blob: a969dd195cf86ba3f9bb279715e6ccda5282d1cb [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
danielk19774e17d142005-01-16 09:06:33 +000012** $Id: btree.c,v 1.236 2005/01/16 09:06:34 danielk1977 Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
15** For a detailed discussion of BTrees, refer to
16**
17** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
18** "Sorting And Searching", pages 473-480. Addison-Wesley
19** Publishing Company, Reading, Massachusetts.
20**
21** The basic idea is that each page of the file contains N database
22** entries and N+1 pointers to subpages.
23**
24** ----------------------------------------------------------------
25** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
26** ----------------------------------------------------------------
27**
28** All of the keys on the page that Ptr(0) points to have values less
29** than Key(0). All of the keys on page Ptr(1) and its subpages have
30** values greater than Key(0) and less than Key(1). All of the keys
31** on Ptr(N+1) and its subpages have values greater than Key(N). And
32** so forth.
33**
drh5e00f6c2001-09-13 13:46:56 +000034** Finding a particular key requires reading O(log(M)) pages from the
35** disk where M is the number of entries in the tree.
drh8b2f49b2001-06-08 00:21:52 +000036**
37** In this implementation, a single file can hold one or more separate
38** BTrees. Each BTree is identified by the index of its root page. The
drh9e572e62004-04-23 23:43:10 +000039** key and data for any entry are combined to form the "payload". A
40** fixed amount of payload can be carried directly on the database
41** page. If the payload is larger than the preset amount then surplus
42** bytes are stored on overflow pages. The payload for an entry
43** and the preceding pointer are combined to form a "Cell". Each
44** page has a small header which contains the Ptr(N+1) pointer and other
45** information such as the size of key and data.
drh8b2f49b2001-06-08 00:21:52 +000046**
drh9e572e62004-04-23 23:43:10 +000047** FORMAT DETAILS
48**
49** The file is divided into pages. The first page is called page 1,
50** the second is page 2, and so forth. A page number of zero indicates
51** "no such page". The page size can be anything between 512 and 65536.
52** Each page can be either a btree page, a freelist page or an overflow
53** page.
54**
55** The first page is always a btree page. The first 100 bytes of the first
drh271efa52004-05-30 19:19:05 +000056** page contain a special header (the "file header") that describes the file.
57** The format of the file header is as follows:
drh9e572e62004-04-23 23:43:10 +000058**
59** OFFSET SIZE DESCRIPTION
drhde647132004-05-07 17:57:49 +000060** 0 16 Header string: "SQLite format 3\000"
drh9e572e62004-04-23 23:43:10 +000061** 16 2 Page size in bytes.
62** 18 1 File format write version
63** 19 1 File format read version
drh6f11bef2004-05-13 01:12:56 +000064** 20 1 Bytes of unused space at the end of each page
65** 21 1 Max embedded payload fraction
66** 22 1 Min embedded payload fraction
67** 23 1 Min leaf payload fraction
68** 24 4 File change counter
69** 28 4 Reserved for future use
drh9e572e62004-04-23 23:43:10 +000070** 32 4 First freelist page
71** 36 4 Number of freelist pages in the file
72** 40 60 15 4-byte meta values passed to higher layers
73**
74** All of the integer values are big-endian (most significant byte first).
drh6f11bef2004-05-13 01:12:56 +000075**
drhab01f612004-05-22 02:55:23 +000076** The file change counter is incremented when the database is changed more
drh6f11bef2004-05-13 01:12:56 +000077** than once within the same second. This counter, together with the
78** modification time of the file, allows other processes to know
79** when the file has changed and thus when they need to flush their
80** cache.
81**
82** The max embedded payload fraction is the amount of the total usable
83** space in a page that can be consumed by a single cell for standard
84** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
85** is to limit the maximum cell size so that at least 4 cells will fit
drhab01f612004-05-22 02:55:23 +000086** on one page. Thus the default max embedded payload fraction is 64.
drh6f11bef2004-05-13 01:12:56 +000087**
88** If the payload for a cell is larger than the max payload, then extra
89** payload is spilled to overflow pages. Once an overflow page is allocated,
90** as many bytes as possible are moved into the overflow pages without letting
91** the cell size drop below the min embedded payload fraction.
92**
93** The min leaf payload fraction is like the min embedded payload fraction
94** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
95** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
96** not specified in the header.
drh9e572e62004-04-23 23:43:10 +000097**
drh43605152004-05-29 21:46:49 +000098** Each btree pages is divided into three sections: The header, the
99** cell pointer array, and the cell area area. Page 1 also has a 100-byte
drh271efa52004-05-30 19:19:05 +0000100** file header that occurs before the page header.
101**
102** |----------------|
103** | file header | 100 bytes. Page 1 only.
104** |----------------|
105** | page header | 8 bytes for leaves. 12 bytes for interior nodes
106** |----------------|
107** | cell pointer | | 2 bytes per cell. Sorted order.
108** | array | | Grows downward
109** | | v
110** |----------------|
111** | unallocated |
112** | space |
113** |----------------| ^ Grows upwards
114** | cell content | | Arbitrary order interspersed with freeblocks.
115** | area | | and free space fragments.
116** |----------------|
drh43605152004-05-29 21:46:49 +0000117**
118** The page headers looks like this:
drh9e572e62004-04-23 23:43:10 +0000119**
120** OFFSET SIZE DESCRIPTION
drh6f11bef2004-05-13 01:12:56 +0000121** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
drh9e572e62004-04-23 23:43:10 +0000122** 1 2 byte offset to the first freeblock
drh43605152004-05-29 21:46:49 +0000123** 3 2 number of cells on this page
drh271efa52004-05-30 19:19:05 +0000124** 5 2 first byte of the cell content area
drh43605152004-05-29 21:46:49 +0000125** 7 1 number of fragmented free bytes
drh271efa52004-05-30 19:19:05 +0000126** 8 4 Right child (the Ptr(N+1) value). Omitted on leaves.
drh9e572e62004-04-23 23:43:10 +0000127**
128** The flags define the format of this btree page. The leaf flag means that
129** this page has no children. The zerodata flag means that this page carries
drh44f87bd2004-09-27 13:19:51 +0000130** only keys and no data. The intkey flag means that the key is a integer
131** which is stored in the key size entry of the cell header rather than in
132** the payload area.
drh9e572e62004-04-23 23:43:10 +0000133**
drh43605152004-05-29 21:46:49 +0000134** The cell pointer array begins on the first byte after the page header.
135** The cell pointer array contains zero or more 2-byte numbers which are
136** offsets from the beginning of the page to the cell content in the cell
137** content area. The cell pointers occur in sorted order. The system strives
138** to keep free space after the last cell pointer so that new cells can
drh44f87bd2004-09-27 13:19:51 +0000139** be easily added without having to defragment the page.
drh43605152004-05-29 21:46:49 +0000140**
141** Cell content is stored at the very end of the page and grows toward the
142** beginning of the page.
143**
144** Unused space within the cell content area is collected into a linked list of
145** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
146** to the first freeblock is given in the header. Freeblocks occur in
147** increasing order. Because a freeblock must be at least 4 bytes in size,
148** any group of 3 or fewer unused bytes in the cell content area cannot
149** exist on the freeblock chain. A group of 3 or fewer free bytes is called
150** a fragment. The total number of bytes in all fragments is recorded.
151** in the page header at offset 7.
152**
153** SIZE DESCRIPTION
154** 2 Byte offset of the next freeblock
155** 2 Bytes in this freeblock
156**
157** Cells are of variable length. Cells are stored in the cell content area at
158** the end of the page. Pointers to the cells are in the cell pointer array
159** that immediately follows the page header. Cells is not necessarily
160** contiguous or in order, but cell pointers are contiguous and in order.
161**
162** Cell content makes use of variable length integers. A variable
163** length integer is 1 to 9 bytes where the lower 7 bits of each
drh9e572e62004-04-23 23:43:10 +0000164** byte are used. The integer consists of all bytes that have bit 8 set and
drh6f11bef2004-05-13 01:12:56 +0000165** the first byte with bit 8 clear. The most significant byte of the integer
drhab01f612004-05-22 02:55:23 +0000166** appears first. A variable-length integer may not be more than 9 bytes long.
167** As a special case, all 8 bytes of the 9th byte are used as data. This
168** allows a 64-bit integer to be encoded in 9 bytes.
drh9e572e62004-04-23 23:43:10 +0000169**
170** 0x00 becomes 0x00000000
drh6f11bef2004-05-13 01:12:56 +0000171** 0x7f becomes 0x0000007f
172** 0x81 0x00 becomes 0x00000080
173** 0x82 0x00 becomes 0x00000100
174** 0x80 0x7f becomes 0x0000007f
175** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
drh9e572e62004-04-23 23:43:10 +0000176** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
177**
178** Variable length integers are used for rowids and to hold the number of
179** bytes of key and data in a btree cell.
180**
drh43605152004-05-29 21:46:49 +0000181** The content of a cell looks like this:
drh9e572e62004-04-23 23:43:10 +0000182**
183** SIZE DESCRIPTION
drh3aac2dd2004-04-26 14:10:20 +0000184** 4 Page number of the left child. Omitted if leaf flag is set.
185** var Number of bytes of data. Omitted if the zerodata flag is set.
186** var Number of bytes of key. Or the key itself if intkey flag is set.
drh9e572e62004-04-23 23:43:10 +0000187** * Payload
188** 4 First page of the overflow chain. Omitted if no overflow
189**
190** Overflow pages form a linked list. Each page except the last is completely
191** filled with data (pagesize - 4 bytes). The last page can have as little
192** as 1 byte of data.
193**
194** SIZE DESCRIPTION
195** 4 Page number of next overflow page
196** * Data
197**
198** Freelist pages come in two subtypes: trunk pages and leaf pages. The
199** file header points to first in a linked list of trunk page. Each trunk
200** page points to multiple leaf pages. The content of a leaf page is
201** unspecified. A trunk page looks like this:
202**
203** SIZE DESCRIPTION
204** 4 Page number of next trunk page
205** 4 Number of leaf pointers on this page
206** * zero or more pages numbers of leaves
drha059ad02001-04-17 20:09:11 +0000207*/
208#include "sqliteInt.h"
209#include "pager.h"
210#include "btree.h"
drh1f595712004-06-15 01:40:29 +0000211#include "os.h"
drha059ad02001-04-17 20:09:11 +0000212#include <assert.h>
213
drh887dc4c2004-10-22 16:22:57 +0000214/*
215** This macro rounds values up so that if the value is an address it
216** is guaranteed to be an address that is aligned to an 8-byte boundary.
217*/
218#define FORCE_ALIGNMENT(X) (((X)+7)&~7)
drh4b70f112004-05-02 21:12:19 +0000219
drh4b70f112004-05-02 21:12:19 +0000220/* The following value is the maximum cell size assuming a maximum page
221** size give above.
222*/
drh2e38c322004-09-03 18:38:44 +0000223#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)
drh4b70f112004-05-02 21:12:19 +0000224
225/* The maximum number of cells on a single page of the database. This
226** assumes a minimum cell size of 3 bytes. Such small cells will be
227** exceedingly rare, but they are possible.
228*/
drh2e38c322004-09-03 18:38:44 +0000229#define MX_CELL(pBt) ((pBt->pageSize-8)/3)
drh4b70f112004-05-02 21:12:19 +0000230
paulb95a8862003-04-01 21:16:41 +0000231/* Forward declarations */
drh3aac2dd2004-04-26 14:10:20 +0000232typedef struct MemPage MemPage;
paulb95a8862003-04-01 21:16:41 +0000233
drh8c42ca92001-06-22 19:15:00 +0000234/*
drhbd03cae2001-06-02 02:40:57 +0000235** This is a magic string that appears at the beginning of every
drh8c42ca92001-06-22 19:15:00 +0000236** SQLite database in order to identify the file as a real database.
drhde647132004-05-07 17:57:49 +0000237** 123456789 123456 */
238static const char zMagicHeader[] = "SQLite format 3";
drh08ed44e2001-04-29 23:32:55 +0000239
240/*
drh4b70f112004-05-02 21:12:19 +0000241** Page type flags. An ORed combination of these flags appear as the
242** first byte of every BTree page.
drh8c42ca92001-06-22 19:15:00 +0000243*/
drhde647132004-05-07 17:57:49 +0000244#define PTF_INTKEY 0x01
drh9e572e62004-04-23 23:43:10 +0000245#define PTF_ZERODATA 0x02
drh8b18dd42004-05-12 19:18:15 +0000246#define PTF_LEAFDATA 0x04
247#define PTF_LEAF 0x08
drh8c42ca92001-06-22 19:15:00 +0000248
249/*
drh9e572e62004-04-23 23:43:10 +0000250** As each page of the file is loaded into memory, an instance of the following
251** structure is appended and initialized to zero. This structure stores
252** information about the page that is decoded from the raw file page.
drh14acc042001-06-10 19:56:58 +0000253**
drh72f82862001-05-24 21:06:34 +0000254** The pParent field points back to the parent page. This allows us to
255** walk up the BTree from any leaf to the root. Care must be taken to
256** unref() the parent page pointer when this page is no longer referenced.
drhbd03cae2001-06-02 02:40:57 +0000257** The pageDestructor() routine handles that chore.
drh7e3b0a02001-04-28 16:52:40 +0000258*/
259struct MemPage {
drha6abd042004-06-09 17:37:22 +0000260 u8 isInit; /* True if previously initialized. MUST BE FIRST! */
drh43605152004-05-29 21:46:49 +0000261 u8 idxShift; /* True if Cell indices have changed */
262 u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
263 u8 intKey; /* True if intkey flag is set */
264 u8 leaf; /* True if leaf flag is set */
265 u8 zeroData; /* True if table stores keys only */
266 u8 leafData; /* True if tables stores data on leaves only */
267 u8 hasData; /* True if this page stores data */
268 u8 hdrOffset; /* 100 for page 1. 0 otherwise */
drh271efa52004-05-30 19:19:05 +0000269 u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
drha2fce642004-06-05 00:01:44 +0000270 u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */
271 u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */
drh43605152004-05-29 21:46:49 +0000272 u16 cellOffset; /* Index in aData of first cell pointer */
273 u16 idxParent; /* Index in parent of this node */
274 u16 nFree; /* Number of free bytes on the page */
275 u16 nCell; /* Number of cells on this page, local and ovfl */
276 struct _OvflCell { /* Cells that will not fit on aData[] */
277 u8 *pCell; /* Pointers to the body of the overflow cell */
278 u16 idx; /* Insert this cell before idx-th non-overflow cell */
drha2fce642004-06-05 00:01:44 +0000279 } aOvfl[5];
drh43605152004-05-29 21:46:49 +0000280 struct Btree *pBt; /* Pointer back to BTree structure */
281 u8 *aData; /* Pointer back to the start of the page */
282 Pgno pgno; /* Page number for this page */
283 MemPage *pParent; /* The parent of this page. NULL for root */
drh8c42ca92001-06-22 19:15:00 +0000284};
drh7e3b0a02001-04-28 16:52:40 +0000285
286/*
drh3b7511c2001-05-26 13:15:44 +0000287** The in-memory image of a disk page has the auxiliary information appended
288** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
289** that extra information.
290*/
drh3aac2dd2004-04-26 14:10:20 +0000291#define EXTRA_SIZE sizeof(MemPage)
drh3b7511c2001-05-26 13:15:44 +0000292
293/*
drha059ad02001-04-17 20:09:11 +0000294** Everything we need to know about an open database
295*/
296struct Btree {
297 Pager *pPager; /* The page cache */
drh306dc212001-05-21 13:45:10 +0000298 BtCursor *pCursor; /* A list of all open cursors */
drh3aac2dd2004-04-26 14:10:20 +0000299 MemPage *pPage1; /* First page of the database */
drh663fc632002-02-02 18:49:19 +0000300 u8 inTrans; /* True if a transaction is in progress */
drhab01f612004-05-22 02:55:23 +0000301 u8 inStmt; /* True if we are in a statement subtransaction */
drh5df72a52002-06-06 23:16:05 +0000302 u8 readOnly; /* True if the underlying file is readonly */
drhab01f612004-05-22 02:55:23 +0000303 u8 maxEmbedFrac; /* Maximum payload as % of total page size */
304 u8 minEmbedFrac; /* Minimum payload as % of total page size */
305 u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
drh90f5ecb2004-07-22 01:19:35 +0000306 u8 pageSizeFixed; /* True if the page size can no longer be changed */
drha2fce642004-06-05 00:01:44 +0000307 u16 pageSize; /* Total number of bytes on a page */
drh887dc4c2004-10-22 16:22:57 +0000308 u16 psAligned; /* pageSize rounded up to a multiple of 8 */
drha2fce642004-06-05 00:01:44 +0000309 u16 usableSize; /* Number of usable bytes on each page */
drh6f11bef2004-05-13 01:12:56 +0000310 int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
311 int minLocal; /* Minimum local payload in non-LEAFDATA tables */
312 int maxLeaf; /* Maximum local payload in a LEAFDATA table */
313 int minLeaf; /* Minimum local payload in a LEAFDATA table */
danielk1977afcdd022004-10-31 16:25:42 +0000314#ifndef SQLITE_OMIT_AUTOVACUUM
315 u8 autoVacuum; /* True if database supports auto-vacuum */
316#endif
drha059ad02001-04-17 20:09:11 +0000317};
318typedef Btree Bt;
319
drh365d68f2001-05-11 11:02:46 +0000320/*
danielk1977ee5741e2004-05-31 10:01:34 +0000321** Btree.inTrans may take one of the following values.
322*/
323#define TRANS_NONE 0
324#define TRANS_READ 1
325#define TRANS_WRITE 2
326
327/*
drhfa1a98a2004-05-14 19:08:17 +0000328** An instance of the following structure is used to hold information
drh271efa52004-05-30 19:19:05 +0000329** about a cell. The parseCellPtr() function fills in this structure
drhab01f612004-05-22 02:55:23 +0000330** based on information extract from the raw disk page.
drhfa1a98a2004-05-14 19:08:17 +0000331*/
332typedef struct CellInfo CellInfo;
333struct CellInfo {
drh43605152004-05-29 21:46:49 +0000334 u8 *pCell; /* Pointer to the start of cell content */
drhfa1a98a2004-05-14 19:08:17 +0000335 i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
336 u32 nData; /* Number of bytes of data */
drh271efa52004-05-30 19:19:05 +0000337 u16 nHeader; /* Size of the cell content header in bytes */
drhfa1a98a2004-05-14 19:08:17 +0000338 u16 nLocal; /* Amount of payload held locally */
drhab01f612004-05-22 02:55:23 +0000339 u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
drh271efa52004-05-30 19:19:05 +0000340 u16 nSize; /* Size of the cell content on the main b-tree page */
drhfa1a98a2004-05-14 19:08:17 +0000341};
342
343/*
drh365d68f2001-05-11 11:02:46 +0000344** A cursor is a pointer to a particular entry in the BTree.
345** The entry is identified by its MemPage and the index in
drha34b6762004-05-07 13:30:42 +0000346** MemPage.aCell[] of the entry.
drh365d68f2001-05-11 11:02:46 +0000347*/
drh72f82862001-05-24 21:06:34 +0000348struct BtCursor {
drh5e2f8b92001-05-28 00:41:15 +0000349 Btree *pBt; /* The Btree to which this cursor belongs */
drh14acc042001-06-10 19:56:58 +0000350 BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
drh3aac2dd2004-04-26 14:10:20 +0000351 int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
352 void *pArg; /* First arg to xCompare() */
drh8b2f49b2001-06-08 00:21:52 +0000353 Pgno pgnoRoot; /* The root page of this tree */
drh5e2f8b92001-05-28 00:41:15 +0000354 MemPage *pPage; /* Page that contains the entry */
drh3aac2dd2004-04-26 14:10:20 +0000355 int idx; /* Index of the entry in pPage->aCell[] */
drhfa1a98a2004-05-14 19:08:17 +0000356 CellInfo info; /* A parse of the cell we are pointing at */
drhecdc7532001-09-23 02:35:53 +0000357 u8 wrFlag; /* True if writable */
drhc39e0002004-05-07 23:50:57 +0000358 u8 isValid; /* TRUE if points to a valid entry */
drh365d68f2001-05-11 11:02:46 +0000359};
drh7e3b0a02001-04-28 16:52:40 +0000360
drha059ad02001-04-17 20:09:11 +0000361/*
drh66cbd152004-09-01 16:12:25 +0000362** Forward declaration
363*/
364static int checkReadLocks(Btree*,Pgno,BtCursor*);
365
366
367/*
drhab01f612004-05-22 02:55:23 +0000368** Read or write a two- and four-byte big-endian integer values.
drh0d316a42002-08-11 20:10:47 +0000369*/
drh9e572e62004-04-23 23:43:10 +0000370static u32 get2byte(unsigned char *p){
371 return (p[0]<<8) | p[1];
drh0d316a42002-08-11 20:10:47 +0000372}
drh9e572e62004-04-23 23:43:10 +0000373static u32 get4byte(unsigned char *p){
374 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
375}
drh9e572e62004-04-23 23:43:10 +0000376static void put2byte(unsigned char *p, u32 v){
377 p[0] = v>>8;
378 p[1] = v;
379}
380static void put4byte(unsigned char *p, u32 v){
381 p[0] = v>>24;
382 p[1] = v>>16;
383 p[2] = v>>8;
384 p[3] = v;
385}
drh6f11bef2004-05-13 01:12:56 +0000386
drh9e572e62004-04-23 23:43:10 +0000387/*
drhab01f612004-05-22 02:55:23 +0000388** Routines to read and write variable-length integers. These used to
389** be defined locally, but now we use the varint routines in the util.c
390** file.
drh9e572e62004-04-23 23:43:10 +0000391*/
drh6d2fb152004-05-14 16:50:06 +0000392#define getVarint sqlite3GetVarint
393#define getVarint32 sqlite3GetVarint32
394#define putVarint sqlite3PutVarint
drh0d316a42002-08-11 20:10:47 +0000395
danielk1977599fcba2004-11-08 07:13:13 +0000396/* The database page the PENDING_BYTE occupies. This page is never used.
397** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
398** should possibly be consolidated (presumably in pager.h).
399*/
400#define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
danielk1977afcdd022004-10-31 16:25:42 +0000401
danielk1977599fcba2004-11-08 07:13:13 +0000402#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000403/*
drh42cac6d2004-11-20 20:31:11 +0000404** These macros define the location of the pointer-map entry for a
405** database page. The first argument to each is the number of usable
406** bytes on each page of the database (often 1024). The second is the
407** page number to look up in the pointer map.
danielk1977afcdd022004-10-31 16:25:42 +0000408**
409** PTRMAP_PAGENO returns the database page number of the pointer-map
410** page that stores the required pointer. PTRMAP_PTROFFSET returns
411** the offset of the requested map entry.
412**
413** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
414** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
danielk1977599fcba2004-11-08 07:13:13 +0000415** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
416** this test.
danielk1977afcdd022004-10-31 16:25:42 +0000417*/
418#define PTRMAP_PAGENO(pgsz, pgno) (((pgno-2)/(pgsz/5+1))*(pgsz/5+1)+2)
419#define PTRMAP_PTROFFSET(pgsz, pgno) (((pgno-2)%(pgsz/5+1)-1)*5)
danielk1977a19df672004-11-03 11:37:07 +0000420#define PTRMAP_ISPAGE(pgsz, pgno) (PTRMAP_PAGENO(pgsz,pgno)==pgno)
421
danielk1977afcdd022004-10-31 16:25:42 +0000422/*
danielk1977687566d2004-11-02 12:56:41 +0000423** The pointer map is a lookup table that contains an entry for each database
424** page in the file except for page 1. In this context 'database page' refers
425** to any page that is not part of the pointer map itself. Each pointer map
426** entry consists of a single byte 'type' and a 4 byte page number. The
427** PTRMAP_XXX identifiers below are the valid types. The interpretation
428** of the page-number depends on the type, as follows:
danielk1977afcdd022004-10-31 16:25:42 +0000429**
danielk1977687566d2004-11-02 12:56:41 +0000430** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
431** used in this case.
danielk1977afcdd022004-10-31 16:25:42 +0000432**
danielk1977687566d2004-11-02 12:56:41 +0000433** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
434** is not used in this case.
435**
436** PTRMAP_OVERFLOW1: The database page is the first page in a list of
437** overflow pages. The page number identifies the page that
438** contains the cell with a pointer to this overflow page.
439**
440** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
441** overflow pages. The page-number identifies the previous
442** page in the overflow page list.
443**
444** PTRMAP_BTREE: The database page is a non-root btree page. The page number
445** identifies the parent page in the btree.
danielk1977afcdd022004-10-31 16:25:42 +0000446*/
danielk1977687566d2004-11-02 12:56:41 +0000447#define PTRMAP_ROOTPAGE 1
448#define PTRMAP_FREEPAGE 2
449#define PTRMAP_OVERFLOW1 3
450#define PTRMAP_OVERFLOW2 4
451#define PTRMAP_BTREE 5
danielk1977afcdd022004-10-31 16:25:42 +0000452
453/*
454** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000455**
456** This routine updates the pointer map entry for page number 'key'
457** so that it maps to type 'eType' and parent page number 'pgno'.
458** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000459*/
460static int ptrmapPut(Btree *pBt, Pgno key, u8 eType, Pgno pgno){
461 u8 *pPtrmap; /* The pointer map page */
462 Pgno iPtrmap; /* The pointer map page number */
463 int offset; /* Offset in pointer map page */
464 int rc;
465
danielk1977ac11ee62005-01-15 12:45:51 +0000466 assert( pBt->autoVacuum );
danielk1977599fcba2004-11-08 07:13:13 +0000467 assert( key!=0 );
drh42cac6d2004-11-20 20:31:11 +0000468 iPtrmap = PTRMAP_PAGENO(pBt->usableSize, key);
danielk1977afcdd022004-10-31 16:25:42 +0000469 rc = sqlite3pager_get(pBt->pPager, iPtrmap, (void **)&pPtrmap);
danielk1977687566d2004-11-02 12:56:41 +0000470 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000471 return rc;
472 }
drh42cac6d2004-11-20 20:31:11 +0000473 offset = PTRMAP_PTROFFSET(pBt->usableSize, key);
danielk1977afcdd022004-10-31 16:25:42 +0000474
475 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=pgno ){
476 rc = sqlite3pager_write(pPtrmap);
477 if( rc!=0 ){
478 return rc;
479 }
480 pPtrmap[offset] = eType;
481 put4byte(&pPtrmap[offset+1], pgno);
482 }
483
484 sqlite3pager_unref(pPtrmap);
485 return SQLITE_OK;
486}
487
488/*
489** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000490**
491** This routine retrieves the pointer map entry for page 'key', writing
492** the type and parent page number to *pEType and *pPgno respectively.
493** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000494*/
495static int ptrmapGet(Btree *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
496 int iPtrmap; /* Pointer map page index */
497 u8 *pPtrmap; /* Pointer map page data */
498 int offset; /* Offset of entry in pointer map */
499 int rc;
500
drh42cac6d2004-11-20 20:31:11 +0000501 iPtrmap = PTRMAP_PAGENO(pBt->usableSize, key);
danielk1977afcdd022004-10-31 16:25:42 +0000502 rc = sqlite3pager_get(pBt->pPager, iPtrmap, (void **)&pPtrmap);
503 if( rc!=0 ){
504 return rc;
505 }
506
drh42cac6d2004-11-20 20:31:11 +0000507 offset = PTRMAP_PTROFFSET(pBt->usableSize, key);
danielk1977687566d2004-11-02 12:56:41 +0000508 if( pEType ) *pEType = pPtrmap[offset];
509 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000510
511 sqlite3pager_unref(pPtrmap);
512 return SQLITE_OK;
513}
514
515#endif /* SQLITE_OMIT_AUTOVACUUM */
516
drh0d316a42002-08-11 20:10:47 +0000517/*
drh271efa52004-05-30 19:19:05 +0000518** Given a btree page and a cell index (0 means the first cell on
519** the page, 1 means the second cell, and so forth) return a pointer
520** to the cell content.
521**
522** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000523*/
drh43605152004-05-29 21:46:49 +0000524static u8 *findCell(MemPage *pPage, int iCell){
525 u8 *data = pPage->aData;
526 assert( iCell>=0 );
527 assert( iCell<get2byte(&data[pPage->hdrOffset+3]) );
528 return data + get2byte(&data[pPage->cellOffset+2*iCell]);
529}
530
531/*
532** This a more complex version of findCell() that works for
533** pages that do contain overflow cells. See insert
534*/
535static u8 *findOverflowCell(MemPage *pPage, int iCell){
536 int i;
537 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000538 int k;
539 struct _OvflCell *pOvfl;
540 pOvfl = &pPage->aOvfl[i];
541 k = pOvfl->idx;
542 if( k<=iCell ){
543 if( k==iCell ){
544 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000545 }
546 iCell--;
547 }
548 }
549 return findCell(pPage, iCell);
550}
551
552/*
553** Parse a cell content block and fill in the CellInfo structure. There
554** are two versions of this function. parseCell() takes a cell index
555** as the second argument and parseCellPtr() takes a pointer to the
556** body of the cell as its second argument.
557*/
558static void parseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000559 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000560 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000561 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000562){
drh271efa52004-05-30 19:19:05 +0000563 int n; /* Number bytes in cell content header */
564 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000565
566 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000567 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000568 n = pPage->childPtrSize;
569 assert( n==4-4*pPage->leaf );
drh8b18dd42004-05-12 19:18:15 +0000570 if( pPage->hasData ){
drh271efa52004-05-30 19:19:05 +0000571 n += getVarint32(&pCell[n], &nPayload);
drh8b18dd42004-05-12 19:18:15 +0000572 }else{
drh271efa52004-05-30 19:19:05 +0000573 nPayload = 0;
drh3aac2dd2004-04-26 14:10:20 +0000574 }
danielk1977e0d4b062004-06-28 01:11:46 +0000575 n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
drh6f11bef2004-05-13 01:12:56 +0000576 pInfo->nHeader = n;
drh271efa52004-05-30 19:19:05 +0000577 pInfo->nData = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000578 if( !pPage->intKey ){
579 nPayload += pInfo->nKey;
580 }
drh271efa52004-05-30 19:19:05 +0000581 if( nPayload<=pPage->maxLocal ){
582 /* This is the (easy) common case where the entire payload fits
583 ** on the local page. No overflow is required.
584 */
585 int nSize; /* Total size of cell content in bytes */
drh6f11bef2004-05-13 01:12:56 +0000586 pInfo->nLocal = nPayload;
587 pInfo->iOverflow = 0;
drh271efa52004-05-30 19:19:05 +0000588 nSize = nPayload + n;
589 if( nSize<4 ){
590 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000591 }
drh271efa52004-05-30 19:19:05 +0000592 pInfo->nSize = nSize;
drh6f11bef2004-05-13 01:12:56 +0000593 }else{
drh271efa52004-05-30 19:19:05 +0000594 /* If the payload will not fit completely on the local page, we have
595 ** to decide how much to store locally and how much to spill onto
596 ** overflow pages. The strategy is to minimize the amount of unused
597 ** space on overflow pages while keeping the amount of local storage
598 ** in between minLocal and maxLocal.
599 **
600 ** Warning: changing the way overflow payload is distributed in any
601 ** way will result in an incompatible file format.
602 */
603 int minLocal; /* Minimum amount of payload held locally */
604 int maxLocal; /* Maximum amount of payload held locally */
605 int surplus; /* Overflow payload available for local storage */
606
607 minLocal = pPage->minLocal;
608 maxLocal = pPage->maxLocal;
609 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000610 if( surplus <= maxLocal ){
611 pInfo->nLocal = surplus;
612 }else{
613 pInfo->nLocal = minLocal;
614 }
615 pInfo->iOverflow = pInfo->nLocal + n;
616 pInfo->nSize = pInfo->iOverflow + 4;
617 }
drh3aac2dd2004-04-26 14:10:20 +0000618}
drh43605152004-05-29 21:46:49 +0000619static void parseCell(
620 MemPage *pPage, /* Page containing the cell */
621 int iCell, /* The cell index. First cell is 0 */
622 CellInfo *pInfo /* Fill in this structure */
623){
624 parseCellPtr(pPage, findCell(pPage, iCell), pInfo);
625}
drh3aac2dd2004-04-26 14:10:20 +0000626
627/*
drh43605152004-05-29 21:46:49 +0000628** Compute the total number of bytes that a Cell needs in the cell
629** data area of the btree-page. The return number includes the cell
630** data header and the local payload, but not any overflow page or
631** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000632*/
danielk1977bc6ada42004-06-30 08:20:16 +0000633#ifndef NDEBUG
drh43605152004-05-29 21:46:49 +0000634static int cellSize(MemPage *pPage, int iCell){
drh6f11bef2004-05-13 01:12:56 +0000635 CellInfo info;
drh43605152004-05-29 21:46:49 +0000636 parseCell(pPage, iCell, &info);
637 return info.nSize;
638}
danielk1977bc6ada42004-06-30 08:20:16 +0000639#endif
drh43605152004-05-29 21:46:49 +0000640static int cellSizePtr(MemPage *pPage, u8 *pCell){
641 CellInfo info;
642 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +0000643 return info.nSize;
drh3b7511c2001-05-26 13:15:44 +0000644}
645
danielk197779a40da2005-01-16 08:00:01 +0000646#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +0000647/*
danielk197779a40da2005-01-16 08:00:01 +0000648** If the cell with index iCell on page pPage contains a pointer
649** to an overflow page, insert an entry into the pointer-map
650** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +0000651*/
danielk197779a40da2005-01-16 08:00:01 +0000652static int ptrmapPutOvfl(MemPage *pPage, int iCell){
653 u8 *pCell;
654 pCell = findOverflowCell(pPage, iCell);
655 if( pCell ){
656 CellInfo info;
657 parseCellPtr(pPage, pCell, &info);
658 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
659 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
660 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
661 }
danielk1977ac11ee62005-01-15 12:45:51 +0000662 }
danielk197779a40da2005-01-16 08:00:01 +0000663 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +0000664}
danielk197779a40da2005-01-16 08:00:01 +0000665#endif
666
danielk1977ac11ee62005-01-15 12:45:51 +0000667
668/*
drhda200cc2004-05-09 11:51:38 +0000669** Do sanity checking on a page. Throw an exception if anything is
670** not right.
671**
672** This routine is used for internal error checking only. It is omitted
673** from most builds.
674*/
675#if defined(BTREE_DEBUG) && !defined(NDEBUG) && 0
676static void _pageIntegrity(MemPage *pPage){
drhb6f41482004-05-14 01:58:11 +0000677 int usableSize;
drhda200cc2004-05-09 11:51:38 +0000678 u8 *data;
drh43605152004-05-29 21:46:49 +0000679 int i, j, idx, c, pc, hdr, nFree;
680 int cellOffset;
681 int nCell, cellLimit;
drh2e38c322004-09-03 18:38:44 +0000682 u8 *used;
drhda200cc2004-05-09 11:51:38 +0000683
drh2e38c322004-09-03 18:38:44 +0000684 used = sqliteMallocRaw( pPage->pBt->pageSize );
685 if( used==0 ) return;
drhb6f41482004-05-14 01:58:11 +0000686 usableSize = pPage->pBt->usableSize;
drh887dc4c2004-10-22 16:22:57 +0000687 assert( pPage->aData==&((unsigned char*)pPage)[-pPage->pBt->psAligned] );
drhda200cc2004-05-09 11:51:38 +0000688 hdr = pPage->hdrOffset;
689 assert( hdr==(pPage->pgno==1 ? 100 : 0) );
690 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
691 c = pPage->aData[hdr];
692 if( pPage->isInit ){
693 assert( pPage->leaf == ((c & PTF_LEAF)!=0) );
694 assert( pPage->zeroData == ((c & PTF_ZERODATA)!=0) );
drh8b18dd42004-05-12 19:18:15 +0000695 assert( pPage->leafData == ((c & PTF_LEAFDATA)!=0) );
696 assert( pPage->intKey == ((c & (PTF_INTKEY|PTF_LEAFDATA))!=0) );
697 assert( pPage->hasData ==
698 !(pPage->zeroData || (!pPage->leaf && pPage->leafData)) );
drh43605152004-05-29 21:46:49 +0000699 assert( pPage->cellOffset==pPage->hdrOffset+12-4*pPage->leaf );
700 assert( pPage->nCell = get2byte(&pPage->aData[hdr+3]) );
drhda200cc2004-05-09 11:51:38 +0000701 }
702 data = pPage->aData;
drhb6f41482004-05-14 01:58:11 +0000703 memset(used, 0, usableSize);
drhda200cc2004-05-09 11:51:38 +0000704 for(i=0; i<hdr+10-pPage->leaf*4; i++) used[i] = 1;
705 nFree = 0;
706 pc = get2byte(&data[hdr+1]);
707 while( pc ){
708 int size;
drhb6f41482004-05-14 01:58:11 +0000709 assert( pc>0 && pc<usableSize-4 );
drhda200cc2004-05-09 11:51:38 +0000710 size = get2byte(&data[pc+2]);
drhb6f41482004-05-14 01:58:11 +0000711 assert( pc+size<=usableSize );
drhda200cc2004-05-09 11:51:38 +0000712 nFree += size;
713 for(i=pc; i<pc+size; i++){
714 assert( used[i]==0 );
715 used[i] = 1;
716 }
717 pc = get2byte(&data[pc]);
718 }
drhda200cc2004-05-09 11:51:38 +0000719 idx = 0;
drh43605152004-05-29 21:46:49 +0000720 nCell = get2byte(&data[hdr+3]);
721 cellLimit = get2byte(&data[hdr+5]);
722 assert( pPage->isInit==0
723 || pPage->nFree==nFree+data[hdr+7]+cellLimit-(cellOffset+2*nCell) );
724 cellOffset = pPage->cellOffset;
725 for(i=0; i<nCell; i++){
drhda200cc2004-05-09 11:51:38 +0000726 int size;
drh43605152004-05-29 21:46:49 +0000727 pc = get2byte(&data[cellOffset+2*i]);
drhb6f41482004-05-14 01:58:11 +0000728 assert( pc>0 && pc<usableSize-4 );
drhda200cc2004-05-09 11:51:38 +0000729 size = cellSize(pPage, &data[pc]);
drhb6f41482004-05-14 01:58:11 +0000730 assert( pc+size<=usableSize );
drh43605152004-05-29 21:46:49 +0000731 for(j=pc; j<pc+size; j++){
732 assert( used[j]==0 );
733 used[j] = 1;
drhda200cc2004-05-09 11:51:38 +0000734 }
drhda200cc2004-05-09 11:51:38 +0000735 }
drh43605152004-05-29 21:46:49 +0000736 for(i=cellOffset+2*nCell; i<cellimit; i++){
737 assert( used[i]==0 );
738 used[i] = 1;
739 }
drhda200cc2004-05-09 11:51:38 +0000740 nFree = 0;
drhb6f41482004-05-14 01:58:11 +0000741 for(i=0; i<usableSize; i++){
drhda200cc2004-05-09 11:51:38 +0000742 assert( used[i]<=1 );
743 if( used[i]==0 ) nFree++;
744 }
drh43605152004-05-29 21:46:49 +0000745 assert( nFree==data[hdr+7] );
drh2e38c322004-09-03 18:38:44 +0000746 sqliteFree(used);
drhda200cc2004-05-09 11:51:38 +0000747}
748#define pageIntegrity(X) _pageIntegrity(X)
749#else
750# define pageIntegrity(X)
751#endif
752
753/*
drh72f82862001-05-24 21:06:34 +0000754** Defragment the page given. All Cells are moved to the
755** beginning of the page and all free space is collected
756** into one big FreeBlk at the end of the page.
drh365d68f2001-05-11 11:02:46 +0000757*/
drh2e38c322004-09-03 18:38:44 +0000758static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +0000759 int i; /* Loop counter */
760 int pc; /* Address of a i-th cell */
761 int addr; /* Offset of first byte after cell pointer array */
762 int hdr; /* Offset to the page header */
763 int size; /* Size of a cell */
764 int usableSize; /* Number of usable bytes on a page */
765 int cellOffset; /* Offset to the cell pointer array */
766 int brk; /* Offset to the cell content area */
767 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +0000768 unsigned char *data; /* The page data */
769 unsigned char *temp; /* Temp area for cell content */
drh2af926b2001-05-15 00:39:25 +0000770
drha34b6762004-05-07 13:30:42 +0000771 assert( sqlite3pager_iswriteable(pPage->aData) );
drh9e572e62004-04-23 23:43:10 +0000772 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +0000773 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +0000774 assert( pPage->nOverflow==0 );
drh2e38c322004-09-03 18:38:44 +0000775 temp = sqliteMalloc( pPage->pBt->pageSize );
776 if( temp==0 ) return SQLITE_NOMEM;
drh43605152004-05-29 21:46:49 +0000777 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +0000778 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000779 cellOffset = pPage->cellOffset;
780 nCell = pPage->nCell;
781 assert( nCell==get2byte(&data[hdr+3]) );
782 usableSize = pPage->pBt->usableSize;
783 brk = get2byte(&data[hdr+5]);
784 memcpy(&temp[brk], &data[brk], usableSize - brk);
785 brk = usableSize;
786 for(i=0; i<nCell; i++){
787 u8 *pAddr; /* The i-th cell pointer */
788 pAddr = &data[cellOffset + i*2];
789 pc = get2byte(pAddr);
790 assert( pc<pPage->pBt->usableSize );
791 size = cellSizePtr(pPage, &temp[pc]);
792 brk -= size;
793 memcpy(&data[brk], &temp[pc], size);
794 put2byte(pAddr, brk);
drh2af926b2001-05-15 00:39:25 +0000795 }
drh43605152004-05-29 21:46:49 +0000796 assert( brk>=cellOffset+2*nCell );
797 put2byte(&data[hdr+5], brk);
798 data[hdr+1] = 0;
799 data[hdr+2] = 0;
800 data[hdr+7] = 0;
801 addr = cellOffset+2*nCell;
802 memset(&data[addr], 0, brk-addr);
drh2e38c322004-09-03 18:38:44 +0000803 sqliteFree(temp);
804 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +0000805}
806
drha059ad02001-04-17 20:09:11 +0000807/*
drh43605152004-05-29 21:46:49 +0000808** Allocate nByte bytes of space on a page.
drhbd03cae2001-06-02 02:40:57 +0000809**
drh9e572e62004-04-23 23:43:10 +0000810** Return the index into pPage->aData[] of the first byte of
drhbd03cae2001-06-02 02:40:57 +0000811** the new allocation. Or return 0 if there is not enough free
812** space on the page to satisfy the allocation request.
drh2af926b2001-05-15 00:39:25 +0000813**
drh72f82862001-05-24 21:06:34 +0000814** If the page contains nBytes of free space but does not contain
drh8b2f49b2001-06-08 00:21:52 +0000815** nBytes of contiguous free space, then this routine automatically
816** calls defragementPage() to consolidate all free space before
817** allocating the new chunk.
drh7e3b0a02001-04-28 16:52:40 +0000818*/
drh9e572e62004-04-23 23:43:10 +0000819static int allocateSpace(MemPage *pPage, int nByte){
drh3aac2dd2004-04-26 14:10:20 +0000820 int addr, pc, hdr;
drh9e572e62004-04-23 23:43:10 +0000821 int size;
drh24cd67e2004-05-10 16:18:47 +0000822 int nFrag;
drh43605152004-05-29 21:46:49 +0000823 int top;
824 int nCell;
825 int cellOffset;
drh9e572e62004-04-23 23:43:10 +0000826 unsigned char *data;
drh43605152004-05-29 21:46:49 +0000827
drh9e572e62004-04-23 23:43:10 +0000828 data = pPage->aData;
drha34b6762004-05-07 13:30:42 +0000829 assert( sqlite3pager_iswriteable(data) );
drh9e572e62004-04-23 23:43:10 +0000830 assert( pPage->pBt );
831 if( nByte<4 ) nByte = 4;
drh43605152004-05-29 21:46:49 +0000832 if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
833 pPage->nFree -= nByte;
drh9e572e62004-04-23 23:43:10 +0000834 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000835
836 nFrag = data[hdr+7];
837 if( nFrag<60 ){
838 /* Search the freelist looking for a slot big enough to satisfy the
839 ** space request. */
840 addr = hdr+1;
841 while( (pc = get2byte(&data[addr]))>0 ){
842 size = get2byte(&data[pc+2]);
843 if( size>=nByte ){
844 if( size<nByte+4 ){
845 memcpy(&data[addr], &data[pc], 2);
846 data[hdr+7] = nFrag + size - nByte;
847 return pc;
848 }else{
849 put2byte(&data[pc+2], size-nByte);
850 return pc + size - nByte;
851 }
852 }
853 addr = pc;
drh9e572e62004-04-23 23:43:10 +0000854 }
855 }
drh43605152004-05-29 21:46:49 +0000856
857 /* Allocate memory from the gap in between the cell pointer array
858 ** and the cell content area.
859 */
860 top = get2byte(&data[hdr+5]);
861 nCell = get2byte(&data[hdr+3]);
862 cellOffset = pPage->cellOffset;
863 if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
drh2e38c322004-09-03 18:38:44 +0000864 if( defragmentPage(pPage) ) return 0;
drh43605152004-05-29 21:46:49 +0000865 top = get2byte(&data[hdr+5]);
drh2af926b2001-05-15 00:39:25 +0000866 }
drh43605152004-05-29 21:46:49 +0000867 top -= nByte;
868 assert( cellOffset + 2*nCell <= top );
869 put2byte(&data[hdr+5], top);
870 return top;
drh7e3b0a02001-04-28 16:52:40 +0000871}
872
873/*
drh9e572e62004-04-23 23:43:10 +0000874** Return a section of the pPage->aData to the freelist.
875** The first byte of the new free block is pPage->aDisk[start]
876** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +0000877**
878** Most of the effort here is involved in coalesing adjacent
879** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +0000880*/
drh9e572e62004-04-23 23:43:10 +0000881static void freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +0000882 int addr, pbegin, hdr;
drh9e572e62004-04-23 23:43:10 +0000883 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +0000884
drh9e572e62004-04-23 23:43:10 +0000885 assert( pPage->pBt!=0 );
drha34b6762004-05-07 13:30:42 +0000886 assert( sqlite3pager_iswriteable(data) );
drh9e572e62004-04-23 23:43:10 +0000887 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +0000888 assert( (start + size)<=pPage->pBt->usableSize );
drh9e572e62004-04-23 23:43:10 +0000889 if( size<4 ) size = 4;
890
891 /* Add the space back into the linked list of freeblocks */
drh43605152004-05-29 21:46:49 +0000892 hdr = pPage->hdrOffset;
893 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +0000894 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +0000895 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000896 assert( pbegin>addr );
897 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +0000898 }
drhb6f41482004-05-14 01:58:11 +0000899 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000900 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +0000901 put2byte(&data[addr], start);
902 put2byte(&data[start], pbegin);
903 put2byte(&data[start+2], size);
drh2af926b2001-05-15 00:39:25 +0000904 pPage->nFree += size;
drh9e572e62004-04-23 23:43:10 +0000905
906 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +0000907 addr = pPage->hdrOffset + 1;
908 while( (pbegin = get2byte(&data[addr]))>0 ){
drh9e572e62004-04-23 23:43:10 +0000909 int pnext, psize;
drh3aac2dd2004-04-26 14:10:20 +0000910 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +0000911 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +0000912 pnext = get2byte(&data[pbegin]);
913 psize = get2byte(&data[pbegin+2]);
914 if( pbegin + psize + 3 >= pnext && pnext>0 ){
915 int frag = pnext - (pbegin+psize);
drh43605152004-05-29 21:46:49 +0000916 assert( frag<=data[pPage->hdrOffset+7] );
917 data[pPage->hdrOffset+7] -= frag;
drh9e572e62004-04-23 23:43:10 +0000918 put2byte(&data[pbegin], get2byte(&data[pnext]));
919 put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
920 }else{
drh3aac2dd2004-04-26 14:10:20 +0000921 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +0000922 }
923 }
drh7e3b0a02001-04-28 16:52:40 +0000924
drh43605152004-05-29 21:46:49 +0000925 /* If the cell content area begins with a freeblock, remove it. */
926 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
927 int top;
928 pbegin = get2byte(&data[hdr+1]);
929 memcpy(&data[hdr+1], &data[pbegin], 2);
930 top = get2byte(&data[hdr+5]);
931 put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
drh4b70f112004-05-02 21:12:19 +0000932 }
drh4b70f112004-05-02 21:12:19 +0000933}
934
935/*
drh271efa52004-05-30 19:19:05 +0000936** Decode the flags byte (the first byte of the header) for a page
937** and initialize fields of the MemPage structure accordingly.
938*/
939static void decodeFlags(MemPage *pPage, int flagByte){
940 Btree *pBt; /* A copy of pPage->pBt */
941
942 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
943 pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
944 pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
945 pPage->leaf = (flagByte & PTF_LEAF)!=0;
946 pPage->childPtrSize = 4*(pPage->leaf==0);
947 pBt = pPage->pBt;
948 if( flagByte & PTF_LEAFDATA ){
949 pPage->leafData = 1;
950 pPage->maxLocal = pBt->maxLeaf;
951 pPage->minLocal = pBt->minLeaf;
952 }else{
953 pPage->leafData = 0;
954 pPage->maxLocal = pBt->maxLocal;
955 pPage->minLocal = pBt->minLocal;
956 }
957 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
958}
959
960/*
drh7e3b0a02001-04-28 16:52:40 +0000961** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +0000962**
drhbd03cae2001-06-02 02:40:57 +0000963** The pParent parameter must be a pointer to the MemPage which
drh9e572e62004-04-23 23:43:10 +0000964** is the parent of the page being initialized. The root of a
965** BTree has no parent and so for that page, pParent==NULL.
drh5e2f8b92001-05-28 00:41:15 +0000966**
drh72f82862001-05-24 21:06:34 +0000967** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +0000968** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +0000969** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
970** guarantee that the page is well-formed. It only shows that
971** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +0000972*/
drh9e572e62004-04-23 23:43:10 +0000973static int initPage(
drh3aac2dd2004-04-26 14:10:20 +0000974 MemPage *pPage, /* The page to be initialized */
drh9e572e62004-04-23 23:43:10 +0000975 MemPage *pParent /* The parent. Might be NULL */
976){
drh271efa52004-05-30 19:19:05 +0000977 int pc; /* Address of a freeblock within pPage->aData[] */
drh271efa52004-05-30 19:19:05 +0000978 int hdr; /* Offset to beginning of page header */
979 u8 *data; /* Equal to pPage->aData */
drh2e38c322004-09-03 18:38:44 +0000980 Btree *pBt; /* The main btree structure */
drh271efa52004-05-30 19:19:05 +0000981 int usableSize; /* Amount of usable space on each page */
982 int cellOffset; /* Offset from start of page to first cell pointer */
983 int nFree; /* Number of unused bytes on the page */
984 int top; /* First byte of the cell content area */
drh2af926b2001-05-15 00:39:25 +0000985
drh2e38c322004-09-03 18:38:44 +0000986 pBt = pPage->pBt;
987 assert( pBt!=0 );
988 assert( pParent==0 || pParent->pBt==pBt );
drha34b6762004-05-07 13:30:42 +0000989 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
drh887dc4c2004-10-22 16:22:57 +0000990 assert( pPage->aData == &((unsigned char*)pPage)[-pBt->psAligned] );
drhee696e22004-08-30 16:52:17 +0000991 if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
992 /* The parent page should never change unless the file is corrupt */
993 return SQLITE_CORRUPT; /* bkpt-CORRUPT */
994 }
drh10617cd2004-05-14 15:27:27 +0000995 if( pPage->isInit ) return SQLITE_OK;
drhda200cc2004-05-09 11:51:38 +0000996 if( pPage->pParent==0 && pParent!=0 ){
997 pPage->pParent = pParent;
drha34b6762004-05-07 13:30:42 +0000998 sqlite3pager_ref(pParent->aData);
drh5e2f8b92001-05-28 00:41:15 +0000999 }
drhde647132004-05-07 17:57:49 +00001000 hdr = pPage->hdrOffset;
drha34b6762004-05-07 13:30:42 +00001001 data = pPage->aData;
drh271efa52004-05-30 19:19:05 +00001002 decodeFlags(pPage, data[hdr]);
drh43605152004-05-29 21:46:49 +00001003 pPage->nOverflow = 0;
drhc8629a12004-05-08 20:07:40 +00001004 pPage->idxShift = 0;
drh2e38c322004-09-03 18:38:44 +00001005 usableSize = pBt->usableSize;
drh43605152004-05-29 21:46:49 +00001006 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1007 top = get2byte(&data[hdr+5]);
1008 pPage->nCell = get2byte(&data[hdr+3]);
drh2e38c322004-09-03 18:38:44 +00001009 if( pPage->nCell>MX_CELL(pBt) ){
drhee696e22004-08-30 16:52:17 +00001010 /* To many cells for a single page. The page must be corrupt */
1011 return SQLITE_CORRUPT; /* bkpt-CORRUPT */
1012 }
1013 if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
1014 /* All pages must have at least one cell, except for root pages */
1015 return SQLITE_CORRUPT; /* bkpt-CORRUPT */
1016 }
drh9e572e62004-04-23 23:43:10 +00001017
1018 /* Compute the total free space on the page */
drh9e572e62004-04-23 23:43:10 +00001019 pc = get2byte(&data[hdr+1]);
drh43605152004-05-29 21:46:49 +00001020 nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
drh9e572e62004-04-23 23:43:10 +00001021 while( pc>0 ){
1022 int next, size;
drhee696e22004-08-30 16:52:17 +00001023 if( pc>usableSize-4 ){
1024 /* Free block is off the page */
1025 return SQLITE_CORRUPT; /* bkpt-CORRUPT */
1026 }
drh9e572e62004-04-23 23:43:10 +00001027 next = get2byte(&data[pc]);
1028 size = get2byte(&data[pc+2]);
drhee696e22004-08-30 16:52:17 +00001029 if( next>0 && next<=pc+size+3 ){
1030 /* Free blocks must be in accending order */
1031 return SQLITE_CORRUPT; /* bkpt-CORRUPT */
1032 }
drh3add3672004-05-15 00:29:24 +00001033 nFree += size;
drh9e572e62004-04-23 23:43:10 +00001034 pc = next;
1035 }
drh3add3672004-05-15 00:29:24 +00001036 pPage->nFree = nFree;
drhee696e22004-08-30 16:52:17 +00001037 if( nFree>=usableSize ){
1038 /* Free space cannot exceed total page size */
1039 return SQLITE_CORRUPT; /* bkpt-CORRUPT */
1040 }
drh9e572e62004-04-23 23:43:10 +00001041
drhde647132004-05-07 17:57:49 +00001042 pPage->isInit = 1;
drhda200cc2004-05-09 11:51:38 +00001043 pageIntegrity(pPage);
drh9e572e62004-04-23 23:43:10 +00001044 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001045}
1046
1047/*
drh8b2f49b2001-06-08 00:21:52 +00001048** Set up a raw page so that it looks like a database page holding
1049** no entries.
drhbd03cae2001-06-02 02:40:57 +00001050*/
drh9e572e62004-04-23 23:43:10 +00001051static void zeroPage(MemPage *pPage, int flags){
1052 unsigned char *data = pPage->aData;
1053 Btree *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00001054 int hdr = pPage->hdrOffset;
drh9e572e62004-04-23 23:43:10 +00001055 int first;
1056
drhda200cc2004-05-09 11:51:38 +00001057 assert( sqlite3pager_pagenumber(data)==pPage->pgno );
drh887dc4c2004-10-22 16:22:57 +00001058 assert( &data[pBt->psAligned] == (unsigned char*)pPage );
drha34b6762004-05-07 13:30:42 +00001059 assert( sqlite3pager_iswriteable(data) );
drhb6f41482004-05-14 01:58:11 +00001060 memset(&data[hdr], 0, pBt->usableSize - hdr);
drh9e572e62004-04-23 23:43:10 +00001061 data[hdr] = flags;
drh43605152004-05-29 21:46:49 +00001062 first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
1063 memset(&data[hdr+1], 0, 4);
1064 data[hdr+7] = 0;
1065 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001066 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001067 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001068 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001069 pPage->cellOffset = first;
1070 pPage->nOverflow = 0;
drhda200cc2004-05-09 11:51:38 +00001071 pPage->idxShift = 0;
drh43605152004-05-29 21:46:49 +00001072 pPage->nCell = 0;
drhda200cc2004-05-09 11:51:38 +00001073 pPage->isInit = 1;
1074 pageIntegrity(pPage);
drhbd03cae2001-06-02 02:40:57 +00001075}
1076
1077/*
drh3aac2dd2004-04-26 14:10:20 +00001078** Get a page from the pager. Initialize the MemPage.pBt and
1079** MemPage.aData elements if needed.
1080*/
1081static int getPage(Btree *pBt, Pgno pgno, MemPage **ppPage){
1082 int rc;
1083 unsigned char *aData;
1084 MemPage *pPage;
drha34b6762004-05-07 13:30:42 +00001085 rc = sqlite3pager_get(pBt->pPager, pgno, (void**)&aData);
drh3aac2dd2004-04-26 14:10:20 +00001086 if( rc ) return rc;
drh887dc4c2004-10-22 16:22:57 +00001087 pPage = (MemPage*)&aData[pBt->psAligned];
drh3aac2dd2004-04-26 14:10:20 +00001088 pPage->aData = aData;
1089 pPage->pBt = pBt;
1090 pPage->pgno = pgno;
drhde647132004-05-07 17:57:49 +00001091 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
drh3aac2dd2004-04-26 14:10:20 +00001092 *ppPage = pPage;
1093 return SQLITE_OK;
1094}
1095
1096/*
drhde647132004-05-07 17:57:49 +00001097** Get a page from the pager and initialize it. This routine
1098** is just a convenience wrapper around separate calls to
1099** getPage() and initPage().
1100*/
1101static int getAndInitPage(
1102 Btree *pBt, /* The database file */
1103 Pgno pgno, /* Number of the page to get */
1104 MemPage **ppPage, /* Write the page pointer here */
1105 MemPage *pParent /* Parent of the page */
1106){
1107 int rc;
drhee696e22004-08-30 16:52:17 +00001108 if( pgno==0 ){
1109 return SQLITE_CORRUPT; /* bkpt-CORRUPT */
1110 }
drhde647132004-05-07 17:57:49 +00001111 rc = getPage(pBt, pgno, ppPage);
drh10617cd2004-05-14 15:27:27 +00001112 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
drhde647132004-05-07 17:57:49 +00001113 rc = initPage(*ppPage, pParent);
1114 }
1115 return rc;
1116}
1117
1118/*
drh3aac2dd2004-04-26 14:10:20 +00001119** Release a MemPage. This should be called once for each prior
1120** call to getPage.
1121*/
drh4b70f112004-05-02 21:12:19 +00001122static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001123 if( pPage ){
1124 assert( pPage->aData );
1125 assert( pPage->pBt );
drh887dc4c2004-10-22 16:22:57 +00001126 assert( &pPage->aData[pPage->pBt->psAligned]==(unsigned char*)pPage );
drha34b6762004-05-07 13:30:42 +00001127 sqlite3pager_unref(pPage->aData);
drh3aac2dd2004-04-26 14:10:20 +00001128 }
1129}
1130
1131/*
drh72f82862001-05-24 21:06:34 +00001132** This routine is called when the reference count for a page
1133** reaches zero. We need to unref the pParent pointer when that
1134** happens.
1135*/
drhb6f41482004-05-14 01:58:11 +00001136static void pageDestructor(void *pData, int pageSize){
drh887dc4c2004-10-22 16:22:57 +00001137 MemPage *pPage = (MemPage*)&((char*)pData)[FORCE_ALIGNMENT(pageSize)];
drh72f82862001-05-24 21:06:34 +00001138 if( pPage->pParent ){
1139 MemPage *pParent = pPage->pParent;
1140 pPage->pParent = 0;
drha34b6762004-05-07 13:30:42 +00001141 releasePage(pParent);
drh72f82862001-05-24 21:06:34 +00001142 }
drh3aac2dd2004-04-26 14:10:20 +00001143 pPage->isInit = 0;
drh72f82862001-05-24 21:06:34 +00001144}
1145
1146/*
drha6abd042004-06-09 17:37:22 +00001147** During a rollback, when the pager reloads information into the cache
1148** so that the cache is restored to its original state at the start of
1149** the transaction, for each page restored this routine is called.
1150**
1151** This routine needs to reset the extra data section at the end of the
1152** page to agree with the restored data.
1153*/
1154static void pageReinit(void *pData, int pageSize){
drh887dc4c2004-10-22 16:22:57 +00001155 MemPage *pPage = (MemPage*)&((char*)pData)[FORCE_ALIGNMENT(pageSize)];
drha6abd042004-06-09 17:37:22 +00001156 if( pPage->isInit ){
1157 pPage->isInit = 0;
1158 initPage(pPage, pPage->pParent);
1159 }
1160}
1161
1162/*
drhad3e0102004-09-03 23:32:18 +00001163** Open a database file.
1164**
drh382c0242001-10-06 16:33:02 +00001165** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001166** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001167** database file will be deleted when sqlite3BtreeClose() is called.
drha059ad02001-04-17 20:09:11 +00001168*/
drh23e11ca2004-05-04 17:27:28 +00001169int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001170 const char *zFilename, /* Name of the file containing the BTree database */
1171 Btree **ppBtree, /* Pointer to new Btree object written here */
drh90f5ecb2004-07-22 01:19:35 +00001172 int flags /* Options */
drh6019e162001-07-02 17:51:45 +00001173){
drha059ad02001-04-17 20:09:11 +00001174 Btree *pBt;
drha34b6762004-05-07 13:30:42 +00001175 int rc;
drh90f5ecb2004-07-22 01:19:35 +00001176 int nReserve;
1177 unsigned char zDbHeader[100];
drha059ad02001-04-17 20:09:11 +00001178
drhd62d3d02003-01-24 12:14:20 +00001179 /*
1180 ** The following asserts make sure that structures used by the btree are
1181 ** the right size. This is to guard against size changes that result
1182 ** when compiling on a different architecture.
1183 */
drh4a1c3802004-05-12 15:15:47 +00001184 assert( sizeof(i64)==8 );
drh9e572e62004-04-23 23:43:10 +00001185 assert( sizeof(u64)==8 );
drhd62d3d02003-01-24 12:14:20 +00001186 assert( sizeof(u32)==4 );
1187 assert( sizeof(u16)==2 );
1188 assert( sizeof(Pgno)==4 );
drhd62d3d02003-01-24 12:14:20 +00001189 assert( sizeof(ptr)==sizeof(char*) );
1190 assert( sizeof(uptr)==sizeof(ptr) );
1191
drha059ad02001-04-17 20:09:11 +00001192 pBt = sqliteMalloc( sizeof(*pBt) );
1193 if( pBt==0 ){
drh8c42ca92001-06-22 19:15:00 +00001194 *ppBtree = 0;
drha059ad02001-04-17 20:09:11 +00001195 return SQLITE_NOMEM;
1196 }
drh90f5ecb2004-07-22 01:19:35 +00001197 rc = sqlite3pager_open(&pBt->pPager, zFilename, EXTRA_SIZE,
1198 (flags & BTREE_OMIT_JOURNAL)==0);
drha059ad02001-04-17 20:09:11 +00001199 if( rc!=SQLITE_OK ){
drha34b6762004-05-07 13:30:42 +00001200 if( pBt->pPager ) sqlite3pager_close(pBt->pPager);
drha059ad02001-04-17 20:09:11 +00001201 sqliteFree(pBt);
1202 *ppBtree = 0;
1203 return rc;
1204 }
drha34b6762004-05-07 13:30:42 +00001205 sqlite3pager_set_destructor(pBt->pPager, pageDestructor);
drha6abd042004-06-09 17:37:22 +00001206 sqlite3pager_set_reiniter(pBt->pPager, pageReinit);
drha059ad02001-04-17 20:09:11 +00001207 pBt->pCursor = 0;
drha34b6762004-05-07 13:30:42 +00001208 pBt->pPage1 = 0;
1209 pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager);
drh90f5ecb2004-07-22 01:19:35 +00001210 sqlite3pager_read_fileheader(pBt->pPager, sizeof(zDbHeader), zDbHeader);
1211 pBt->pageSize = get2byte(&zDbHeader[16]);
1212 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE ){
1213 pBt->pageSize = SQLITE_DEFAULT_PAGE_SIZE;
1214 pBt->maxEmbedFrac = 64; /* 25% */
1215 pBt->minEmbedFrac = 32; /* 12.5% */
1216 pBt->minLeafFrac = 32; /* 12.5% */
drheee46cf2004-11-06 00:02:48 +00001217#ifndef SQLITE_OMIT_AUTOVACUUM
danielk197703aded42004-11-22 05:26:27 +00001218 /* If the magic name ":memory:" will create an in-memory database, then
1219 ** do not set the auto-vacuum flag, even if SQLITE_DEFAULT_AUTOVACUUM
1220 ** is true. On the other hand, if SQLITE_OMIT_MEMORYDB has been defined,
1221 ** then ":memory:" is just a regular file-name. Respect the auto-vacuum
1222 ** default in this case.
1223 */
1224#ifndef SQLITE_OMIT_MEMORYDB
danielk1977951af802004-11-05 15:45:09 +00001225 if( zFilename && strcmp(zFilename,":memory:") ){
danielk197703aded42004-11-22 05:26:27 +00001226#else
1227 if( zFilename ){
1228#endif
danielk1977951af802004-11-05 15:45:09 +00001229 pBt->autoVacuum = SQLITE_DEFAULT_AUTOVACUUM;
1230 }
drheee46cf2004-11-06 00:02:48 +00001231#endif
drh90f5ecb2004-07-22 01:19:35 +00001232 nReserve = 0;
1233 }else{
1234 nReserve = zDbHeader[20];
1235 pBt->maxEmbedFrac = zDbHeader[21];
1236 pBt->minEmbedFrac = zDbHeader[22];
1237 pBt->minLeafFrac = zDbHeader[23];
1238 pBt->pageSizeFixed = 1;
danielk1977951af802004-11-05 15:45:09 +00001239#ifndef SQLITE_OMIT_AUTOVACUUM
1240 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1241#endif
drh90f5ecb2004-07-22 01:19:35 +00001242 }
1243 pBt->usableSize = pBt->pageSize - nReserve;
drh887dc4c2004-10-22 16:22:57 +00001244 pBt->psAligned = FORCE_ALIGNMENT(pBt->pageSize);
drh90f5ecb2004-07-22 01:19:35 +00001245 sqlite3pager_set_pagesize(pBt->pPager, pBt->pageSize);
drha059ad02001-04-17 20:09:11 +00001246 *ppBtree = pBt;
1247 return SQLITE_OK;
1248}
1249
1250/*
1251** Close an open database and invalidate all cursors.
1252*/
drh3aac2dd2004-04-26 14:10:20 +00001253int sqlite3BtreeClose(Btree *pBt){
drha059ad02001-04-17 20:09:11 +00001254 while( pBt->pCursor ){
drh3aac2dd2004-04-26 14:10:20 +00001255 sqlite3BtreeCloseCursor(pBt->pCursor);
drha059ad02001-04-17 20:09:11 +00001256 }
drha34b6762004-05-07 13:30:42 +00001257 sqlite3pager_close(pBt->pPager);
drha059ad02001-04-17 20:09:11 +00001258 sqliteFree(pBt);
1259 return SQLITE_OK;
1260}
1261
1262/*
drh90f5ecb2004-07-22 01:19:35 +00001263** Change the busy handler callback function.
1264*/
1265int sqlite3BtreeSetBusyHandler(Btree *pBt, BusyHandler *pHandler){
1266 sqlite3pager_set_busyhandler(pBt->pPager, pHandler);
1267 return SQLITE_OK;
1268}
1269
1270/*
drhda47d772002-12-02 04:25:19 +00001271** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001272**
1273** The maximum number of cache pages is set to the absolute
1274** value of mxPage. If mxPage is negative, the pager will
1275** operate asynchronously - it will not stop to do fsync()s
1276** to insure data is written to the disk surface before
1277** continuing. Transactions still work if synchronous is off,
1278** and the database cannot be corrupted if this program
1279** crashes. But if the operating system crashes or there is
1280** an abrupt power failure when synchronous is off, the database
1281** could be left in an inconsistent and unrecoverable state.
1282** Synchronous is on by default so database corruption is not
1283** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00001284*/
drh23e11ca2004-05-04 17:27:28 +00001285int sqlite3BtreeSetCacheSize(Btree *pBt, int mxPage){
drha34b6762004-05-07 13:30:42 +00001286 sqlite3pager_set_cachesize(pBt->pPager, mxPage);
drhf57b14a2001-09-14 18:54:08 +00001287 return SQLITE_OK;
1288}
1289
1290/*
drh973b6e32003-02-12 14:09:42 +00001291** Change the way data is synced to disk in order to increase or decrease
1292** how well the database resists damage due to OS crashes and power
1293** failures. Level 1 is the same as asynchronous (no syncs() occur and
1294** there is a high probability of damage) Level 2 is the default. There
1295** is a very low but non-zero probability of damage. Level 3 reduces the
1296** probability of damage to near zero but with a write performance reduction.
1297*/
drh3aac2dd2004-04-26 14:10:20 +00001298int sqlite3BtreeSetSafetyLevel(Btree *pBt, int level){
drha34b6762004-05-07 13:30:42 +00001299 sqlite3pager_set_safety_level(pBt->pPager, level);
drh973b6e32003-02-12 14:09:42 +00001300 return SQLITE_OK;
1301}
1302
1303/*
drh90f5ecb2004-07-22 01:19:35 +00001304** Change the default pages size and the number of reserved bytes per page.
drh06f50212004-11-02 14:24:33 +00001305**
1306** The page size must be a power of 2 between 512 and 65536. If the page
1307** size supplied does not meet this constraint then the page size is not
1308** changed.
1309**
1310** Page sizes are constrained to be a power of two so that the region
1311** of the database file used for locking (beginning at PENDING_BYTE,
1312** the first byte past the 1GB boundary, 0x40000000) needs to occur
1313** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00001314**
1315** If parameter nReserve is less than zero, then the number of reserved
1316** bytes per page is left unchanged.
drh90f5ecb2004-07-22 01:19:35 +00001317*/
1318int sqlite3BtreeSetPageSize(Btree *pBt, int pageSize, int nReserve){
1319 if( pBt->pageSizeFixed ){
1320 return SQLITE_READONLY;
1321 }
1322 if( nReserve<0 ){
1323 nReserve = pBt->pageSize - pBt->usableSize;
1324 }
drh06f50212004-11-02 14:24:33 +00001325 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
1326 ((pageSize-1)&pageSize)==0 ){
drh90f5ecb2004-07-22 01:19:35 +00001327 pBt->pageSize = pageSize;
drh887dc4c2004-10-22 16:22:57 +00001328 pBt->psAligned = FORCE_ALIGNMENT(pageSize);
drh90f5ecb2004-07-22 01:19:35 +00001329 sqlite3pager_set_pagesize(pBt->pPager, pageSize);
1330 }
1331 pBt->usableSize = pBt->pageSize - nReserve;
1332 return SQLITE_OK;
1333}
1334
1335/*
1336** Return the currently defined page size
1337*/
1338int sqlite3BtreeGetPageSize(Btree *pBt){
1339 return pBt->pageSize;
1340}
drh2011d5f2004-07-22 02:40:37 +00001341int sqlite3BtreeGetReserve(Btree *pBt){
1342 return pBt->pageSize - pBt->usableSize;
1343}
drh90f5ecb2004-07-22 01:19:35 +00001344
1345/*
danielk1977951af802004-11-05 15:45:09 +00001346** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
1347** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
1348** is disabled. The default value for the auto-vacuum property is
1349** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
1350*/
1351int sqlite3BtreeSetAutoVacuum(Btree *pBt, int autoVacuum){
1352#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00001353 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00001354#else
1355 if( pBt->pageSizeFixed ){
1356 return SQLITE_READONLY;
1357 }
1358 pBt->autoVacuum = (autoVacuum?1:0);
1359 return SQLITE_OK;
1360#endif
1361}
1362
1363/*
1364** Return the value of the 'auto-vacuum' property. If auto-vacuum is
1365** enabled 1 is returned. Otherwise 0.
1366*/
1367int sqlite3BtreeGetAutoVacuum(Btree *pBt){
1368#ifdef SQLITE_OMIT_AUTOVACUUM
1369 return 0;
1370#else
1371 return pBt->autoVacuum;
1372#endif
1373}
1374
1375
1376/*
drha34b6762004-05-07 13:30:42 +00001377** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00001378** also acquire a readlock on that file.
1379**
1380** SQLITE_OK is returned on success. If the file is not a
1381** well-formed database file, then SQLITE_CORRUPT is returned.
1382** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
1383** is returned if we run out of memory. SQLITE_PROTOCOL is returned
1384** if there is a locking protocol violation.
1385*/
1386static int lockBtree(Btree *pBt){
1387 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001388 MemPage *pPage1;
drha34b6762004-05-07 13:30:42 +00001389 if( pBt->pPage1 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00001390 rc = getPage(pBt, 1, &pPage1);
drh306dc212001-05-21 13:45:10 +00001391 if( rc!=SQLITE_OK ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00001392
drh306dc212001-05-21 13:45:10 +00001393
1394 /* Do some checking to help insure the file we opened really is
1395 ** a valid database file.
1396 */
drhb6f41482004-05-14 01:58:11 +00001397 rc = SQLITE_NOTADB;
drha34b6762004-05-07 13:30:42 +00001398 if( sqlite3pager_pagecount(pBt->pPager)>0 ){
drhb6f41482004-05-14 01:58:11 +00001399 u8 *page1 = pPage1->aData;
1400 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00001401 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00001402 }
drhb6f41482004-05-14 01:58:11 +00001403 if( page1[18]>1 || page1[19]>1 ){
1404 goto page1_init_failed;
1405 }
1406 pBt->pageSize = get2byte(&page1[16]);
1407 pBt->usableSize = pBt->pageSize - page1[20];
1408 if( pBt->usableSize<500 ){
1409 goto page1_init_failed;
1410 }
drh887dc4c2004-10-22 16:22:57 +00001411 pBt->psAligned = FORCE_ALIGNMENT(pBt->pageSize);
drhb6f41482004-05-14 01:58:11 +00001412 pBt->maxEmbedFrac = page1[21];
1413 pBt->minEmbedFrac = page1[22];
1414 pBt->minLeafFrac = page1[23];
drh306dc212001-05-21 13:45:10 +00001415 }
drhb6f41482004-05-14 01:58:11 +00001416
1417 /* maxLocal is the maximum amount of payload to store locally for
1418 ** a cell. Make sure it is small enough so that at least minFanout
1419 ** cells can will fit on one page. We assume a 10-byte page header.
1420 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00001421 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00001422 ** 4-byte child pointer
1423 ** 9-byte nKey value
1424 ** 4-byte nData value
1425 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00001426 ** So a cell consists of a 2-byte poiner, a header which is as much as
1427 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
1428 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00001429 */
drh43605152004-05-29 21:46:49 +00001430 pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
1431 pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
1432 pBt->maxLeaf = pBt->usableSize - 35;
1433 pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
drhb6f41482004-05-14 01:58:11 +00001434 if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
1435 goto page1_init_failed;
1436 }
drh2e38c322004-09-03 18:38:44 +00001437 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00001438 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00001439 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00001440
drh72f82862001-05-24 21:06:34 +00001441page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00001442 releasePage(pPage1);
1443 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00001444 return rc;
drh306dc212001-05-21 13:45:10 +00001445}
1446
1447/*
drhb8ca3072001-12-05 00:21:20 +00001448** If there are no outstanding cursors and we are not in the middle
1449** of a transaction but there is a read lock on the database, then
1450** this routine unrefs the first page of the database file which
1451** has the effect of releasing the read lock.
1452**
1453** If there are any outstanding cursors, this routine is a no-op.
1454**
1455** If there is a transaction in progress, this routine is a no-op.
1456*/
1457static void unlockBtreeIfUnused(Btree *pBt){
danielk1977ee5741e2004-05-31 10:01:34 +00001458 if( pBt->inTrans==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
drh51c6d962004-06-06 00:42:25 +00001459 if( pBt->pPage1->aData==0 ){
1460 MemPage *pPage = pBt->pPage1;
drh887dc4c2004-10-22 16:22:57 +00001461 pPage->aData = &((char*)pPage)[-pBt->psAligned];
drh51c6d962004-06-06 00:42:25 +00001462 pPage->pBt = pBt;
1463 pPage->pgno = 1;
1464 }
drh3aac2dd2004-04-26 14:10:20 +00001465 releasePage(pBt->pPage1);
1466 pBt->pPage1 = 0;
drh3aac2dd2004-04-26 14:10:20 +00001467 pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00001468 }
1469}
1470
1471/*
drh9e572e62004-04-23 23:43:10 +00001472** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00001473** file.
drh8b2f49b2001-06-08 00:21:52 +00001474*/
1475static int newDatabase(Btree *pBt){
drh9e572e62004-04-23 23:43:10 +00001476 MemPage *pP1;
1477 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00001478 int rc;
drhde647132004-05-07 17:57:49 +00001479 if( sqlite3pager_pagecount(pBt->pPager)>0 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00001480 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00001481 assert( pP1!=0 );
1482 data = pP1->aData;
drha34b6762004-05-07 13:30:42 +00001483 rc = sqlite3pager_write(data);
drh8b2f49b2001-06-08 00:21:52 +00001484 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00001485 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
1486 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00001487 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00001488 data[18] = 1;
1489 data[19] = 1;
drhb6f41482004-05-14 01:58:11 +00001490 data[20] = pBt->pageSize - pBt->usableSize;
1491 data[21] = pBt->maxEmbedFrac;
1492 data[22] = pBt->minEmbedFrac;
1493 data[23] = pBt->minLeafFrac;
1494 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00001495 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00001496 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00001497#ifndef SQLITE_OMIT_AUTOVACUUM
1498 if( pBt->autoVacuum ){
1499 put4byte(&data[36 + 4*4], 1);
1500 }
1501#endif
drh8b2f49b2001-06-08 00:21:52 +00001502 return SQLITE_OK;
1503}
1504
1505/*
danielk1977ee5741e2004-05-31 10:01:34 +00001506** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00001507** is started if the second argument is nonzero, otherwise a read-
1508** transaction. If the second argument is 2 or more and exclusive
1509** transaction is started, meaning that no other process is allowed
1510** to access the database. A preexisting transaction may not be
1511** upgrade to exclusive by calling this routine a second time - the
1512** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00001513**
danielk1977ee5741e2004-05-31 10:01:34 +00001514** A write-transaction must be started before attempting any
1515** changes to the database. None of the following routines
1516** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00001517**
drh23e11ca2004-05-04 17:27:28 +00001518** sqlite3BtreeCreateTable()
1519** sqlite3BtreeCreateIndex()
1520** sqlite3BtreeClearTable()
1521** sqlite3BtreeDropTable()
1522** sqlite3BtreeInsert()
1523** sqlite3BtreeDelete()
1524** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00001525**
1526** If wrflag is true, then nMaster specifies the maximum length of
1527** a master journal file name supplied later via sqlite3BtreeSync().
1528** This is so that appropriate space can be allocated in the journal file
1529** when it is created..
drha059ad02001-04-17 20:09:11 +00001530*/
danielk197740b38dc2004-06-26 08:38:24 +00001531int sqlite3BtreeBeginTrans(Btree *pBt, int wrflag){
danielk1977ee5741e2004-05-31 10:01:34 +00001532 int rc = SQLITE_OK;
1533
1534 /* If the btree is already in a write-transaction, or it
1535 ** is already in a read-transaction and a read-transaction
1536 ** is requested, this is a no-op.
1537 */
1538 if( pBt->inTrans==TRANS_WRITE ||
1539 (pBt->inTrans==TRANS_READ && !wrflag) ){
1540 return SQLITE_OK;
1541 }
1542 if( pBt->readOnly && wrflag ){
1543 return SQLITE_READONLY;
1544 }
1545
drh3aac2dd2004-04-26 14:10:20 +00001546 if( pBt->pPage1==0 ){
drh7e3b0a02001-04-28 16:52:40 +00001547 rc = lockBtree(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00001548 }
1549
1550 if( rc==SQLITE_OK && wrflag ){
drh684917c2004-10-05 02:41:42 +00001551 rc = sqlite3pager_begin(pBt->pPage1->aData, wrflag>1);
danielk1977ee5741e2004-05-31 10:01:34 +00001552 if( rc==SQLITE_OK ){
1553 rc = newDatabase(pBt);
drh8c42ca92001-06-22 19:15:00 +00001554 }
drha059ad02001-04-17 20:09:11 +00001555 }
danielk1977ee5741e2004-05-31 10:01:34 +00001556
drhf74b8d92002-09-01 23:20:45 +00001557 if( rc==SQLITE_OK ){
danielk1977ee5741e2004-05-31 10:01:34 +00001558 pBt->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
1559 if( wrflag ) pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00001560 }else{
1561 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001562 }
drhb8ca3072001-12-05 00:21:20 +00001563 return rc;
drha059ad02001-04-17 20:09:11 +00001564}
1565
1566/*
danielk1977687566d2004-11-02 12:56:41 +00001567** The TRACE macro will print high-level status information about the
1568** btree operation when the global variable sqlite3_btree_trace is
1569** enabled.
1570*/
1571#if SQLITE_TEST
1572# define TRACE(X) if( sqlite3_btree_trace )\
1573 { sqlite3DebugPrintf X; fflush(stdout); }
1574#else
1575# define TRACE(X)
1576#endif
1577int sqlite3_btree_trace=0; /* True to enable tracing */
1578
1579#ifndef SQLITE_OMIT_AUTOVACUUM
1580
1581/*
1582** Set the pointer-map entries for all children of page pPage. Also, if
1583** pPage contains cells that point to overflow pages, set the pointer
1584** map entries for the overflow pages as well.
1585*/
1586static int setChildPtrmaps(MemPage *pPage){
1587 int i; /* Counter variable */
1588 int nCell; /* Number of cells in page pPage */
1589 int rc = SQLITE_OK; /* Return code */
1590 Btree *pBt = pPage->pBt;
1591 int isInitOrig = pPage->isInit;
1592 Pgno pgno = pPage->pgno;
1593
1594 initPage(pPage, 0);
1595 nCell = pPage->nCell;
1596
1597 for(i=0; i<nCell; i++){
1598 CellInfo info;
1599 u8 *pCell = findCell(pPage, i);
1600
1601 parseCellPtr(pPage, pCell, &info);
1602 if( info.iOverflow ){
1603 Pgno ovflPgno = get4byte(&pCell[info.iOverflow]);
1604 rc = ptrmapPut(pBt, ovflPgno, PTRMAP_OVERFLOW1, pgno);
1605 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
1606 }
1607 if( !pPage->leaf ){
1608 Pgno childPgno = get4byte(pCell);
1609 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
1610 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
1611 }
1612 }
1613
1614 if( !pPage->leaf ){
1615 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
1616 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
1617 }
1618
1619set_child_ptrmaps_out:
1620 pPage->isInit = isInitOrig;
1621 return rc;
1622}
1623
1624/*
1625** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
1626** page, is a pointer to page iFrom. Modify this pointer so that it points to
1627** iTo. Parameter eType describes the type of pointer to be modified, as
1628** follows:
1629**
1630** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
1631** page of pPage.
1632**
1633** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
1634** page pointed to by one of the cells on pPage.
1635**
1636** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
1637** overflow page in the list.
1638*/
1639static void modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
1640
1641 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00001642 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977687566d2004-11-02 12:56:41 +00001643 assert( get4byte(pPage->aData)==iFrom );
danielk1977f78fc082004-11-02 14:40:32 +00001644 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00001645 }else{
1646 int isInitOrig = pPage->isInit;
1647 int i;
1648 int nCell;
1649
1650 initPage(pPage, 0);
1651 nCell = pPage->nCell;
1652
danielk1977687566d2004-11-02 12:56:41 +00001653 for(i=0; i<nCell; i++){
1654 u8 *pCell = findCell(pPage, i);
1655 if( eType==PTRMAP_OVERFLOW1 ){
1656 CellInfo info;
1657 parseCellPtr(pPage, pCell, &info);
1658 if( info.iOverflow ){
1659 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
1660 put4byte(&pCell[info.iOverflow], iTo);
1661 break;
1662 }
1663 }
1664 }else{
1665 if( get4byte(pCell)==iFrom ){
1666 put4byte(pCell, iTo);
1667 break;
1668 }
1669 }
1670 }
1671
1672 if( i==nCell ){
1673 assert( eType==PTRMAP_BTREE );
1674 assert( get4byte(&pPage->aData[pPage->hdrOffset+8])==iFrom );
1675 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
1676 }
1677
1678 pPage->isInit = isInitOrig;
1679 }
1680}
1681
danielk1977003ba062004-11-04 02:57:33 +00001682
danielk19777701e812005-01-10 12:59:51 +00001683/*
1684** Move the open database page pDbPage to location iFreePage in the
1685** database. The pDbPage reference remains valid.
1686*/
danielk1977003ba062004-11-04 02:57:33 +00001687static int relocatePage(
danielk19777701e812005-01-10 12:59:51 +00001688 Btree *pBt, /* Btree */
1689 MemPage *pDbPage, /* Open page to move */
1690 u8 eType, /* Pointer map 'type' entry for pDbPage */
1691 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
1692 Pgno iFreePage /* The location to move pDbPage to */
danielk1977003ba062004-11-04 02:57:33 +00001693){
1694 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
1695 Pgno iDbPage = pDbPage->pgno;
1696 Pager *pPager = pBt->pPager;
1697 int rc;
1698
danielk1977a0bf2652004-11-04 14:30:04 +00001699 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
1700 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
danielk1977003ba062004-11-04 02:57:33 +00001701
1702 /* Move page iDbPage from it's current location to page number iFreePage */
1703 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
1704 iDbPage, iFreePage, iPtrPage, eType));
1705 rc = sqlite3pager_movepage(pPager, pDbPage->aData, iFreePage);
1706 if( rc!=SQLITE_OK ){
1707 return rc;
1708 }
1709 pDbPage->pgno = iFreePage;
1710
1711 /* If pDbPage was a btree-page, then it may have child pages and/or cells
1712 ** that point to overflow pages. The pointer map entries for all these
1713 ** pages need to be changed.
1714 **
1715 ** If pDbPage is an overflow page, then the first 4 bytes may store a
1716 ** pointer to a subsequent overflow page. If this is the case, then
1717 ** the pointer map needs to be updated for the subsequent overflow page.
1718 */
danielk1977a0bf2652004-11-04 14:30:04 +00001719 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00001720 rc = setChildPtrmaps(pDbPage);
1721 if( rc!=SQLITE_OK ){
1722 return rc;
1723 }
1724 }else{
1725 Pgno nextOvfl = get4byte(pDbPage->aData);
1726 if( nextOvfl!=0 ){
1727 assert( nextOvfl<=sqlite3pager_pagecount(pPager) );
1728 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
1729 if( rc!=SQLITE_OK ){
1730 return rc;
1731 }
1732 }
1733 }
1734
1735 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
1736 ** that it points at iFreePage. Also fix the pointer map entry for
1737 ** iPtrPage.
1738 */
danielk1977a0bf2652004-11-04 14:30:04 +00001739 if( eType!=PTRMAP_ROOTPAGE ){
1740 rc = getPage(pBt, iPtrPage, &pPtrPage);
1741 if( rc!=SQLITE_OK ){
1742 return rc;
1743 }
1744 rc = sqlite3pager_write(pPtrPage->aData);
1745 if( rc!=SQLITE_OK ){
1746 releasePage(pPtrPage);
1747 return rc;
1748 }
1749 modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
1750 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
danielk1977003ba062004-11-04 02:57:33 +00001751 releasePage(pPtrPage);
danielk1977003ba062004-11-04 02:57:33 +00001752 }
danielk1977003ba062004-11-04 02:57:33 +00001753 return rc;
1754}
1755
danielk1977687566d2004-11-02 12:56:41 +00001756/* Forward declaration required by autoVacuumCommit(). */
danielk1977cb1a7eb2004-11-05 12:27:02 +00001757static int allocatePage(Btree *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00001758
1759/*
1760** This routine is called prior to sqlite3pager_commit when a transaction
1761** is commited for an auto-vacuum database.
1762*/
danielk1977d761c0c2004-11-05 16:37:02 +00001763static int autoVacuumCommit(Btree *pBt, Pgno *nTrunc){
danielk1977687566d2004-11-02 12:56:41 +00001764 Pager *pPager = pBt->pPager;
1765 Pgno nFreeList; /* Number of pages remaining on the free-list. */
danielk1977a19df672004-11-03 11:37:07 +00001766 int nPtrMap; /* Number of pointer-map pages deallocated */
1767 Pgno origSize; /* Pages in the database file */
1768 Pgno finSize; /* Pages in the database file after truncation */
danielk1977687566d2004-11-02 12:56:41 +00001769 int rc; /* Return code */
1770 u8 eType;
danielk1977a19df672004-11-03 11:37:07 +00001771 int pgsz = pBt->pageSize; /* Page size for this database */
danielk1977687566d2004-11-02 12:56:41 +00001772 Pgno iDbPage; /* The database page to move */
danielk1977687566d2004-11-02 12:56:41 +00001773 MemPage *pDbMemPage = 0; /* "" */
1774 Pgno iPtrPage; /* The page that contains a pointer to iDbPage */
danielk1977687566d2004-11-02 12:56:41 +00001775 Pgno iFreePage; /* The free-list page to move iDbPage to */
1776 MemPage *pFreeMemPage = 0; /* "" */
1777
1778#ifndef NDEBUG
1779 int nRef = *sqlite3pager_stats(pPager);
1780#endif
1781
1782 assert( pBt->autoVacuum );
danielk1977a19df672004-11-03 11:37:07 +00001783 assert( 0==PTRMAP_ISPAGE(pgsz, sqlite3pager_pagecount(pPager)) );
danielk1977687566d2004-11-02 12:56:41 +00001784
1785 /* Figure out how many free-pages are in the database. If there are no
1786 ** free pages, then auto-vacuum is a no-op.
1787 */
1788 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977a19df672004-11-03 11:37:07 +00001789 if( nFreeList==0 ){
danielk1977d761c0c2004-11-05 16:37:02 +00001790 *nTrunc = 0;
danielk1977a19df672004-11-03 11:37:07 +00001791 return SQLITE_OK;
1792 }
danielk1977687566d2004-11-02 12:56:41 +00001793
danielk1977a19df672004-11-03 11:37:07 +00001794 origSize = sqlite3pager_pagecount(pPager);
1795 nPtrMap = (nFreeList-origSize+PTRMAP_PAGENO(pgsz, origSize)+pgsz/5)/(pgsz/5);
1796 finSize = origSize - nFreeList - nPtrMap;
danielk1977599fcba2004-11-08 07:13:13 +00001797 if( origSize>PENDING_BYTE_PAGE(pBt) && finSize<=PENDING_BYTE_PAGE(pBt) ){
1798 finSize--;
drh42cac6d2004-11-20 20:31:11 +00001799 if( PTRMAP_ISPAGE(pBt->usableSize, finSize) ){
danielk1977599fcba2004-11-08 07:13:13 +00001800 finSize--;
1801 }
1802 }
danielk1977a19df672004-11-03 11:37:07 +00001803 TRACE(("AUTOVACUUM: Begin (db size %d->%d)\n", origSize, finSize));
danielk1977687566d2004-11-02 12:56:41 +00001804
danielk1977a19df672004-11-03 11:37:07 +00001805 /* Variable 'finSize' will be the size of the file in pages after
danielk1977687566d2004-11-02 12:56:41 +00001806 ** the auto-vacuum has completed (the current file size minus the number
1807 ** of pages on the free list). Loop through the pages that lie beyond
1808 ** this mark, and if they are not already on the free list, move them
danielk1977a19df672004-11-03 11:37:07 +00001809 ** to a free page earlier in the file (somewhere before finSize).
danielk1977687566d2004-11-02 12:56:41 +00001810 */
danielk1977a19df672004-11-03 11:37:07 +00001811 for( iDbPage=finSize+1; iDbPage<=origSize; iDbPage++ ){
danielk1977599fcba2004-11-08 07:13:13 +00001812 /* If iDbPage is a pointer map page, or the pending-byte page, skip it. */
1813 if( PTRMAP_ISPAGE(pgsz, iDbPage) || iDbPage==PENDING_BYTE_PAGE(pBt) ){
1814 continue;
1815 }
1816
danielk1977687566d2004-11-02 12:56:41 +00001817 rc = ptrmapGet(pBt, iDbPage, &eType, &iPtrPage);
1818 if( rc!=SQLITE_OK ) goto autovacuum_out;
1819 assert( eType!=PTRMAP_ROOTPAGE );
1820
danielk1977599fcba2004-11-08 07:13:13 +00001821 /* If iDbPage is free, do not swap it. */
1822 if( eType==PTRMAP_FREEPAGE ){
danielk1977687566d2004-11-02 12:56:41 +00001823 continue;
1824 }
1825 rc = getPage(pBt, iDbPage, &pDbMemPage);
1826 if( rc!=SQLITE_OK ) goto autovacuum_out;
danielk1977687566d2004-11-02 12:56:41 +00001827
1828 /* Find the next page in the free-list that is not already at the end
1829 ** of the file. A page can be pulled off the free list using the
1830 ** allocatePage() routine.
1831 */
1832 do{
1833 if( pFreeMemPage ){
1834 releasePage(pFreeMemPage);
1835 pFreeMemPage = 0;
1836 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00001837 rc = allocatePage(pBt, &pFreeMemPage, &iFreePage, 0, 0);
danielk1977ac11ee62005-01-15 12:45:51 +00001838 if( rc!=SQLITE_OK ){
1839 releasePage(pDbMemPage);
1840 goto autovacuum_out;
1841 }
danielk1977a19df672004-11-03 11:37:07 +00001842 assert( iFreePage<=origSize );
1843 }while( iFreePage>finSize );
danielk1977687566d2004-11-02 12:56:41 +00001844 releasePage(pFreeMemPage);
1845 pFreeMemPage = 0;
danielk1977687566d2004-11-02 12:56:41 +00001846
danielk1977003ba062004-11-04 02:57:33 +00001847 rc = relocatePage(pBt, pDbMemPage, eType, iPtrPage, iFreePage);
danielk1977687566d2004-11-02 12:56:41 +00001848 releasePage(pDbMemPage);
danielk1977687566d2004-11-02 12:56:41 +00001849 if( rc!=SQLITE_OK ) goto autovacuum_out;
danielk1977687566d2004-11-02 12:56:41 +00001850 }
1851
1852 /* The entire free-list has been swapped to the end of the file. So
danielk1977a19df672004-11-03 11:37:07 +00001853 ** truncate the database file to finSize pages and consider the
danielk1977687566d2004-11-02 12:56:41 +00001854 ** free-list empty.
1855 */
1856 rc = sqlite3pager_write(pBt->pPage1->aData);
1857 if( rc!=SQLITE_OK ) goto autovacuum_out;
1858 put4byte(&pBt->pPage1->aData[32], 0);
1859 put4byte(&pBt->pPage1->aData[36], 0);
danielk1977687566d2004-11-02 12:56:41 +00001860 if( rc!=SQLITE_OK ) goto autovacuum_out;
danielk1977d761c0c2004-11-05 16:37:02 +00001861 *nTrunc = finSize;
danielk1977687566d2004-11-02 12:56:41 +00001862
1863autovacuum_out:
danielk1977687566d2004-11-02 12:56:41 +00001864 assert( nRef==*sqlite3pager_stats(pPager) );
1865 if( rc!=SQLITE_OK ){
1866 sqlite3pager_rollback(pPager);
1867 }
1868 return rc;
1869}
1870#endif
1871
1872/*
drh2aa679f2001-06-25 02:11:07 +00001873** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00001874**
1875** This will release the write lock on the database file. If there
1876** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00001877*/
drh3aac2dd2004-04-26 14:10:20 +00001878int sqlite3BtreeCommit(Btree *pBt){
danielk1977ee5741e2004-05-31 10:01:34 +00001879 int rc = SQLITE_OK;
1880 if( pBt->inTrans==TRANS_WRITE ){
1881 rc = sqlite3pager_commit(pBt->pPager);
1882 }
1883 pBt->inTrans = TRANS_NONE;
drh3aac2dd2004-04-26 14:10:20 +00001884 pBt->inStmt = 0;
drh5e00f6c2001-09-13 13:46:56 +00001885 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001886 return rc;
1887}
1888
danielk1977fbcd5852004-06-15 02:44:18 +00001889#ifndef NDEBUG
1890/*
1891** Return the number of write-cursors open on this handle. This is for use
1892** in assert() expressions, so it is only compiled if NDEBUG is not
1893** defined.
1894*/
1895static int countWriteCursors(Btree *pBt){
1896 BtCursor *pCur;
1897 int r = 0;
1898 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
1899 if( pCur->wrFlag ) r++;
1900 }
1901 return r;
1902}
1903#endif
1904
1905#if 0
drha059ad02001-04-17 20:09:11 +00001906/*
drhc39e0002004-05-07 23:50:57 +00001907** Invalidate all cursors
1908*/
1909static void invalidateCursors(Btree *pBt){
1910 BtCursor *pCur;
1911 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
1912 MemPage *pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00001913 if( pPage /* && !pPage->isInit */ ){
1914 pageIntegrity(pPage);
drhc39e0002004-05-07 23:50:57 +00001915 releasePage(pPage);
1916 pCur->pPage = 0;
1917 pCur->isValid = 0;
1918 pCur->status = SQLITE_ABORT;
1919 }
1920 }
1921}
danielk1977fbcd5852004-06-15 02:44:18 +00001922#endif
drhc39e0002004-05-07 23:50:57 +00001923
drhda200cc2004-05-09 11:51:38 +00001924#ifdef SQLITE_TEST
1925/*
1926** Print debugging information about all cursors to standard output.
1927*/
1928void sqlite3BtreeCursorList(Btree *pBt){
danielk197728129562005-01-11 10:25:06 +00001929#ifndef SQLITE_OMIT_CURSOR
drhda200cc2004-05-09 11:51:38 +00001930 BtCursor *pCur;
1931 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
1932 MemPage *pPage = pCur->pPage;
1933 char *zMode = pCur->wrFlag ? "rw" : "ro";
drhfe63d1c2004-09-08 20:13:04 +00001934 sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n",
1935 pCur, pCur->pgnoRoot, zMode,
drhda200cc2004-05-09 11:51:38 +00001936 pPage ? pPage->pgno : 0, pCur->idx,
1937 pCur->isValid ? "" : " eof"
1938 );
1939 }
danielk197728129562005-01-11 10:25:06 +00001940#endif
drhda200cc2004-05-09 11:51:38 +00001941}
1942#endif
1943
drhc39e0002004-05-07 23:50:57 +00001944/*
drhecdc7532001-09-23 02:35:53 +00001945** Rollback the transaction in progress. All cursors will be
1946** invalided by this operation. Any attempt to use a cursor
1947** that was open at the beginning of this operation will result
1948** in an error.
drh5e00f6c2001-09-13 13:46:56 +00001949**
1950** This will release the write lock on the database file. If there
1951** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00001952*/
drh3aac2dd2004-04-26 14:10:20 +00001953int sqlite3BtreeRollback(Btree *pBt){
danielk1977cfe9a692004-06-16 12:00:29 +00001954 int rc = SQLITE_OK;
drh24cd67e2004-05-10 16:18:47 +00001955 MemPage *pPage1;
danielk1977ee5741e2004-05-31 10:01:34 +00001956 if( pBt->inTrans==TRANS_WRITE ){
drh24cd67e2004-05-10 16:18:47 +00001957 rc = sqlite3pager_rollback(pBt->pPager);
1958 /* The rollback may have destroyed the pPage1->aData value. So
1959 ** call getPage() on page 1 again to make sure pPage1->aData is
1960 ** set correctly. */
1961 if( getPage(pBt, 1, &pPage1)==SQLITE_OK ){
1962 releasePage(pPage1);
1963 }
danielk1977fbcd5852004-06-15 02:44:18 +00001964 assert( countWriteCursors(pBt)==0 );
drh24cd67e2004-05-10 16:18:47 +00001965 }
danielk1977ee5741e2004-05-31 10:01:34 +00001966 pBt->inTrans = TRANS_NONE;
1967 pBt->inStmt = 0;
drh5e00f6c2001-09-13 13:46:56 +00001968 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001969 return rc;
1970}
1971
1972/*
drhab01f612004-05-22 02:55:23 +00001973** Start a statement subtransaction. The subtransaction can
1974** can be rolled back independently of the main transaction.
1975** You must start a transaction before starting a subtransaction.
1976** The subtransaction is ended automatically if the main transaction
drh663fc632002-02-02 18:49:19 +00001977** commits or rolls back.
1978**
drhab01f612004-05-22 02:55:23 +00001979** Only one subtransaction may be active at a time. It is an error to try
1980** to start a new subtransaction if another subtransaction is already active.
1981**
1982** Statement subtransactions are used around individual SQL statements
1983** that are contained within a BEGIN...COMMIT block. If a constraint
1984** error occurs within the statement, the effect of that one statement
1985** can be rolled back without having to rollback the entire transaction.
drh663fc632002-02-02 18:49:19 +00001986*/
drh3aac2dd2004-04-26 14:10:20 +00001987int sqlite3BtreeBeginStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00001988 int rc;
danielk1977ee5741e2004-05-31 10:01:34 +00001989 if( (pBt->inTrans!=TRANS_WRITE) || pBt->inStmt ){
drhf74b8d92002-09-01 23:20:45 +00001990 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh0d65dc02002-02-03 00:56:09 +00001991 }
drha34b6762004-05-07 13:30:42 +00001992 rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_stmt_begin(pBt->pPager);
drh3aac2dd2004-04-26 14:10:20 +00001993 pBt->inStmt = 1;
drh663fc632002-02-02 18:49:19 +00001994 return rc;
1995}
1996
1997
1998/*
drhab01f612004-05-22 02:55:23 +00001999** Commit the statment subtransaction currently in progress. If no
2000** subtransaction is active, this is a no-op.
drh663fc632002-02-02 18:49:19 +00002001*/
drh3aac2dd2004-04-26 14:10:20 +00002002int sqlite3BtreeCommitStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00002003 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002004 if( pBt->inStmt && !pBt->readOnly ){
drha34b6762004-05-07 13:30:42 +00002005 rc = sqlite3pager_stmt_commit(pBt->pPager);
drh663fc632002-02-02 18:49:19 +00002006 }else{
2007 rc = SQLITE_OK;
2008 }
drh3aac2dd2004-04-26 14:10:20 +00002009 pBt->inStmt = 0;
drh663fc632002-02-02 18:49:19 +00002010 return rc;
2011}
2012
2013/*
drhab01f612004-05-22 02:55:23 +00002014** Rollback the active statement subtransaction. If no subtransaction
2015** is active this routine is a no-op.
drh663fc632002-02-02 18:49:19 +00002016**
drhab01f612004-05-22 02:55:23 +00002017** All cursors will be invalidated by this operation. Any attempt
drh663fc632002-02-02 18:49:19 +00002018** to use a cursor that was open at the beginning of this operation
2019** will result in an error.
2020*/
drh3aac2dd2004-04-26 14:10:20 +00002021int sqlite3BtreeRollbackStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00002022 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002023 if( pBt->inStmt==0 || pBt->readOnly ) return SQLITE_OK;
drha34b6762004-05-07 13:30:42 +00002024 rc = sqlite3pager_stmt_rollback(pBt->pPager);
danielk1977fbcd5852004-06-15 02:44:18 +00002025 assert( countWriteCursors(pBt)==0 );
drh3aac2dd2004-04-26 14:10:20 +00002026 pBt->inStmt = 0;
drh663fc632002-02-02 18:49:19 +00002027 return rc;
2028}
2029
2030/*
drh3aac2dd2004-04-26 14:10:20 +00002031** Default key comparison function to be used if no comparison function
2032** is specified on the sqlite3BtreeCursor() call.
2033*/
2034static int dfltCompare(
2035 void *NotUsed, /* User data is not used */
2036 int n1, const void *p1, /* First key to compare */
2037 int n2, const void *p2 /* Second key to compare */
2038){
2039 int c;
2040 c = memcmp(p1, p2, n1<n2 ? n1 : n2);
2041 if( c==0 ){
2042 c = n1 - n2;
2043 }
2044 return c;
2045}
2046
2047/*
drh8b2f49b2001-06-08 00:21:52 +00002048** Create a new cursor for the BTree whose root is on the page
2049** iTable. The act of acquiring a cursor gets a read lock on
2050** the database file.
drh1bee3d72001-10-15 00:44:35 +00002051**
2052** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00002053** If wrFlag==1, then the cursor can be used for reading or for
2054** writing if other conditions for writing are also met. These
2055** are the conditions that must be met in order for writing to
2056** be allowed:
drh6446c4d2001-12-15 14:22:18 +00002057**
drhf74b8d92002-09-01 23:20:45 +00002058** 1: The cursor must have been opened with wrFlag==1
2059**
2060** 2: No other cursors may be open with wrFlag==0 on the same table
2061**
2062** 3: The database must be writable (not on read-only media)
2063**
2064** 4: There must be an active transaction.
2065**
2066** Condition 2 warrants further discussion. If any cursor is opened
2067** on a table with wrFlag==0, that prevents all other cursors from
2068** writing to that table. This is a kind of "read-lock". When a cursor
2069** is opened with wrFlag==0 it is guaranteed that the table will not
2070** change as long as the cursor is open. This allows the cursor to
2071** do a sequential scan of the table without having to worry about
2072** entries being inserted or deleted during the scan. Cursors should
2073** be opened with wrFlag==0 only if this read-lock property is needed.
2074** That is to say, cursors should be opened with wrFlag==0 only if they
drh23e11ca2004-05-04 17:27:28 +00002075** intend to use the sqlite3BtreeNext() system call. All other cursors
drhf74b8d92002-09-01 23:20:45 +00002076** should be opened with wrFlag==1 even if they never really intend
2077** to write.
2078**
drh6446c4d2001-12-15 14:22:18 +00002079** No checking is done to make sure that page iTable really is the
2080** root page of a b-tree. If it is not, then the cursor acquired
2081** will not work correctly.
drh3aac2dd2004-04-26 14:10:20 +00002082**
2083** The comparison function must be logically the same for every cursor
2084** on a particular table. Changing the comparison function will result
2085** in incorrect operations. If the comparison function is NULL, a
2086** default comparison function is used. The comparison function is
2087** always ignored for INTKEY tables.
drha059ad02001-04-17 20:09:11 +00002088*/
drh3aac2dd2004-04-26 14:10:20 +00002089int sqlite3BtreeCursor(
2090 Btree *pBt, /* The btree */
2091 int iTable, /* Root page of table to open */
2092 int wrFlag, /* 1 to write. 0 read-only */
2093 int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
2094 void *pArg, /* First arg to xCompare() */
2095 BtCursor **ppCur /* Write new cursor here */
2096){
drha059ad02001-04-17 20:09:11 +00002097 int rc;
drh8dcd7ca2004-08-08 19:43:29 +00002098 BtCursor *pCur;
drhecdc7532001-09-23 02:35:53 +00002099
drh8dcd7ca2004-08-08 19:43:29 +00002100 *ppCur = 0;
2101 if( wrFlag ){
drh8dcd7ca2004-08-08 19:43:29 +00002102 if( pBt->readOnly ){
2103 return SQLITE_READONLY;
2104 }
2105 if( checkReadLocks(pBt, iTable, 0) ){
2106 return SQLITE_LOCKED;
2107 }
drha0c9a112004-03-10 13:42:37 +00002108 }
drh4b70f112004-05-02 21:12:19 +00002109 if( pBt->pPage1==0 ){
drha059ad02001-04-17 20:09:11 +00002110 rc = lockBtree(pBt);
2111 if( rc!=SQLITE_OK ){
drha059ad02001-04-17 20:09:11 +00002112 return rc;
2113 }
2114 }
drheafe05b2004-06-13 00:54:01 +00002115 pCur = sqliteMallocRaw( sizeof(*pCur) );
drha059ad02001-04-17 20:09:11 +00002116 if( pCur==0 ){
drhbd03cae2001-06-02 02:40:57 +00002117 rc = SQLITE_NOMEM;
2118 goto create_cursor_exception;
2119 }
drh8b2f49b2001-06-08 00:21:52 +00002120 pCur->pgnoRoot = (Pgno)iTable;
drh24cd67e2004-05-10 16:18:47 +00002121 if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){
2122 rc = SQLITE_EMPTY;
drheafe05b2004-06-13 00:54:01 +00002123 pCur->pPage = 0;
drh24cd67e2004-05-10 16:18:47 +00002124 goto create_cursor_exception;
2125 }
danielk1977369f27e2004-06-15 11:40:04 +00002126 pCur->pPage = 0; /* For exit-handler, in case getAndInitPage() fails. */
drhde647132004-05-07 17:57:49 +00002127 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
drhbd03cae2001-06-02 02:40:57 +00002128 if( rc!=SQLITE_OK ){
2129 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00002130 }
drh3aac2dd2004-04-26 14:10:20 +00002131 pCur->xCompare = xCmp ? xCmp : dfltCompare;
2132 pCur->pArg = pArg;
drh14acc042001-06-10 19:56:58 +00002133 pCur->pBt = pBt;
drhecdc7532001-09-23 02:35:53 +00002134 pCur->wrFlag = wrFlag;
drh14acc042001-06-10 19:56:58 +00002135 pCur->idx = 0;
drh59eb6762004-06-13 23:07:04 +00002136 memset(&pCur->info, 0, sizeof(pCur->info));
drha059ad02001-04-17 20:09:11 +00002137 pCur->pNext = pBt->pCursor;
2138 if( pCur->pNext ){
2139 pCur->pNext->pPrev = pCur;
2140 }
drh14acc042001-06-10 19:56:58 +00002141 pCur->pPrev = 0;
drha059ad02001-04-17 20:09:11 +00002142 pBt->pCursor = pCur;
drhc39e0002004-05-07 23:50:57 +00002143 pCur->isValid = 0;
drh2af926b2001-05-15 00:39:25 +00002144 *ppCur = pCur;
2145 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00002146
2147create_cursor_exception:
drhbd03cae2001-06-02 02:40:57 +00002148 if( pCur ){
drh3aac2dd2004-04-26 14:10:20 +00002149 releasePage(pCur->pPage);
drhbd03cae2001-06-02 02:40:57 +00002150 sqliteFree(pCur);
2151 }
drh5e00f6c2001-09-13 13:46:56 +00002152 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00002153 return rc;
drha059ad02001-04-17 20:09:11 +00002154}
2155
drh7a224de2004-06-02 01:22:02 +00002156#if 0 /* Not Used */
drhd3d39e92004-05-20 22:16:29 +00002157/*
2158** Change the value of the comparison function used by a cursor.
2159*/
danielk1977bf3b7212004-05-18 10:06:24 +00002160void sqlite3BtreeSetCompare(
drhd3d39e92004-05-20 22:16:29 +00002161 BtCursor *pCur, /* The cursor to whose comparison function is changed */
2162 int(*xCmp)(void*,int,const void*,int,const void*), /* New comparison func */
2163 void *pArg /* First argument to xCmp() */
danielk1977bf3b7212004-05-18 10:06:24 +00002164){
2165 pCur->xCompare = xCmp ? xCmp : dfltCompare;
2166 pCur->pArg = pArg;
2167}
drh7a224de2004-06-02 01:22:02 +00002168#endif
danielk1977bf3b7212004-05-18 10:06:24 +00002169
drha059ad02001-04-17 20:09:11 +00002170/*
drh5e00f6c2001-09-13 13:46:56 +00002171** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00002172** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00002173*/
drh3aac2dd2004-04-26 14:10:20 +00002174int sqlite3BtreeCloseCursor(BtCursor *pCur){
drha059ad02001-04-17 20:09:11 +00002175 Btree *pBt = pCur->pBt;
drha059ad02001-04-17 20:09:11 +00002176 if( pCur->pPrev ){
2177 pCur->pPrev->pNext = pCur->pNext;
2178 }else{
2179 pBt->pCursor = pCur->pNext;
2180 }
2181 if( pCur->pNext ){
2182 pCur->pNext->pPrev = pCur->pPrev;
2183 }
drh3aac2dd2004-04-26 14:10:20 +00002184 releasePage(pCur->pPage);
drh5e00f6c2001-09-13 13:46:56 +00002185 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00002186 sqliteFree(pCur);
drh8c42ca92001-06-22 19:15:00 +00002187 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002188}
2189
drh7e3b0a02001-04-28 16:52:40 +00002190/*
drh5e2f8b92001-05-28 00:41:15 +00002191** Make a temporary cursor by filling in the fields of pTempCur.
2192** The temporary cursor is not on the cursor list for the Btree.
2193*/
drh14acc042001-06-10 19:56:58 +00002194static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
drh5e2f8b92001-05-28 00:41:15 +00002195 memcpy(pTempCur, pCur, sizeof(*pCur));
2196 pTempCur->pNext = 0;
2197 pTempCur->pPrev = 0;
drhecdc7532001-09-23 02:35:53 +00002198 if( pTempCur->pPage ){
drha34b6762004-05-07 13:30:42 +00002199 sqlite3pager_ref(pTempCur->pPage->aData);
drhecdc7532001-09-23 02:35:53 +00002200 }
drh5e2f8b92001-05-28 00:41:15 +00002201}
2202
2203/*
drhbd03cae2001-06-02 02:40:57 +00002204** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00002205** function above.
2206*/
drh14acc042001-06-10 19:56:58 +00002207static void releaseTempCursor(BtCursor *pCur){
drhecdc7532001-09-23 02:35:53 +00002208 if( pCur->pPage ){
drha34b6762004-05-07 13:30:42 +00002209 sqlite3pager_unref(pCur->pPage->aData);
drhecdc7532001-09-23 02:35:53 +00002210 }
drh5e2f8b92001-05-28 00:41:15 +00002211}
2212
2213/*
drh9188b382004-05-14 21:12:22 +00002214** Make sure the BtCursor.info field of the given cursor is valid.
drhab01f612004-05-22 02:55:23 +00002215** If it is not already valid, call parseCell() to fill it in.
2216**
2217** BtCursor.info is a cache of the information in the current cell.
2218** Using this cache reduces the number of calls to parseCell().
drh9188b382004-05-14 21:12:22 +00002219*/
2220static void getCellInfo(BtCursor *pCur){
drh271efa52004-05-30 19:19:05 +00002221 if( pCur->info.nSize==0 ){
drh3a41a3f2004-05-30 02:14:17 +00002222 parseCell(pCur->pPage, pCur->idx, &pCur->info);
drh9188b382004-05-14 21:12:22 +00002223 }else{
2224#ifndef NDEBUG
2225 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00002226 memset(&info, 0, sizeof(info));
drh3a41a3f2004-05-30 02:14:17 +00002227 parseCell(pCur->pPage, pCur->idx, &info);
drh9188b382004-05-14 21:12:22 +00002228 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
2229#endif
2230 }
2231}
2232
2233/*
drh3aac2dd2004-04-26 14:10:20 +00002234** Set *pSize to the size of the buffer needed to hold the value of
2235** the key for the current entry. If the cursor is not pointing
2236** to a valid entry, *pSize is set to 0.
2237**
drh4b70f112004-05-02 21:12:19 +00002238** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00002239** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00002240*/
drh4a1c3802004-05-12 15:15:47 +00002241int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
danielk1977299b1872004-11-22 10:02:10 +00002242 if( !pCur->isValid ){
drh72f82862001-05-24 21:06:34 +00002243 *pSize = 0;
2244 }else{
drh9188b382004-05-14 21:12:22 +00002245 getCellInfo(pCur);
2246 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00002247 }
2248 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002249}
drh2af926b2001-05-15 00:39:25 +00002250
drh72f82862001-05-24 21:06:34 +00002251/*
drh0e1c19e2004-05-11 00:58:56 +00002252** Set *pSize to the number of bytes of data in the entry the
2253** cursor currently points to. Always return SQLITE_OK.
2254** Failure is not possible. If the cursor is not currently
2255** pointing to an entry (which can happen, for example, if
2256** the database is empty) then *pSize is set to 0.
2257*/
2258int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
danielk1977299b1872004-11-22 10:02:10 +00002259 if( !pCur->isValid ){
danielk197796fc5fe2004-05-13 11:34:16 +00002260 /* Not pointing at a valid entry - set *pSize to 0. */
drh0e1c19e2004-05-11 00:58:56 +00002261 *pSize = 0;
2262 }else{
drh9188b382004-05-14 21:12:22 +00002263 getCellInfo(pCur);
2264 *pSize = pCur->info.nData;
drh0e1c19e2004-05-11 00:58:56 +00002265 }
2266 return SQLITE_OK;
2267}
2268
2269/*
drh72f82862001-05-24 21:06:34 +00002270** Read payload information from the entry that the pCur cursor is
2271** pointing to. Begin reading the payload at "offset" and read
2272** a total of "amt" bytes. Put the result in zBuf.
2273**
2274** This routine does not make a distinction between key and data.
drhab01f612004-05-22 02:55:23 +00002275** It just reads bytes from the payload area. Data might appear
2276** on the main page or be scattered out on multiple overflow pages.
drh72f82862001-05-24 21:06:34 +00002277*/
drh3aac2dd2004-04-26 14:10:20 +00002278static int getPayload(
2279 BtCursor *pCur, /* Cursor pointing to entry to read from */
2280 int offset, /* Begin reading this far into payload */
2281 int amt, /* Read this many bytes */
2282 unsigned char *pBuf, /* Write the bytes into this buffer */
2283 int skipKey /* offset begins at data if this is true */
2284){
2285 unsigned char *aPayload;
drh2af926b2001-05-15 00:39:25 +00002286 Pgno nextPage;
drh8c42ca92001-06-22 19:15:00 +00002287 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002288 MemPage *pPage;
2289 Btree *pBt;
drh6f11bef2004-05-13 01:12:56 +00002290 int ovflSize;
drhfa1a98a2004-05-14 19:08:17 +00002291 u32 nKey;
drh3aac2dd2004-04-26 14:10:20 +00002292
drh72f82862001-05-24 21:06:34 +00002293 assert( pCur!=0 && pCur->pPage!=0 );
drhc39e0002004-05-07 23:50:57 +00002294 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00002295 pBt = pCur->pBt;
2296 pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00002297 pageIntegrity(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002298 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh9188b382004-05-14 21:12:22 +00002299 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00002300 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00002301 aPayload += pCur->info.nHeader;
drh3aac2dd2004-04-26 14:10:20 +00002302 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00002303 nKey = 0;
2304 }else{
2305 nKey = pCur->info.nKey;
drh3aac2dd2004-04-26 14:10:20 +00002306 }
2307 assert( offset>=0 );
2308 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00002309 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00002310 }
drhfa1a98a2004-05-14 19:08:17 +00002311 if( offset+amt > nKey+pCur->info.nData ){
drha34b6762004-05-07 13:30:42 +00002312 return SQLITE_ERROR;
drh3aac2dd2004-04-26 14:10:20 +00002313 }
drhfa1a98a2004-05-14 19:08:17 +00002314 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00002315 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00002316 if( a+offset>pCur->info.nLocal ){
2317 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00002318 }
drha34b6762004-05-07 13:30:42 +00002319 memcpy(pBuf, &aPayload[offset], a);
drh2af926b2001-05-15 00:39:25 +00002320 if( a==amt ){
2321 return SQLITE_OK;
2322 }
drh2aa679f2001-06-25 02:11:07 +00002323 offset = 0;
drha34b6762004-05-07 13:30:42 +00002324 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00002325 amt -= a;
drhdd793422001-06-28 01:54:48 +00002326 }else{
drhfa1a98a2004-05-14 19:08:17 +00002327 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00002328 }
danielk1977cfe9a692004-06-16 12:00:29 +00002329 ovflSize = pBt->usableSize - 4;
drhbd03cae2001-06-02 02:40:57 +00002330 if( amt>0 ){
drhfa1a98a2004-05-14 19:08:17 +00002331 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977cfe9a692004-06-16 12:00:29 +00002332 while( amt>0 && nextPage ){
2333 rc = sqlite3pager_get(pBt->pPager, nextPage, (void**)&aPayload);
2334 if( rc!=0 ){
2335 return rc;
drh2af926b2001-05-15 00:39:25 +00002336 }
danielk1977cfe9a692004-06-16 12:00:29 +00002337 nextPage = get4byte(aPayload);
2338 if( offset<ovflSize ){
2339 int a = amt;
2340 if( a + offset > ovflSize ){
2341 a = ovflSize - offset;
2342 }
2343 memcpy(pBuf, &aPayload[offset+4], a);
2344 offset = 0;
2345 amt -= a;
2346 pBuf += a;
2347 }else{
2348 offset -= ovflSize;
2349 }
2350 sqlite3pager_unref(aPayload);
drh2af926b2001-05-15 00:39:25 +00002351 }
drh2af926b2001-05-15 00:39:25 +00002352 }
danielk1977cfe9a692004-06-16 12:00:29 +00002353
drha7fcb052001-12-14 15:09:55 +00002354 if( amt>0 ){
drhee696e22004-08-30 16:52:17 +00002355 return SQLITE_CORRUPT; /* bkpt-CORRUPT */
drha7fcb052001-12-14 15:09:55 +00002356 }
2357 return SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +00002358}
2359
drh72f82862001-05-24 21:06:34 +00002360/*
drh3aac2dd2004-04-26 14:10:20 +00002361** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00002362** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00002363** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00002364**
drh3aac2dd2004-04-26 14:10:20 +00002365** Return SQLITE_OK on success or an error code if anything goes
2366** wrong. An error is returned if "offset+amt" is larger than
2367** the available payload.
drh72f82862001-05-24 21:06:34 +00002368*/
drha34b6762004-05-07 13:30:42 +00002369int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
danielk197728129562005-01-11 10:25:06 +00002370 assert( pCur->isValid );
drhc39e0002004-05-07 23:50:57 +00002371 assert( pCur->pPage!=0 );
2372 assert( pCur->pPage->intKey==0 );
2373 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh3aac2dd2004-04-26 14:10:20 +00002374 return getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
2375}
2376
2377/*
drh3aac2dd2004-04-26 14:10:20 +00002378** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00002379** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00002380** begins at "offset".
2381**
2382** Return SQLITE_OK on success or an error code if anything goes
2383** wrong. An error is returned if "offset+amt" is larger than
2384** the available payload.
drh72f82862001-05-24 21:06:34 +00002385*/
drh3aac2dd2004-04-26 14:10:20 +00002386int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
danielk197728129562005-01-11 10:25:06 +00002387 assert( pCur->isValid );
drh8c1238a2003-01-02 14:43:55 +00002388 assert( pCur->pPage!=0 );
drhc39e0002004-05-07 23:50:57 +00002389 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh3aac2dd2004-04-26 14:10:20 +00002390 return getPayload(pCur, offset, amt, pBuf, 1);
drh2af926b2001-05-15 00:39:25 +00002391}
2392
drh72f82862001-05-24 21:06:34 +00002393/*
drh0e1c19e2004-05-11 00:58:56 +00002394** Return a pointer to payload information from the entry that the
2395** pCur cursor is pointing to. The pointer is to the beginning of
2396** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00002397** skipKey==1. The number of bytes of available key/data is written
2398** into *pAmt. If *pAmt==0, then the value returned will not be
2399** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00002400**
2401** This routine is an optimization. It is common for the entire key
2402** and data to fit on the local page and for there to be no overflow
2403** pages. When that is so, this routine can be used to access the
2404** key and data without making a copy. If the key and/or data spills
2405** onto overflow pages, then getPayload() must be used to reassembly
2406** the key/data and copy it into a preallocated buffer.
2407**
2408** The pointer returned by this routine looks directly into the cached
2409** page of the database. The data might change or move the next time
2410** any btree routine is called.
2411*/
2412static const unsigned char *fetchPayload(
2413 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00002414 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00002415 int skipKey /* read beginning at data if this is true */
2416){
2417 unsigned char *aPayload;
2418 MemPage *pPage;
2419 Btree *pBt;
drhfa1a98a2004-05-14 19:08:17 +00002420 u32 nKey;
2421 int nLocal;
drh0e1c19e2004-05-11 00:58:56 +00002422
2423 assert( pCur!=0 && pCur->pPage!=0 );
2424 assert( pCur->isValid );
2425 pBt = pCur->pBt;
2426 pPage = pCur->pPage;
2427 pageIntegrity(pPage);
2428 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh9188b382004-05-14 21:12:22 +00002429 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00002430 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00002431 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00002432 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00002433 nKey = 0;
2434 }else{
2435 nKey = pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00002436 }
drh0e1c19e2004-05-11 00:58:56 +00002437 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00002438 aPayload += nKey;
2439 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00002440 }else{
drhfa1a98a2004-05-14 19:08:17 +00002441 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00002442 if( nLocal>nKey ){
2443 nLocal = nKey;
2444 }
drh0e1c19e2004-05-11 00:58:56 +00002445 }
drhe51c44f2004-05-30 20:46:09 +00002446 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00002447 return aPayload;
2448}
2449
2450
2451/*
drhe51c44f2004-05-30 20:46:09 +00002452** For the entry that cursor pCur is point to, return as
2453** many bytes of the key or data as are available on the local
2454** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00002455**
2456** The pointer returned is ephemeral. The key/data may move
2457** or be destroyed on the next call to any Btree routine.
2458**
2459** These routines is used to get quick access to key and data
2460** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00002461*/
drhe51c44f2004-05-30 20:46:09 +00002462const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
2463 return (const void*)fetchPayload(pCur, pAmt, 0);
drh0e1c19e2004-05-11 00:58:56 +00002464}
drhe51c44f2004-05-30 20:46:09 +00002465const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
2466 return (const void*)fetchPayload(pCur, pAmt, 1);
drh0e1c19e2004-05-11 00:58:56 +00002467}
2468
2469
2470/*
drh8178a752003-01-05 21:41:40 +00002471** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00002472** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00002473*/
drh3aac2dd2004-04-26 14:10:20 +00002474static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00002475 int rc;
2476 MemPage *pNewPage;
drh3aac2dd2004-04-26 14:10:20 +00002477 MemPage *pOldPage;
drh0d316a42002-08-11 20:10:47 +00002478 Btree *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00002479
drhc39e0002004-05-07 23:50:57 +00002480 assert( pCur->isValid );
drhde647132004-05-07 17:57:49 +00002481 rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
drh6019e162001-07-02 17:51:45 +00002482 if( rc ) return rc;
drhda200cc2004-05-09 11:51:38 +00002483 pageIntegrity(pNewPage);
drh428ae8c2003-01-04 16:48:09 +00002484 pNewPage->idxParent = pCur->idx;
drh3aac2dd2004-04-26 14:10:20 +00002485 pOldPage = pCur->pPage;
2486 pOldPage->idxShift = 0;
2487 releasePage(pOldPage);
drh72f82862001-05-24 21:06:34 +00002488 pCur->pPage = pNewPage;
2489 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00002490 pCur->info.nSize = 0;
drh4be295b2003-12-16 03:44:47 +00002491 if( pNewPage->nCell<1 ){
drhee696e22004-08-30 16:52:17 +00002492 return SQLITE_CORRUPT; /* bkpt-CORRUPT */
drh4be295b2003-12-16 03:44:47 +00002493 }
drh72f82862001-05-24 21:06:34 +00002494 return SQLITE_OK;
2495}
2496
2497/*
drh8856d6a2004-04-29 14:42:46 +00002498** Return true if the page is the virtual root of its table.
2499**
2500** The virtual root page is the root page for most tables. But
2501** for the table rooted on page 1, sometime the real root page
2502** is empty except for the right-pointer. In such cases the
2503** virtual root page is the page that the right-pointer of page
2504** 1 is pointing to.
2505*/
2506static int isRootPage(MemPage *pPage){
2507 MemPage *pParent = pPage->pParent;
drhda200cc2004-05-09 11:51:38 +00002508 if( pParent==0 ) return 1;
2509 if( pParent->pgno>1 ) return 0;
2510 if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
drh8856d6a2004-04-29 14:42:46 +00002511 return 0;
2512}
2513
2514/*
drh5e2f8b92001-05-28 00:41:15 +00002515** Move the cursor up to the parent page.
2516**
2517** pCur->idx is set to the cell index that contains the pointer
2518** to the page we are coming from. If we are coming from the
2519** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00002520** the largest cell index.
drh72f82862001-05-24 21:06:34 +00002521*/
drh8178a752003-01-05 21:41:40 +00002522static void moveToParent(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00002523 Pgno oldPgno;
2524 MemPage *pParent;
drh8178a752003-01-05 21:41:40 +00002525 MemPage *pPage;
drh428ae8c2003-01-04 16:48:09 +00002526 int idxParent;
drh3aac2dd2004-04-26 14:10:20 +00002527
drhc39e0002004-05-07 23:50:57 +00002528 assert( pCur->isValid );
drh8178a752003-01-05 21:41:40 +00002529 pPage = pCur->pPage;
2530 assert( pPage!=0 );
drh8856d6a2004-04-29 14:42:46 +00002531 assert( !isRootPage(pPage) );
drhda200cc2004-05-09 11:51:38 +00002532 pageIntegrity(pPage);
drh8178a752003-01-05 21:41:40 +00002533 pParent = pPage->pParent;
2534 assert( pParent!=0 );
drhda200cc2004-05-09 11:51:38 +00002535 pageIntegrity(pParent);
drh8178a752003-01-05 21:41:40 +00002536 idxParent = pPage->idxParent;
drha34b6762004-05-07 13:30:42 +00002537 sqlite3pager_ref(pParent->aData);
drh3aac2dd2004-04-26 14:10:20 +00002538 oldPgno = pPage->pgno;
2539 releasePage(pPage);
drh72f82862001-05-24 21:06:34 +00002540 pCur->pPage = pParent;
drh271efa52004-05-30 19:19:05 +00002541 pCur->info.nSize = 0;
drh428ae8c2003-01-04 16:48:09 +00002542 assert( pParent->idxShift==0 );
drh43605152004-05-29 21:46:49 +00002543 pCur->idx = idxParent;
drh72f82862001-05-24 21:06:34 +00002544}
2545
2546/*
2547** Move the cursor to the root page
2548*/
drh5e2f8b92001-05-28 00:41:15 +00002549static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00002550 MemPage *pRoot;
drhbd03cae2001-06-02 02:40:57 +00002551 int rc;
drh0d316a42002-08-11 20:10:47 +00002552 Btree *pBt = pCur->pBt;
drhbd03cae2001-06-02 02:40:57 +00002553
drhde647132004-05-07 17:57:49 +00002554 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0);
drhc39e0002004-05-07 23:50:57 +00002555 if( rc ){
2556 pCur->isValid = 0;
2557 return rc;
2558 }
drh3aac2dd2004-04-26 14:10:20 +00002559 releasePage(pCur->pPage);
drhda200cc2004-05-09 11:51:38 +00002560 pageIntegrity(pRoot);
drh3aac2dd2004-04-26 14:10:20 +00002561 pCur->pPage = pRoot;
drh72f82862001-05-24 21:06:34 +00002562 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00002563 pCur->info.nSize = 0;
drh8856d6a2004-04-29 14:42:46 +00002564 if( pRoot->nCell==0 && !pRoot->leaf ){
2565 Pgno subpage;
2566 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00002567 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00002568 assert( subpage>0 );
drh3644f082004-05-10 18:45:09 +00002569 pCur->isValid = 1;
drh4b70f112004-05-02 21:12:19 +00002570 rc = moveToChild(pCur, subpage);
drh8856d6a2004-04-29 14:42:46 +00002571 }
drhc39e0002004-05-07 23:50:57 +00002572 pCur->isValid = pCur->pPage->nCell>0;
drh8856d6a2004-04-29 14:42:46 +00002573 return rc;
drh72f82862001-05-24 21:06:34 +00002574}
drh2af926b2001-05-15 00:39:25 +00002575
drh5e2f8b92001-05-28 00:41:15 +00002576/*
2577** Move the cursor down to the left-most leaf entry beneath the
2578** entry to which it is currently pointing.
2579*/
2580static int moveToLeftmost(BtCursor *pCur){
2581 Pgno pgno;
2582 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002583 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00002584
drhc39e0002004-05-07 23:50:57 +00002585 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00002586 while( !(pPage = pCur->pPage)->leaf ){
drha34b6762004-05-07 13:30:42 +00002587 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00002588 pgno = get4byte(findCell(pPage, pCur->idx));
drh8178a752003-01-05 21:41:40 +00002589 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00002590 if( rc ) return rc;
2591 }
2592 return SQLITE_OK;
2593}
2594
drh2dcc9aa2002-12-04 13:40:25 +00002595/*
2596** Move the cursor down to the right-most leaf entry beneath the
2597** page to which it is currently pointing. Notice the difference
2598** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
2599** finds the left-most entry beneath the *entry* whereas moveToRightmost()
2600** finds the right-most entry beneath the *page*.
2601*/
2602static int moveToRightmost(BtCursor *pCur){
2603 Pgno pgno;
2604 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002605 MemPage *pPage;
drh2dcc9aa2002-12-04 13:40:25 +00002606
drhc39e0002004-05-07 23:50:57 +00002607 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00002608 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00002609 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh3aac2dd2004-04-26 14:10:20 +00002610 pCur->idx = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00002611 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00002612 if( rc ) return rc;
2613 }
drh3aac2dd2004-04-26 14:10:20 +00002614 pCur->idx = pPage->nCell - 1;
drh271efa52004-05-30 19:19:05 +00002615 pCur->info.nSize = 0;
drh2dcc9aa2002-12-04 13:40:25 +00002616 return SQLITE_OK;
2617}
2618
drh5e00f6c2001-09-13 13:46:56 +00002619/* Move the cursor to the first entry in the table. Return SQLITE_OK
2620** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00002621** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00002622*/
drh3aac2dd2004-04-26 14:10:20 +00002623int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00002624 int rc;
2625 rc = moveToRoot(pCur);
2626 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00002627 if( pCur->isValid==0 ){
2628 assert( pCur->pPage->nCell==0 );
drh5e00f6c2001-09-13 13:46:56 +00002629 *pRes = 1;
2630 return SQLITE_OK;
2631 }
drhc39e0002004-05-07 23:50:57 +00002632 assert( pCur->pPage->nCell>0 );
drh5e00f6c2001-09-13 13:46:56 +00002633 *pRes = 0;
2634 rc = moveToLeftmost(pCur);
2635 return rc;
2636}
drh5e2f8b92001-05-28 00:41:15 +00002637
drh9562b552002-02-19 15:00:07 +00002638/* Move the cursor to the last entry in the table. Return SQLITE_OK
2639** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00002640** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00002641*/
drh3aac2dd2004-04-26 14:10:20 +00002642int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00002643 int rc;
drh9562b552002-02-19 15:00:07 +00002644 rc = moveToRoot(pCur);
2645 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00002646 if( pCur->isValid==0 ){
2647 assert( pCur->pPage->nCell==0 );
drh9562b552002-02-19 15:00:07 +00002648 *pRes = 1;
2649 return SQLITE_OK;
2650 }
drhc39e0002004-05-07 23:50:57 +00002651 assert( pCur->isValid );
drh9562b552002-02-19 15:00:07 +00002652 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00002653 rc = moveToRightmost(pCur);
drh9562b552002-02-19 15:00:07 +00002654 return rc;
2655}
2656
drh3aac2dd2004-04-26 14:10:20 +00002657/* Move the cursor so that it points to an entry near pKey/nKey.
drh72f82862001-05-24 21:06:34 +00002658** Return a success code.
2659**
drh3aac2dd2004-04-26 14:10:20 +00002660** For INTKEY tables, only the nKey parameter is used. pKey is
2661** ignored. For other tables, nKey is the number of bytes of data
2662** in nKey. The comparison function specified when the cursor was
2663** created is used to compare keys.
2664**
drh5e2f8b92001-05-28 00:41:15 +00002665** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00002666** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00002667** were present. The cursor might point to an entry that comes
2668** before or after the key.
2669**
drhbd03cae2001-06-02 02:40:57 +00002670** The result of comparing the key with the entry to which the
drhab01f612004-05-22 02:55:23 +00002671** cursor is written to *pRes if pRes!=NULL. The meaning of
drhbd03cae2001-06-02 02:40:57 +00002672** this value is as follows:
2673**
2674** *pRes<0 The cursor is left pointing at an entry that
drh1a844c32002-12-04 22:29:28 +00002675** is smaller than pKey or if the table is empty
2676** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00002677**
2678** *pRes==0 The cursor is left pointing at an entry that
2679** exactly matches pKey.
2680**
2681** *pRes>0 The cursor is left pointing at an entry that
drh7c717f72001-06-24 20:39:41 +00002682** is larger than pKey.
drha059ad02001-04-17 20:09:11 +00002683*/
drh4a1c3802004-05-12 15:15:47 +00002684int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){
drh72f82862001-05-24 21:06:34 +00002685 int rc;
drh5e2f8b92001-05-28 00:41:15 +00002686 rc = moveToRoot(pCur);
drh72f82862001-05-24 21:06:34 +00002687 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00002688 assert( pCur->pPage );
2689 assert( pCur->pPage->isInit );
2690 if( pCur->isValid==0 ){
drhf328bc82004-05-10 23:29:49 +00002691 *pRes = -1;
drhc39e0002004-05-07 23:50:57 +00002692 assert( pCur->pPage->nCell==0 );
2693 return SQLITE_OK;
2694 }
drh72f82862001-05-24 21:06:34 +00002695 for(;;){
2696 int lwr, upr;
2697 Pgno chldPg;
2698 MemPage *pPage = pCur->pPage;
drh1a844c32002-12-04 22:29:28 +00002699 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00002700 lwr = 0;
2701 upr = pPage->nCell-1;
drhda200cc2004-05-09 11:51:38 +00002702 pageIntegrity(pPage);
drh72f82862001-05-24 21:06:34 +00002703 while( lwr<=upr ){
danielk197713adf8a2004-06-03 16:08:41 +00002704 void *pCellKey;
drh4a1c3802004-05-12 15:15:47 +00002705 i64 nCellKey;
drh72f82862001-05-24 21:06:34 +00002706 pCur->idx = (lwr+upr)/2;
drh271efa52004-05-30 19:19:05 +00002707 pCur->info.nSize = 0;
drhde647132004-05-07 17:57:49 +00002708 sqlite3BtreeKeySize(pCur, &nCellKey);
drh3aac2dd2004-04-26 14:10:20 +00002709 if( pPage->intKey ){
2710 if( nCellKey<nKey ){
2711 c = -1;
2712 }else if( nCellKey>nKey ){
2713 c = +1;
2714 }else{
2715 c = 0;
2716 }
drh3aac2dd2004-04-26 14:10:20 +00002717 }else{
drhe51c44f2004-05-30 20:46:09 +00002718 int available;
danielk197713adf8a2004-06-03 16:08:41 +00002719 pCellKey = (void *)fetchPayload(pCur, &available, 0);
drhe51c44f2004-05-30 20:46:09 +00002720 if( available>=nCellKey ){
2721 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
2722 }else{
2723 pCellKey = sqliteMallocRaw( nCellKey );
2724 if( pCellKey==0 ) return SQLITE_NOMEM;
danielk197713adf8a2004-06-03 16:08:41 +00002725 rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
drhe51c44f2004-05-30 20:46:09 +00002726 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
2727 sqliteFree(pCellKey);
2728 if( rc ) return rc;
2729 }
drh3aac2dd2004-04-26 14:10:20 +00002730 }
drh72f82862001-05-24 21:06:34 +00002731 if( c==0 ){
drh8b18dd42004-05-12 19:18:15 +00002732 if( pPage->leafData && !pPage->leaf ){
drhfc70e6f2004-05-12 21:11:27 +00002733 lwr = pCur->idx;
2734 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00002735 break;
2736 }else{
drh8b18dd42004-05-12 19:18:15 +00002737 if( pRes ) *pRes = 0;
2738 return SQLITE_OK;
2739 }
drh72f82862001-05-24 21:06:34 +00002740 }
2741 if( c<0 ){
2742 lwr = pCur->idx+1;
2743 }else{
2744 upr = pCur->idx-1;
2745 }
2746 }
2747 assert( lwr==upr+1 );
drh7aa128d2002-06-21 13:09:16 +00002748 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00002749 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00002750 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00002751 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00002752 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00002753 }else{
drh43605152004-05-29 21:46:49 +00002754 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00002755 }
2756 if( chldPg==0 ){
drhc39e0002004-05-07 23:50:57 +00002757 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh72f82862001-05-24 21:06:34 +00002758 if( pRes ) *pRes = c;
2759 return SQLITE_OK;
2760 }
drh428ae8c2003-01-04 16:48:09 +00002761 pCur->idx = lwr;
drh271efa52004-05-30 19:19:05 +00002762 pCur->info.nSize = 0;
drh8178a752003-01-05 21:41:40 +00002763 rc = moveToChild(pCur, chldPg);
drhc39e0002004-05-07 23:50:57 +00002764 if( rc ){
2765 return rc;
2766 }
drh72f82862001-05-24 21:06:34 +00002767 }
drhbd03cae2001-06-02 02:40:57 +00002768 /* NOT REACHED */
drh72f82862001-05-24 21:06:34 +00002769}
2770
2771/*
drhc39e0002004-05-07 23:50:57 +00002772** Return TRUE if the cursor is not pointing at an entry of the table.
2773**
2774** TRUE will be returned after a call to sqlite3BtreeNext() moves
2775** past the last entry in the table or sqlite3BtreePrev() moves past
2776** the first entry. TRUE is also returned if the table is empty.
2777*/
2778int sqlite3BtreeEof(BtCursor *pCur){
2779 return pCur->isValid==0;
2780}
2781
2782/*
drhbd03cae2001-06-02 02:40:57 +00002783** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00002784** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00002785** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00002786** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00002787*/
drh3aac2dd2004-04-26 14:10:20 +00002788int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00002789 int rc;
drh8178a752003-01-05 21:41:40 +00002790 MemPage *pPage = pCur->pPage;
drh8b18dd42004-05-12 19:18:15 +00002791
drh8c1238a2003-01-02 14:43:55 +00002792 assert( pRes!=0 );
drhc39e0002004-05-07 23:50:57 +00002793 if( pCur->isValid==0 ){
drh8c1238a2003-01-02 14:43:55 +00002794 *pRes = 1;
drhc39e0002004-05-07 23:50:57 +00002795 return SQLITE_OK;
drhecdc7532001-09-23 02:35:53 +00002796 }
drh8178a752003-01-05 21:41:40 +00002797 assert( pPage->isInit );
drh8178a752003-01-05 21:41:40 +00002798 assert( pCur->idx<pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00002799
drh72f82862001-05-24 21:06:34 +00002800 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00002801 pCur->info.nSize = 0;
drh8178a752003-01-05 21:41:40 +00002802 if( pCur->idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00002803 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00002804 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00002805 if( rc ) return rc;
2806 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00002807 *pRes = 0;
2808 return rc;
drh72f82862001-05-24 21:06:34 +00002809 }
drh5e2f8b92001-05-28 00:41:15 +00002810 do{
drh8856d6a2004-04-29 14:42:46 +00002811 if( isRootPage(pPage) ){
drh8c1238a2003-01-02 14:43:55 +00002812 *pRes = 1;
drhc39e0002004-05-07 23:50:57 +00002813 pCur->isValid = 0;
drh5e2f8b92001-05-28 00:41:15 +00002814 return SQLITE_OK;
2815 }
drh8178a752003-01-05 21:41:40 +00002816 moveToParent(pCur);
2817 pPage = pCur->pPage;
2818 }while( pCur->idx>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00002819 *pRes = 0;
drh8b18dd42004-05-12 19:18:15 +00002820 if( pPage->leafData ){
2821 rc = sqlite3BtreeNext(pCur, pRes);
2822 }else{
2823 rc = SQLITE_OK;
2824 }
2825 return rc;
drh8178a752003-01-05 21:41:40 +00002826 }
2827 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00002828 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00002829 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00002830 }
drh5e2f8b92001-05-28 00:41:15 +00002831 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00002832 return rc;
drh72f82862001-05-24 21:06:34 +00002833}
2834
drh3b7511c2001-05-26 13:15:44 +00002835/*
drh2dcc9aa2002-12-04 13:40:25 +00002836** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00002837** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00002838** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00002839** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00002840*/
drh3aac2dd2004-04-26 14:10:20 +00002841int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00002842 int rc;
2843 Pgno pgno;
drh8178a752003-01-05 21:41:40 +00002844 MemPage *pPage;
drhc39e0002004-05-07 23:50:57 +00002845 if( pCur->isValid==0 ){
2846 *pRes = 1;
2847 return SQLITE_OK;
2848 }
danielk19776a43f9b2004-11-16 04:57:24 +00002849
drh8178a752003-01-05 21:41:40 +00002850 pPage = pCur->pPage;
drh8178a752003-01-05 21:41:40 +00002851 assert( pPage->isInit );
drh2dcc9aa2002-12-04 13:40:25 +00002852 assert( pCur->idx>=0 );
drha34b6762004-05-07 13:30:42 +00002853 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00002854 pgno = get4byte( findCell(pPage, pCur->idx) );
drh8178a752003-01-05 21:41:40 +00002855 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00002856 if( rc ) return rc;
2857 rc = moveToRightmost(pCur);
2858 }else{
2859 while( pCur->idx==0 ){
drh8856d6a2004-04-29 14:42:46 +00002860 if( isRootPage(pPage) ){
drhc39e0002004-05-07 23:50:57 +00002861 pCur->isValid = 0;
2862 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00002863 return SQLITE_OK;
2864 }
drh8178a752003-01-05 21:41:40 +00002865 moveToParent(pCur);
2866 pPage = pCur->pPage;
drh2dcc9aa2002-12-04 13:40:25 +00002867 }
2868 pCur->idx--;
drh271efa52004-05-30 19:19:05 +00002869 pCur->info.nSize = 0;
drh8237d452004-11-22 19:07:09 +00002870 if( pPage->leafData && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00002871 rc = sqlite3BtreePrevious(pCur, pRes);
2872 }else{
2873 rc = SQLITE_OK;
2874 }
drh2dcc9aa2002-12-04 13:40:25 +00002875 }
drh8178a752003-01-05 21:41:40 +00002876 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00002877 return rc;
2878}
2879
2880/*
drh3b7511c2001-05-26 13:15:44 +00002881** Allocate a new page from the database file.
2882**
drha34b6762004-05-07 13:30:42 +00002883** The new page is marked as dirty. (In other words, sqlite3pager_write()
drh3b7511c2001-05-26 13:15:44 +00002884** has already been called on the new page.) The new page has also
2885** been referenced and the calling routine is responsible for calling
drha34b6762004-05-07 13:30:42 +00002886** sqlite3pager_unref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00002887**
2888** SQLITE_OK is returned on success. Any other return value indicates
2889** an error. *ppPage and *pPgno are undefined in the event of an error.
drha34b6762004-05-07 13:30:42 +00002890** Do not invoke sqlite3pager_unref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00002891**
drh199e3cf2002-07-18 11:01:47 +00002892** If the "nearby" parameter is not 0, then a (feeble) effort is made to
2893** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00002894** attempt to keep related pages close to each other in the database file,
2895** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00002896**
2897** If the "exact" parameter is not 0, and the page-number nearby exists
2898** anywhere on the free-list, then it is guarenteed to be returned. This
2899** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00002900*/
danielk1977cb1a7eb2004-11-05 12:27:02 +00002901static int allocatePage(
2902 Btree *pBt,
2903 MemPage **ppPage,
2904 Pgno *pPgno,
2905 Pgno nearby,
2906 u8 exact
2907){
drh3aac2dd2004-04-26 14:10:20 +00002908 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00002909 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002910 int n; /* Number of pages on the freelist */
2911 int k; /* Number of leaves on the trunk of the freelist */
drh30e58752002-03-02 20:41:57 +00002912
drh3aac2dd2004-04-26 14:10:20 +00002913 pPage1 = pBt->pPage1;
2914 n = get4byte(&pPage1->aData[36]);
2915 if( n>0 ){
drh91025292004-05-03 19:49:32 +00002916 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00002917 MemPage *pTrunk = 0;
2918 Pgno iTrunk;
2919 MemPage *pPrevTrunk = 0;
2920 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
2921
2922 /* If the 'exact' parameter was true and a query of the pointer-map
2923 ** shows that the page 'nearby' is somewhere on the free-list, then
2924 ** the entire-list will be searched for that page.
2925 */
2926#ifndef SQLITE_OMIT_AUTOVACUUM
2927 if( exact ){
2928 u8 eType;
2929 assert( nearby>0 );
2930 assert( pBt->autoVacuum );
2931 rc = ptrmapGet(pBt, nearby, &eType, 0);
2932 if( rc ) return rc;
2933 if( eType==PTRMAP_FREEPAGE ){
2934 searchList = 1;
2935 }
2936 *pPgno = nearby;
2937 }
2938#endif
2939
2940 /* Decrement the free-list count by 1. Set iTrunk to the index of the
2941 ** first free-list trunk page. iPrevTrunk is initially 1.
2942 */
drha34b6762004-05-07 13:30:42 +00002943 rc = sqlite3pager_write(pPage1->aData);
drh3b7511c2001-05-26 13:15:44 +00002944 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002945 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00002946
2947 /* The code within this loop is run only once if the 'searchList' variable
2948 ** is not true. Otherwise, it runs once for each trunk-page on the
2949 ** free-list until the page 'nearby' is located.
2950 */
2951 do {
2952 pPrevTrunk = pTrunk;
2953 if( pPrevTrunk ){
2954 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00002955 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00002956 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00002957 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00002958 rc = getPage(pBt, iTrunk, &pTrunk);
2959 if( rc ){
2960 releasePage(pPrevTrunk);
2961 return rc;
2962 }
2963
2964 /* TODO: This should move to after the loop? */
2965 rc = sqlite3pager_write(pTrunk->aData);
2966 if( rc ){
2967 releasePage(pTrunk);
2968 releasePage(pPrevTrunk);
2969 return rc;
2970 }
2971
2972 k = get4byte(&pTrunk->aData[4]);
2973 if( k==0 && !searchList ){
2974 /* The trunk has no leaves and the list is not being searched.
2975 ** So extract the trunk page itself and use it as the newly
2976 ** allocated page */
2977 assert( pPrevTrunk==0 );
2978 *pPgno = iTrunk;
2979 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
2980 *ppPage = pTrunk;
2981 pTrunk = 0;
2982 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
2983 }else if( k>pBt->usableSize/4 - 8 ){
2984 /* Value of k is out of range. Database corruption */
drhee696e22004-08-30 16:52:17 +00002985 return SQLITE_CORRUPT; /* bkpt-CORRUPT */
danielk1977cb1a7eb2004-11-05 12:27:02 +00002986#ifndef SQLITE_OMIT_AUTOVACUUM
2987 }else if( searchList && nearby==iTrunk ){
2988 /* The list is being searched and this trunk page is the page
2989 ** to allocate, regardless of whether it has leaves.
2990 */
2991 assert( *pPgno==iTrunk );
2992 *ppPage = pTrunk;
2993 searchList = 0;
2994 if( k==0 ){
2995 if( !pPrevTrunk ){
2996 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
2997 }else{
2998 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
2999 }
3000 }else{
3001 /* The trunk page is required by the caller but it contains
3002 ** pointers to free-list leaves. The first leaf becomes a trunk
3003 ** page in this case.
3004 */
3005 MemPage *pNewTrunk;
3006 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
3007 rc = getPage(pBt, iNewTrunk, &pNewTrunk);
3008 if( rc!=SQLITE_OK ){
3009 releasePage(pTrunk);
3010 releasePage(pPrevTrunk);
3011 return rc;
3012 }
3013 rc = sqlite3pager_write(pNewTrunk->aData);
3014 if( rc!=SQLITE_OK ){
3015 releasePage(pNewTrunk);
3016 releasePage(pTrunk);
3017 releasePage(pPrevTrunk);
3018 return rc;
3019 }
3020 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
3021 put4byte(&pNewTrunk->aData[4], k-1);
3022 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
3023 if( !pPrevTrunk ){
3024 put4byte(&pPage1->aData[32], iNewTrunk);
3025 }else{
3026 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
3027 }
3028 releasePage(pNewTrunk);
3029 }
3030 pTrunk = 0;
3031 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
3032#endif
3033 }else{
3034 /* Extract a leaf from the trunk */
3035 int closest;
3036 Pgno iPage;
3037 unsigned char *aData = pTrunk->aData;
3038 if( nearby>0 ){
3039 int i, dist;
3040 closest = 0;
3041 dist = get4byte(&aData[8]) - nearby;
3042 if( dist<0 ) dist = -dist;
3043 for(i=1; i<k; i++){
3044 int d2 = get4byte(&aData[8+i*4]) - nearby;
3045 if( d2<0 ) d2 = -d2;
3046 if( d2<dist ){
3047 closest = i;
3048 dist = d2;
3049 }
3050 }
3051 }else{
3052 closest = 0;
3053 }
3054
3055 iPage = get4byte(&aData[8+closest*4]);
3056 if( !searchList || iPage==nearby ){
3057 *pPgno = iPage;
3058 if( *pPgno>sqlite3pager_pagecount(pBt->pPager) ){
3059 /* Free page off the end of the file */
3060 return SQLITE_CORRUPT; /* bkpt-CORRUPT */
3061 }
3062 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
3063 ": %d more free pages\n",
3064 *pPgno, closest+1, k, pTrunk->pgno, n-1));
3065 if( closest<k-1 ){
3066 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
3067 }
3068 put4byte(&aData[4], k-1);
3069 rc = getPage(pBt, *pPgno, ppPage);
3070 if( rc==SQLITE_OK ){
3071 sqlite3pager_dont_rollback((*ppPage)->aData);
3072 rc = sqlite3pager_write((*ppPage)->aData);
3073 }
3074 searchList = 0;
3075 }
drhee696e22004-08-30 16:52:17 +00003076 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00003077 releasePage(pPrevTrunk);
3078 }while( searchList );
3079 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00003080 }else{
drh3aac2dd2004-04-26 14:10:20 +00003081 /* There are no pages on the freelist, so create a new page at the
3082 ** end of the file */
drha34b6762004-05-07 13:30:42 +00003083 *pPgno = sqlite3pager_pagecount(pBt->pPager) + 1;
danielk1977afcdd022004-10-31 16:25:42 +00003084
3085#ifndef SQLITE_OMIT_AUTOVACUUM
drh42cac6d2004-11-20 20:31:11 +00003086 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt->usableSize, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00003087 /* If *pPgno refers to a pointer-map page, allocate two new pages
3088 ** at the end of the file instead of one. The first allocated page
3089 ** becomes a new pointer-map page, the second is used by the caller.
3090 */
3091 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00003092 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk1977afcdd022004-10-31 16:25:42 +00003093 (*pPgno)++;
3094 }
3095#endif
3096
danielk1977599fcba2004-11-08 07:13:13 +00003097 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003098 rc = getPage(pBt, *pPgno, ppPage);
drh3b7511c2001-05-26 13:15:44 +00003099 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003100 rc = sqlite3pager_write((*ppPage)->aData);
drh3a4c1412004-05-09 20:40:11 +00003101 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00003102 }
danielk1977599fcba2004-11-08 07:13:13 +00003103
3104 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh3b7511c2001-05-26 13:15:44 +00003105 return rc;
3106}
3107
3108/*
drh3aac2dd2004-04-26 14:10:20 +00003109** Add a page of the database file to the freelist.
drh5e2f8b92001-05-28 00:41:15 +00003110**
drha34b6762004-05-07 13:30:42 +00003111** sqlite3pager_unref() is NOT called for pPage.
drh3b7511c2001-05-26 13:15:44 +00003112*/
drh3aac2dd2004-04-26 14:10:20 +00003113static int freePage(MemPage *pPage){
3114 Btree *pBt = pPage->pBt;
3115 MemPage *pPage1 = pBt->pPage1;
3116 int rc, n, k;
drh8b2f49b2001-06-08 00:21:52 +00003117
drh3aac2dd2004-04-26 14:10:20 +00003118 /* Prepare the page for freeing */
3119 assert( pPage->pgno>1 );
3120 pPage->isInit = 0;
3121 releasePage(pPage->pParent);
3122 pPage->pParent = 0;
3123
drha34b6762004-05-07 13:30:42 +00003124 /* Increment the free page count on pPage1 */
3125 rc = sqlite3pager_write(pPage1->aData);
drh3aac2dd2004-04-26 14:10:20 +00003126 if( rc ) return rc;
3127 n = get4byte(&pPage1->aData[36]);
3128 put4byte(&pPage1->aData[36], n+1);
3129
danielk1977687566d2004-11-02 12:56:41 +00003130#ifndef SQLITE_OMIT_AUTOVACUUM
3131 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00003132 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00003133 */
3134 if( pBt->autoVacuum ){
3135 rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
danielk1977a64a0352004-11-05 01:45:13 +00003136 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003137 }
3138#endif
3139
drh3aac2dd2004-04-26 14:10:20 +00003140 if( n==0 ){
3141 /* This is the first free page */
drhda200cc2004-05-09 11:51:38 +00003142 rc = sqlite3pager_write(pPage->aData);
3143 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003144 memset(pPage->aData, 0, 8);
drha34b6762004-05-07 13:30:42 +00003145 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00003146 TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
drh3aac2dd2004-04-26 14:10:20 +00003147 }else{
3148 /* Other free pages already exist. Retrive the first trunk page
3149 ** of the freelist and find out how many leaves it has. */
drha34b6762004-05-07 13:30:42 +00003150 MemPage *pTrunk;
3151 rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk);
drh3b7511c2001-05-26 13:15:44 +00003152 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003153 k = get4byte(&pTrunk->aData[4]);
drhee696e22004-08-30 16:52:17 +00003154 if( k>=pBt->usableSize/4 - 8 ){
drh3aac2dd2004-04-26 14:10:20 +00003155 /* The trunk is full. Turn the page being freed into a new
3156 ** trunk page with no leaves. */
drha34b6762004-05-07 13:30:42 +00003157 rc = sqlite3pager_write(pPage->aData);
drh3aac2dd2004-04-26 14:10:20 +00003158 if( rc ) return rc;
3159 put4byte(pPage->aData, pTrunk->pgno);
3160 put4byte(&pPage->aData[4], 0);
3161 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00003162 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
3163 pPage->pgno, pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00003164 }else{
3165 /* Add the newly freed page as a leaf on the current trunk */
drha34b6762004-05-07 13:30:42 +00003166 rc = sqlite3pager_write(pTrunk->aData);
drh3aac2dd2004-04-26 14:10:20 +00003167 if( rc ) return rc;
3168 put4byte(&pTrunk->aData[4], k+1);
3169 put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
drha34b6762004-05-07 13:30:42 +00003170 sqlite3pager_dont_write(pBt->pPager, pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00003171 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00003172 }
3173 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00003174 }
drh3b7511c2001-05-26 13:15:44 +00003175 return rc;
3176}
3177
3178/*
drh3aac2dd2004-04-26 14:10:20 +00003179** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00003180*/
drh3aac2dd2004-04-26 14:10:20 +00003181static int clearCell(MemPage *pPage, unsigned char *pCell){
3182 Btree *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00003183 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00003184 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00003185 int rc;
drh3b7511c2001-05-26 13:15:44 +00003186
drh43605152004-05-29 21:46:49 +00003187 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00003188 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00003189 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00003190 }
drh6f11bef2004-05-13 01:12:56 +00003191 ovflPgno = get4byte(&pCell[info.iOverflow]);
drh3aac2dd2004-04-26 14:10:20 +00003192 while( ovflPgno!=0 ){
3193 MemPage *pOvfl;
3194 rc = getPage(pBt, ovflPgno, &pOvfl);
drh3b7511c2001-05-26 13:15:44 +00003195 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003196 ovflPgno = get4byte(pOvfl->aData);
drha34b6762004-05-07 13:30:42 +00003197 rc = freePage(pOvfl);
drhbd03cae2001-06-02 02:40:57 +00003198 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003199 sqlite3pager_unref(pOvfl->aData);
drh3b7511c2001-05-26 13:15:44 +00003200 }
drh5e2f8b92001-05-28 00:41:15 +00003201 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00003202}
3203
3204/*
drh91025292004-05-03 19:49:32 +00003205** Create the byte sequence used to represent a cell on page pPage
3206** and write that byte sequence into pCell[]. Overflow pages are
3207** allocated and filled in as necessary. The calling procedure
3208** is responsible for making sure sufficient space has been allocated
3209** for pCell[].
3210**
3211** Note that pCell does not necessary need to point to the pPage->aData
3212** area. pCell might point to some temporary storage. The cell will
3213** be constructed in this temporary area then copied into pPage->aData
3214** later.
drh3b7511c2001-05-26 13:15:44 +00003215*/
3216static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00003217 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00003218 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00003219 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00003220 const void *pData,int nData, /* The data */
3221 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00003222){
drh3b7511c2001-05-26 13:15:44 +00003223 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00003224 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00003225 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00003226 int spaceLeft;
3227 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00003228 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00003229 unsigned char *pPrior;
3230 unsigned char *pPayload;
3231 Btree *pBt = pPage->pBt;
3232 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00003233 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00003234 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00003235
drh91025292004-05-03 19:49:32 +00003236 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00003237 nHeader = 0;
drh91025292004-05-03 19:49:32 +00003238 if( !pPage->leaf ){
3239 nHeader += 4;
3240 }
drh8b18dd42004-05-12 19:18:15 +00003241 if( pPage->hasData ){
drh91025292004-05-03 19:49:32 +00003242 nHeader += putVarint(&pCell[nHeader], nData);
drh6f11bef2004-05-13 01:12:56 +00003243 }else{
drh91025292004-05-03 19:49:32 +00003244 nData = 0;
3245 }
drh6f11bef2004-05-13 01:12:56 +00003246 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh43605152004-05-29 21:46:49 +00003247 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00003248 assert( info.nHeader==nHeader );
3249 assert( info.nKey==nKey );
3250 assert( info.nData==nData );
3251
3252 /* Fill in the payload */
drh3aac2dd2004-04-26 14:10:20 +00003253 nPayload = nData;
3254 if( pPage->intKey ){
3255 pSrc = pData;
3256 nSrc = nData;
drh91025292004-05-03 19:49:32 +00003257 nData = 0;
drh3aac2dd2004-04-26 14:10:20 +00003258 }else{
3259 nPayload += nKey;
3260 pSrc = pKey;
3261 nSrc = nKey;
3262 }
drh6f11bef2004-05-13 01:12:56 +00003263 *pnSize = info.nSize;
3264 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00003265 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00003266 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00003267
drh3b7511c2001-05-26 13:15:44 +00003268 while( nPayload>0 ){
3269 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00003270#ifndef SQLITE_OMIT_AUTOVACUUM
3271 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
3272#endif
danielk1977cb1a7eb2004-11-05 12:27:02 +00003273 rc = allocatePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00003274#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00003275 /* If the database supports auto-vacuum, and the second or subsequent
3276 ** overflow page is being allocated, add an entry to the pointer-map
3277 ** for that page now. The entry for the first overflow page will be
3278 ** added later, by the insertCell() routine.
danielk1977afcdd022004-10-31 16:25:42 +00003279 */
danielk1977a19df672004-11-03 11:37:07 +00003280 if( pBt->autoVacuum && pgnoPtrmap!=0 && rc==SQLITE_OK ){
3281 rc = ptrmapPut(pBt, pgnoOvfl, PTRMAP_OVERFLOW2, pgnoPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00003282 }
3283#endif
drh3b7511c2001-05-26 13:15:44 +00003284 if( rc ){
drh9b171272004-05-08 02:03:22 +00003285 releasePage(pToRelease);
danielk197728129562005-01-11 10:25:06 +00003286 /* clearCell(pPage, pCell); */
drh3b7511c2001-05-26 13:15:44 +00003287 return rc;
3288 }
drh3aac2dd2004-04-26 14:10:20 +00003289 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00003290 releasePage(pToRelease);
3291 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00003292 pPrior = pOvfl->aData;
3293 put4byte(pPrior, 0);
3294 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00003295 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00003296 }
3297 n = nPayload;
3298 if( n>spaceLeft ) n = spaceLeft;
drh3aac2dd2004-04-26 14:10:20 +00003299 if( n>nSrc ) n = nSrc;
3300 memcpy(pPayload, pSrc, n);
drh3b7511c2001-05-26 13:15:44 +00003301 nPayload -= n;
drhde647132004-05-07 17:57:49 +00003302 pPayload += n;
drh9b171272004-05-08 02:03:22 +00003303 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00003304 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00003305 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00003306 if( nSrc==0 ){
3307 nSrc = nData;
3308 pSrc = pData;
3309 }
drhdd793422001-06-28 01:54:48 +00003310 }
drh9b171272004-05-08 02:03:22 +00003311 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00003312 return SQLITE_OK;
3313}
3314
3315/*
drhbd03cae2001-06-02 02:40:57 +00003316** Change the MemPage.pParent pointer on the page whose number is
drh8b2f49b2001-06-08 00:21:52 +00003317** given in the second argument so that MemPage.pParent holds the
drhbd03cae2001-06-02 02:40:57 +00003318** pointer in the third argument.
3319*/
danielk1977afcdd022004-10-31 16:25:42 +00003320static int reparentPage(Btree *pBt, Pgno pgno, MemPage *pNewParent, int idx){
drhbd03cae2001-06-02 02:40:57 +00003321 MemPage *pThis;
drh4b70f112004-05-02 21:12:19 +00003322 unsigned char *aData;
drhbd03cae2001-06-02 02:40:57 +00003323
danielk1977afcdd022004-10-31 16:25:42 +00003324 if( pgno==0 ) return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00003325 assert( pBt->pPager!=0 );
drha34b6762004-05-07 13:30:42 +00003326 aData = sqlite3pager_lookup(pBt->pPager, pgno);
drhda200cc2004-05-09 11:51:38 +00003327 if( aData ){
drh887dc4c2004-10-22 16:22:57 +00003328 pThis = (MemPage*)&aData[pBt->psAligned];
drh31276532004-09-27 12:20:52 +00003329 assert( pThis->aData==aData );
drhda200cc2004-05-09 11:51:38 +00003330 if( pThis->isInit ){
3331 if( pThis->pParent!=pNewParent ){
3332 if( pThis->pParent ) sqlite3pager_unref(pThis->pParent->aData);
3333 pThis->pParent = pNewParent;
3334 if( pNewParent ) sqlite3pager_ref(pNewParent->aData);
3335 }
3336 pThis->idxParent = idx;
drhdd793422001-06-28 01:54:48 +00003337 }
drha34b6762004-05-07 13:30:42 +00003338 sqlite3pager_unref(aData);
drhbd03cae2001-06-02 02:40:57 +00003339 }
danielk1977afcdd022004-10-31 16:25:42 +00003340
3341#ifndef SQLITE_OMIT_AUTOVACUUM
3342 if( pBt->autoVacuum ){
3343 return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
3344 }
3345#endif
3346 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00003347}
3348
danielk1977ac11ee62005-01-15 12:45:51 +00003349
3350
drhbd03cae2001-06-02 02:40:57 +00003351/*
drh4b70f112004-05-02 21:12:19 +00003352** Change the pParent pointer of all children of pPage to point back
3353** to pPage.
3354**
drhbd03cae2001-06-02 02:40:57 +00003355** In other words, for every child of pPage, invoke reparentPage()
drh5e00f6c2001-09-13 13:46:56 +00003356** to make sure that each child knows that pPage is its parent.
drhbd03cae2001-06-02 02:40:57 +00003357**
3358** This routine gets called after you memcpy() one page into
3359** another.
3360*/
danielk1977afcdd022004-10-31 16:25:42 +00003361static int reparentChildPages(MemPage *pPage){
drhbd03cae2001-06-02 02:40:57 +00003362 int i;
danielk1977afcdd022004-10-31 16:25:42 +00003363 Btree *pBt = pPage->pBt;
3364 int rc = SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00003365
danielk1977afcdd022004-10-31 16:25:42 +00003366 if( pPage->leaf ) return SQLITE_OK;
danielk1977afcdd022004-10-31 16:25:42 +00003367
drhbd03cae2001-06-02 02:40:57 +00003368 for(i=0; i<pPage->nCell; i++){
danielk1977afcdd022004-10-31 16:25:42 +00003369 u8 *pCell = findCell(pPage, i);
3370 if( !pPage->leaf ){
3371 rc = reparentPage(pBt, get4byte(pCell), pPage, i);
3372 if( rc!=SQLITE_OK ) return rc;
3373 }
drhbd03cae2001-06-02 02:40:57 +00003374 }
danielk1977afcdd022004-10-31 16:25:42 +00003375 if( !pPage->leaf ){
3376 rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]),
3377 pPage, i);
3378 pPage->idxShift = 0;
3379 }
3380 return rc;
drh14acc042001-06-10 19:56:58 +00003381}
3382
3383/*
3384** Remove the i-th cell from pPage. This routine effects pPage only.
3385** The cell content is not freed or deallocated. It is assumed that
3386** the cell content has been copied someplace else. This routine just
3387** removes the reference to the cell from pPage.
3388**
3389** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00003390*/
drh4b70f112004-05-02 21:12:19 +00003391static void dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00003392 int i; /* Loop counter */
3393 int pc; /* Offset to cell content of cell being deleted */
3394 u8 *data; /* pPage->aData */
3395 u8 *ptr; /* Used to move bytes around within data[] */
3396
drh8c42ca92001-06-22 19:15:00 +00003397 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00003398 assert( sz==cellSize(pPage, idx) );
drha34b6762004-05-07 13:30:42 +00003399 assert( sqlite3pager_iswriteable(pPage->aData) );
drhda200cc2004-05-09 11:51:38 +00003400 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00003401 ptr = &data[pPage->cellOffset + 2*idx];
3402 pc = get2byte(ptr);
3403 assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
drhde647132004-05-07 17:57:49 +00003404 freeSpace(pPage, pc, sz);
drh43605152004-05-29 21:46:49 +00003405 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
3406 ptr[0] = ptr[2];
3407 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00003408 }
3409 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00003410 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
3411 pPage->nFree += 2;
drh428ae8c2003-01-04 16:48:09 +00003412 pPage->idxShift = 1;
drh14acc042001-06-10 19:56:58 +00003413}
3414
3415/*
3416** Insert a new cell on pPage at cell index "i". pCell points to the
3417** content of the cell.
3418**
3419** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00003420** will not fit, then make a copy of the cell content into pTemp if
3421** pTemp is not null. Regardless of pTemp, allocate a new entry
3422** in pPage->aOvfl[] and make it point to the cell content (either
3423** in pTemp or the original pCell) and also record its index.
3424** Allocating a new entry in pPage->aCell[] implies that
3425** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00003426**
3427** If nSkip is non-zero, then do not copy the first nSkip bytes of the
3428** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00003429** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00003430** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00003431*/
danielk1977e80463b2004-11-03 03:01:16 +00003432static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00003433 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00003434 int i, /* New cell becomes the i-th cell of the page */
3435 u8 *pCell, /* Content of the new cell */
3436 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00003437 u8 *pTemp, /* Temp storage space for pCell, if needed */
3438 u8 nSkip /* Do not write the first nSkip bytes of the cell */
drh24cd67e2004-05-10 16:18:47 +00003439){
drh43605152004-05-29 21:46:49 +00003440 int idx; /* Where to write new cell content in data[] */
3441 int j; /* Loop counter */
3442 int top; /* First byte of content for any cell in data[] */
3443 int end; /* First byte past the last cell pointer in data[] */
3444 int ins; /* Index in data[] where new cell pointer is inserted */
3445 int hdr; /* Offset into data[] of the page header */
3446 int cellOffset; /* Address of first cell pointer in data[] */
3447 u8 *data; /* The content of the whole page */
3448 u8 *ptr; /* Used for moving information around in data[] */
3449
3450 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
3451 assert( sz==cellSizePtr(pPage, pCell) );
drha34b6762004-05-07 13:30:42 +00003452 assert( sqlite3pager_iswriteable(pPage->aData) );
drh43605152004-05-29 21:46:49 +00003453 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00003454 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00003455 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00003456 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00003457 }
drh43605152004-05-29 21:46:49 +00003458 j = pPage->nOverflow++;
3459 assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
3460 pPage->aOvfl[j].pCell = pCell;
3461 pPage->aOvfl[j].idx = i;
3462 pPage->nFree = 0;
drh14acc042001-06-10 19:56:58 +00003463 }else{
drh43605152004-05-29 21:46:49 +00003464 data = pPage->aData;
3465 hdr = pPage->hdrOffset;
3466 top = get2byte(&data[hdr+5]);
3467 cellOffset = pPage->cellOffset;
3468 end = cellOffset + 2*pPage->nCell + 2;
3469 ins = cellOffset + 2*i;
3470 if( end > top - sz ){
3471 defragmentPage(pPage);
3472 top = get2byte(&data[hdr+5]);
3473 assert( end + sz <= top );
3474 }
3475 idx = allocateSpace(pPage, sz);
3476 assert( idx>0 );
3477 assert( end <= get2byte(&data[hdr+5]) );
3478 pPage->nCell++;
3479 pPage->nFree -= 2;
danielk1977a3ad5e72005-01-07 08:56:44 +00003480 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00003481 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
3482 ptr[0] = ptr[-2];
3483 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00003484 }
drh43605152004-05-29 21:46:49 +00003485 put2byte(&data[ins], idx);
3486 put2byte(&data[hdr+3], pPage->nCell);
3487 pPage->idxShift = 1;
drhda200cc2004-05-09 11:51:38 +00003488 pageIntegrity(pPage);
danielk1977a19df672004-11-03 11:37:07 +00003489#ifndef SQLITE_OMIT_AUTOVACUUM
3490 if( pPage->pBt->autoVacuum ){
3491 /* The cell may contain a pointer to an overflow page. If so, write
3492 ** the entry for the overflow page into the pointer map.
3493 */
3494 CellInfo info;
3495 parseCellPtr(pPage, pCell, &info);
3496 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
3497 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
3498 int rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
3499 if( rc!=SQLITE_OK ) return rc;
3500 }
3501 }
3502#endif
drh14acc042001-06-10 19:56:58 +00003503 }
danielk1977e80463b2004-11-03 03:01:16 +00003504
danielk1977e80463b2004-11-03 03:01:16 +00003505 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00003506}
3507
3508/*
drhfa1a98a2004-05-14 19:08:17 +00003509** Add a list of cells to a page. The page should be initially empty.
3510** The cells are guaranteed to fit on the page.
3511*/
3512static void assemblePage(
3513 MemPage *pPage, /* The page to be assemblied */
3514 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00003515 u8 **apCell, /* Pointers to cell bodies */
drhfa1a98a2004-05-14 19:08:17 +00003516 int *aSize /* Sizes of the cells */
3517){
3518 int i; /* Loop counter */
3519 int totalSize; /* Total size of all cells */
3520 int hdr; /* Index of page header */
drh43605152004-05-29 21:46:49 +00003521 int cellptr; /* Address of next cell pointer */
3522 int cellbody; /* Address of next cell body */
drhfa1a98a2004-05-14 19:08:17 +00003523 u8 *data; /* Data for the page */
3524
drh43605152004-05-29 21:46:49 +00003525 assert( pPage->nOverflow==0 );
drhfa1a98a2004-05-14 19:08:17 +00003526 totalSize = 0;
3527 for(i=0; i<nCell; i++){
3528 totalSize += aSize[i];
3529 }
drh43605152004-05-29 21:46:49 +00003530 assert( totalSize+2*nCell<=pPage->nFree );
drhfa1a98a2004-05-14 19:08:17 +00003531 assert( pPage->nCell==0 );
drh43605152004-05-29 21:46:49 +00003532 cellptr = pPage->cellOffset;
drhfa1a98a2004-05-14 19:08:17 +00003533 data = pPage->aData;
3534 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00003535 put2byte(&data[hdr+3], nCell);
3536 cellbody = allocateSpace(pPage, totalSize);
3537 assert( cellbody>0 );
3538 assert( pPage->nFree >= 2*nCell );
3539 pPage->nFree -= 2*nCell;
drhfa1a98a2004-05-14 19:08:17 +00003540 for(i=0; i<nCell; i++){
drh43605152004-05-29 21:46:49 +00003541 put2byte(&data[cellptr], cellbody);
3542 memcpy(&data[cellbody], apCell[i], aSize[i]);
3543 cellptr += 2;
3544 cellbody += aSize[i];
drhfa1a98a2004-05-14 19:08:17 +00003545 }
drh43605152004-05-29 21:46:49 +00003546 assert( cellbody==pPage->pBt->usableSize );
drhfa1a98a2004-05-14 19:08:17 +00003547 pPage->nCell = nCell;
drhfa1a98a2004-05-14 19:08:17 +00003548}
3549
drh14acc042001-06-10 19:56:58 +00003550/*
drhc3b70572003-01-04 19:44:07 +00003551** The following parameters determine how many adjacent pages get involved
3552** in a balancing operation. NN is the number of neighbors on either side
3553** of the page that participate in the balancing operation. NB is the
3554** total number of pages that participate, including the target page and
3555** NN neighbors on either side.
3556**
3557** The minimum value of NN is 1 (of course). Increasing NN above 1
3558** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
3559** in exchange for a larger degradation in INSERT and UPDATE performance.
3560** The value of NN appears to give the best results overall.
3561*/
3562#define NN 1 /* Number of neighbors on either side of pPage */
3563#define NB (NN*2+1) /* Total pages involved in the balance */
3564
drh43605152004-05-29 21:46:49 +00003565/* Forward reference */
danielk1977ac245ec2005-01-14 13:50:11 +00003566static int balance(MemPage*, int);
3567
drhf222e712005-01-14 22:55:49 +00003568/*
3569** This version of balance() handles the common special case where
3570** a new entry is being inserted on the extreme right-end of the
3571** tree, in other words, when the new entry will become the largest
3572** entry in the tree.
3573**
3574** Instead of trying balance the 3 right-most leaf pages, just add
3575** a new page to the right-hand side and put the one new entry in
3576** that page. This leaves the right side of the tree somewhat
3577** unbalanced. But odds are that we will be inserting new entries
3578** at the end soon afterwards so the nearly empty page will quickly
3579** fill up. On average.
3580**
3581** pPage is the leaf page which is the right-most page in the tree.
3582** pParent is its parent. pPage must have a single overflow entry
3583** which is also the right-most entry on the page.
3584*/
danielk1977ac245ec2005-01-14 13:50:11 +00003585static int balance_quick(MemPage *pPage, MemPage *pParent){
3586 int rc;
3587 MemPage *pNew;
3588 Pgno pgnoNew;
3589 u8 *pCell;
3590 int szCell;
3591 CellInfo info;
danielk1977ac11ee62005-01-15 12:45:51 +00003592 Btree *pBt = pPage->pBt;
danielk197779a40da2005-01-16 08:00:01 +00003593 int parentIdx = pParent->nCell; /* pParent new divider cell index */
3594 int parentSize; /* Size of new divider cell */
3595 u8 parentCell[64]; /* Space for the new divider cell */
danielk1977ac245ec2005-01-14 13:50:11 +00003596
3597 /* Allocate a new page. Insert the overflow cell from pPage
3598 ** into it. Then remove the overflow cell from pPage.
3599 */
danielk1977ac11ee62005-01-15 12:45:51 +00003600 rc = allocatePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk1977ac245ec2005-01-14 13:50:11 +00003601 if( rc!=SQLITE_OK ){
3602 return rc;
3603 }
3604 pCell = pPage->aOvfl[0].pCell;
3605 szCell = cellSizePtr(pPage, pCell);
3606 zeroPage(pNew, pPage->aData[0]);
3607 assemblePage(pNew, 1, &pCell, &szCell);
3608 pPage->nOverflow = 0;
3609
danielk197779a40da2005-01-16 08:00:01 +00003610 /* Set the parent of the newly allocated page to pParent. */
3611 pNew->pParent = pParent;
3612 sqlite3pager_ref(pParent->aData);
3613
danielk1977ac245ec2005-01-14 13:50:11 +00003614 /* pPage is currently the right-child of pParent. Change this
3615 ** so that the right-child is the new page allocated above and
danielk197779a40da2005-01-16 08:00:01 +00003616 ** pPage is the next-to-right child.
danielk1977ac245ec2005-01-14 13:50:11 +00003617 */
danielk1977ac11ee62005-01-15 12:45:51 +00003618 assert( pPage->nCell>0 );
danielk1977ac245ec2005-01-14 13:50:11 +00003619 parseCellPtr(pPage, findCell(pPage, pPage->nCell-1), &info);
3620 rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, &parentSize);
3621 if( rc!=SQLITE_OK ){
danielk197779a40da2005-01-16 08:00:01 +00003622 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00003623 }
3624 assert( parentSize<64 );
3625 rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
3626 if( rc!=SQLITE_OK ){
danielk197779a40da2005-01-16 08:00:01 +00003627 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00003628 }
3629 put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
3630 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
3631
danielk197779a40da2005-01-16 08:00:01 +00003632#ifndef SQLITE_OMIT_AUTOVACUUM
3633 /* If this is an auto-vacuum database, update the pointer map
3634 ** with entries for the new page, and any pointer from the
3635 ** cell on the page to an overflow page.
3636 */
danielk1977ac11ee62005-01-15 12:45:51 +00003637 if( pBt->autoVacuum ){
3638 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
3639 if( rc!=SQLITE_OK ){
3640 return rc;
3641 }
danielk197779a40da2005-01-16 08:00:01 +00003642 rc = ptrmapPutOvfl(pNew, 0);
3643 if( rc!=SQLITE_OK ){
3644 return rc;
danielk1977ac11ee62005-01-15 12:45:51 +00003645 }
3646 }
danielk197779a40da2005-01-16 08:00:01 +00003647#endif
danielk1977ac11ee62005-01-15 12:45:51 +00003648
danielk197779a40da2005-01-16 08:00:01 +00003649 /* Release the reference to the new page and balance the parent page,
3650 ** in case the divider cell inserted caused it to become overfull.
3651 */
danielk1977ac245ec2005-01-14 13:50:11 +00003652 releasePage(pNew);
3653 return balance(pParent, 0);
3654}
drh43605152004-05-29 21:46:49 +00003655
drhc3b70572003-01-04 19:44:07 +00003656/*
danielk1977ac11ee62005-01-15 12:45:51 +00003657** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
3658** if the database supports auto-vacuum or not. Because it is used
3659** within an expression that is an argument to another macro
3660** (sqliteMallocRaw), it is not possible to use conditional compilation.
3661** So, this macro is defined instead.
3662*/
3663#ifndef SQLITE_OMIT_AUTOVACUUM
3664#define ISAUTOVACUUM (pBt->autoVacuum)
3665#else
3666#define ISAUTOVACUUM 0
3667#endif
3668
3669/*
drhab01f612004-05-22 02:55:23 +00003670** This routine redistributes Cells on pPage and up to NN*2 siblings
drh8b2f49b2001-06-08 00:21:52 +00003671** of pPage so that all pages have about the same amount of free space.
drh0c6cc4e2004-06-15 02:13:26 +00003672** Usually NN siblings on either side of pPage is used in the balancing,
3673** though more siblings might come from one side if pPage is the first
drhab01f612004-05-22 02:55:23 +00003674** or last child of its parent. If pPage has fewer than 2*NN siblings
drh8b2f49b2001-06-08 00:21:52 +00003675** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00003676** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00003677**
drh0c6cc4e2004-06-15 02:13:26 +00003678** The number of siblings of pPage might be increased or decreased by one or
3679** two in an effort to keep pages nearly full but not over full. The root page
drhab01f612004-05-22 02:55:23 +00003680** is special and is allowed to be nearly empty. If pPage is
drh8c42ca92001-06-22 19:15:00 +00003681** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00003682** or decreased by one, as necessary, to keep the root page from being
drhab01f612004-05-22 02:55:23 +00003683** overfull or completely empty.
drh14acc042001-06-10 19:56:58 +00003684**
drh8b2f49b2001-06-08 00:21:52 +00003685** Note that when this routine is called, some of the Cells on pPage
drh4b70f112004-05-02 21:12:19 +00003686** might not actually be stored in pPage->aData[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00003687** if the page is overfull. Part of the job of this routine is to
drh4b70f112004-05-02 21:12:19 +00003688** make sure all Cells for pPage once again fit in pPage->aData[].
drh14acc042001-06-10 19:56:58 +00003689**
drh8c42ca92001-06-22 19:15:00 +00003690** In the course of balancing the siblings of pPage, the parent of pPage
3691** might become overfull or underfull. If that happens, then this routine
3692** is called recursively on the parent.
3693**
drh5e00f6c2001-09-13 13:46:56 +00003694** If this routine fails for any reason, it might leave the database
3695** in a corrupted state. So if this routine fails, the database should
3696** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00003697*/
drh43605152004-05-29 21:46:49 +00003698static int balance_nonroot(MemPage *pPage){
drh8b2f49b2001-06-08 00:21:52 +00003699 MemPage *pParent; /* The parent of pPage */
drh4b70f112004-05-02 21:12:19 +00003700 Btree *pBt; /* The whole database */
danielk1977cfe9a692004-06-16 12:00:29 +00003701 int nCell = 0; /* Number of cells in aCell[] */
drh8b2f49b2001-06-08 00:21:52 +00003702 int nOld; /* Number of pages in apOld[] */
3703 int nNew; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00003704 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00003705 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00003706 int idx; /* Index of pPage in pParent->aCell[] */
3707 int nxDiv; /* Next divider slot in pParent->aCell[] */
drh14acc042001-06-10 19:56:58 +00003708 int rc; /* The return code */
drh91025292004-05-03 19:49:32 +00003709 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00003710 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00003711 int usableSpace; /* Bytes in pPage beyond the header */
3712 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00003713 int subtotal; /* Subtotal of bytes in cells on one page */
drhb6f41482004-05-14 01:58:11 +00003714 int iSpace = 0; /* First unused byte of aSpace[] */
drh2e38c322004-09-03 18:38:44 +00003715 int mxCellPerPage; /* Maximum number of cells in one page */
drhc3b70572003-01-04 19:44:07 +00003716 MemPage *apOld[NB]; /* pPage and up to two siblings */
3717 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
drh4b70f112004-05-02 21:12:19 +00003718 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00003719 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
3720 Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
drhc3b70572003-01-04 19:44:07 +00003721 int idxDiv[NB]; /* Indices of divider cells in pParent */
drh4b70f112004-05-02 21:12:19 +00003722 u8 *apDiv[NB]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00003723 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
3724 int szNew[NB+2]; /* Combined size of cells place on i-th page */
drh2e38c322004-09-03 18:38:44 +00003725 u8 **apCell; /* All cells begin balanced */
3726 int *szCell; /* Local size of all cells in apCell[] */
3727 u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
3728 u8 *aSpace; /* Space to hold copies of dividers cells */
danielk19774e17d142005-01-16 09:06:33 +00003729#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977ac11ee62005-01-15 12:45:51 +00003730 u8 *aFrom = 0;
3731#endif
drh8b2f49b2001-06-08 00:21:52 +00003732
drh14acc042001-06-10 19:56:58 +00003733 /*
drh43605152004-05-29 21:46:49 +00003734 ** Find the parent page.
drh8b2f49b2001-06-08 00:21:52 +00003735 */
drh3a4c1412004-05-09 20:40:11 +00003736 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00003737 assert( sqlite3pager_iswriteable(pPage->aData) );
drh4b70f112004-05-02 21:12:19 +00003738 pBt = pPage->pBt;
drh14acc042001-06-10 19:56:58 +00003739 pParent = pPage->pParent;
drh43605152004-05-29 21:46:49 +00003740 sqlite3pager_write(pParent->aData);
3741 assert( pParent );
3742 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
drh2e38c322004-09-03 18:38:44 +00003743
danielk1977ac245ec2005-01-14 13:50:11 +00003744#ifdef SQLITE_BALANCE_QUICK
drhf222e712005-01-14 22:55:49 +00003745 /*
3746 ** A special case: If a new entry has just been inserted into a
3747 ** table (that is, a btree with integer keys and all data at the leaves)
3748 ** an the new entry is the right-most entry in the tree (it has the
3749 ** largest key) then use the special balance_quick() routine for
3750 ** balancing. balance_quick() is much faster and results in a tighter
3751 ** packing of data in the common case.
3752 */
danielk1977ac245ec2005-01-14 13:50:11 +00003753 if( pPage->leaf &&
3754 pPage->intKey &&
3755 pPage->leafData &&
3756 pPage->nOverflow==1 &&
3757 pPage->aOvfl[0].idx==pPage->nCell &&
danielk1977ac11ee62005-01-15 12:45:51 +00003758 pPage->pParent->pgno!=1 &&
danielk1977ac245ec2005-01-14 13:50:11 +00003759 get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
3760 ){
danielk1977ac11ee62005-01-15 12:45:51 +00003761 /*
3762 ** TODO: Check the siblings to the left of pPage. It may be that
3763 ** they are not full and no new page is required.
3764 */
danielk1977ac245ec2005-01-14 13:50:11 +00003765 return balance_quick(pPage, pParent);
3766 }
3767#endif
3768
drh2e38c322004-09-03 18:38:44 +00003769 /*
3770 ** Allocate space for memory structures
3771 */
3772 mxCellPerPage = MX_CELL(pBt);
3773 apCell = sqliteMallocRaw(
3774 (mxCellPerPage+2)*NB*(sizeof(u8*)+sizeof(int))
3775 + sizeof(MemPage)*NB
drh887dc4c2004-10-22 16:22:57 +00003776 + pBt->psAligned*(5+NB)
danielk1977ac11ee62005-01-15 12:45:51 +00003777 + (ISAUTOVACUUM ? (mxCellPerPage+2)*NN*2 : 0)
drh2e38c322004-09-03 18:38:44 +00003778 );
3779 if( apCell==0 ){
3780 return SQLITE_NOMEM;
3781 }
3782 szCell = (int*)&apCell[(mxCellPerPage+2)*NB];
3783 aCopy[0] = (u8*)&szCell[(mxCellPerPage+2)*NB];
3784 for(i=1; i<NB; i++){
drh887dc4c2004-10-22 16:22:57 +00003785 aCopy[i] = &aCopy[i-1][pBt->psAligned+sizeof(MemPage)];
drh2e38c322004-09-03 18:38:44 +00003786 }
drh887dc4c2004-10-22 16:22:57 +00003787 aSpace = &aCopy[NB-1][pBt->psAligned+sizeof(MemPage)];
danielk1977ac11ee62005-01-15 12:45:51 +00003788#ifndef SQLITE_OMIT_AUTOVACUUM
3789 if( pBt->autoVacuum ){
3790 aFrom = &aSpace[5*pBt->psAligned];
3791 }
3792#endif
drh14acc042001-06-10 19:56:58 +00003793
drh8b2f49b2001-06-08 00:21:52 +00003794 /*
drh4b70f112004-05-02 21:12:19 +00003795 ** Find the cell in the parent page whose left child points back
drh14acc042001-06-10 19:56:58 +00003796 ** to pPage. The "idx" variable is the index of that cell. If pPage
3797 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00003798 */
drhbb49aba2003-01-04 18:53:27 +00003799 if( pParent->idxShift ){
drha34b6762004-05-07 13:30:42 +00003800 Pgno pgno;
drh4b70f112004-05-02 21:12:19 +00003801 pgno = pPage->pgno;
drha34b6762004-05-07 13:30:42 +00003802 assert( pgno==sqlite3pager_pagenumber(pPage->aData) );
drhbb49aba2003-01-04 18:53:27 +00003803 for(idx=0; idx<pParent->nCell; idx++){
drh43605152004-05-29 21:46:49 +00003804 if( get4byte(findCell(pParent, idx))==pgno ){
drhbb49aba2003-01-04 18:53:27 +00003805 break;
3806 }
drh8b2f49b2001-06-08 00:21:52 +00003807 }
drh4b70f112004-05-02 21:12:19 +00003808 assert( idx<pParent->nCell
drh43605152004-05-29 21:46:49 +00003809 || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
drhbb49aba2003-01-04 18:53:27 +00003810 }else{
3811 idx = pPage->idxParent;
drh8b2f49b2001-06-08 00:21:52 +00003812 }
drh8b2f49b2001-06-08 00:21:52 +00003813
3814 /*
drh14acc042001-06-10 19:56:58 +00003815 ** Initialize variables so that it will be safe to jump
drh5edc3122001-09-13 21:53:09 +00003816 ** directly to balance_cleanup at any moment.
drh8b2f49b2001-06-08 00:21:52 +00003817 */
drh14acc042001-06-10 19:56:58 +00003818 nOld = nNew = 0;
drha34b6762004-05-07 13:30:42 +00003819 sqlite3pager_ref(pParent->aData);
drh14acc042001-06-10 19:56:58 +00003820
3821 /*
drh4b70f112004-05-02 21:12:19 +00003822 ** Find sibling pages to pPage and the cells in pParent that divide
drhc3b70572003-01-04 19:44:07 +00003823 ** the siblings. An attempt is made to find NN siblings on either
3824 ** side of pPage. More siblings are taken from one side, however, if
3825 ** pPage there are fewer than NN siblings on the other side. If pParent
3826 ** has NB or fewer children then all children of pParent are taken.
drh14acc042001-06-10 19:56:58 +00003827 */
drhc3b70572003-01-04 19:44:07 +00003828 nxDiv = idx - NN;
3829 if( nxDiv + NB > pParent->nCell ){
3830 nxDiv = pParent->nCell - NB + 1;
drh8b2f49b2001-06-08 00:21:52 +00003831 }
drhc3b70572003-01-04 19:44:07 +00003832 if( nxDiv<0 ){
3833 nxDiv = 0;
3834 }
drh8b2f49b2001-06-08 00:21:52 +00003835 nDiv = 0;
drhc3b70572003-01-04 19:44:07 +00003836 for(i=0, k=nxDiv; i<NB; i++, k++){
drh14acc042001-06-10 19:56:58 +00003837 if( k<pParent->nCell ){
3838 idxDiv[i] = k;
drh43605152004-05-29 21:46:49 +00003839 apDiv[i] = findCell(pParent, k);
drh8b2f49b2001-06-08 00:21:52 +00003840 nDiv++;
drha34b6762004-05-07 13:30:42 +00003841 assert( !pParent->leaf );
drh43605152004-05-29 21:46:49 +00003842 pgnoOld[i] = get4byte(apDiv[i]);
drh14acc042001-06-10 19:56:58 +00003843 }else if( k==pParent->nCell ){
drh43605152004-05-29 21:46:49 +00003844 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
drh14acc042001-06-10 19:56:58 +00003845 }else{
3846 break;
drh8b2f49b2001-06-08 00:21:52 +00003847 }
drhde647132004-05-07 17:57:49 +00003848 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
drh6019e162001-07-02 17:51:45 +00003849 if( rc ) goto balance_cleanup;
drh428ae8c2003-01-04 16:48:09 +00003850 apOld[i]->idxParent = k;
drh91025292004-05-03 19:49:32 +00003851 apCopy[i] = 0;
3852 assert( i==nOld );
drh14acc042001-06-10 19:56:58 +00003853 nOld++;
drh8b2f49b2001-06-08 00:21:52 +00003854 }
3855
3856 /*
drh14acc042001-06-10 19:56:58 +00003857 ** Make copies of the content of pPage and its siblings into aOld[].
3858 ** The rest of this function will use data from the copies rather
3859 ** that the original pages since the original pages will be in the
3860 ** process of being overwritten.
3861 */
3862 for(i=0; i<nOld; i++){
drh887dc4c2004-10-22 16:22:57 +00003863 MemPage *p = apCopy[i] = (MemPage*)&aCopy[i][pBt->psAligned];
3864 p->aData = &((u8*)p)[-pBt->psAligned];
3865 memcpy(p->aData, apOld[i]->aData, pBt->psAligned + sizeof(MemPage));
3866 p->aData = &((u8*)p)[-pBt->psAligned];
drh14acc042001-06-10 19:56:58 +00003867 }
3868
3869 /*
3870 ** Load pointers to all cells on sibling pages and the divider cells
3871 ** into the local apCell[] array. Make copies of the divider cells
drhb6f41482004-05-14 01:58:11 +00003872 ** into space obtained form aSpace[] and remove the the divider Cells
3873 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00003874 **
3875 ** If the siblings are on leaf pages, then the child pointers of the
3876 ** divider cells are stripped from the cells before they are copied
drh96f5b762004-05-16 16:24:36 +00003877 ** into aSpace[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00003878 ** child pointers. If siblings are not leaves, then all cell in
3879 ** apCell[] include child pointers. Either way, all cells in apCell[]
3880 ** are alike.
drh96f5b762004-05-16 16:24:36 +00003881 **
3882 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
3883 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00003884 */
3885 nCell = 0;
drh4b70f112004-05-02 21:12:19 +00003886 leafCorrection = pPage->leaf*4;
drh8b18dd42004-05-12 19:18:15 +00003887 leafData = pPage->leafData && pPage->leaf;
drh8b2f49b2001-06-08 00:21:52 +00003888 for(i=0; i<nOld; i++){
drh4b70f112004-05-02 21:12:19 +00003889 MemPage *pOld = apCopy[i];
drh43605152004-05-29 21:46:49 +00003890 int limit = pOld->nCell+pOld->nOverflow;
3891 for(j=0; j<limit; j++){
3892 apCell[nCell] = findOverflowCell(pOld, j);
3893 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk1977ac11ee62005-01-15 12:45:51 +00003894#ifndef SQLITE_OMIT_AUTOVACUUM
3895 if( pBt->autoVacuum ){
3896 int a;
3897 aFrom[nCell] = i;
3898 for(a=0; a<pOld->nOverflow; a++){
3899 if( pOld->aOvfl[a].pCell==apCell[nCell] ){
3900 aFrom[nCell] = 0xFF;
3901 break;
3902 }
3903 }
3904 }
3905#endif
drh14acc042001-06-10 19:56:58 +00003906 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00003907 }
3908 if( i<nOld-1 ){
drh43605152004-05-29 21:46:49 +00003909 int sz = cellSizePtr(pParent, apDiv[i]);
drh8b18dd42004-05-12 19:18:15 +00003910 if( leafData ){
drh96f5b762004-05-16 16:24:36 +00003911 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
3912 ** are duplicates of keys on the child pages. We need to remove
3913 ** the divider cells from pParent, but the dividers cells are not
3914 ** added to apCell[] because they are duplicates of child cells.
3915 */
drh8b18dd42004-05-12 19:18:15 +00003916 dropCell(pParent, nxDiv, sz);
drh4b70f112004-05-02 21:12:19 +00003917 }else{
drhb6f41482004-05-14 01:58:11 +00003918 u8 *pTemp;
3919 szCell[nCell] = sz;
3920 pTemp = &aSpace[iSpace];
3921 iSpace += sz;
drh887dc4c2004-10-22 16:22:57 +00003922 assert( iSpace<=pBt->psAligned*5 );
drhb6f41482004-05-14 01:58:11 +00003923 memcpy(pTemp, apDiv[i], sz);
3924 apCell[nCell] = pTemp+leafCorrection;
danielk1977ac11ee62005-01-15 12:45:51 +00003925#ifndef SQLITE_OMIT_AUTOVACUUM
3926 if( pBt->autoVacuum ){
3927 aFrom[nCell] = 0xFF;
3928 }
3929#endif
drhb6f41482004-05-14 01:58:11 +00003930 dropCell(pParent, nxDiv, sz);
drh8b18dd42004-05-12 19:18:15 +00003931 szCell[nCell] -= leafCorrection;
drh43605152004-05-29 21:46:49 +00003932 assert( get4byte(pTemp)==pgnoOld[i] );
drh8b18dd42004-05-12 19:18:15 +00003933 if( !pOld->leaf ){
3934 assert( leafCorrection==0 );
3935 /* The right pointer of the child page pOld becomes the left
3936 ** pointer of the divider cell */
drh43605152004-05-29 21:46:49 +00003937 memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
drh8b18dd42004-05-12 19:18:15 +00003938 }else{
3939 assert( leafCorrection==4 );
3940 }
3941 nCell++;
drh4b70f112004-05-02 21:12:19 +00003942 }
drh8b2f49b2001-06-08 00:21:52 +00003943 }
3944 }
3945
3946 /*
drh6019e162001-07-02 17:51:45 +00003947 ** Figure out the number of pages needed to hold all nCell cells.
3948 ** Store this number in "k". Also compute szNew[] which is the total
3949 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00003950 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00003951 ** cntNew[k] should equal nCell.
3952 **
drh96f5b762004-05-16 16:24:36 +00003953 ** Values computed by this block:
3954 **
3955 ** k: The total number of sibling pages
3956 ** szNew[i]: Spaced used on the i-th sibling page.
3957 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
3958 ** the right of the i-th sibling page.
3959 ** usableSpace: Number of bytes of space available on each sibling.
3960 **
drh8b2f49b2001-06-08 00:21:52 +00003961 */
drh43605152004-05-29 21:46:49 +00003962 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00003963 for(subtotal=k=i=0; i<nCell; i++){
drh43605152004-05-29 21:46:49 +00003964 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00003965 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00003966 szNew[k] = subtotal - szCell[i];
3967 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00003968 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00003969 subtotal = 0;
3970 k++;
3971 }
3972 }
3973 szNew[k] = subtotal;
3974 cntNew[k] = nCell;
3975 k++;
drh96f5b762004-05-16 16:24:36 +00003976
3977 /*
3978 ** The packing computed by the previous block is biased toward the siblings
3979 ** on the left side. The left siblings are always nearly full, while the
3980 ** right-most sibling might be nearly empty. This block of code attempts
3981 ** to adjust the packing of siblings to get a better balance.
3982 **
3983 ** This adjustment is more than an optimization. The packing above might
3984 ** be so out of balance as to be illegal. For example, the right-most
3985 ** sibling might be completely empty. This adjustment is not optional.
3986 */
drh6019e162001-07-02 17:51:45 +00003987 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00003988 int szRight = szNew[i]; /* Size of sibling on the right */
3989 int szLeft = szNew[i-1]; /* Size of sibling on the left */
3990 int r; /* Index of right-most cell in left sibling */
3991 int d; /* Index of first cell to the left of right sibling */
3992
3993 r = cntNew[i-1] - 1;
3994 d = r + 1 - leafData;
drh43605152004-05-29 21:46:49 +00003995 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
3996 szRight += szCell[d] + 2;
3997 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00003998 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00003999 r = cntNew[i-1] - 1;
4000 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00004001 }
drh96f5b762004-05-16 16:24:36 +00004002 szNew[i] = szRight;
4003 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00004004 }
4005 assert( cntNew[0]>0 );
drh8b2f49b2001-06-08 00:21:52 +00004006
4007 /*
drh6b308672002-07-08 02:16:37 +00004008 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00004009 */
drh4b70f112004-05-02 21:12:19 +00004010 assert( pPage->pgno>1 );
4011 pageFlags = pPage->aData[0];
drh14acc042001-06-10 19:56:58 +00004012 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00004013 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00004014 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00004015 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00004016 pgnoNew[i] = pgnoOld[i];
4017 apOld[i] = 0;
danielk197728129562005-01-11 10:25:06 +00004018 rc = sqlite3pager_write(pNew->aData);
4019 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00004020 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004021 rc = allocatePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
drh6b308672002-07-08 02:16:37 +00004022 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00004023 apNew[i] = pNew;
drh6b308672002-07-08 02:16:37 +00004024 }
drh14acc042001-06-10 19:56:58 +00004025 nNew++;
drhda200cc2004-05-09 11:51:38 +00004026 zeroPage(pNew, pageFlags);
drh8b2f49b2001-06-08 00:21:52 +00004027 }
4028
danielk1977299b1872004-11-22 10:02:10 +00004029 /* Free any old pages that were not reused as new pages.
4030 */
4031 while( i<nOld ){
4032 rc = freePage(apOld[i]);
4033 if( rc ) goto balance_cleanup;
4034 releasePage(apOld[i]);
4035 apOld[i] = 0;
4036 i++;
4037 }
4038
drh8b2f49b2001-06-08 00:21:52 +00004039 /*
drhf9ffac92002-03-02 19:00:31 +00004040 ** Put the new pages in accending order. This helps to
4041 ** keep entries in the disk file in order so that a scan
4042 ** of the table is a linear scan through the file. That
4043 ** in turn helps the operating system to deliver pages
4044 ** from the disk more rapidly.
4045 **
4046 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00004047 ** n is never more than NB (a small constant), that should
4048 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00004049 **
drhc3b70572003-01-04 19:44:07 +00004050 ** When NB==3, this one optimization makes the database
4051 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00004052 */
4053 for(i=0; i<k-1; i++){
4054 int minV = pgnoNew[i];
4055 int minI = i;
4056 for(j=i+1; j<k; j++){
drh7d02cb72003-06-04 16:24:39 +00004057 if( pgnoNew[j]<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00004058 minI = j;
4059 minV = pgnoNew[j];
4060 }
4061 }
4062 if( minI>i ){
4063 int t;
4064 MemPage *pT;
4065 t = pgnoNew[i];
4066 pT = apNew[i];
4067 pgnoNew[i] = pgnoNew[minI];
4068 apNew[i] = apNew[minI];
4069 pgnoNew[minI] = t;
4070 apNew[minI] = pT;
4071 }
4072 }
drha2fce642004-06-05 00:01:44 +00004073 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
drh24cd67e2004-05-10 16:18:47 +00004074 pgnoOld[0],
4075 nOld>=2 ? pgnoOld[1] : 0,
4076 nOld>=3 ? pgnoOld[2] : 0,
drh10c0fa62004-05-18 12:50:17 +00004077 pgnoNew[0], szNew[0],
4078 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
4079 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
drha2fce642004-06-05 00:01:44 +00004080 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
4081 nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
drh24cd67e2004-05-10 16:18:47 +00004082
drhf9ffac92002-03-02 19:00:31 +00004083 /*
drh14acc042001-06-10 19:56:58 +00004084 ** Evenly distribute the data in apCell[] across the new pages.
4085 ** Insert divider cells into pParent as necessary.
4086 */
4087 j = 0;
4088 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00004089 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00004090 MemPage *pNew = apNew[i];
drh4b70f112004-05-02 21:12:19 +00004091 assert( pNew->pgno==pgnoNew[i] );
drhfa1a98a2004-05-14 19:08:17 +00004092 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh6019e162001-07-02 17:51:45 +00004093 assert( pNew->nCell>0 );
drh43605152004-05-29 21:46:49 +00004094 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00004095
4096#ifndef SQLITE_OMIT_AUTOVACUUM
4097 /* If this is an auto-vacuum database, update the pointer map entries
4098 ** that point to the siblings that were rearranged. These can be: left
4099 ** children of cells, the right-child of the page, or overflow pages
4100 ** pointed to by cells.
4101 */
4102 if( pBt->autoVacuum ){
4103 for(k=j; k<cntNew[i]; k++){
4104 if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
danielk197779a40da2005-01-16 08:00:01 +00004105 rc = ptrmapPutOvfl(pNew, k-j);
4106 if( rc!=SQLITE_OK ){
4107 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00004108 }
4109 }
4110 }
4111 }
4112#endif
4113
4114 j = cntNew[i];
4115
4116 /* If the sibling page assembled above was not the right-most sibling,
4117 ** insert a divider cell into the parent page.
4118 */
drh14acc042001-06-10 19:56:58 +00004119 if( i<nNew-1 && j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00004120 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00004121 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00004122 int sz;
4123 pCell = apCell[j];
4124 sz = szCell[j] + leafCorrection;
drh4b70f112004-05-02 21:12:19 +00004125 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00004126 memcpy(&pNew->aData[8], pCell, 4);
drh24cd67e2004-05-10 16:18:47 +00004127 pTemp = 0;
drh8b18dd42004-05-12 19:18:15 +00004128 }else if( leafData ){
danielk1977ac11ee62005-01-15 12:45:51 +00004129 /* If the tree is a leaf-data tree, and the siblings are leaves,
4130 ** then there is no divider cell in apCell[]. Instead, the divider
4131 ** cell consists of the integer key for the right-most cell of
4132 ** the sibling-page assembled above only.
4133 */
drh6f11bef2004-05-13 01:12:56 +00004134 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00004135 j--;
drh43605152004-05-29 21:46:49 +00004136 parseCellPtr(pNew, apCell[j], &info);
drhb6f41482004-05-14 01:58:11 +00004137 pCell = &aSpace[iSpace];
drh6f11bef2004-05-13 01:12:56 +00004138 fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz);
drhb6f41482004-05-14 01:58:11 +00004139 iSpace += sz;
drh887dc4c2004-10-22 16:22:57 +00004140 assert( iSpace<=pBt->psAligned*5 );
drh8b18dd42004-05-12 19:18:15 +00004141 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00004142 }else{
4143 pCell -= 4;
drhb6f41482004-05-14 01:58:11 +00004144 pTemp = &aSpace[iSpace];
4145 iSpace += sz;
drh887dc4c2004-10-22 16:22:57 +00004146 assert( iSpace<=pBt->psAligned*5 );
drh4b70f112004-05-02 21:12:19 +00004147 }
danielk1977a3ad5e72005-01-07 08:56:44 +00004148 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
danielk1977e80463b2004-11-03 03:01:16 +00004149 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00004150 put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +00004151#ifndef SQLITE_OMIT_AUTOVACUUM
4152 /* If this is an auto-vacuum database, and not a leaf-data tree,
4153 ** then update the pointer map with an entry for the overflow page
4154 ** that the cell just inserted points to (if any).
4155 */
4156 if( pBt->autoVacuum && !leafData ){
danielk197779a40da2005-01-16 08:00:01 +00004157 rc = ptrmapPutOvfl(pParent, nxDiv);
4158 if( rc!=SQLITE_OK ){
4159 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00004160 }
4161 }
4162#endif
drh14acc042001-06-10 19:56:58 +00004163 j++;
4164 nxDiv++;
4165 }
4166 }
drh6019e162001-07-02 17:51:45 +00004167 assert( j==nCell );
drh4b70f112004-05-02 21:12:19 +00004168 if( (pageFlags & PTF_LEAF)==0 ){
drh43605152004-05-29 21:46:49 +00004169 memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
drh14acc042001-06-10 19:56:58 +00004170 }
drh43605152004-05-29 21:46:49 +00004171 if( nxDiv==pParent->nCell+pParent->nOverflow ){
drh4b70f112004-05-02 21:12:19 +00004172 /* Right-most sibling is the right-most child of pParent */
drh43605152004-05-29 21:46:49 +00004173 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
drh4b70f112004-05-02 21:12:19 +00004174 }else{
4175 /* Right-most sibling is the left child of the first entry in pParent
4176 ** past the right-most divider entry */
drh43605152004-05-29 21:46:49 +00004177 put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
drh14acc042001-06-10 19:56:58 +00004178 }
4179
4180 /*
4181 ** Reparent children of all cells.
drh8b2f49b2001-06-08 00:21:52 +00004182 */
4183 for(i=0; i<nNew; i++){
danielk1977afcdd022004-10-31 16:25:42 +00004184 rc = reparentChildPages(apNew[i]);
4185 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh8b2f49b2001-06-08 00:21:52 +00004186 }
danielk1977afcdd022004-10-31 16:25:42 +00004187 rc = reparentChildPages(pParent);
4188 if( rc!=SQLITE_OK ) goto balance_cleanup;
drh8b2f49b2001-06-08 00:21:52 +00004189
4190 /*
drh3a4c1412004-05-09 20:40:11 +00004191 ** Balance the parent page. Note that the current page (pPage) might
danielk1977ac11ee62005-01-15 12:45:51 +00004192 ** have been added to the freelist so it might no longer be initialized.
drh3a4c1412004-05-09 20:40:11 +00004193 ** But the parent page will always be initialized.
drh8b2f49b2001-06-08 00:21:52 +00004194 */
drhda200cc2004-05-09 11:51:38 +00004195 assert( pParent->isInit );
drh3a4c1412004-05-09 20:40:11 +00004196 /* assert( pPage->isInit ); // No! pPage might have been added to freelist */
4197 /* pageIntegrity(pPage); // No! pPage might have been added to freelist */
danielk1977ac245ec2005-01-14 13:50:11 +00004198 rc = balance(pParent, 0);
drhda200cc2004-05-09 11:51:38 +00004199
drh8b2f49b2001-06-08 00:21:52 +00004200 /*
drh14acc042001-06-10 19:56:58 +00004201 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00004202 */
drh14acc042001-06-10 19:56:58 +00004203balance_cleanup:
drh2e38c322004-09-03 18:38:44 +00004204 sqliteFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00004205 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00004206 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00004207 }
drh14acc042001-06-10 19:56:58 +00004208 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00004209 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00004210 }
drh91025292004-05-03 19:49:32 +00004211 releasePage(pParent);
drh3a4c1412004-05-09 20:40:11 +00004212 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
4213 pPage->pgno, nOld, nNew, nCell));
drh8b2f49b2001-06-08 00:21:52 +00004214 return rc;
4215}
4216
4217/*
drh43605152004-05-29 21:46:49 +00004218** This routine is called for the root page of a btree when the root
4219** page contains no cells. This is an opportunity to make the tree
4220** shallower by one level.
4221*/
4222static int balance_shallower(MemPage *pPage){
4223 MemPage *pChild; /* The only child page of pPage */
4224 Pgno pgnoChild; /* Page number for pChild */
drh2e38c322004-09-03 18:38:44 +00004225 int rc = SQLITE_OK; /* Return code from subprocedures */
4226 Btree *pBt; /* The main BTree structure */
4227 int mxCellPerPage; /* Maximum number of cells per page */
4228 u8 **apCell; /* All cells from pages being balanced */
4229 int *szCell; /* Local size of all cells */
drh43605152004-05-29 21:46:49 +00004230
4231 assert( pPage->pParent==0 );
4232 assert( pPage->nCell==0 );
drh2e38c322004-09-03 18:38:44 +00004233 pBt = pPage->pBt;
4234 mxCellPerPage = MX_CELL(pBt);
4235 apCell = sqliteMallocRaw( mxCellPerPage*(sizeof(u8*)+sizeof(int)) );
4236 if( apCell==0 ) return SQLITE_NOMEM;
4237 szCell = (int*)&apCell[mxCellPerPage];
drh43605152004-05-29 21:46:49 +00004238 if( pPage->leaf ){
4239 /* The table is completely empty */
4240 TRACE(("BALANCE: empty table %d\n", pPage->pgno));
4241 }else{
4242 /* The root page is empty but has one child. Transfer the
4243 ** information from that one child into the root page if it
4244 ** will fit. This reduces the depth of the tree by one.
4245 **
4246 ** If the root page is page 1, it has less space available than
4247 ** its child (due to the 100 byte header that occurs at the beginning
4248 ** of the database fle), so it might not be able to hold all of the
4249 ** information currently contained in the child. If this is the
4250 ** case, then do not do the transfer. Leave page 1 empty except
4251 ** for the right-pointer to the child page. The child page becomes
4252 ** the virtual root of the tree.
4253 */
4254 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
4255 assert( pgnoChild>0 );
4256 assert( pgnoChild<=sqlite3pager_pagecount(pPage->pBt->pPager) );
4257 rc = getPage(pPage->pBt, pgnoChild, &pChild);
drh2e38c322004-09-03 18:38:44 +00004258 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00004259 if( pPage->pgno==1 ){
4260 rc = initPage(pChild, pPage);
drh2e38c322004-09-03 18:38:44 +00004261 if( rc ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00004262 assert( pChild->nOverflow==0 );
4263 if( pChild->nFree>=100 ){
4264 /* The child information will fit on the root page, so do the
4265 ** copy */
4266 int i;
4267 zeroPage(pPage, pChild->aData[0]);
4268 for(i=0; i<pChild->nCell; i++){
4269 apCell[i] = findCell(pChild,i);
4270 szCell[i] = cellSizePtr(pChild, apCell[i]);
4271 }
4272 assemblePage(pPage, pChild->nCell, apCell, szCell);
danielk1977ae825582004-11-23 09:06:55 +00004273 /* Copy the right-pointer of the child to the parent. */
4274 put4byte(&pPage->aData[pPage->hdrOffset+8],
4275 get4byte(&pChild->aData[pChild->hdrOffset+8]));
drh43605152004-05-29 21:46:49 +00004276 freePage(pChild);
4277 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
4278 }else{
4279 /* The child has more information that will fit on the root.
4280 ** The tree is already balanced. Do nothing. */
4281 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
4282 }
4283 }else{
4284 memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
4285 pPage->isInit = 0;
4286 pPage->pParent = 0;
4287 rc = initPage(pPage, 0);
4288 assert( rc==SQLITE_OK );
4289 freePage(pChild);
4290 TRACE(("BALANCE: transfer child %d into root %d\n",
4291 pChild->pgno, pPage->pgno));
4292 }
danielk1977afcdd022004-10-31 16:25:42 +00004293 rc = reparentChildPages(pPage);
danielk1977ac11ee62005-01-15 12:45:51 +00004294 assert( pPage->nOverflow==0 );
4295#ifndef SQLITE_OMIT_AUTOVACUUM
4296 if( pBt->autoVacuum ){
4297 for(i=0; i<pPage->nCell; i++){
danielk197779a40da2005-01-16 08:00:01 +00004298 rc = ptrmapPutOvfl(pPage, i);
4299 if( rc!=SQLITE_OK ){
4300 goto end_shallow_balance;
danielk1977ac11ee62005-01-15 12:45:51 +00004301 }
4302 }
4303 }
4304#endif
danielk1977afcdd022004-10-31 16:25:42 +00004305 if( rc!=SQLITE_OK ) goto end_shallow_balance;
drh43605152004-05-29 21:46:49 +00004306 releasePage(pChild);
4307 }
drh2e38c322004-09-03 18:38:44 +00004308end_shallow_balance:
4309 sqliteFree(apCell);
4310 return rc;
drh43605152004-05-29 21:46:49 +00004311}
4312
4313
4314/*
4315** The root page is overfull
4316**
4317** When this happens, Create a new child page and copy the
4318** contents of the root into the child. Then make the root
4319** page an empty page with rightChild pointing to the new
4320** child. Finally, call balance_internal() on the new child
4321** to cause it to split.
4322*/
4323static int balance_deeper(MemPage *pPage){
4324 int rc; /* Return value from subprocedures */
4325 MemPage *pChild; /* Pointer to a new child page */
4326 Pgno pgnoChild; /* Page number of the new child page */
4327 Btree *pBt; /* The BTree */
4328 int usableSize; /* Total usable size of a page */
4329 u8 *data; /* Content of the parent page */
4330 u8 *cdata; /* Content of the child page */
4331 int hdr; /* Offset to page header in parent */
4332 int brk; /* Offset to content of first cell in parent */
4333
4334 assert( pPage->pParent==0 );
4335 assert( pPage->nOverflow>0 );
4336 pBt = pPage->pBt;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004337 rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
drh43605152004-05-29 21:46:49 +00004338 if( rc ) return rc;
4339 assert( sqlite3pager_iswriteable(pChild->aData) );
4340 usableSize = pBt->usableSize;
4341 data = pPage->aData;
4342 hdr = pPage->hdrOffset;
4343 brk = get2byte(&data[hdr+5]);
4344 cdata = pChild->aData;
4345 memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
4346 memcpy(&cdata[brk], &data[brk], usableSize-brk);
danielk1977c7dc7532004-11-17 10:22:03 +00004347 assert( pChild->isInit==0 );
drh43605152004-05-29 21:46:49 +00004348 rc = initPage(pChild, pPage);
4349 if( rc ) return rc;
4350 memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
4351 pChild->nOverflow = pPage->nOverflow;
4352 if( pChild->nOverflow ){
4353 pChild->nFree = 0;
4354 }
4355 assert( pChild->nCell==pPage->nCell );
4356 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
4357 put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
4358 TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
danielk19774e17d142005-01-16 09:06:33 +00004359#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977ac11ee62005-01-15 12:45:51 +00004360 if( pBt->autoVacuum ){
4361 int i;
4362 rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
4363 if( rc ) return rc;
4364 for(i=0; i<pChild->nCell; i++){
danielk197779a40da2005-01-16 08:00:01 +00004365 rc = ptrmapPutOvfl(pChild, i);
4366 if( rc!=SQLITE_OK ){
4367 return rc;
danielk1977ac11ee62005-01-15 12:45:51 +00004368 }
4369 }
4370 }
danielk19774e17d142005-01-16 09:06:33 +00004371#endif
drh43605152004-05-29 21:46:49 +00004372 rc = balance_nonroot(pChild);
4373 releasePage(pChild);
4374 return rc;
4375}
4376
4377/*
4378** Decide if the page pPage needs to be balanced. If balancing is
4379** required, call the appropriate balancing routine.
4380*/
danielk1977ac245ec2005-01-14 13:50:11 +00004381static int balance(MemPage *pPage, int insert){
drh43605152004-05-29 21:46:49 +00004382 int rc = SQLITE_OK;
4383 if( pPage->pParent==0 ){
4384 if( pPage->nOverflow>0 ){
4385 rc = balance_deeper(pPage);
4386 }
danielk1977687566d2004-11-02 12:56:41 +00004387 if( rc==SQLITE_OK && pPage->nCell==0 ){
drh43605152004-05-29 21:46:49 +00004388 rc = balance_shallower(pPage);
4389 }
4390 }else{
danielk1977ac245ec2005-01-14 13:50:11 +00004391 if( pPage->nOverflow>0 ||
4392 (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
drh43605152004-05-29 21:46:49 +00004393 rc = balance_nonroot(pPage);
4394 }
4395 }
4396 return rc;
4397}
4398
4399/*
drh8dcd7ca2004-08-08 19:43:29 +00004400** This routine checks all cursors that point to table pgnoRoot.
4401** If any of those cursors other than pExclude were opened with
drhf74b8d92002-09-01 23:20:45 +00004402** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
drh8dcd7ca2004-08-08 19:43:29 +00004403** cursors that point to pgnoRoot were opened with wrFlag==1
drhf74b8d92002-09-01 23:20:45 +00004404** then this routine returns SQLITE_OK.
danielk1977299b1872004-11-22 10:02:10 +00004405**
4406** In addition to checking for read-locks (where a read-lock
4407** means a cursor opened with wrFlag==0) this routine also moves
4408** all cursors other than pExclude so that they are pointing to the
4409** first Cell on root page. This is necessary because an insert
4410** or delete might change the number of cells on a page or delete
4411** a page entirely and we do not want to leave any cursors
4412** pointing to non-existant pages or cells.
drhf74b8d92002-09-01 23:20:45 +00004413*/
drh8dcd7ca2004-08-08 19:43:29 +00004414static int checkReadLocks(Btree *pBt, Pgno pgnoRoot, BtCursor *pExclude){
danielk1977299b1872004-11-22 10:02:10 +00004415 BtCursor *p;
4416 for(p=pBt->pCursor; p; p=p->pNext){
4417 if( p->pgnoRoot!=pgnoRoot || p==pExclude ) continue;
4418 if( p->wrFlag==0 ) return SQLITE_LOCKED;
4419 if( p->pPage->pgno!=p->pgnoRoot ){
4420 moveToRoot(p);
4421 }
4422 }
drhf74b8d92002-09-01 23:20:45 +00004423 return SQLITE_OK;
4424}
4425
4426/*
drh3b7511c2001-05-26 13:15:44 +00004427** Insert a new record into the BTree. The key is given by (pKey,nKey)
4428** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00004429** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00004430** is left pointing at a random location.
4431**
4432** For an INTKEY table, only the nKey value of the key is used. pKey is
4433** ignored. For a ZERODATA table, the pData and nData are both ignored.
drh3b7511c2001-05-26 13:15:44 +00004434*/
drh3aac2dd2004-04-26 14:10:20 +00004435int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00004436 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00004437 const void *pKey, i64 nKey, /* The key of the new record */
drh5c4d9702001-08-20 00:33:58 +00004438 const void *pData, int nData /* The data of the new record */
drh3b7511c2001-05-26 13:15:44 +00004439){
drh3b7511c2001-05-26 13:15:44 +00004440 int rc;
4441 int loc;
drh14acc042001-06-10 19:56:58 +00004442 int szNew;
drh3b7511c2001-05-26 13:15:44 +00004443 MemPage *pPage;
4444 Btree *pBt = pCur->pBt;
drha34b6762004-05-07 13:30:42 +00004445 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00004446 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00004447
danielk1977ee5741e2004-05-31 10:01:34 +00004448 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00004449 /* Must start a transaction before doing an insert */
4450 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00004451 }
drhf74b8d92002-09-01 23:20:45 +00004452 assert( !pBt->readOnly );
drhecdc7532001-09-23 02:35:53 +00004453 if( !pCur->wrFlag ){
4454 return SQLITE_PERM; /* Cursor not open for writing */
4455 }
drh8dcd7ca2004-08-08 19:43:29 +00004456 if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){
drhf74b8d92002-09-01 23:20:45 +00004457 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
4458 }
drh3aac2dd2004-04-26 14:10:20 +00004459 rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc);
drh3b7511c2001-05-26 13:15:44 +00004460 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00004461 pPage = pCur->pPage;
drh4a1c3802004-05-12 15:15:47 +00004462 assert( pPage->intKey || nKey>=0 );
drh8b18dd42004-05-12 19:18:15 +00004463 assert( pPage->leaf || !pPage->leafData );
drh3a4c1412004-05-09 20:40:11 +00004464 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
4465 pCur->pgnoRoot, nKey, nData, pPage->pgno,
4466 loc==0 ? "overwrite" : "new entry"));
drh7aa128d2002-06-21 13:09:16 +00004467 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004468 rc = sqlite3pager_write(pPage->aData);
drhbd03cae2001-06-02 02:40:57 +00004469 if( rc ) return rc;
drh2e38c322004-09-03 18:38:44 +00004470 newCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) );
4471 if( newCell==0 ) return SQLITE_NOMEM;
drha34b6762004-05-07 13:30:42 +00004472 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew);
drh2e38c322004-09-03 18:38:44 +00004473 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00004474 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00004475 assert( szNew<=MX_CELL_SIZE(pBt) );
drhf328bc82004-05-10 23:29:49 +00004476 if( loc==0 && pCur->isValid ){
drha34b6762004-05-07 13:30:42 +00004477 int szOld;
4478 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00004479 oldCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00004480 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004481 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00004482 }
drh43605152004-05-29 21:46:49 +00004483 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00004484 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00004485 if( rc ) goto end_insert;
drh4b70f112004-05-02 21:12:19 +00004486 dropCell(pPage, pCur->idx, szOld);
drh7c717f72001-06-24 20:39:41 +00004487 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00004488 assert( pPage->leaf );
drh14acc042001-06-10 19:56:58 +00004489 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00004490 pCur->info.nSize = 0;
drh14acc042001-06-10 19:56:58 +00004491 }else{
drh4b70f112004-05-02 21:12:19 +00004492 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00004493 }
danielk1977a3ad5e72005-01-07 08:56:44 +00004494 rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
danielk1977e80463b2004-11-03 03:01:16 +00004495 if( rc!=SQLITE_OK ) goto end_insert;
danielk1977ac245ec2005-01-14 13:50:11 +00004496 rc = balance(pPage, 1);
drh23e11ca2004-05-04 17:27:28 +00004497 /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
drh3fc190c2001-09-14 03:24:23 +00004498 /* fflush(stdout); */
danielk1977299b1872004-11-22 10:02:10 +00004499 if( rc==SQLITE_OK ){
4500 moveToRoot(pCur);
4501 }
drh2e38c322004-09-03 18:38:44 +00004502end_insert:
4503 sqliteFree(newCell);
drh5e2f8b92001-05-28 00:41:15 +00004504 return rc;
4505}
4506
4507/*
drh4b70f112004-05-02 21:12:19 +00004508** Delete the entry that the cursor is pointing to. The cursor
4509** is left pointing at a random location.
drh3b7511c2001-05-26 13:15:44 +00004510*/
drh3aac2dd2004-04-26 14:10:20 +00004511int sqlite3BtreeDelete(BtCursor *pCur){
drh5e2f8b92001-05-28 00:41:15 +00004512 MemPage *pPage = pCur->pPage;
drh4b70f112004-05-02 21:12:19 +00004513 unsigned char *pCell;
drh5e2f8b92001-05-28 00:41:15 +00004514 int rc;
danielk1977cfe9a692004-06-16 12:00:29 +00004515 Pgno pgnoChild = 0;
drh0d316a42002-08-11 20:10:47 +00004516 Btree *pBt = pCur->pBt;
drh8b2f49b2001-06-08 00:21:52 +00004517
drh7aa128d2002-06-21 13:09:16 +00004518 assert( pPage->isInit );
danielk1977ee5741e2004-05-31 10:01:34 +00004519 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00004520 /* Must start a transaction before doing a delete */
4521 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00004522 }
drhf74b8d92002-09-01 23:20:45 +00004523 assert( !pBt->readOnly );
drhbd03cae2001-06-02 02:40:57 +00004524 if( pCur->idx >= pPage->nCell ){
4525 return SQLITE_ERROR; /* The cursor is not pointing to anything */
4526 }
drhecdc7532001-09-23 02:35:53 +00004527 if( !pCur->wrFlag ){
4528 return SQLITE_PERM; /* Did not open this cursor for writing */
4529 }
drh8dcd7ca2004-08-08 19:43:29 +00004530 if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){
drhf74b8d92002-09-01 23:20:45 +00004531 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
4532 }
drha34b6762004-05-07 13:30:42 +00004533 rc = sqlite3pager_write(pPage->aData);
drhbd03cae2001-06-02 02:40:57 +00004534 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00004535
4536 /* Locate the cell within it's page and leave pCell pointing to the
4537 ** data. The clearCell() call frees any overflow pages associated with the
4538 ** cell. The cell itself is still intact.
4539 */
danielk1977299b1872004-11-22 10:02:10 +00004540 pCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00004541 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004542 pgnoChild = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00004543 }
danielk197728129562005-01-11 10:25:06 +00004544 rc = clearCell(pPage, pCell);
4545 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00004546
drh4b70f112004-05-02 21:12:19 +00004547 if( !pPage->leaf ){
drh14acc042001-06-10 19:56:58 +00004548 /*
drh5e00f6c2001-09-13 13:46:56 +00004549 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00004550 ** do something we will leave a hole on an internal page.
4551 ** We have to fill the hole by moving in a cell from a leaf. The
4552 ** next Cell after the one to be deleted is guaranteed to exist and
danielk1977299b1872004-11-22 10:02:10 +00004553 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00004554 */
drh14acc042001-06-10 19:56:58 +00004555 BtCursor leafCur;
drh4b70f112004-05-02 21:12:19 +00004556 unsigned char *pNext;
drh14acc042001-06-10 19:56:58 +00004557 int szNext;
danielk1977299b1872004-11-22 10:02:10 +00004558 int notUsed;
drh2e38c322004-09-03 18:38:44 +00004559 unsigned char *tempCell;
drh8b18dd42004-05-12 19:18:15 +00004560 assert( !pPage->leafData );
drh14acc042001-06-10 19:56:58 +00004561 getTempCursor(pCur, &leafCur);
danielk1977299b1872004-11-22 10:02:10 +00004562 rc = sqlite3BtreeNext(&leafCur, &notUsed);
drh14acc042001-06-10 19:56:58 +00004563 if( rc!=SQLITE_OK ){
drhee696e22004-08-30 16:52:17 +00004564 if( rc!=SQLITE_NOMEM ){
4565 rc = SQLITE_CORRUPT; /* bkpt-CORRUPT */
4566 }
danielk1977299b1872004-11-22 10:02:10 +00004567 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004568 }
drha34b6762004-05-07 13:30:42 +00004569 rc = sqlite3pager_write(leafCur.pPage->aData);
danielk1977299b1872004-11-22 10:02:10 +00004570 if( rc ) return rc;
4571 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
4572 pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
4573 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
drh43605152004-05-29 21:46:49 +00004574 pNext = findCell(leafCur.pPage, leafCur.idx);
4575 szNext = cellSizePtr(leafCur.pPage, pNext);
drh2e38c322004-09-03 18:38:44 +00004576 assert( MX_CELL_SIZE(pBt)>=szNext+4 );
4577 tempCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) );
danielk1977299b1872004-11-22 10:02:10 +00004578 if( tempCell==0 ) return SQLITE_NOMEM;
danielk1977a3ad5e72005-01-07 08:56:44 +00004579 rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
danielk1977299b1872004-11-22 10:02:10 +00004580 if( rc!=SQLITE_OK ) return rc;
4581 put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
danielk1977ac245ec2005-01-14 13:50:11 +00004582 rc = balance(pPage, 0);
drh2e38c322004-09-03 18:38:44 +00004583 sqliteFree(tempCell);
danielk1977299b1872004-11-22 10:02:10 +00004584 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00004585 dropCell(leafCur.pPage, leafCur.idx, szNext);
danielk1977ac245ec2005-01-14 13:50:11 +00004586 rc = balance(leafCur.pPage, 0);
drh8c42ca92001-06-22 19:15:00 +00004587 releaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00004588 }else{
danielk1977299b1872004-11-22 10:02:10 +00004589 TRACE(("DELETE: table=%d delete from leaf %d\n",
4590 pCur->pgnoRoot, pPage->pgno));
4591 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
danielk1977ac245ec2005-01-14 13:50:11 +00004592 rc = balance(pPage, 0);
drh5e2f8b92001-05-28 00:41:15 +00004593 }
danielk1977299b1872004-11-22 10:02:10 +00004594 moveToRoot(pCur);
drh5e2f8b92001-05-28 00:41:15 +00004595 return rc;
drh3b7511c2001-05-26 13:15:44 +00004596}
drh8b2f49b2001-06-08 00:21:52 +00004597
4598/*
drhc6b52df2002-01-04 03:09:29 +00004599** Create a new BTree table. Write into *piTable the page
4600** number for the root page of the new table.
4601**
drhab01f612004-05-22 02:55:23 +00004602** The type of type is determined by the flags parameter. Only the
4603** following values of flags are currently in use. Other values for
4604** flags might not work:
4605**
4606** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
4607** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00004608*/
drh3aac2dd2004-04-26 14:10:20 +00004609int sqlite3BtreeCreateTable(Btree *pBt, int *piTable, int flags){
drh8b2f49b2001-06-08 00:21:52 +00004610 MemPage *pRoot;
4611 Pgno pgnoRoot;
4612 int rc;
danielk1977ee5741e2004-05-31 10:01:34 +00004613 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00004614 /* Must start a transaction first */
4615 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00004616 }
danielk197728129562005-01-11 10:25:06 +00004617 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00004618
4619 /* It is illegal to create a table if any cursors are open on the
4620 ** database. This is because in auto-vacuum mode the backend may
4621 ** need to move a database page to make room for the new root-page.
4622 ** If an open cursor was using the page a problem would occur.
4623 */
4624 if( pBt->pCursor ){
4625 return SQLITE_LOCKED;
4626 }
4627
danielk1977003ba062004-11-04 02:57:33 +00004628#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977cb1a7eb2004-11-05 12:27:02 +00004629 rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drh8b2f49b2001-06-08 00:21:52 +00004630 if( rc ) return rc;
danielk1977003ba062004-11-04 02:57:33 +00004631#else
danielk1977687566d2004-11-02 12:56:41 +00004632 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00004633 Pgno pgnoMove; /* Move a page here to make room for the root-page */
4634 MemPage *pPageMove; /* The page to move to. */
4635
danielk1977003ba062004-11-04 02:57:33 +00004636 /* Read the value of meta[3] from the database to determine where the
4637 ** root page of the new table should go. meta[3] is the largest root-page
4638 ** created so far, so the new root-page is (meta[3]+1).
4639 */
4640 rc = sqlite3BtreeGetMeta(pBt, 4, &pgnoRoot);
4641 if( rc!=SQLITE_OK ) return rc;
4642 pgnoRoot++;
4643
danielk1977599fcba2004-11-08 07:13:13 +00004644 /* The new root-page may not be allocated on a pointer-map page, or the
4645 ** PENDING_BYTE page.
4646 */
drh42cac6d2004-11-20 20:31:11 +00004647 if( pgnoRoot==PTRMAP_PAGENO(pBt->usableSize, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00004648 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00004649 pgnoRoot++;
4650 }
4651 assert( pgnoRoot>=3 );
4652
4653 /* Allocate a page. The page that currently resides at pgnoRoot will
4654 ** be moved to the allocated page (unless the allocated page happens
4655 ** to reside at pgnoRoot).
4656 */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004657 rc = allocatePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00004658 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00004659 return rc;
4660 }
danielk1977003ba062004-11-04 02:57:33 +00004661
4662 if( pgnoMove!=pgnoRoot ){
4663 u8 eType;
4664 Pgno iPtrPage;
4665
4666 releasePage(pPageMove);
4667 rc = getPage(pBt, pgnoRoot, &pRoot);
4668 if( rc!=SQLITE_OK ){
4669 return rc;
4670 }
4671 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
danielk1977a0bf2652004-11-04 14:30:04 +00004672 assert( eType!=PTRMAP_ROOTPAGE );
danielk1977a64a0352004-11-05 01:45:13 +00004673 assert( eType!=PTRMAP_FREEPAGE );
danielk1977003ba062004-11-04 02:57:33 +00004674 if( rc!=SQLITE_OK ){
4675 releasePage(pRoot);
4676 return rc;
4677 }
4678 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
4679 releasePage(pRoot);
4680 if( rc!=SQLITE_OK ){
4681 return rc;
4682 }
4683 rc = getPage(pBt, pgnoRoot, &pRoot);
4684 if( rc!=SQLITE_OK ){
4685 return rc;
4686 }
4687 rc = sqlite3pager_write(pRoot->aData);
4688 if( rc!=SQLITE_OK ){
4689 releasePage(pRoot);
4690 return rc;
4691 }
4692 }else{
4693 pRoot = pPageMove;
4694 }
4695
danielk197742741be2005-01-08 12:42:39 +00004696 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00004697 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
4698 if( rc ){
4699 releasePage(pRoot);
4700 return rc;
4701 }
4702 rc = sqlite3BtreeUpdateMeta(pBt, 4, pgnoRoot);
4703 if( rc ){
4704 releasePage(pRoot);
4705 return rc;
4706 }
danielk197742741be2005-01-08 12:42:39 +00004707
danielk1977003ba062004-11-04 02:57:33 +00004708 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004709 rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00004710 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00004711 }
4712#endif
drha34b6762004-05-07 13:30:42 +00004713 assert( sqlite3pager_iswriteable(pRoot->aData) );
drhde647132004-05-07 17:57:49 +00004714 zeroPage(pRoot, flags | PTF_LEAF);
drha34b6762004-05-07 13:30:42 +00004715 sqlite3pager_unref(pRoot->aData);
drh8b2f49b2001-06-08 00:21:52 +00004716 *piTable = (int)pgnoRoot;
4717 return SQLITE_OK;
4718}
4719
4720/*
4721** Erase the given database page and all its children. Return
4722** the page to the freelist.
4723*/
drh4b70f112004-05-02 21:12:19 +00004724static int clearDatabasePage(
4725 Btree *pBt, /* The BTree that contains the table */
4726 Pgno pgno, /* Page number to clear */
4727 MemPage *pParent, /* Parent page. NULL for the root */
4728 int freePageFlag /* Deallocate page if true */
4729){
drh8b2f49b2001-06-08 00:21:52 +00004730 MemPage *pPage;
4731 int rc;
drh4b70f112004-05-02 21:12:19 +00004732 unsigned char *pCell;
4733 int i;
drh8b2f49b2001-06-08 00:21:52 +00004734
drhde647132004-05-07 17:57:49 +00004735 rc = getAndInitPage(pBt, pgno, &pPage, pParent);
drh8b2f49b2001-06-08 00:21:52 +00004736 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00004737 rc = sqlite3pager_write(pPage->aData);
drh6019e162001-07-02 17:51:45 +00004738 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00004739 for(i=0; i<pPage->nCell; i++){
drh43605152004-05-29 21:46:49 +00004740 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00004741 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004742 rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
drh8b2f49b2001-06-08 00:21:52 +00004743 if( rc ) return rc;
4744 }
drh4b70f112004-05-02 21:12:19 +00004745 rc = clearCell(pPage, pCell);
drh8b2f49b2001-06-08 00:21:52 +00004746 if( rc ) return rc;
4747 }
drha34b6762004-05-07 13:30:42 +00004748 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004749 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
drh2aa679f2001-06-25 02:11:07 +00004750 if( rc ) return rc;
4751 }
4752 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00004753 rc = freePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00004754 }else{
drh3a4c1412004-05-09 20:40:11 +00004755 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00004756 }
drh4b70f112004-05-02 21:12:19 +00004757 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00004758 return rc;
drh8b2f49b2001-06-08 00:21:52 +00004759}
4760
4761/*
drhab01f612004-05-22 02:55:23 +00004762** Delete all information from a single table in the database. iTable is
4763** the page number of the root of the table. After this routine returns,
4764** the root page is empty, but still exists.
4765**
4766** This routine will fail with SQLITE_LOCKED if there are any open
4767** read cursors on the table. Open write cursors are moved to the
4768** root of the table.
drh8b2f49b2001-06-08 00:21:52 +00004769*/
drh3aac2dd2004-04-26 14:10:20 +00004770int sqlite3BtreeClearTable(Btree *pBt, int iTable){
drh8b2f49b2001-06-08 00:21:52 +00004771 int rc;
drhf74b8d92002-09-01 23:20:45 +00004772 BtCursor *pCur;
danielk1977ee5741e2004-05-31 10:01:34 +00004773 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00004774 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00004775 }
drhf74b8d92002-09-01 23:20:45 +00004776 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
4777 if( pCur->pgnoRoot==(Pgno)iTable ){
4778 if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
4779 moveToRoot(pCur);
4780 }
drhecdc7532001-09-23 02:35:53 +00004781 }
drha34b6762004-05-07 13:30:42 +00004782 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
drh8b2f49b2001-06-08 00:21:52 +00004783 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00004784 sqlite3BtreeRollback(pBt);
drh8b2f49b2001-06-08 00:21:52 +00004785 }
drh8c42ca92001-06-22 19:15:00 +00004786 return rc;
drh8b2f49b2001-06-08 00:21:52 +00004787}
4788
4789/*
4790** Erase all information in a table and add the root of the table to
4791** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00004792** page 1) is never added to the freelist.
4793**
4794** This routine will fail with SQLITE_LOCKED if there are any open
4795** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00004796**
4797** If AUTOVACUUM is enabled and the page at iTable is not the last
4798** root page in the database file, then the last root page
4799** in the database file is moved into the slot formerly occupied by
4800** iTable and that last slot formerly occupied by the last root page
4801** is added to the freelist instead of iTable. In this say, all
4802** root pages are kept at the beginning of the database file, which
4803** is necessary for AUTOVACUUM to work right. *piMoved is set to the
4804** page number that used to be the last root page in the file before
4805** the move. If no page gets moved, *piMoved is set to 0.
4806** The last root page is recorded in meta[3] and the value of
4807** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00004808*/
danielk1977a0bf2652004-11-04 14:30:04 +00004809int sqlite3BtreeDropTable(Btree *pBt, int iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00004810 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00004811 MemPage *pPage = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00004812
danielk1977ee5741e2004-05-31 10:01:34 +00004813 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00004814 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00004815 }
danielk1977a0bf2652004-11-04 14:30:04 +00004816
danielk1977e6efa742004-11-10 11:55:10 +00004817 /* It is illegal to drop a table if any cursors are open on the
4818 ** database. This is because in auto-vacuum mode the backend may
4819 ** need to move another root-page to fill a gap left by the deleted
4820 ** root page. If an open cursor was using this page a problem would
4821 ** occur.
4822 */
4823 if( pBt->pCursor ){
4824 return SQLITE_LOCKED;
drh5df72a52002-06-06 23:16:05 +00004825 }
danielk1977a0bf2652004-11-04 14:30:04 +00004826
drha34b6762004-05-07 13:30:42 +00004827 rc = getPage(pBt, (Pgno)iTable, &pPage);
drh2aa679f2001-06-25 02:11:07 +00004828 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004829 rc = sqlite3BtreeClearTable(pBt, iTable);
drh2aa679f2001-06-25 02:11:07 +00004830 if( rc ) return rc;
danielk1977a0bf2652004-11-04 14:30:04 +00004831
drh205f48e2004-11-05 00:43:11 +00004832 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00004833
drh4b70f112004-05-02 21:12:19 +00004834 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00004835#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00004836 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00004837 releasePage(pPage);
4838#else
4839 if( pBt->autoVacuum ){
4840 Pgno maxRootPgno;
4841 rc = sqlite3BtreeGetMeta(pBt, 4, &maxRootPgno);
4842 if( rc!=SQLITE_OK ){
4843 releasePage(pPage);
4844 return rc;
4845 }
4846
4847 if( iTable==maxRootPgno ){
4848 /* If the table being dropped is the table with the largest root-page
4849 ** number in the database, put the root page on the free list.
4850 */
4851 rc = freePage(pPage);
4852 releasePage(pPage);
4853 if( rc!=SQLITE_OK ){
4854 return rc;
4855 }
4856 }else{
4857 /* The table being dropped does not have the largest root-page
4858 ** number in the database. So move the page that does into the
4859 ** gap left by the deleted root-page.
4860 */
4861 MemPage *pMove;
4862 releasePage(pPage);
4863 rc = getPage(pBt, maxRootPgno, &pMove);
4864 if( rc!=SQLITE_OK ){
4865 return rc;
4866 }
4867 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
4868 releasePage(pMove);
4869 if( rc!=SQLITE_OK ){
4870 return rc;
4871 }
4872 rc = getPage(pBt, maxRootPgno, &pMove);
4873 if( rc!=SQLITE_OK ){
4874 return rc;
4875 }
4876 rc = freePage(pMove);
4877 releasePage(pMove);
4878 if( rc!=SQLITE_OK ){
4879 return rc;
4880 }
4881 *piMoved = maxRootPgno;
4882 }
4883
danielk1977599fcba2004-11-08 07:13:13 +00004884 /* Set the new 'max-root-page' value in the database header. This
4885 ** is the old value less one, less one more if that happens to
4886 ** be a root-page number, less one again if that is the
4887 ** PENDING_BYTE_PAGE.
4888 */
danielk197787a6e732004-11-05 12:58:25 +00004889 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00004890 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
4891 maxRootPgno--;
4892 }
drh42cac6d2004-11-20 20:31:11 +00004893 if( maxRootPgno==PTRMAP_PAGENO(pBt->usableSize, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00004894 maxRootPgno--;
4895 }
danielk1977599fcba2004-11-08 07:13:13 +00004896 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
4897
danielk197787a6e732004-11-05 12:58:25 +00004898 rc = sqlite3BtreeUpdateMeta(pBt, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00004899 }else{
4900 rc = freePage(pPage);
4901 releasePage(pPage);
4902 }
4903#endif
drh2aa679f2001-06-25 02:11:07 +00004904 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00004905 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00004906 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00004907 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00004908 }
drh8b2f49b2001-06-08 00:21:52 +00004909 return rc;
4910}
4911
drh001bbcb2003-03-19 03:14:00 +00004912
drh8b2f49b2001-06-08 00:21:52 +00004913/*
drh23e11ca2004-05-04 17:27:28 +00004914** Read the meta-information out of a database file. Meta[0]
4915** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00004916** through meta[15] are available for use by higher layers. Meta[0]
4917** is read-only, the others are read/write.
4918**
4919** The schema layer numbers meta values differently. At the schema
4920** layer (and the SetCookie and ReadCookie opcodes) the number of
4921** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00004922*/
drh3aac2dd2004-04-26 14:10:20 +00004923int sqlite3BtreeGetMeta(Btree *pBt, int idx, u32 *pMeta){
drh8b2f49b2001-06-08 00:21:52 +00004924 int rc;
drh4b70f112004-05-02 21:12:19 +00004925 unsigned char *pP1;
drh8b2f49b2001-06-08 00:21:52 +00004926
drh23e11ca2004-05-04 17:27:28 +00004927 assert( idx>=0 && idx<=15 );
drha34b6762004-05-07 13:30:42 +00004928 rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1);
drh8b2f49b2001-06-08 00:21:52 +00004929 if( rc ) return rc;
drh23e11ca2004-05-04 17:27:28 +00004930 *pMeta = get4byte(&pP1[36 + idx*4]);
drha34b6762004-05-07 13:30:42 +00004931 sqlite3pager_unref(pP1);
drhae157872004-08-14 19:20:09 +00004932
danielk1977599fcba2004-11-08 07:13:13 +00004933 /* If autovacuumed is disabled in this build but we are trying to
4934 ** access an autovacuumed database, then make the database readonly.
4935 */
danielk1977003ba062004-11-04 02:57:33 +00004936#ifdef SQLITE_OMIT_AUTOVACUUM
drhae157872004-08-14 19:20:09 +00004937 if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00004938#endif
drhae157872004-08-14 19:20:09 +00004939
drh8b2f49b2001-06-08 00:21:52 +00004940 return SQLITE_OK;
4941}
4942
4943/*
drh23e11ca2004-05-04 17:27:28 +00004944** Write meta-information back into the database. Meta[0] is
4945** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00004946*/
drh3aac2dd2004-04-26 14:10:20 +00004947int sqlite3BtreeUpdateMeta(Btree *pBt, int idx, u32 iMeta){
drh4b70f112004-05-02 21:12:19 +00004948 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00004949 int rc;
drh23e11ca2004-05-04 17:27:28 +00004950 assert( idx>=1 && idx<=15 );
danielk1977ee5741e2004-05-31 10:01:34 +00004951 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00004952 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh5df72a52002-06-06 23:16:05 +00004953 }
drhde647132004-05-07 17:57:49 +00004954 assert( pBt->pPage1!=0 );
4955 pP1 = pBt->pPage1->aData;
drha34b6762004-05-07 13:30:42 +00004956 rc = sqlite3pager_write(pP1);
drh4b70f112004-05-02 21:12:19 +00004957 if( rc ) return rc;
drh23e11ca2004-05-04 17:27:28 +00004958 put4byte(&pP1[36 + idx*4], iMeta);
drh8b2f49b2001-06-08 00:21:52 +00004959 return SQLITE_OK;
4960}
drh8c42ca92001-06-22 19:15:00 +00004961
drhf328bc82004-05-10 23:29:49 +00004962/*
4963** Return the flag byte at the beginning of the page that the cursor
4964** is currently pointing to.
4965*/
4966int sqlite3BtreeFlags(BtCursor *pCur){
4967 MemPage *pPage = pCur->pPage;
4968 return pPage ? pPage->aData[pPage->hdrOffset] : 0;
4969}
4970
danielk1977b5402fb2005-01-12 07:15:04 +00004971#ifdef SQLITE_DEBUG
drh8c42ca92001-06-22 19:15:00 +00004972/*
4973** Print a disassembly of the given page on standard output. This routine
4974** is used for debugging and testing only.
4975*/
danielk1977c7dc7532004-11-17 10:22:03 +00004976static int btreePageDump(Btree *pBt, int pgno, int recursive, MemPage *pParent){
drh8c42ca92001-06-22 19:15:00 +00004977 int rc;
4978 MemPage *pPage;
drhc8629a12004-05-08 20:07:40 +00004979 int i, j, c;
drh8c42ca92001-06-22 19:15:00 +00004980 int nFree;
4981 u16 idx;
drhab9f7f12004-05-08 10:56:11 +00004982 int hdr;
drh43605152004-05-29 21:46:49 +00004983 int nCell;
drha2fce642004-06-05 00:01:44 +00004984 int isInit;
drhab9f7f12004-05-08 10:56:11 +00004985 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00004986 char range[20];
4987 unsigned char payload[20];
drhab9f7f12004-05-08 10:56:11 +00004988
drh4b70f112004-05-02 21:12:19 +00004989 rc = getPage(pBt, (Pgno)pgno, &pPage);
drha2fce642004-06-05 00:01:44 +00004990 isInit = pPage->isInit;
4991 if( pPage->isInit==0 ){
danielk1977c7dc7532004-11-17 10:22:03 +00004992 initPage(pPage, pParent);
drha2fce642004-06-05 00:01:44 +00004993 }
drh8c42ca92001-06-22 19:15:00 +00004994 if( rc ){
4995 return rc;
4996 }
drhab9f7f12004-05-08 10:56:11 +00004997 hdr = pPage->hdrOffset;
4998 data = pPage->aData;
drhc8629a12004-05-08 20:07:40 +00004999 c = data[hdr];
drh8b18dd42004-05-12 19:18:15 +00005000 pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0;
drhc8629a12004-05-08 20:07:40 +00005001 pPage->zeroData = (c & PTF_ZERODATA)!=0;
drh8b18dd42004-05-12 19:18:15 +00005002 pPage->leafData = (c & PTF_LEAFDATA)!=0;
drhc8629a12004-05-08 20:07:40 +00005003 pPage->leaf = (c & PTF_LEAF)!=0;
drh8b18dd42004-05-12 19:18:15 +00005004 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
drh43605152004-05-29 21:46:49 +00005005 nCell = get2byte(&data[hdr+3]);
drhfe63d1c2004-09-08 20:13:04 +00005006 sqlite3DebugPrintf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno,
drh43605152004-05-29 21:46:49 +00005007 data[hdr], data[hdr+7],
drhda200cc2004-05-09 11:51:38 +00005008 (pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0);
drhab9f7f12004-05-08 10:56:11 +00005009 assert( hdr == (pgno==1 ? 100 : 0) );
drh43605152004-05-29 21:46:49 +00005010 idx = hdr + 12 - pPage->leaf*4;
5011 for(i=0; i<nCell; i++){
drh6f11bef2004-05-13 01:12:56 +00005012 CellInfo info;
drh4b70f112004-05-02 21:12:19 +00005013 Pgno child;
drh43605152004-05-29 21:46:49 +00005014 unsigned char *pCell;
drh6f11bef2004-05-13 01:12:56 +00005015 int sz;
drh43605152004-05-29 21:46:49 +00005016 int addr;
drh6f11bef2004-05-13 01:12:56 +00005017
drh43605152004-05-29 21:46:49 +00005018 addr = get2byte(&data[idx + 2*i]);
5019 pCell = &data[addr];
5020 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005021 sz = info.nSize;
drh43605152004-05-29 21:46:49 +00005022 sprintf(range,"%d..%d", addr, addr+sz-1);
drh4b70f112004-05-02 21:12:19 +00005023 if( pPage->leaf ){
5024 child = 0;
5025 }else{
drh43605152004-05-29 21:46:49 +00005026 child = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00005027 }
drh6f11bef2004-05-13 01:12:56 +00005028 sz = info.nData;
5029 if( !pPage->intKey ) sz += info.nKey;
drh8c42ca92001-06-22 19:15:00 +00005030 if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
drh6f11bef2004-05-13 01:12:56 +00005031 memcpy(payload, &pCell[info.nHeader], sz);
drh8c42ca92001-06-22 19:15:00 +00005032 for(j=0; j<sz; j++){
5033 if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
5034 }
5035 payload[sz] = 0;
drhfe63d1c2004-09-08 20:13:04 +00005036 sqlite3DebugPrintf(
drh6f11bef2004-05-13 01:12:56 +00005037 "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n",
5038 i, range, child, info.nKey, info.nData, payload
drh8c42ca92001-06-22 19:15:00 +00005039 );
drh8c42ca92001-06-22 19:15:00 +00005040 }
drh4b70f112004-05-02 21:12:19 +00005041 if( !pPage->leaf ){
drhfe63d1c2004-09-08 20:13:04 +00005042 sqlite3DebugPrintf("right_child: %d\n", get4byte(&data[hdr+8]));
drh4b70f112004-05-02 21:12:19 +00005043 }
drh8c42ca92001-06-22 19:15:00 +00005044 nFree = 0;
5045 i = 0;
drhab9f7f12004-05-08 10:56:11 +00005046 idx = get2byte(&data[hdr+1]);
drhb6f41482004-05-14 01:58:11 +00005047 while( idx>0 && idx<pPage->pBt->usableSize ){
drhab9f7f12004-05-08 10:56:11 +00005048 int sz = get2byte(&data[idx+2]);
drh4b70f112004-05-02 21:12:19 +00005049 sprintf(range,"%d..%d", idx, idx+sz-1);
5050 nFree += sz;
drhfe63d1c2004-09-08 20:13:04 +00005051 sqlite3DebugPrintf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
drh4b70f112004-05-02 21:12:19 +00005052 i, range, sz, nFree);
drhab9f7f12004-05-08 10:56:11 +00005053 idx = get2byte(&data[idx]);
drh2aa679f2001-06-25 02:11:07 +00005054 i++;
drh8c42ca92001-06-22 19:15:00 +00005055 }
5056 if( idx!=0 ){
drhfe63d1c2004-09-08 20:13:04 +00005057 sqlite3DebugPrintf("ERROR: next freeblock index out of range: %d\n", idx);
drh8c42ca92001-06-22 19:15:00 +00005058 }
drha34b6762004-05-07 13:30:42 +00005059 if( recursive && !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005060 for(i=0; i<nCell; i++){
5061 unsigned char *pCell = findCell(pPage, i);
danielk1977c7dc7532004-11-17 10:22:03 +00005062 btreePageDump(pBt, get4byte(pCell), 1, pPage);
drha34b6762004-05-07 13:30:42 +00005063 idx = get2byte(pCell);
drh6019e162001-07-02 17:51:45 +00005064 }
danielk1977c7dc7532004-11-17 10:22:03 +00005065 btreePageDump(pBt, get4byte(&data[hdr+8]), 1, pPage);
drh6019e162001-07-02 17:51:45 +00005066 }
drha2fce642004-06-05 00:01:44 +00005067 pPage->isInit = isInit;
drhab9f7f12004-05-08 10:56:11 +00005068 sqlite3pager_unref(data);
drh3644f082004-05-10 18:45:09 +00005069 fflush(stdout);
drh8c42ca92001-06-22 19:15:00 +00005070 return SQLITE_OK;
5071}
danielk1977c7dc7532004-11-17 10:22:03 +00005072int sqlite3BtreePageDump(Btree *pBt, int pgno, int recursive){
5073 return btreePageDump(pBt, pgno, recursive, 0);
5074}
drhaaab5722002-02-19 13:39:21 +00005075#endif
drh8c42ca92001-06-22 19:15:00 +00005076
drhaaab5722002-02-19 13:39:21 +00005077#ifdef SQLITE_TEST
drh8c42ca92001-06-22 19:15:00 +00005078/*
drh2aa679f2001-06-25 02:11:07 +00005079** Fill aResult[] with information about the entry and page that the
5080** cursor is pointing to.
5081**
5082** aResult[0] = The page number
5083** aResult[1] = The entry number
5084** aResult[2] = Total number of entries on this page
drh3e27c022004-07-23 00:01:38 +00005085** aResult[3] = Cell size (local payload + header)
drh2aa679f2001-06-25 02:11:07 +00005086** aResult[4] = Number of free bytes on this page
5087** aResult[5] = Number of free blocks on the page
drh3e27c022004-07-23 00:01:38 +00005088** aResult[6] = Total payload size (local + overflow)
5089** aResult[7] = Header size in bytes
5090** aResult[8] = Local payload size
5091** aResult[9] = Parent page number
drh5eddca62001-06-30 21:53:53 +00005092**
5093** This routine is used for testing and debugging only.
drh8c42ca92001-06-22 19:15:00 +00005094*/
drh3e27c022004-07-23 00:01:38 +00005095int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){
drh2aa679f2001-06-25 02:11:07 +00005096 int cnt, idx;
5097 MemPage *pPage = pCur->pPage;
drh3e27c022004-07-23 00:01:38 +00005098 BtCursor tmpCur;
drhda200cc2004-05-09 11:51:38 +00005099
5100 pageIntegrity(pPage);
drh4b70f112004-05-02 21:12:19 +00005101 assert( pPage->isInit );
drh3e27c022004-07-23 00:01:38 +00005102 getTempCursor(pCur, &tmpCur);
5103 while( upCnt-- ){
5104 moveToParent(&tmpCur);
5105 }
5106 pPage = tmpCur.pPage;
5107 pageIntegrity(pPage);
drha34b6762004-05-07 13:30:42 +00005108 aResult[0] = sqlite3pager_pagenumber(pPage->aData);
drh91025292004-05-03 19:49:32 +00005109 assert( aResult[0]==pPage->pgno );
drh3e27c022004-07-23 00:01:38 +00005110 aResult[1] = tmpCur.idx;
drh2aa679f2001-06-25 02:11:07 +00005111 aResult[2] = pPage->nCell;
drh3e27c022004-07-23 00:01:38 +00005112 if( tmpCur.idx>=0 && tmpCur.idx<pPage->nCell ){
5113 getCellInfo(&tmpCur);
5114 aResult[3] = tmpCur.info.nSize;
5115 aResult[6] = tmpCur.info.nData;
5116 aResult[7] = tmpCur.info.nHeader;
5117 aResult[8] = tmpCur.info.nLocal;
drh2aa679f2001-06-25 02:11:07 +00005118 }else{
5119 aResult[3] = 0;
5120 aResult[6] = 0;
drh3e27c022004-07-23 00:01:38 +00005121 aResult[7] = 0;
5122 aResult[8] = 0;
drh2aa679f2001-06-25 02:11:07 +00005123 }
5124 aResult[4] = pPage->nFree;
5125 cnt = 0;
drh4b70f112004-05-02 21:12:19 +00005126 idx = get2byte(&pPage->aData[pPage->hdrOffset+1]);
drhb6f41482004-05-14 01:58:11 +00005127 while( idx>0 && idx<pPage->pBt->usableSize ){
drh2aa679f2001-06-25 02:11:07 +00005128 cnt++;
drh4b70f112004-05-02 21:12:19 +00005129 idx = get2byte(&pPage->aData[idx]);
drh2aa679f2001-06-25 02:11:07 +00005130 }
5131 aResult[5] = cnt;
drh3e27c022004-07-23 00:01:38 +00005132 if( pPage->pParent==0 || isRootPage(pPage) ){
5133 aResult[9] = 0;
5134 }else{
5135 aResult[9] = pPage->pParent->pgno;
5136 }
5137 releaseTempCursor(&tmpCur);
drh8c42ca92001-06-22 19:15:00 +00005138 return SQLITE_OK;
5139}
drhaaab5722002-02-19 13:39:21 +00005140#endif
drhdd793422001-06-28 01:54:48 +00005141
drhdd793422001-06-28 01:54:48 +00005142/*
drh5eddca62001-06-30 21:53:53 +00005143** Return the pager associated with a BTree. This routine is used for
5144** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00005145*/
drh3aac2dd2004-04-26 14:10:20 +00005146Pager *sqlite3BtreePager(Btree *pBt){
drhdd793422001-06-28 01:54:48 +00005147 return pBt->pPager;
5148}
drh5eddca62001-06-30 21:53:53 +00005149
5150/*
5151** This structure is passed around through all the sanity checking routines
5152** in order to keep track of some global state information.
5153*/
drhaaab5722002-02-19 13:39:21 +00005154typedef struct IntegrityCk IntegrityCk;
5155struct IntegrityCk {
drh100569d2001-10-02 13:01:48 +00005156 Btree *pBt; /* The tree being checked out */
5157 Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
5158 int nPage; /* Number of pages in the database */
5159 int *anRef; /* Number of times each page is referenced */
drh100569d2001-10-02 13:01:48 +00005160 char *zErrMsg; /* An error message. NULL of no errors seen. */
drh5eddca62001-06-30 21:53:53 +00005161};
5162
drhb7f91642004-10-31 02:22:47 +00005163#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00005164/*
5165** Append a message to the error message string.
5166*/
drh2e38c322004-09-03 18:38:44 +00005167static void checkAppendMsg(
5168 IntegrityCk *pCheck,
5169 char *zMsg1,
5170 const char *zFormat,
5171 ...
5172){
5173 va_list ap;
5174 char *zMsg2;
5175 va_start(ap, zFormat);
5176 zMsg2 = sqlite3VMPrintf(zFormat, ap);
5177 va_end(ap);
5178 if( zMsg1==0 ) zMsg1 = "";
drh5eddca62001-06-30 21:53:53 +00005179 if( pCheck->zErrMsg ){
5180 char *zOld = pCheck->zErrMsg;
5181 pCheck->zErrMsg = 0;
danielk19774adee202004-05-08 08:23:19 +00005182 sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00005183 sqliteFree(zOld);
5184 }else{
danielk19774adee202004-05-08 08:23:19 +00005185 sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00005186 }
drh2e38c322004-09-03 18:38:44 +00005187 sqliteFree(zMsg2);
drh5eddca62001-06-30 21:53:53 +00005188}
drhb7f91642004-10-31 02:22:47 +00005189#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00005190
drhb7f91642004-10-31 02:22:47 +00005191#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00005192/*
5193** Add 1 to the reference count for page iPage. If this is the second
5194** reference to the page, add an error message to pCheck->zErrMsg.
5195** Return 1 if there are 2 ore more references to the page and 0 if
5196** if this is the first reference to the page.
5197**
5198** Also check that the page number is in bounds.
5199*/
drhaaab5722002-02-19 13:39:21 +00005200static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00005201 if( iPage==0 ) return 1;
drh0de8c112002-07-06 16:32:14 +00005202 if( iPage>pCheck->nPage || iPage<0 ){
drh2e38c322004-09-03 18:38:44 +00005203 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00005204 return 1;
5205 }
5206 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00005207 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00005208 return 1;
5209 }
5210 return (pCheck->anRef[iPage]++)>1;
5211}
5212
danielk1977afcdd022004-10-31 16:25:42 +00005213#ifndef SQLITE_OMIT_AUTOVACUUM
5214/*
5215** Check that the entry in the pointer-map for page iChild maps to
5216** page iParent, pointer type ptrType. If not, append an error message
5217** to pCheck.
5218*/
5219static void checkPtrmap(
5220 IntegrityCk *pCheck, /* Integrity check context */
5221 Pgno iChild, /* Child page number */
5222 u8 eType, /* Expected pointer map type */
5223 Pgno iParent, /* Expected pointer map parent page number */
5224 char *zContext /* Context description (used for error msg) */
5225){
5226 int rc;
5227 u8 ePtrmapType;
5228 Pgno iPtrmapParent;
5229
5230 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
5231 if( rc!=SQLITE_OK ){
5232 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
5233 return;
5234 }
5235
5236 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
5237 checkAppendMsg(pCheck, zContext,
5238 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
5239 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
5240 }
5241}
5242#endif
5243
drh5eddca62001-06-30 21:53:53 +00005244/*
5245** Check the integrity of the freelist or of an overflow page list.
5246** Verify that the number of pages on the list is N.
5247*/
drh30e58752002-03-02 20:41:57 +00005248static void checkList(
5249 IntegrityCk *pCheck, /* Integrity checking context */
5250 int isFreeList, /* True for a freelist. False for overflow page list */
5251 int iPage, /* Page number for first page in the list */
5252 int N, /* Expected number of pages in the list */
5253 char *zContext /* Context for error messages */
5254){
5255 int i;
drh3a4c1412004-05-09 20:40:11 +00005256 int expected = N;
5257 int iFirst = iPage;
drh30e58752002-03-02 20:41:57 +00005258 while( N-- > 0 ){
drh4b70f112004-05-02 21:12:19 +00005259 unsigned char *pOvfl;
drh5eddca62001-06-30 21:53:53 +00005260 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00005261 checkAppendMsg(pCheck, zContext,
5262 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00005263 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00005264 break;
5265 }
5266 if( checkRef(pCheck, iPage, zContext) ) break;
drha34b6762004-05-07 13:30:42 +00005267 if( sqlite3pager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
drh2e38c322004-09-03 18:38:44 +00005268 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00005269 break;
5270 }
drh30e58752002-03-02 20:41:57 +00005271 if( isFreeList ){
drh4b70f112004-05-02 21:12:19 +00005272 int n = get4byte(&pOvfl[4]);
danielk1977687566d2004-11-02 12:56:41 +00005273#ifndef SQLITE_OMIT_AUTOVACUUM
5274 if( pCheck->pBt->autoVacuum ){
5275 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
5276 }
5277#endif
drh855eb1c2004-08-31 13:45:11 +00005278 if( n>pCheck->pBt->usableSize/4-8 ){
drh2e38c322004-09-03 18:38:44 +00005279 checkAppendMsg(pCheck, zContext,
5280 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00005281 N--;
5282 }else{
5283 for(i=0; i<n; i++){
danielk1977687566d2004-11-02 12:56:41 +00005284 Pgno iFreePage = get4byte(&pOvfl[8+i*4]);
5285#ifndef SQLITE_OMIT_AUTOVACUUM
5286 if( pCheck->pBt->autoVacuum ){
5287 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
5288 }
5289#endif
5290 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00005291 }
5292 N -= n;
drh30e58752002-03-02 20:41:57 +00005293 }
drh30e58752002-03-02 20:41:57 +00005294 }
danielk1977afcdd022004-10-31 16:25:42 +00005295#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00005296 else{
5297 /* If this database supports auto-vacuum and iPage is not the last
5298 ** page in this overflow list, check that the pointer-map entry for
5299 ** the following page matches iPage.
5300 */
5301 if( pCheck->pBt->autoVacuum && N>0 ){
5302 i = get4byte(pOvfl);
5303 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
5304 }
danielk1977afcdd022004-10-31 16:25:42 +00005305 }
5306#endif
drh4b70f112004-05-02 21:12:19 +00005307 iPage = get4byte(pOvfl);
drha34b6762004-05-07 13:30:42 +00005308 sqlite3pager_unref(pOvfl);
drh5eddca62001-06-30 21:53:53 +00005309 }
5310}
drhb7f91642004-10-31 02:22:47 +00005311#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00005312
drhb7f91642004-10-31 02:22:47 +00005313#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00005314/*
5315** Do various sanity checks on a single page of a tree. Return
5316** the tree depth. Root pages return 0. Parents of root pages
5317** return 1, and so forth.
5318**
5319** These checks are done:
5320**
5321** 1. Make sure that cells and freeblocks do not overlap
5322** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00005323** NO 2. Make sure cell keys are in order.
5324** NO 3. Make sure no key is less than or equal to zLowerBound.
5325** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00005326** 5. Check the integrity of overflow pages.
5327** 6. Recursively call checkTreePage on all children.
5328** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00005329** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00005330** the root of the tree.
5331*/
5332static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00005333 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00005334 int iPage, /* Page number of the page to check */
5335 MemPage *pParent, /* Parent page */
5336 char *zParentContext, /* Parent context */
5337 char *zLowerBound, /* All keys should be greater than this, if not NULL */
drh1bffb9c2002-02-03 17:37:36 +00005338 int nLower, /* Number of characters in zLowerBound */
5339 char *zUpperBound, /* All keys should be less than this, if not NULL */
5340 int nUpper /* Number of characters in zUpperBound */
drh5eddca62001-06-30 21:53:53 +00005341){
5342 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00005343 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00005344 int hdr, cellStart;
5345 int nCell;
drhda200cc2004-05-09 11:51:38 +00005346 u8 *data;
drh5eddca62001-06-30 21:53:53 +00005347 BtCursor cur;
drh0d316a42002-08-11 20:10:47 +00005348 Btree *pBt;
drhb6f41482004-05-14 01:58:11 +00005349 int maxLocal, usableSize;
drh5eddca62001-06-30 21:53:53 +00005350 char zContext[100];
drh2e38c322004-09-03 18:38:44 +00005351 char *hit;
drh5eddca62001-06-30 21:53:53 +00005352
danielk1977ef73ee92004-11-06 12:26:07 +00005353 sprintf(zContext, "Page %d: ", iPage);
5354
drh5eddca62001-06-30 21:53:53 +00005355 /* Check that the page exists
5356 */
drh0d316a42002-08-11 20:10:47 +00005357 cur.pBt = pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00005358 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00005359 if( iPage==0 ) return 0;
5360 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh4b70f112004-05-02 21:12:19 +00005361 if( (rc = getPage(pBt, (Pgno)iPage, &pPage))!=0 ){
drh2e38c322004-09-03 18:38:44 +00005362 checkAppendMsg(pCheck, zContext,
5363 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00005364 return 0;
5365 }
drh6f11bef2004-05-13 01:12:56 +00005366 maxLocal = pPage->leafData ? pBt->maxLeaf : pBt->maxLocal;
drh4b70f112004-05-02 21:12:19 +00005367 if( (rc = initPage(pPage, pParent))!=0 ){
drh2e38c322004-09-03 18:38:44 +00005368 checkAppendMsg(pCheck, zContext, "initPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00005369 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00005370 return 0;
5371 }
5372
5373 /* Check out all the cells.
5374 */
5375 depth = 0;
drh5eddca62001-06-30 21:53:53 +00005376 cur.pPage = pPage;
drh5eddca62001-06-30 21:53:53 +00005377 for(i=0; i<pPage->nCell; i++){
drh6f11bef2004-05-13 01:12:56 +00005378 u8 *pCell;
5379 int sz;
5380 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00005381
5382 /* Check payload overflow pages
5383 */
drh3a4c1412004-05-09 20:40:11 +00005384 sprintf(zContext, "On tree page %d cell %d: ", iPage, i);
drh43605152004-05-29 21:46:49 +00005385 pCell = findCell(pPage,i);
5386 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005387 sz = info.nData;
5388 if( !pPage->intKey ) sz += info.nKey;
5389 if( sz>info.nLocal ){
drhb6f41482004-05-14 01:58:11 +00005390 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00005391 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
5392#ifndef SQLITE_OMIT_AUTOVACUUM
5393 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00005394 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00005395 }
5396#endif
5397 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00005398 }
5399
5400 /* Check sanity of left child page.
5401 */
drhda200cc2004-05-09 11:51:38 +00005402 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005403 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00005404#ifndef SQLITE_OMIT_AUTOVACUUM
5405 if( pBt->autoVacuum ){
5406 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
5407 }
5408#endif
drhda200cc2004-05-09 11:51:38 +00005409 d2 = checkTreePage(pCheck,pgno,pPage,zContext,0,0,0,0);
5410 if( i>0 && d2!=depth ){
5411 checkAppendMsg(pCheck, zContext, "Child page depth differs");
5412 }
5413 depth = d2;
drh5eddca62001-06-30 21:53:53 +00005414 }
drh5eddca62001-06-30 21:53:53 +00005415 }
drhda200cc2004-05-09 11:51:38 +00005416 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005417 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drhda200cc2004-05-09 11:51:38 +00005418 sprintf(zContext, "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00005419#ifndef SQLITE_OMIT_AUTOVACUUM
5420 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00005421 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005422 }
5423#endif
drhda200cc2004-05-09 11:51:38 +00005424 checkTreePage(pCheck, pgno, pPage, zContext,0,0,0,0);
5425 }
drh5eddca62001-06-30 21:53:53 +00005426
5427 /* Check for complete coverage of the page
5428 */
drhda200cc2004-05-09 11:51:38 +00005429 data = pPage->aData;
5430 hdr = pPage->hdrOffset;
drh2e38c322004-09-03 18:38:44 +00005431 hit = sqliteMalloc( usableSize );
5432 if( hit ){
5433 memset(hit, 1, get2byte(&data[hdr+5]));
5434 nCell = get2byte(&data[hdr+3]);
5435 cellStart = hdr + 12 - 4*pPage->leaf;
5436 for(i=0; i<nCell; i++){
5437 int pc = get2byte(&data[cellStart+i*2]);
5438 int size = cellSizePtr(pPage, &data[pc]);
5439 int j;
danielk19777701e812005-01-10 12:59:51 +00005440 if( (pc+size-1)>=usableSize || pc<0 ){
5441 checkAppendMsg(pCheck, 0,
5442 "Corruption detected in cell %d on page %d",i,iPage,0);
5443 }else{
5444 for(j=pc+size-1; j>=pc; j--) hit[j]++;
5445 }
drh2e38c322004-09-03 18:38:44 +00005446 }
5447 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
5448 cnt++){
5449 int size = get2byte(&data[i+2]);
5450 int j;
danielk19777701e812005-01-10 12:59:51 +00005451 if( (i+size-1)>=usableSize || i<0 ){
5452 checkAppendMsg(pCheck, 0,
5453 "Corruption detected in cell %d on page %d",i,iPage,0);
5454 }else{
5455 for(j=i+size-1; j>=i; j--) hit[j]++;
5456 }
drh2e38c322004-09-03 18:38:44 +00005457 i = get2byte(&data[i]);
5458 }
5459 for(i=cnt=0; i<usableSize; i++){
5460 if( hit[i]==0 ){
5461 cnt++;
5462 }else if( hit[i]>1 ){
5463 checkAppendMsg(pCheck, 0,
5464 "Multiple uses for byte %d of page %d", i, iPage);
5465 break;
5466 }
5467 }
5468 if( cnt!=data[hdr+7] ){
5469 checkAppendMsg(pCheck, 0,
5470 "Fragmented space is %d byte reported as %d on page %d",
5471 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00005472 }
5473 }
drh2e38c322004-09-03 18:38:44 +00005474 sqliteFree(hit);
drh6019e162001-07-02 17:51:45 +00005475
drh4b70f112004-05-02 21:12:19 +00005476 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00005477 return depth+1;
drh5eddca62001-06-30 21:53:53 +00005478}
drhb7f91642004-10-31 02:22:47 +00005479#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00005480
drhb7f91642004-10-31 02:22:47 +00005481#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00005482/*
5483** This routine does a complete check of the given BTree file. aRoot[] is
5484** an array of pages numbers were each page number is the root page of
5485** a table. nRoot is the number of entries in aRoot.
5486**
5487** If everything checks out, this routine returns NULL. If something is
5488** amiss, an error message is written into memory obtained from malloc()
5489** and a pointer to that error message is returned. The calling function
5490** is responsible for freeing the error message when it is done.
5491*/
drh3aac2dd2004-04-26 14:10:20 +00005492char *sqlite3BtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
drh5eddca62001-06-30 21:53:53 +00005493 int i;
5494 int nRef;
drhaaab5722002-02-19 13:39:21 +00005495 IntegrityCk sCheck;
drh5eddca62001-06-30 21:53:53 +00005496
drha34b6762004-05-07 13:30:42 +00005497 nRef = *sqlite3pager_stats(pBt->pPager);
drhefc251d2001-07-01 22:12:01 +00005498 if( lockBtree(pBt)!=SQLITE_OK ){
5499 return sqliteStrDup("Unable to acquire a read lock on the database");
5500 }
drh5eddca62001-06-30 21:53:53 +00005501 sCheck.pBt = pBt;
5502 sCheck.pPager = pBt->pPager;
drha34b6762004-05-07 13:30:42 +00005503 sCheck.nPage = sqlite3pager_pagecount(sCheck.pPager);
drh0de8c112002-07-06 16:32:14 +00005504 if( sCheck.nPage==0 ){
5505 unlockBtreeIfUnused(pBt);
5506 return 0;
5507 }
drh8c1238a2003-01-02 14:43:55 +00005508 sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00005509 if( !sCheck.anRef ){
5510 unlockBtreeIfUnused(pBt);
5511 return sqlite3MPrintf("Unable to malloc %d bytes",
5512 (sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
5513 }
drhda200cc2004-05-09 11:51:38 +00005514 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00005515 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00005516 if( i<=sCheck.nPage ){
5517 sCheck.anRef[i] = 1;
5518 }
drh5eddca62001-06-30 21:53:53 +00005519 sCheck.zErrMsg = 0;
5520
5521 /* Check the integrity of the freelist
5522 */
drha34b6762004-05-07 13:30:42 +00005523 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
5524 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00005525
5526 /* Check all the tables.
5527 */
5528 for(i=0; i<nRoot; i++){
drh4ff6dfa2002-03-03 23:06:00 +00005529 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00005530#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00005531 if( pBt->autoVacuum && aRoot[i]>1 ){
5532 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
5533 }
5534#endif
drh1bffb9c2002-02-03 17:37:36 +00005535 checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
drh5eddca62001-06-30 21:53:53 +00005536 }
5537
5538 /* Make sure every page in the file is referenced
5539 */
5540 for(i=1; i<=sCheck.nPage; i++){
danielk1977afcdd022004-10-31 16:25:42 +00005541#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00005542 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00005543 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00005544 }
danielk1977afcdd022004-10-31 16:25:42 +00005545#else
5546 /* If the database supports auto-vacuum, make sure no tables contain
5547 ** references to pointer-map pages.
5548 */
5549 if( sCheck.anRef[i]==0 &&
drh42cac6d2004-11-20 20:31:11 +00005550 (PTRMAP_PAGENO(pBt->usableSize, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00005551 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
5552 }
5553 if( sCheck.anRef[i]!=0 &&
drh42cac6d2004-11-20 20:31:11 +00005554 (PTRMAP_PAGENO(pBt->usableSize, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00005555 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
5556 }
5557#endif
drh5eddca62001-06-30 21:53:53 +00005558 }
5559
5560 /* Make sure this analysis did not leave any unref() pages
5561 */
drh5e00f6c2001-09-13 13:46:56 +00005562 unlockBtreeIfUnused(pBt);
drha34b6762004-05-07 13:30:42 +00005563 if( nRef != *sqlite3pager_stats(pBt->pPager) ){
drh2e38c322004-09-03 18:38:44 +00005564 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00005565 "Outstanding page count goes from %d to %d during this analysis",
drha34b6762004-05-07 13:30:42 +00005566 nRef, *sqlite3pager_stats(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00005567 );
drh5eddca62001-06-30 21:53:53 +00005568 }
5569
5570 /* Clean up and report errors.
5571 */
5572 sqliteFree(sCheck.anRef);
5573 return sCheck.zErrMsg;
5574}
drhb7f91642004-10-31 02:22:47 +00005575#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00005576
drh73509ee2003-04-06 20:44:45 +00005577/*
5578** Return the full pathname of the underlying database file.
5579*/
drh3aac2dd2004-04-26 14:10:20 +00005580const char *sqlite3BtreeGetFilename(Btree *pBt){
drh73509ee2003-04-06 20:44:45 +00005581 assert( pBt->pPager!=0 );
drha34b6762004-05-07 13:30:42 +00005582 return sqlite3pager_filename(pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00005583}
5584
5585/*
danielk19775865e3d2004-06-14 06:03:57 +00005586** Return the pathname of the directory that contains the database file.
5587*/
5588const char *sqlite3BtreeGetDirname(Btree *pBt){
5589 assert( pBt->pPager!=0 );
5590 return sqlite3pager_dirname(pBt->pPager);
5591}
5592
5593/*
5594** Return the pathname of the journal file for this database. The return
5595** value of this routine is the same regardless of whether the journal file
5596** has been created or not.
5597*/
5598const char *sqlite3BtreeGetJournalname(Btree *pBt){
5599 assert( pBt->pPager!=0 );
5600 return sqlite3pager_journalname(pBt->pPager);
5601}
5602
drhb7f91642004-10-31 02:22:47 +00005603#ifndef SQLITE_OMIT_VACUUM
danielk19775865e3d2004-06-14 06:03:57 +00005604/*
drhf7c57532003-04-25 13:22:51 +00005605** Copy the complete content of pBtFrom into pBtTo. A transaction
5606** must be active for both files.
5607**
5608** The size of file pBtFrom may be reduced by this operation.
drh43605152004-05-29 21:46:49 +00005609** If anything goes wrong, the transaction on pBtFrom is rolled back.
drh73509ee2003-04-06 20:44:45 +00005610*/
drh3aac2dd2004-04-26 14:10:20 +00005611int sqlite3BtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
drhf7c57532003-04-25 13:22:51 +00005612 int rc = SQLITE_OK;
drh2e6d11b2003-04-25 15:37:57 +00005613 Pgno i, nPage, nToPage;
drhf7c57532003-04-25 13:22:51 +00005614
danielk1977ee5741e2004-05-31 10:01:34 +00005615 if( pBtTo->inTrans!=TRANS_WRITE || pBtFrom->inTrans!=TRANS_WRITE ){
5616 return SQLITE_ERROR;
5617 }
drhf7c57532003-04-25 13:22:51 +00005618 if( pBtTo->pCursor ) return SQLITE_BUSY;
drha34b6762004-05-07 13:30:42 +00005619 nToPage = sqlite3pager_pagecount(pBtTo->pPager);
5620 nPage = sqlite3pager_pagecount(pBtFrom->pPager);
danielk1977369f27e2004-06-15 11:40:04 +00005621 for(i=1; rc==SQLITE_OK && i<=nPage; i++){
drhf7c57532003-04-25 13:22:51 +00005622 void *pPage;
drha34b6762004-05-07 13:30:42 +00005623 rc = sqlite3pager_get(pBtFrom->pPager, i, &pPage);
drhf7c57532003-04-25 13:22:51 +00005624 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00005625 rc = sqlite3pager_overwrite(pBtTo->pPager, i, pPage);
drh2e6d11b2003-04-25 15:37:57 +00005626 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00005627 sqlite3pager_unref(pPage);
drhf7c57532003-04-25 13:22:51 +00005628 }
drh2e6d11b2003-04-25 15:37:57 +00005629 for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
5630 void *pPage;
drha34b6762004-05-07 13:30:42 +00005631 rc = sqlite3pager_get(pBtTo->pPager, i, &pPage);
drh2e6d11b2003-04-25 15:37:57 +00005632 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00005633 rc = sqlite3pager_write(pPage);
5634 sqlite3pager_unref(pPage);
5635 sqlite3pager_dont_write(pBtTo->pPager, i);
drh2e6d11b2003-04-25 15:37:57 +00005636 }
5637 if( !rc && nPage<nToPage ){
drha34b6762004-05-07 13:30:42 +00005638 rc = sqlite3pager_truncate(pBtTo->pPager, nPage);
drh2e6d11b2003-04-25 15:37:57 +00005639 }
drhf7c57532003-04-25 13:22:51 +00005640 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00005641 sqlite3BtreeRollback(pBtTo);
drhf7c57532003-04-25 13:22:51 +00005642 }
5643 return rc;
drh73509ee2003-04-06 20:44:45 +00005644}
drhb7f91642004-10-31 02:22:47 +00005645#endif /* SQLITE_OMIT_VACUUM */
danielk19771d850a72004-05-31 08:26:49 +00005646
5647/*
5648** Return non-zero if a transaction is active.
5649*/
5650int sqlite3BtreeIsInTrans(Btree *pBt){
danielk1977ee5741e2004-05-31 10:01:34 +00005651 return (pBt && (pBt->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00005652}
5653
5654/*
5655** Return non-zero if a statement transaction is active.
5656*/
5657int sqlite3BtreeIsInStmt(Btree *pBt){
5658 return (pBt && pBt->inStmt);
5659}
danielk197713adf8a2004-06-03 16:08:41 +00005660
5661/*
5662** This call is a no-op if no write-transaction is currently active on pBt.
5663**
5664** Otherwise, sync the database file for the btree pBt. zMaster points to
5665** the name of a master journal file that should be written into the
5666** individual journal file, or is NULL, indicating no master journal file
5667** (single database transaction).
5668**
5669** When this is called, the master journal should already have been
5670** created, populated with this journal pointer and synced to disk.
5671**
5672** Once this is routine has returned, the only thing required to commit
5673** the write-transaction for this database file is to delete the journal.
5674*/
5675int sqlite3BtreeSync(Btree *pBt, const char *zMaster){
5676 if( pBt->inTrans==TRANS_WRITE ){
danielk1977687566d2004-11-02 12:56:41 +00005677#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977d761c0c2004-11-05 16:37:02 +00005678 Pgno nTrunc = 0;
danielk1977687566d2004-11-02 12:56:41 +00005679 if( pBt->autoVacuum ){
danielk1977d761c0c2004-11-05 16:37:02 +00005680 int rc = autoVacuumCommit(pBt, &nTrunc);
danielk1977687566d2004-11-02 12:56:41 +00005681 if( rc!=SQLITE_OK ) return rc;
5682 }
danielk1977d761c0c2004-11-05 16:37:02 +00005683 return sqlite3pager_sync(pBt->pPager, zMaster, nTrunc);
danielk1977687566d2004-11-02 12:56:41 +00005684#endif
danielk1977d761c0c2004-11-05 16:37:02 +00005685 return sqlite3pager_sync(pBt->pPager, zMaster, 0);
danielk197713adf8a2004-06-03 16:08:41 +00005686 }
5687 return SQLITE_OK;
5688}