 +00001049 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001050 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001051 if( rc!=0 ){
1052 return rc;
1053 }
danielk19773b8a05f2007-03-19 17:44:26 +00001054 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001055
danielk19778c666b12008-07-18 09:34:57 +00001056 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001057 if( offset<0 ){
1058 sqlite3PagerUnref(pDbPage);
1059 return SQLITE_CORRUPT_BKPT;
1060 }
1061 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001062 assert( pEType!=0 );
1063 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001064 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001065
danielk19773b8a05f2007-03-19 17:44:26 +00001066 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001067 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001068 return SQLITE_OK;
1069}
1070
danielk197785d90ca2008-07-19 14:25:15 +00001071#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001072 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001073 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001074 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001075#endif
danielk1977afcdd022004-10-31 16:25:42 +00001076
drh0d316a42002-08-11 20:10:47 +00001077/*
drh271efa52004-05-30 19:19:05 +00001078** Given a btree page and a cell index (0 means the first cell on
1079** the page, 1 means the second cell, and so forth) return a pointer
1080** to the cell content.
1081**
drhf44890a2015-06-27 03:58:15 +00001082** findCellPastPtr() does the same except it skips past the initial
1083** 4-byte child pointer found on interior pages, if there is one.
1084**
drh271efa52004-05-30 19:19:05 +00001085** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001086*/
drh1688c862008-07-18 02:44:17 +00001087#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001088 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001089#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001090 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001091
drh43605152004-05-29 21:46:49 +00001092
1093/*
drh5fa60512015-06-19 17:19:34 +00001094** This is common tail processing for btreeParseCellPtr() and
1095** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1096** on a single B-tree page. Make necessary adjustments to the CellInfo
1097** structure.
drh43605152004-05-29 21:46:49 +00001098*/
drh5fa60512015-06-19 17:19:34 +00001099static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1100 MemPage *pPage, /* Page containing the cell */
1101 u8 *pCell, /* Pointer to the cell text. */
1102 CellInfo *pInfo /* Fill in this structure */
1103){
1104 /* If the payload will not fit completely on the local page, we have
1105 ** to decide how much to store locally and how much to spill onto
1106 ** overflow pages. The strategy is to minimize the amount of unused
1107 ** space on overflow pages while keeping the amount of local storage
1108 ** in between minLocal and maxLocal.
1109 **
1110 ** Warning: changing the way overflow payload is distributed in any
1111 ** way will result in an incompatible file format.
1112 */
1113 int minLocal; /* Minimum amount of payload held locally */
1114 int maxLocal; /* Maximum amount of payload held locally */
1115 int surplus; /* Overflow payload available for local storage */
1116
1117 minLocal = pPage->minLocal;
1118 maxLocal = pPage->maxLocal;
1119 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1120 testcase( surplus==maxLocal );
1121 testcase( surplus==maxLocal+1 );
1122 if( surplus <= maxLocal ){
1123 pInfo->nLocal = (u16)surplus;
1124 }else{
1125 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001126 }
drh45ac1c72015-12-18 03:59:16 +00001127 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001128}
1129
1130/*
drh5fa60512015-06-19 17:19:34 +00001131** The following routines are implementations of the MemPage.xParseCell()
1132** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001133**
drh5fa60512015-06-19 17:19:34 +00001134** Parse a cell content block and fill in the CellInfo structure.
1135**
1136** btreeParseCellPtr() => table btree leaf nodes
1137** btreeParseCellNoPayload() => table btree internal nodes
1138** btreeParseCellPtrIndex() => index btree nodes
1139**
1140** There is also a wrapper function btreeParseCell() that works for
1141** all MemPage types and that references the cell by index rather than
1142** by pointer.
drh43605152004-05-29 21:46:49 +00001143*/
drh5fa60512015-06-19 17:19:34 +00001144static void btreeParseCellPtrNoPayload(
1145 MemPage *pPage, /* Page containing the cell */
1146 u8 *pCell, /* Pointer to the cell text. */
1147 CellInfo *pInfo /* Fill in this structure */
1148){
1149 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1150 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001151 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001152#ifndef SQLITE_DEBUG
1153 UNUSED_PARAMETER(pPage);
1154#endif
drh5fa60512015-06-19 17:19:34 +00001155 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1156 pInfo->nPayload = 0;
1157 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001158 pInfo->pPayload = 0;
1159 return;
1160}
danielk197730548662009-07-09 05:07:37 +00001161static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001162 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001163 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001164 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001165){
drh3e28ff52014-09-24 00:59:08 +00001166 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001167 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001168 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001169
drh1fee73e2007-08-29 04:00:57 +00001170 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001171 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001172 assert( pPage->intKeyLeaf );
1173 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001174 pIter = pCell;
1175
1176 /* The next block of code is equivalent to:
1177 **
1178 ** pIter += getVarint32(pIter, nPayload);
1179 **
1180 ** The code is inlined to avoid a function call.
1181 */
1182 nPayload = *pIter;
1183 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001184 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001185 nPayload &= 0x7f;
1186 do{
1187 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1188 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001189 }
drh56cb04e2015-06-19 18:24:37 +00001190 pIter++;
1191
1192 /* The next block of code is equivalent to:
1193 **
1194 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1195 **
1196 ** The code is inlined to avoid a function call.
1197 */
1198 iKey = *pIter;
1199 if( iKey>=0x80 ){
1200 u8 *pEnd = &pIter[7];
1201 iKey &= 0x7f;
1202 while(1){
1203 iKey = (iKey<<7) | (*++pIter & 0x7f);
1204 if( (*pIter)<0x80 ) break;
1205 if( pIter>=pEnd ){
1206 iKey = (iKey<<8) | *++pIter;
1207 break;
1208 }
1209 }
1210 }
1211 pIter++;
1212
1213 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001214 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001215 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001216 testcase( nPayload==pPage->maxLocal );
1217 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001218 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001219 /* This is the (easy) common case where the entire payload fits
1220 ** on the local page. No overflow is required.
1221 */
drhab1cc582014-09-23 21:25:19 +00001222 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1223 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001224 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001225 }else{
drh5fa60512015-06-19 17:19:34 +00001226 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001227 }
drh3aac2dd2004-04-26 14:10:20 +00001228}
drh5fa60512015-06-19 17:19:34 +00001229static void btreeParseCellPtrIndex(
1230 MemPage *pPage, /* Page containing the cell */
1231 u8 *pCell, /* Pointer to the cell text. */
1232 CellInfo *pInfo /* Fill in this structure */
1233){
1234 u8 *pIter; /* For scanning through pCell */
1235 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001236
drh5fa60512015-06-19 17:19:34 +00001237 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1238 assert( pPage->leaf==0 || pPage->leaf==1 );
1239 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001240 pIter = pCell + pPage->childPtrSize;
1241 nPayload = *pIter;
1242 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001243 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001244 nPayload &= 0x7f;
1245 do{
1246 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1247 }while( *(pIter)>=0x80 && pIter<pEnd );
1248 }
1249 pIter++;
1250 pInfo->nKey = nPayload;
1251 pInfo->nPayload = nPayload;
1252 pInfo->pPayload = pIter;
1253 testcase( nPayload==pPage->maxLocal );
1254 testcase( nPayload==pPage->maxLocal+1 );
1255 if( nPayload<=pPage->maxLocal ){
1256 /* This is the (easy) common case where the entire payload fits
1257 ** on the local page. No overflow is required.
1258 */
1259 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1260 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1261 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001262 }else{
1263 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001264 }
1265}
danielk197730548662009-07-09 05:07:37 +00001266static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001267 MemPage *pPage, /* Page containing the cell */
1268 int iCell, /* The cell index. First cell is 0 */
1269 CellInfo *pInfo /* Fill in this structure */
1270){
drh5fa60512015-06-19 17:19:34 +00001271 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001272}
drh3aac2dd2004-04-26 14:10:20 +00001273
1274/*
drh5fa60512015-06-19 17:19:34 +00001275** The following routines are implementations of the MemPage.xCellSize
1276** method.
1277**
drh43605152004-05-29 21:46:49 +00001278** Compute the total number of bytes that a Cell needs in the cell
1279** data area of the btree-page. The return number includes the cell
1280** data header and the local payload, but not any overflow page or
1281** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001282**
drh5fa60512015-06-19 17:19:34 +00001283** cellSizePtrNoPayload() => table internal nodes
1284** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001285*/
danielk1977ae5558b2009-04-29 11:31:47 +00001286static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001287 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1288 u8 *pEnd; /* End mark for a varint */
1289 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001290
1291#ifdef SQLITE_DEBUG
1292 /* The value returned by this function should always be the same as
1293 ** the (CellInfo.nSize) value found by doing a full parse of the
1294 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1295 ** this function verifies that this invariant is not violated. */
1296 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001297 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001298#endif
1299
drh3e28ff52014-09-24 00:59:08 +00001300 nSize = *pIter;
1301 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001302 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001303 nSize &= 0x7f;
1304 do{
1305 nSize = (nSize<<7) | (*++pIter & 0x7f);
1306 }while( *(pIter)>=0x80 && pIter<pEnd );
1307 }
1308 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001309 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001310 /* pIter now points at the 64-bit integer key value, a variable length
1311 ** integer. The following block moves pIter to point at the first byte
1312 ** past the end of the key value. */
1313 pEnd = &pIter[9];
1314 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001315 }
drh0a45c272009-07-08 01:49:11 +00001316 testcase( nSize==pPage->maxLocal );
1317 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001318 if( nSize<=pPage->maxLocal ){
1319 nSize += (u32)(pIter - pCell);
1320 if( nSize<4 ) nSize = 4;
1321 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001322 int minLocal = pPage->minLocal;
1323 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001324 testcase( nSize==pPage->maxLocal );
1325 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001326 if( nSize>pPage->maxLocal ){
1327 nSize = minLocal;
1328 }
drh3e28ff52014-09-24 00:59:08 +00001329 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001330 }
drhdc41d602014-09-22 19:51:35 +00001331 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001332 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001333}
drh25ada072015-06-19 15:07:14 +00001334static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1335 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1336 u8 *pEnd; /* End mark for a varint */
1337
1338#ifdef SQLITE_DEBUG
1339 /* The value returned by this function should always be the same as
1340 ** the (CellInfo.nSize) value found by doing a full parse of the
1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1342 ** this function verifies that this invariant is not violated. */
1343 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001344 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001345#else
1346 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001347#endif
1348
1349 assert( pPage->childPtrSize==4 );
1350 pEnd = pIter + 9;
1351 while( (*pIter++)&0x80 && pIter<pEnd );
1352 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1353 return (u16)(pIter - pCell);
1354}
1355
drh0ee3dbe2009-10-16 15:05:18 +00001356
1357#ifdef SQLITE_DEBUG
1358/* This variation on cellSizePtr() is used inside of assert() statements
1359** only. */
drha9121e42008-02-19 14:59:35 +00001360static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001361 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001362}
danielk1977bc6ada42004-06-30 08:20:16 +00001363#endif
drh3b7511c2001-05-26 13:15:44 +00001364
danielk197779a40da2005-01-16 08:00:01 +00001365#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001366/*
drh0f1bf4c2019-01-13 20:17:21 +00001367** The cell pCell is currently part of page pSrc but will ultimately be part
1368** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1369** pointer to an overflow page, insert an entry into the pointer-map for
1370** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001371*/
drh0f1bf4c2019-01-13 20:17:21 +00001372static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001373 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001374 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001375 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001376 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001377 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001378 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001379 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1380 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001381 *pRC = SQLITE_CORRUPT_BKPT;
1382 return;
1383 }
1384 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001385 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001386 }
danielk1977ac11ee62005-01-15 12:45:51 +00001387}
danielk197779a40da2005-01-16 08:00:01 +00001388#endif
1389
danielk1977ac11ee62005-01-15 12:45:51 +00001390
drhda200cc2004-05-09 11:51:38 +00001391/*
dane6d065a2017-02-24 19:58:22 +00001392** Defragment the page given. This routine reorganizes cells within the
1393** page so that there are no free-blocks on the free-block list.
1394**
1395** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1396** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001397**
1398** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1399** b-tree page so that there are no freeblocks or fragment bytes, all
1400** unused bytes are contained in the unallocated space region, and all
1401** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001402*/
dane6d065a2017-02-24 19:58:22 +00001403static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001404 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001405 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001406 int hdr; /* Offset to the page header */
1407 int size; /* Size of a cell */
1408 int usableSize; /* Number of usable bytes on a page */
1409 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001410 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001411 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001412 unsigned char *data; /* The page data */
1413 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001414 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001415 int iCellFirst; /* First allowable cell index */
1416 int iCellLast; /* Last possible cell index */
1417
danielk19773b8a05f2007-03-19 17:44:26 +00001418 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001419 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001420 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001421 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001422 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001423 temp = 0;
1424 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001425 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001426 cellOffset = pPage->cellOffset;
1427 nCell = pPage->nCell;
drh45616c72019-02-28 13:21:36 +00001428 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001429 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001430 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001431
1432 /* This block handles pages with two or fewer free blocks and nMaxFrag
1433 ** or fewer fragmented bytes. In this case it is faster to move the
1434 ** two (or one) blocks of cells using memmove() and add the required
1435 ** offsets to each pointer in the cell-pointer array than it is to
1436 ** reconstruct the entire page. */
1437 if( (int)data[hdr+7]<=nMaxFrag ){
1438 int iFree = get2byte(&data[hdr+1]);
drh119e1ff2019-03-30 18:39:13 +00001439 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001440 if( iFree ){
1441 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001442 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001443 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1444 u8 *pEnd = &data[cellOffset + nCell*2];
1445 u8 *pAddr;
1446 int sz2 = 0;
1447 int sz = get2byte(&data[iFree+2]);
1448 int top = get2byte(&data[hdr+5]);
drh4e6cec12017-09-28 13:47:35 +00001449 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001450 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001451 }
dane6d065a2017-02-24 19:58:22 +00001452 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001453 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001454 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001455 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001456 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1457 sz += sz2;
dandcc427c2019-03-21 21:18:36 +00001458 }else if( iFree+sz>usableSize ){
1459 return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001460 }
dandcc427c2019-03-21 21:18:36 +00001461
dane6d065a2017-02-24 19:58:22 +00001462 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001463 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001464 memmove(&data[cbrk], &data[top], iFree-top);
1465 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1466 pc = get2byte(pAddr);
1467 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1468 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1469 }
1470 goto defragment_out;
1471 }
1472 }
1473 }
1474
drh281b21d2008-08-22 12:57:08 +00001475 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001476 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001477 for(i=0; i<nCell; i++){
1478 u8 *pAddr; /* The i-th cell pointer */
1479 pAddr = &data[cellOffset + i*2];
1480 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001481 testcase( pc==iCellFirst );
1482 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001483 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001484 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001485 */
1486 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001487 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001488 }
drh17146622009-07-07 17:38:38 +00001489 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001490 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001491 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001492 if( cbrk<iCellFirst || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001493 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001494 }
drh7157e1d2009-07-09 13:25:32 +00001495 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001496 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001497 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001498 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001499 if( temp==0 ){
1500 int x;
1501 if( cbrk==pc ) continue;
1502 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1503 x = get2byte(&data[hdr+5]);
1504 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1505 src = temp;
1506 }
1507 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001508 }
dane6d065a2017-02-24 19:58:22 +00001509 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001510
1511 defragment_out:
drhb0ea9432019-02-09 21:06:40 +00001512 assert( pPage->nFree>=0 );
dan3b2ede12017-02-25 16:24:02 +00001513 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001514 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001515 }
drh17146622009-07-07 17:38:38 +00001516 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001517 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001518 data[hdr+1] = 0;
1519 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001520 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001521 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001522 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001523}
1524
drha059ad02001-04-17 20:09:11 +00001525/*
dan8e9ba0c2014-10-14 17:27:04 +00001526** Search the free-list on page pPg for space to store a cell nByte bytes in
1527** size. If one can be found, return a pointer to the space and remove it
1528** from the free-list.
1529**
1530** If no suitable space can be found on the free-list, return NULL.
1531**
drhba0f9992014-10-30 20:48:44 +00001532** This function may detect corruption within pPg. If corruption is
1533** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001534**
drhb7580e82015-06-25 18:36:13 +00001535** Slots on the free list that are between 1 and 3 bytes larger than nByte
1536** will be ignored if adding the extra space to the fragmentation count
1537** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001538*/
drhb7580e82015-06-25 18:36:13 +00001539static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
drh298f45c2019-02-08 22:34:59 +00001540 const int hdr = pPg->hdrOffset; /* Offset to page header */
1541 u8 * const aData = pPg->aData; /* Page data */
1542 int iAddr = hdr + 1; /* Address of ptr to pc */
1543 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */
1544 int x; /* Excess size of the slot */
1545 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1546 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001547
drhb7580e82015-06-25 18:36:13 +00001548 assert( pc>0 );
drh298f45c2019-02-08 22:34:59 +00001549 while( pc<=maxPC ){
drh113762a2014-11-19 16:36:25 +00001550 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1551 ** freeblock form a big-endian integer which is the size of the freeblock
1552 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001553 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001554 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001555 testcase( x==4 );
1556 testcase( x==3 );
drh298f45c2019-02-08 22:34:59 +00001557 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001558 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1559 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001560 if( aData[hdr+7]>57 ) return 0;
1561
dan8e9ba0c2014-10-14 17:27:04 +00001562 /* Remove the slot from the free-list. Update the number of
1563 ** fragmented bytes within the page. */
1564 memcpy(&aData[iAddr], &aData[pc], 2);
1565 aData[hdr+7] += (u8)x;
drh298f45c2019-02-08 22:34:59 +00001566 }else if( x+pc > maxPC ){
1567 /* This slot extends off the end of the usable part of the page */
1568 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1569 return 0;
dan8e9ba0c2014-10-14 17:27:04 +00001570 }else{
1571 /* The slot remains on the free-list. Reduce its size to account
drh298f45c2019-02-08 22:34:59 +00001572 ** for the portion used by the new allocation. */
dan8e9ba0c2014-10-14 17:27:04 +00001573 put2byte(&aData[pc+2], x);
1574 }
1575 return &aData[pc + x];
1576 }
drhb7580e82015-06-25 18:36:13 +00001577 iAddr = pc;
1578 pc = get2byte(&aData[pc]);
drh2a934d72019-03-13 10:29:16 +00001579 if( pc<=iAddr+size ){
drh298f45c2019-02-08 22:34:59 +00001580 if( pc ){
1581 /* The next slot in the chain is not past the end of the current slot */
1582 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1583 }
1584 return 0;
1585 }
drh87d63c92017-08-23 23:09:03 +00001586 }
drh298f45c2019-02-08 22:34:59 +00001587 if( pc>maxPC+nByte-4 ){
1588 /* The free slot chain extends off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001589 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001590 }
dan8e9ba0c2014-10-14 17:27:04 +00001591 return 0;
1592}
1593
1594/*
danielk19776011a752009-04-01 16:25:32 +00001595** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001596** as the first argument. Write into *pIdx the index into pPage->aData[]
1597** of the first byte of allocated space. Return either SQLITE_OK or
1598** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001599**
drh0a45c272009-07-08 01:49:11 +00001600** The caller guarantees that there is sufficient space to make the
1601** allocation. This routine might need to defragment in order to bring
1602** all the space together, however. This routine will avoid using
1603** the first two bytes past the cell pointer area since presumably this
1604** allocation is being made in order to insert a new cell, so we will
1605** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001606*/
drh0a45c272009-07-08 01:49:11 +00001607static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001608 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1609 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001610 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001611 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001612 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001613
danielk19773b8a05f2007-03-19 17:44:26 +00001614 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001615 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001616 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001617 assert( nByte>=0 ); /* Minimum cell size is 4 */
1618 assert( pPage->nFree>=nByte );
1619 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001620 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001621
drh0a45c272009-07-08 01:49:11 +00001622 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1623 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001624 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001625 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1626 ** and the reserved space is zero (the usual value for reserved space)
1627 ** then the cell content offset of an empty page wants to be 65536.
1628 ** However, that integer is too large to be stored in a 2-byte unsigned
1629 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001630 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001631 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001632 if( gap>top ){
1633 if( top==0 && pPage->pBt->usableSize==65536 ){
1634 top = 65536;
1635 }else{
daneebf2f52017-11-18 17:30:08 +00001636 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001637 }
1638 }
drh43605152004-05-29 21:46:49 +00001639
drhd4a67442019-02-11 19:27:36 +00001640 /* If there is enough space between gap and top for one more cell pointer,
1641 ** and if the freelist is not empty, then search the
1642 ** freelist looking for a slot big enough to satisfy the request.
drh4c04f3c2014-08-20 11:56:14 +00001643 */
drh5e2f8b92001-05-28 00:41:15 +00001644 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001645 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001646 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001647 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001648 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001649 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001650 assert( pSpace>=data && (pSpace - data)<65536 );
1651 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001652 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001653 }else if( rc ){
1654 return rc;
drh9e572e62004-04-23 23:43:10 +00001655 }
1656 }
drh43605152004-05-29 21:46:49 +00001657
drh4c04f3c2014-08-20 11:56:14 +00001658 /* The request could not be fulfilled using a freelist slot. Check
1659 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001660 */
1661 testcase( gap+2+nByte==top );
1662 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001663 assert( pPage->nCell>0 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00001664 assert( pPage->nFree>=0 );
dane6d065a2017-02-24 19:58:22 +00001665 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001666 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001667 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001668 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001669 }
1670
1671
drh43605152004-05-29 21:46:49 +00001672 /* Allocate memory from the gap in between the cell pointer array
drh5860a612019-02-12 16:58:26 +00001673 ** and the cell content area. The btreeComputeFreeSpace() call has already
drhc314dc72009-07-21 11:52:34 +00001674 ** validated the freelist. Given that the freelist is valid, there
1675 ** is no way that the allocation can extend off the end of the page.
1676 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001677 */
drh0a45c272009-07-08 01:49:11 +00001678 top -= nByte;
drh43605152004-05-29 21:46:49 +00001679 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001680 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001681 *pIdx = top;
1682 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001683}
1684
1685/*
drh9e572e62004-04-23 23:43:10 +00001686** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001687** The first byte of the new free block is pPage->aData[iStart]
1688** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001689**
drh5f5c7532014-08-20 17:56:27 +00001690** Adjacent freeblocks are coalesced.
1691**
drh5860a612019-02-12 16:58:26 +00001692** Even though the freeblock list was checked by btreeComputeFreeSpace(),
drh5f5c7532014-08-20 17:56:27 +00001693** that routine will not detect overlap between cells or freeblocks. Nor
1694** does it detect cells or freeblocks that encrouch into the reserved bytes
1695** at the end of the page. So do additional corruption checks inside this
1696** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001697*/
drh5f5c7532014-08-20 17:56:27 +00001698static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001699 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001700 u16 iFreeBlk; /* Address of the next freeblock */
1701 u8 hdr; /* Page header size. 0 or 100 */
1702 u8 nFrag = 0; /* Reduction in fragmentation */
1703 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001704 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001705 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001706 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001707
drh9e572e62004-04-23 23:43:10 +00001708 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001709 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001710 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001711 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001712 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001713 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001714 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001715
drh5f5c7532014-08-20 17:56:27 +00001716 /* The list of freeblocks must be in ascending order. Find the
1717 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001718 */
drh43605152004-05-29 21:46:49 +00001719 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001720 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001721 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1722 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1723 }else{
drh85f071b2016-09-17 19:34:32 +00001724 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1725 if( iFreeBlk<iPtr+4 ){
1726 if( iFreeBlk==0 ) break;
daneebf2f52017-11-18 17:30:08 +00001727 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001728 }
drh7bc4c452014-08-20 18:43:44 +00001729 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001730 }
drh5e398e42017-08-23 20:36:06 +00001731 if( iFreeBlk>pPage->pBt->usableSize-4 ){
daneebf2f52017-11-18 17:30:08 +00001732 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001733 }
drh7bc4c452014-08-20 18:43:44 +00001734 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1735
1736 /* At this point:
1737 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001738 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001739 **
1740 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1741 */
1742 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1743 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001744 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001745 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhcc97ca42017-06-07 22:32:59 +00001746 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001747 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001748 }
drh7bc4c452014-08-20 18:43:44 +00001749 iSize = iEnd - iStart;
1750 iFreeBlk = get2byte(&data[iFreeBlk]);
1751 }
1752
drh3f387402014-09-24 01:23:00 +00001753 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1754 ** pointer in the page header) then check to see if iStart should be
1755 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001756 */
1757 if( iPtr>hdr+1 ){
1758 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1759 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001760 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001761 nFrag += iStart - iPtrEnd;
1762 iSize = iEnd - iPtr;
1763 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001764 }
drh9e572e62004-04-23 23:43:10 +00001765 }
daneebf2f52017-11-18 17:30:08 +00001766 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001767 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001768 }
drh5e398e42017-08-23 20:36:06 +00001769 x = get2byte(&data[hdr+5]);
1770 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001771 /* The new freeblock is at the beginning of the cell content area,
1772 ** so just extend the cell content area rather than create another
1773 ** freelist entry */
daneebf2f52017-11-18 17:30:08 +00001774 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001775 put2byte(&data[hdr+1], iFreeBlk);
1776 put2byte(&data[hdr+5], iEnd);
1777 }else{
1778 /* Insert the new freeblock into the freelist */
1779 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001780 }
drh5e398e42017-08-23 20:36:06 +00001781 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1782 /* Overwrite deleted information with zeros when the secure_delete
1783 ** option is enabled */
1784 memset(&data[iStart], 0, iSize);
1785 }
1786 put2byte(&data[iStart], iFreeBlk);
1787 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001788 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001789 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001790}
1791
1792/*
drh271efa52004-05-30 19:19:05 +00001793** Decode the flags byte (the first byte of the header) for a page
1794** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001795**
1796** Only the following combinations are supported. Anything different
1797** indicates a corrupt database files:
1798**
1799** PTF_ZERODATA
1800** PTF_ZERODATA | PTF_LEAF
1801** PTF_LEAFDATA | PTF_INTKEY
1802** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001803*/
drh44845222008-07-17 18:39:57 +00001804static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001805 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001806
1807 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001808 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001809 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001810 flagByte &= ~PTF_LEAF;
1811 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001812 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001813 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001814 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001815 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1816 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001817 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001818 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1819 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001820 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001821 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001822 if( pPage->leaf ){
1823 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001824 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001825 }else{
1826 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001827 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001828 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001829 }
drh271efa52004-05-30 19:19:05 +00001830 pPage->maxLocal = pBt->maxLeaf;
1831 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001832 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001833 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1834 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001835 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001836 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1837 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001838 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001839 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001840 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001841 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001842 pPage->maxLocal = pBt->maxLocal;
1843 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001844 }else{
drhfdab0262014-11-20 15:30:50 +00001845 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1846 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001847 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001848 }
drhc9166342012-01-05 23:32:06 +00001849 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001850 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001851}
1852
1853/*
drhb0ea9432019-02-09 21:06:40 +00001854** Compute the amount of freespace on the page. In other words, fill
1855** in the pPage->nFree field.
drh7e3b0a02001-04-28 16:52:40 +00001856*/
drhb0ea9432019-02-09 21:06:40 +00001857static int btreeComputeFreeSpace(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001858 int pc; /* Address of a freeblock within pPage->aData[] */
1859 u8 hdr; /* Offset to beginning of page header */
1860 u8 *data; /* Equal to pPage->aData */
drh14e845a2017-05-25 21:35:56 +00001861 int usableSize; /* Amount of usable space on each page */
drh14e845a2017-05-25 21:35:56 +00001862 int nFree; /* Number of unused bytes on the page */
1863 int top; /* First byte of the cell content area */
1864 int iCellFirst; /* First allowable cell or freeblock offset */
1865 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001866
danielk197771d5d2c2008-09-29 11:49:47 +00001867 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001868 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001869 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001870 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001871 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1872 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhb0ea9432019-02-09 21:06:40 +00001873 assert( pPage->isInit==1 );
1874 assert( pPage->nFree<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001875
drhb0ea9432019-02-09 21:06:40 +00001876 usableSize = pPage->pBt->usableSize;
drh14e845a2017-05-25 21:35:56 +00001877 hdr = pPage->hdrOffset;
1878 data = pPage->aData;
drh14e845a2017-05-25 21:35:56 +00001879 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1880 ** the start of the cell content area. A zero value for this integer is
1881 ** interpreted as 65536. */
1882 top = get2byteNotZero(&data[hdr+5]);
drhb0ea9432019-02-09 21:06:40 +00001883 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
drh14e845a2017-05-25 21:35:56 +00001884 iCellLast = usableSize - 4;
danielk197793c829c2009-06-03 17:26:17 +00001885
drh14e845a2017-05-25 21:35:56 +00001886 /* Compute the total free space on the page
1887 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1888 ** start of the first freeblock on the page, or is zero if there are no
1889 ** freeblocks. */
1890 pc = get2byte(&data[hdr+1]);
1891 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1892 if( pc>0 ){
1893 u32 next, size;
1894 if( pc<iCellFirst ){
1895 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1896 ** always be at least one cell before the first freeblock.
1897 */
daneebf2f52017-11-18 17:30:08 +00001898 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00001899 }
drh14e845a2017-05-25 21:35:56 +00001900 while( 1 ){
1901 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001902 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001903 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001904 }
1905 next = get2byte(&data[pc]);
1906 size = get2byte(&data[pc+2]);
1907 nFree = nFree + size;
1908 if( next<=pc+size+3 ) break;
1909 pc = next;
1910 }
1911 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001912 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001913 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001914 }
1915 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001916 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001917 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001918 }
danielk197771d5d2c2008-09-29 11:49:47 +00001919 }
drh14e845a2017-05-25 21:35:56 +00001920
1921 /* At this point, nFree contains the sum of the offset to the start
1922 ** of the cell-content area plus the number of free bytes within
1923 ** the cell-content area. If this is greater than the usable-size
1924 ** of the page, then the page must be corrupted. This check also
1925 ** serves to verify that the offset to the start of the cell-content
1926 ** area, according to the page header, lies within the page.
1927 */
1928 if( nFree>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001929 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001930 }
1931 pPage->nFree = (u16)(nFree - iCellFirst);
drhb0ea9432019-02-09 21:06:40 +00001932 return SQLITE_OK;
1933}
1934
1935/*
drh5860a612019-02-12 16:58:26 +00001936** Do additional sanity check after btreeInitPage() if
1937** PRAGMA cell_size_check=ON
1938*/
1939static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1940 int iCellFirst; /* First allowable cell or freeblock offset */
1941 int iCellLast; /* Last possible cell or freeblock offset */
1942 int i; /* Index into the cell pointer array */
1943 int sz; /* Size of a cell */
1944 int pc; /* Address of a freeblock within pPage->aData[] */
1945 u8 *data; /* Equal to pPage->aData */
1946 int usableSize; /* Maximum usable space on the page */
1947 int cellOffset; /* Start of cell content area */
1948
1949 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1950 usableSize = pPage->pBt->usableSize;
1951 iCellLast = usableSize - 4;
1952 data = pPage->aData;
1953 cellOffset = pPage->cellOffset;
1954 if( !pPage->leaf ) iCellLast--;
1955 for(i=0; i<pPage->nCell; i++){
1956 pc = get2byteAligned(&data[cellOffset+i*2]);
1957 testcase( pc==iCellFirst );
1958 testcase( pc==iCellLast );
1959 if( pc<iCellFirst || pc>iCellLast ){
1960 return SQLITE_CORRUPT_PAGE(pPage);
1961 }
1962 sz = pPage->xCellSize(pPage, &data[pc]);
1963 testcase( pc+sz==usableSize );
1964 if( pc+sz>usableSize ){
1965 return SQLITE_CORRUPT_PAGE(pPage);
1966 }
1967 }
1968 return SQLITE_OK;
1969}
1970
1971/*
drhb0ea9432019-02-09 21:06:40 +00001972** Initialize the auxiliary information for a disk block.
1973**
1974** Return SQLITE_OK on success. If we see that the page does
1975** not contain a well-formed database page, then return
1976** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1977** guarantee that the page is well-formed. It only shows that
1978** we failed to detect any corruption.
1979*/
1980static int btreeInitPage(MemPage *pPage){
drhb0ea9432019-02-09 21:06:40 +00001981 u8 *data; /* Equal to pPage->aData */
1982 BtShared *pBt; /* The main btree structure */
drhb0ea9432019-02-09 21:06:40 +00001983
1984 assert( pPage->pBt!=0 );
1985 assert( pPage->pBt->db!=0 );
1986 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1987 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1988 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1989 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1990 assert( pPage->isInit==0 );
1991
1992 pBt = pPage->pBt;
drh5860a612019-02-12 16:58:26 +00001993 data = pPage->aData + pPage->hdrOffset;
drhb0ea9432019-02-09 21:06:40 +00001994 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1995 ** the b-tree page type. */
drh5860a612019-02-12 16:58:26 +00001996 if( decodeFlags(pPage, data[0]) ){
drhb0ea9432019-02-09 21:06:40 +00001997 return SQLITE_CORRUPT_PAGE(pPage);
1998 }
1999 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2000 pPage->maskPage = (u16)(pBt->pageSize - 1);
2001 pPage->nOverflow = 0;
drh5860a612019-02-12 16:58:26 +00002002 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2003 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2004 pPage->aDataEnd = pPage->aData + pBt->usableSize;
2005 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
drhb0ea9432019-02-09 21:06:40 +00002006 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2007 ** number of cells on the page. */
drh5860a612019-02-12 16:58:26 +00002008 pPage->nCell = get2byte(&data[3]);
drhb0ea9432019-02-09 21:06:40 +00002009 if( pPage->nCell>MX_CELL(pBt) ){
2010 /* To many cells for a single page. The page must be corrupt */
2011 return SQLITE_CORRUPT_PAGE(pPage);
2012 }
2013 testcase( pPage->nCell==MX_CELL(pBt) );
2014 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2015 ** possible for a root page of a table that contains no rows) then the
2016 ** offset to the cell content area will equal the page size minus the
2017 ** bytes of reserved space. */
2018 assert( pPage->nCell>0
mistachkin065f3bf2019-03-20 05:45:03 +00002019 || get2byteNotZero(&data[5])==(int)pBt->usableSize
drhb0ea9432019-02-09 21:06:40 +00002020 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00002021 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
drh14e845a2017-05-25 21:35:56 +00002022 pPage->isInit = 1;
drh5860a612019-02-12 16:58:26 +00002023 if( pBt->db->flags & SQLITE_CellSizeCk ){
2024 return btreeCellSizeCheck(pPage);
2025 }
drh9e572e62004-04-23 23:43:10 +00002026 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00002027}
2028
2029/*
drh8b2f49b2001-06-08 00:21:52 +00002030** Set up a raw page so that it looks like a database page holding
2031** no entries.
drhbd03cae2001-06-02 02:40:57 +00002032*/
drh9e572e62004-04-23 23:43:10 +00002033static void zeroPage(MemPage *pPage, int flags){
2034 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00002035 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002036 u8 hdr = pPage->hdrOffset;
2037 u16 first;
drh9e572e62004-04-23 23:43:10 +00002038
danielk19773b8a05f2007-03-19 17:44:26 +00002039 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00002040 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2041 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00002042 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00002043 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00002044 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00002045 memset(&data[hdr], 0, pBt->usableSize - hdr);
2046 }
drh1bd10f82008-12-10 21:19:56 +00002047 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002048 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002049 memset(&data[hdr+1], 0, 4);
2050 data[hdr+7] = 0;
2051 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002052 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002053 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002054 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00002055 pPage->aDataEnd = &data[pBt->usableSize];
2056 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002057 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002058 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002059 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2060 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002061 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002062 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002063}
2064
drh897a8202008-09-18 01:08:15 +00002065
2066/*
2067** Convert a DbPage obtained from the pager into a MemPage used by
2068** the btree layer.
2069*/
2070static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2071 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002072 if( pgno!=pPage->pgno ){
2073 pPage->aData = sqlite3PagerGetData(pDbPage);
2074 pPage->pDbPage = pDbPage;
2075 pPage->pBt = pBt;
2076 pPage->pgno = pgno;
2077 pPage->hdrOffset = pgno==1 ? 100 : 0;
2078 }
2079 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002080 return pPage;
2081}
2082
drhbd03cae2001-06-02 02:40:57 +00002083/*
drh3aac2dd2004-04-26 14:10:20 +00002084** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002085** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002086**
drh7e8c6f12015-05-28 03:28:27 +00002087** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2088** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002089** to fetch the content. Just fill in the content with zeros for now.
2090** If in the future we call sqlite3PagerWrite() on this page, that
2091** means we have started to be concerned about content and the disk
2092** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002093*/
danielk197730548662009-07-09 05:07:37 +00002094static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002095 BtShared *pBt, /* The btree */
2096 Pgno pgno, /* Number of the page to fetch */
2097 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002098 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002099){
drh3aac2dd2004-04-26 14:10:20 +00002100 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002101 DbPage *pDbPage;
2102
drhb00fc3b2013-08-21 23:42:32 +00002103 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002104 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002105 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002106 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002107 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002108 return SQLITE_OK;
2109}
2110
2111/*
danielk1977bea2a942009-01-20 17:06:27 +00002112** Retrieve a page from the pager cache. If the requested page is not
2113** already in the pager cache return NULL. Initialize the MemPage.pBt and
2114** MemPage.aData elements if needed.
2115*/
2116static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2117 DbPage *pDbPage;
2118 assert( sqlite3_mutex_held(pBt->mutex) );
2119 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2120 if( pDbPage ){
2121 return btreePageFromDbPage(pDbPage, pgno, pBt);
2122 }
2123 return 0;
2124}
2125
2126/*
danielk197789d40042008-11-17 14:20:56 +00002127** Return the size of the database file in pages. If there is any kind of
2128** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002129*/
drhb1299152010-03-30 22:58:33 +00002130static Pgno btreePagecount(BtShared *pBt){
2131 return pBt->nPage;
2132}
2133u32 sqlite3BtreeLastPage(Btree *p){
2134 assert( sqlite3BtreeHoldsMutex(p) );
drh8a181002017-10-12 01:19:06 +00002135 assert( ((p->pBt->nPage)&0x80000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002136 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002137}
2138
2139/*
drh28f58dd2015-06-27 19:45:03 +00002140** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002141**
drh15a00212015-06-27 20:55:00 +00002142** If pCur!=0 then the page is being fetched as part of a moveToChild()
2143** call. Do additional sanity checking on the page in this case.
2144** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002145**
2146** The page is fetched as read-write unless pCur is not NULL and is
2147** a read-only cursor.
2148**
2149** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002150** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002151*/
2152static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002153 BtShared *pBt, /* The database file */
2154 Pgno pgno, /* Number of the page to get */
2155 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002156 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2157 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002158){
2159 int rc;
drh28f58dd2015-06-27 19:45:03 +00002160 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002161 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002162 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002163 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002164 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002165
danba3cbf32010-06-30 04:29:03 +00002166 if( pgno>btreePagecount(pBt) ){
2167 rc = SQLITE_CORRUPT_BKPT;
drhb0ea9432019-02-09 21:06:40 +00002168 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002169 }
drh9584f582015-11-04 20:22:37 +00002170 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002171 if( rc ){
drhb0ea9432019-02-09 21:06:40 +00002172 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002173 }
drh8dd1c252015-11-04 22:31:02 +00002174 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002175 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002176 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002177 rc = btreeInitPage(*ppPage);
2178 if( rc!=SQLITE_OK ){
drhb0ea9432019-02-09 21:06:40 +00002179 goto getAndInitPage_error2;
danielk197789bc4bc2009-07-21 19:25:24 +00002180 }
drhee696e22004-08-30 16:52:17 +00002181 }
drh8dd1c252015-11-04 22:31:02 +00002182 assert( (*ppPage)->pgno==pgno );
2183 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002184
drh15a00212015-06-27 20:55:00 +00002185 /* If obtaining a child page for a cursor, we must verify that the page is
2186 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002187 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002188 rc = SQLITE_CORRUPT_PGNO(pgno);
drhb0ea9432019-02-09 21:06:40 +00002189 goto getAndInitPage_error2;
drh28f58dd2015-06-27 19:45:03 +00002190 }
drh28f58dd2015-06-27 19:45:03 +00002191 return SQLITE_OK;
2192
drhb0ea9432019-02-09 21:06:40 +00002193getAndInitPage_error2:
2194 releasePage(*ppPage);
2195getAndInitPage_error1:
drh352a35a2017-08-15 03:46:47 +00002196 if( pCur ){
2197 pCur->iPage--;
2198 pCur->pPage = pCur->apPage[pCur->iPage];
2199 }
danba3cbf32010-06-30 04:29:03 +00002200 testcase( pgno==0 );
2201 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002202 return rc;
2203}
2204
2205/*
drh3aac2dd2004-04-26 14:10:20 +00002206** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002207** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002208**
2209** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002210*/
drhbbf0f862015-06-27 14:59:26 +00002211static void releasePageNotNull(MemPage *pPage){
2212 assert( pPage->aData );
2213 assert( pPage->pBt );
2214 assert( pPage->pDbPage!=0 );
2215 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2216 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2217 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2218 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002219}
drh3aac2dd2004-04-26 14:10:20 +00002220static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002221 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002222}
drh3908fe92017-09-01 14:50:19 +00002223static void releasePageOne(MemPage *pPage){
2224 assert( pPage!=0 );
2225 assert( pPage->aData );
2226 assert( pPage->pBt );
2227 assert( pPage->pDbPage!=0 );
2228 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2229 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2230 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2231 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2232}
drh3aac2dd2004-04-26 14:10:20 +00002233
2234/*
drh7e8c6f12015-05-28 03:28:27 +00002235** Get an unused page.
2236**
2237** This works just like btreeGetPage() with the addition:
2238**
2239** * If the page is already in use for some other purpose, immediately
2240** release it and return an SQLITE_CURRUPT error.
2241** * Make sure the isInit flag is clear
2242*/
2243static int btreeGetUnusedPage(
2244 BtShared *pBt, /* The btree */
2245 Pgno pgno, /* Number of the page to fetch */
2246 MemPage **ppPage, /* Return the page in this parameter */
2247 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2248){
2249 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2250 if( rc==SQLITE_OK ){
2251 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2252 releasePage(*ppPage);
2253 *ppPage = 0;
2254 return SQLITE_CORRUPT_BKPT;
2255 }
2256 (*ppPage)->isInit = 0;
2257 }else{
2258 *ppPage = 0;
2259 }
2260 return rc;
2261}
2262
drha059ad02001-04-17 20:09:11 +00002263
2264/*
drha6abd042004-06-09 17:37:22 +00002265** During a rollback, when the pager reloads information into the cache
2266** so that the cache is restored to its original state at the start of
2267** the transaction, for each page restored this routine is called.
2268**
2269** This routine needs to reset the extra data section at the end of the
2270** page to agree with the restored data.
2271*/
danielk1977eaa06f62008-09-18 17:34:44 +00002272static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002273 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002274 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002275 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002276 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002277 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002278 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002279 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002280 /* pPage might not be a btree page; it might be an overflow page
2281 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002282 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002283 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002284 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002285 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002286 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002287 }
drha6abd042004-06-09 17:37:22 +00002288 }
2289}
2290
2291/*
drhe5fe6902007-12-07 18:55:28 +00002292** Invoke the busy handler for a btree.
2293*/
danielk19771ceedd32008-11-19 10:22:33 +00002294static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002295 BtShared *pBt = (BtShared*)pArg;
2296 assert( pBt->db );
2297 assert( sqlite3_mutex_held(pBt->db->mutex) );
drhf0119b22018-03-26 17:40:53 +00002298 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2299 sqlite3PagerFile(pBt->pPager));
drhe5fe6902007-12-07 18:55:28 +00002300}
2301
2302/*
drhad3e0102004-09-03 23:32:18 +00002303** Open a database file.
2304**
drh382c0242001-10-06 16:33:02 +00002305** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002306** then an ephemeral database is created. The ephemeral database might
2307** be exclusively in memory, or it might use a disk-based memory cache.
2308** Either way, the ephemeral database will be automatically deleted
2309** when sqlite3BtreeClose() is called.
2310**
drhe53831d2007-08-17 01:14:38 +00002311** If zFilename is ":memory:" then an in-memory database is created
2312** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002313**
drh33f111d2012-01-17 15:29:14 +00002314** The "flags" parameter is a bitmask that might contain bits like
2315** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002316**
drhc47fd8e2009-04-30 13:30:32 +00002317** If the database is already opened in the same database connection
2318** and we are in shared cache mode, then the open will fail with an
2319** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2320** objects in the same database connection since doing so will lead
2321** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002322*/
drh23e11ca2004-05-04 17:27:28 +00002323int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002324 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002325 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002326 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002327 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002328 int flags, /* Options */
2329 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002330){
drh7555d8e2009-03-20 13:15:30 +00002331 BtShared *pBt = 0; /* Shared part of btree structure */
2332 Btree *p; /* Handle to return */
2333 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2334 int rc = SQLITE_OK; /* Result code from this function */
2335 u8 nReserve; /* Byte of unused space on each page */
2336 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002337
drh75c014c2010-08-30 15:02:28 +00002338 /* True if opening an ephemeral, temporary database */
2339 const int isTempDb = zFilename==0 || zFilename[0]==0;
2340
danielk1977aef0bf62005-12-30 16:28:01 +00002341 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002342 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002343 */
drhb0a7c9c2010-12-06 21:09:59 +00002344#ifdef SQLITE_OMIT_MEMORYDB
2345 const int isMemdb = 0;
2346#else
2347 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002348 || (isTempDb && sqlite3TempInMemory(db))
2349 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002350#endif
2351
drhe5fe6902007-12-07 18:55:28 +00002352 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002353 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002354 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002355 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2356
2357 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2358 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2359
2360 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2361 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002362
drh75c014c2010-08-30 15:02:28 +00002363 if( isMemdb ){
2364 flags |= BTREE_MEMORY;
2365 }
2366 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2367 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2368 }
drh17435752007-08-16 04:30:38 +00002369 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002370 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002371 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002372 }
2373 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002374 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002375#ifndef SQLITE_OMIT_SHARED_CACHE
2376 p->lock.pBtree = p;
2377 p->lock.iTable = 1;
2378#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002379
drh198bf392006-01-06 21:52:49 +00002380#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002381 /*
2382 ** If this Btree is a candidate for shared cache, try to find an
2383 ** existing BtShared object that we can share with
2384 */
drh4ab9d252012-05-26 20:08:49 +00002385 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002386 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002387 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002388 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002389 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002390 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002391
drhff0587c2007-08-29 17:43:19 +00002392 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002393 if( !zFullPathname ){
2394 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002395 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002396 }
drhafc8b7f2012-05-26 18:06:38 +00002397 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002398 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002399 }else{
2400 rc = sqlite3OsFullPathname(pVfs, zFilename,
2401 nFullPathname, zFullPathname);
2402 if( rc ){
2403 sqlite3_free(zFullPathname);
2404 sqlite3_free(p);
2405 return rc;
2406 }
drh070ad6b2011-11-17 11:43:19 +00002407 }
drh30ddce62011-10-15 00:16:30 +00002408#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002409 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2410 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002411 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002412 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002413#endif
drh78f82d12008-09-02 00:52:52 +00002414 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002415 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002416 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002417 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002418 int iDb;
2419 for(iDb=db->nDb-1; iDb>=0; iDb--){
2420 Btree *pExisting = db->aDb[iDb].pBt;
2421 if( pExisting && pExisting->pBt==pBt ){
2422 sqlite3_mutex_leave(mutexShared);
2423 sqlite3_mutex_leave(mutexOpen);
2424 sqlite3_free(zFullPathname);
2425 sqlite3_free(p);
2426 return SQLITE_CONSTRAINT;
2427 }
2428 }
drhff0587c2007-08-29 17:43:19 +00002429 p->pBt = pBt;
2430 pBt->nRef++;
2431 break;
2432 }
2433 }
2434 sqlite3_mutex_leave(mutexShared);
2435 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002436 }
drhff0587c2007-08-29 17:43:19 +00002437#ifdef SQLITE_DEBUG
2438 else{
2439 /* In debug mode, we mark all persistent databases as sharable
2440 ** even when they are not. This exercises the locking code and
2441 ** gives more opportunity for asserts(sqlite3_mutex_held())
2442 ** statements to find locking problems.
2443 */
2444 p->sharable = 1;
2445 }
2446#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002447 }
2448#endif
drha059ad02001-04-17 20:09:11 +00002449 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002450 /*
2451 ** The following asserts make sure that structures used by the btree are
2452 ** the right size. This is to guard against size changes that result
2453 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002454 */
drh062cf272015-03-23 19:03:51 +00002455 assert( sizeof(i64)==8 );
2456 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002457 assert( sizeof(u32)==4 );
2458 assert( sizeof(u16)==2 );
2459 assert( sizeof(Pgno)==4 );
2460
2461 pBt = sqlite3MallocZero( sizeof(*pBt) );
2462 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002463 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002464 goto btree_open_out;
2465 }
danielk197771d5d2c2008-09-29 11:49:47 +00002466 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002467 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002468 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002469 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002470 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2471 }
2472 if( rc!=SQLITE_OK ){
2473 goto btree_open_out;
2474 }
shanehbd2aaf92010-09-01 02:38:21 +00002475 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002476 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002477 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002478 p->pBt = pBt;
2479
drhe53831d2007-08-17 01:14:38 +00002480 pBt->pCursor = 0;
2481 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002482 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002483#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002484 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002485#elif defined(SQLITE_FAST_SECURE_DELETE)
2486 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002487#endif
drh113762a2014-11-19 16:36:25 +00002488 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2489 ** determined by the 2-byte integer located at an offset of 16 bytes from
2490 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002491 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002492 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2493 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002494 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002495#ifndef SQLITE_OMIT_AUTOVACUUM
2496 /* If the magic name ":memory:" will create an in-memory database, then
2497 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2498 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2499 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2500 ** regular file-name. In this case the auto-vacuum applies as per normal.
2501 */
2502 if( zFilename && !isMemdb ){
2503 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2504 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2505 }
2506#endif
2507 nReserve = 0;
2508 }else{
drh113762a2014-11-19 16:36:25 +00002509 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2510 ** determined by the one-byte unsigned integer found at an offset of 20
2511 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002512 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002513 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002514#ifndef SQLITE_OMIT_AUTOVACUUM
2515 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2516 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2517#endif
2518 }
drhfa9601a2009-06-18 17:22:39 +00002519 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002520 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002521 pBt->usableSize = pBt->pageSize - nReserve;
2522 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002523
2524#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2525 /* Add the new BtShared object to the linked list sharable BtShareds.
2526 */
dan272989b2016-07-06 10:12:02 +00002527 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002528 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002529 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002530 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002531 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002532 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002533 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002534 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002535 goto btree_open_out;
2536 }
drhff0587c2007-08-29 17:43:19 +00002537 }
drhe53831d2007-08-17 01:14:38 +00002538 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002539 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2540 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002541 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002542 }
drheee46cf2004-11-06 00:02:48 +00002543#endif
drh90f5ecb2004-07-22 01:19:35 +00002544 }
danielk1977aef0bf62005-12-30 16:28:01 +00002545
drhcfed7bc2006-03-13 14:28:05 +00002546#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002547 /* If the new Btree uses a sharable pBtShared, then link the new
2548 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002549 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002550 */
drhe53831d2007-08-17 01:14:38 +00002551 if( p->sharable ){
2552 int i;
2553 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002554 for(i=0; i<db->nDb; i++){
2555 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002556 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002557 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002558 p->pNext = pSib;
2559 p->pPrev = 0;
2560 pSib->pPrev = p;
2561 }else{
drh3bfa7e82016-03-22 14:37:59 +00002562 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002563 pSib = pSib->pNext;
2564 }
2565 p->pNext = pSib->pNext;
2566 p->pPrev = pSib;
2567 if( p->pNext ){
2568 p->pNext->pPrev = p;
2569 }
2570 pSib->pNext = p;
2571 }
2572 break;
2573 }
2574 }
danielk1977aef0bf62005-12-30 16:28:01 +00002575 }
danielk1977aef0bf62005-12-30 16:28:01 +00002576#endif
2577 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002578
2579btree_open_out:
2580 if( rc!=SQLITE_OK ){
2581 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002582 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002583 }
drh17435752007-08-16 04:30:38 +00002584 sqlite3_free(pBt);
2585 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002586 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002587 }else{
dan0f5a1862016-08-13 14:30:23 +00002588 sqlite3_file *pFile;
2589
drh75c014c2010-08-30 15:02:28 +00002590 /* If the B-Tree was successfully opened, set the pager-cache size to the
2591 ** default value. Except, when opening on an existing shared pager-cache,
2592 ** do not change the pager-cache size.
2593 */
2594 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2595 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2596 }
dan0f5a1862016-08-13 14:30:23 +00002597
2598 pFile = sqlite3PagerFile(pBt->pPager);
2599 if( pFile->pMethods ){
2600 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2601 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002602 }
drh7555d8e2009-03-20 13:15:30 +00002603 if( mutexOpen ){
2604 assert( sqlite3_mutex_held(mutexOpen) );
2605 sqlite3_mutex_leave(mutexOpen);
2606 }
dan272989b2016-07-06 10:12:02 +00002607 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002608 return rc;
drha059ad02001-04-17 20:09:11 +00002609}
2610
2611/*
drhe53831d2007-08-17 01:14:38 +00002612** Decrement the BtShared.nRef counter. When it reaches zero,
2613** remove the BtShared structure from the sharing list. Return
2614** true if the BtShared.nRef counter reaches zero and return
2615** false if it is still positive.
2616*/
2617static int removeFromSharingList(BtShared *pBt){
2618#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002619 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002620 BtShared *pList;
2621 int removed = 0;
2622
drhd677b3d2007-08-20 22:48:41 +00002623 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002624 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002625 sqlite3_mutex_enter(pMaster);
2626 pBt->nRef--;
2627 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002628 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2629 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002630 }else{
drh78f82d12008-09-02 00:52:52 +00002631 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002632 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002633 pList=pList->pNext;
2634 }
drh34004ce2008-07-11 16:15:17 +00002635 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002636 pList->pNext = pBt->pNext;
2637 }
2638 }
drh3285db22007-09-03 22:00:39 +00002639 if( SQLITE_THREADSAFE ){
2640 sqlite3_mutex_free(pBt->mutex);
2641 }
drhe53831d2007-08-17 01:14:38 +00002642 removed = 1;
2643 }
2644 sqlite3_mutex_leave(pMaster);
2645 return removed;
2646#else
2647 return 1;
2648#endif
2649}
2650
2651/*
drhf7141992008-06-19 00:16:08 +00002652** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002653** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2654** pointer.
drhf7141992008-06-19 00:16:08 +00002655*/
2656static void allocateTempSpace(BtShared *pBt){
2657 if( !pBt->pTmpSpace ){
2658 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002659
2660 /* One of the uses of pBt->pTmpSpace is to format cells before
2661 ** inserting them into a leaf page (function fillInCell()). If
2662 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2663 ** by the various routines that manipulate binary cells. Which
2664 ** can mean that fillInCell() only initializes the first 2 or 3
2665 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2666 ** it into a database page. This is not actually a problem, but it
2667 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2668 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002669 ** zero the first 4 bytes of temp space here.
2670 **
2671 ** Also: Provide four bytes of initialized space before the
2672 ** beginning of pTmpSpace as an area available to prepend the
2673 ** left-child pointer to the beginning of a cell.
2674 */
2675 if( pBt->pTmpSpace ){
2676 memset(pBt->pTmpSpace, 0, 8);
2677 pBt->pTmpSpace += 4;
2678 }
drhf7141992008-06-19 00:16:08 +00002679 }
2680}
2681
2682/*
2683** Free the pBt->pTmpSpace allocation
2684*/
2685static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002686 if( pBt->pTmpSpace ){
2687 pBt->pTmpSpace -= 4;
2688 sqlite3PageFree(pBt->pTmpSpace);
2689 pBt->pTmpSpace = 0;
2690 }
drhf7141992008-06-19 00:16:08 +00002691}
2692
2693/*
drha059ad02001-04-17 20:09:11 +00002694** Close an open database and invalidate all cursors.
2695*/
danielk1977aef0bf62005-12-30 16:28:01 +00002696int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002697 BtShared *pBt = p->pBt;
2698 BtCursor *pCur;
2699
danielk1977aef0bf62005-12-30 16:28:01 +00002700 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002701 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002702 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002703 pCur = pBt->pCursor;
2704 while( pCur ){
2705 BtCursor *pTmp = pCur;
2706 pCur = pCur->pNext;
2707 if( pTmp->pBtree==p ){
2708 sqlite3BtreeCloseCursor(pTmp);
2709 }
drha059ad02001-04-17 20:09:11 +00002710 }
danielk1977aef0bf62005-12-30 16:28:01 +00002711
danielk19778d34dfd2006-01-24 16:37:57 +00002712 /* Rollback any active transaction and free the handle structure.
2713 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2714 ** this handle.
2715 */
drh47b7fc72014-11-11 01:33:57 +00002716 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002717 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002718
danielk1977aef0bf62005-12-30 16:28:01 +00002719 /* If there are still other outstanding references to the shared-btree
2720 ** structure, return now. The remainder of this procedure cleans
2721 ** up the shared-btree.
2722 */
drhe53831d2007-08-17 01:14:38 +00002723 assert( p->wantToLock==0 && p->locked==0 );
2724 if( !p->sharable || removeFromSharingList(pBt) ){
2725 /* The pBt is no longer on the sharing list, so we can access
2726 ** it without having to hold the mutex.
2727 **
2728 ** Clean out and delete the BtShared object.
2729 */
2730 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002731 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002732 if( pBt->xFreeSchema && pBt->pSchema ){
2733 pBt->xFreeSchema(pBt->pSchema);
2734 }
drhb9755982010-07-24 16:34:37 +00002735 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002736 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002737 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002738 }
2739
drhe53831d2007-08-17 01:14:38 +00002740#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002741 assert( p->wantToLock==0 );
2742 assert( p->locked==0 );
2743 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2744 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002745#endif
2746
drhe53831d2007-08-17 01:14:38 +00002747 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002748 return SQLITE_OK;
2749}
2750
2751/*
drh9b0cf342015-11-12 14:57:19 +00002752** Change the "soft" limit on the number of pages in the cache.
2753** Unused and unmodified pages will be recycled when the number of
2754** pages in the cache exceeds this soft limit. But the size of the
2755** cache is allowed to grow larger than this limit if it contains
2756** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002757*/
danielk1977aef0bf62005-12-30 16:28:01 +00002758int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2759 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002760 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002761 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002762 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002763 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002764 return SQLITE_OK;
2765}
2766
drh9b0cf342015-11-12 14:57:19 +00002767/*
2768** Change the "spill" limit on the number of pages in the cache.
2769** If the number of pages exceeds this limit during a write transaction,
2770** the pager might attempt to "spill" pages to the journal early in
2771** order to free up memory.
2772**
2773** The value returned is the current spill size. If zero is passed
2774** as an argument, no changes are made to the spill size setting, so
2775** using mxPage of 0 is a way to query the current spill size.
2776*/
2777int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2778 BtShared *pBt = p->pBt;
2779 int res;
2780 assert( sqlite3_mutex_held(p->db->mutex) );
2781 sqlite3BtreeEnter(p);
2782 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2783 sqlite3BtreeLeave(p);
2784 return res;
2785}
2786
drh18c7e402014-03-14 11:46:10 +00002787#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002788/*
dan5d8a1372013-03-19 19:28:06 +00002789** Change the limit on the amount of the database file that may be
2790** memory mapped.
2791*/
drh9b4c59f2013-04-15 17:03:42 +00002792int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002793 BtShared *pBt = p->pBt;
2794 assert( sqlite3_mutex_held(p->db->mutex) );
2795 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002796 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002797 sqlite3BtreeLeave(p);
2798 return SQLITE_OK;
2799}
drh18c7e402014-03-14 11:46:10 +00002800#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002801
2802/*
drh973b6e32003-02-12 14:09:42 +00002803** Change the way data is synced to disk in order to increase or decrease
2804** how well the database resists damage due to OS crashes and power
2805** failures. Level 1 is the same as asynchronous (no syncs() occur and
2806** there is a high probability of damage) Level 2 is the default. There
2807** is a very low but non-zero probability of damage. Level 3 reduces the
2808** probability of damage to near zero but with a write performance reduction.
2809*/
danielk197793758c82005-01-21 08:13:14 +00002810#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002811int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002812 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002813 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002814){
danielk1977aef0bf62005-12-30 16:28:01 +00002815 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002816 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002817 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002818 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002819 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002820 return SQLITE_OK;
2821}
danielk197793758c82005-01-21 08:13:14 +00002822#endif
drh973b6e32003-02-12 14:09:42 +00002823
drh2c8997b2005-08-27 16:36:48 +00002824/*
drh90f5ecb2004-07-22 01:19:35 +00002825** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002826** Or, if the page size has already been fixed, return SQLITE_READONLY
2827** without changing anything.
drh06f50212004-11-02 14:24:33 +00002828**
2829** The page size must be a power of 2 between 512 and 65536. If the page
2830** size supplied does not meet this constraint then the page size is not
2831** changed.
2832**
2833** Page sizes are constrained to be a power of two so that the region
2834** of the database file used for locking (beginning at PENDING_BYTE,
2835** the first byte past the 1GB boundary, 0x40000000) needs to occur
2836** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002837**
2838** If parameter nReserve is less than zero, then the number of reserved
2839** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002840**
drhc9166342012-01-05 23:32:06 +00002841** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002842** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002843*/
drhce4869f2009-04-02 20:16:58 +00002844int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002845 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002846 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002847 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002848 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002849#if SQLITE_HAS_CODEC
2850 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2851#endif
drhc9166342012-01-05 23:32:06 +00002852 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002853 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002854 return SQLITE_READONLY;
2855 }
2856 if( nReserve<0 ){
2857 nReserve = pBt->pageSize - pBt->usableSize;
2858 }
drhf49661a2008-12-10 16:45:50 +00002859 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002860 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2861 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002862 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002863 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002864 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002865 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002866 }
drhfa9601a2009-06-18 17:22:39 +00002867 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002868 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002869 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002870 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002871 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002872}
2873
2874/*
2875** Return the currently defined page size
2876*/
danielk1977aef0bf62005-12-30 16:28:01 +00002877int sqlite3BtreeGetPageSize(Btree *p){
2878 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002879}
drh7f751222009-03-17 22:33:00 +00002880
dan0094f372012-09-28 20:23:42 +00002881/*
2882** This function is similar to sqlite3BtreeGetReserve(), except that it
2883** may only be called if it is guaranteed that the b-tree mutex is already
2884** held.
2885**
2886** This is useful in one special case in the backup API code where it is
2887** known that the shared b-tree mutex is held, but the mutex on the
2888** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2889** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002890** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002891*/
2892int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002893 int n;
dan0094f372012-09-28 20:23:42 +00002894 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002895 n = p->pBt->pageSize - p->pBt->usableSize;
2896 return n;
dan0094f372012-09-28 20:23:42 +00002897}
2898
drh7f751222009-03-17 22:33:00 +00002899/*
2900** Return the number of bytes of space at the end of every page that
2901** are intentually left unused. This is the "reserved" space that is
2902** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002903**
2904** If SQLITE_HAS_MUTEX is defined then the number returned is the
2905** greater of the current reserved space and the maximum requested
2906** reserve space.
drh7f751222009-03-17 22:33:00 +00002907*/
drhad0961b2015-02-21 00:19:25 +00002908int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002909 int n;
2910 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002911 n = sqlite3BtreeGetReserveNoMutex(p);
2912#ifdef SQLITE_HAS_CODEC
2913 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2914#endif
drhd677b3d2007-08-20 22:48:41 +00002915 sqlite3BtreeLeave(p);
2916 return n;
drh2011d5f2004-07-22 02:40:37 +00002917}
drhf8e632b2007-05-08 14:51:36 +00002918
drhad0961b2015-02-21 00:19:25 +00002919
drhf8e632b2007-05-08 14:51:36 +00002920/*
2921** Set the maximum page count for a database if mxPage is positive.
2922** No changes are made if mxPage is 0 or negative.
2923** Regardless of the value of mxPage, return the maximum page count.
2924*/
2925int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002926 int n;
2927 sqlite3BtreeEnter(p);
2928 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2929 sqlite3BtreeLeave(p);
2930 return n;
drhf8e632b2007-05-08 14:51:36 +00002931}
drh5b47efa2010-02-12 18:18:39 +00002932
2933/*
drha5907a82017-06-19 11:44:22 +00002934** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2935**
2936** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2937** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2938** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2939** newFlag==(-1) No changes
2940**
2941** This routine acts as a query if newFlag is less than zero
2942**
2943** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2944** freelist leaf pages are not written back to the database. Thus in-page
2945** deleted content is cleared, but freelist deleted content is not.
2946**
2947** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2948** that freelist leaf pages are written back into the database, increasing
2949** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002950*/
2951int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2952 int b;
drhaf034ed2010-02-12 19:46:26 +00002953 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002954 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002955 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2956 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002957 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002958 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2959 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2960 }
2961 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002962 sqlite3BtreeLeave(p);
2963 return b;
2964}
drh90f5ecb2004-07-22 01:19:35 +00002965
2966/*
danielk1977951af802004-11-05 15:45:09 +00002967** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2968** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2969** is disabled. The default value for the auto-vacuum property is
2970** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2971*/
danielk1977aef0bf62005-12-30 16:28:01 +00002972int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002973#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002974 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002975#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002976 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002977 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002978 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002979
2980 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002981 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002982 rc = SQLITE_READONLY;
2983 }else{
drh076d4662009-02-18 20:31:18 +00002984 pBt->autoVacuum = av ?1:0;
2985 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002986 }
drhd677b3d2007-08-20 22:48:41 +00002987 sqlite3BtreeLeave(p);
2988 return rc;
danielk1977951af802004-11-05 15:45:09 +00002989#endif
2990}
2991
2992/*
2993** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2994** enabled 1 is returned. Otherwise 0.
2995*/
danielk1977aef0bf62005-12-30 16:28:01 +00002996int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002997#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002998 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002999#else
drhd677b3d2007-08-20 22:48:41 +00003000 int rc;
3001 sqlite3BtreeEnter(p);
3002 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00003003 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3004 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3005 BTREE_AUTOVACUUM_INCR
3006 );
drhd677b3d2007-08-20 22:48:41 +00003007 sqlite3BtreeLeave(p);
3008 return rc;
danielk1977951af802004-11-05 15:45:09 +00003009#endif
3010}
3011
danf5da7db2017-03-16 18:14:39 +00003012/*
3013** If the user has not set the safety-level for this database connection
3014** using "PRAGMA synchronous", and if the safety-level is not already
3015** set to the value passed to this function as the second parameter,
3016** set it so.
3017*/
drh2ed57372017-10-05 20:57:38 +00003018#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3019 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00003020static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3021 sqlite3 *db;
3022 Db *pDb;
3023 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3024 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3025 if( pDb->bSyncSet==0
3026 && pDb->safety_level!=safety_level
3027 && pDb!=&db->aDb[1]
3028 ){
3029 pDb->safety_level = safety_level;
3030 sqlite3PagerSetFlags(pBt->pPager,
3031 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3032 }
3033 }
3034}
3035#else
danfc8f4b62017-03-16 18:54:42 +00003036# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00003037#endif
danielk1977951af802004-11-05 15:45:09 +00003038
drh0314cf32018-04-28 01:27:09 +00003039/* Forward declaration */
3040static int newDatabase(BtShared*);
3041
3042
danielk1977951af802004-11-05 15:45:09 +00003043/*
drha34b6762004-05-07 13:30:42 +00003044** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00003045** also acquire a readlock on that file.
3046**
3047** SQLITE_OK is returned on success. If the file is not a
3048** well-formed database file, then SQLITE_CORRUPT is returned.
3049** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003050** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003051*/
danielk1977aef0bf62005-12-30 16:28:01 +00003052static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003053 int rc; /* Result code from subfunctions */
3054 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003055 u32 nPage; /* Number of pages in the database */
3056 u32 nPageFile = 0; /* Number of pages in the database file */
3057 u32 nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00003058
drh1fee73e2007-08-29 04:00:57 +00003059 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003060 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003061 rc = sqlite3PagerSharedLock(pBt->pPager);
3062 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003063 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003064 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003065
3066 /* Do some checking to help insure the file we opened really is
3067 ** a valid database file.
3068 */
drhc2a4bab2010-04-02 12:46:45 +00003069 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003070 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003071 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003072 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003073 }
drh0314cf32018-04-28 01:27:09 +00003074 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3075 nPage = 0;
3076 }
drh97b59a52010-03-31 02:31:33 +00003077 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003078 u32 pageSize;
3079 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003080 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003081 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003082 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3083 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3084 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003085 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003086 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003087 }
dan5cf53532010-05-01 16:40:20 +00003088
3089#ifdef SQLITE_OMIT_WAL
3090 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003091 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003092 }
3093 if( page1[19]>1 ){
3094 goto page1_init_failed;
3095 }
3096#else
dane04dc882010-04-20 18:53:15 +00003097 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003098 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003099 }
dane04dc882010-04-20 18:53:15 +00003100 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003101 goto page1_init_failed;
3102 }
drhe5ae5732008-06-15 02:51:47 +00003103
dana470aeb2010-04-21 11:43:38 +00003104 /* If the write version is set to 2, this database should be accessed
3105 ** in WAL mode. If the log is not already open, open it now. Then
3106 ** return SQLITE_OK and return without populating BtShared.pPage1.
3107 ** The caller detects this and calls this function again. This is
3108 ** required as the version of page 1 currently in the page1 buffer
3109 ** may not be the latest version - there may be a newer one in the log
3110 ** file.
3111 */
drhc9166342012-01-05 23:32:06 +00003112 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003113 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003114 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003115 if( rc!=SQLITE_OK ){
3116 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003117 }else{
danf5da7db2017-03-16 18:14:39 +00003118 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003119 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003120 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003121 return SQLITE_OK;
3122 }
dane04dc882010-04-20 18:53:15 +00003123 }
dan8b5444b2010-04-27 14:37:47 +00003124 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003125 }else{
3126 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003127 }
dan5cf53532010-05-01 16:40:20 +00003128#endif
dane04dc882010-04-20 18:53:15 +00003129
drh113762a2014-11-19 16:36:25 +00003130 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3131 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3132 **
drhe5ae5732008-06-15 02:51:47 +00003133 ** The original design allowed these amounts to vary, but as of
3134 ** version 3.6.0, we require them to be fixed.
3135 */
3136 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3137 goto page1_init_failed;
3138 }
drh113762a2014-11-19 16:36:25 +00003139 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3140 ** determined by the 2-byte integer located at an offset of 16 bytes from
3141 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003142 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003143 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3144 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003145 if( ((pageSize-1)&pageSize)!=0
3146 || pageSize>SQLITE_MAX_PAGE_SIZE
3147 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003148 ){
drh07d183d2005-05-01 22:52:42 +00003149 goto page1_init_failed;
3150 }
drhdcc27002019-01-06 02:06:31 +00003151 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003152 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003153 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3154 ** integer at offset 20 is the number of bytes of space at the end of
3155 ** each page to reserve for extensions.
3156 **
3157 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3158 ** determined by the one-byte unsigned integer found at an offset of 20
3159 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003160 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003161 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003162 /* After reading the first page of the database assuming a page size
3163 ** of BtShared.pageSize, we have discovered that the page-size is
3164 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3165 ** zero and return SQLITE_OK. The caller will call this function
3166 ** again with the correct page-size.
3167 */
drh3908fe92017-09-01 14:50:19 +00003168 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003169 pBt->usableSize = usableSize;
3170 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003171 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003172 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3173 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003174 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003175 }
drh0f1c2eb2018-11-03 17:31:48 +00003176 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003177 rc = SQLITE_CORRUPT_BKPT;
3178 goto page1_init_failed;
3179 }
drh113762a2014-11-19 16:36:25 +00003180 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3181 ** be less than 480. In other words, if the page size is 512, then the
3182 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003183 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003184 goto page1_init_failed;
3185 }
drh43b18e12010-08-17 19:40:08 +00003186 pBt->pageSize = pageSize;
3187 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003188#ifndef SQLITE_OMIT_AUTOVACUUM
3189 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003190 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003191#endif
drh306dc212001-05-21 13:45:10 +00003192 }
drhb6f41482004-05-14 01:58:11 +00003193
3194 /* maxLocal is the maximum amount of payload to store locally for
3195 ** a cell. Make sure it is small enough so that at least minFanout
3196 ** cells can will fit on one page. We assume a 10-byte page header.
3197 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003198 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003199 ** 4-byte child pointer
3200 ** 9-byte nKey value
3201 ** 4-byte nData value
3202 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003203 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003204 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3205 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003206 */
shaneh1df2db72010-08-18 02:28:48 +00003207 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3208 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3209 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3210 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003211 if( pBt->maxLocal>127 ){
3212 pBt->max1bytePayload = 127;
3213 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003214 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003215 }
drh2e38c322004-09-03 18:38:44 +00003216 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003217 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003218 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003219 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003220
drh72f82862001-05-24 21:06:34 +00003221page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003222 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003223 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003224 return rc;
drh306dc212001-05-21 13:45:10 +00003225}
3226
drh85ec3b62013-05-14 23:12:06 +00003227#ifndef NDEBUG
3228/*
3229** Return the number of cursors open on pBt. This is for use
3230** in assert() expressions, so it is only compiled if NDEBUG is not
3231** defined.
3232**
3233** Only write cursors are counted if wrOnly is true. If wrOnly is
3234** false then all cursors are counted.
3235**
3236** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003237** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003238** have been tripped into the CURSOR_FAULT state are not counted.
3239*/
3240static int countValidCursors(BtShared *pBt, int wrOnly){
3241 BtCursor *pCur;
3242 int r = 0;
3243 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003244 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3245 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003246 }
3247 return r;
3248}
3249#endif
3250
drh306dc212001-05-21 13:45:10 +00003251/*
drhb8ca3072001-12-05 00:21:20 +00003252** If there are no outstanding cursors and we are not in the middle
3253** of a transaction but there is a read lock on the database, then
3254** this routine unrefs the first page of the database file which
3255** has the effect of releasing the read lock.
3256**
drhb8ca3072001-12-05 00:21:20 +00003257** If there is a transaction in progress, this routine is a no-op.
3258*/
danielk1977aef0bf62005-12-30 16:28:01 +00003259static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003260 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003261 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003262 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003263 MemPage *pPage1 = pBt->pPage1;
3264 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003265 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003266 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003267 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003268 }
3269}
3270
3271/*
drhe39f2f92009-07-23 01:43:59 +00003272** If pBt points to an empty file then convert that empty file
3273** into a new empty database by initializing the first page of
3274** the database.
drh8b2f49b2001-06-08 00:21:52 +00003275*/
danielk1977aef0bf62005-12-30 16:28:01 +00003276static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003277 MemPage *pP1;
3278 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003279 int rc;
drhd677b3d2007-08-20 22:48:41 +00003280
drh1fee73e2007-08-29 04:00:57 +00003281 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003282 if( pBt->nPage>0 ){
3283 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003284 }
drh3aac2dd2004-04-26 14:10:20 +00003285 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003286 assert( pP1!=0 );
3287 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003288 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003289 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003290 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3291 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003292 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3293 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003294 data[18] = 1;
3295 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003296 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3297 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003298 data[21] = 64;
3299 data[22] = 32;
3300 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003301 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003302 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003303 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003304#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003305 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003306 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003307 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003308 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003309#endif
drhdd3cd972010-03-27 17:12:36 +00003310 pBt->nPage = 1;
3311 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003312 return SQLITE_OK;
3313}
3314
3315/*
danb483eba2012-10-13 19:58:11 +00003316** Initialize the first page of the database file (creating a database
3317** consisting of a single page and no schema objects). Return SQLITE_OK
3318** if successful, or an SQLite error code otherwise.
3319*/
3320int sqlite3BtreeNewDb(Btree *p){
3321 int rc;
3322 sqlite3BtreeEnter(p);
3323 p->pBt->nPage = 0;
3324 rc = newDatabase(p->pBt);
3325 sqlite3BtreeLeave(p);
3326 return rc;
3327}
3328
3329/*
danielk1977ee5741e2004-05-31 10:01:34 +00003330** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003331** is started if the second argument is nonzero, otherwise a read-
3332** transaction. If the second argument is 2 or more and exclusive
3333** transaction is started, meaning that no other process is allowed
3334** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003335** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003336** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003337**
danielk1977ee5741e2004-05-31 10:01:34 +00003338** A write-transaction must be started before attempting any
3339** changes to the database. None of the following routines
3340** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003341**
drh23e11ca2004-05-04 17:27:28 +00003342** sqlite3BtreeCreateTable()
3343** sqlite3BtreeCreateIndex()
3344** sqlite3BtreeClearTable()
3345** sqlite3BtreeDropTable()
3346** sqlite3BtreeInsert()
3347** sqlite3BtreeDelete()
3348** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003349**
drhb8ef32c2005-03-14 02:01:49 +00003350** If an initial attempt to acquire the lock fails because of lock contention
3351** and the database was previously unlocked, then invoke the busy handler
3352** if there is one. But if there was previously a read-lock, do not
3353** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3354** returned when there is already a read-lock in order to avoid a deadlock.
3355**
3356** Suppose there are two processes A and B. A has a read lock and B has
3357** a reserved lock. B tries to promote to exclusive but is blocked because
3358** of A's read lock. A tries to promote to reserved but is blocked by B.
3359** One or the other of the two processes must give way or there can be
3360** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3361** when A already has a read lock, we encourage A to give up and let B
3362** proceed.
drha059ad02001-04-17 20:09:11 +00003363*/
drhbb2d9b12018-06-06 16:28:40 +00003364int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003365 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003366 int rc = SQLITE_OK;
3367
drhd677b3d2007-08-20 22:48:41 +00003368 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003369 btreeIntegrity(p);
3370
danielk1977ee5741e2004-05-31 10:01:34 +00003371 /* If the btree is already in a write-transaction, or it
3372 ** is already in a read-transaction and a read-transaction
3373 ** is requested, this is a no-op.
3374 */
danielk1977aef0bf62005-12-30 16:28:01 +00003375 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003376 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003377 }
dan56c517a2013-09-26 11:04:33 +00003378 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003379
danea933f02018-07-19 11:44:02 +00003380 if( (p->db->flags & SQLITE_ResetDatabase)
3381 && sqlite3PagerIsreadonly(pBt->pPager)==0
3382 ){
3383 pBt->btsFlags &= ~BTS_READ_ONLY;
3384 }
3385
drhb8ef32c2005-03-14 02:01:49 +00003386 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003387 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003388 rc = SQLITE_READONLY;
3389 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003390 }
3391
danielk1977404ca072009-03-16 13:19:36 +00003392#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003393 {
3394 sqlite3 *pBlock = 0;
3395 /* If another database handle has already opened a write transaction
3396 ** on this shared-btree structure and a second write transaction is
3397 ** requested, return SQLITE_LOCKED.
3398 */
3399 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3400 || (pBt->btsFlags & BTS_PENDING)!=0
3401 ){
3402 pBlock = pBt->pWriter->db;
3403 }else if( wrflag>1 ){
3404 BtLock *pIter;
3405 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3406 if( pIter->pBtree!=p ){
3407 pBlock = pIter->pBtree->db;
3408 break;
3409 }
danielk1977641b0f42007-12-21 04:47:25 +00003410 }
3411 }
drh5a1fb182016-01-08 19:34:39 +00003412 if( pBlock ){
3413 sqlite3ConnectionBlocked(p->db, pBlock);
3414 rc = SQLITE_LOCKED_SHAREDCACHE;
3415 goto trans_begun;
3416 }
danielk1977404ca072009-03-16 13:19:36 +00003417 }
danielk1977641b0f42007-12-21 04:47:25 +00003418#endif
3419
danielk1977602b4662009-07-02 07:47:33 +00003420 /* Any read-only or read-write transaction implies a read-lock on
3421 ** page 1. So if some other shared-cache client already has a write-lock
3422 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003423 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3424 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003425
drhc9166342012-01-05 23:32:06 +00003426 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3427 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003428 do {
danielk1977295dc102009-04-01 19:07:03 +00003429 /* Call lockBtree() until either pBt->pPage1 is populated or
3430 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3431 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3432 ** reading page 1 it discovers that the page-size of the database
3433 ** file is not pBt->pageSize. In this case lockBtree() will update
3434 ** pBt->pageSize to the page-size of the file on disk.
3435 */
3436 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003437
drhb8ef32c2005-03-14 02:01:49 +00003438 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003439 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003440 rc = SQLITE_READONLY;
3441 }else{
danielk1977d8293352009-04-30 09:10:37 +00003442 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003443 if( rc==SQLITE_OK ){
3444 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003445 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3446 /* if there was no transaction opened when this function was
3447 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3448 ** code to SQLITE_BUSY. */
3449 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003450 }
drhb8ef32c2005-03-14 02:01:49 +00003451 }
3452 }
3453
danielk1977bd434552009-03-18 10:33:00 +00003454 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003455 unlockBtreeIfUnused(pBt);
3456 }
danf9b76712010-06-01 14:12:45 +00003457 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003458 btreeInvokeBusyHandler(pBt) );
drhfd725632018-03-26 20:43:05 +00003459 sqlite3PagerResetLockTimeout(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00003460
3461 if( rc==SQLITE_OK ){
3462 if( p->inTrans==TRANS_NONE ){
3463 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003464#ifndef SQLITE_OMIT_SHARED_CACHE
3465 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003466 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003467 p->lock.eLock = READ_LOCK;
3468 p->lock.pNext = pBt->pLock;
3469 pBt->pLock = &p->lock;
3470 }
3471#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003472 }
3473 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3474 if( p->inTrans>pBt->inTransaction ){
3475 pBt->inTransaction = p->inTrans;
3476 }
danielk1977404ca072009-03-16 13:19:36 +00003477 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003478 MemPage *pPage1 = pBt->pPage1;
3479#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003480 assert( !pBt->pWriter );
3481 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003482 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3483 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003484#endif
dan59257dc2010-08-04 11:34:31 +00003485
3486 /* If the db-size header field is incorrect (as it may be if an old
3487 ** client has been writing the database file), update it now. Doing
3488 ** this sooner rather than later means the database size can safely
3489 ** re-read the database size from page 1 if a savepoint or transaction
3490 ** rollback occurs within the transaction.
3491 */
3492 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3493 rc = sqlite3PagerWrite(pPage1->pDbPage);
3494 if( rc==SQLITE_OK ){
3495 put4byte(&pPage1->aData[28], pBt->nPage);
3496 }
3497 }
3498 }
danielk1977aef0bf62005-12-30 16:28:01 +00003499 }
3500
drhd677b3d2007-08-20 22:48:41 +00003501trans_begun:
drhbb2d9b12018-06-06 16:28:40 +00003502 if( rc==SQLITE_OK ){
3503 if( pSchemaVersion ){
3504 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3505 }
3506 if( wrflag ){
3507 /* This call makes sure that the pager has the correct number of
3508 ** open savepoints. If the second parameter is greater than 0 and
3509 ** the sub-journal is not already open, then it will be opened here.
3510 */
3511 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3512 }
danielk1977fd7f0452008-12-17 17:30:26 +00003513 }
danielk197712dd5492008-12-18 15:45:07 +00003514
danielk1977aef0bf62005-12-30 16:28:01 +00003515 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003516 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003517 return rc;
drha059ad02001-04-17 20:09:11 +00003518}
3519
danielk1977687566d2004-11-02 12:56:41 +00003520#ifndef SQLITE_OMIT_AUTOVACUUM
3521
3522/*
3523** Set the pointer-map entries for all children of page pPage. Also, if
3524** pPage contains cells that point to overflow pages, set the pointer
3525** map entries for the overflow pages as well.
3526*/
3527static int setChildPtrmaps(MemPage *pPage){
3528 int i; /* Counter variable */
3529 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003530 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003531 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003532 Pgno pgno = pPage->pgno;
3533
drh1fee73e2007-08-29 04:00:57 +00003534 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003535 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003536 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003537 nCell = pPage->nCell;
3538
3539 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003540 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003541
drh0f1bf4c2019-01-13 20:17:21 +00003542 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003543
danielk1977687566d2004-11-02 12:56:41 +00003544 if( !pPage->leaf ){
3545 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003546 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003547 }
3548 }
3549
3550 if( !pPage->leaf ){
3551 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003552 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003553 }
3554
danielk1977687566d2004-11-02 12:56:41 +00003555 return rc;
3556}
3557
3558/*
drhf3aed592009-07-08 18:12:49 +00003559** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3560** that it points to iTo. Parameter eType describes the type of pointer to
3561** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003562**
3563** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3564** page of pPage.
3565**
3566** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3567** page pointed to by one of the cells on pPage.
3568**
3569** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3570** overflow page in the list.
3571*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003572static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003573 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003574 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003575 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003576 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003577 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003578 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003579 }
danielk1977f78fc082004-11-02 14:40:32 +00003580 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003581 }else{
danielk1977687566d2004-11-02 12:56:41 +00003582 int i;
3583 int nCell;
drha1f75d92015-05-24 10:18:12 +00003584 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003585
drh14e845a2017-05-25 21:35:56 +00003586 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003587 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003588 nCell = pPage->nCell;
3589
danielk1977687566d2004-11-02 12:56:41 +00003590 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003591 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003592 if( eType==PTRMAP_OVERFLOW1 ){
3593 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003594 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003595 if( info.nLocal<info.nPayload ){
3596 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003597 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003598 }
3599 if( iFrom==get4byte(pCell+info.nSize-4) ){
3600 put4byte(pCell+info.nSize-4, iTo);
3601 break;
3602 }
danielk1977687566d2004-11-02 12:56:41 +00003603 }
3604 }else{
3605 if( get4byte(pCell)==iFrom ){
3606 put4byte(pCell, iTo);
3607 break;
3608 }
3609 }
3610 }
3611
3612 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003613 if( eType!=PTRMAP_BTREE ||
3614 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003615 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003616 }
danielk1977687566d2004-11-02 12:56:41 +00003617 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3618 }
danielk1977687566d2004-11-02 12:56:41 +00003619 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003620 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003621}
3622
danielk1977003ba062004-11-04 02:57:33 +00003623
danielk19777701e812005-01-10 12:59:51 +00003624/*
3625** Move the open database page pDbPage to location iFreePage in the
3626** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003627**
3628** The isCommit flag indicates that there is no need to remember that
3629** the journal needs to be sync()ed before database page pDbPage->pgno
3630** can be written to. The caller has already promised not to write to that
3631** page.
danielk19777701e812005-01-10 12:59:51 +00003632*/
danielk1977003ba062004-11-04 02:57:33 +00003633static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003634 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003635 MemPage *pDbPage, /* Open page to move */
3636 u8 eType, /* Pointer map 'type' entry for pDbPage */
3637 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003638 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003639 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003640){
3641 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3642 Pgno iDbPage = pDbPage->pgno;
3643 Pager *pPager = pBt->pPager;
3644 int rc;
3645
danielk1977a0bf2652004-11-04 14:30:04 +00003646 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3647 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003648 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003649 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003650 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003651
drh85b623f2007-12-13 21:54:09 +00003652 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003653 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3654 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003655 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003656 if( rc!=SQLITE_OK ){
3657 return rc;
3658 }
3659 pDbPage->pgno = iFreePage;
3660
3661 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3662 ** that point to overflow pages. The pointer map entries for all these
3663 ** pages need to be changed.
3664 **
3665 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3666 ** pointer to a subsequent overflow page. If this is the case, then
3667 ** the pointer map needs to be updated for the subsequent overflow page.
3668 */
danielk1977a0bf2652004-11-04 14:30:04 +00003669 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003670 rc = setChildPtrmaps(pDbPage);
3671 if( rc!=SQLITE_OK ){
3672 return rc;
3673 }
3674 }else{
3675 Pgno nextOvfl = get4byte(pDbPage->aData);
3676 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003677 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003678 if( rc!=SQLITE_OK ){
3679 return rc;
3680 }
3681 }
3682 }
3683
3684 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3685 ** that it points at iFreePage. Also fix the pointer map entry for
3686 ** iPtrPage.
3687 */
danielk1977a0bf2652004-11-04 14:30:04 +00003688 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003689 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003690 if( rc!=SQLITE_OK ){
3691 return rc;
3692 }
danielk19773b8a05f2007-03-19 17:44:26 +00003693 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003694 if( rc!=SQLITE_OK ){
3695 releasePage(pPtrPage);
3696 return rc;
3697 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003698 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003699 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003700 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003701 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003702 }
danielk1977003ba062004-11-04 02:57:33 +00003703 }
danielk1977003ba062004-11-04 02:57:33 +00003704 return rc;
3705}
3706
danielk1977dddbcdc2007-04-26 14:42:34 +00003707/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003708static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003709
3710/*
dan51f0b6d2013-02-22 20:16:34 +00003711** Perform a single step of an incremental-vacuum. If successful, return
3712** SQLITE_OK. If there is no work to do (and therefore no point in
3713** calling this function again), return SQLITE_DONE. Or, if an error
3714** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003715**
peter.d.reid60ec9142014-09-06 16:39:46 +00003716** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003717** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003718**
dan51f0b6d2013-02-22 20:16:34 +00003719** Parameter nFin is the number of pages that this database would contain
3720** were this function called until it returns SQLITE_DONE.
3721**
3722** If the bCommit parameter is non-zero, this function assumes that the
3723** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003724** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003725** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003726*/
dan51f0b6d2013-02-22 20:16:34 +00003727static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003728 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003729 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003730
drh1fee73e2007-08-29 04:00:57 +00003731 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003732 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003733
3734 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003735 u8 eType;
3736 Pgno iPtrPage;
3737
3738 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003739 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003740 return SQLITE_DONE;
3741 }
3742
3743 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3744 if( rc!=SQLITE_OK ){
3745 return rc;
3746 }
3747 if( eType==PTRMAP_ROOTPAGE ){
3748 return SQLITE_CORRUPT_BKPT;
3749 }
3750
3751 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003752 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003753 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003754 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003755 ** truncated to zero after this function returns, so it doesn't
3756 ** matter if it still contains some garbage entries.
3757 */
3758 Pgno iFreePg;
3759 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003760 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003761 if( rc!=SQLITE_OK ){
3762 return rc;
3763 }
3764 assert( iFreePg==iLastPg );
3765 releasePage(pFreePg);
3766 }
3767 } else {
3768 Pgno iFreePg; /* Index of free page to move pLastPg to */
3769 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003770 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3771 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003772
drhb00fc3b2013-08-21 23:42:32 +00003773 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003774 if( rc!=SQLITE_OK ){
3775 return rc;
3776 }
3777
dan51f0b6d2013-02-22 20:16:34 +00003778 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003779 ** is swapped with the first free page pulled off the free list.
3780 **
dan51f0b6d2013-02-22 20:16:34 +00003781 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003782 ** looping until a free-page located within the first nFin pages
3783 ** of the file is found.
3784 */
dan51f0b6d2013-02-22 20:16:34 +00003785 if( bCommit==0 ){
3786 eMode = BTALLOC_LE;
3787 iNear = nFin;
3788 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003789 do {
3790 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003791 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003792 if( rc!=SQLITE_OK ){
3793 releasePage(pLastPg);
3794 return rc;
3795 }
3796 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003797 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003798 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003799
dane1df4e32013-03-05 11:27:04 +00003800 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003801 releasePage(pLastPg);
3802 if( rc!=SQLITE_OK ){
3803 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003804 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003805 }
3806 }
3807
dan51f0b6d2013-02-22 20:16:34 +00003808 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003809 do {
danielk19773460d192008-12-27 15:23:13 +00003810 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003811 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3812 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003813 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003814 }
3815 return SQLITE_OK;
3816}
3817
3818/*
dan51f0b6d2013-02-22 20:16:34 +00003819** The database opened by the first argument is an auto-vacuum database
3820** nOrig pages in size containing nFree free pages. Return the expected
3821** size of the database in pages following an auto-vacuum operation.
3822*/
3823static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3824 int nEntry; /* Number of entries on one ptrmap page */
3825 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3826 Pgno nFin; /* Return value */
3827
3828 nEntry = pBt->usableSize/5;
3829 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3830 nFin = nOrig - nFree - nPtrmap;
3831 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3832 nFin--;
3833 }
3834 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3835 nFin--;
3836 }
dan51f0b6d2013-02-22 20:16:34 +00003837
3838 return nFin;
3839}
3840
3841/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003842** A write-transaction must be opened before calling this function.
3843** It performs a single unit of work towards an incremental vacuum.
3844**
3845** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003846** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003847** SQLITE_OK is returned. Otherwise an SQLite error code.
3848*/
3849int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003850 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003851 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003852
3853 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003854 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3855 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003856 rc = SQLITE_DONE;
3857 }else{
dan51f0b6d2013-02-22 20:16:34 +00003858 Pgno nOrig = btreePagecount(pBt);
3859 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3860 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3861
dan91384712013-02-24 11:50:43 +00003862 if( nOrig<nFin ){
3863 rc = SQLITE_CORRUPT_BKPT;
3864 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003865 rc = saveAllCursors(pBt, 0, 0);
3866 if( rc==SQLITE_OK ){
3867 invalidateAllOverflowCache(pBt);
3868 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3869 }
dan51f0b6d2013-02-22 20:16:34 +00003870 if( rc==SQLITE_OK ){
3871 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3872 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3873 }
3874 }else{
3875 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003876 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003877 }
drhd677b3d2007-08-20 22:48:41 +00003878 sqlite3BtreeLeave(p);
3879 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003880}
3881
3882/*
danielk19773b8a05f2007-03-19 17:44:26 +00003883** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003884** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003885**
3886** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3887** the database file should be truncated to during the commit process.
3888** i.e. the database has been reorganized so that only the first *pnTrunc
3889** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003890*/
danielk19773460d192008-12-27 15:23:13 +00003891static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003892 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003893 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003894 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003895
drh1fee73e2007-08-29 04:00:57 +00003896 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003897 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003898 assert(pBt->autoVacuum);
3899 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003900 Pgno nFin; /* Number of pages in database after autovacuuming */
3901 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003902 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003903 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003904
drhb1299152010-03-30 22:58:33 +00003905 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003906 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3907 /* It is not possible to create a database for which the final page
3908 ** is either a pointer-map page or the pending-byte page. If one
3909 ** is encountered, this indicates corruption.
3910 */
danielk19773460d192008-12-27 15:23:13 +00003911 return SQLITE_CORRUPT_BKPT;
3912 }
danielk1977ef165ce2009-04-06 17:50:03 +00003913
danielk19773460d192008-12-27 15:23:13 +00003914 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003915 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003916 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003917 if( nFin<nOrig ){
3918 rc = saveAllCursors(pBt, 0, 0);
3919 }
danielk19773460d192008-12-27 15:23:13 +00003920 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003921 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003922 }
danielk19773460d192008-12-27 15:23:13 +00003923 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003924 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3925 put4byte(&pBt->pPage1->aData[32], 0);
3926 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003927 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003928 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003929 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003930 }
3931 if( rc!=SQLITE_OK ){
3932 sqlite3PagerRollback(pPager);
3933 }
danielk1977687566d2004-11-02 12:56:41 +00003934 }
3935
dan0aed84d2013-03-26 14:16:20 +00003936 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003937 return rc;
3938}
danielk1977dddbcdc2007-04-26 14:42:34 +00003939
danielk1977a50d9aa2009-06-08 14:49:45 +00003940#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3941# define setChildPtrmaps(x) SQLITE_OK
3942#endif
danielk1977687566d2004-11-02 12:56:41 +00003943
3944/*
drh80e35f42007-03-30 14:06:34 +00003945** This routine does the first phase of a two-phase commit. This routine
3946** causes a rollback journal to be created (if it does not already exist)
3947** and populated with enough information so that if a power loss occurs
3948** the database can be restored to its original state by playing back
3949** the journal. Then the contents of the journal are flushed out to
3950** the disk. After the journal is safely on oxide, the changes to the
3951** database are written into the database file and flushed to oxide.
3952** At the end of this call, the rollback journal still exists on the
3953** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003954** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003955** commit process.
3956**
3957** This call is a no-op if no write-transaction is currently active on pBt.
3958**
3959** Otherwise, sync the database file for the btree pBt. zMaster points to
3960** the name of a master journal file that should be written into the
3961** individual journal file, or is NULL, indicating no master journal file
3962** (single database transaction).
3963**
3964** When this is called, the master journal should already have been
3965** created, populated with this journal pointer and synced to disk.
3966**
3967** Once this is routine has returned, the only thing required to commit
3968** the write-transaction for this database file is to delete the journal.
3969*/
3970int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3971 int rc = SQLITE_OK;
3972 if( p->inTrans==TRANS_WRITE ){
3973 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003974 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003975#ifndef SQLITE_OMIT_AUTOVACUUM
3976 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003977 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003978 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003979 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003980 return rc;
3981 }
3982 }
danbc1a3c62013-02-23 16:40:46 +00003983 if( pBt->bDoTruncate ){
3984 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3985 }
drh80e35f42007-03-30 14:06:34 +00003986#endif
drh49b9d332009-01-02 18:10:42 +00003987 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003988 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003989 }
3990 return rc;
3991}
3992
3993/*
danielk197794b30732009-07-02 17:21:57 +00003994** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3995** at the conclusion of a transaction.
3996*/
3997static void btreeEndTransaction(Btree *p){
3998 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003999 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00004000 assert( sqlite3BtreeHoldsMutex(p) );
4001
danbc1a3c62013-02-23 16:40:46 +00004002#ifndef SQLITE_OMIT_AUTOVACUUM
4003 pBt->bDoTruncate = 0;
4004#endif
danc0537fe2013-06-28 19:41:43 +00004005 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004006 /* If there are other active statements that belong to this database
4007 ** handle, downgrade to a read-only transaction. The other statements
4008 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004009 downgradeAllSharedCacheTableLocks(p);
4010 p->inTrans = TRANS_READ;
4011 }else{
4012 /* If the handle had any kind of transaction open, decrement the
4013 ** transaction count of the shared btree. If the transaction count
4014 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4015 ** call below will unlock the pager. */
4016 if( p->inTrans!=TRANS_NONE ){
4017 clearAllSharedCacheTableLocks(p);
4018 pBt->nTransaction--;
4019 if( 0==pBt->nTransaction ){
4020 pBt->inTransaction = TRANS_NONE;
4021 }
4022 }
4023
4024 /* Set the current transaction state to TRANS_NONE and unlock the
4025 ** pager if this call closed the only read or write transaction. */
4026 p->inTrans = TRANS_NONE;
4027 unlockBtreeIfUnused(pBt);
4028 }
4029
4030 btreeIntegrity(p);
4031}
4032
4033/*
drh2aa679f2001-06-25 02:11:07 +00004034** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004035**
drh6e345992007-03-30 11:12:08 +00004036** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004037** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4038** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4039** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004040** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004041** routine has to do is delete or truncate or zero the header in the
4042** the rollback journal (which causes the transaction to commit) and
4043** drop locks.
drh6e345992007-03-30 11:12:08 +00004044**
dan60939d02011-03-29 15:40:55 +00004045** Normally, if an error occurs while the pager layer is attempting to
4046** finalize the underlying journal file, this function returns an error and
4047** the upper layer will attempt a rollback. However, if the second argument
4048** is non-zero then this b-tree transaction is part of a multi-file
4049** transaction. In this case, the transaction has already been committed
4050** (by deleting a master journal file) and the caller will ignore this
4051** functions return code. So, even if an error occurs in the pager layer,
4052** reset the b-tree objects internal state to indicate that the write
4053** transaction has been closed. This is quite safe, as the pager will have
4054** transitioned to the error state.
4055**
drh5e00f6c2001-09-13 13:46:56 +00004056** This will release the write lock on the database file. If there
4057** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004058*/
dan60939d02011-03-29 15:40:55 +00004059int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004060
drh075ed302010-10-14 01:17:30 +00004061 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004062 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004063 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004064
4065 /* If the handle has a write-transaction open, commit the shared-btrees
4066 ** transaction and set the shared state to TRANS_READ.
4067 */
4068 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004069 int rc;
drh075ed302010-10-14 01:17:30 +00004070 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004071 assert( pBt->inTransaction==TRANS_WRITE );
4072 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004073 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004074 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004075 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004076 return rc;
4077 }
drh3da9c042014-12-22 18:41:21 +00004078 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004079 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004080 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004081 }
danielk1977aef0bf62005-12-30 16:28:01 +00004082
danielk197794b30732009-07-02 17:21:57 +00004083 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004084 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004085 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004086}
4087
drh80e35f42007-03-30 14:06:34 +00004088/*
4089** Do both phases of a commit.
4090*/
4091int sqlite3BtreeCommit(Btree *p){
4092 int rc;
drhd677b3d2007-08-20 22:48:41 +00004093 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004094 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4095 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004096 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004097 }
drhd677b3d2007-08-20 22:48:41 +00004098 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004099 return rc;
4100}
4101
drhc39e0002004-05-07 23:50:57 +00004102/*
drhfb982642007-08-30 01:19:59 +00004103** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004104** code to errCode for every cursor on any BtShared that pBtree
4105** references. Or if the writeOnly flag is set to 1, then only
4106** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004107**
drh47b7fc72014-11-11 01:33:57 +00004108** Every cursor is a candidate to be tripped, including cursors
4109** that belong to other database connections that happen to be
4110** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004111**
dan80231042014-11-12 14:56:02 +00004112** This routine gets called when a rollback occurs. If the writeOnly
4113** flag is true, then only write-cursors need be tripped - read-only
4114** cursors save their current positions so that they may continue
4115** following the rollback. Or, if writeOnly is false, all cursors are
4116** tripped. In general, writeOnly is false if the transaction being
4117** rolled back modified the database schema. In this case b-tree root
4118** pages may be moved or deleted from the database altogether, making
4119** it unsafe for read cursors to continue.
4120**
4121** If the writeOnly flag is true and an error is encountered while
4122** saving the current position of a read-only cursor, all cursors,
4123** including all read-cursors are tripped.
4124**
4125** SQLITE_OK is returned if successful, or if an error occurs while
4126** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004127*/
dan80231042014-11-12 14:56:02 +00004128int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004129 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004130 int rc = SQLITE_OK;
4131
drh47b7fc72014-11-11 01:33:57 +00004132 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004133 if( pBtree ){
4134 sqlite3BtreeEnter(pBtree);
4135 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004136 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004137 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004138 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004139 if( rc!=SQLITE_OK ){
4140 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4141 break;
4142 }
4143 }
4144 }else{
4145 sqlite3BtreeClearCursor(p);
4146 p->eState = CURSOR_FAULT;
4147 p->skipNext = errCode;
4148 }
drh85ef6302017-08-02 15:50:09 +00004149 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004150 }
dan80231042014-11-12 14:56:02 +00004151 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004152 }
dan80231042014-11-12 14:56:02 +00004153 return rc;
drhfb982642007-08-30 01:19:59 +00004154}
4155
4156/*
drh47b7fc72014-11-11 01:33:57 +00004157** Rollback the transaction in progress.
4158**
4159** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4160** Only write cursors are tripped if writeOnly is true but all cursors are
4161** tripped if writeOnly is false. Any attempt to use
4162** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004163**
4164** This will release the write lock on the database file. If there
4165** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004166*/
drh47b7fc72014-11-11 01:33:57 +00004167int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004168 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004169 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004170 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004171
drh47b7fc72014-11-11 01:33:57 +00004172 assert( writeOnly==1 || writeOnly==0 );
4173 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004174 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004175 if( tripCode==SQLITE_OK ){
4176 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004177 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004178 }else{
4179 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004180 }
drh0f198a72012-02-13 16:43:16 +00004181 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004182 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4183 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4184 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004185 }
danielk1977aef0bf62005-12-30 16:28:01 +00004186 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004187
4188 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004189 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004190
danielk19778d34dfd2006-01-24 16:37:57 +00004191 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004192 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004193 if( rc2!=SQLITE_OK ){
4194 rc = rc2;
4195 }
4196
drh24cd67e2004-05-10 16:18:47 +00004197 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004198 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004199 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004200 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00004201 int nPage = get4byte(28+(u8*)pPage1->aData);
4202 testcase( nPage==0 );
4203 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4204 testcase( pBt->nPage!=nPage );
4205 pBt->nPage = nPage;
drh3908fe92017-09-01 14:50:19 +00004206 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004207 }
drh85ec3b62013-05-14 23:12:06 +00004208 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004209 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004210 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004211 }
danielk1977aef0bf62005-12-30 16:28:01 +00004212
danielk197794b30732009-07-02 17:21:57 +00004213 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004214 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004215 return rc;
4216}
4217
4218/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004219** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004220** back independently of the main transaction. You must start a transaction
4221** before starting a subtransaction. The subtransaction is ended automatically
4222** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004223**
4224** Statement subtransactions are used around individual SQL statements
4225** that are contained within a BEGIN...COMMIT block. If a constraint
4226** error occurs within the statement, the effect of that one statement
4227** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004228**
4229** A statement sub-transaction is implemented as an anonymous savepoint. The
4230** value passed as the second parameter is the total number of savepoints,
4231** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4232** are no active savepoints and no other statement-transactions open,
4233** iStatement is 1. This anonymous savepoint can be released or rolled back
4234** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004235*/
danielk1977bd434552009-03-18 10:33:00 +00004236int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004237 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004238 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004239 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004240 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004241 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004242 assert( iStatement>0 );
4243 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004244 assert( pBt->inTransaction==TRANS_WRITE );
4245 /* At the pager level, a statement transaction is a savepoint with
4246 ** an index greater than all savepoints created explicitly using
4247 ** SQL statements. It is illegal to open, release or rollback any
4248 ** such savepoints while the statement transaction savepoint is active.
4249 */
4250 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004251 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004252 return rc;
4253}
4254
4255/*
danielk1977fd7f0452008-12-17 17:30:26 +00004256** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4257** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004258** savepoint identified by parameter iSavepoint, depending on the value
4259** of op.
4260**
4261** Normally, iSavepoint is greater than or equal to zero. However, if op is
4262** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4263** contents of the entire transaction are rolled back. This is different
4264** from a normal transaction rollback, as no locks are released and the
4265** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004266*/
4267int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4268 int rc = SQLITE_OK;
4269 if( p && p->inTrans==TRANS_WRITE ){
4270 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004271 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4272 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4273 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004274 if( op==SAVEPOINT_ROLLBACK ){
4275 rc = saveAllCursors(pBt, 0, 0);
4276 }
4277 if( rc==SQLITE_OK ){
4278 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4279 }
drh9f0bbf92009-01-02 21:08:09 +00004280 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004281 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4282 pBt->nPage = 0;
4283 }
drh9f0bbf92009-01-02 21:08:09 +00004284 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004285 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004286
4287 /* The database size was written into the offset 28 of the header
4288 ** when the transaction started, so we know that the value at offset
4289 ** 28 is nonzero. */
4290 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004291 }
danielk1977fd7f0452008-12-17 17:30:26 +00004292 sqlite3BtreeLeave(p);
4293 }
4294 return rc;
4295}
4296
4297/*
drh8b2f49b2001-06-08 00:21:52 +00004298** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004299** iTable. If a read-only cursor is requested, it is assumed that
4300** the caller already has at least a read-only transaction open
4301** on the database already. If a write-cursor is requested, then
4302** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004303**
drhe807bdb2016-01-21 17:06:33 +00004304** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4305** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4306** can be used for reading or for writing if other conditions for writing
4307** are also met. These are the conditions that must be met in order
4308** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004309**
drhe807bdb2016-01-21 17:06:33 +00004310** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004311**
drhfe5d71d2007-03-19 11:54:10 +00004312** 2: Other database connections that share the same pager cache
4313** but which are not in the READ_UNCOMMITTED state may not have
4314** cursors open with wrFlag==0 on the same table. Otherwise
4315** the changes made by this write cursor would be visible to
4316** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004317**
4318** 3: The database must be writable (not on read-only media)
4319**
4320** 4: There must be an active transaction.
4321**
drhe807bdb2016-01-21 17:06:33 +00004322** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4323** is set. If FORDELETE is set, that is a hint to the implementation that
4324** this cursor will only be used to seek to and delete entries of an index
4325** as part of a larger DELETE statement. The FORDELETE hint is not used by
4326** this implementation. But in a hypothetical alternative storage engine
4327** in which index entries are automatically deleted when corresponding table
4328** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4329** operations on this cursor can be no-ops and all READ operations can
4330** return a null row (2-bytes: 0x01 0x00).
4331**
drh6446c4d2001-12-15 14:22:18 +00004332** No checking is done to make sure that page iTable really is the
4333** root page of a b-tree. If it is not, then the cursor acquired
4334** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004335**
drhf25a5072009-11-18 23:01:25 +00004336** It is assumed that the sqlite3BtreeCursorZero() has been called
4337** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004338*/
drhd677b3d2007-08-20 22:48:41 +00004339static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004340 Btree *p, /* The btree */
4341 int iTable, /* Root page of table to open */
4342 int wrFlag, /* 1 to write. 0 read-only */
4343 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4344 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004345){
danielk19773e8add92009-07-04 17:16:00 +00004346 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004347 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004348
drh1fee73e2007-08-29 04:00:57 +00004349 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004350 assert( wrFlag==0
4351 || wrFlag==BTREE_WRCSR
4352 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4353 );
danielk197796d48e92009-06-29 06:00:37 +00004354
danielk1977602b4662009-07-02 07:47:33 +00004355 /* The following assert statements verify that if this is a sharable
4356 ** b-tree database, the connection is holding the required table locks,
4357 ** and that no other connection has any open cursor that conflicts with
4358 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004359 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004360 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4361
danielk19773e8add92009-07-04 17:16:00 +00004362 /* Assert that the caller has opened the required transaction. */
4363 assert( p->inTrans>TRANS_NONE );
4364 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4365 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004366 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004367
drh3fbb0222014-09-24 19:47:27 +00004368 if( wrFlag ){
4369 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004370 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004371 }
drhb1299152010-03-30 22:58:33 +00004372 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004373 assert( wrFlag==0 );
4374 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004375 }
danielk1977aef0bf62005-12-30 16:28:01 +00004376
danielk1977aef0bf62005-12-30 16:28:01 +00004377 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004378 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004379 pCur->pgnoRoot = (Pgno)iTable;
4380 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004381 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004382 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004383 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004384 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004385 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004386 /* If there are two or more cursors on the same btree, then all such
4387 ** cursors *must* have the BTCF_Multiple flag set. */
4388 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4389 if( pX->pgnoRoot==(Pgno)iTable ){
4390 pX->curFlags |= BTCF_Multiple;
4391 pCur->curFlags |= BTCF_Multiple;
4392 }
drha059ad02001-04-17 20:09:11 +00004393 }
drh27fb7462015-06-30 02:47:36 +00004394 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004395 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004396 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004397 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004398}
drhd677b3d2007-08-20 22:48:41 +00004399int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004400 Btree *p, /* The btree */
4401 int iTable, /* Root page of table to open */
4402 int wrFlag, /* 1 to write. 0 read-only */
4403 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4404 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004405){
4406 int rc;
dan08f901b2015-05-25 19:24:36 +00004407 if( iTable<1 ){
4408 rc = SQLITE_CORRUPT_BKPT;
4409 }else{
4410 sqlite3BtreeEnter(p);
4411 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4412 sqlite3BtreeLeave(p);
4413 }
drhd677b3d2007-08-20 22:48:41 +00004414 return rc;
4415}
drh7f751222009-03-17 22:33:00 +00004416
4417/*
4418** Return the size of a BtCursor object in bytes.
4419**
4420** This interfaces is needed so that users of cursors can preallocate
4421** sufficient storage to hold a cursor. The BtCursor object is opaque
4422** to users so they cannot do the sizeof() themselves - they must call
4423** this routine.
4424*/
4425int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004426 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004427}
4428
drh7f751222009-03-17 22:33:00 +00004429/*
drhf25a5072009-11-18 23:01:25 +00004430** Initialize memory that will be converted into a BtCursor object.
4431**
4432** The simple approach here would be to memset() the entire object
4433** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4434** do not need to be zeroed and they are large, so we can save a lot
4435** of run-time by skipping the initialization of those elements.
4436*/
4437void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004438 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004439}
4440
4441/*
drh5e00f6c2001-09-13 13:46:56 +00004442** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004443** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004444*/
drh3aac2dd2004-04-26 14:10:20 +00004445int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004446 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004447 if( pBtree ){
4448 BtShared *pBt = pCur->pBt;
4449 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004450 assert( pBt->pCursor!=0 );
4451 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004452 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004453 }else{
4454 BtCursor *pPrev = pBt->pCursor;
4455 do{
4456 if( pPrev->pNext==pCur ){
4457 pPrev->pNext = pCur->pNext;
4458 break;
4459 }
4460 pPrev = pPrev->pNext;
4461 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004462 }
drh352a35a2017-08-15 03:46:47 +00004463 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004464 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004465 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004466 sqlite3_free(pCur->pKey);
danielk1977cd3e8f72008-03-25 09:47:35 +00004467 sqlite3BtreeLeave(pBtree);
dan97c8cb32019-01-01 18:00:17 +00004468 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00004469 }
drh8c42ca92001-06-22 19:15:00 +00004470 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004471}
4472
drh5e2f8b92001-05-28 00:41:15 +00004473/*
drh86057612007-06-26 01:04:48 +00004474** Make sure the BtCursor* given in the argument has a valid
4475** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004476** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004477**
4478** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004479** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004480*/
drh9188b382004-05-14 21:12:22 +00004481#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004482 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4483 if( a->nKey!=b->nKey ) return 0;
4484 if( a->pPayload!=b->pPayload ) return 0;
4485 if( a->nPayload!=b->nPayload ) return 0;
4486 if( a->nLocal!=b->nLocal ) return 0;
4487 if( a->nSize!=b->nSize ) return 0;
4488 return 1;
4489 }
danielk19771cc5ed82007-05-16 17:28:43 +00004490 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004491 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004492 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004493 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004494 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004495 }
danielk19771cc5ed82007-05-16 17:28:43 +00004496#else
4497 #define assertCellInfo(x)
4498#endif
drhc5b41ac2015-06-17 02:11:46 +00004499static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4500 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004501 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004502 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004503 }else{
4504 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004505 }
drhc5b41ac2015-06-17 02:11:46 +00004506}
drh9188b382004-05-14 21:12:22 +00004507
drhea8ffdf2009-07-22 00:35:23 +00004508#ifndef NDEBUG /* The next routine used only within assert() statements */
4509/*
4510** Return true if the given BtCursor is valid. A valid cursor is one
4511** that is currently pointing to a row in a (non-empty) table.
4512** This is a verification routine is used only within assert() statements.
4513*/
4514int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4515 return pCur && pCur->eState==CURSOR_VALID;
4516}
4517#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004518int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4519 assert( pCur!=0 );
4520 return pCur->eState==CURSOR_VALID;
4521}
drhea8ffdf2009-07-22 00:35:23 +00004522
drh9188b382004-05-14 21:12:22 +00004523/*
drha7c90c42016-06-04 20:37:10 +00004524** Return the value of the integer key or "rowid" for a table btree.
4525** This routine is only valid for a cursor that is pointing into a
4526** ordinary table btree. If the cursor points to an index btree or
4527** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004528*/
drha7c90c42016-06-04 20:37:10 +00004529i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004530 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004531 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004532 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004533 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004534 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004535}
drh2af926b2001-05-15 00:39:25 +00004536
drh092457b2017-12-29 15:04:49 +00004537#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004538/*
drh2fc865c2017-12-16 20:20:37 +00004539** Return the offset into the database file for the start of the
4540** payload to which the cursor is pointing.
4541*/
drh092457b2017-12-29 15:04:49 +00004542i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004543 assert( cursorHoldsMutex(pCur) );
4544 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004545 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004546 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004547 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4548}
drh092457b2017-12-29 15:04:49 +00004549#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004550
4551/*
drha7c90c42016-06-04 20:37:10 +00004552** Return the number of bytes of payload for the entry that pCur is
4553** currently pointing to. For table btrees, this will be the amount
4554** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004555**
4556** The caller must guarantee that the cursor is pointing to a non-NULL
4557** valid entry. In other words, the calling procedure must guarantee
4558** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004559*/
drha7c90c42016-06-04 20:37:10 +00004560u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4561 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004562 assert( pCur->eState==CURSOR_VALID );
4563 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004564 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004565}
4566
4567/*
drh53d30dd2019-02-04 21:10:24 +00004568** Return an upper bound on the size of any record for the table
4569** that the cursor is pointing into.
4570**
4571** This is an optimization. Everything will still work if this
4572** routine always returns 2147483647 (which is the largest record
4573** that SQLite can handle) or more. But returning a smaller value might
4574** prevent large memory allocations when trying to interpret a
4575** corrupt datrabase.
4576**
4577** The current implementation merely returns the size of the underlying
4578** database file.
4579*/
4580sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4581 assert( cursorHoldsMutex(pCur) );
4582 assert( pCur->eState==CURSOR_VALID );
4583 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4584}
4585
4586/*
danielk1977d04417962007-05-02 13:16:30 +00004587** Given the page number of an overflow page in the database (parameter
4588** ovfl), this function finds the page number of the next page in the
4589** linked list of overflow pages. If possible, it uses the auto-vacuum
4590** pointer-map data instead of reading the content of page ovfl to do so.
4591**
4592** If an error occurs an SQLite error code is returned. Otherwise:
4593**
danielk1977bea2a942009-01-20 17:06:27 +00004594** The page number of the next overflow page in the linked list is
4595** written to *pPgnoNext. If page ovfl is the last page in its linked
4596** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004597**
danielk1977bea2a942009-01-20 17:06:27 +00004598** If ppPage is not NULL, and a reference to the MemPage object corresponding
4599** to page number pOvfl was obtained, then *ppPage is set to point to that
4600** reference. It is the responsibility of the caller to call releasePage()
4601** on *ppPage to free the reference. In no reference was obtained (because
4602** the pointer-map was used to obtain the value for *pPgnoNext), then
4603** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004604*/
4605static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004606 BtShared *pBt, /* The database file */
4607 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004608 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004609 Pgno *pPgnoNext /* OUT: Next overflow page number */
4610){
4611 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004612 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004613 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004614
drh1fee73e2007-08-29 04:00:57 +00004615 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004616 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004617
4618#ifndef SQLITE_OMIT_AUTOVACUUM
4619 /* Try to find the next page in the overflow list using the
4620 ** autovacuum pointer-map pages. Guess that the next page in
4621 ** the overflow list is page number (ovfl+1). If that guess turns
4622 ** out to be wrong, fall back to loading the data of page
4623 ** number ovfl to determine the next page number.
4624 */
4625 if( pBt->autoVacuum ){
4626 Pgno pgno;
4627 Pgno iGuess = ovfl+1;
4628 u8 eType;
4629
4630 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4631 iGuess++;
4632 }
4633
drhb1299152010-03-30 22:58:33 +00004634 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004635 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004636 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004637 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004638 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004639 }
4640 }
4641 }
4642#endif
4643
danielk1977d8a3f3d2009-07-11 11:45:23 +00004644 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004645 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004646 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004647 assert( rc==SQLITE_OK || pPage==0 );
4648 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004649 next = get4byte(pPage->aData);
4650 }
danielk1977443c0592009-01-16 15:21:05 +00004651 }
danielk197745d68822009-01-16 16:23:38 +00004652
danielk1977bea2a942009-01-20 17:06:27 +00004653 *pPgnoNext = next;
4654 if( ppPage ){
4655 *ppPage = pPage;
4656 }else{
4657 releasePage(pPage);
4658 }
4659 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004660}
4661
danielk1977da107192007-05-04 08:32:13 +00004662/*
4663** Copy data from a buffer to a page, or from a page to a buffer.
4664**
4665** pPayload is a pointer to data stored on database page pDbPage.
4666** If argument eOp is false, then nByte bytes of data are copied
4667** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4668** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4669** of data are copied from the buffer pBuf to pPayload.
4670**
4671** SQLITE_OK is returned on success, otherwise an error code.
4672*/
4673static int copyPayload(
4674 void *pPayload, /* Pointer to page data */
4675 void *pBuf, /* Pointer to buffer */
4676 int nByte, /* Number of bytes to copy */
4677 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4678 DbPage *pDbPage /* Page containing pPayload */
4679){
4680 if( eOp ){
4681 /* Copy data from buffer to page (a write operation) */
4682 int rc = sqlite3PagerWrite(pDbPage);
4683 if( rc!=SQLITE_OK ){
4684 return rc;
4685 }
4686 memcpy(pPayload, pBuf, nByte);
4687 }else{
4688 /* Copy data from page to buffer (a read operation) */
4689 memcpy(pBuf, pPayload, nByte);
4690 }
4691 return SQLITE_OK;
4692}
danielk1977d04417962007-05-02 13:16:30 +00004693
4694/*
danielk19779f8d6402007-05-02 17:48:45 +00004695** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004696** for the entry that the pCur cursor is pointing to. The eOp
4697** argument is interpreted as follows:
4698**
4699** 0: The operation is a read. Populate the overflow cache.
4700** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004701**
4702** A total of "amt" bytes are read or written beginning at "offset".
4703** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004704**
drh3bcdfd22009-07-12 02:32:21 +00004705** The content being read or written might appear on the main page
4706** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004707**
drh42e28f12017-01-27 00:31:59 +00004708** If the current cursor entry uses one or more overflow pages
4709** this function may allocate space for and lazily populate
4710** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004711** Subsequent calls use this cache to make seeking to the supplied offset
4712** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004713**
drh42e28f12017-01-27 00:31:59 +00004714** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004715** invalidated if some other cursor writes to the same table, or if
4716** the cursor is moved to a different row. Additionally, in auto-vacuum
4717** mode, the following events may invalidate an overflow page-list cache.
4718**
4719** * An incremental vacuum,
4720** * A commit in auto_vacuum="full" mode,
4721** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004722*/
danielk19779f8d6402007-05-02 17:48:45 +00004723static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004724 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004725 u32 offset, /* Begin reading this far into payload */
4726 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004727 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004728 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004729){
4730 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004731 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004732 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004733 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004734 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004735#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004736 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004737#endif
drh3aac2dd2004-04-26 14:10:20 +00004738
danielk1977da107192007-05-04 08:32:13 +00004739 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004740 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004741 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004742 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004743 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004744
drh86057612007-06-26 01:04:48 +00004745 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004746 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004747 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004748
drh0b982072016-03-22 14:10:45 +00004749 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004750 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004751 /* Trying to read or write past the end of the data is an error. The
4752 ** conditional above is really:
4753 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4754 ** but is recast into its current form to avoid integer overflow problems
4755 */
daneebf2f52017-11-18 17:30:08 +00004756 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004757 }
danielk1977da107192007-05-04 08:32:13 +00004758
4759 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004760 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004761 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004762 if( a+offset>pCur->info.nLocal ){
4763 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004764 }
drh42e28f12017-01-27 00:31:59 +00004765 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004766 offset = 0;
drha34b6762004-05-07 13:30:42 +00004767 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004768 amt -= a;
drhdd793422001-06-28 01:54:48 +00004769 }else{
drhfa1a98a2004-05-14 19:08:17 +00004770 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004771 }
danielk1977da107192007-05-04 08:32:13 +00004772
dan85753662014-12-11 16:38:18 +00004773
danielk1977da107192007-05-04 08:32:13 +00004774 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004775 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004776 Pgno nextPage;
4777
drhfa1a98a2004-05-14 19:08:17 +00004778 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004779
drha38c9512014-04-01 01:24:34 +00004780 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004781 **
4782 ** The aOverflow[] array is sized at one entry for each overflow page
4783 ** in the overflow chain. The page number of the first overflow page is
4784 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4785 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004786 */
drh42e28f12017-01-27 00:31:59 +00004787 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004788 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004789 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00004790 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00004791 ){
dan85753662014-12-11 16:38:18 +00004792 Pgno *aNew = (Pgno*)sqlite3Realloc(
4793 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004794 );
4795 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004796 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004797 }else{
dan5a500af2014-03-11 20:33:04 +00004798 pCur->aOverflow = aNew;
4799 }
4800 }
drhcd645532017-01-20 20:43:14 +00004801 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4802 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004803 }else{
4804 /* If the overflow page-list cache has been allocated and the
4805 ** entry for the first required overflow page is valid, skip
4806 ** directly to it.
4807 */
4808 if( pCur->aOverflow[offset/ovflSize] ){
4809 iIdx = (offset/ovflSize);
4810 nextPage = pCur->aOverflow[iIdx];
4811 offset = (offset%ovflSize);
4812 }
danielk19772dec9702007-05-02 16:48:37 +00004813 }
danielk1977da107192007-05-04 08:32:13 +00004814
drhcd645532017-01-20 20:43:14 +00004815 assert( rc==SQLITE_OK && amt>0 );
4816 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004817 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004818 assert( pCur->aOverflow[iIdx]==0
4819 || pCur->aOverflow[iIdx]==nextPage
4820 || CORRUPT_DB );
4821 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004822
danielk1977d04417962007-05-02 13:16:30 +00004823 if( offset>=ovflSize ){
4824 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004825 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004826 ** data is not required. So first try to lookup the overflow
4827 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004828 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004829 */
drha38c9512014-04-01 01:24:34 +00004830 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004831 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004832 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004833 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004834 }else{
danielk1977da107192007-05-04 08:32:13 +00004835 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004836 }
danielk1977da107192007-05-04 08:32:13 +00004837 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004838 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004839 /* Need to read this page properly. It contains some of the
4840 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004841 */
danielk1977cfe9a692004-06-16 12:00:29 +00004842 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004843 if( a + offset > ovflSize ){
4844 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004845 }
danf4ba1092011-10-08 14:57:07 +00004846
4847#ifdef SQLITE_DIRECT_OVERFLOW_READ
4848 /* If all the following are true:
4849 **
4850 ** 1) this is a read operation, and
4851 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00004852 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00004853 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004854 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004855 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004856 **
4857 ** then data can be read directly from the database file into the
4858 ** output buffer, bypassing the page-cache altogether. This speeds
4859 ** up loading large records that span many overflow pages.
4860 */
drh42e28f12017-01-27 00:31:59 +00004861 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004862 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00004863 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00004864 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004865 ){
dan09236752018-11-22 19:10:14 +00004866 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00004867 u8 aSave[4];
4868 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004869 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004870 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004871 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004872 nextPage = get4byte(aWrite);
4873 memcpy(aWrite, aSave, 4);
4874 }else
4875#endif
4876
4877 {
4878 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004879 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004880 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004881 );
danf4ba1092011-10-08 14:57:07 +00004882 if( rc==SQLITE_OK ){
4883 aPayload = sqlite3PagerGetData(pDbPage);
4884 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004885 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004886 sqlite3PagerUnref(pDbPage);
4887 offset = 0;
4888 }
4889 }
4890 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004891 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004892 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004893 }
drhcd645532017-01-20 20:43:14 +00004894 if( rc ) break;
4895 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004896 }
drh2af926b2001-05-15 00:39:25 +00004897 }
danielk1977cfe9a692004-06-16 12:00:29 +00004898
danielk1977da107192007-05-04 08:32:13 +00004899 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004900 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00004901 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00004902 }
danielk1977da107192007-05-04 08:32:13 +00004903 return rc;
drh2af926b2001-05-15 00:39:25 +00004904}
4905
drh72f82862001-05-24 21:06:34 +00004906/*
drhcb3cabd2016-11-25 19:18:28 +00004907** Read part of the payload for the row at which that cursor pCur is currently
4908** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004909** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004910**
drhcb3cabd2016-11-25 19:18:28 +00004911** pCur can be pointing to either a table or an index b-tree.
4912** If pointing to a table btree, then the content section is read. If
4913** pCur is pointing to an index b-tree then the key section is read.
4914**
4915** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4916** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4917** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004918**
drh3aac2dd2004-04-26 14:10:20 +00004919** Return SQLITE_OK on success or an error code if anything goes
4920** wrong. An error is returned if "offset+amt" is larger than
4921** the available payload.
drh72f82862001-05-24 21:06:34 +00004922*/
drhcb3cabd2016-11-25 19:18:28 +00004923int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004924 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004925 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00004926 assert( pCur->iPage>=0 && pCur->pPage );
4927 assert( pCur->ix<pCur->pPage->nCell );
drh5d1a8722009-07-22 18:07:40 +00004928 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004929}
drh83ec2762017-01-26 16:54:47 +00004930
4931/*
4932** This variant of sqlite3BtreePayload() works even if the cursor has not
4933** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4934** interface.
4935*/
danielk19773588ceb2008-06-10 17:30:26 +00004936#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004937static SQLITE_NOINLINE int accessPayloadChecked(
4938 BtCursor *pCur,
4939 u32 offset,
4940 u32 amt,
4941 void *pBuf
4942){
drhcb3cabd2016-11-25 19:18:28 +00004943 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004944 if ( pCur->eState==CURSOR_INVALID ){
4945 return SQLITE_ABORT;
4946 }
dan7a2347e2016-01-07 16:43:54 +00004947 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004948 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004949 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4950}
4951int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4952 if( pCur->eState==CURSOR_VALID ){
4953 assert( cursorOwnsBtShared(pCur) );
4954 return accessPayload(pCur, offset, amt, pBuf, 0);
4955 }else{
4956 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00004957 }
drh2af926b2001-05-15 00:39:25 +00004958}
drhcb3cabd2016-11-25 19:18:28 +00004959#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004960
drh72f82862001-05-24 21:06:34 +00004961/*
drh0e1c19e2004-05-11 00:58:56 +00004962** Return a pointer to payload information from the entry that the
4963** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004964** the key if index btrees (pPage->intKey==0) and is the data for
4965** table btrees (pPage->intKey==1). The number of bytes of available
4966** key/data is written into *pAmt. If *pAmt==0, then the value
4967** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004968**
4969** This routine is an optimization. It is common for the entire key
4970** and data to fit on the local page and for there to be no overflow
4971** pages. When that is so, this routine can be used to access the
4972** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004973** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004974** the key/data and copy it into a preallocated buffer.
4975**
4976** The pointer returned by this routine looks directly into the cached
4977** page of the database. The data might change or move the next time
4978** any btree routine is called.
4979*/
drh2a8d2262013-12-09 20:43:22 +00004980static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004981 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004982 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004983){
danf2f72a02017-10-19 15:17:38 +00004984 int amt;
drh352a35a2017-08-15 03:46:47 +00004985 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00004986 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004987 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004988 assert( cursorOwnsBtShared(pCur) );
drh352a35a2017-08-15 03:46:47 +00004989 assert( pCur->ix<pCur->pPage->nCell );
drh86dd3712014-03-25 11:00:21 +00004990 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00004991 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
4992 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00004993 amt = pCur->info.nLocal;
4994 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
4995 /* There is too little space on the page for the expected amount
4996 ** of local content. Database must be corrupt. */
4997 assert( CORRUPT_DB );
4998 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
4999 }
5000 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00005001 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00005002}
5003
5004
5005/*
drhe51c44f2004-05-30 20:46:09 +00005006** For the entry that cursor pCur is point to, return as
5007** many bytes of the key or data as are available on the local
5008** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00005009**
5010** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00005011** or be destroyed on the next call to any Btree routine,
5012** including calls from other threads against the same cache.
5013** Hence, a mutex on the BtShared should be held prior to calling
5014** this routine.
drh0e1c19e2004-05-11 00:58:56 +00005015**
5016** These routines is used to get quick access to key and data
5017** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00005018*/
drha7c90c42016-06-04 20:37:10 +00005019const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00005020 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00005021}
5022
5023
5024/*
drh8178a752003-01-05 21:41:40 +00005025** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00005026** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005027**
5028** This function returns SQLITE_CORRUPT if the page-header flags field of
5029** the new child page does not match the flags field of the parent (i.e.
5030** if an intkey page appears to be the parent of a non-intkey page, or
5031** vice-versa).
drh72f82862001-05-24 21:06:34 +00005032*/
drh3aac2dd2004-04-26 14:10:20 +00005033static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005034 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00005035
dan7a2347e2016-01-07 16:43:54 +00005036 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005037 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005038 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005039 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005040 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5041 return SQLITE_CORRUPT_BKPT;
5042 }
drh271efa52004-05-30 19:19:05 +00005043 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005044 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00005045 pCur->aiIdx[pCur->iPage] = pCur->ix;
5046 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005047 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00005048 pCur->iPage++;
5049 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00005050}
5051
drhd879e3e2017-02-13 13:35:55 +00005052#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005053/*
5054** Page pParent is an internal (non-leaf) tree page. This function
5055** asserts that page number iChild is the left-child if the iIdx'th
5056** cell in page pParent. Or, if iIdx is equal to the total number of
5057** cells in pParent, that page number iChild is the right-child of
5058** the page.
5059*/
5060static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005061 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5062 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005063 assert( iIdx<=pParent->nCell );
5064 if( iIdx==pParent->nCell ){
5065 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5066 }else{
5067 assert( get4byte(findCell(pParent, iIdx))==iChild );
5068 }
5069}
5070#else
5071# define assertParentIndex(x,y,z)
5072#endif
5073
drh72f82862001-05-24 21:06:34 +00005074/*
drh5e2f8b92001-05-28 00:41:15 +00005075** Move the cursor up to the parent page.
5076**
5077** pCur->idx is set to the cell index that contains the pointer
5078** to the page we are coming from. If we are coming from the
5079** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005080** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005081*/
danielk197730548662009-07-09 05:07:37 +00005082static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005083 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005084 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005085 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005086 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005087 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005088 assertParentIndex(
5089 pCur->apPage[pCur->iPage-1],
5090 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005091 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005092 );
dan6c2688c2012-01-12 15:05:03 +00005093 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005094 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005095 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005096 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005097 pLeaf = pCur->pPage;
5098 pCur->pPage = pCur->apPage[--pCur->iPage];
5099 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005100}
5101
5102/*
danielk19778f880a82009-07-13 09:41:45 +00005103** Move the cursor to point to the root page of its b-tree structure.
5104**
5105** If the table has a virtual root page, then the cursor is moved to point
5106** to the virtual root page instead of the actual root page. A table has a
5107** virtual root page when the actual root page contains no cells and a
5108** single child page. This can only happen with the table rooted at page 1.
5109**
5110** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005111** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5112** the cursor is set to point to the first cell located on the root
5113** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005114**
5115** If this function returns successfully, it may be assumed that the
5116** page-header flags indicate that the [virtual] root-page is the expected
5117** kind of b-tree page (i.e. if when opening the cursor the caller did not
5118** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5119** indicating a table b-tree, or if the caller did specify a KeyInfo
5120** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5121** b-tree).
drh72f82862001-05-24 21:06:34 +00005122*/
drh5e2f8b92001-05-28 00:41:15 +00005123static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005124 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005125 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005126
dan7a2347e2016-01-07 16:43:54 +00005127 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005128 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5129 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5130 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005131 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005132 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005133
5134 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005135 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005136 releasePageNotNull(pCur->pPage);
5137 while( --pCur->iPage ){
5138 releasePageNotNull(pCur->apPage[pCur->iPage]);
5139 }
5140 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005141 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005142 }
dana205a482011-08-27 18:48:57 +00005143 }else if( pCur->pgnoRoot==0 ){
5144 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005145 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005146 }else{
drh28f58dd2015-06-27 19:45:03 +00005147 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005148 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5149 if( pCur->eState==CURSOR_FAULT ){
5150 assert( pCur->skipNext!=SQLITE_OK );
5151 return pCur->skipNext;
5152 }
5153 sqlite3BtreeClearCursor(pCur);
5154 }
drh352a35a2017-08-15 03:46:47 +00005155 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005156 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005157 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005158 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005159 return rc;
drh777e4c42006-01-13 04:31:58 +00005160 }
danielk1977172114a2009-07-07 15:47:12 +00005161 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005162 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005163 }
drh352a35a2017-08-15 03:46:47 +00005164 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005165 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005166
5167 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5168 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5169 ** NULL, the caller expects a table b-tree. If this is not the case,
5170 ** return an SQLITE_CORRUPT error.
5171 **
5172 ** Earlier versions of SQLite assumed that this test could not fail
5173 ** if the root page was already loaded when this function was called (i.e.
5174 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5175 ** in such a way that page pRoot is linked into a second b-tree table
5176 ** (or the freelist). */
5177 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5178 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005179 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005180 }
danielk19778f880a82009-07-13 09:41:45 +00005181
drh7ad3eb62016-10-24 01:01:09 +00005182skip_init:
drh75e96b32017-04-01 00:20:06 +00005183 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005184 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005185 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005186
drh352a35a2017-08-15 03:46:47 +00005187 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005188 if( pRoot->nCell>0 ){
5189 pCur->eState = CURSOR_VALID;
5190 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005191 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005192 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005193 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005194 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005195 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005196 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005197 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005198 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005199 }
5200 return rc;
drh72f82862001-05-24 21:06:34 +00005201}
drh2af926b2001-05-15 00:39:25 +00005202
drh5e2f8b92001-05-28 00:41:15 +00005203/*
5204** Move the cursor down to the left-most leaf entry beneath the
5205** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005206**
5207** The left-most leaf is the one with the smallest key - the first
5208** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005209*/
5210static int moveToLeftmost(BtCursor *pCur){
5211 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005212 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005213 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005214
dan7a2347e2016-01-07 16:43:54 +00005215 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005216 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005217 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005218 assert( pCur->ix<pPage->nCell );
5219 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005220 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005221 }
drhd677b3d2007-08-20 22:48:41 +00005222 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005223}
5224
drh2dcc9aa2002-12-04 13:40:25 +00005225/*
5226** Move the cursor down to the right-most leaf entry beneath the
5227** page to which it is currently pointing. Notice the difference
5228** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5229** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5230** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005231**
5232** The right-most entry is the one with the largest key - the last
5233** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005234*/
5235static int moveToRightmost(BtCursor *pCur){
5236 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005237 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005238 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005239
dan7a2347e2016-01-07 16:43:54 +00005240 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005241 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005242 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005243 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005244 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005245 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005246 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005247 }
drh75e96b32017-04-01 00:20:06 +00005248 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005249 assert( pCur->info.nSize==0 );
5250 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5251 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005252}
5253
drh5e00f6c2001-09-13 13:46:56 +00005254/* Move the cursor to the first entry in the table. Return SQLITE_OK
5255** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005256** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005257*/
drh3aac2dd2004-04-26 14:10:20 +00005258int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005259 int rc;
drhd677b3d2007-08-20 22:48:41 +00005260
dan7a2347e2016-01-07 16:43:54 +00005261 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005262 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005263 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005264 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005265 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005266 *pRes = 0;
5267 rc = moveToLeftmost(pCur);
5268 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005269 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005270 *pRes = 1;
5271 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005272 }
drh5e00f6c2001-09-13 13:46:56 +00005273 return rc;
5274}
drh5e2f8b92001-05-28 00:41:15 +00005275
drh9562b552002-02-19 15:00:07 +00005276/* Move the cursor to the last entry in the table. Return SQLITE_OK
5277** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005278** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005279*/
drh3aac2dd2004-04-26 14:10:20 +00005280int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005281 int rc;
drhd677b3d2007-08-20 22:48:41 +00005282
dan7a2347e2016-01-07 16:43:54 +00005283 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005284 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005285
5286 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005287 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005288#ifdef SQLITE_DEBUG
5289 /* This block serves to assert() that the cursor really does point
5290 ** to the last entry in the b-tree. */
5291 int ii;
5292 for(ii=0; ii<pCur->iPage; ii++){
5293 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5294 }
drh352a35a2017-08-15 03:46:47 +00005295 assert( pCur->ix==pCur->pPage->nCell-1 );
5296 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005297#endif
5298 return SQLITE_OK;
5299 }
5300
drh9562b552002-02-19 15:00:07 +00005301 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005302 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005303 assert( pCur->eState==CURSOR_VALID );
5304 *pRes = 0;
5305 rc = moveToRightmost(pCur);
5306 if( rc==SQLITE_OK ){
5307 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005308 }else{
drh44548e72017-08-14 18:13:52 +00005309 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005310 }
drh44548e72017-08-14 18:13:52 +00005311 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005312 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005313 *pRes = 1;
5314 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005315 }
drh9562b552002-02-19 15:00:07 +00005316 return rc;
5317}
5318
drhe14006d2008-03-25 17:23:32 +00005319/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005320** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005321**
drhe63d9992008-08-13 19:11:48 +00005322** For INTKEY tables, the intKey parameter is used. pIdxKey
5323** must be NULL. For index tables, pIdxKey is used and intKey
5324** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005325**
drh5e2f8b92001-05-28 00:41:15 +00005326** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005327** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005328** were present. The cursor might point to an entry that comes
5329** before or after the key.
5330**
drh64022502009-01-09 14:11:04 +00005331** An integer is written into *pRes which is the result of
5332** comparing the key with the entry to which the cursor is
5333** pointing. The meaning of the integer written into
5334** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005335**
5336** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005337** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005338** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005339**
5340** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005341** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005342**
5343** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005344** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005345**
drhb1d607d2015-11-05 22:30:54 +00005346** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5347** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005348*/
drhe63d9992008-08-13 19:11:48 +00005349int sqlite3BtreeMovetoUnpacked(
5350 BtCursor *pCur, /* The cursor to be moved */
5351 UnpackedRecord *pIdxKey, /* Unpacked index key */
5352 i64 intKey, /* The table key */
5353 int biasRight, /* If true, bias the search to the high end */
5354 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005355){
drh72f82862001-05-24 21:06:34 +00005356 int rc;
dan3b9330f2014-02-27 20:44:18 +00005357 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005358
dan7a2347e2016-01-07 16:43:54 +00005359 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005360 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005361 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005362 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005363 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005364
5365 /* If the cursor is already positioned at the point we are trying
5366 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005367 if( pIdxKey==0
5368 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005369 ){
drhe63d9992008-08-13 19:11:48 +00005370 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005371 *pRes = 0;
5372 return SQLITE_OK;
5373 }
drh451e76d2017-01-21 16:54:19 +00005374 if( pCur->info.nKey<intKey ){
5375 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5376 *pRes = -1;
5377 return SQLITE_OK;
5378 }
drh7f11afa2017-01-21 21:47:54 +00005379 /* If the requested key is one more than the previous key, then
5380 ** try to get there using sqlite3BtreeNext() rather than a full
5381 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005382 ** is still obtained without this case, only a little more slowely */
drh0c873bf2019-01-28 00:42:06 +00005383 if( pCur->info.nKey+1==intKey ){
drh7f11afa2017-01-21 21:47:54 +00005384 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005385 rc = sqlite3BtreeNext(pCur, 0);
5386 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005387 getCellInfo(pCur);
5388 if( pCur->info.nKey==intKey ){
5389 return SQLITE_OK;
5390 }
drh2ab792e2017-05-30 18:34:07 +00005391 }else if( rc==SQLITE_DONE ){
5392 rc = SQLITE_OK;
5393 }else{
5394 return rc;
drh451e76d2017-01-21 16:54:19 +00005395 }
5396 }
drha2c20e42008-03-29 16:01:04 +00005397 }
5398 }
5399
dan1fed5da2014-02-25 21:01:25 +00005400 if( pIdxKey ){
5401 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005402 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005403 assert( pIdxKey->default_rc==1
5404 || pIdxKey->default_rc==0
5405 || pIdxKey->default_rc==-1
5406 );
drh13a747e2014-03-03 21:46:55 +00005407 }else{
drhb6e8fd12014-03-06 01:56:33 +00005408 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005409 }
5410
drh5e2f8b92001-05-28 00:41:15 +00005411 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005412 if( rc ){
drh44548e72017-08-14 18:13:52 +00005413 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005414 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005415 *pRes = -1;
5416 return SQLITE_OK;
5417 }
drhd677b3d2007-08-20 22:48:41 +00005418 return rc;
5419 }
drh352a35a2017-08-15 03:46:47 +00005420 assert( pCur->pPage );
5421 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005422 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005423 assert( pCur->pPage->nCell > 0 );
5424 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005425 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005426 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005427 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005428 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005429 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005430 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005431
5432 /* pPage->nCell must be greater than zero. If this is the root-page
5433 ** the cursor would have been INVALID above and this for(;;) loop
5434 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005435 ** would have already detected db corruption. Similarly, pPage must
5436 ** be the right kind (index or table) of b-tree page. Otherwise
5437 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005438 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005439 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005440 lwr = 0;
5441 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005442 assert( biasRight==0 || biasRight==1 );
5443 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005444 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005445 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005446 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005447 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005448 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005449 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005450 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005451 if( pCell>=pPage->aDataEnd ){
daneebf2f52017-11-18 17:30:08 +00005452 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00005453 }
drh9b2fc612013-11-25 20:14:13 +00005454 }
drhd172f862006-01-12 15:01:15 +00005455 }
drha2c20e42008-03-29 16:01:04 +00005456 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005457 if( nCellKey<intKey ){
5458 lwr = idx+1;
5459 if( lwr>upr ){ c = -1; break; }
5460 }else if( nCellKey>intKey ){
5461 upr = idx-1;
5462 if( lwr>upr ){ c = +1; break; }
5463 }else{
5464 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005465 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005466 if( !pPage->leaf ){
5467 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005468 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005469 }else{
drhd95ef5c2016-11-11 18:19:05 +00005470 pCur->curFlags |= BTCF_ValidNKey;
5471 pCur->info.nKey = nCellKey;
5472 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005473 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005474 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005475 }
drhd793f442013-11-25 14:10:15 +00005476 }
drhebf10b12013-11-25 17:38:26 +00005477 assert( lwr+upr>=0 );
5478 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005479 }
5480 }else{
5481 for(;;){
drhc6827502015-05-28 15:14:32 +00005482 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005483 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005484
drhb2eced52010-08-12 02:41:12 +00005485 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005486 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005487 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005488 ** varint. This information is used to attempt to avoid parsing
5489 ** the entire cell by checking for the cases where the record is
5490 ** stored entirely within the b-tree page by inspecting the first
5491 ** 2 bytes of the cell.
5492 */
drhec3e6b12013-11-25 02:38:55 +00005493 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005494 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005495 /* This branch runs if the record-size field of the cell is a
5496 ** single byte varint and the record fits entirely on the main
5497 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005498 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005499 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005500 }else if( !(pCell[1] & 0x80)
5501 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5502 ){
5503 /* The record-size field is a 2 byte varint and the record
5504 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005505 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005506 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005507 }else{
danielk197711c327a2009-05-04 19:01:26 +00005508 /* The record flows over onto one or more overflow pages. In
5509 ** this case the whole cell needs to be parsed, a buffer allocated
5510 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005511 ** buffer before VdbeRecordCompare() can be called.
5512 **
5513 ** If the record is corrupt, the xRecordCompare routine may read
5514 ** up to two varints past the end of the buffer. An extra 18
5515 ** bytes of padding is allocated at the end of the buffer in
5516 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005517 void *pCellKey;
5518 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005519 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005520 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005521 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5522 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5523 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5524 testcase( nCell==2 ); /* Minimum legal index key size */
drh87c3ad42019-01-21 23:18:22 +00005525 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
daneebf2f52017-11-18 17:30:08 +00005526 rc = SQLITE_CORRUPT_PAGE(pPage);
dan3548db72015-05-27 14:21:05 +00005527 goto moveto_finish;
5528 }
5529 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005530 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005531 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005532 goto moveto_finish;
5533 }
drh75e96b32017-04-01 00:20:06 +00005534 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005535 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5536 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005537 if( rc ){
5538 sqlite3_free(pCellKey);
5539 goto moveto_finish;
5540 }
drh0a31dc22019-03-05 14:39:00 +00005541 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005542 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005543 }
dan38fdead2014-04-01 10:19:02 +00005544 assert(
5545 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005546 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005547 );
drhbb933ef2013-11-25 15:01:38 +00005548 if( c<0 ){
5549 lwr = idx+1;
5550 }else if( c>0 ){
5551 upr = idx-1;
5552 }else{
5553 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005554 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005555 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005556 pCur->ix = (u16)idx;
mistachkin88a79732017-09-04 19:31:54 +00005557 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
drh1e968a02008-03-25 00:22:21 +00005558 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005559 }
drhebf10b12013-11-25 17:38:26 +00005560 if( lwr>upr ) break;
5561 assert( lwr+upr>=0 );
5562 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005563 }
drh72f82862001-05-24 21:06:34 +00005564 }
drhb07028f2011-10-14 21:49:18 +00005565 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005566 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005567 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005568 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005569 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005570 *pRes = c;
5571 rc = SQLITE_OK;
5572 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005573 }
5574moveto_next_layer:
5575 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005576 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005577 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005578 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005579 }
drh75e96b32017-04-01 00:20:06 +00005580 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005581 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005582 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005583 }
drh1e968a02008-03-25 00:22:21 +00005584moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005585 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005586 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005587 return rc;
5588}
5589
drhd677b3d2007-08-20 22:48:41 +00005590
drh72f82862001-05-24 21:06:34 +00005591/*
drhc39e0002004-05-07 23:50:57 +00005592** Return TRUE if the cursor is not pointing at an entry of the table.
5593**
5594** TRUE will be returned after a call to sqlite3BtreeNext() moves
5595** past the last entry in the table or sqlite3BtreePrev() moves past
5596** the first entry. TRUE is also returned if the table is empty.
5597*/
5598int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005599 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5600 ** have been deleted? This API will need to change to return an error code
5601 ** as well as the boolean result value.
5602 */
5603 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005604}
5605
5606/*
drh5e98e832017-02-17 19:24:06 +00005607** Return an estimate for the number of rows in the table that pCur is
5608** pointing to. Return a negative number if no estimate is currently
5609** available.
5610*/
5611i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5612 i64 n;
5613 u8 i;
5614
5615 assert( cursorOwnsBtShared(pCur) );
5616 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005617
5618 /* Currently this interface is only called by the OP_IfSmaller
5619 ** opcode, and it that case the cursor will always be valid and
5620 ** will always point to a leaf node. */
5621 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005622 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005623
drh352a35a2017-08-15 03:46:47 +00005624 n = pCur->pPage->nCell;
5625 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005626 n *= pCur->apPage[i]->nCell;
5627 }
5628 return n;
5629}
5630
5631/*
drh2ab792e2017-05-30 18:34:07 +00005632** Advance the cursor to the next entry in the database.
5633** Return value:
5634**
5635** SQLITE_OK success
5636** SQLITE_DONE cursor is already pointing at the last element
5637** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005638**
drhee6438d2014-09-01 13:29:32 +00005639** The main entry point is sqlite3BtreeNext(). That routine is optimized
5640** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5641** to the next cell on the current page. The (slower) btreeNext() helper
5642** routine is called when it is necessary to move to a different page or
5643** to restore the cursor.
5644**
drh89997982017-07-11 18:11:33 +00005645** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5646** cursor corresponds to an SQL index and this routine could have been
5647** skipped if the SQL index had been a unique index. The F argument
5648** is a hint to the implement. SQLite btree implementation does not use
5649** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005650*/
drh89997982017-07-11 18:11:33 +00005651static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005652 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005653 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005654 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005655
dan7a2347e2016-01-07 16:43:54 +00005656 assert( cursorOwnsBtShared(pCur) );
drhf66f26a2013-08-19 20:04:10 +00005657 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005658 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005659 rc = restoreCursorPosition(pCur);
5660 if( rc!=SQLITE_OK ){
5661 return rc;
5662 }
5663 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005664 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005665 }
drh0c873bf2019-01-28 00:42:06 +00005666 if( pCur->eState==CURSOR_SKIPNEXT ){
drh9b47ee32013-08-20 03:13:51 +00005667 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005668 if( pCur->skipNext>0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005669 }
danielk1977da184232006-01-05 11:34:32 +00005670 }
danielk1977da184232006-01-05 11:34:32 +00005671
drh352a35a2017-08-15 03:46:47 +00005672 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005673 idx = ++pCur->ix;
drhf3cd0c82018-06-08 19:13:57 +00005674 if( !pPage->isInit ){
5675 /* The only known way for this to happen is for there to be a
5676 ** recursive SQL function that does a DELETE operation as part of a
5677 ** SELECT which deletes content out from under an active cursor
5678 ** in a corrupt database file where the table being DELETE-ed from
5679 ** has pages in common with the table being queried. See TH3
5680 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5681 ** example. */
5682 return SQLITE_CORRUPT_BKPT;
5683 }
danbb246c42012-01-12 14:25:55 +00005684
5685 /* If the database file is corrupt, it is possible for the value of idx
5686 ** to be invalid here. This can only occur if a second cursor modifies
5687 ** the page while cursor pCur is holding a reference to it. Which can
5688 ** only happen if the database is corrupt in such a way as to link the
5689 ** page into more than one b-tree structure. */
5690 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005691
danielk197771d5d2c2008-09-29 11:49:47 +00005692 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005693 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005694 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005695 if( rc ) return rc;
5696 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005697 }
drh5e2f8b92001-05-28 00:41:15 +00005698 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005699 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005700 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005701 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005702 }
danielk197730548662009-07-09 05:07:37 +00005703 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005704 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005705 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005706 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005707 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005708 }else{
drhee6438d2014-09-01 13:29:32 +00005709 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005710 }
drh8178a752003-01-05 21:41:40 +00005711 }
drh3aac2dd2004-04-26 14:10:20 +00005712 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005713 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005714 }else{
5715 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005716 }
drh72f82862001-05-24 21:06:34 +00005717}
drh2ab792e2017-05-30 18:34:07 +00005718int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005719 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005720 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005721 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005722 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005723 pCur->info.nSize = 0;
5724 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005725 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005726 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005727 if( (++pCur->ix)>=pPage->nCell ){
5728 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005729 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005730 }
5731 if( pPage->leaf ){
5732 return SQLITE_OK;
5733 }else{
5734 return moveToLeftmost(pCur);
5735 }
5736}
drh72f82862001-05-24 21:06:34 +00005737
drh3b7511c2001-05-26 13:15:44 +00005738/*
drh2ab792e2017-05-30 18:34:07 +00005739** Step the cursor to the back to the previous entry in the database.
5740** Return values:
5741**
5742** SQLITE_OK success
5743** SQLITE_DONE the cursor is already on the first element of the table
5744** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005745**
drhee6438d2014-09-01 13:29:32 +00005746** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5747** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005748** to the previous cell on the current page. The (slower) btreePrevious()
5749** helper routine is called when it is necessary to move to a different page
5750** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005751**
drh89997982017-07-11 18:11:33 +00005752** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5753** the cursor corresponds to an SQL index and this routine could have been
5754** skipped if the SQL index had been a unique index. The F argument is a
5755** hint to the implement. The native SQLite btree implementation does not
5756** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005757*/
drh89997982017-07-11 18:11:33 +00005758static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005759 int rc;
drh8178a752003-01-05 21:41:40 +00005760 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005761
dan7a2347e2016-01-07 16:43:54 +00005762 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005763 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5764 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005765 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005766 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005767 if( rc!=SQLITE_OK ){
5768 return rc;
drhf66f26a2013-08-19 20:04:10 +00005769 }
5770 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005771 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005772 }
drh0c873bf2019-01-28 00:42:06 +00005773 if( CURSOR_SKIPNEXT==pCur->eState ){
drh9b47ee32013-08-20 03:13:51 +00005774 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005775 if( pCur->skipNext<0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005776 }
danielk1977da184232006-01-05 11:34:32 +00005777 }
danielk1977da184232006-01-05 11:34:32 +00005778
drh352a35a2017-08-15 03:46:47 +00005779 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005780 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005781 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005782 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005783 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005784 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005785 rc = moveToRightmost(pCur);
5786 }else{
drh75e96b32017-04-01 00:20:06 +00005787 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005788 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005789 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005790 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005791 }
danielk197730548662009-07-09 05:07:37 +00005792 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005793 }
drhee6438d2014-09-01 13:29:32 +00005794 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005795 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005796
drh75e96b32017-04-01 00:20:06 +00005797 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00005798 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00005799 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005800 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005801 }else{
5802 rc = SQLITE_OK;
5803 }
drh2dcc9aa2002-12-04 13:40:25 +00005804 }
drh2dcc9aa2002-12-04 13:40:25 +00005805 return rc;
5806}
drh2ab792e2017-05-30 18:34:07 +00005807int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005808 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005809 assert( flags==0 || flags==1 );
drh89997982017-07-11 18:11:33 +00005810 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005811 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5812 pCur->info.nSize = 0;
5813 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005814 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00005815 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00005816 ){
drh89997982017-07-11 18:11:33 +00005817 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00005818 }
drh75e96b32017-04-01 00:20:06 +00005819 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005820 return SQLITE_OK;
5821}
drh2dcc9aa2002-12-04 13:40:25 +00005822
5823/*
drh3b7511c2001-05-26 13:15:44 +00005824** Allocate a new page from the database file.
5825**
danielk19773b8a05f2007-03-19 17:44:26 +00005826** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005827** has already been called on the new page.) The new page has also
5828** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005829** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005830**
5831** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005832** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005833**
drh82e647d2013-03-02 03:25:55 +00005834** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005835** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005836** attempt to keep related pages close to each other in the database file,
5837** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005838**
drh82e647d2013-03-02 03:25:55 +00005839** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5840** anywhere on the free-list, then it is guaranteed to be returned. If
5841** eMode is BTALLOC_LT then the page returned will be less than or equal
5842** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5843** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005844*/
drh4f0c5872007-03-26 22:05:01 +00005845static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005846 BtShared *pBt, /* The btree */
5847 MemPage **ppPage, /* Store pointer to the allocated page here */
5848 Pgno *pPgno, /* Store the page number here */
5849 Pgno nearby, /* Search for a page near this one */
5850 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005851){
drh3aac2dd2004-04-26 14:10:20 +00005852 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005853 int rc;
drh35cd6432009-06-05 14:17:21 +00005854 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005855 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005856 MemPage *pTrunk = 0;
5857 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005858 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005859
drh1fee73e2007-08-29 04:00:57 +00005860 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005861 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005862 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005863 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005864 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5865 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005866 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005867 testcase( n==mxPage-1 );
5868 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005869 return SQLITE_CORRUPT_BKPT;
5870 }
drh3aac2dd2004-04-26 14:10:20 +00005871 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005872 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005873 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005874 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005875 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005876
drh82e647d2013-03-02 03:25:55 +00005877 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005878 ** shows that the page 'nearby' is somewhere on the free-list, then
5879 ** the entire-list will be searched for that page.
5880 */
5881#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005882 if( eMode==BTALLOC_EXACT ){
5883 if( nearby<=mxPage ){
5884 u8 eType;
5885 assert( nearby>0 );
5886 assert( pBt->autoVacuum );
5887 rc = ptrmapGet(pBt, nearby, &eType, 0);
5888 if( rc ) return rc;
5889 if( eType==PTRMAP_FREEPAGE ){
5890 searchList = 1;
5891 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005892 }
dan51f0b6d2013-02-22 20:16:34 +00005893 }else if( eMode==BTALLOC_LE ){
5894 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005895 }
5896#endif
5897
5898 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5899 ** first free-list trunk page. iPrevTrunk is initially 1.
5900 */
danielk19773b8a05f2007-03-19 17:44:26 +00005901 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005902 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005903 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005904
5905 /* The code within this loop is run only once if the 'searchList' variable
5906 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005907 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5908 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005909 */
5910 do {
5911 pPrevTrunk = pTrunk;
5912 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005913 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5914 ** is the page number of the next freelist trunk page in the list or
5915 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005916 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005917 }else{
drh113762a2014-11-19 16:36:25 +00005918 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5919 ** stores the page number of the first page of the freelist, or zero if
5920 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005921 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005922 }
drhdf35a082009-07-09 02:24:35 +00005923 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005924 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005925 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005926 }else{
drh7e8c6f12015-05-28 03:28:27 +00005927 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005928 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005929 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005930 pTrunk = 0;
5931 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005932 }
drhb07028f2011-10-14 21:49:18 +00005933 assert( pTrunk!=0 );
5934 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005935 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5936 ** is the number of leaf page pointers to follow. */
5937 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005938 if( k==0 && !searchList ){
5939 /* The trunk has no leaves and the list is not being searched.
5940 ** So extract the trunk page itself and use it as the newly
5941 ** allocated page */
5942 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005943 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005944 if( rc ){
5945 goto end_allocate_page;
5946 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005947 *pPgno = iTrunk;
5948 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5949 *ppPage = pTrunk;
5950 pTrunk = 0;
5951 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005952 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005953 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00005954 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00005955 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005956#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005957 }else if( searchList
5958 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5959 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005960 /* The list is being searched and this trunk page is the page
5961 ** to allocate, regardless of whether it has leaves.
5962 */
dan51f0b6d2013-02-22 20:16:34 +00005963 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005964 *ppPage = pTrunk;
5965 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005966 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005967 if( rc ){
5968 goto end_allocate_page;
5969 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005970 if( k==0 ){
5971 if( !pPrevTrunk ){
5972 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5973 }else{
danf48c3552010-08-23 15:41:24 +00005974 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5975 if( rc!=SQLITE_OK ){
5976 goto end_allocate_page;
5977 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005978 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5979 }
5980 }else{
5981 /* The trunk page is required by the caller but it contains
5982 ** pointers to free-list leaves. The first leaf becomes a trunk
5983 ** page in this case.
5984 */
5985 MemPage *pNewTrunk;
5986 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005987 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005988 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005989 goto end_allocate_page;
5990 }
drhdf35a082009-07-09 02:24:35 +00005991 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005992 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005993 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005994 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005995 }
danielk19773b8a05f2007-03-19 17:44:26 +00005996 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005997 if( rc!=SQLITE_OK ){
5998 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005999 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006000 }
6001 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6002 put4byte(&pNewTrunk->aData[4], k-1);
6003 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00006004 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006005 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00006006 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00006007 put4byte(&pPage1->aData[32], iNewTrunk);
6008 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00006009 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006010 if( rc ){
6011 goto end_allocate_page;
6012 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006013 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6014 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006015 }
6016 pTrunk = 0;
6017 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6018#endif
danielk1977e5765212009-06-17 11:13:28 +00006019 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006020 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00006021 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006022 Pgno iPage;
6023 unsigned char *aData = pTrunk->aData;
6024 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00006025 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006026 closest = 0;
danf38b65a2013-02-22 20:57:47 +00006027 if( eMode==BTALLOC_LE ){
6028 for(i=0; i<k; i++){
6029 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00006030 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00006031 closest = i;
6032 break;
6033 }
6034 }
6035 }else{
6036 int dist;
6037 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6038 for(i=1; i<k; i++){
6039 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6040 if( d2<dist ){
6041 closest = i;
6042 dist = d2;
6043 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006044 }
6045 }
6046 }else{
6047 closest = 0;
6048 }
6049
6050 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006051 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00006052 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006053 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006054 goto end_allocate_page;
6055 }
drhdf35a082009-07-09 02:24:35 +00006056 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006057 if( !searchList
6058 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6059 ){
danielk1977bea2a942009-01-20 17:06:27 +00006060 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006061 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006062 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6063 ": %d more free pages\n",
6064 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006065 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6066 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006067 if( closest<k-1 ){
6068 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6069 }
6070 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006071 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006072 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006073 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006074 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006075 if( rc!=SQLITE_OK ){
6076 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006077 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006078 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006079 }
6080 searchList = 0;
6081 }
drhee696e22004-08-30 16:52:17 +00006082 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006083 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006084 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006085 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006086 }else{
danbc1a3c62013-02-23 16:40:46 +00006087 /* There are no pages on the freelist, so append a new page to the
6088 ** database image.
6089 **
6090 ** Normally, new pages allocated by this block can be requested from the
6091 ** pager layer with the 'no-content' flag set. This prevents the pager
6092 ** from trying to read the pages content from disk. However, if the
6093 ** current transaction has already run one or more incremental-vacuum
6094 ** steps, then the page we are about to allocate may contain content
6095 ** that is required in the event of a rollback. In this case, do
6096 ** not set the no-content flag. This causes the pager to load and journal
6097 ** the current page content before overwriting it.
6098 **
6099 ** Note that the pager will not actually attempt to load or journal
6100 ** content for any page that really does lie past the end of the database
6101 ** file on disk. So the effects of disabling the no-content optimization
6102 ** here are confined to those pages that lie between the end of the
6103 ** database image and the end of the database file.
6104 */
drh3f387402014-09-24 01:23:00 +00006105 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006106
drhdd3cd972010-03-27 17:12:36 +00006107 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6108 if( rc ) return rc;
6109 pBt->nPage++;
6110 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006111
danielk1977afcdd022004-10-31 16:25:42 +00006112#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006113 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006114 /* If *pPgno refers to a pointer-map page, allocate two new pages
6115 ** at the end of the file instead of one. The first allocated page
6116 ** becomes a new pointer-map page, the second is used by the caller.
6117 */
danielk1977ac861692009-03-28 10:54:22 +00006118 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006119 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6120 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006121 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006122 if( rc==SQLITE_OK ){
6123 rc = sqlite3PagerWrite(pPg->pDbPage);
6124 releasePage(pPg);
6125 }
6126 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006127 pBt->nPage++;
6128 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006129 }
6130#endif
drhdd3cd972010-03-27 17:12:36 +00006131 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6132 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006133
danielk1977599fcba2004-11-08 07:13:13 +00006134 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006135 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006136 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006137 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006138 if( rc!=SQLITE_OK ){
6139 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006140 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006141 }
drh3a4c1412004-05-09 20:40:11 +00006142 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006143 }
danielk1977599fcba2004-11-08 07:13:13 +00006144
danba14c692019-01-25 13:42:12 +00006145 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006146
6147end_allocate_page:
6148 releasePage(pTrunk);
6149 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006150 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6151 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006152 return rc;
6153}
6154
6155/*
danielk1977bea2a942009-01-20 17:06:27 +00006156** This function is used to add page iPage to the database file free-list.
6157** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006158**
danielk1977bea2a942009-01-20 17:06:27 +00006159** The value passed as the second argument to this function is optional.
6160** If the caller happens to have a pointer to the MemPage object
6161** corresponding to page iPage handy, it may pass it as the second value.
6162** Otherwise, it may pass NULL.
6163**
6164** If a pointer to a MemPage object is passed as the second argument,
6165** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006166*/
danielk1977bea2a942009-01-20 17:06:27 +00006167static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6168 MemPage *pTrunk = 0; /* Free-list trunk page */
6169 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6170 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6171 MemPage *pPage; /* Page being freed. May be NULL. */
6172 int rc; /* Return Code */
6173 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006174
danielk1977bea2a942009-01-20 17:06:27 +00006175 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006176 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006177 assert( !pMemPage || pMemPage->pgno==iPage );
6178
drh58b42ad2019-03-25 19:50:19 +00006179 if( iPage<2 || iPage>pBt->nPage ){
6180 return SQLITE_CORRUPT_BKPT;
6181 }
danielk1977bea2a942009-01-20 17:06:27 +00006182 if( pMemPage ){
6183 pPage = pMemPage;
6184 sqlite3PagerRef(pPage->pDbPage);
6185 }else{
6186 pPage = btreePageLookup(pBt, iPage);
6187 }
drh3aac2dd2004-04-26 14:10:20 +00006188
drha34b6762004-05-07 13:30:42 +00006189 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006190 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006191 if( rc ) goto freepage_out;
6192 nFree = get4byte(&pPage1->aData[36]);
6193 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006194
drhc9166342012-01-05 23:32:06 +00006195 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006196 /* If the secure_delete option is enabled, then
6197 ** always fully overwrite deleted information with zeros.
6198 */
drhb00fc3b2013-08-21 23:42:32 +00006199 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006200 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006201 ){
6202 goto freepage_out;
6203 }
6204 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006205 }
drhfcce93f2006-02-22 03:08:32 +00006206
danielk1977687566d2004-11-02 12:56:41 +00006207 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006208 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006209 */
danielk197785d90ca2008-07-19 14:25:15 +00006210 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006211 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006212 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006213 }
danielk1977687566d2004-11-02 12:56:41 +00006214
danielk1977bea2a942009-01-20 17:06:27 +00006215 /* Now manipulate the actual database free-list structure. There are two
6216 ** possibilities. If the free-list is currently empty, or if the first
6217 ** trunk page in the free-list is full, then this page will become a
6218 ** new free-list trunk page. Otherwise, it will become a leaf of the
6219 ** first trunk page in the current free-list. This block tests if it
6220 ** is possible to add the page as a new free-list leaf.
6221 */
6222 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006223 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006224
6225 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006226 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006227 if( rc!=SQLITE_OK ){
6228 goto freepage_out;
6229 }
6230
6231 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006232 assert( pBt->usableSize>32 );
6233 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006234 rc = SQLITE_CORRUPT_BKPT;
6235 goto freepage_out;
6236 }
drheeb844a2009-08-08 18:01:07 +00006237 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006238 /* In this case there is room on the trunk page to insert the page
6239 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006240 **
6241 ** Note that the trunk page is not really full until it contains
6242 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6243 ** coded. But due to a coding error in versions of SQLite prior to
6244 ** 3.6.0, databases with freelist trunk pages holding more than
6245 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6246 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006247 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006248 ** for now. At some point in the future (once everyone has upgraded
6249 ** to 3.6.0 or later) we should consider fixing the conditional above
6250 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006251 **
6252 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6253 ** avoid using the last six entries in the freelist trunk page array in
6254 ** order that database files created by newer versions of SQLite can be
6255 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006256 */
danielk19773b8a05f2007-03-19 17:44:26 +00006257 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006258 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006259 put4byte(&pTrunk->aData[4], nLeaf+1);
6260 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006261 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006262 sqlite3PagerDontWrite(pPage->pDbPage);
6263 }
danielk1977bea2a942009-01-20 17:06:27 +00006264 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006265 }
drh3a4c1412004-05-09 20:40:11 +00006266 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006267 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006268 }
drh3b7511c2001-05-26 13:15:44 +00006269 }
danielk1977bea2a942009-01-20 17:06:27 +00006270
6271 /* If control flows to this point, then it was not possible to add the
6272 ** the page being freed as a leaf page of the first trunk in the free-list.
6273 ** Possibly because the free-list is empty, or possibly because the
6274 ** first trunk in the free-list is full. Either way, the page being freed
6275 ** will become the new first trunk page in the free-list.
6276 */
drhb00fc3b2013-08-21 23:42:32 +00006277 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006278 goto freepage_out;
6279 }
6280 rc = sqlite3PagerWrite(pPage->pDbPage);
6281 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006282 goto freepage_out;
6283 }
6284 put4byte(pPage->aData, iTrunk);
6285 put4byte(&pPage->aData[4], 0);
6286 put4byte(&pPage1->aData[32], iPage);
6287 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6288
6289freepage_out:
6290 if( pPage ){
6291 pPage->isInit = 0;
6292 }
6293 releasePage(pPage);
6294 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006295 return rc;
6296}
drhc314dc72009-07-21 11:52:34 +00006297static void freePage(MemPage *pPage, int *pRC){
6298 if( (*pRC)==SQLITE_OK ){
6299 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6300 }
danielk1977bea2a942009-01-20 17:06:27 +00006301}
drh3b7511c2001-05-26 13:15:44 +00006302
6303/*
drh8d7f1632018-01-23 13:30:38 +00006304** Free any overflow pages associated with the given Cell. Store
6305** size information about the cell in pInfo.
drh3b7511c2001-05-26 13:15:44 +00006306*/
drh9bfdc252014-09-24 02:05:41 +00006307static int clearCell(
6308 MemPage *pPage, /* The page that contains the Cell */
6309 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006310 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006311){
drh60172a52017-08-02 18:27:50 +00006312 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006313 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006314 int rc;
drh94440812007-03-06 11:42:19 +00006315 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006316 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006317
drh1fee73e2007-08-29 04:00:57 +00006318 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006319 pPage->xParseCell(pPage, pCell, pInfo);
6320 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006321 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006322 }
drh6fcf83a2018-05-05 01:23:28 +00006323 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6324 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6325 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006326 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006327 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006328 }
drh80159da2016-12-09 17:32:51 +00006329 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006330 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006331 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006332 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006333 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006334 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006335 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006336 );
drh72365832007-03-06 15:53:44 +00006337 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006338 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006339 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006340 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006341 /* 0 is not a legal page number and page 1 cannot be an
6342 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6343 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006344 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006345 }
danielk1977bea2a942009-01-20 17:06:27 +00006346 if( nOvfl ){
6347 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6348 if( rc ) return rc;
6349 }
dan887d4b22010-02-25 12:09:16 +00006350
shaneh1da207e2010-03-09 14:41:12 +00006351 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006352 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6353 ){
6354 /* There is no reason any cursor should have an outstanding reference
6355 ** to an overflow page belonging to a cell that is being deleted/updated.
6356 ** So if there exists more than one reference to this page, then it
6357 ** must not really be an overflow page and the database must be corrupt.
6358 ** It is helpful to detect this before calling freePage2(), as
6359 ** freePage2() may zero the page contents if secure-delete mode is
6360 ** enabled. If this 'overflow' page happens to be a page that the
6361 ** caller is iterating through or using in some other way, this
6362 ** can be problematic.
6363 */
6364 rc = SQLITE_CORRUPT_BKPT;
6365 }else{
6366 rc = freePage2(pBt, pOvfl, ovflPgno);
6367 }
6368
danielk1977bea2a942009-01-20 17:06:27 +00006369 if( pOvfl ){
6370 sqlite3PagerUnref(pOvfl->pDbPage);
6371 }
drh3b7511c2001-05-26 13:15:44 +00006372 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006373 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006374 }
drh5e2f8b92001-05-28 00:41:15 +00006375 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006376}
6377
6378/*
drh91025292004-05-03 19:49:32 +00006379** Create the byte sequence used to represent a cell on page pPage
6380** and write that byte sequence into pCell[]. Overflow pages are
6381** allocated and filled in as necessary. The calling procedure
6382** is responsible for making sure sufficient space has been allocated
6383** for pCell[].
6384**
6385** Note that pCell does not necessary need to point to the pPage->aData
6386** area. pCell might point to some temporary storage. The cell will
6387** be constructed in this temporary area then copied into pPage->aData
6388** later.
drh3b7511c2001-05-26 13:15:44 +00006389*/
6390static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006391 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006392 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006393 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006394 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006395){
drh3b7511c2001-05-26 13:15:44 +00006396 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006397 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006398 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006399 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006400 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006401 unsigned char *pPrior;
6402 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006403 BtShared *pBt;
6404 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006405 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006406
drh1fee73e2007-08-29 04:00:57 +00006407 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006408
drhc5053fb2008-11-27 02:22:10 +00006409 /* pPage is not necessarily writeable since pCell might be auxiliary
6410 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006411 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006412 || sqlite3PagerIswriteable(pPage->pDbPage) );
6413
drh91025292004-05-03 19:49:32 +00006414 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006415 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006416 if( pPage->intKey ){
6417 nPayload = pX->nData + pX->nZero;
6418 pSrc = pX->pData;
6419 nSrc = pX->nData;
6420 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006421 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006422 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006423 }else{
drh8eeb4462016-05-21 20:03:42 +00006424 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6425 nSrc = nPayload = (int)pX->nKey;
6426 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006427 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006428 }
drhdfc2daa2016-05-21 23:25:29 +00006429
6430 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006431 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006432 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006433 /* This is the common case where everything fits on the btree page
6434 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006435 n = nHeader + nPayload;
6436 testcase( n==3 );
6437 testcase( n==4 );
6438 if( n<4 ) n = 4;
6439 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006440 assert( nSrc<=nPayload );
6441 testcase( nSrc<nPayload );
6442 memcpy(pPayload, pSrc, nSrc);
6443 memset(pPayload+nSrc, 0, nPayload-nSrc);
6444 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006445 }
drh5e27e1d2017-08-23 14:45:59 +00006446
6447 /* If we reach this point, it means that some of the content will need
6448 ** to spill onto overflow pages.
6449 */
6450 mn = pPage->minLocal;
6451 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6452 testcase( n==pPage->maxLocal );
6453 testcase( n==pPage->maxLocal+1 );
6454 if( n > pPage->maxLocal ) n = mn;
6455 spaceLeft = n;
6456 *pnSize = n + nHeader + 4;
6457 pPrior = &pCell[nHeader+n];
6458 pToRelease = 0;
6459 pgnoOvfl = 0;
6460 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006461
drh6200c882014-09-23 22:36:25 +00006462 /* At this point variables should be set as follows:
6463 **
6464 ** nPayload Total payload size in bytes
6465 ** pPayload Begin writing payload here
6466 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6467 ** that means content must spill into overflow pages.
6468 ** *pnSize Size of the local cell (not counting overflow pages)
6469 ** pPrior Where to write the pgno of the first overflow page
6470 **
6471 ** Use a call to btreeParseCellPtr() to verify that the values above
6472 ** were computed correctly.
6473 */
drhd879e3e2017-02-13 13:35:55 +00006474#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006475 {
6476 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006477 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006478 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006479 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006480 assert( *pnSize == info.nSize );
6481 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006482 }
6483#endif
6484
6485 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006486 while( 1 ){
6487 n = nPayload;
6488 if( n>spaceLeft ) n = spaceLeft;
6489
6490 /* If pToRelease is not zero than pPayload points into the data area
6491 ** of pToRelease. Make sure pToRelease is still writeable. */
6492 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6493
6494 /* If pPayload is part of the data area of pPage, then make sure pPage
6495 ** is still writeable */
6496 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6497 || sqlite3PagerIswriteable(pPage->pDbPage) );
6498
6499 if( nSrc>=n ){
6500 memcpy(pPayload, pSrc, n);
6501 }else if( nSrc>0 ){
6502 n = nSrc;
6503 memcpy(pPayload, pSrc, n);
6504 }else{
6505 memset(pPayload, 0, n);
6506 }
6507 nPayload -= n;
6508 if( nPayload<=0 ) break;
6509 pPayload += n;
6510 pSrc += n;
6511 nSrc -= n;
6512 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006513 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006514 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006515#ifndef SQLITE_OMIT_AUTOVACUUM
6516 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006517 if( pBt->autoVacuum ){
6518 do{
6519 pgnoOvfl++;
6520 } while(
6521 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6522 );
danielk1977b39f70b2007-05-17 18:28:11 +00006523 }
danielk1977afcdd022004-10-31 16:25:42 +00006524#endif
drhf49661a2008-12-10 16:45:50 +00006525 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006526#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006527 /* If the database supports auto-vacuum, and the second or subsequent
6528 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006529 ** for that page now.
6530 **
6531 ** If this is the first overflow page, then write a partial entry
6532 ** to the pointer-map. If we write nothing to this pointer-map slot,
6533 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006534 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006535 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006536 */
danielk19774ef24492007-05-23 09:52:41 +00006537 if( pBt->autoVacuum && rc==SQLITE_OK ){
6538 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006539 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006540 if( rc ){
6541 releasePage(pOvfl);
6542 }
danielk1977afcdd022004-10-31 16:25:42 +00006543 }
6544#endif
drh3b7511c2001-05-26 13:15:44 +00006545 if( rc ){
drh9b171272004-05-08 02:03:22 +00006546 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006547 return rc;
6548 }
drhc5053fb2008-11-27 02:22:10 +00006549
6550 /* If pToRelease is not zero than pPrior points into the data area
6551 ** of pToRelease. Make sure pToRelease is still writeable. */
6552 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6553
6554 /* If pPrior is part of the data area of pPage, then make sure pPage
6555 ** is still writeable */
6556 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6557 || sqlite3PagerIswriteable(pPage->pDbPage) );
6558
drh3aac2dd2004-04-26 14:10:20 +00006559 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006560 releasePage(pToRelease);
6561 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006562 pPrior = pOvfl->aData;
6563 put4byte(pPrior, 0);
6564 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006565 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006566 }
drhdd793422001-06-28 01:54:48 +00006567 }
drh9b171272004-05-08 02:03:22 +00006568 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006569 return SQLITE_OK;
6570}
6571
drh14acc042001-06-10 19:56:58 +00006572/*
6573** Remove the i-th cell from pPage. This routine effects pPage only.
6574** The cell content is not freed or deallocated. It is assumed that
6575** the cell content has been copied someplace else. This routine just
6576** removes the reference to the cell from pPage.
6577**
6578** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006579*/
drh98add2e2009-07-20 17:11:49 +00006580static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006581 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006582 u8 *data; /* pPage->aData */
6583 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006584 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006585 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006586
drh98add2e2009-07-20 17:11:49 +00006587 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006588 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006589 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006590 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006591 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb0ea9432019-02-09 21:06:40 +00006592 assert( pPage->nFree>=0 );
drhda200cc2004-05-09 11:51:38 +00006593 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006594 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006595 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006596 hdr = pPage->hdrOffset;
6597 testcase( pc==get2byte(&data[hdr+5]) );
6598 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006599 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006600 *pRC = SQLITE_CORRUPT_BKPT;
6601 return;
shane0af3f892008-11-12 04:55:34 +00006602 }
shanedcc50b72008-11-13 18:29:50 +00006603 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006604 if( rc ){
6605 *pRC = rc;
6606 return;
shanedcc50b72008-11-13 18:29:50 +00006607 }
drh14acc042001-06-10 19:56:58 +00006608 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006609 if( pPage->nCell==0 ){
6610 memset(&data[hdr+1], 0, 4);
6611 data[hdr+7] = 0;
6612 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6613 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6614 - pPage->childPtrSize - 8;
6615 }else{
6616 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6617 put2byte(&data[hdr+3], pPage->nCell);
6618 pPage->nFree += 2;
6619 }
drh14acc042001-06-10 19:56:58 +00006620}
6621
6622/*
6623** Insert a new cell on pPage at cell index "i". pCell points to the
6624** content of the cell.
6625**
6626** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006627** will not fit, then make a copy of the cell content into pTemp if
6628** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006629** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006630** in pTemp or the original pCell) and also record its index.
6631** Allocating a new entry in pPage->aCell[] implies that
6632** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006633**
6634** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006635*/
drh98add2e2009-07-20 17:11:49 +00006636static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006637 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006638 int i, /* New cell becomes the i-th cell of the page */
6639 u8 *pCell, /* Content of the new cell */
6640 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006641 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006642 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6643 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006644){
drh383d30f2010-02-26 13:07:37 +00006645 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006646 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006647 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006648 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006649
drhcb89f4a2016-05-21 11:23:26 +00006650 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006651 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006652 assert( MX_CELL(pPage->pBt)<=10921 );
6653 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006654 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6655 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006656 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006657 /* The cell should normally be sized correctly. However, when moving a
6658 ** malformed cell from a leaf page to an interior page, if the cell size
6659 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6660 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6661 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006662 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drhb0ea9432019-02-09 21:06:40 +00006663 assert( pPage->nFree>=0 );
drh43605152004-05-29 21:46:49 +00006664 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006665 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006666 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006667 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006668 }
danielk19774dbaa892009-06-16 16:50:22 +00006669 if( iChild ){
6670 put4byte(pCell, iChild);
6671 }
drh43605152004-05-29 21:46:49 +00006672 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006673 /* Comparison against ArraySize-1 since we hold back one extra slot
6674 ** as a contingency. In other words, never need more than 3 overflow
6675 ** slots but 4 are allocated, just to be safe. */
6676 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006677 pPage->apOvfl[j] = pCell;
6678 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006679
6680 /* When multiple overflows occur, they are always sequential and in
6681 ** sorted order. This invariants arise because multiple overflows can
6682 ** only occur when inserting divider cells into the parent page during
6683 ** balancing, and the dividers are adjacent and sorted.
6684 */
6685 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6686 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006687 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006688 int rc = sqlite3PagerWrite(pPage->pDbPage);
6689 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006690 *pRC = rc;
6691 return;
danielk19776e465eb2007-08-21 13:11:00 +00006692 }
6693 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006694 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006695 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006696 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006697 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006698 /* The allocateSpace() routine guarantees the following properties
6699 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006700 assert( idx >= 0 );
6701 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006702 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006703 pPage->nFree -= (u16)(2 + sz);
danielk19774dbaa892009-06-16 16:50:22 +00006704 if( iChild ){
drhd12db3d2019-01-14 05:48:10 +00006705 /* In a corrupt database where an entry in the cell index section of
6706 ** a btree page has a value of 3 or less, the pCell value might point
6707 ** as many as 4 bytes in front of the start of the aData buffer for
6708 ** the source page. Make sure this does not cause problems by not
6709 ** reading the first 4 bytes */
6710 memcpy(&data[idx+4], pCell+4, sz-4);
danielk19774dbaa892009-06-16 16:50:22 +00006711 put4byte(&data[idx], iChild);
drhd12db3d2019-01-14 05:48:10 +00006712 }else{
6713 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006714 }
drh2c8fb922015-06-25 19:53:48 +00006715 pIns = pPage->aCellIdx + i*2;
6716 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6717 put2byte(pIns, idx);
6718 pPage->nCell++;
6719 /* increment the cell count */
6720 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
drh56785a02019-02-16 22:45:55 +00006721 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
danielk1977a19df672004-11-03 11:37:07 +00006722#ifndef SQLITE_OMIT_AUTOVACUUM
6723 if( pPage->pBt->autoVacuum ){
6724 /* The cell may contain a pointer to an overflow page. If so, write
6725 ** the entry for the overflow page into the pointer map.
6726 */
drh0f1bf4c2019-01-13 20:17:21 +00006727 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006728 }
6729#endif
drh14acc042001-06-10 19:56:58 +00006730 }
6731}
6732
6733/*
drhe3dadac2019-01-23 19:25:59 +00006734** The following parameters determine how many adjacent pages get involved
6735** in a balancing operation. NN is the number of neighbors on either side
6736** of the page that participate in the balancing operation. NB is the
6737** total number of pages that participate, including the target page and
6738** NN neighbors on either side.
6739**
6740** The minimum value of NN is 1 (of course). Increasing NN above 1
6741** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6742** in exchange for a larger degradation in INSERT and UPDATE performance.
6743** The value of NN appears to give the best results overall.
6744**
6745** (Later:) The description above makes it seem as if these values are
6746** tunable - as if you could change them and recompile and it would all work.
6747** But that is unlikely. NB has been 3 since the inception of SQLite and
6748** we have never tested any other value.
6749*/
6750#define NN 1 /* Number of neighbors on either side of pPage */
6751#define NB 3 /* (NN*2+1): Total pages involved in the balance */
6752
6753/*
drh1ffd2472015-06-23 02:37:30 +00006754** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006755** consecutive sequence of cells that might be held on multiple pages.
drhe3dadac2019-01-23 19:25:59 +00006756**
6757** The cells in this array are the divider cell or cells from the pParent
6758** page plus up to three child pages. There are a total of nCell cells.
6759**
6760** pRef is a pointer to one of the pages that contributes cells. This is
6761** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6762** which should be common to all pages that contribute cells to this array.
6763**
6764** apCell[] and szCell[] hold, respectively, pointers to the start of each
6765** cell and the size of each cell. Some of the apCell[] pointers might refer
6766** to overflow cells. In other words, some apCel[] pointers might not point
6767** to content area of the pages.
6768**
6769** A szCell[] of zero means the size of that cell has not yet been computed.
6770**
6771** The cells come from as many as four different pages:
6772**
6773** -----------
6774** | Parent |
6775** -----------
6776** / | \
6777** / | \
6778** --------- --------- ---------
6779** |Child-1| |Child-2| |Child-3|
6780** --------- --------- ---------
6781**
drh26b7ec82019-02-01 14:50:43 +00006782** The order of cells is in the array is for an index btree is:
drhe3dadac2019-01-23 19:25:59 +00006783**
6784** 1. All cells from Child-1 in order
6785** 2. The first divider cell from Parent
6786** 3. All cells from Child-2 in order
6787** 4. The second divider cell from Parent
6788** 5. All cells from Child-3 in order
6789**
drh26b7ec82019-02-01 14:50:43 +00006790** For a table-btree (with rowids) the items 2 and 4 are empty because
6791** content exists only in leaves and there are no divider cells.
6792**
6793** For an index btree, the apEnd[] array holds pointer to the end of page
6794** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6795** respectively. The ixNx[] array holds the number of cells contained in
6796** each of these 5 stages, and all stages to the left. Hence:
6797**
drhe3dadac2019-01-23 19:25:59 +00006798** ixNx[0] = Number of cells in Child-1.
6799** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6800** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6801** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6802** ixNx[4] = Total number of cells.
drh26b7ec82019-02-01 14:50:43 +00006803**
6804** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6805** are used and they point to the leaf pages only, and the ixNx value are:
6806**
6807** ixNx[0] = Number of cells in Child-1.
drh9c7e44c2019-02-14 15:27:12 +00006808** ixNx[1] = Number of cells in Child-1 and Child-2.
6809** ixNx[2] = Total number of cells.
6810**
6811** Sometimes when deleting, a child page can have zero cells. In those
6812** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6813** entries, shift down. The end result is that each ixNx[] entry should
6814** be larger than the previous
drhfa1a98a2004-05-14 19:08:17 +00006815*/
drh1ffd2472015-06-23 02:37:30 +00006816typedef struct CellArray CellArray;
6817struct CellArray {
6818 int nCell; /* Number of cells in apCell[] */
6819 MemPage *pRef; /* Reference page */
6820 u8 **apCell; /* All cells begin balanced */
6821 u16 *szCell; /* Local size of all cells in apCell[] */
drhe3dadac2019-01-23 19:25:59 +00006822 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
6823 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
drh1ffd2472015-06-23 02:37:30 +00006824};
drhfa1a98a2004-05-14 19:08:17 +00006825
drh1ffd2472015-06-23 02:37:30 +00006826/*
6827** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6828** computed.
6829*/
6830static void populateCellCache(CellArray *p, int idx, int N){
6831 assert( idx>=0 && idx+N<=p->nCell );
6832 while( N>0 ){
6833 assert( p->apCell[idx]!=0 );
6834 if( p->szCell[idx]==0 ){
6835 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6836 }else{
6837 assert( CORRUPT_DB ||
6838 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6839 }
6840 idx++;
6841 N--;
drhfa1a98a2004-05-14 19:08:17 +00006842 }
drh1ffd2472015-06-23 02:37:30 +00006843}
6844
6845/*
6846** Return the size of the Nth element of the cell array
6847*/
6848static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6849 assert( N>=0 && N<p->nCell );
6850 assert( p->szCell[N]==0 );
6851 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6852 return p->szCell[N];
6853}
6854static u16 cachedCellSize(CellArray *p, int N){
6855 assert( N>=0 && N<p->nCell );
6856 if( p->szCell[N] ) return p->szCell[N];
6857 return computeCellSize(p, N);
6858}
6859
6860/*
dan8e9ba0c2014-10-14 17:27:04 +00006861** Array apCell[] contains pointers to nCell b-tree page cells. The
6862** szCell[] array contains the size in bytes of each cell. This function
6863** replaces the current contents of page pPg with the contents of the cell
6864** array.
6865**
6866** Some of the cells in apCell[] may currently be stored in pPg. This
6867** function works around problems caused by this by making a copy of any
6868** such cells before overwriting the page data.
6869**
6870** The MemPage.nFree field is invalidated by this function. It is the
6871** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006872*/
drh658873b2015-06-22 20:02:04 +00006873static int rebuildPage(
drhe3dadac2019-01-23 19:25:59 +00006874 CellArray *pCArray, /* Content to be added to page pPg */
6875 int iFirst, /* First cell in pCArray to use */
dan33ea4862014-10-09 19:35:37 +00006876 int nCell, /* Final number of cells on page */
drhe3dadac2019-01-23 19:25:59 +00006877 MemPage *pPg /* The page to be reconstructed */
dan33ea4862014-10-09 19:35:37 +00006878){
6879 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6880 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6881 const int usableSize = pPg->pBt->usableSize;
6882 u8 * const pEnd = &aData[usableSize];
drhe3dadac2019-01-23 19:25:59 +00006883 int i = iFirst; /* Which cell to copy from pCArray*/
drha0466432019-01-29 16:41:13 +00006884 u32 j; /* Start of cell content area */
drhe3dadac2019-01-23 19:25:59 +00006885 int iEnd = i+nCell; /* Loop terminator */
dan33ea4862014-10-09 19:35:37 +00006886 u8 *pCellptr = pPg->aCellIdx;
6887 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6888 u8 *pData;
drhe3dadac2019-01-23 19:25:59 +00006889 int k; /* Current slot in pCArray->apEnd[] */
6890 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
dan33ea4862014-10-09 19:35:37 +00006891
drhe3dadac2019-01-23 19:25:59 +00006892 assert( i<iEnd );
6893 j = get2byte(&aData[hdr+5]);
drh3f4f6822019-01-29 16:54:31 +00006894 if( NEVER(j>(u32)usableSize) ){ j = 0; }
drhe3dadac2019-01-23 19:25:59 +00006895 memcpy(&pTmp[j], &aData[j], usableSize - j);
6896
6897 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6898 pSrcEnd = pCArray->apEnd[k];
dan33ea4862014-10-09 19:35:37 +00006899
dan8e9ba0c2014-10-14 17:27:04 +00006900 pData = pEnd;
drhe3dadac2019-01-23 19:25:59 +00006901 while( 1/*exit by break*/ ){
6902 u8 *pCell = pCArray->apCell[i];
6903 u16 sz = pCArray->szCell[i];
6904 assert( sz>0 );
drh8b0ba7b2015-12-16 13:07:35 +00006905 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
drhe3dadac2019-01-23 19:25:59 +00006906 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006907 pCell = &pTmp[pCell - aData];
drhe3dadac2019-01-23 19:25:59 +00006908 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
6909 && (uptr)(pCell)<(uptr)pSrcEnd
6910 ){
6911 return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006912 }
drhe3dadac2019-01-23 19:25:59 +00006913
6914 pData -= sz;
dan33ea4862014-10-09 19:35:37 +00006915 put2byte(pCellptr, (pData - aData));
6916 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006917 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
drhe3dadac2019-01-23 19:25:59 +00006918 memcpy(pData, pCell, sz);
6919 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6920 testcase( sz!=pPg->xCellSize(pPg,pCell) );
6921 i++;
6922 if( i>=iEnd ) break;
6923 if( pCArray->ixNx[k]<=i ){
6924 k++;
6925 pSrcEnd = pCArray->apEnd[k];
6926 }
dan33ea4862014-10-09 19:35:37 +00006927 }
6928
dand7b545b2014-10-13 18:03:27 +00006929 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006930 pPg->nCell = nCell;
6931 pPg->nOverflow = 0;
6932
6933 put2byte(&aData[hdr+1], 0);
6934 put2byte(&aData[hdr+3], pPg->nCell);
6935 put2byte(&aData[hdr+5], pData - aData);
6936 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006937 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006938}
6939
dan8e9ba0c2014-10-14 17:27:04 +00006940/*
drhe3dadac2019-01-23 19:25:59 +00006941** The pCArray objects contains pointers to b-tree cells and the cell sizes.
6942** This function attempts to add the cells stored in the array to page pPg.
6943** If it cannot (because the page needs to be defragmented before the cells
6944** will fit), non-zero is returned. Otherwise, if the cells are added
6945** successfully, zero is returned.
dan8e9ba0c2014-10-14 17:27:04 +00006946**
6947** Argument pCellptr points to the first entry in the cell-pointer array
6948** (part of page pPg) to populate. After cell apCell[0] is written to the
6949** page body, a 16-bit offset is written to pCellptr. And so on, for each
6950** cell in the array. It is the responsibility of the caller to ensure
6951** that it is safe to overwrite this part of the cell-pointer array.
6952**
6953** When this function is called, *ppData points to the start of the
6954** content area on page pPg. If the size of the content area is extended,
6955** *ppData is updated to point to the new start of the content area
6956** before returning.
6957**
6958** Finally, argument pBegin points to the byte immediately following the
6959** end of the space required by this page for the cell-pointer area (for
6960** all cells - not just those inserted by the current call). If the content
6961** area must be extended to before this point in order to accomodate all
6962** cells in apCell[], then the cells do not fit and non-zero is returned.
6963*/
dand7b545b2014-10-13 18:03:27 +00006964static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006965 MemPage *pPg, /* Page to add cells to */
6966 u8 *pBegin, /* End of cell-pointer array */
drhe3dadac2019-01-23 19:25:59 +00006967 u8 **ppData, /* IN/OUT: Page content-area pointer */
dan8e9ba0c2014-10-14 17:27:04 +00006968 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006969 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006970 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006971 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006972){
drhe3dadac2019-01-23 19:25:59 +00006973 int i = iFirst; /* Loop counter - cell index to insert */
6974 u8 *aData = pPg->aData; /* Complete page */
6975 u8 *pData = *ppData; /* Content area. A subset of aData[] */
6976 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
6977 int k; /* Current slot in pCArray->apEnd[] */
6978 u8 *pEnd; /* Maximum extent of cell data */
dan23eba452014-10-24 18:43:57 +00006979 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhe3dadac2019-01-23 19:25:59 +00006980 if( iEnd<=iFirst ) return 0;
6981 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6982 pEnd = pCArray->apEnd[k];
6983 while( 1 /*Exit by break*/ ){
drhf7838932015-06-23 15:36:34 +00006984 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006985 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006986 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006987 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006988 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006989 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006990 pSlot = pData;
6991 }
drh48310f82015-10-10 16:41:28 +00006992 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6993 ** database. But they might for a corrupt database. Hence use memmove()
6994 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6995 assert( (pSlot+sz)<=pCArray->apCell[i]
6996 || pSlot>=(pCArray->apCell[i]+sz)
6997 || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00006998 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
6999 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7000 ){
7001 assert( CORRUPT_DB );
7002 (void)SQLITE_CORRUPT_BKPT;
7003 return 1;
7004 }
drh48310f82015-10-10 16:41:28 +00007005 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00007006 put2byte(pCellptr, (pSlot - aData));
7007 pCellptr += 2;
drhe3dadac2019-01-23 19:25:59 +00007008 i++;
7009 if( i>=iEnd ) break;
7010 if( pCArray->ixNx[k]<=i ){
7011 k++;
7012 pEnd = pCArray->apEnd[k];
7013 }
dand7b545b2014-10-13 18:03:27 +00007014 }
7015 *ppData = pData;
7016 return 0;
7017}
7018
dan8e9ba0c2014-10-14 17:27:04 +00007019/*
drhe3dadac2019-01-23 19:25:59 +00007020** The pCArray object contains pointers to b-tree cells and their sizes.
7021**
7022** This function adds the space associated with each cell in the array
7023** that is currently stored within the body of pPg to the pPg free-list.
7024** The cell-pointers and other fields of the page are not updated.
dan8e9ba0c2014-10-14 17:27:04 +00007025**
7026** This function returns the total number of cells added to the free-list.
7027*/
dand7b545b2014-10-13 18:03:27 +00007028static int pageFreeArray(
7029 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00007030 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00007031 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00007032 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007033){
7034 u8 * const aData = pPg->aData;
7035 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00007036 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00007037 int nRet = 0;
7038 int i;
drhf7838932015-06-23 15:36:34 +00007039 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00007040 u8 *pFree = 0;
7041 int szFree = 0;
7042
drhf7838932015-06-23 15:36:34 +00007043 for(i=iFirst; i<iEnd; i++){
7044 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00007045 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00007046 int sz;
7047 /* No need to use cachedCellSize() here. The sizes of all cells that
7048 ** are to be freed have already been computing while deciding which
7049 ** cells need freeing */
7050 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00007051 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00007052 if( pFree ){
7053 assert( pFree>aData && (pFree - aData)<65536 );
7054 freeSpace(pPg, (u16)(pFree - aData), szFree);
7055 }
dand7b545b2014-10-13 18:03:27 +00007056 pFree = pCell;
7057 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00007058 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00007059 }else{
7060 pFree = pCell;
7061 szFree += sz;
7062 }
7063 nRet++;
7064 }
7065 }
drhfefa0942014-11-05 21:21:08 +00007066 if( pFree ){
7067 assert( pFree>aData && (pFree - aData)<65536 );
7068 freeSpace(pPg, (u16)(pFree - aData), szFree);
7069 }
dand7b545b2014-10-13 18:03:27 +00007070 return nRet;
7071}
7072
dand7b545b2014-10-13 18:03:27 +00007073/*
drha0466432019-01-29 16:41:13 +00007074** pCArray contains pointers to and sizes of all cells in the page being
drhe3dadac2019-01-23 19:25:59 +00007075** balanced. The current page, pPg, has pPg->nCell cells starting with
7076** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
drh5ab63772014-11-27 03:46:04 +00007077** starting at apCell[iNew].
7078**
7079** This routine makes the necessary adjustments to pPg so that it contains
7080** the correct cells after being balanced.
7081**
dand7b545b2014-10-13 18:03:27 +00007082** The pPg->nFree field is invalid when this function returns. It is the
7083** responsibility of the caller to set it correctly.
7084*/
drh658873b2015-06-22 20:02:04 +00007085static int editPage(
dan09c68402014-10-11 20:00:24 +00007086 MemPage *pPg, /* Edit this page */
7087 int iOld, /* Index of first cell currently on page */
7088 int iNew, /* Index of new first cell on page */
7089 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00007090 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00007091){
dand7b545b2014-10-13 18:03:27 +00007092 u8 * const aData = pPg->aData;
7093 const int hdr = pPg->hdrOffset;
7094 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7095 int nCell = pPg->nCell; /* Cells stored on pPg */
7096 u8 *pData;
7097 u8 *pCellptr;
7098 int i;
7099 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7100 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00007101
7102#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00007103 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7104 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00007105#endif
7106
dand7b545b2014-10-13 18:03:27 +00007107 /* Remove cells from the start and end of the page */
drha0466432019-01-29 16:41:13 +00007108 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007109 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00007110 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
drha0466432019-01-29 16:41:13 +00007111 if( nShift>nCell ) return SQLITE_CORRUPT_BKPT;
dand7b545b2014-10-13 18:03:27 +00007112 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7113 nCell -= nShift;
7114 }
7115 if( iNewEnd < iOldEnd ){
drha0466432019-01-29 16:41:13 +00007116 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7117 assert( nCell>=nTail );
7118 nCell -= nTail;
dand7b545b2014-10-13 18:03:27 +00007119 }
dan09c68402014-10-11 20:00:24 +00007120
drh5ab63772014-11-27 03:46:04 +00007121 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00007122 if( pData<pBegin ) goto editpage_fail;
7123
7124 /* Add cells to the start of the page */
7125 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00007126 int nAdd = MIN(nNew,iOld-iNew);
7127 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
drha0466432019-01-29 16:41:13 +00007128 assert( nAdd>=0 );
dand7b545b2014-10-13 18:03:27 +00007129 pCellptr = pPg->aCellIdx;
7130 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7131 if( pageInsertArray(
7132 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007133 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00007134 ) ) goto editpage_fail;
7135 nCell += nAdd;
7136 }
7137
7138 /* Add any overflow cells */
7139 for(i=0; i<pPg->nOverflow; i++){
7140 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7141 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00007142 pCellptr = &pPg->aCellIdx[iCell * 2];
drh4b986b22019-03-08 14:02:11 +00007143 if( nCell>iCell ){
7144 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7145 }
dand7b545b2014-10-13 18:03:27 +00007146 nCell++;
7147 if( pageInsertArray(
7148 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007149 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00007150 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007151 }
dand7b545b2014-10-13 18:03:27 +00007152 }
dan09c68402014-10-11 20:00:24 +00007153
dand7b545b2014-10-13 18:03:27 +00007154 /* Append cells to the end of the page */
drha0466432019-01-29 16:41:13 +00007155 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007156 pCellptr = &pPg->aCellIdx[nCell*2];
7157 if( pageInsertArray(
7158 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007159 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00007160 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007161
dand7b545b2014-10-13 18:03:27 +00007162 pPg->nCell = nNew;
7163 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00007164
dand7b545b2014-10-13 18:03:27 +00007165 put2byte(&aData[hdr+3], pPg->nCell);
7166 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00007167
7168#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00007169 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00007170 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00007171 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00007172 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007173 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007174 }
drh1ffd2472015-06-23 02:37:30 +00007175 assert( 0==memcmp(pCell, &aData[iOff],
7176 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007177 }
dan09c68402014-10-11 20:00:24 +00007178#endif
7179
drh658873b2015-06-22 20:02:04 +00007180 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007181 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007182 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007183 populateCellCache(pCArray, iNew, nNew);
drhe3dadac2019-01-23 19:25:59 +00007184 return rebuildPage(pCArray, iNew, nNew, pPg);
drhfa1a98a2004-05-14 19:08:17 +00007185}
7186
danielk1977ac245ec2005-01-14 13:50:11 +00007187
drh615ae552005-01-16 23:21:00 +00007188#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007189/*
7190** This version of balance() handles the common special case where
7191** a new entry is being inserted on the extreme right-end of the
7192** tree, in other words, when the new entry will become the largest
7193** entry in the tree.
7194**
drhc314dc72009-07-21 11:52:34 +00007195** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007196** a new page to the right-hand side and put the one new entry in
7197** that page. This leaves the right side of the tree somewhat
7198** unbalanced. But odds are that we will be inserting new entries
7199** at the end soon afterwards so the nearly empty page will quickly
7200** fill up. On average.
7201**
7202** pPage is the leaf page which is the right-most page in the tree.
7203** pParent is its parent. pPage must have a single overflow entry
7204** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007205**
7206** The pSpace buffer is used to store a temporary copy of the divider
7207** cell that will be inserted into pParent. Such a cell consists of a 4
7208** byte page number followed by a variable length integer. In other
7209** words, at most 13 bytes. Hence the pSpace buffer must be at
7210** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007211*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007212static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7213 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007214 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007215 int rc; /* Return Code */
7216 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007217
drh1fee73e2007-08-29 04:00:57 +00007218 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007219 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007220 assert( pPage->nOverflow==1 );
drhb0ea9432019-02-09 21:06:40 +00007221
drh6301c432018-12-13 21:52:18 +00007222 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drh68133502019-02-11 17:22:30 +00007223 assert( pPage->nFree>=0 );
7224 assert( pParent->nFree>=0 );
drhd677b3d2007-08-20 22:48:41 +00007225
danielk1977a50d9aa2009-06-08 14:49:45 +00007226 /* Allocate a new page. This page will become the right-sibling of
7227 ** pPage. Make the parent page writable, so that the new divider cell
7228 ** may be inserted. If both these operations are successful, proceed.
7229 */
drh4f0c5872007-03-26 22:05:01 +00007230 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007231
danielk1977eaa06f62008-09-18 17:34:44 +00007232 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007233
7234 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007235 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007236 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007237 u8 *pStop;
drhe3dadac2019-01-23 19:25:59 +00007238 CellArray b;
danielk19776f235cc2009-06-04 14:46:08 +00007239
drhc5053fb2008-11-27 02:22:10 +00007240 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danba14c692019-01-25 13:42:12 +00007241 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
danielk1977e56b60e2009-06-10 09:11:06 +00007242 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drhe3dadac2019-01-23 19:25:59 +00007243 b.nCell = 1;
7244 b.pRef = pPage;
7245 b.apCell = &pCell;
7246 b.szCell = &szCell;
7247 b.apEnd[0] = pPage->aDataEnd;
7248 b.ixNx[0] = 2;
7249 rc = rebuildPage(&b, 0, 1, pNew);
7250 if( NEVER(rc) ){
7251 releasePage(pNew);
7252 return rc;
7253 }
dan8e9ba0c2014-10-14 17:27:04 +00007254 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007255
7256 /* If this is an auto-vacuum database, update the pointer map
7257 ** with entries for the new page, and any pointer from the
7258 ** cell on the page to an overflow page. If either of these
7259 ** operations fails, the return code is set, but the contents
7260 ** of the parent page are still manipulated by thh code below.
7261 ** That is Ok, at this point the parent page is guaranteed to
7262 ** be marked as dirty. Returning an error code will cause a
7263 ** rollback, undoing any changes made to the parent page.
7264 */
7265 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007266 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7267 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007268 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007269 }
7270 }
danielk1977eaa06f62008-09-18 17:34:44 +00007271
danielk19776f235cc2009-06-04 14:46:08 +00007272 /* Create a divider cell to insert into pParent. The divider cell
7273 ** consists of a 4-byte page number (the page number of pPage) and
7274 ** a variable length key value (which must be the same value as the
7275 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007276 **
danielk19776f235cc2009-06-04 14:46:08 +00007277 ** To find the largest key value on pPage, first find the right-most
7278 ** cell on pPage. The first two fields of this cell are the
7279 ** record-length (a variable length integer at most 32-bits in size)
7280 ** and the key value (a variable length integer, may have any value).
7281 ** The first of the while(...) loops below skips over the record-length
7282 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007283 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007284 */
danielk1977eaa06f62008-09-18 17:34:44 +00007285 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007286 pStop = &pCell[9];
7287 while( (*(pCell++)&0x80) && pCell<pStop );
7288 pStop = &pCell[9];
7289 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7290
danielk19774dbaa892009-06-16 16:50:22 +00007291 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007292 if( rc==SQLITE_OK ){
7293 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7294 0, pPage->pgno, &rc);
7295 }
danielk19776f235cc2009-06-04 14:46:08 +00007296
7297 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007298 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7299
danielk1977e08a3c42008-09-18 18:17:03 +00007300 /* Release the reference to the new page. */
7301 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007302 }
7303
danielk1977eaa06f62008-09-18 17:34:44 +00007304 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007305}
drh615ae552005-01-16 23:21:00 +00007306#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007307
danielk19774dbaa892009-06-16 16:50:22 +00007308#if 0
drhc3b70572003-01-04 19:44:07 +00007309/*
danielk19774dbaa892009-06-16 16:50:22 +00007310** This function does not contribute anything to the operation of SQLite.
7311** it is sometimes activated temporarily while debugging code responsible
7312** for setting pointer-map entries.
7313*/
7314static int ptrmapCheckPages(MemPage **apPage, int nPage){
7315 int i, j;
7316 for(i=0; i<nPage; i++){
7317 Pgno n;
7318 u8 e;
7319 MemPage *pPage = apPage[i];
7320 BtShared *pBt = pPage->pBt;
7321 assert( pPage->isInit );
7322
7323 for(j=0; j<pPage->nCell; j++){
7324 CellInfo info;
7325 u8 *z;
7326
7327 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007328 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007329 if( info.nLocal<info.nPayload ){
7330 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007331 ptrmapGet(pBt, ovfl, &e, &n);
7332 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7333 }
7334 if( !pPage->leaf ){
7335 Pgno child = get4byte(z);
7336 ptrmapGet(pBt, child, &e, &n);
7337 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7338 }
7339 }
7340 if( !pPage->leaf ){
7341 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7342 ptrmapGet(pBt, child, &e, &n);
7343 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7344 }
7345 }
7346 return 1;
7347}
7348#endif
7349
danielk1977cd581a72009-06-23 15:43:39 +00007350/*
7351** This function is used to copy the contents of the b-tree node stored
7352** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7353** the pointer-map entries for each child page are updated so that the
7354** parent page stored in the pointer map is page pTo. If pFrom contained
7355** any cells with overflow page pointers, then the corresponding pointer
7356** map entries are also updated so that the parent page is page pTo.
7357**
7358** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007359** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007360**
danielk197730548662009-07-09 05:07:37 +00007361** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007362**
7363** The performance of this function is not critical. It is only used by
7364** the balance_shallower() and balance_deeper() procedures, neither of
7365** which are called often under normal circumstances.
7366*/
drhc314dc72009-07-21 11:52:34 +00007367static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7368 if( (*pRC)==SQLITE_OK ){
7369 BtShared * const pBt = pFrom->pBt;
7370 u8 * const aFrom = pFrom->aData;
7371 u8 * const aTo = pTo->aData;
7372 int const iFromHdr = pFrom->hdrOffset;
7373 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007374 int rc;
drhc314dc72009-07-21 11:52:34 +00007375 int iData;
7376
7377
7378 assert( pFrom->isInit );
7379 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007380 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007381
7382 /* Copy the b-tree node content from page pFrom to page pTo. */
7383 iData = get2byte(&aFrom[iFromHdr+5]);
7384 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7385 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7386
7387 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007388 ** match the new data. The initialization of pTo can actually fail under
7389 ** fairly obscure circumstances, even though it is a copy of initialized
7390 ** page pFrom.
7391 */
drhc314dc72009-07-21 11:52:34 +00007392 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007393 rc = btreeInitPage(pTo);
drh8357c662019-02-11 22:50:01 +00007394 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
dan89e060e2009-12-05 18:03:50 +00007395 if( rc!=SQLITE_OK ){
7396 *pRC = rc;
7397 return;
7398 }
drhc314dc72009-07-21 11:52:34 +00007399
7400 /* If this is an auto-vacuum database, update the pointer-map entries
7401 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7402 */
7403 if( ISAUTOVACUUM ){
7404 *pRC = setChildPtrmaps(pTo);
7405 }
danielk1977cd581a72009-06-23 15:43:39 +00007406 }
danielk1977cd581a72009-06-23 15:43:39 +00007407}
7408
7409/*
danielk19774dbaa892009-06-16 16:50:22 +00007410** This routine redistributes cells on the iParentIdx'th child of pParent
7411** (hereafter "the page") and up to 2 siblings so that all pages have about the
7412** same amount of free space. Usually a single sibling on either side of the
7413** page are used in the balancing, though both siblings might come from one
7414** side if the page is the first or last child of its parent. If the page
7415** has fewer than 2 siblings (something which can only happen if the page
7416** is a root page or a child of a root page) then all available siblings
7417** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007418**
danielk19774dbaa892009-06-16 16:50:22 +00007419** The number of siblings of the page might be increased or decreased by
7420** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007421**
danielk19774dbaa892009-06-16 16:50:22 +00007422** Note that when this routine is called, some of the cells on the page
7423** might not actually be stored in MemPage.aData[]. This can happen
7424** if the page is overfull. This routine ensures that all cells allocated
7425** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007426**
danielk19774dbaa892009-06-16 16:50:22 +00007427** In the course of balancing the page and its siblings, cells may be
7428** inserted into or removed from the parent page (pParent). Doing so
7429** may cause the parent page to become overfull or underfull. If this
7430** happens, it is the responsibility of the caller to invoke the correct
7431** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007432**
drh5e00f6c2001-09-13 13:46:56 +00007433** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007434** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007435** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007436**
7437** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007438** buffer big enough to hold one page. If while inserting cells into the parent
7439** page (pParent) the parent page becomes overfull, this buffer is
7440** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007441** a maximum of four divider cells into the parent page, and the maximum
7442** size of a cell stored within an internal node is always less than 1/4
7443** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7444** enough for all overflow cells.
7445**
7446** If aOvflSpace is set to a null pointer, this function returns
7447** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007448*/
danielk19774dbaa892009-06-16 16:50:22 +00007449static int balance_nonroot(
7450 MemPage *pParent, /* Parent page of siblings being balanced */
7451 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007452 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007453 int isRoot, /* True if pParent is a root-page */
7454 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007455){
drh16a9b832007-05-05 18:39:25 +00007456 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007457 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007458 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007459 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007460 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007461 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007462 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007463 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007464 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007465 int usableSpace; /* Bytes in pPage beyond the header */
7466 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007467 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007468 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007469 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007470 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007471 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007472 u8 *pRight; /* Location in parent of right-sibling pointer */
7473 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007474 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7475 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007476 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007477 u8 *aSpace1; /* Space for copies of dividers cells */
7478 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007479 u8 abDone[NB+2]; /* True after i'th new page is populated */
7480 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007481 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007482 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007483 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007484
dan33ea4862014-10-09 19:35:37 +00007485 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007486 b.nCell = 0;
7487 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007488 pBt = pParent->pBt;
7489 assert( sqlite3_mutex_held(pBt->mutex) );
7490 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007491
danielk19774dbaa892009-06-16 16:50:22 +00007492 /* At this point pParent may have at most one overflow cell. And if
7493 ** this overflow cell is present, it must be the cell with
7494 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007495 ** is called (indirectly) from sqlite3BtreeDelete().
7496 */
danielk19774dbaa892009-06-16 16:50:22 +00007497 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007498 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007499
danielk197711a8a862009-06-17 11:49:52 +00007500 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007501 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007502 }
drh68133502019-02-11 17:22:30 +00007503 assert( pParent->nFree>=0 );
danielk197711a8a862009-06-17 11:49:52 +00007504
danielk1977a50d9aa2009-06-08 14:49:45 +00007505 /* Find the sibling pages to balance. Also locate the cells in pParent
7506 ** that divide the siblings. An attempt is made to find NN siblings on
7507 ** either side of pPage. More siblings are taken from one side, however,
7508 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007509 ** has NB or fewer children then all children of pParent are taken.
7510 **
7511 ** This loop also drops the divider cells from the parent page. This
7512 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007513 ** overflow cells in the parent page, since if any existed they will
7514 ** have already been removed.
7515 */
danielk19774dbaa892009-06-16 16:50:22 +00007516 i = pParent->nOverflow + pParent->nCell;
7517 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007518 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007519 }else{
dan7d6885a2012-08-08 14:04:56 +00007520 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007521 if( iParentIdx==0 ){
7522 nxDiv = 0;
7523 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007524 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007525 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007526 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007527 }
dan7d6885a2012-08-08 14:04:56 +00007528 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007529 }
dan7d6885a2012-08-08 14:04:56 +00007530 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007531 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7532 pRight = &pParent->aData[pParent->hdrOffset+8];
7533 }else{
7534 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7535 }
7536 pgno = get4byte(pRight);
7537 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007538 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007539 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007540 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007541 goto balance_cleanup;
7542 }
drh85a379b2019-02-09 22:33:44 +00007543 if( apOld[i]->nFree<0 ){
7544 rc = btreeComputeFreeSpace(apOld[i]);
7545 if( rc ){
7546 memset(apOld, 0, (i)*sizeof(MemPage*));
7547 goto balance_cleanup;
7548 }
7549 }
danielk19774dbaa892009-06-16 16:50:22 +00007550 if( (i--)==0 ) break;
7551
drh9cc5b4e2016-12-26 01:41:33 +00007552 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007553 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007554 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007555 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007556 pParent->nOverflow = 0;
7557 }else{
7558 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7559 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007560 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007561
7562 /* Drop the cell from the parent page. apDiv[i] still points to
7563 ** the cell within the parent, even though it has been dropped.
7564 ** This is safe because dropping a cell only overwrites the first
7565 ** four bytes of it, and this function does not need the first
7566 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007567 ** later on.
7568 **
drh8a575d92011-10-12 17:00:28 +00007569 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007570 ** the dropCell() routine will overwrite the entire cell with zeroes.
7571 ** In this case, temporarily copy the cell into the aOvflSpace[]
7572 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7573 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007574 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007575 int iOff;
7576
7577 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007578 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007579 rc = SQLITE_CORRUPT_BKPT;
7580 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7581 goto balance_cleanup;
7582 }else{
7583 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7584 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7585 }
drh5b47efa2010-02-12 18:18:39 +00007586 }
drh98add2e2009-07-20 17:11:49 +00007587 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007588 }
drh8b2f49b2001-06-08 00:21:52 +00007589 }
7590
drha9121e42008-02-19 14:59:35 +00007591 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007592 ** alignment */
drhf012dc42019-03-19 15:36:46 +00007593 nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl));
drha9121e42008-02-19 14:59:35 +00007594 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007595
drh8b2f49b2001-06-08 00:21:52 +00007596 /*
danielk1977634f2982005-03-28 08:44:07 +00007597 ** Allocate space for memory structures
7598 */
drhfacf0302008-06-17 15:12:00 +00007599 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007600 nMaxCells*sizeof(u8*) /* b.apCell */
7601 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007602 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007603
drhf012dc42019-03-19 15:36:46 +00007604 assert( szScratch<=7*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007605 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007606 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007607 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007608 goto balance_cleanup;
7609 }
drh1ffd2472015-06-23 02:37:30 +00007610 b.szCell = (u16*)&b.apCell[nMaxCells];
7611 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007612 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007613
7614 /*
7615 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007616 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007617 ** into space obtained from aSpace1[]. The divider cells have already
7618 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007619 **
7620 ** If the siblings are on leaf pages, then the child pointers of the
7621 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007622 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007623 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007624 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007625 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007626 **
7627 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7628 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007629 */
drh1ffd2472015-06-23 02:37:30 +00007630 b.pRef = apOld[0];
7631 leafCorrection = b.pRef->leaf*4;
7632 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007633 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007634 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007635 int limit = pOld->nCell;
7636 u8 *aData = pOld->aData;
7637 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007638 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007639 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007640
drh73d340a2015-05-28 11:23:11 +00007641 /* Verify that all sibling pages are of the same "type" (table-leaf,
7642 ** table-interior, index-leaf, or index-interior).
7643 */
7644 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7645 rc = SQLITE_CORRUPT_BKPT;
7646 goto balance_cleanup;
7647 }
7648
drhfe647dc2015-06-23 18:24:25 +00007649 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007650 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007651 ** in the correct spot.
7652 **
7653 ** Note that when there are multiple overflow cells, it is always the
7654 ** case that they are sequential and adjacent. This invariant arises
7655 ** because multiple overflows can only occurs when inserting divider
7656 ** cells into a parent on a prior balance, and divider cells are always
7657 ** adjacent and are inserted in order. There is an assert() tagged
7658 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7659 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007660 **
7661 ** This must be done in advance. Once the balance starts, the cell
7662 ** offset section of the btree page will be overwritten and we will no
7663 ** long be able to find the cells if a pointer to each cell is not saved
7664 ** first.
7665 */
drh36b78ee2016-01-20 01:32:00 +00007666 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007667 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007668 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007669 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007670 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007671 piCell += 2;
7672 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007673 }
drhfe647dc2015-06-23 18:24:25 +00007674 for(k=0; k<pOld->nOverflow; k++){
7675 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007676 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007677 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007678 }
drh1ffd2472015-06-23 02:37:30 +00007679 }
drhfe647dc2015-06-23 18:24:25 +00007680 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7681 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007682 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007683 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007684 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007685 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007686 }
7687
drh1ffd2472015-06-23 02:37:30 +00007688 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007689 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007690 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007691 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007692 assert( b.nCell<nMaxCells );
7693 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007694 pTemp = &aSpace1[iSpace1];
7695 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007696 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007697 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007698 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007699 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007700 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007701 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007702 if( !pOld->leaf ){
7703 assert( leafCorrection==0 );
7704 assert( pOld->hdrOffset==0 );
7705 /* The right pointer of the child page pOld becomes the left
7706 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007707 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007708 }else{
7709 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007710 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007711 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7712 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007713 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7714 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007715 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007716 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007717 }
7718 }
drh1ffd2472015-06-23 02:37:30 +00007719 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007720 }
drh8b2f49b2001-06-08 00:21:52 +00007721 }
7722
7723 /*
drh1ffd2472015-06-23 02:37:30 +00007724 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007725 ** Store this number in "k". Also compute szNew[] which is the total
7726 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007727 ** in b.apCell[] of the cell that divides page i from page i+1.
7728 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007729 **
drh96f5b762004-05-16 16:24:36 +00007730 ** Values computed by this block:
7731 **
7732 ** k: The total number of sibling pages
7733 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007734 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007735 ** the right of the i-th sibling page.
7736 ** usableSpace: Number of bytes of space available on each sibling.
7737 **
drh8b2f49b2001-06-08 00:21:52 +00007738 */
drh43605152004-05-29 21:46:49 +00007739 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh26b7ec82019-02-01 14:50:43 +00007740 for(i=k=0; i<nOld; i++, k++){
drh658873b2015-06-22 20:02:04 +00007741 MemPage *p = apOld[i];
drh26b7ec82019-02-01 14:50:43 +00007742 b.apEnd[k] = p->aDataEnd;
7743 b.ixNx[k] = cntOld[i];
drh9c7e44c2019-02-14 15:27:12 +00007744 if( k && b.ixNx[k]==b.ixNx[k-1] ){
7745 k--; /* Omit b.ixNx[] entry for child pages with no cells */
7746 }
drh26b7ec82019-02-01 14:50:43 +00007747 if( !leafData ){
7748 k++;
7749 b.apEnd[k] = pParent->aDataEnd;
7750 b.ixNx[k] = cntOld[i]+1;
7751 }
drhb0ea9432019-02-09 21:06:40 +00007752 assert( p->nFree>=0 );
drh658873b2015-06-22 20:02:04 +00007753 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007754 for(j=0; j<p->nOverflow; j++){
7755 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7756 }
7757 cntNew[i] = cntOld[i];
7758 }
7759 k = nOld;
7760 for(i=0; i<k; i++){
7761 int sz;
7762 while( szNew[i]>usableSpace ){
7763 if( i+1>=k ){
7764 k = i+2;
7765 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7766 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007767 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007768 }
drh1ffd2472015-06-23 02:37:30 +00007769 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007770 szNew[i] -= sz;
7771 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007772 if( cntNew[i]<b.nCell ){
7773 sz = 2 + cachedCellSize(&b, cntNew[i]);
7774 }else{
7775 sz = 0;
7776 }
drh658873b2015-06-22 20:02:04 +00007777 }
7778 szNew[i+1] += sz;
7779 cntNew[i]--;
7780 }
drh1ffd2472015-06-23 02:37:30 +00007781 while( cntNew[i]<b.nCell ){
7782 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007783 if( szNew[i]+sz>usableSpace ) break;
7784 szNew[i] += sz;
7785 cntNew[i]++;
7786 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007787 if( cntNew[i]<b.nCell ){
7788 sz = 2 + cachedCellSize(&b, cntNew[i]);
7789 }else{
7790 sz = 0;
7791 }
drh658873b2015-06-22 20:02:04 +00007792 }
7793 szNew[i+1] -= sz;
7794 }
drh1ffd2472015-06-23 02:37:30 +00007795 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007796 k = i+1;
drh672073a2015-06-24 12:07:40 +00007797 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007798 rc = SQLITE_CORRUPT_BKPT;
7799 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007800 }
7801 }
drh96f5b762004-05-16 16:24:36 +00007802
7803 /*
7804 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007805 ** on the left side (siblings with smaller keys). The left siblings are
7806 ** always nearly full, while the right-most sibling might be nearly empty.
7807 ** The next block of code attempts to adjust the packing of siblings to
7808 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007809 **
7810 ** This adjustment is more than an optimization. The packing above might
7811 ** be so out of balance as to be illegal. For example, the right-most
7812 ** sibling might be completely empty. This adjustment is not optional.
7813 */
drh6019e162001-07-02 17:51:45 +00007814 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007815 int szRight = szNew[i]; /* Size of sibling on the right */
7816 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7817 int r; /* Index of right-most cell in left sibling */
7818 int d; /* Index of first cell to the left of right sibling */
7819
7820 r = cntNew[i-1] - 1;
7821 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007822 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007823 do{
drh1ffd2472015-06-23 02:37:30 +00007824 assert( d<nMaxCells );
7825 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007826 (void)cachedCellSize(&b, r);
7827 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007828 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007829 break;
7830 }
7831 szRight += b.szCell[d] + 2;
7832 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007833 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007834 r--;
7835 d--;
drh672073a2015-06-24 12:07:40 +00007836 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007837 szNew[i] = szRight;
7838 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007839 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7840 rc = SQLITE_CORRUPT_BKPT;
7841 goto balance_cleanup;
7842 }
drh6019e162001-07-02 17:51:45 +00007843 }
drh09d0deb2005-08-02 17:13:09 +00007844
drh2a0df922014-10-30 23:14:56 +00007845 /* Sanity check: For a non-corrupt database file one of the follwing
7846 ** must be true:
7847 ** (1) We found one or more cells (cntNew[0])>0), or
7848 ** (2) pPage is a virtual root page. A virtual root page is when
7849 ** the real root page is page 1 and we are the only child of
7850 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007851 */
drh2a0df922014-10-30 23:14:56 +00007852 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007853 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7854 apOld[0]->pgno, apOld[0]->nCell,
7855 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7856 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007857 ));
7858
drh8b2f49b2001-06-08 00:21:52 +00007859 /*
drh6b308672002-07-08 02:16:37 +00007860 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007861 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007862 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007863 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007864 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007865 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007866 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007867 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007868 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007869 nNew++;
danielk197728129562005-01-11 10:25:06 +00007870 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007871 }else{
drh7aa8f852006-03-28 00:24:44 +00007872 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007873 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007874 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007875 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007876 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007877 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007878 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007879
7880 /* Set the pointer-map entry for the new sibling page. */
7881 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007882 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007883 if( rc!=SQLITE_OK ){
7884 goto balance_cleanup;
7885 }
7886 }
drh6b308672002-07-08 02:16:37 +00007887 }
drh8b2f49b2001-06-08 00:21:52 +00007888 }
7889
7890 /*
dan33ea4862014-10-09 19:35:37 +00007891 ** Reassign page numbers so that the new pages are in ascending order.
7892 ** This helps to keep entries in the disk file in order so that a scan
7893 ** of the table is closer to a linear scan through the file. That in turn
7894 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007895 **
dan33ea4862014-10-09 19:35:37 +00007896 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7897 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007898 **
dan33ea4862014-10-09 19:35:37 +00007899 ** When NB==3, this one optimization makes the database about 25% faster
7900 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007901 */
dan33ea4862014-10-09 19:35:37 +00007902 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007903 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007904 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007905 for(j=0; j<i; j++){
7906 if( aPgno[j]==aPgno[i] ){
7907 /* This branch is taken if the set of sibling pages somehow contains
7908 ** duplicate entries. This can happen if the database is corrupt.
7909 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007910 ** we do the detection here in order to avoid populating the pager
7911 ** cache with two separate objects associated with the same
7912 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007913 assert( CORRUPT_DB );
7914 rc = SQLITE_CORRUPT_BKPT;
7915 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007916 }
7917 }
dan33ea4862014-10-09 19:35:37 +00007918 }
7919 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007920 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007921 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007922 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007923 }
drh00fe08a2014-10-31 00:05:23 +00007924 pgno = aPgOrder[iBest];
7925 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007926 if( iBest!=i ){
7927 if( iBest>i ){
7928 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7929 }
7930 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7931 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007932 }
7933 }
dan33ea4862014-10-09 19:35:37 +00007934
7935 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7936 "%d(%d nc=%d) %d(%d nc=%d)\n",
7937 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007938 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007939 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007940 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007941 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007942 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007943 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7944 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7945 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7946 ));
danielk19774dbaa892009-06-16 16:50:22 +00007947
7948 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7949 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007950
dan33ea4862014-10-09 19:35:37 +00007951 /* If the sibling pages are not leaves, ensure that the right-child pointer
7952 ** of the right-most new sibling page is set to the value that was
7953 ** originally in the same field of the right-most old sibling page. */
7954 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7955 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7956 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7957 }
danielk1977ac11ee62005-01-15 12:45:51 +00007958
dan33ea4862014-10-09 19:35:37 +00007959 /* Make any required updates to pointer map entries associated with
7960 ** cells stored on sibling pages following the balance operation. Pointer
7961 ** map entries associated with divider cells are set by the insertCell()
7962 ** routine. The associated pointer map entries are:
7963 **
7964 ** a) if the cell contains a reference to an overflow chain, the
7965 ** entry associated with the first page in the overflow chain, and
7966 **
7967 ** b) if the sibling pages are not leaves, the child page associated
7968 ** with the cell.
7969 **
7970 ** If the sibling pages are not leaves, then the pointer map entry
7971 ** associated with the right-child of each sibling may also need to be
7972 ** updated. This happens below, after the sibling pages have been
7973 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007974 */
dan33ea4862014-10-09 19:35:37 +00007975 if( ISAUTOVACUUM ){
drh0f1bf4c2019-01-13 20:17:21 +00007976 MemPage *pOld;
7977 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00007978 int cntOldNext = pNew->nCell + pNew->nOverflow;
dan33ea4862014-10-09 19:35:37 +00007979 int iNew = 0;
7980 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007981
drh1ffd2472015-06-23 02:37:30 +00007982 for(i=0; i<b.nCell; i++){
7983 u8 *pCell = b.apCell[i];
drh9c7e44c2019-02-14 15:27:12 +00007984 while( i==cntOldNext ){
7985 iOld++;
7986 assert( iOld<nNew || iOld<nOld );
7987 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00007988 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
drh4b70f112004-05-02 21:12:19 +00007989 }
dan33ea4862014-10-09 19:35:37 +00007990 if( i==cntNew[iNew] ){
7991 pNew = apNew[++iNew];
7992 if( !leafData ) continue;
7993 }
danielk197785d90ca2008-07-19 14:25:15 +00007994
dan33ea4862014-10-09 19:35:37 +00007995 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007996 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007997 ** or else the divider cell to the left of sibling page iOld. So,
7998 ** if sibling page iOld had the same page number as pNew, and if
7999 ** pCell really was a part of sibling page iOld (not a divider or
8000 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00008001 if( iOld>=nNew
8002 || pNew->pgno!=aPgno[iOld]
drh9c7e44c2019-02-14 15:27:12 +00008003 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
drhd52d52b2014-12-06 02:05:44 +00008004 ){
dan33ea4862014-10-09 19:35:37 +00008005 if( !leafCorrection ){
8006 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8007 }
drh1ffd2472015-06-23 02:37:30 +00008008 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00008009 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00008010 }
drhea82b372015-06-23 21:35:28 +00008011 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00008012 }
drh14acc042001-06-10 19:56:58 +00008013 }
8014 }
dan33ea4862014-10-09 19:35:37 +00008015
8016 /* Insert new divider cells into pParent. */
8017 for(i=0; i<nNew-1; i++){
8018 u8 *pCell;
8019 u8 *pTemp;
8020 int sz;
8021 MemPage *pNew = apNew[i];
8022 j = cntNew[i];
8023
8024 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008025 assert( b.apCell[j]!=0 );
8026 pCell = b.apCell[j];
8027 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00008028 pTemp = &aOvflSpace[iOvflSpace];
8029 if( !pNew->leaf ){
8030 memcpy(&pNew->aData[8], pCell, 4);
8031 }else if( leafData ){
8032 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00008033 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00008034 ** cell consists of the integer key for the right-most cell of
8035 ** the sibling-page assembled above only.
8036 */
8037 CellInfo info;
8038 j--;
drh1ffd2472015-06-23 02:37:30 +00008039 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00008040 pCell = pTemp;
8041 sz = 4 + putVarint(&pCell[4], info.nKey);
8042 pTemp = 0;
8043 }else{
8044 pCell -= 4;
8045 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8046 ** previously stored on a leaf node, and its reported size was 4
8047 ** bytes, then it may actually be smaller than this
8048 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8049 ** any cell). But it is important to pass the correct size to
8050 ** insertCell(), so reparse the cell now.
8051 **
drhc1fb2b82016-03-09 03:29:27 +00008052 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8053 ** and WITHOUT ROWID tables with exactly one column which is the
8054 ** primary key.
dan33ea4862014-10-09 19:35:37 +00008055 */
drh1ffd2472015-06-23 02:37:30 +00008056 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00008057 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00008058 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00008059 }
8060 }
8061 iOvflSpace += sz;
8062 assert( sz<=pBt->maxLocal+23 );
8063 assert( iOvflSpace <= (int)pBt->pageSize );
8064 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8065 if( rc!=SQLITE_OK ) goto balance_cleanup;
8066 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8067 }
8068
8069 /* Now update the actual sibling pages. The order in which they are updated
8070 ** is important, as this code needs to avoid disrupting any page from which
8071 ** cells may still to be read. In practice, this means:
8072 **
drhd836d422014-10-31 14:26:36 +00008073 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8074 ** then it is not safe to update page apNew[iPg] until after
8075 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008076 **
drhd836d422014-10-31 14:26:36 +00008077 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8078 ** then it is not safe to update page apNew[iPg] until after
8079 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008080 **
8081 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00008082 **
8083 ** The iPg value in the following loop starts at nNew-1 goes down
8084 ** to 0, then back up to nNew-1 again, thus making two passes over
8085 ** the pages. On the initial downward pass, only condition (1) above
8086 ** needs to be tested because (2) will always be true from the previous
8087 ** step. On the upward pass, both conditions are always true, so the
8088 ** upwards pass simply processes pages that were missed on the downward
8089 ** pass.
dan33ea4862014-10-09 19:35:37 +00008090 */
drhbec021b2014-10-31 12:22:00 +00008091 for(i=1-nNew; i<nNew; i++){
8092 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00008093 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00008094 if( abDone[iPg] ) continue; /* Skip pages already processed */
8095 if( i>=0 /* On the upwards pass, or... */
8096 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00008097 ){
dan09c68402014-10-11 20:00:24 +00008098 int iNew;
8099 int iOld;
8100 int nNewCell;
8101
drhd836d422014-10-31 14:26:36 +00008102 /* Verify condition (1): If cells are moving left, update iPg
8103 ** only after iPg-1 has already been updated. */
8104 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8105
8106 /* Verify condition (2): If cells are moving right, update iPg
8107 ** only after iPg+1 has already been updated. */
8108 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8109
dan09c68402014-10-11 20:00:24 +00008110 if( iPg==0 ){
8111 iNew = iOld = 0;
8112 nNewCell = cntNew[0];
8113 }else{
drh1ffd2472015-06-23 02:37:30 +00008114 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00008115 iNew = cntNew[iPg-1] + !leafData;
8116 nNewCell = cntNew[iPg] - iNew;
8117 }
8118
drh1ffd2472015-06-23 02:37:30 +00008119 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00008120 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00008121 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00008122 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00008123 assert( apNew[iPg]->nOverflow==0 );
8124 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00008125 }
8126 }
drhd836d422014-10-31 14:26:36 +00008127
8128 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00008129 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8130
drh7aa8f852006-03-28 00:24:44 +00008131 assert( nOld>0 );
8132 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00008133
danielk197713bd99f2009-06-24 05:40:34 +00008134 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8135 /* The root page of the b-tree now contains no cells. The only sibling
8136 ** page is the right-child of the parent. Copy the contents of the
8137 ** child page into the parent, decreasing the overall height of the
8138 ** b-tree structure by one. This is described as the "balance-shallower"
8139 ** sub-algorithm in some documentation.
8140 **
8141 ** If this is an auto-vacuum database, the call to copyNodeContent()
8142 ** sets all pointer-map entries corresponding to database image pages
8143 ** for which the pointer is stored within the content being copied.
8144 **
drh768f2902014-10-31 02:51:41 +00008145 ** It is critical that the child page be defragmented before being
8146 ** copied into the parent, because if the parent is page 1 then it will
8147 ** by smaller than the child due to the database header, and so all the
8148 ** free space needs to be up front.
8149 */
drh9b5351d2015-09-30 14:19:08 +00008150 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00008151 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00008152 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00008153 assert( apNew[0]->nFree ==
drh1c960262019-03-25 18:44:08 +00008154 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8155 - apNew[0]->nCell*2)
drh768f2902014-10-31 02:51:41 +00008156 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00008157 );
drhc314dc72009-07-21 11:52:34 +00008158 copyNodeContent(apNew[0], pParent, &rc);
8159 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00008160 }else if( ISAUTOVACUUM && !leafCorrection ){
8161 /* Fix the pointer map entries associated with the right-child of each
8162 ** sibling page. All other pointer map entries have already been taken
8163 ** care of. */
8164 for(i=0; i<nNew; i++){
8165 u32 key = get4byte(&apNew[i]->aData[8]);
8166 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008167 }
dan33ea4862014-10-09 19:35:37 +00008168 }
danielk19774dbaa892009-06-16 16:50:22 +00008169
dan33ea4862014-10-09 19:35:37 +00008170 assert( pParent->isInit );
8171 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00008172 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00008173
dan33ea4862014-10-09 19:35:37 +00008174 /* Free any old pages that were not reused as new pages.
8175 */
8176 for(i=nNew; i<nOld; i++){
8177 freePage(apOld[i], &rc);
8178 }
danielk19774dbaa892009-06-16 16:50:22 +00008179
8180#if 0
dan33ea4862014-10-09 19:35:37 +00008181 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00008182 /* The ptrmapCheckPages() contains assert() statements that verify that
8183 ** all pointer map pages are set correctly. This is helpful while
8184 ** debugging. This is usually disabled because a corrupt database may
8185 ** cause an assert() statement to fail. */
8186 ptrmapCheckPages(apNew, nNew);
8187 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00008188 }
dan33ea4862014-10-09 19:35:37 +00008189#endif
danielk1977cd581a72009-06-23 15:43:39 +00008190
drh8b2f49b2001-06-08 00:21:52 +00008191 /*
drh14acc042001-06-10 19:56:58 +00008192 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008193 */
drh14acc042001-06-10 19:56:58 +00008194balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008195 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008196 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008197 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008198 }
drh14acc042001-06-10 19:56:58 +00008199 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008200 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008201 }
danielk1977eaa06f62008-09-18 17:34:44 +00008202
drh8b2f49b2001-06-08 00:21:52 +00008203 return rc;
8204}
8205
drh43605152004-05-29 21:46:49 +00008206
8207/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008208** This function is called when the root page of a b-tree structure is
8209** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008210**
danielk1977a50d9aa2009-06-08 14:49:45 +00008211** A new child page is allocated and the contents of the current root
8212** page, including overflow cells, are copied into the child. The root
8213** page is then overwritten to make it an empty page with the right-child
8214** pointer pointing to the new page.
8215**
8216** Before returning, all pointer-map entries corresponding to pages
8217** that the new child-page now contains pointers to are updated. The
8218** entry corresponding to the new right-child pointer of the root
8219** page is also updated.
8220**
8221** If successful, *ppChild is set to contain a reference to the child
8222** page and SQLITE_OK is returned. In this case the caller is required
8223** to call releasePage() on *ppChild exactly once. If an error occurs,
8224** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008225*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008226static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8227 int rc; /* Return value from subprocedures */
8228 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008229 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008230 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008231
danielk1977a50d9aa2009-06-08 14:49:45 +00008232 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008233 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008234
danielk1977a50d9aa2009-06-08 14:49:45 +00008235 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8236 ** page that will become the new right-child of pPage. Copy the contents
8237 ** of the node stored on pRoot into the new child page.
8238 */
drh98add2e2009-07-20 17:11:49 +00008239 rc = sqlite3PagerWrite(pRoot->pDbPage);
8240 if( rc==SQLITE_OK ){
8241 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008242 copyNodeContent(pRoot, pChild, &rc);
8243 if( ISAUTOVACUUM ){
8244 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008245 }
8246 }
8247 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008248 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008249 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008250 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008251 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008252 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8253 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drh12fe9a02019-02-19 16:42:54 +00008254 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00008255
danielk1977a50d9aa2009-06-08 14:49:45 +00008256 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8257
8258 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008259 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8260 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8261 memcpy(pChild->apOvfl, pRoot->apOvfl,
8262 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008263 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008264
8265 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8266 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8267 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8268
8269 *ppChild = pChild;
8270 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008271}
8272
8273/*
danielk197771d5d2c2008-09-29 11:49:47 +00008274** The page that pCur currently points to has just been modified in
8275** some way. This function figures out if this modification means the
8276** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008277** routine. Balancing routines are:
8278**
8279** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008280** balance_deeper()
8281** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008282*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008283static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008284 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008285 const int nMin = pCur->pBt->usableSize * 2 / 3;
8286 u8 aBalanceQuickSpace[13];
8287 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008288
drhcc5f8a42016-02-06 22:32:06 +00008289 VVA_ONLY( int balance_quick_called = 0 );
8290 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008291
8292 do {
8293 int iPage = pCur->iPage;
drh352a35a2017-08-15 03:46:47 +00008294 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008295
drha941ff72019-02-12 00:58:10 +00008296 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
danielk1977a50d9aa2009-06-08 14:49:45 +00008297 if( iPage==0 ){
8298 if( pPage->nOverflow ){
8299 /* The root page of the b-tree is overfull. In this case call the
8300 ** balance_deeper() function to create a new child for the root-page
8301 ** and copy the current contents of the root-page to it. The
8302 ** next iteration of the do-loop will balance the child page.
8303 */
drhcc5f8a42016-02-06 22:32:06 +00008304 assert( balance_deeper_called==0 );
8305 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008306 rc = balance_deeper(pPage, &pCur->apPage[1]);
8307 if( rc==SQLITE_OK ){
8308 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008309 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008310 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008311 pCur->apPage[0] = pPage;
8312 pCur->pPage = pCur->apPage[1];
8313 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008314 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008315 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008316 break;
8317 }
8318 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8319 break;
8320 }else{
8321 MemPage * const pParent = pCur->apPage[iPage-1];
8322 int const iIdx = pCur->aiIdx[iPage-1];
8323
8324 rc = sqlite3PagerWrite(pParent->pDbPage);
drh68133502019-02-11 17:22:30 +00008325 if( rc==SQLITE_OK && pParent->nFree<0 ){
8326 rc = btreeComputeFreeSpace(pParent);
8327 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008328 if( rc==SQLITE_OK ){
8329#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008330 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008331 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008332 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008333 && pParent->pgno!=1
8334 && pParent->nCell==iIdx
8335 ){
8336 /* Call balance_quick() to create a new sibling of pPage on which
8337 ** to store the overflow cell. balance_quick() inserts a new cell
8338 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008339 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008340 ** use either balance_nonroot() or balance_deeper(). Until this
8341 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8342 ** buffer.
8343 **
8344 ** The purpose of the following assert() is to check that only a
8345 ** single call to balance_quick() is made for each call to this
8346 ** function. If this were not verified, a subtle bug involving reuse
8347 ** of the aBalanceQuickSpace[] might sneak in.
8348 */
drhcc5f8a42016-02-06 22:32:06 +00008349 assert( balance_quick_called==0 );
8350 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008351 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8352 }else
8353#endif
8354 {
8355 /* In this case, call balance_nonroot() to redistribute cells
8356 ** between pPage and up to 2 of its sibling pages. This involves
8357 ** modifying the contents of pParent, which may cause pParent to
8358 ** become overfull or underfull. The next iteration of the do-loop
8359 ** will balance the parent page to correct this.
8360 **
8361 ** If the parent page becomes overfull, the overflow cell or cells
8362 ** are stored in the pSpace buffer allocated immediately below.
8363 ** A subsequent iteration of the do-loop will deal with this by
8364 ** calling balance_nonroot() (balance_deeper() may be called first,
8365 ** but it doesn't deal with overflow cells - just moves them to a
8366 ** different page). Once this subsequent call to balance_nonroot()
8367 ** has completed, it is safe to release the pSpace buffer used by
8368 ** the previous call, as the overflow cell data will have been
8369 ** copied either into the body of a database page or into the new
8370 ** pSpace buffer passed to the latter call to balance_nonroot().
8371 */
8372 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008373 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8374 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008375 if( pFree ){
8376 /* If pFree is not NULL, it points to the pSpace buffer used
8377 ** by a previous call to balance_nonroot(). Its contents are
8378 ** now stored either on real database pages or within the
8379 ** new pSpace buffer, so it may be safely freed here. */
8380 sqlite3PageFree(pFree);
8381 }
8382
danielk19774dbaa892009-06-16 16:50:22 +00008383 /* The pSpace buffer will be freed after the next call to
8384 ** balance_nonroot(), or just before this function returns, whichever
8385 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008386 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008387 }
8388 }
8389
8390 pPage->nOverflow = 0;
8391
8392 /* The next iteration of the do-loop balances the parent page. */
8393 releasePage(pPage);
8394 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008395 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008396 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008397 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008398 }while( rc==SQLITE_OK );
8399
8400 if( pFree ){
8401 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008402 }
8403 return rc;
8404}
8405
drh3de5d162018-05-03 03:59:02 +00008406/* Overwrite content from pX into pDest. Only do the write if the
8407** content is different from what is already there.
8408*/
8409static int btreeOverwriteContent(
8410 MemPage *pPage, /* MemPage on which writing will occur */
8411 u8 *pDest, /* Pointer to the place to start writing */
8412 const BtreePayload *pX, /* Source of data to write */
8413 int iOffset, /* Offset of first byte to write */
8414 int iAmt /* Number of bytes to be written */
8415){
8416 int nData = pX->nData - iOffset;
8417 if( nData<=0 ){
8418 /* Overwritting with zeros */
8419 int i;
8420 for(i=0; i<iAmt && pDest[i]==0; i++){}
8421 if( i<iAmt ){
8422 int rc = sqlite3PagerWrite(pPage->pDbPage);
8423 if( rc ) return rc;
8424 memset(pDest + i, 0, iAmt - i);
8425 }
8426 }else{
8427 if( nData<iAmt ){
8428 /* Mixed read data and zeros at the end. Make a recursive call
8429 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008430 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8431 iAmt-nData);
8432 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008433 iAmt = nData;
8434 }
8435 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8436 int rc = sqlite3PagerWrite(pPage->pDbPage);
8437 if( rc ) return rc;
drh55469bb2019-01-24 13:36:47 +00008438 /* In a corrupt database, it is possible for the source and destination
8439 ** buffers to overlap. This is harmless since the database is already
8440 ** corrupt but it does cause valgrind and ASAN warnings. So use
8441 ** memmove(). */
8442 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
drh3de5d162018-05-03 03:59:02 +00008443 }
8444 }
8445 return SQLITE_OK;
8446}
8447
8448/*
8449** Overwrite the cell that cursor pCur is pointing to with fresh content
8450** contained in pX.
8451*/
8452static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8453 int iOffset; /* Next byte of pX->pData to write */
8454 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8455 int rc; /* Return code */
8456 MemPage *pPage = pCur->pPage; /* Page being written */
8457 BtShared *pBt; /* Btree */
8458 Pgno ovflPgno; /* Next overflow page to write */
8459 u32 ovflPageSize; /* Size to write on overflow page */
8460
drh4f84e9c2018-05-03 13:56:23 +00008461 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){
8462 return SQLITE_CORRUPT_BKPT;
8463 }
drh3de5d162018-05-03 03:59:02 +00008464 /* Overwrite the local portion first */
8465 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8466 0, pCur->info.nLocal);
8467 if( rc ) return rc;
8468 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8469
8470 /* Now overwrite the overflow pages */
8471 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008472 assert( nTotal>=0 );
8473 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008474 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8475 pBt = pPage->pBt;
8476 ovflPageSize = pBt->usableSize - 4;
8477 do{
8478 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8479 if( rc ) return rc;
drh4f84e9c2018-05-03 13:56:23 +00008480 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
drhd5aa9262018-05-03 16:56:06 +00008481 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008482 }else{
drh30f7a252018-05-07 11:29:59 +00008483 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008484 ovflPgno = get4byte(pPage->aData);
8485 }else{
8486 ovflPageSize = nTotal - iOffset;
8487 }
8488 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8489 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008490 }
drhd5aa9262018-05-03 16:56:06 +00008491 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008492 if( rc ) return rc;
8493 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008494 }while( iOffset<nTotal );
8495 return SQLITE_OK;
8496}
8497
drhf74b8d92002-09-01 23:20:45 +00008498
8499/*
drh8eeb4462016-05-21 20:03:42 +00008500** Insert a new record into the BTree. The content of the new record
8501** is described by the pX object. The pCur cursor is used only to
8502** define what table the record should be inserted into, and is left
8503** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008504**
drh8eeb4462016-05-21 20:03:42 +00008505** For a table btree (used for rowid tables), only the pX.nKey value of
8506** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8507** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8508** hold the content of the row.
8509**
8510** For an index btree (used for indexes and WITHOUT ROWID tables), the
8511** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8512** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008513**
8514** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008515** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8516** been performed. In other words, if seekResult!=0 then the cursor
8517** is currently pointing to a cell that will be adjacent to the cell
8518** to be inserted. If seekResult<0 then pCur points to a cell that is
8519** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8520** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008521**
drheaf6ae22016-11-09 20:14:34 +00008522** If seekResult==0, that means pCur is pointing at some unknown location.
8523** In that case, this routine must seek the cursor to the correct insertion
8524** point for (pKey,nKey) before doing the insertion. For index btrees,
8525** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8526** key values and pX->aMem can be used instead of pX->pKey to avoid having
8527** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008528*/
drh3aac2dd2004-04-26 14:10:20 +00008529int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008530 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008531 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008532 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008533 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008534){
drh3b7511c2001-05-26 13:15:44 +00008535 int rc;
drh3e9ca092009-09-08 01:14:48 +00008536 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008537 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008538 int idx;
drh3b7511c2001-05-26 13:15:44 +00008539 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008540 Btree *p = pCur->pBtree;
8541 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008542 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008543 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008544
danf91c1312017-01-10 20:04:38 +00008545 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8546
drh98add2e2009-07-20 17:11:49 +00008547 if( pCur->eState==CURSOR_FAULT ){
8548 assert( pCur->skipNext!=SQLITE_OK );
8549 return pCur->skipNext;
8550 }
8551
dan7a2347e2016-01-07 16:43:54 +00008552 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008553 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8554 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008555 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008556 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8557
danielk197731d31b82009-07-13 13:18:07 +00008558 /* Assert that the caller has been consistent. If this cursor was opened
8559 ** expecting an index b-tree, then the caller should be inserting blob
8560 ** keys with no associated data. If the cursor was opened expecting an
8561 ** intkey table, the caller should be inserting integer keys with a
8562 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008563 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008564
danielk19779c3acf32009-05-02 07:36:49 +00008565 /* Save the positions of any other cursors open on this table.
8566 **
danielk19773509a652009-07-06 18:56:13 +00008567 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008568 ** example, when inserting data into a table with auto-generated integer
8569 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8570 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008571 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008572 ** that the cursor is already where it needs to be and returns without
8573 ** doing any work. To avoid thwarting these optimizations, it is important
8574 ** not to clear the cursor here.
8575 */
drh27fb7462015-06-30 02:47:36 +00008576 if( pCur->curFlags & BTCF_Multiple ){
8577 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8578 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008579 }
8580
danielk197771d5d2c2008-09-29 11:49:47 +00008581 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008582 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008583 /* If this is an insert into a table b-tree, invalidate any incrblob
8584 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008585 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008586
danf91c1312017-01-10 20:04:38 +00008587 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00008588 ** to a row with the same key as the new entry being inserted.
8589 */
8590#ifdef SQLITE_DEBUG
8591 if( flags & BTREE_SAVEPOSITION ){
8592 assert( pCur->curFlags & BTCF_ValidNKey );
8593 assert( pX->nKey==pCur->info.nKey );
8594 assert( pCur->info.nSize!=0 );
8595 assert( loc==0 );
8596 }
8597#endif
danf91c1312017-01-10 20:04:38 +00008598
drhd720d392018-05-07 17:27:04 +00008599 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8600 ** that the cursor is not pointing to a row to be overwritten.
8601 ** So do a complete check.
8602 */
drh7a1c28d2016-11-10 20:42:08 +00008603 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00008604 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00008605 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00008606 assert( pX->nData>=0 && pX->nZero>=0 );
8607 if( pCur->info.nSize!=0
8608 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8609 ){
drhd720d392018-05-07 17:27:04 +00008610 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00008611 return btreeOverwriteCell(pCur, pX);
8612 }
drhd720d392018-05-07 17:27:04 +00008613 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00008614 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00008615 /* The cursor is *not* pointing to the cell to be overwritten, nor
8616 ** to an adjacent cell. Move the cursor so that it is pointing either
8617 ** to the cell to be overwritten or an adjacent cell.
8618 */
danf91c1312017-01-10 20:04:38 +00008619 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008620 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008621 }
drhd720d392018-05-07 17:27:04 +00008622 }else{
8623 /* This is an index or a WITHOUT ROWID table */
8624
8625 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8626 ** to a row with the same key as the new entry being inserted.
8627 */
8628 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8629
8630 /* If the cursor is not already pointing either to the cell to be
8631 ** overwritten, or if a new cell is being inserted, if the cursor is
8632 ** not pointing to an immediately adjacent cell, then move the cursor
8633 ** so that it does.
8634 */
8635 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8636 if( pX->nMem ){
8637 UnpackedRecord r;
8638 r.pKeyInfo = pCur->pKeyInfo;
8639 r.aMem = pX->aMem;
8640 r.nField = pX->nMem;
8641 r.default_rc = 0;
8642 r.errCode = 0;
8643 r.r1 = 0;
8644 r.r2 = 0;
8645 r.eqSeen = 0;
8646 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8647 }else{
8648 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8649 }
8650 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00008651 }
drh89ee2292018-05-07 18:41:19 +00008652
8653 /* If the cursor is currently pointing to an entry to be overwritten
8654 ** and the new content is the same as as the old, then use the
8655 ** overwrite optimization.
8656 */
8657 if( loc==0 ){
8658 getCellInfo(pCur);
8659 if( pCur->info.nKey==pX->nKey ){
8660 BtreePayload x2;
8661 x2.pData = pX->pKey;
8662 x2.nData = pX->nKey;
8663 x2.nZero = 0;
8664 return btreeOverwriteCell(pCur, &x2);
8665 }
8666 }
8667
danielk1977da184232006-01-05 11:34:32 +00008668 }
danielk1977b980d2212009-06-22 18:03:51 +00008669 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008670
drh352a35a2017-08-15 03:46:47 +00008671 pPage = pCur->pPage;
drh8eeb4462016-05-21 20:03:42 +00008672 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008673 assert( pPage->leaf || !pPage->intKey );
drhb0ea9432019-02-09 21:06:40 +00008674 if( pPage->nFree<0 ){
8675 rc = btreeComputeFreeSpace(pPage);
8676 if( rc ) return rc;
8677 }
danielk19778f880a82009-07-13 09:41:45 +00008678
drh3a4c1412004-05-09 20:40:11 +00008679 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008680 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008681 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008682 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008683 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008684 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008685 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008686 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008687 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008688 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008689 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008690 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008691 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008692 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008693 rc = sqlite3PagerWrite(pPage->pDbPage);
8694 if( rc ){
8695 goto end_insert;
8696 }
danielk197771d5d2c2008-09-29 11:49:47 +00008697 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008698 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008699 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008700 }
drh80159da2016-12-09 17:32:51 +00008701 rc = clearCell(pPage, oldCell, &info);
danca66f6c2017-06-08 11:14:08 +00008702 if( info.nSize==szNew && info.nLocal==info.nPayload
8703 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8704 ){
drhf9238252016-12-09 18:09:42 +00008705 /* Overwrite the old cell with the new if they are the same size.
8706 ** We could also try to do this if the old cell is smaller, then add
8707 ** the leftover space to the free list. But experiments show that
8708 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008709 ** calling dropCell() and insertCell().
8710 **
8711 ** This optimization cannot be used on an autovacuum database if the
8712 ** new entry uses overflow pages, as the insertCell() call below is
8713 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008714 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh2d083432016-12-09 19:42:18 +00008715 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
drh80159da2016-12-09 17:32:51 +00008716 memcpy(oldCell, newCell, szNew);
8717 return SQLITE_OK;
8718 }
8719 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008720 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008721 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008722 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008723 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008724 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008725 }else{
drh4b70f112004-05-02 21:12:19 +00008726 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008727 }
drh98add2e2009-07-20 17:11:49 +00008728 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008729 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008730 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008731
mistachkin48864df2013-03-21 21:20:32 +00008732 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008733 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008734 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008735 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008736 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008737 ** Previous versions of SQLite called moveToRoot() to move the cursor
8738 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008739 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8740 ** set the cursor state to "invalid". This makes common insert operations
8741 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008742 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008743 ** There is a subtle but important optimization here too. When inserting
8744 ** multiple records into an intkey b-tree using a single cursor (as can
8745 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8746 ** is advantageous to leave the cursor pointing to the last entry in
8747 ** the b-tree if possible. If the cursor is left pointing to the last
8748 ** entry in the table, and the next row inserted has an integer key
8749 ** larger than the largest existing key, it is possible to insert the
8750 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008751 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008752 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008753 if( pPage->nOverflow ){
8754 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008755 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008756 rc = balance(pCur);
8757
8758 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008759 ** fails. Internal data structure corruption will result otherwise.
8760 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8761 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00008762 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008763 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008764 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00008765 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00008766 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008767 assert( pCur->pKey==0 );
8768 pCur->pKey = sqlite3Malloc( pX->nKey );
8769 if( pCur->pKey==0 ){
8770 rc = SQLITE_NOMEM;
8771 }else{
8772 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8773 }
8774 }
8775 pCur->eState = CURSOR_REQUIRESEEK;
8776 pCur->nKey = pX->nKey;
8777 }
danielk19773f632d52009-05-02 10:03:09 +00008778 }
drh352a35a2017-08-15 03:46:47 +00008779 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008780
drh2e38c322004-09-03 18:38:44 +00008781end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008782 return rc;
8783}
8784
8785/*
danf0ee1d32015-09-12 19:26:11 +00008786** Delete the entry that the cursor is pointing to.
8787**
drhe807bdb2016-01-21 17:06:33 +00008788** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8789** the cursor is left pointing at an arbitrary location after the delete.
8790** But if that bit is set, then the cursor is left in a state such that
8791** the next call to BtreeNext() or BtreePrev() moves it to the same row
8792** as it would have been on if the call to BtreeDelete() had been omitted.
8793**
drhdef19e32016-01-27 16:26:25 +00008794** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8795** associated with a single table entry and its indexes. Only one of those
8796** deletes is considered the "primary" delete. The primary delete occurs
8797** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8798** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8799** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008800** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008801*/
drhe807bdb2016-01-21 17:06:33 +00008802int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008803 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008804 BtShared *pBt = p->pBt;
8805 int rc; /* Return code */
8806 MemPage *pPage; /* Page to delete cell from */
8807 unsigned char *pCell; /* Pointer to cell to delete */
8808 int iCellIdx; /* Index of cell to delete */
8809 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008810 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008811 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008812 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008813
dan7a2347e2016-01-07 16:43:54 +00008814 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008815 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008816 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008817 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008818 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8819 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drhdef19e32016-01-27 16:26:25 +00008820 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danb560a712019-03-13 15:29:14 +00008821 if( pCur->eState==CURSOR_REQUIRESEEK ){
8822 rc = btreeRestoreCursorPosition(pCur);
8823 if( rc ) return rc;
8824 }
8825 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00008826
danielk19774dbaa892009-06-16 16:50:22 +00008827 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008828 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00008829 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008830 pCell = findCell(pPage, iCellIdx);
drhb0ea9432019-02-09 21:06:40 +00008831 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
danielk19774dbaa892009-06-16 16:50:22 +00008832
drhbfc7a8b2016-04-09 17:04:05 +00008833 /* If the bPreserve flag is set to true, then the cursor position must
8834 ** be preserved following this delete operation. If the current delete
8835 ** will cause a b-tree rebalance, then this is done by saving the cursor
8836 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8837 ** returning.
8838 **
8839 ** Or, if the current delete will not cause a rebalance, then the cursor
8840 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8841 ** before or after the deleted entry. In this case set bSkipnext to true. */
8842 if( bPreserve ){
8843 if( !pPage->leaf
8844 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00008845 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00008846 ){
8847 /* A b-tree rebalance will be required after deleting this entry.
8848 ** Save the cursor key. */
8849 rc = saveCursorKey(pCur);
8850 if( rc ) return rc;
8851 }else{
8852 bSkipnext = 1;
8853 }
8854 }
8855
danielk19774dbaa892009-06-16 16:50:22 +00008856 /* If the page containing the entry to delete is not a leaf page, move
8857 ** the cursor to the largest entry in the tree that is smaller than
8858 ** the entry being deleted. This cell will replace the cell being deleted
8859 ** from the internal node. The 'previous' entry is used for this instead
8860 ** of the 'next' entry, as the previous entry is always a part of the
8861 ** sub-tree headed by the child page of the cell being deleted. This makes
8862 ** balancing the tree following the delete operation easier. */
8863 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008864 rc = sqlite3BtreePrevious(pCur, 0);
8865 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008866 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008867 }
8868
8869 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008870 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008871 if( pCur->curFlags & BTCF_Multiple ){
8872 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8873 if( rc ) return rc;
8874 }
drhd60f4f42012-03-23 14:23:52 +00008875
8876 /* If this is a delete operation to remove a row from a table b-tree,
8877 ** invalidate any incrblob cursors open on the row being deleted. */
8878 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008879 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008880 }
8881
danf0ee1d32015-09-12 19:26:11 +00008882 /* Make the page containing the entry to be deleted writable. Then free any
8883 ** overflow pages associated with the entry and finally remove the cell
8884 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008885 rc = sqlite3PagerWrite(pPage->pDbPage);
8886 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008887 rc = clearCell(pPage, pCell, &info);
8888 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008889 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008890
danielk19774dbaa892009-06-16 16:50:22 +00008891 /* If the cell deleted was not located on a leaf page, then the cursor
8892 ** is currently pointing to the largest entry in the sub-tree headed
8893 ** by the child-page of the cell that was just deleted from an internal
8894 ** node. The cell from the leaf node needs to be moved to the internal
8895 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008896 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00008897 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008898 int nCell;
drh352a35a2017-08-15 03:46:47 +00008899 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00008900 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008901
drhb0ea9432019-02-09 21:06:40 +00008902 if( pLeaf->nFree<0 ){
8903 rc = btreeComputeFreeSpace(pLeaf);
8904 if( rc ) return rc;
8905 }
drh352a35a2017-08-15 03:46:47 +00008906 if( iCellDepth<pCur->iPage-1 ){
8907 n = pCur->apPage[iCellDepth+1]->pgno;
8908 }else{
8909 n = pCur->pPage->pgno;
8910 }
danielk19774dbaa892009-06-16 16:50:22 +00008911 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008912 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008913 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008914 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008915 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008916 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008917 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008918 if( rc==SQLITE_OK ){
8919 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8920 }
drh98add2e2009-07-20 17:11:49 +00008921 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008922 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008923 }
danielk19774dbaa892009-06-16 16:50:22 +00008924
8925 /* Balance the tree. If the entry deleted was located on a leaf page,
8926 ** then the cursor still points to that page. In this case the first
8927 ** call to balance() repairs the tree, and the if(...) condition is
8928 ** never true.
8929 **
8930 ** Otherwise, if the entry deleted was on an internal node page, then
8931 ** pCur is pointing to the leaf page from which a cell was removed to
8932 ** replace the cell deleted from the internal node. This is slightly
8933 ** tricky as the leaf node may be underfull, and the internal node may
8934 ** be either under or overfull. In this case run the balancing algorithm
8935 ** on the leaf node first. If the balance proceeds far enough up the
8936 ** tree that we can be sure that any problem in the internal node has
8937 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8938 ** walk the cursor up the tree to the internal node and balance it as
8939 ** well. */
8940 rc = balance(pCur);
8941 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00008942 releasePageNotNull(pCur->pPage);
8943 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00008944 while( pCur->iPage>iCellDepth ){
8945 releasePage(pCur->apPage[pCur->iPage--]);
8946 }
drh352a35a2017-08-15 03:46:47 +00008947 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00008948 rc = balance(pCur);
8949 }
8950
danielk19776b456a22005-03-21 04:04:02 +00008951 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008952 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008953 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00008954 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008955 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008956 pCur->eState = CURSOR_SKIPNEXT;
8957 if( iCellIdx>=pPage->nCell ){
8958 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00008959 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00008960 }else{
8961 pCur->skipNext = 1;
8962 }
8963 }else{
8964 rc = moveToRoot(pCur);
8965 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00008966 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00008967 pCur->eState = CURSOR_REQUIRESEEK;
8968 }
drh44548e72017-08-14 18:13:52 +00008969 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00008970 }
danielk19776b456a22005-03-21 04:04:02 +00008971 }
drh5e2f8b92001-05-28 00:41:15 +00008972 return rc;
drh3b7511c2001-05-26 13:15:44 +00008973}
drh8b2f49b2001-06-08 00:21:52 +00008974
8975/*
drhc6b52df2002-01-04 03:09:29 +00008976** Create a new BTree table. Write into *piTable the page
8977** number for the root page of the new table.
8978**
drhab01f612004-05-22 02:55:23 +00008979** The type of type is determined by the flags parameter. Only the
8980** following values of flags are currently in use. Other values for
8981** flags might not work:
8982**
8983** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8984** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008985*/
drhd4187c72010-08-30 22:15:45 +00008986static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008987 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008988 MemPage *pRoot;
8989 Pgno pgnoRoot;
8990 int rc;
drhd4187c72010-08-30 22:15:45 +00008991 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008992
drh1fee73e2007-08-29 04:00:57 +00008993 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008994 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008995 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008996
danielk1977003ba062004-11-04 02:57:33 +00008997#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008998 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008999 if( rc ){
9000 return rc;
9001 }
danielk1977003ba062004-11-04 02:57:33 +00009002#else
danielk1977687566d2004-11-02 12:56:41 +00009003 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00009004 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9005 MemPage *pPageMove; /* The page to move to. */
9006
danielk197720713f32007-05-03 11:43:33 +00009007 /* Creating a new table may probably require moving an existing database
9008 ** to make room for the new tables root page. In case this page turns
9009 ** out to be an overflow page, delete all overflow page-map caches
9010 ** held by open cursors.
9011 */
danielk197792d4d7a2007-05-04 12:05:56 +00009012 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00009013
danielk1977003ba062004-11-04 02:57:33 +00009014 /* Read the value of meta[3] from the database to determine where the
9015 ** root page of the new table should go. meta[3] is the largest root-page
9016 ** created so far, so the new root-page is (meta[3]+1).
9017 */
danielk1977602b4662009-07-02 07:47:33 +00009018 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00009019 pgnoRoot++;
9020
danielk1977599fcba2004-11-08 07:13:13 +00009021 /* The new root-page may not be allocated on a pointer-map page, or the
9022 ** PENDING_BYTE page.
9023 */
drh72190432008-01-31 14:54:43 +00009024 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00009025 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00009026 pgnoRoot++;
9027 }
drh499e15b2015-05-22 12:37:37 +00009028 assert( pgnoRoot>=3 || CORRUPT_DB );
9029 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00009030
9031 /* Allocate a page. The page that currently resides at pgnoRoot will
9032 ** be moved to the allocated page (unless the allocated page happens
9033 ** to reside at pgnoRoot).
9034 */
dan51f0b6d2013-02-22 20:16:34 +00009035 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00009036 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00009037 return rc;
9038 }
danielk1977003ba062004-11-04 02:57:33 +00009039
9040 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00009041 /* pgnoRoot is the page that will be used for the root-page of
9042 ** the new table (assuming an error did not occur). But we were
9043 ** allocated pgnoMove. If required (i.e. if it was not allocated
9044 ** by extending the file), the current page at position pgnoMove
9045 ** is already journaled.
9046 */
drheeb844a2009-08-08 18:01:07 +00009047 u8 eType = 0;
9048 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00009049
danf7679ad2013-04-03 11:38:36 +00009050 /* Save the positions of any open cursors. This is required in
9051 ** case they are holding a reference to an xFetch reference
9052 ** corresponding to page pgnoRoot. */
9053 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00009054 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00009055 if( rc!=SQLITE_OK ){
9056 return rc;
9057 }
danielk1977f35843b2007-04-07 15:03:17 +00009058
9059 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00009060 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009061 if( rc!=SQLITE_OK ){
9062 return rc;
9063 }
9064 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00009065 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9066 rc = SQLITE_CORRUPT_BKPT;
9067 }
9068 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00009069 releasePage(pRoot);
9070 return rc;
9071 }
drhccae6022005-02-26 17:31:26 +00009072 assert( eType!=PTRMAP_ROOTPAGE );
9073 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00009074 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00009075 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00009076
9077 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00009078 if( rc!=SQLITE_OK ){
9079 return rc;
9080 }
drhb00fc3b2013-08-21 23:42:32 +00009081 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009082 if( rc!=SQLITE_OK ){
9083 return rc;
9084 }
danielk19773b8a05f2007-03-19 17:44:26 +00009085 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00009086 if( rc!=SQLITE_OK ){
9087 releasePage(pRoot);
9088 return rc;
9089 }
9090 }else{
9091 pRoot = pPageMove;
9092 }
9093
danielk197742741be2005-01-08 12:42:39 +00009094 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00009095 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00009096 if( rc ){
9097 releasePage(pRoot);
9098 return rc;
9099 }
drhbf592832010-03-30 15:51:12 +00009100
9101 /* When the new root page was allocated, page 1 was made writable in
9102 ** order either to increase the database filesize, or to decrement the
9103 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9104 */
9105 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00009106 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00009107 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00009108 releasePage(pRoot);
9109 return rc;
9110 }
danielk197742741be2005-01-08 12:42:39 +00009111
danielk1977003ba062004-11-04 02:57:33 +00009112 }else{
drh4f0c5872007-03-26 22:05:01 +00009113 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00009114 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00009115 }
9116#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009117 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00009118 if( createTabFlags & BTREE_INTKEY ){
9119 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9120 }else{
9121 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9122 }
9123 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00009124 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00009125 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00009126 *piTable = (int)pgnoRoot;
9127 return SQLITE_OK;
9128}
drhd677b3d2007-08-20 22:48:41 +00009129int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
9130 int rc;
9131 sqlite3BtreeEnter(p);
9132 rc = btreeCreateTable(p, piTable, flags);
9133 sqlite3BtreeLeave(p);
9134 return rc;
9135}
drh8b2f49b2001-06-08 00:21:52 +00009136
9137/*
9138** Erase the given database page and all its children. Return
9139** the page to the freelist.
9140*/
drh4b70f112004-05-02 21:12:19 +00009141static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00009142 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00009143 Pgno pgno, /* Page number to clear */
9144 int freePageFlag, /* Deallocate page if true */
9145 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00009146){
danielk1977146ba992009-07-22 14:08:13 +00009147 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00009148 int rc;
drh4b70f112004-05-02 21:12:19 +00009149 unsigned char *pCell;
9150 int i;
dan8ce71842014-01-14 20:14:09 +00009151 int hdr;
drh80159da2016-12-09 17:32:51 +00009152 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00009153
drh1fee73e2007-08-29 04:00:57 +00009154 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00009155 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00009156 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00009157 }
drh28f58dd2015-06-27 19:45:03 +00009158 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00009159 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00009160 if( pPage->bBusy ){
9161 rc = SQLITE_CORRUPT_BKPT;
9162 goto cleardatabasepage_out;
9163 }
9164 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00009165 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00009166 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00009167 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00009168 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00009169 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009170 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009171 }
drh80159da2016-12-09 17:32:51 +00009172 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00009173 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009174 }
drha34b6762004-05-07 13:30:42 +00009175 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00009176 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009177 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00009178 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00009179 assert( pPage->intKey || CORRUPT_DB );
9180 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00009181 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00009182 }
9183 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00009184 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00009185 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00009186 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00009187 }
danielk19776b456a22005-03-21 04:04:02 +00009188
9189cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00009190 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00009191 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00009192 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009193}
9194
9195/*
drhab01f612004-05-22 02:55:23 +00009196** Delete all information from a single table in the database. iTable is
9197** the page number of the root of the table. After this routine returns,
9198** the root page is empty, but still exists.
9199**
9200** This routine will fail with SQLITE_LOCKED if there are any open
9201** read cursors on the table. Open write cursors are moved to the
9202** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00009203**
9204** If pnChange is not NULL, then table iTable must be an intkey table. The
9205** integer value pointed to by pnChange is incremented by the number of
9206** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00009207*/
danielk1977c7af4842008-10-27 13:59:33 +00009208int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00009209 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00009210 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00009211 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009212 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009213
drhc046e3e2009-07-15 11:26:44 +00009214 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00009215
drhc046e3e2009-07-15 11:26:44 +00009216 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00009217 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9218 ** is the root of a table b-tree - if it is not, the following call is
9219 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00009220 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00009221 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00009222 }
drhd677b3d2007-08-20 22:48:41 +00009223 sqlite3BtreeLeave(p);
9224 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009225}
9226
9227/*
drh079a3072014-03-19 14:10:55 +00009228** Delete all information from the single table that pCur is open on.
9229**
9230** This routine only work for pCur on an ephemeral table.
9231*/
9232int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9233 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9234}
9235
9236/*
drh8b2f49b2001-06-08 00:21:52 +00009237** Erase all information in a table and add the root of the table to
9238** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00009239** page 1) is never added to the freelist.
9240**
9241** This routine will fail with SQLITE_LOCKED if there are any open
9242** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00009243**
9244** If AUTOVACUUM is enabled and the page at iTable is not the last
9245** root page in the database file, then the last root page
9246** in the database file is moved into the slot formerly occupied by
9247** iTable and that last slot formerly occupied by the last root page
9248** is added to the freelist instead of iTable. In this say, all
9249** root pages are kept at the beginning of the database file, which
9250** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9251** page number that used to be the last root page in the file before
9252** the move. If no page gets moved, *piMoved is set to 0.
9253** The last root page is recorded in meta[3] and the value of
9254** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00009255*/
danielk197789d40042008-11-17 14:20:56 +00009256static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009257 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009258 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009259 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009260
drh1fee73e2007-08-29 04:00:57 +00009261 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009262 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009263 assert( iTable>=2 );
drh9a518842019-03-08 01:52:30 +00009264 if( iTable>btreePagecount(pBt) ){
9265 return SQLITE_CORRUPT_BKPT;
9266 }
drh055f2982016-01-15 15:06:41 +00009267
drhb00fc3b2013-08-21 23:42:32 +00009268 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00009269 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00009270 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00009271 if( rc ){
9272 releasePage(pPage);
9273 return rc;
9274 }
danielk1977a0bf2652004-11-04 14:30:04 +00009275
drh205f48e2004-11-05 00:43:11 +00009276 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009277
danielk1977a0bf2652004-11-04 14:30:04 +00009278#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009279 freePage(pPage, &rc);
9280 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009281#else
drh055f2982016-01-15 15:06:41 +00009282 if( pBt->autoVacuum ){
9283 Pgno maxRootPgno;
9284 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009285
drh055f2982016-01-15 15:06:41 +00009286 if( iTable==maxRootPgno ){
9287 /* If the table being dropped is the table with the largest root-page
9288 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009289 */
drhc314dc72009-07-21 11:52:34 +00009290 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009291 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009292 if( rc!=SQLITE_OK ){
9293 return rc;
9294 }
9295 }else{
9296 /* The table being dropped does not have the largest root-page
9297 ** number in the database. So move the page that does into the
9298 ** gap left by the deleted root-page.
9299 */
9300 MemPage *pMove;
9301 releasePage(pPage);
9302 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9303 if( rc!=SQLITE_OK ){
9304 return rc;
9305 }
9306 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9307 releasePage(pMove);
9308 if( rc!=SQLITE_OK ){
9309 return rc;
9310 }
9311 pMove = 0;
9312 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9313 freePage(pMove, &rc);
9314 releasePage(pMove);
9315 if( rc!=SQLITE_OK ){
9316 return rc;
9317 }
9318 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009319 }
drh055f2982016-01-15 15:06:41 +00009320
9321 /* Set the new 'max-root-page' value in the database header. This
9322 ** is the old value less one, less one more if that happens to
9323 ** be a root-page number, less one again if that is the
9324 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009325 */
drh055f2982016-01-15 15:06:41 +00009326 maxRootPgno--;
9327 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9328 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9329 maxRootPgno--;
9330 }
9331 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9332
9333 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9334 }else{
9335 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009336 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009337 }
drh055f2982016-01-15 15:06:41 +00009338#endif
drh8b2f49b2001-06-08 00:21:52 +00009339 return rc;
9340}
drhd677b3d2007-08-20 22:48:41 +00009341int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9342 int rc;
9343 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009344 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009345 sqlite3BtreeLeave(p);
9346 return rc;
9347}
drh8b2f49b2001-06-08 00:21:52 +00009348
drh001bbcb2003-03-19 03:14:00 +00009349
drh8b2f49b2001-06-08 00:21:52 +00009350/*
danielk1977602b4662009-07-02 07:47:33 +00009351** This function may only be called if the b-tree connection already
9352** has a read or write transaction open on the database.
9353**
drh23e11ca2004-05-04 17:27:28 +00009354** Read the meta-information out of a database file. Meta[0]
9355** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00009356** through meta[15] are available for use by higher layers. Meta[0]
9357** is read-only, the others are read/write.
9358**
9359** The schema layer numbers meta values differently. At the schema
9360** layer (and the SetCookie and ReadCookie opcodes) the number of
9361** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00009362**
9363** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9364** of reading the value out of the header, it instead loads the "DataVersion"
9365** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9366** database file. It is a number computed by the pager. But its access
9367** pattern is the same as header meta values, and so it is convenient to
9368** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00009369*/
danielk1977602b4662009-07-02 07:47:33 +00009370void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00009371 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009372
drhd677b3d2007-08-20 22:48:41 +00009373 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00009374 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00009375 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00009376 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00009377 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00009378
drh91618562014-12-19 19:28:02 +00009379 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00009380 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00009381 }else{
9382 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9383 }
drhae157872004-08-14 19:20:09 +00009384
danielk1977602b4662009-07-02 07:47:33 +00009385 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9386 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00009387#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00009388 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9389 pBt->btsFlags |= BTS_READ_ONLY;
9390 }
danielk1977003ba062004-11-04 02:57:33 +00009391#endif
drhae157872004-08-14 19:20:09 +00009392
drhd677b3d2007-08-20 22:48:41 +00009393 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00009394}
9395
9396/*
drh23e11ca2004-05-04 17:27:28 +00009397** Write meta-information back into the database. Meta[0] is
9398** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00009399*/
danielk1977aef0bf62005-12-30 16:28:01 +00009400int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9401 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00009402 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00009403 int rc;
drh23e11ca2004-05-04 17:27:28 +00009404 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00009405 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009406 assert( p->inTrans==TRANS_WRITE );
9407 assert( pBt->pPage1!=0 );
9408 pP1 = pBt->pPage1->aData;
9409 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9410 if( rc==SQLITE_OK ){
9411 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00009412#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00009413 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00009414 assert( pBt->autoVacuum || iMeta==0 );
9415 assert( iMeta==0 || iMeta==1 );
9416 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00009417 }
drh64022502009-01-09 14:11:04 +00009418#endif
drh5df72a52002-06-06 23:16:05 +00009419 }
drhd677b3d2007-08-20 22:48:41 +00009420 sqlite3BtreeLeave(p);
9421 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009422}
drh8c42ca92001-06-22 19:15:00 +00009423
danielk1977a5533162009-02-24 10:01:51 +00009424#ifndef SQLITE_OMIT_BTREECOUNT
9425/*
9426** The first argument, pCur, is a cursor opened on some b-tree. Count the
9427** number of entries in the b-tree and write the result to *pnEntry.
9428**
9429** SQLITE_OK is returned if the operation is successfully executed.
9430** Otherwise, if an error is encountered (i.e. an IO error or database
9431** corruption) an SQLite error code is returned.
9432*/
9433int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
9434 i64 nEntry = 0; /* Value to return in *pnEntry */
9435 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009436
drh44548e72017-08-14 18:13:52 +00009437 rc = moveToRoot(pCur);
9438 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009439 *pnEntry = 0;
9440 return SQLITE_OK;
9441 }
danielk1977a5533162009-02-24 10:01:51 +00009442
9443 /* Unless an error occurs, the following loop runs one iteration for each
9444 ** page in the B-Tree structure (not including overflow pages).
9445 */
9446 while( rc==SQLITE_OK ){
9447 int iIdx; /* Index of child node in parent */
9448 MemPage *pPage; /* Current page of the b-tree */
9449
9450 /* If this is a leaf page or the tree is not an int-key tree, then
9451 ** this page contains countable entries. Increment the entry counter
9452 ** accordingly.
9453 */
drh352a35a2017-08-15 03:46:47 +00009454 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009455 if( pPage->leaf || !pPage->intKey ){
9456 nEntry += pPage->nCell;
9457 }
9458
9459 /* pPage is a leaf node. This loop navigates the cursor so that it
9460 ** points to the first interior cell that it points to the parent of
9461 ** the next page in the tree that has not yet been visited. The
9462 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9463 ** of the page, or to the number of cells in the page if the next page
9464 ** to visit is the right-child of its parent.
9465 **
9466 ** If all pages in the tree have been visited, return SQLITE_OK to the
9467 ** caller.
9468 */
9469 if( pPage->leaf ){
9470 do {
9471 if( pCur->iPage==0 ){
9472 /* All pages of the b-tree have been visited. Return successfully. */
9473 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009474 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009475 }
danielk197730548662009-07-09 05:07:37 +00009476 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009477 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009478
drh75e96b32017-04-01 00:20:06 +00009479 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009480 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009481 }
9482
9483 /* Descend to the child node of the cell that the cursor currently
9484 ** points at. This is the right-child if (iIdx==pPage->nCell).
9485 */
drh75e96b32017-04-01 00:20:06 +00009486 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009487 if( iIdx==pPage->nCell ){
9488 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9489 }else{
9490 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9491 }
9492 }
9493
shanebe217792009-03-05 04:20:31 +00009494 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009495 return rc;
9496}
9497#endif
drhdd793422001-06-28 01:54:48 +00009498
drhdd793422001-06-28 01:54:48 +00009499/*
drh5eddca62001-06-30 21:53:53 +00009500** Return the pager associated with a BTree. This routine is used for
9501** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009502*/
danielk1977aef0bf62005-12-30 16:28:01 +00009503Pager *sqlite3BtreePager(Btree *p){
9504 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009505}
drh5eddca62001-06-30 21:53:53 +00009506
drhb7f91642004-10-31 02:22:47 +00009507#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009508/*
9509** Append a message to the error message string.
9510*/
drh2e38c322004-09-03 18:38:44 +00009511static void checkAppendMsg(
9512 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009513 const char *zFormat,
9514 ...
9515){
9516 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009517 if( !pCheck->mxErr ) return;
9518 pCheck->mxErr--;
9519 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009520 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009521 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +00009522 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009523 }
drh867db832014-09-26 02:41:05 +00009524 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +00009525 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009526 }
drh0cdbe1a2018-05-09 13:46:26 +00009527 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009528 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +00009529 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009530 pCheck->mallocFailed = 1;
9531 }
drh5eddca62001-06-30 21:53:53 +00009532}
drhb7f91642004-10-31 02:22:47 +00009533#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009534
drhb7f91642004-10-31 02:22:47 +00009535#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009536
9537/*
9538** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9539** corresponds to page iPg is already set.
9540*/
9541static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9542 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9543 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9544}
9545
9546/*
9547** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9548*/
9549static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9550 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9551 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9552}
9553
9554
drh5eddca62001-06-30 21:53:53 +00009555/*
9556** Add 1 to the reference count for page iPage. If this is the second
9557** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009558** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009559** if this is the first reference to the page.
9560**
9561** Also check that the page number is in bounds.
9562*/
drh867db832014-09-26 02:41:05 +00009563static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +00009564 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +00009565 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009566 return 1;
9567 }
dan1235bb12012-04-03 17:43:28 +00009568 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009569 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009570 return 1;
9571 }
dan1235bb12012-04-03 17:43:28 +00009572 setPageReferenced(pCheck, iPage);
9573 return 0;
drh5eddca62001-06-30 21:53:53 +00009574}
9575
danielk1977afcdd022004-10-31 16:25:42 +00009576#ifndef SQLITE_OMIT_AUTOVACUUM
9577/*
9578** Check that the entry in the pointer-map for page iChild maps to
9579** page iParent, pointer type ptrType. If not, append an error message
9580** to pCheck.
9581*/
9582static void checkPtrmap(
9583 IntegrityCk *pCheck, /* Integrity check context */
9584 Pgno iChild, /* Child page number */
9585 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009586 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009587){
9588 int rc;
9589 u8 ePtrmapType;
9590 Pgno iPtrmapParent;
9591
9592 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9593 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009594 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009595 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009596 return;
9597 }
9598
9599 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009600 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009601 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9602 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9603 }
9604}
9605#endif
9606
drh5eddca62001-06-30 21:53:53 +00009607/*
9608** Check the integrity of the freelist or of an overflow page list.
9609** Verify that the number of pages on the list is N.
9610*/
drh30e58752002-03-02 20:41:57 +00009611static void checkList(
9612 IntegrityCk *pCheck, /* Integrity checking context */
9613 int isFreeList, /* True for a freelist. False for overflow page list */
9614 int iPage, /* Page number for first page in the list */
drheaac9992019-02-26 16:17:06 +00009615 u32 N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009616){
9617 int i;
drheaac9992019-02-26 16:17:06 +00009618 u32 expected = N;
drh91d58662018-07-20 13:39:28 +00009619 int nErrAtStart = pCheck->nErr;
9620 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009621 DbPage *pOvflPage;
9622 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +00009623 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +00009624 N--;
drh9584f582015-11-04 20:22:37 +00009625 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009626 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009627 break;
9628 }
danielk19773b8a05f2007-03-19 17:44:26 +00009629 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009630 if( isFreeList ){
drhae104742018-12-14 17:57:01 +00009631 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009632#ifndef SQLITE_OMIT_AUTOVACUUM
9633 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009634 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009635 }
9636#endif
drhae104742018-12-14 17:57:01 +00009637 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009638 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009639 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009640 N--;
9641 }else{
drhae104742018-12-14 17:57:01 +00009642 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009643 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009644#ifndef SQLITE_OMIT_AUTOVACUUM
9645 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009646 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009647 }
9648#endif
drh867db832014-09-26 02:41:05 +00009649 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009650 }
9651 N -= n;
drh30e58752002-03-02 20:41:57 +00009652 }
drh30e58752002-03-02 20:41:57 +00009653 }
danielk1977afcdd022004-10-31 16:25:42 +00009654#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009655 else{
9656 /* If this database supports auto-vacuum and iPage is not the last
9657 ** page in this overflow list, check that the pointer-map entry for
9658 ** the following page matches iPage.
9659 */
9660 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009661 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009662 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009663 }
danielk1977afcdd022004-10-31 16:25:42 +00009664 }
9665#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009666 iPage = get4byte(pOvflData);
9667 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +00009668 }
9669 if( N && nErrAtStart==pCheck->nErr ){
9670 checkAppendMsg(pCheck,
9671 "%s is %d but should be %d",
9672 isFreeList ? "size" : "overflow list length",
9673 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +00009674 }
9675}
drhb7f91642004-10-31 02:22:47 +00009676#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009677
drh67731a92015-04-16 11:56:03 +00009678/*
9679** An implementation of a min-heap.
9680**
9681** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009682** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009683** and aHeap[N*2+1].
9684**
9685** The heap property is this: Every node is less than or equal to both
9686** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009687** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009688**
9689** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9690** the heap, preserving the heap property. The btreeHeapPull() routine
9691** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009692** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009693** property.
9694**
9695** This heap is used for cell overlap and coverage testing. Each u32
9696** entry represents the span of a cell or freeblock on a btree page.
9697** The upper 16 bits are the index of the first byte of a range and the
9698** lower 16 bits are the index of the last byte of that range.
9699*/
9700static void btreeHeapInsert(u32 *aHeap, u32 x){
9701 u32 j, i = ++aHeap[0];
9702 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009703 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009704 x = aHeap[j];
9705 aHeap[j] = aHeap[i];
9706 aHeap[i] = x;
9707 i = j;
9708 }
9709}
9710static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9711 u32 j, i, x;
9712 if( (x = aHeap[0])==0 ) return 0;
9713 *pOut = aHeap[1];
9714 aHeap[1] = aHeap[x];
9715 aHeap[x] = 0xffffffff;
9716 aHeap[0]--;
9717 i = 1;
9718 while( (j = i*2)<=aHeap[0] ){
9719 if( aHeap[j]>aHeap[j+1] ) j++;
9720 if( aHeap[i]<aHeap[j] ) break;
9721 x = aHeap[i];
9722 aHeap[i] = aHeap[j];
9723 aHeap[j] = x;
9724 i = j;
9725 }
9726 return 1;
9727}
9728
drhb7f91642004-10-31 02:22:47 +00009729#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009730/*
9731** Do various sanity checks on a single page of a tree. Return
9732** the tree depth. Root pages return 0. Parents of root pages
9733** return 1, and so forth.
9734**
9735** These checks are done:
9736**
9737** 1. Make sure that cells and freeblocks do not overlap
9738** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009739** 2. Make sure integer cell keys are in order.
9740** 3. Check the integrity of overflow pages.
9741** 4. Recursively call checkTreePage on all children.
9742** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009743*/
9744static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009745 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009746 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009747 i64 *piMinKey, /* Write minimum integer primary key here */
9748 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009749){
drhcbc6b712015-07-02 16:17:30 +00009750 MemPage *pPage = 0; /* The page being analyzed */
9751 int i; /* Loop counter */
9752 int rc; /* Result code from subroutine call */
9753 int depth = -1, d2; /* Depth of a subtree */
9754 int pgno; /* Page number */
9755 int nFrag; /* Number of fragmented bytes on the page */
9756 int hdr; /* Offset to the page header */
9757 int cellStart; /* Offset to the start of the cell pointer array */
9758 int nCell; /* Number of cells */
9759 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9760 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9761 ** False if IPK must be strictly less than maxKey */
9762 u8 *data; /* Page content */
9763 u8 *pCell; /* Cell content */
9764 u8 *pCellIdx; /* Next element of the cell pointer array */
9765 BtShared *pBt; /* The BtShared object that owns pPage */
9766 u32 pc; /* Address of a cell */
9767 u32 usableSize; /* Usable size of the page */
9768 u32 contentOffset; /* Offset to the start of the cell content area */
9769 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009770 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009771 const char *saved_zPfx = pCheck->zPfx;
9772 int saved_v1 = pCheck->v1;
9773 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009774 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009775
drh5eddca62001-06-30 21:53:53 +00009776 /* Check that the page exists
9777 */
drhd9cb6ac2005-10-20 07:28:17 +00009778 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009779 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009780 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009781 if( checkRef(pCheck, iPage) ) return 0;
9782 pCheck->zPfx = "Page %d: ";
9783 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009784 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009785 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009786 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009787 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009788 }
danielk197793caf5a2009-07-11 06:55:33 +00009789
9790 /* Clear MemPage.isInit to make sure the corruption detection code in
9791 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009792 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009793 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009794 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009795 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009796 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009797 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009798 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009799 }
drhb0ea9432019-02-09 21:06:40 +00009800 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
9801 assert( rc==SQLITE_CORRUPT );
9802 checkAppendMsg(pCheck, "free space corruption", rc);
9803 goto end_of_check;
9804 }
drhcbc6b712015-07-02 16:17:30 +00009805 data = pPage->aData;
9806 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009807
drhcbc6b712015-07-02 16:17:30 +00009808 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009809 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009810 contentOffset = get2byteNotZero(&data[hdr+5]);
9811 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9812
9813 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9814 ** number of cells on the page. */
9815 nCell = get2byte(&data[hdr+3]);
9816 assert( pPage->nCell==nCell );
9817
9818 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9819 ** immediately follows the b-tree page header. */
9820 cellStart = hdr + 12 - 4*pPage->leaf;
9821 assert( pPage->aCellIdx==&data[cellStart] );
9822 pCellIdx = &data[cellStart + 2*(nCell-1)];
9823
9824 if( !pPage->leaf ){
9825 /* Analyze the right-child page of internal pages */
9826 pgno = get4byte(&data[hdr+8]);
9827#ifndef SQLITE_OMIT_AUTOVACUUM
9828 if( pBt->autoVacuum ){
9829 pCheck->zPfx = "On page %d at right child: ";
9830 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9831 }
9832#endif
9833 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9834 keyCanBeEqual = 0;
9835 }else{
9836 /* For leaf pages, the coverage check will occur in the same loop
9837 ** as the other cell checks, so initialize the heap. */
9838 heap = pCheck->heap;
9839 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009840 }
9841
drhcbc6b712015-07-02 16:17:30 +00009842 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9843 ** integer offsets to the cell contents. */
9844 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009845 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009846
drhcbc6b712015-07-02 16:17:30 +00009847 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009848 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009849 assert( pCellIdx==&data[cellStart + i*2] );
9850 pc = get2byteAligned(pCellIdx);
9851 pCellIdx -= 2;
9852 if( pc<contentOffset || pc>usableSize-4 ){
9853 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9854 pc, contentOffset, usableSize-4);
9855 doCoverageCheck = 0;
9856 continue;
shaneh195475d2010-02-19 04:28:08 +00009857 }
drhcbc6b712015-07-02 16:17:30 +00009858 pCell = &data[pc];
9859 pPage->xParseCell(pPage, pCell, &info);
9860 if( pc+info.nSize>usableSize ){
9861 checkAppendMsg(pCheck, "Extends off end of page");
9862 doCoverageCheck = 0;
9863 continue;
drh5eddca62001-06-30 21:53:53 +00009864 }
9865
drhcbc6b712015-07-02 16:17:30 +00009866 /* Check for integer primary key out of range */
9867 if( pPage->intKey ){
9868 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9869 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9870 }
9871 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009872 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009873 }
9874
9875 /* Check the content overflow list */
9876 if( info.nPayload>info.nLocal ){
drheaac9992019-02-26 16:17:06 +00009877 u32 nPage; /* Number of pages on the overflow chain */
drhcbc6b712015-07-02 16:17:30 +00009878 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009879 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009880 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009881 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009882#ifndef SQLITE_OMIT_AUTOVACUUM
9883 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009884 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009885 }
9886#endif
drh867db832014-09-26 02:41:05 +00009887 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009888 }
9889
drh5eddca62001-06-30 21:53:53 +00009890 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009891 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009892 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009893#ifndef SQLITE_OMIT_AUTOVACUUM
9894 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009895 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009896 }
9897#endif
drhcbc6b712015-07-02 16:17:30 +00009898 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9899 keyCanBeEqual = 0;
9900 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009901 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009902 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009903 }
drhcbc6b712015-07-02 16:17:30 +00009904 }else{
9905 /* Populate the coverage-checking heap for leaf pages */
9906 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009907 }
9908 }
drhcbc6b712015-07-02 16:17:30 +00009909 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009910
drh5eddca62001-06-30 21:53:53 +00009911 /* Check for complete coverage of the page
9912 */
drh867db832014-09-26 02:41:05 +00009913 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009914 if( doCoverageCheck && pCheck->mxErr>0 ){
9915 /* For leaf pages, the min-heap has already been initialized and the
9916 ** cells have already been inserted. But for internal pages, that has
9917 ** not yet been done, so do it now */
9918 if( !pPage->leaf ){
9919 heap = pCheck->heap;
9920 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009921 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009922 u32 size;
9923 pc = get2byteAligned(&data[cellStart+i*2]);
9924 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009925 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009926 }
drh2e38c322004-09-03 18:38:44 +00009927 }
drhcbc6b712015-07-02 16:17:30 +00009928 /* Add the freeblocks to the min-heap
9929 **
9930 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009931 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009932 ** freeblocks on the page.
9933 */
drh8c2bbb62009-07-10 02:52:20 +00009934 i = get2byte(&data[hdr+1]);
9935 while( i>0 ){
9936 int size, j;
drh5860a612019-02-12 16:58:26 +00009937 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +00009938 size = get2byte(&data[i+2]);
drh5860a612019-02-12 16:58:26 +00009939 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
drhe56d4302015-07-08 01:22:52 +00009940 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009941 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9942 ** big-endian integer which is the offset in the b-tree page of the next
9943 ** freeblock in the chain, or zero if the freeblock is the last on the
9944 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009945 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009946 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9947 ** increasing offset. */
drh5860a612019-02-12 16:58:26 +00009948 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
9949 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +00009950 i = j;
drh2e38c322004-09-03 18:38:44 +00009951 }
drhcbc6b712015-07-02 16:17:30 +00009952 /* Analyze the min-heap looking for overlap between cells and/or
9953 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009954 **
9955 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9956 ** There is an implied first entry the covers the page header, the cell
9957 ** pointer index, and the gap between the cell pointer index and the start
9958 ** of cell content.
9959 **
9960 ** The loop below pulls entries from the min-heap in order and compares
9961 ** the start_address against the previous end_address. If there is an
9962 ** overlap, that means bytes are used multiple times. If there is a gap,
9963 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009964 */
9965 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009966 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009967 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009968 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009969 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009970 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009971 break;
drh67731a92015-04-16 11:56:03 +00009972 }else{
drhcbc6b712015-07-02 16:17:30 +00009973 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009974 prev = x;
drh2e38c322004-09-03 18:38:44 +00009975 }
9976 }
drhcbc6b712015-07-02 16:17:30 +00009977 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009978 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9979 ** is stored in the fifth field of the b-tree page header.
9980 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9981 ** number of fragmented free bytes within the cell content area.
9982 */
drhcbc6b712015-07-02 16:17:30 +00009983 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009984 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009985 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009986 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009987 }
9988 }
drh867db832014-09-26 02:41:05 +00009989
9990end_of_check:
drh72e191e2015-07-04 11:14:20 +00009991 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009992 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009993 pCheck->zPfx = saved_zPfx;
9994 pCheck->v1 = saved_v1;
9995 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009996 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009997}
drhb7f91642004-10-31 02:22:47 +00009998#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009999
drhb7f91642004-10-31 02:22:47 +000010000#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010001/*
10002** This routine does a complete check of the given BTree file. aRoot[] is
10003** an array of pages numbers were each page number is the root page of
10004** a table. nRoot is the number of entries in aRoot.
10005**
danielk19773509a652009-07-06 18:56:13 +000010006** A read-only or read-write transaction must be opened before calling
10007** this function.
10008**
drhc890fec2008-08-01 20:10:08 +000010009** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +000010010** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +000010011** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +000010012** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +000010013*/
drh1dcdbc02007-01-27 02:24:54 +000010014char *sqlite3BtreeIntegrityCheck(
10015 Btree *p, /* The btree to be checked */
10016 int *aRoot, /* An array of root pages numbers for individual trees */
10017 int nRoot, /* Number of entries in aRoot[] */
10018 int mxErr, /* Stop reporting errors after this many */
10019 int *pnErr /* Write number of errors seen to this variable */
10020){
danielk197789d40042008-11-17 14:20:56 +000010021 Pgno i;
drhaaab5722002-02-19 13:39:21 +000010022 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +000010023 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +000010024 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +000010025 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +000010026 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +000010027
drhd677b3d2007-08-20 22:48:41 +000010028 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +000010029 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +000010030 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10031 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +000010032 sCheck.pBt = pBt;
10033 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +000010034 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +000010035 sCheck.mxErr = mxErr;
10036 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +000010037 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +000010038 sCheck.zPfx = 0;
10039 sCheck.v1 = 0;
10040 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +000010041 sCheck.aPgRef = 0;
10042 sCheck.heap = 0;
10043 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +000010044 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +000010045 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +000010046 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +000010047 }
dan1235bb12012-04-03 17:43:28 +000010048
10049 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10050 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +000010051 sCheck.mallocFailed = 1;
10052 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +000010053 }
drhe05b3f82015-07-01 17:53:49 +000010054 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10055 if( sCheck.heap==0 ){
10056 sCheck.mallocFailed = 1;
10057 goto integrity_ck_cleanup;
10058 }
10059
drh42cac6d2004-11-20 20:31:11 +000010060 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +000010061 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +000010062
10063 /* Check the integrity of the freelist
10064 */
drh867db832014-09-26 02:41:05 +000010065 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +000010066 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +000010067 get4byte(&pBt->pPage1->aData[36]));
10068 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +000010069
10070 /* Check all the tables.
10071 */
drh040d77a2018-07-20 15:44:09 +000010072#ifndef SQLITE_OMIT_AUTOVACUUM
10073 if( pBt->autoVacuum ){
10074 int mx = 0;
10075 int mxInHdr;
10076 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10077 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10078 if( mx!=mxInHdr ){
10079 checkAppendMsg(&sCheck,
10080 "max rootpage (%d) disagrees with header (%d)",
10081 mx, mxInHdr
10082 );
10083 }
10084 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10085 checkAppendMsg(&sCheck,
10086 "incremental_vacuum enabled with a max rootpage of zero"
10087 );
10088 }
10089#endif
drhcbc6b712015-07-02 16:17:30 +000010090 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +000010091 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +000010092 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +000010093 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +000010094 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +000010095#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +000010096 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +000010097 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010098 }
10099#endif
drhcbc6b712015-07-02 16:17:30 +000010100 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +000010101 }
drhcbc6b712015-07-02 16:17:30 +000010102 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +000010103
10104 /* Make sure every page in the file is referenced
10105 */
drh1dcdbc02007-01-27 02:24:54 +000010106 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +000010107#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +000010108 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +000010109 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +000010110 }
danielk1977afcdd022004-10-31 16:25:42 +000010111#else
10112 /* If the database supports auto-vacuum, make sure no tables contain
10113 ** references to pointer-map pages.
10114 */
dan1235bb12012-04-03 17:43:28 +000010115 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +000010116 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010117 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +000010118 }
dan1235bb12012-04-03 17:43:28 +000010119 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +000010120 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010121 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +000010122 }
10123#endif
drh5eddca62001-06-30 21:53:53 +000010124 }
10125
drh5eddca62001-06-30 21:53:53 +000010126 /* Clean up and report errors.
10127 */
drhe05b3f82015-07-01 17:53:49 +000010128integrity_ck_cleanup:
10129 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +000010130 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +000010131 if( sCheck.mallocFailed ){
drh0cdbe1a2018-05-09 13:46:26 +000010132 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010133 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +000010134 }
drh1dcdbc02007-01-27 02:24:54 +000010135 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +000010136 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010137 /* Make sure this analysis did not leave any unref() pages. */
10138 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10139 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +000010140 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +000010141}
drhb7f91642004-10-31 02:22:47 +000010142#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +000010143
drh73509ee2003-04-06 20:44:45 +000010144/*
drhd4e0bb02012-05-27 01:19:04 +000010145** Return the full pathname of the underlying database file. Return
10146** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +000010147**
10148** The pager filename is invariant as long as the pager is
10149** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +000010150*/
danielk1977aef0bf62005-12-30 16:28:01 +000010151const char *sqlite3BtreeGetFilename(Btree *p){
10152 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +000010153 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +000010154}
10155
10156/*
danielk19775865e3d2004-06-14 06:03:57 +000010157** Return the pathname of the journal file for this database. The return
10158** value of this routine is the same regardless of whether the journal file
10159** has been created or not.
drhd0679ed2007-08-28 22:24:34 +000010160**
10161** The pager journal filename is invariant as long as the pager is
10162** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +000010163*/
danielk1977aef0bf62005-12-30 16:28:01 +000010164const char *sqlite3BtreeGetJournalname(Btree *p){
10165 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +000010166 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +000010167}
10168
danielk19771d850a72004-05-31 08:26:49 +000010169/*
10170** Return non-zero if a transaction is active.
10171*/
danielk1977aef0bf62005-12-30 16:28:01 +000010172int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +000010173 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +000010174 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +000010175}
10176
dana550f2d2010-08-02 10:47:05 +000010177#ifndef SQLITE_OMIT_WAL
10178/*
10179** Run a checkpoint on the Btree passed as the first argument.
10180**
10181** Return SQLITE_LOCKED if this or any other connection has an open
10182** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +000010183**
dancdc1f042010-11-18 12:11:05 +000010184** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +000010185*/
dancdc1f042010-11-18 12:11:05 +000010186int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +000010187 int rc = SQLITE_OK;
10188 if( p ){
10189 BtShared *pBt = p->pBt;
10190 sqlite3BtreeEnter(p);
10191 if( pBt->inTransaction!=TRANS_NONE ){
10192 rc = SQLITE_LOCKED;
10193 }else{
dan7fb89902016-08-12 16:21:15 +000010194 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +000010195 }
10196 sqlite3BtreeLeave(p);
10197 }
10198 return rc;
10199}
10200#endif
10201
danielk19771d850a72004-05-31 08:26:49 +000010202/*
danielk19772372c2b2006-06-27 16:34:56 +000010203** Return non-zero if a read (or write) transaction is active.
10204*/
10205int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +000010206 assert( p );
drhe5fe6902007-12-07 18:55:28 +000010207 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +000010208 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +000010209}
10210
danielk197704103022009-02-03 16:51:24 +000010211int sqlite3BtreeIsInBackup(Btree *p){
10212 assert( p );
10213 assert( sqlite3_mutex_held(p->db->mutex) );
10214 return p->nBackup!=0;
10215}
10216
danielk19772372c2b2006-06-27 16:34:56 +000010217/*
danielk1977da184232006-01-05 11:34:32 +000010218** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000010219** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000010220** purposes (for example, to store a high-level schema associated with
10221** the shared-btree). The btree layer manages reference counting issues.
10222**
10223** The first time this is called on a shared-btree, nBytes bytes of memory
10224** are allocated, zeroed, and returned to the caller. For each subsequent
10225** call the nBytes parameter is ignored and a pointer to the same blob
10226** of memory returned.
10227**
danielk1977171bfed2008-06-23 09:50:50 +000010228** If the nBytes parameter is 0 and the blob of memory has not yet been
10229** allocated, a null pointer is returned. If the blob has already been
10230** allocated, it is returned as normal.
10231**
danielk1977da184232006-01-05 11:34:32 +000010232** Just before the shared-btree is closed, the function passed as the
10233** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000010234** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000010235** on the memory, the btree layer does that.
10236*/
10237void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10238 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000010239 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000010240 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000010241 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000010242 pBt->xFreeSchema = xFree;
10243 }
drh27641702007-08-22 02:56:42 +000010244 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000010245 return pBt->pSchema;
10246}
10247
danielk1977c87d34d2006-01-06 13:00:28 +000010248/*
danielk1977404ca072009-03-16 13:19:36 +000010249** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10250** btree as the argument handle holds an exclusive lock on the
10251** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000010252*/
10253int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000010254 int rc;
drhe5fe6902007-12-07 18:55:28 +000010255 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000010256 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +000010257 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
10258 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000010259 sqlite3BtreeLeave(p);
10260 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000010261}
10262
drha154dcd2006-03-22 22:10:07 +000010263
10264#ifndef SQLITE_OMIT_SHARED_CACHE
10265/*
10266** Obtain a lock on the table whose root page is iTab. The
10267** lock is a write lock if isWritelock is true or a read lock
10268** if it is false.
10269*/
danielk1977c00da102006-01-07 13:21:04 +000010270int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000010271 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000010272 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000010273 if( p->sharable ){
10274 u8 lockType = READ_LOCK + isWriteLock;
10275 assert( READ_LOCK+1==WRITE_LOCK );
10276 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000010277
drh6a9ad3d2008-04-02 16:29:30 +000010278 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010279 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010280 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010281 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010282 }
10283 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010284 }
10285 return rc;
10286}
drha154dcd2006-03-22 22:10:07 +000010287#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010288
danielk1977b4e9af92007-05-01 17:49:49 +000010289#ifndef SQLITE_OMIT_INCRBLOB
10290/*
10291** Argument pCsr must be a cursor opened for writing on an
10292** INTKEY table currently pointing at a valid table entry.
10293** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010294**
10295** Only the data content may only be modified, it is not possible to
10296** change the length of the data stored. If this function is called with
10297** parameters that attempt to write past the end of the existing data,
10298** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010299*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010300int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010301 int rc;
dan7a2347e2016-01-07 16:43:54 +000010302 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010303 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010304 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010305
danielk1977c9000e62009-07-08 13:55:28 +000010306 rc = restoreCursorPosition(pCsr);
10307 if( rc!=SQLITE_OK ){
10308 return rc;
10309 }
danielk19773588ceb2008-06-10 17:30:26 +000010310 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10311 if( pCsr->eState!=CURSOR_VALID ){
10312 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010313 }
10314
dan227a1c42013-04-03 11:17:39 +000010315 /* Save the positions of all other cursors open on this table. This is
10316 ** required in case any of them are holding references to an xFetch
10317 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010318 **
drh3f387402014-09-24 01:23:00 +000010319 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010320 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10321 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010322 */
drh370c9f42013-04-03 20:04:04 +000010323 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10324 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010325
danielk1977c9000e62009-07-08 13:55:28 +000010326 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010327 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010328 ** (b) there is a read/write transaction open,
10329 ** (c) the connection holds a write-lock on the table (if required),
10330 ** (d) there are no conflicting read-locks, and
10331 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010332 */
drh036dbec2014-03-11 23:40:44 +000010333 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000010334 return SQLITE_READONLY;
10335 }
drhc9166342012-01-05 23:32:06 +000010336 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10337 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010338 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10339 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000010340 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000010341
drhfb192682009-07-11 18:26:28 +000010342 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000010343}
danielk19772dec9702007-05-02 16:48:37 +000010344
10345/*
dan5a500af2014-03-11 20:33:04 +000010346** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000010347*/
dan5a500af2014-03-11 20:33:04 +000010348void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000010349 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000010350 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000010351}
danielk1977b4e9af92007-05-01 17:49:49 +000010352#endif
dane04dc882010-04-20 18:53:15 +000010353
10354/*
10355** Set both the "read version" (single byte at byte offset 18) and
10356** "write version" (single byte at byte offset 19) fields in the database
10357** header to iVersion.
10358*/
10359int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10360 BtShared *pBt = pBtree->pBt;
10361 int rc; /* Return code */
10362
dane04dc882010-04-20 18:53:15 +000010363 assert( iVersion==1 || iVersion==2 );
10364
danb9780022010-04-21 18:37:57 +000010365 /* If setting the version fields to 1, do not automatically open the
10366 ** WAL connection, even if the version fields are currently set to 2.
10367 */
drhc9166342012-01-05 23:32:06 +000010368 pBt->btsFlags &= ~BTS_NO_WAL;
10369 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000010370
drhbb2d9b12018-06-06 16:28:40 +000010371 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000010372 if( rc==SQLITE_OK ){
10373 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000010374 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000010375 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000010376 if( rc==SQLITE_OK ){
10377 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10378 if( rc==SQLITE_OK ){
10379 aData[18] = (u8)iVersion;
10380 aData[19] = (u8)iVersion;
10381 }
10382 }
10383 }
dane04dc882010-04-20 18:53:15 +000010384 }
10385
drhc9166342012-01-05 23:32:06 +000010386 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000010387 return rc;
10388}
dan428c2182012-08-06 18:50:11 +000010389
drhe0997b32015-03-20 14:57:50 +000010390/*
10391** Return true if the cursor has a hint specified. This routine is
10392** only used from within assert() statements
10393*/
10394int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10395 return (pCsr->hints & mask)!=0;
10396}
drhe0997b32015-03-20 14:57:50 +000010397
drh781597f2014-05-21 08:21:07 +000010398/*
10399** Return true if the given Btree is read-only.
10400*/
10401int sqlite3BtreeIsReadonly(Btree *p){
10402 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10403}
drhdef68892014-11-04 12:11:23 +000010404
10405/*
10406** Return the size of the header added to each page by this module.
10407*/
drh37c057b2014-12-30 00:57:29 +000010408int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000010409
drh5a1fb182016-01-08 19:34:39 +000010410#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000010411/*
10412** Return true if the Btree passed as the only argument is sharable.
10413*/
10414int sqlite3BtreeSharable(Btree *p){
10415 return p->sharable;
10416}
dan272989b2016-07-06 10:12:02 +000010417
10418/*
10419** Return the number of connections to the BtShared object accessed by
10420** the Btree handle passed as the only argument. For private caches
10421** this is always 1. For shared caches it may be 1 or greater.
10422*/
10423int sqlite3BtreeConnectionCount(Btree *p){
10424 testcase( p->sharable );
10425 return p->pBt->nRef;
10426}
drh5a1fb182016-01-08 19:34:39 +000010427#endif