blob: 8b47a3783351e64ec7c1e55198923eddda02d1bd [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh0fd61352014-02-07 02:29:45 +000012** The code in this file implements the function that runs the
13** bytecode of a prepared statement.
drh75897232000-05-29 14:26:00 +000014**
drhac82fcf2002-09-08 17:23:41 +000015** Various scripts scan this source file in order to generate HTML
16** documentation, headers files, or other derived files. The formatting
17** of the code in this file is, therefore, important. See other comments
18** in this file for details. If in doubt, do not deviate from existing
19** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000022#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000023
24/*
drh2b4ded92010-09-27 21:09:31 +000025** Invoke this macro on memory cells just prior to changing the
26** value of the cell. This macro verifies that shallow copies are
drh0fd61352014-02-07 02:29:45 +000027** not misused. A shallow copy of a string or blob just copies a
28** pointer to the string or blob, not the content. If the original
29** is changed while the copy is still in use, the string or blob might
30** be changed out from under the copy. This macro verifies that nothing
drhb6e8fd12014-03-06 01:56:33 +000031** like that ever happens.
drh2b4ded92010-09-27 21:09:31 +000032*/
33#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000034# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000035#else
36# define memAboutToChange(P,M)
37#endif
38
39/*
drh487ab3c2001-11-08 00:45:21 +000040** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000041** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000042** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000043** working correctly. This variable has no function other than to
44** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000045*/
drh0f7eb612006-08-08 13:51:43 +000046#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000047int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000048#endif
drh487ab3c2001-11-08 00:45:21 +000049
drhf6038712004-02-08 18:07:34 +000050/*
51** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000052** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000054**
55** This facility is used for testing purposes only. It does not function
56** in an ordinary build.
57*/
drh0f7eb612006-08-08 13:51:43 +000058#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000059int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000060#endif
drh1350b032002-02-27 19:00:20 +000061
danielk19777e18c252004-05-25 11:47:24 +000062/*
drh6bf89572004-11-03 16:27:01 +000063** The next global variable is incremented each type the OP_Sort opcode
64** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000065** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000066** has no function other than to help verify the correct operation of the
67** library.
68*/
drh0f7eb612006-08-08 13:51:43 +000069#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000070int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000071#endif
drh6bf89572004-11-03 16:27:01 +000072
73/*
drhae7e1512007-05-02 16:51:59 +000074** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000075** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000076** use this information to make sure that the zero-blob functionality
77** is working correctly. This variable has no function other than to
78** help verify the correct operation of the library.
79*/
80#ifdef SQLITE_TEST
81int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000082static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86}
drhae7e1512007-05-02 16:51:59 +000087#endif
88
89/*
drh9b1c62d2011-03-30 21:04:43 +000090** This macro evaluates to true if either the update hook or the preupdate
91** hook are enabled for database connect DB.
92*/
93#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
drh74c33022016-03-30 12:56:55 +000094# define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000095#else
drh74c33022016-03-30 12:56:55 +000096# define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000097#endif
98
99/*
drh0fd61352014-02-07 02:29:45 +0000100** The next global variable is incremented each time the OP_Found opcode
dan0ff297e2009-09-25 17:03:14 +0000101** is executed. This is used to test whether or not the foreign key
102** operation implemented using OP_FkIsZero is working. This variable
103** has no function other than to help verify the correct operation of the
104** library.
105*/
106#ifdef SQLITE_TEST
107int sqlite3_found_count = 0;
108#endif
109
110/*
drhb7654112008-01-12 12:48:07 +0000111** Test a register to see if it exceeds the current maximum blob size.
112** If it does, record the new maximum blob size.
113*/
drh678ccce2008-03-31 18:19:54 +0000114#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000115# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000116#else
117# define UPDATE_MAX_BLOBSIZE(P)
118#endif
119
120/*
drh5655c542014-02-19 19:14:34 +0000121** Invoke the VDBE coverage callback, if that callback is defined. This
122** feature is used for test suite validation only and does not appear an
123** production builds.
124**
125** M is an integer, 2 or 3, that indices how many different ways the
126** branch can go. It is usually 2. "I" is the direction the branch
127** goes. 0 means falls through. 1 means branch is taken. 2 means the
128** second alternative branch is taken.
drh4336b0e2014-08-05 00:53:51 +0000129**
130** iSrcLine is the source code line (from the __LINE__ macro) that
131** generated the VDBE instruction. This instrumentation assumes that all
132** source code is in a single file (the amalgamation). Special values 1
133** and 2 for the iSrcLine parameter mean that this particular branch is
134** always taken or never taken, respectively.
drh688852a2014-02-17 22:40:43 +0000135*/
136#if !defined(SQLITE_VDBE_COVERAGE)
137# define VdbeBranchTaken(I,M)
138#else
drh5655c542014-02-19 19:14:34 +0000139# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
140 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
141 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
142 M = iSrcLine;
143 /* Assert the truth of VdbeCoverageAlwaysTaken() and
144 ** VdbeCoverageNeverTaken() */
145 assert( (M & I)==I );
146 }else{
147 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
148 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
149 iSrcLine,I,M);
150 }
151 }
drh688852a2014-02-17 22:40:43 +0000152#endif
153
154/*
drh9cbf3422008-01-17 16:22:13 +0000155** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000156** already. Return non-zero if a malloc() fails.
157*/
drhb21c8cd2007-08-21 19:33:56 +0000158#define Stringify(P, enc) \
drhbd9507c2014-08-23 17:21:37 +0000159 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
drhf4479502004-05-27 03:12:53 +0000160 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000161
162/*
danielk1977bd7e4602004-05-24 07:34:48 +0000163** An ephemeral string value (signified by the MEM_Ephem flag) contains
164** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000165** is responsible for deallocating that string. Because the register
166** does not control the string, it might be deleted without the register
167** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000168**
169** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000170** string that the register itself controls. In other words, it
drhc91b2fd2014-03-01 18:13:23 +0000171** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
danielk1977bd7e4602004-05-24 07:34:48 +0000172*/
drhb21c8cd2007-08-21 19:33:56 +0000173#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000174 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000175 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000176
dan689ab892011-08-12 15:02:00 +0000177/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
drhc960dcb2015-11-20 19:22:01 +0000178#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
danielk19778a6b5412004-05-24 07:04:25 +0000179
180/*
drhdfe88ec2008-11-03 20:55:06 +0000181** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000182** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000183*/
drhdfe88ec2008-11-03 20:55:06 +0000184static VdbeCursor *allocateCursor(
185 Vdbe *p, /* The virtual machine */
186 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000187 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000188 int iDb, /* Database the cursor belongs to, or -1 */
drhc960dcb2015-11-20 19:22:01 +0000189 u8 eCurType /* Type of the new cursor */
danielk1977cd3e8f72008-03-25 09:47:35 +0000190){
191 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000192 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000193 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000194 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000195 **
196 ** * Sometimes cursor numbers are used for a couple of different
197 ** purposes in a vdbe program. The different uses might require
198 ** different sized allocations. Memory cells provide growable
199 ** allocations.
200 **
201 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
202 ** be freed lazily via the sqlite3_release_memory() API. This
203 ** minimizes the number of malloc calls made by the system.
204 **
drh3cdce922016-03-21 00:30:40 +0000205 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
drh9f6168b2016-03-19 23:32:58 +0000206 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
207 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
danielk1977cd3e8f72008-03-25 09:47:35 +0000208 */
drh9f6168b2016-03-19 23:32:58 +0000209 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
danielk1977cd3e8f72008-03-25 09:47:35 +0000210
danielk19775f096132008-03-28 15:44:09 +0000211 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000212 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000213 nByte =
drh5cc10232013-11-21 01:04:02 +0000214 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
drhc960dcb2015-11-20 19:22:01 +0000215 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
danielk1977cd3e8f72008-03-25 09:47:35 +0000216
drh9f6168b2016-03-19 23:32:58 +0000217 assert( iCur>=0 && iCur<p->nCursor );
drha3fa1402016-04-29 02:55:05 +0000218 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
danielk1977be718892006-06-23 08:05:19 +0000219 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000220 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000221 }
drh322f2852014-09-19 00:43:39 +0000222 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drhdfe88ec2008-11-03 20:55:06 +0000223 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000224 memset(pCx, 0, sizeof(VdbeCursor));
drhc960dcb2015-11-20 19:22:01 +0000225 pCx->eCurType = eCurType;
danielk197794eb6a12005-12-15 15:22:08 +0000226 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000227 pCx->nField = nField;
drhb53a5a92014-10-12 22:37:22 +0000228 pCx->aOffset = &pCx->aType[nField];
drhc960dcb2015-11-20 19:22:01 +0000229 if( eCurType==CURTYPE_BTREE ){
230 pCx->uc.pCursor = (BtCursor*)
drh5cc10232013-11-21 01:04:02 +0000231 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
drhc960dcb2015-11-20 19:22:01 +0000232 sqlite3BtreeCursorZero(pCx->uc.pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000233 }
danielk197794eb6a12005-12-15 15:22:08 +0000234 }
drh4774b132004-06-12 20:12:51 +0000235 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000236}
237
danielk19773d1bfea2004-05-14 11:00:53 +0000238/*
drh29d72102006-02-09 22:13:41 +0000239** Try to convert a value into a numeric representation if we can
240** do so without loss of information. In other words, if the string
241** looks like a number, convert it into a number. If it does not
242** look like a number, leave it alone.
drhbd9507c2014-08-23 17:21:37 +0000243**
244** If the bTryForInt flag is true, then extra effort is made to give
245** an integer representation. Strings that look like floating point
246** values but which have no fractional component (example: '48.00')
247** will have a MEM_Int representation when bTryForInt is true.
248**
249** If bTryForInt is false, then if the input string contains a decimal
250** point or exponential notation, the result is only MEM_Real, even
251** if there is an exact integer representation of the quantity.
drh29d72102006-02-09 22:13:41 +0000252*/
drhbd9507c2014-08-23 17:21:37 +0000253static void applyNumericAffinity(Mem *pRec, int bTryForInt){
drh975b4c62014-07-26 16:47:23 +0000254 double rValue;
255 i64 iValue;
256 u8 enc = pRec->enc;
drh11a6eee2014-09-19 22:01:54 +0000257 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
drh975b4c62014-07-26 16:47:23 +0000258 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
259 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
260 pRec->u.i = iValue;
261 pRec->flags |= MEM_Int;
262 }else{
drh74eaba42014-09-18 17:52:15 +0000263 pRec->u.r = rValue;
drh975b4c62014-07-26 16:47:23 +0000264 pRec->flags |= MEM_Real;
drhbd9507c2014-08-23 17:21:37 +0000265 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000266 }
267}
268
269/*
drh8a512562005-11-14 22:29:05 +0000270** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000271**
drh8a512562005-11-14 22:29:05 +0000272** SQLITE_AFF_INTEGER:
273** SQLITE_AFF_REAL:
274** SQLITE_AFF_NUMERIC:
275** Try to convert pRec to an integer representation or a
276** floating-point representation if an integer representation
277** is not possible. Note that the integer representation is
278** always preferred, even if the affinity is REAL, because
279** an integer representation is more space efficient on disk.
280**
281** SQLITE_AFF_TEXT:
282** Convert pRec to a text representation.
283**
drh05883a32015-06-02 15:32:08 +0000284** SQLITE_AFF_BLOB:
drh8a512562005-11-14 22:29:05 +0000285** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000286*/
drh17435752007-08-16 04:30:38 +0000287static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000288 Mem *pRec, /* The value to apply affinity to */
289 char affinity, /* The affinity to be applied */
290 u8 enc /* Use this text encoding */
291){
drh7ea31cc2014-09-18 14:36:00 +0000292 if( affinity>=SQLITE_AFF_NUMERIC ){
drh8a512562005-11-14 22:29:05 +0000293 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
294 || affinity==SQLITE_AFF_NUMERIC );
drha3fa1402016-04-29 02:55:05 +0000295 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
drhbd9507c2014-08-23 17:21:37 +0000296 if( (pRec->flags & MEM_Real)==0 ){
drh11a6eee2014-09-19 22:01:54 +0000297 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
drhbd9507c2014-08-23 17:21:37 +0000298 }else{
299 sqlite3VdbeIntegerAffinity(pRec);
300 }
drh17c40292004-07-21 02:53:29 +0000301 }
drh7ea31cc2014-09-18 14:36:00 +0000302 }else if( affinity==SQLITE_AFF_TEXT ){
danielk19773d1bfea2004-05-14 11:00:53 +0000303 /* Only attempt the conversion to TEXT if there is an integer or real
drhf4479502004-05-27 03:12:53 +0000304 ** representation (blob and NULL do not get converted) but no string
drha3fa1402016-04-29 02:55:05 +0000305 ** representation. It would be harmless to repeat the conversion if
306 ** there is already a string rep, but it is pointless to waste those
307 ** CPU cycles. */
308 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
309 if( (pRec->flags&(MEM_Real|MEM_Int)) ){
310 sqlite3VdbeMemStringify(pRec, enc, 1);
311 }
danielk19773d1bfea2004-05-14 11:00:53 +0000312 }
dandde548c2015-05-19 19:44:25 +0000313 pRec->flags &= ~(MEM_Real|MEM_Int);
danielk19773d1bfea2004-05-14 11:00:53 +0000314 }
315}
316
danielk1977aee18ef2005-03-09 12:26:50 +0000317/*
drh29d72102006-02-09 22:13:41 +0000318** Try to convert the type of a function argument or a result column
319** into a numeric representation. Use either INTEGER or REAL whichever
320** is appropriate. But only do the conversion if it is possible without
321** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000322*/
323int sqlite3_value_numeric_type(sqlite3_value *pVal){
drh1b27b8c2014-02-10 03:21:57 +0000324 int eType = sqlite3_value_type(pVal);
325 if( eType==SQLITE_TEXT ){
326 Mem *pMem = (Mem*)pVal;
drhbd9507c2014-08-23 17:21:37 +0000327 applyNumericAffinity(pMem, 0);
drh1b27b8c2014-02-10 03:21:57 +0000328 eType = sqlite3_value_type(pVal);
drhe5a8a1d2010-11-18 12:31:24 +0000329 }
drh1b27b8c2014-02-10 03:21:57 +0000330 return eType;
drh29d72102006-02-09 22:13:41 +0000331}
332
333/*
danielk1977aee18ef2005-03-09 12:26:50 +0000334** Exported version of applyAffinity(). This one works on sqlite3_value*,
335** not the internal Mem* type.
336*/
danielk19771e536952007-08-16 10:09:01 +0000337void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000338 sqlite3_value *pVal,
339 u8 affinity,
340 u8 enc
341){
drhb21c8cd2007-08-21 19:33:56 +0000342 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000343}
344
drh3d1d90a2014-03-24 15:00:15 +0000345/*
drhf1a89ed2014-08-23 17:41:15 +0000346** pMem currently only holds a string type (or maybe a BLOB that we can
347** interpret as a string if we want to). Compute its corresponding
drh74eaba42014-09-18 17:52:15 +0000348** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
drhf1a89ed2014-08-23 17:41:15 +0000349** accordingly.
350*/
351static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
352 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
353 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
drh74eaba42014-09-18 17:52:15 +0000354 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000355 return 0;
356 }
357 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
358 return MEM_Int;
359 }
360 return MEM_Real;
361}
362
363/*
drh3d1d90a2014-03-24 15:00:15 +0000364** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
365** none.
366**
367** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
drh74eaba42014-09-18 17:52:15 +0000368** But it does set pMem->u.r and pMem->u.i appropriately.
drh3d1d90a2014-03-24 15:00:15 +0000369*/
370static u16 numericType(Mem *pMem){
371 if( pMem->flags & (MEM_Int|MEM_Real) ){
372 return pMem->flags & (MEM_Int|MEM_Real);
373 }
374 if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhf1a89ed2014-08-23 17:41:15 +0000375 return computeNumericType(pMem);
drh3d1d90a2014-03-24 15:00:15 +0000376 }
377 return 0;
378}
379
danielk1977b5402fb2005-01-12 07:15:04 +0000380#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000381/*
danielk1977ca6b2912004-05-21 10:49:47 +0000382** Write a nice string representation of the contents of cell pMem
383** into buffer zBuf, length nBuf.
384*/
drh74161702006-02-24 02:53:49 +0000385void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000386 char *zCsr = zBuf;
387 int f = pMem->flags;
388
drh57196282004-10-06 15:41:16 +0000389 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000390
danielk1977ca6b2912004-05-21 10:49:47 +0000391 if( f&MEM_Blob ){
392 int i;
393 char c;
394 if( f & MEM_Dyn ){
395 c = 'z';
396 assert( (f & (MEM_Static|MEM_Ephem))==0 );
397 }else if( f & MEM_Static ){
398 c = 't';
399 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
400 }else if( f & MEM_Ephem ){
401 c = 'e';
402 assert( (f & (MEM_Static|MEM_Dyn))==0 );
403 }else{
404 c = 's';
405 }
406
drh5bb3eb92007-05-04 13:15:55 +0000407 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000408 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000409 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000410 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000411 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000412 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000413 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000414 }
415 for(i=0; i<16 && i<pMem->n; i++){
416 char z = pMem->z[i];
417 if( z<32 || z>126 ) *zCsr++ = '.';
418 else *zCsr++ = z;
419 }
420
drhe718efe2007-05-10 21:14:03 +0000421 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000422 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000423 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000424 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000425 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000426 }
danielk1977b1bc9532004-05-22 03:05:33 +0000427 *zCsr = '\0';
428 }else if( f & MEM_Str ){
429 int j, k;
430 zBuf[0] = ' ';
431 if( f & MEM_Dyn ){
432 zBuf[1] = 'z';
433 assert( (f & (MEM_Static|MEM_Ephem))==0 );
434 }else if( f & MEM_Static ){
435 zBuf[1] = 't';
436 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
437 }else if( f & MEM_Ephem ){
438 zBuf[1] = 'e';
439 assert( (f & (MEM_Static|MEM_Dyn))==0 );
440 }else{
441 zBuf[1] = 's';
442 }
443 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000444 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000445 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000446 zBuf[k++] = '[';
447 for(j=0; j<15 && j<pMem->n; j++){
448 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000449 if( c>=0x20 && c<0x7f ){
450 zBuf[k++] = c;
451 }else{
452 zBuf[k++] = '.';
453 }
454 }
455 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000456 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000457 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000458 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000459 }
danielk1977ca6b2912004-05-21 10:49:47 +0000460}
461#endif
462
drh5b6afba2008-01-05 16:29:28 +0000463#ifdef SQLITE_DEBUG
464/*
465** Print the value of a register for tracing purposes:
466*/
drh84e55a82013-11-13 17:58:23 +0000467static void memTracePrint(Mem *p){
drha5750cf2014-02-07 13:20:31 +0000468 if( p->flags & MEM_Undefined ){
drh84e55a82013-11-13 17:58:23 +0000469 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000470 }else if( p->flags & MEM_Null ){
drh84e55a82013-11-13 17:58:23 +0000471 printf(" NULL");
drh5b6afba2008-01-05 16:29:28 +0000472 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000473 printf(" si:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000474 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000475 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000476#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000477 }else if( p->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000478 printf(" r:%g", p->u.r);
drh0b3bf922009-06-15 20:45:34 +0000479#endif
drh733bf1b2009-04-22 00:47:00 +0000480 }else if( p->flags & MEM_RowSet ){
drh84e55a82013-11-13 17:58:23 +0000481 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000482 }else{
483 char zBuf[200];
484 sqlite3VdbeMemPrettyPrint(p, zBuf);
drh84e55a82013-11-13 17:58:23 +0000485 printf(" %s", zBuf);
drh5b6afba2008-01-05 16:29:28 +0000486 }
dan5b6c8e42016-01-30 15:46:03 +0000487 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
drh5b6afba2008-01-05 16:29:28 +0000488}
drh84e55a82013-11-13 17:58:23 +0000489static void registerTrace(int iReg, Mem *p){
490 printf("REG[%d] = ", iReg);
491 memTracePrint(p);
492 printf("\n");
drh5b6afba2008-01-05 16:29:28 +0000493}
494#endif
495
496#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000497# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000498#else
499# define REGISTER_TRACE(R,M)
500#endif
501
danielk197784ac9d02004-05-18 09:58:06 +0000502
drh7b396862003-01-01 23:06:20 +0000503#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000504
505/*
506** hwtime.h contains inline assembler code for implementing
507** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000508*/
shane9bcbdad2008-05-29 20:22:37 +0000509#include "hwtime.h"
510
drh7b396862003-01-01 23:06:20 +0000511#endif
512
danielk1977fd7f0452008-12-17 17:30:26 +0000513#ifndef NDEBUG
514/*
515** This function is only called from within an assert() expression. It
516** checks that the sqlite3.nTransaction variable is correctly set to
517** the number of non-transaction savepoints currently in the
518** linked list starting at sqlite3.pSavepoint.
519**
520** Usage:
521**
522** assert( checkSavepointCount(db) );
523*/
524static int checkSavepointCount(sqlite3 *db){
525 int n = 0;
526 Savepoint *p;
527 for(p=db->pSavepoint; p; p=p->pNext) n++;
528 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
529 return 1;
530}
531#endif
532
drh27a348c2015-04-13 19:14:06 +0000533/*
534** Return the register of pOp->p2 after first preparing it to be
535** overwritten with an integer value.
drh9eef8c62015-10-15 17:31:41 +0000536*/
537static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
538 sqlite3VdbeMemSetNull(pOut);
539 pOut->flags = MEM_Int;
540 return pOut;
541}
drh27a348c2015-04-13 19:14:06 +0000542static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
543 Mem *pOut;
544 assert( pOp->p2>0 );
drh9f6168b2016-03-19 23:32:58 +0000545 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
drh27a348c2015-04-13 19:14:06 +0000546 pOut = &p->aMem[pOp->p2];
547 memAboutToChange(p, pOut);
drha3fa1402016-04-29 02:55:05 +0000548 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
drh9eef8c62015-10-15 17:31:41 +0000549 return out2PrereleaseWithClear(pOut);
550 }else{
551 pOut->flags = MEM_Int;
552 return pOut;
553 }
drh27a348c2015-04-13 19:14:06 +0000554}
555
drhb9755982010-07-24 16:34:37 +0000556
557/*
drh0fd61352014-02-07 02:29:45 +0000558** Execute as much of a VDBE program as we can.
559** This is the core of sqlite3_step().
drhb86ccfb2003-01-28 23:13:10 +0000560*/
danielk19774adee202004-05-08 08:23:19 +0000561int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000562 Vdbe *p /* The VDBE */
563){
drhbbe879d2009-11-14 18:04:35 +0000564 Op *aOp = p->aOp; /* Copy of p->aOp */
drhf56fa462015-04-13 21:39:54 +0000565 Op *pOp = aOp; /* Current operation */
drh6dc41482015-04-16 17:31:02 +0000566#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
567 Op *pOrigOp; /* Value of pOp at the top of the loop */
568#endif
drhb89aeb62016-01-27 15:49:32 +0000569#ifdef SQLITE_DEBUG
drhdef19e32016-01-27 16:26:25 +0000570 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
drhb89aeb62016-01-27 15:49:32 +0000571#endif
drhb86ccfb2003-01-28 23:13:10 +0000572 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000573 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000574 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000575 u8 encoding = ENC(db); /* The database encoding */
drh0f825a72016-08-13 14:17:02 +0000576 int iCompare = 0; /* Result of last comparison */
drhbf159fa2013-06-25 22:01:22 +0000577 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000578#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh323df792013-08-05 19:11:29 +0000579 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000580#endif
drha6c2ed92009-11-14 23:22:23 +0000581 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000582 Mem *pIn1 = 0; /* 1st input operand */
583 Mem *pIn2 = 0; /* 2nd input operand */
584 Mem *pIn3 = 0; /* 3rd input operand */
585 Mem *pOut = 0; /* Output operand */
shanebe217792009-03-05 04:20:31 +0000586 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000587 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000588#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000589 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000590#endif
drh856c1032009-06-02 15:21:42 +0000591 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000592
drhca48c902008-01-18 14:08:24 +0000593 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000594 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000595 if( p->rc==SQLITE_NOMEM ){
596 /* This happens if a malloc() inside a call to sqlite3_column_text() or
597 ** sqlite3_column_text16() failed. */
598 goto no_mem;
599 }
drhcbd8db32015-08-20 17:18:32 +0000600 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000601 assert( p->bIsReader || p->readOnly!=0 );
drh3a840692003-01-29 22:58:26 +0000602 p->rc = SQLITE_OK;
drh95a7b3e2013-09-16 12:57:19 +0000603 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000604 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000605 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000606 db->busyHandler.nBusy = 0;
drh0fd61352014-02-07 02:29:45 +0000607 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh602c2372007-03-01 00:29:13 +0000608 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000609#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
610 if( db->xProgress ){
drh6cbbdb02015-06-24 14:36:27 +0000611 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000612 assert( 0 < db->nProgressOps );
drh6cbbdb02015-06-24 14:36:27 +0000613 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
drh0d1961e2013-07-25 16:27:51 +0000614 }
615#endif
drh3c23a882007-01-09 14:01:13 +0000616#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000617 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000618 if( p->pc==0
619 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
620 ){
drh3c23a882007-01-09 14:01:13 +0000621 int i;
drh84e55a82013-11-13 17:58:23 +0000622 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000623 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000624 if( p->db->flags & SQLITE_VdbeListing ){
625 printf("VDBE Program Listing:\n");
626 for(i=0; i<p->nOp; i++){
627 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
628 }
drh3c23a882007-01-09 14:01:13 +0000629 }
drh84e55a82013-11-13 17:58:23 +0000630 if( p->db->flags & SQLITE_VdbeEQP ){
631 for(i=0; i<p->nOp; i++){
632 if( aOp[i].opcode==OP_Explain ){
633 if( once ) printf("VDBE Query Plan:\n");
634 printf("%s\n", aOp[i].p4.z);
635 once = 0;
636 }
637 }
638 }
639 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000640 }
danielk19772d1d86f2008-06-20 14:59:51 +0000641 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000642#endif
drh9467abf2016-02-17 18:44:11 +0000643 for(pOp=&aOp[p->pc]; 1; pOp++){
644 /* Errors are detected by individual opcodes, with an immediate
645 ** jumps to abort_due_to_error. */
646 assert( rc==SQLITE_OK );
647
drhf56fa462015-04-13 21:39:54 +0000648 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
drh7b396862003-01-01 23:06:20 +0000649#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000650 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000651#endif
drhbf159fa2013-06-25 22:01:22 +0000652 nVmStep++;
dan6f9702e2014-11-01 20:38:06 +0000653#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drhf56fa462015-04-13 21:39:54 +0000654 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
dan6f9702e2014-11-01 20:38:06 +0000655#endif
drh6e142f52000-06-08 13:36:40 +0000656
danielk19778b60e0f2005-01-12 09:10:39 +0000657 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000658 */
danielk19778b60e0f2005-01-12 09:10:39 +0000659#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000660 if( db->flags & SQLITE_VdbeTrace ){
drhf56fa462015-04-13 21:39:54 +0000661 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
drh75897232000-05-29 14:26:00 +0000662 }
drh3f7d4e42004-07-24 14:35:58 +0000663#endif
664
drh6e142f52000-06-08 13:36:40 +0000665
drhf6038712004-02-08 18:07:34 +0000666 /* Check to see if we need to simulate an interrupt. This only happens
667 ** if we have a special test build.
668 */
669#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000670 if( sqlite3_interrupt_count>0 ){
671 sqlite3_interrupt_count--;
672 if( sqlite3_interrupt_count==0 ){
673 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000674 }
675 }
676#endif
677
drh3c657212009-11-17 23:59:58 +0000678 /* Sanity checking on other operands */
679#ifdef SQLITE_DEBUG
drh7cc84c22016-04-11 13:36:42 +0000680 {
681 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
682 if( (opProperty & OPFLG_IN1)!=0 ){
683 assert( pOp->p1>0 );
684 assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
685 assert( memIsValid(&aMem[pOp->p1]) );
686 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
687 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
688 }
689 if( (opProperty & OPFLG_IN2)!=0 ){
690 assert( pOp->p2>0 );
691 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
692 assert( memIsValid(&aMem[pOp->p2]) );
693 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
694 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
695 }
696 if( (opProperty & OPFLG_IN3)!=0 ){
697 assert( pOp->p3>0 );
698 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
699 assert( memIsValid(&aMem[pOp->p3]) );
700 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
701 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
702 }
703 if( (opProperty & OPFLG_OUT2)!=0 ){
704 assert( pOp->p2>0 );
705 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
706 memAboutToChange(p, &aMem[pOp->p2]);
707 }
708 if( (opProperty & OPFLG_OUT3)!=0 ){
709 assert( pOp->p3>0 );
710 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
711 memAboutToChange(p, &aMem[pOp->p3]);
712 }
drh3c657212009-11-17 23:59:58 +0000713 }
714#endif
drh6dc41482015-04-16 17:31:02 +0000715#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
716 pOrigOp = pOp;
717#endif
drh93952eb2009-11-13 19:43:43 +0000718
drh75897232000-05-29 14:26:00 +0000719 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000720
drh5e00f6c2001-09-13 13:46:56 +0000721/*****************************************************************************
722** What follows is a massive switch statement where each case implements a
723** separate instruction in the virtual machine. If we follow the usual
724** indentation conventions, each case should be indented by 6 spaces. But
725** that is a lot of wasted space on the left margin. So the code within
726** the switch statement will break with convention and be flush-left. Another
727** big comment (similar to this one) will mark the point in the code where
728** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000729**
730** The formatting of each case is important. The makefile for SQLite
731** generates two C files "opcodes.h" and "opcodes.c" by scanning this
732** file looking for lines that begin with "case OP_". The opcodes.h files
733** will be filled with #defines that give unique integer values to each
734** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000735** each string is the symbolic name for the corresponding opcode. If the
736** case statement is followed by a comment of the form "/# same as ... #/"
737** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000738**
drh9cbf3422008-01-17 16:22:13 +0000739** Other keywords in the comment that follows each case are used to
740** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
drh27a348c2015-04-13 19:14:06 +0000741** Keywords include: in1, in2, in3, out2, out3. See
drh9cbf3422008-01-17 16:22:13 +0000742** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000743**
drhac82fcf2002-09-08 17:23:41 +0000744** Documentation about VDBE opcodes is generated by scanning this file
745** for lines of that contain "Opcode:". That line and all subsequent
746** comment lines are used in the generation of the opcode.html documentation
747** file.
748**
749** SUMMARY:
750**
751** Formatting is important to scripts that scan this file.
752** Do not deviate from the formatting style currently in use.
753**
drh5e00f6c2001-09-13 13:46:56 +0000754*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000755
drh9cbf3422008-01-17 16:22:13 +0000756/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000757**
758** An unconditional jump to address P2.
759** The next instruction executed will be
760** the one at index P2 from the beginning of
761** the program.
drhfe705102014-03-06 13:38:37 +0000762**
763** The P1 parameter is not actually used by this opcode. However, it
764** is sometimes set to 1 instead of 0 as a hint to the command-line shell
765** that this Goto is the bottom of a loop and that the lines from P2 down
766** to the current line should be indented for EXPLAIN output.
drh5e00f6c2001-09-13 13:46:56 +0000767*/
drh9cbf3422008-01-17 16:22:13 +0000768case OP_Goto: { /* jump */
drhf56fa462015-04-13 21:39:54 +0000769jump_to_p2_and_check_for_interrupt:
770 pOp = &aOp[pOp->p2 - 1];
drh49afe3a2013-07-10 03:05:14 +0000771
772 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
773 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
774 ** completion. Check to see if sqlite3_interrupt() has been called
775 ** or if the progress callback needs to be invoked.
776 **
777 ** This code uses unstructured "goto" statements and does not look clean.
778 ** But that is not due to sloppy coding habits. The code is written this
779 ** way for performance, to avoid having to run the interrupt and progress
780 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
781 ** faster according to "valgrind --tool=cachegrind" */
782check_for_interrupt:
drh0fd61352014-02-07 02:29:45 +0000783 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh49afe3a2013-07-10 03:05:14 +0000784#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
785 /* Call the progress callback if it is configured and the required number
786 ** of VDBE ops have been executed (either since this invocation of
787 ** sqlite3VdbeExec() or since last time the progress callback was called).
788 ** If the progress callback returns non-zero, exit the virtual machine with
789 ** a return code SQLITE_ABORT.
790 */
drh0d1961e2013-07-25 16:27:51 +0000791 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
drh400fcba2013-11-14 00:09:48 +0000792 assert( db->nProgressOps!=0 );
793 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
794 if( db->xProgress(db->pProgressArg) ){
drh49afe3a2013-07-10 03:05:14 +0000795 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +0000796 goto abort_due_to_error;
drh49afe3a2013-07-10 03:05:14 +0000797 }
drh49afe3a2013-07-10 03:05:14 +0000798 }
799#endif
800
drh5e00f6c2001-09-13 13:46:56 +0000801 break;
802}
drh75897232000-05-29 14:26:00 +0000803
drh2eb95372008-06-06 15:04:36 +0000804/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000805**
drh2eb95372008-06-06 15:04:36 +0000806** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000807** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000808*/
drhb8475df2011-12-09 16:21:19 +0000809case OP_Gosub: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000810 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000811 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000812 assert( VdbeMemDynamic(pIn1)==0 );
drh2b4ded92010-09-27 21:09:31 +0000813 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000814 pIn1->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000815 pIn1->u.i = (int)(pOp-aOp);
drh2eb95372008-06-06 15:04:36 +0000816 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000817
818 /* Most jump operations do a goto to this spot in order to update
819 ** the pOp pointer. */
820jump_to_p2:
821 pOp = &aOp[pOp->p2 - 1];
drh8c74a8c2002-08-25 19:20:40 +0000822 break;
823}
824
drh2eb95372008-06-06 15:04:36 +0000825/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000826**
drh81cf13e2014-02-07 18:27:53 +0000827** Jump to the next instruction after the address in register P1. After
828** the jump, register P1 becomes undefined.
drh8c74a8c2002-08-25 19:20:40 +0000829*/
drh2eb95372008-06-06 15:04:36 +0000830case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000831 pIn1 = &aMem[pOp->p1];
drh81cf13e2014-02-07 18:27:53 +0000832 assert( pIn1->flags==MEM_Int );
drhf56fa462015-04-13 21:39:54 +0000833 pOp = &aOp[pIn1->u.i];
drh81cf13e2014-02-07 18:27:53 +0000834 pIn1->flags = MEM_Undefined;
drh8c74a8c2002-08-25 19:20:40 +0000835 break;
836}
837
drhed71a832014-02-07 19:18:10 +0000838/* Opcode: InitCoroutine P1 P2 P3 * *
drh81cf13e2014-02-07 18:27:53 +0000839**
drh5dad9a32014-07-25 18:37:42 +0000840** Set up register P1 so that it will Yield to the coroutine
drhed71a832014-02-07 19:18:10 +0000841** located at address P3.
842**
drh5dad9a32014-07-25 18:37:42 +0000843** If P2!=0 then the coroutine implementation immediately follows
844** this opcode. So jump over the coroutine implementation to
drhed71a832014-02-07 19:18:10 +0000845** address P2.
drh5dad9a32014-07-25 18:37:42 +0000846**
847** See also: EndCoroutine
drh81cf13e2014-02-07 18:27:53 +0000848*/
849case OP_InitCoroutine: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000850 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drhed71a832014-02-07 19:18:10 +0000851 assert( pOp->p2>=0 && pOp->p2<p->nOp );
852 assert( pOp->p3>=0 && pOp->p3<p->nOp );
drh81cf13e2014-02-07 18:27:53 +0000853 pOut = &aMem[pOp->p1];
drhed71a832014-02-07 19:18:10 +0000854 assert( !VdbeMemDynamic(pOut) );
855 pOut->u.i = pOp->p3 - 1;
drh81cf13e2014-02-07 18:27:53 +0000856 pOut->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000857 if( pOp->p2 ) goto jump_to_p2;
drh81cf13e2014-02-07 18:27:53 +0000858 break;
859}
860
861/* Opcode: EndCoroutine P1 * * * *
862**
drhbc5cf382014-08-06 01:08:07 +0000863** The instruction at the address in register P1 is a Yield.
drh5dad9a32014-07-25 18:37:42 +0000864** Jump to the P2 parameter of that Yield.
drh81cf13e2014-02-07 18:27:53 +0000865** After the jump, register P1 becomes undefined.
drh5dad9a32014-07-25 18:37:42 +0000866**
867** See also: InitCoroutine
drh81cf13e2014-02-07 18:27:53 +0000868*/
869case OP_EndCoroutine: { /* in1 */
870 VdbeOp *pCaller;
871 pIn1 = &aMem[pOp->p1];
872 assert( pIn1->flags==MEM_Int );
873 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
874 pCaller = &aOp[pIn1->u.i];
875 assert( pCaller->opcode==OP_Yield );
876 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
drhf56fa462015-04-13 21:39:54 +0000877 pOp = &aOp[pCaller->p2 - 1];
drh81cf13e2014-02-07 18:27:53 +0000878 pIn1->flags = MEM_Undefined;
879 break;
880}
881
882/* Opcode: Yield P1 P2 * * *
drhe00ee6e2008-06-20 15:24:01 +0000883**
drh5dad9a32014-07-25 18:37:42 +0000884** Swap the program counter with the value in register P1. This
885** has the effect of yielding to a coroutine.
drh81cf13e2014-02-07 18:27:53 +0000886**
drh5dad9a32014-07-25 18:37:42 +0000887** If the coroutine that is launched by this instruction ends with
888** Yield or Return then continue to the next instruction. But if
889** the coroutine launched by this instruction ends with
890** EndCoroutine, then jump to P2 rather than continuing with the
891** next instruction.
892**
893** See also: InitCoroutine
drhe00ee6e2008-06-20 15:24:01 +0000894*/
drh81cf13e2014-02-07 18:27:53 +0000895case OP_Yield: { /* in1, jump */
drhe00ee6e2008-06-20 15:24:01 +0000896 int pcDest;
drh3c657212009-11-17 23:59:58 +0000897 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000898 assert( VdbeMemDynamic(pIn1)==0 );
drhe00ee6e2008-06-20 15:24:01 +0000899 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000900 pcDest = (int)pIn1->u.i;
drhf56fa462015-04-13 21:39:54 +0000901 pIn1->u.i = (int)(pOp - aOp);
drhe00ee6e2008-06-20 15:24:01 +0000902 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000903 pOp = &aOp[pcDest];
drhe00ee6e2008-06-20 15:24:01 +0000904 break;
905}
906
drhf9c8ce32013-11-05 13:33:55 +0000907/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +0000908** Synopsis: if r[P3]=null halt
drh5053a792009-02-20 03:02:23 +0000909**
drhef8662b2011-06-20 21:47:58 +0000910** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000911** parameter P1, P2, and P4 as if this were a Halt instruction. If the
912** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +0000913** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +0000914*/
915case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000916 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000917 if( (pIn3->flags & MEM_Null)==0 ) break;
918 /* Fall through into OP_Halt */
919}
drhe00ee6e2008-06-20 15:24:01 +0000920
drhf9c8ce32013-11-05 13:33:55 +0000921/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +0000922**
drh3d4501e2008-12-04 20:40:10 +0000923** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000924** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000925**
drh92f02c32004-09-02 14:57:08 +0000926** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
927** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
928** For errors, it can be some other value. If P1!=0 then P2 will determine
929** whether or not to rollback the current transaction. Do not rollback
930** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
931** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000932** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000933**
drh66a51672008-01-03 00:01:23 +0000934** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000935**
drhf9c8ce32013-11-05 13:33:55 +0000936** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
937**
938** 0: (no change)
939** 1: NOT NULL contraint failed: P4
940** 2: UNIQUE constraint failed: P4
941** 3: CHECK constraint failed: P4
942** 4: FOREIGN KEY constraint failed: P4
943**
944** If P5 is not zero and P4 is NULL, then everything after the ":" is
945** omitted.
946**
drh9cfcf5d2002-01-29 18:41:24 +0000947** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000948** every program. So a jump past the last instruction of the program
949** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000950*/
drh9cbf3422008-01-17 16:22:13 +0000951case OP_Halt: {
drhf56fa462015-04-13 21:39:54 +0000952 VdbeFrame *pFrame;
953 int pcx;
drhf9c8ce32013-11-05 13:33:55 +0000954
drhf56fa462015-04-13 21:39:54 +0000955 pcx = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +0000956 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000957 /* Halt the sub-program. Return control to the parent frame. */
drhf56fa462015-04-13 21:39:54 +0000958 pFrame = p->pFrame;
dan165921a2009-08-28 18:53:45 +0000959 p->pFrame = pFrame->pParent;
960 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000961 sqlite3VdbeSetChanges(db, p->nChange);
drhf56fa462015-04-13 21:39:54 +0000962 pcx = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000963 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000964 if( pOp->p2==OE_Ignore ){
drhf56fa462015-04-13 21:39:54 +0000965 /* Instruction pcx is the OP_Program that invoked the sub-program
dan2832ad42009-08-31 15:27:27 +0000966 ** currently being halted. If the p2 instruction of this OP_Halt
967 ** instruction is set to OE_Ignore, then the sub-program is throwing
968 ** an IGNORE exception. In this case jump to the address specified
969 ** as the p2 of the calling OP_Program. */
drhf56fa462015-04-13 21:39:54 +0000970 pcx = p->aOp[pcx].p2-1;
dan165921a2009-08-28 18:53:45 +0000971 }
drhbbe879d2009-11-14 18:04:35 +0000972 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000973 aMem = p->aMem;
drhf56fa462015-04-13 21:39:54 +0000974 pOp = &aOp[pcx];
dan165921a2009-08-28 18:53:45 +0000975 break;
976 }
drh92f02c32004-09-02 14:57:08 +0000977 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000978 p->errorAction = (u8)pOp->p2;
drhf56fa462015-04-13 21:39:54 +0000979 p->pc = pcx;
drh99f5de72016-04-30 02:59:15 +0000980 assert( pOp->p5>=0 && pOp->p5<=4 );
drhf9c8ce32013-11-05 13:33:55 +0000981 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +0000982 if( pOp->p5 ){
983 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
984 "FOREIGN KEY" };
drhd9b7ec92013-11-06 14:05:21 +0000985 testcase( pOp->p5==1 );
986 testcase( pOp->p5==2 );
987 testcase( pOp->p5==3 );
988 testcase( pOp->p5==4 );
drh99f5de72016-04-30 02:59:15 +0000989 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
990 if( pOp->p4.z ){
991 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
992 }
drhd9b7ec92013-11-06 14:05:21 +0000993 }else{
drh22c17b82015-05-15 04:13:15 +0000994 sqlite3VdbeError(p, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000995 }
drh99f5de72016-04-30 02:59:15 +0000996 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +0000997 }
drh92f02c32004-09-02 14:57:08 +0000998 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000999 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +00001000 if( rc==SQLITE_BUSY ){
drh99f5de72016-04-30 02:59:15 +00001001 p->rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00001002 }else{
drhd91c1a12013-02-09 13:58:25 +00001003 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
dancb3e4b72013-07-03 19:53:05 +00001004 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +00001005 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +00001006 }
drh900b31e2007-08-28 02:27:51 +00001007 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +00001008}
drhc61053b2000-06-04 12:58:36 +00001009
drh4c583122008-01-04 22:01:03 +00001010/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001011** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +00001012**
drh9cbf3422008-01-17 16:22:13 +00001013** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +00001014*/
drh27a348c2015-04-13 19:14:06 +00001015case OP_Integer: { /* out2 */
1016 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001017 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +00001018 break;
1019}
1020
drh4c583122008-01-04 22:01:03 +00001021/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001022** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +00001023**
drh66a51672008-01-03 00:01:23 +00001024** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +00001025** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +00001026*/
drh27a348c2015-04-13 19:14:06 +00001027case OP_Int64: { /* out2 */
1028 pOut = out2Prerelease(p, pOp);
danielk19772dca4ac2008-01-03 11:50:29 +00001029 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +00001030 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +00001031 break;
1032}
drh4f26d6c2004-05-26 23:25:30 +00001033
drh13573c72010-01-12 17:04:07 +00001034#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +00001035/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001036** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +00001037**
drh4c583122008-01-04 22:01:03 +00001038** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +00001039** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +00001040*/
drh27a348c2015-04-13 19:14:06 +00001041case OP_Real: { /* same as TK_FLOAT, out2 */
1042 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001043 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +00001044 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh74eaba42014-09-18 17:52:15 +00001045 pOut->u.r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +00001046 break;
1047}
drh13573c72010-01-12 17:04:07 +00001048#endif
danielk1977cbb18d22004-05-28 11:37:27 +00001049
drh3c84ddf2008-01-09 02:15:38 +00001050/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001051** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +00001052**
drh66a51672008-01-03 00:01:23 +00001053** P4 points to a nul terminated UTF-8 string. This opcode is transformed
drhf07cf6e2015-03-06 16:45:16 +00001054** into a String opcode before it is executed for the first time. During
drh0fd61352014-02-07 02:29:45 +00001055** this transformation, the length of string P4 is computed and stored
1056** as the P1 parameter.
danielk1977cbb18d22004-05-28 11:37:27 +00001057*/
drh27a348c2015-04-13 19:14:06 +00001058case OP_String8: { /* same as TK_STRING, out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001059 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001060 pOut = out2Prerelease(p, pOp);
drhed2df7f2005-11-16 04:34:32 +00001061 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +00001062 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +00001063
1064#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +00001065 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +00001066 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
drh2f555112016-04-30 18:10:34 +00001067 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
drh4c583122008-01-04 22:01:03 +00001068 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh17bcb102014-09-18 21:25:33 +00001069 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
drhc91b2fd2014-03-01 18:13:23 +00001070 assert( VdbeMemDynamic(pOut)==0 );
drh17bcb102014-09-18 21:25:33 +00001071 pOut->szMalloc = 0;
drh4c583122008-01-04 22:01:03 +00001072 pOut->flags |= MEM_Static;
drh66a51672008-01-03 00:01:23 +00001073 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +00001074 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +00001075 }
drh66a51672008-01-03 00:01:23 +00001076 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +00001077 pOp->p4.z = pOut->z;
1078 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +00001079 }
drh2f555112016-04-30 18:10:34 +00001080 testcase( rc==SQLITE_TOOBIG );
danielk197793758c82005-01-21 08:13:14 +00001081#endif
drhbb4957f2008-03-20 14:03:29 +00001082 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +00001083 goto too_big;
1084 }
drh2f555112016-04-30 18:10:34 +00001085 assert( rc==SQLITE_OK );
drhcbd2da92007-12-17 16:20:06 +00001086 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +00001087}
drhf4479502004-05-27 03:12:53 +00001088
drhf07cf6e2015-03-06 16:45:16 +00001089/* Opcode: String P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00001090** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +00001091**
drh9cbf3422008-01-17 16:22:13 +00001092** The string value P4 of length P1 (bytes) is stored in register P2.
drhf07cf6e2015-03-06 16:45:16 +00001093**
drh44aebff2016-05-02 10:25:42 +00001094** If P3 is not zero and the content of register P3 is equal to P5, then
drha9c18a92015-03-06 20:49:52 +00001095** the datatype of the register P2 is converted to BLOB. The content is
1096** the same sequence of bytes, it is merely interpreted as a BLOB instead
drh44aebff2016-05-02 10:25:42 +00001097** of a string, as if it had been CAST. In other words:
1098**
1099** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
drhf4479502004-05-27 03:12:53 +00001100*/
drh27a348c2015-04-13 19:14:06 +00001101case OP_String: { /* out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001102 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001103 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001104 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1105 pOut->z = pOp->p4.z;
1106 pOut->n = pOp->p1;
1107 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001108 UPDATE_MAX_BLOBSIZE(pOut);
drh41d2e662015-12-01 21:23:07 +00001109#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
drh44aebff2016-05-02 10:25:42 +00001110 if( pOp->p3>0 ){
drh9f6168b2016-03-19 23:32:58 +00001111 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhf07cf6e2015-03-06 16:45:16 +00001112 pIn3 = &aMem[pOp->p3];
1113 assert( pIn3->flags & MEM_Int );
drh44aebff2016-05-02 10:25:42 +00001114 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
drhf07cf6e2015-03-06 16:45:16 +00001115 }
drh41d2e662015-12-01 21:23:07 +00001116#endif
danielk1977c572ef72004-05-27 09:28:41 +00001117 break;
1118}
1119
drh053a1282012-09-19 21:15:46 +00001120/* Opcode: Null P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001121** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001122**
drhb8475df2011-12-09 16:21:19 +00001123** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001124** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001125** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001126** set to NULL.
1127**
1128** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1129** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1130** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001131*/
drh27a348c2015-04-13 19:14:06 +00001132case OP_Null: { /* out2 */
drhb8475df2011-12-09 16:21:19 +00001133 int cnt;
drh053a1282012-09-19 21:15:46 +00001134 u16 nullFlag;
drh27a348c2015-04-13 19:14:06 +00001135 pOut = out2Prerelease(p, pOp);
drhb8475df2011-12-09 16:21:19 +00001136 cnt = pOp->p3-pOp->p2;
drh9f6168b2016-03-19 23:32:58 +00001137 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001138 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drh2a1df932016-09-30 17:46:44 +00001139 pOut->n = 0;
drhb8475df2011-12-09 16:21:19 +00001140 while( cnt>0 ){
1141 pOut++;
1142 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +00001143 sqlite3VdbeMemSetNull(pOut);
drh053a1282012-09-19 21:15:46 +00001144 pOut->flags = nullFlag;
drh2a1df932016-09-30 17:46:44 +00001145 pOut->n = 0;
drhb8475df2011-12-09 16:21:19 +00001146 cnt--;
1147 }
drhf0863fe2005-06-12 21:35:51 +00001148 break;
1149}
1150
drh05a86c52014-02-16 01:55:49 +00001151/* Opcode: SoftNull P1 * * * *
drh72e26de2016-08-24 21:24:04 +00001152** Synopsis: r[P1]=NULL
drh05a86c52014-02-16 01:55:49 +00001153**
1154** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1155** instruction, but do not free any string or blob memory associated with
1156** the register, so that if the value was a string or blob that was
1157** previously copied using OP_SCopy, the copies will continue to be valid.
1158*/
1159case OP_SoftNull: {
drh9f6168b2016-03-19 23:32:58 +00001160 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh05a86c52014-02-16 01:55:49 +00001161 pOut = &aMem[pOp->p1];
1162 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1163 break;
1164}
drhf0863fe2005-06-12 21:35:51 +00001165
drha5750cf2014-02-07 13:20:31 +00001166/* Opcode: Blob P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001167** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001168**
drh9de221d2008-01-05 06:51:30 +00001169** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001170** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001171*/
drh27a348c2015-04-13 19:14:06 +00001172case OP_Blob: { /* out2 */
drhcbd2da92007-12-17 16:20:06 +00001173 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh27a348c2015-04-13 19:14:06 +00001174 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001175 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001176 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001177 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001178 break;
1179}
1180
drheaf52d82010-05-12 13:50:23 +00001181/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001182** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001183**
drheaf52d82010-05-12 13:50:23 +00001184** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001185**
drh0fd61352014-02-07 02:29:45 +00001186** If the parameter is named, then its name appears in P4.
drh08de1492009-02-20 03:55:05 +00001187** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001188*/
drh27a348c2015-04-13 19:14:06 +00001189case OP_Variable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00001190 Mem *pVar; /* Value being transferred */
1191
drheaf52d82010-05-12 13:50:23 +00001192 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001193 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001194 pVar = &p->aVar[pOp->p1 - 1];
1195 if( sqlite3VdbeMemTooBig(pVar) ){
1196 goto too_big;
drh023ae032007-05-08 12:12:16 +00001197 }
drh27a348c2015-04-13 19:14:06 +00001198 pOut = out2Prerelease(p, pOp);
drheaf52d82010-05-12 13:50:23 +00001199 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1200 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001201 break;
1202}
danielk1977295ba552004-05-19 10:34:51 +00001203
drhb21e7c72008-06-22 12:37:57 +00001204/* Opcode: Move P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001205** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001206**
drh079a3072014-03-19 14:10:55 +00001207** Move the P3 values in register P1..P1+P3-1 over into
1208** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
drhb21e7c72008-06-22 12:37:57 +00001209** left holding a NULL. It is an error for register ranges
drh079a3072014-03-19 14:10:55 +00001210** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1211** for P3 to be less than 1.
drh5e00f6c2001-09-13 13:46:56 +00001212*/
drhe1349cb2008-04-01 00:36:10 +00001213case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001214 int n; /* Number of registers left to copy */
1215 int p1; /* Register to copy from */
1216 int p2; /* Register to copy to */
1217
drhe09f43f2013-11-21 04:18:31 +00001218 n = pOp->p3;
drh856c1032009-06-02 15:21:42 +00001219 p1 = pOp->p1;
1220 p2 = pOp->p2;
drh079a3072014-03-19 14:10:55 +00001221 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001222 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001223
drha6c2ed92009-11-14 23:22:23 +00001224 pIn1 = &aMem[p1];
1225 pOut = &aMem[p2];
drhe09f43f2013-11-21 04:18:31 +00001226 do{
drh9f6168b2016-03-19 23:32:58 +00001227 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1228 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001229 assert( memIsValid(pIn1) );
1230 memAboutToChange(p, pOut);
drh17bcb102014-09-18 21:25:33 +00001231 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001232#ifdef SQLITE_DEBUG
drhbd6789e2015-04-28 14:00:02 +00001233 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
drh5fb71252015-04-28 12:44:55 +00001234 pOut->pScopyFrom += pOp->p2 - p1;
drh52043d72011-08-03 16:40:15 +00001235 }
1236#endif
drhbd6789e2015-04-28 14:00:02 +00001237 Deephemeralize(pOut);
drhb21e7c72008-06-22 12:37:57 +00001238 REGISTER_TRACE(p2++, pOut);
1239 pIn1++;
1240 pOut++;
drh079a3072014-03-19 14:10:55 +00001241 }while( --n );
drhe1349cb2008-04-01 00:36:10 +00001242 break;
1243}
1244
drhe8e4af72012-09-21 00:04:28 +00001245/* Opcode: Copy P1 P2 P3 * *
drh4eded602013-12-20 15:59:20 +00001246** Synopsis: r[P2@P3+1]=r[P1@P3+1]
drhb1fdb2a2008-01-05 04:06:03 +00001247**
drhe8e4af72012-09-21 00:04:28 +00001248** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001249**
1250** This instruction makes a deep copy of the value. A duplicate
1251** is made of any string or blob constant. See also OP_SCopy.
1252*/
drhe8e4af72012-09-21 00:04:28 +00001253case OP_Copy: {
1254 int n;
1255
1256 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001257 pIn1 = &aMem[pOp->p1];
1258 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001259 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001260 while( 1 ){
1261 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1262 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001263#ifdef SQLITE_DEBUG
1264 pOut->pScopyFrom = 0;
1265#endif
drhe8e4af72012-09-21 00:04:28 +00001266 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1267 if( (n--)==0 ) break;
1268 pOut++;
1269 pIn1++;
1270 }
drhe1349cb2008-04-01 00:36:10 +00001271 break;
1272}
1273
drhb1fdb2a2008-01-05 04:06:03 +00001274/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001275** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001276**
drh9cbf3422008-01-17 16:22:13 +00001277** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001278**
1279** This instruction makes a shallow copy of the value. If the value
1280** is a string or blob, then the copy is only a pointer to the
1281** original and hence if the original changes so will the copy.
1282** Worse, if the original is deallocated, the copy becomes invalid.
1283** Thus the program must guarantee that the original will not change
1284** during the lifetime of the copy. Use OP_Copy to make a complete
1285** copy.
1286*/
drh26198bb2013-10-31 11:15:09 +00001287case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001288 pIn1 = &aMem[pOp->p1];
1289 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001290 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001291 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001292#ifdef SQLITE_DEBUG
1293 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1294#endif
drh5e00f6c2001-09-13 13:46:56 +00001295 break;
1296}
drh75897232000-05-29 14:26:00 +00001297
drhfed7ac62015-10-15 18:04:59 +00001298/* Opcode: IntCopy P1 P2 * * *
1299** Synopsis: r[P2]=r[P1]
1300**
1301** Transfer the integer value held in register P1 into register P2.
1302**
1303** This is an optimized version of SCopy that works only for integer
1304** values.
1305*/
1306case OP_IntCopy: { /* out2 */
1307 pIn1 = &aMem[pOp->p1];
1308 assert( (pIn1->flags & MEM_Int)!=0 );
1309 pOut = &aMem[pOp->p2];
1310 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1311 break;
1312}
1313
drh9cbf3422008-01-17 16:22:13 +00001314/* Opcode: ResultRow P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00001315** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001316**
shane21e7feb2008-05-30 15:59:49 +00001317** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001318** results. This opcode causes the sqlite3_step() call to terminate
1319** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
drh4d87aae2014-02-20 19:42:00 +00001320** structure to provide access to the r(P1)..r(P1+P2-1) values as
drh0fd61352014-02-07 02:29:45 +00001321** the result row.
drhd4e70eb2008-01-02 00:34:36 +00001322*/
drh9cbf3422008-01-17 16:22:13 +00001323case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001324 Mem *pMem;
1325 int i;
1326 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001327 assert( pOp->p1>0 );
drh9f6168b2016-03-19 23:32:58 +00001328 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001329
drhe6400b92013-11-13 23:48:46 +00001330#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1331 /* Run the progress counter just before returning.
1332 */
1333 if( db->xProgress!=0
1334 && nVmStep>=nProgressLimit
1335 && db->xProgress(db->pProgressArg)!=0
1336 ){
1337 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +00001338 goto abort_due_to_error;
drhe6400b92013-11-13 23:48:46 +00001339 }
1340#endif
1341
dan32b09f22009-09-23 17:29:59 +00001342 /* If this statement has violated immediate foreign key constraints, do
1343 ** not return the number of rows modified. And do not RELEASE the statement
1344 ** transaction. It needs to be rolled back. */
1345 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1346 assert( db->flags&SQLITE_CountRows );
1347 assert( p->usesStmtJournal );
drh9467abf2016-02-17 18:44:11 +00001348 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00001349 }
1350
danielk1977bd434552009-03-18 10:33:00 +00001351 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1352 ** DML statements invoke this opcode to return the number of rows
1353 ** modified to the user. This is the only way that a VM that
1354 ** opens a statement transaction may invoke this opcode.
1355 **
1356 ** In case this is such a statement, close any statement transaction
1357 ** opened by this VM before returning control to the user. This is to
1358 ** ensure that statement-transactions are always nested, not overlapping.
1359 ** If the open statement-transaction is not closed here, then the user
1360 ** may step another VM that opens its own statement transaction. This
1361 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001362 **
1363 ** The statement transaction is never a top-level transaction. Hence
1364 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001365 */
1366 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001367 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
drh9467abf2016-02-17 18:44:11 +00001368 assert( rc==SQLITE_OK );
danielk1977bd434552009-03-18 10:33:00 +00001369
drhd4e70eb2008-01-02 00:34:36 +00001370 /* Invalidate all ephemeral cursor row caches */
1371 p->cacheCtr = (p->cacheCtr + 2)|1;
1372
1373 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001374 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001375 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001376 */
drha6c2ed92009-11-14 23:22:23 +00001377 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001378 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001379 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001380 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001381 assert( (pMem[i].flags & MEM_Ephem)==0
1382 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001383 sqlite3VdbeMemNulTerminate(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001384 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001385 }
drh28039692008-03-17 16:54:01 +00001386 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001387
drh3d2a5292016-07-13 22:55:01 +00001388 if( db->mTrace & SQLITE_TRACE_ROW ){
1389 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1390 }
1391
drhd4e70eb2008-01-02 00:34:36 +00001392 /* Return SQLITE_ROW
1393 */
drhf56fa462015-04-13 21:39:54 +00001394 p->pc = (int)(pOp - aOp) + 1;
drhd4e70eb2008-01-02 00:34:36 +00001395 rc = SQLITE_ROW;
1396 goto vdbe_return;
1397}
1398
drh5b6afba2008-01-05 16:29:28 +00001399/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001400** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001401**
drh5b6afba2008-01-05 16:29:28 +00001402** Add the text in register P1 onto the end of the text in
1403** register P2 and store the result in register P3.
1404** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001405**
1406** P3 = P2 || P1
1407**
1408** It is illegal for P1 and P3 to be the same register. Sometimes,
1409** if P3 is the same register as P2, the implementation is able
1410** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001411*/
drh5b6afba2008-01-05 16:29:28 +00001412case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001413 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001414
drh3c657212009-11-17 23:59:58 +00001415 pIn1 = &aMem[pOp->p1];
1416 pIn2 = &aMem[pOp->p2];
1417 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001418 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001419 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001420 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001421 break;
drh5e00f6c2001-09-13 13:46:56 +00001422 }
drha0c06522009-06-17 22:50:41 +00001423 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001424 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001425 Stringify(pIn2, encoding);
1426 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001427 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001428 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001429 }
drh9c1905f2008-12-10 22:32:56 +00001430 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001431 goto no_mem;
1432 }
drhc91b2fd2014-03-01 18:13:23 +00001433 MemSetTypeFlag(pOut, MEM_Str);
danielk1977a7a8e142008-02-13 18:25:27 +00001434 if( pOut!=pIn2 ){
1435 memcpy(pOut->z, pIn2->z, pIn2->n);
1436 }
1437 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh81316f82013-10-29 20:40:47 +00001438 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001439 pOut->z[nByte+1] = 0;
1440 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001441 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001442 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001443 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001444 break;
1445}
drh75897232000-05-29 14:26:00 +00001446
drh3c84ddf2008-01-09 02:15:38 +00001447/* Opcode: Add P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001448** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001449**
drh60a713c2008-01-21 16:22:45 +00001450** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001451** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001452** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001453*/
drh3c84ddf2008-01-09 02:15:38 +00001454/* Opcode: Multiply P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001455** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001456**
drh3c84ddf2008-01-09 02:15:38 +00001457**
shane21e7feb2008-05-30 15:59:49 +00001458** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001459** and store the result in register P3.
1460** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001461*/
drh3c84ddf2008-01-09 02:15:38 +00001462/* Opcode: Subtract P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001463** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001464**
drh60a713c2008-01-21 16:22:45 +00001465** Subtract the value in register P1 from the value in register P2
1466** and store the result in register P3.
1467** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001468*/
drh9cbf3422008-01-17 16:22:13 +00001469/* Opcode: Divide P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001470** Synopsis: r[P3]=r[P2]/r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001471**
drh60a713c2008-01-21 16:22:45 +00001472** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001473** and store the result in register P3 (P3=P2/P1). If the value in
1474** register P1 is zero, then the result is NULL. If either input is
1475** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001476*/
drh9cbf3422008-01-17 16:22:13 +00001477/* Opcode: Remainder P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001478** Synopsis: r[P3]=r[P2]%r[P1]
drhbf4133c2001-10-13 02:59:08 +00001479**
drh40864a12013-11-15 18:58:37 +00001480** Compute the remainder after integer register P2 is divided by
1481** register P1 and store the result in register P3.
1482** If the value in register P1 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001483** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001484*/
drh5b6afba2008-01-05 16:29:28 +00001485case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1486case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1487case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1488case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1489case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001490 char bIntint; /* Started out as two integer operands */
drh3d1d90a2014-03-24 15:00:15 +00001491 u16 flags; /* Combined MEM_* flags from both inputs */
1492 u16 type1; /* Numeric type of left operand */
1493 u16 type2; /* Numeric type of right operand */
drh856c1032009-06-02 15:21:42 +00001494 i64 iA; /* Integer value of left operand */
1495 i64 iB; /* Integer value of right operand */
1496 double rA; /* Real value of left operand */
1497 double rB; /* Real value of right operand */
1498
drh3c657212009-11-17 23:59:58 +00001499 pIn1 = &aMem[pOp->p1];
drh3d1d90a2014-03-24 15:00:15 +00001500 type1 = numericType(pIn1);
drh3c657212009-11-17 23:59:58 +00001501 pIn2 = &aMem[pOp->p2];
drh3d1d90a2014-03-24 15:00:15 +00001502 type2 = numericType(pIn2);
drh3c657212009-11-17 23:59:58 +00001503 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001504 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001505 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
drh3d1d90a2014-03-24 15:00:15 +00001506 if( (type1 & type2 & MEM_Int)!=0 ){
drh856c1032009-06-02 15:21:42 +00001507 iA = pIn1->u.i;
1508 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001509 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001510 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001511 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1512 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1513 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001514 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001515 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001516 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001517 iB /= iA;
drh75897232000-05-29 14:26:00 +00001518 break;
1519 }
drhbf4133c2001-10-13 02:59:08 +00001520 default: {
drh856c1032009-06-02 15:21:42 +00001521 if( iA==0 ) goto arithmetic_result_is_null;
1522 if( iA==-1 ) iA = 1;
1523 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001524 break;
1525 }
drh75897232000-05-29 14:26:00 +00001526 }
drh856c1032009-06-02 15:21:42 +00001527 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001528 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001529 }else{
drhbe707b32012-12-10 22:19:14 +00001530 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001531fp_math:
drh856c1032009-06-02 15:21:42 +00001532 rA = sqlite3VdbeRealValue(pIn1);
1533 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001534 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001535 case OP_Add: rB += rA; break;
1536 case OP_Subtract: rB -= rA; break;
1537 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001538 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001539 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001540 if( rA==(double)0 ) goto arithmetic_result_is_null;
1541 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001542 break;
1543 }
drhbf4133c2001-10-13 02:59:08 +00001544 default: {
shane75ac1de2009-06-09 18:58:52 +00001545 iA = (i64)rA;
1546 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001547 if( iA==0 ) goto arithmetic_result_is_null;
1548 if( iA==-1 ) iA = 1;
1549 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001550 break;
1551 }
drh5e00f6c2001-09-13 13:46:56 +00001552 }
drhc5a7b512010-01-13 16:25:42 +00001553#ifdef SQLITE_OMIT_FLOATING_POINT
1554 pOut->u.i = rB;
1555 MemSetTypeFlag(pOut, MEM_Int);
1556#else
drh856c1032009-06-02 15:21:42 +00001557 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001558 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001559 }
drh74eaba42014-09-18 17:52:15 +00001560 pOut->u.r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001561 MemSetTypeFlag(pOut, MEM_Real);
drh3d1d90a2014-03-24 15:00:15 +00001562 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001563 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001564 }
drhc5a7b512010-01-13 16:25:42 +00001565#endif
drh5e00f6c2001-09-13 13:46:56 +00001566 }
1567 break;
1568
drha05a7222008-01-19 03:35:58 +00001569arithmetic_result_is_null:
1570 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001571 break;
1572}
1573
drh7a957892012-02-02 17:35:43 +00001574/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001575**
drh66a51672008-01-03 00:01:23 +00001576** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001577** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1578** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001579** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001580**
drh7a957892012-02-02 17:35:43 +00001581** If P1 is not zero, then it is a register that a subsequent min() or
1582** max() aggregate will set to 1 if the current row is not the minimum or
1583** maximum. The P1 register is initialized to 0 by this instruction.
1584**
danielk1977dc1bdc42004-06-11 10:51:27 +00001585** The interface used by the implementation of the aforementioned functions
1586** to retrieve the collation sequence set by this opcode is not available
drh0a0d0562015-03-12 05:08:34 +00001587** publicly. Only built-in functions have access to this feature.
danielk1977dc1bdc42004-06-11 10:51:27 +00001588*/
drh9cbf3422008-01-17 16:22:13 +00001589case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001590 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001591 if( pOp->p1 ){
1592 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1593 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001594 break;
1595}
1596
drh9c7c9132015-06-26 18:16:52 +00001597/* Opcode: Function0 P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00001598** Synopsis: r[P3]=func(r[P2@P5])
drh8e0a2f92002-02-23 23:45:45 +00001599**
drhe2d9e7c2015-06-26 18:47:53 +00001600** Invoke a user function (P4 is a pointer to a FuncDef object that
drh98757152008-01-09 23:04:12 +00001601** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001602** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001603** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001604**
drh13449892005-09-07 21:22:45 +00001605** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001606** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001607** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001608** whether meta data associated with a user function argument using the
1609** sqlite3_set_auxdata() API may be safely retained until the next
1610** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001611**
drh9c7c9132015-06-26 18:16:52 +00001612** See also: Function, AggStep, AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001613*/
drh9c7c9132015-06-26 18:16:52 +00001614/* Opcode: Function P1 P2 P3 P4 P5
1615** Synopsis: r[P3]=func(r[P2@P5])
1616**
1617** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1618** contains a pointer to the function to be run) with P5 arguments taken
1619** from register P2 and successors. The result of the function is stored
1620** in register P3. Register P3 must not be one of the function inputs.
1621**
1622** P1 is a 32-bit bitmask indicating whether or not each argument to the
1623** function was determined to be constant at compile time. If the first
1624** argument was constant then bit 0 of P1 is set. This is used to determine
1625** whether meta data associated with a user function argument using the
1626** sqlite3_set_auxdata() API may be safely retained until the next
1627** invocation of this opcode.
1628**
1629** SQL functions are initially coded as OP_Function0 with P4 pointing
drhe2d9e7c2015-06-26 18:47:53 +00001630** to a FuncDef object. But on first evaluation, the P4 operand is
drh9c7c9132015-06-26 18:16:52 +00001631** automatically converted into an sqlite3_context object and the operation
1632** changed to this OP_Function opcode. In this way, the initialization of
1633** the sqlite3_context object occurs only once, rather than once for each
1634** evaluation of the function.
1635**
1636** See also: Function0, AggStep, AggFinal
1637*/
1638case OP_Function0: {
drh856c1032009-06-02 15:21:42 +00001639 int n;
drh9c7c9132015-06-26 18:16:52 +00001640 sqlite3_context *pCtx;
danielk197751ad0ec2004-05-24 12:39:02 +00001641
dan0c547792013-07-18 17:12:08 +00001642 assert( pOp->p4type==P4_FUNCDEF );
drh9c7c9132015-06-26 18:16:52 +00001643 n = pOp->p5;
drh9f6168b2016-03-19 23:32:58 +00001644 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
1645 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
drh9c7c9132015-06-26 18:16:52 +00001646 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drh575fad62016-02-05 13:38:36 +00001647 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
drh9c7c9132015-06-26 18:16:52 +00001648 if( pCtx==0 ) goto no_mem;
1649 pCtx->pOut = 0;
1650 pCtx->pFunc = pOp->p4.pFunc;
1651 pCtx->iOp = (int)(pOp - aOp);
1652 pCtx->pVdbe = p;
1653 pCtx->argc = n;
1654 pOp->p4type = P4_FUNCCTX;
1655 pOp->p4.pCtx = pCtx;
1656 pOp->opcode = OP_Function;
1657 /* Fall through into OP_Function */
1658}
1659case OP_Function: {
1660 int i;
1661 sqlite3_context *pCtx;
1662
1663 assert( pOp->p4type==P4_FUNCCTX );
1664 pCtx = pOp->p4.pCtx;
1665
1666 /* If this function is inside of a trigger, the register array in aMem[]
1667 ** might change from one evaluation to the next. The next block of code
1668 ** checks to see if the register array has changed, and if so it
1669 ** reinitializes the relavant parts of the sqlite3_context object */
drhe2d9e7c2015-06-26 18:47:53 +00001670 pOut = &aMem[pOp->p3];
1671 if( pCtx->pOut != pOut ){
1672 pCtx->pOut = pOut;
drh9c7c9132015-06-26 18:16:52 +00001673 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1674 }
1675
1676 memAboutToChange(p, pCtx->pOut);
1677#ifdef SQLITE_DEBUG
1678 for(i=0; i<pCtx->argc; i++){
1679 assert( memIsValid(pCtx->argv[i]) );
1680 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1681 }
1682#endif
1683 MemSetTypeFlag(pCtx->pOut, MEM_Null);
1684 pCtx->fErrorOrAux = 0;
drhf6aff802014-10-08 14:28:31 +00001685 db->lastRowid = lastRowid;
drh2d801512016-01-14 22:19:58 +00001686 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
1687 lastRowid = db->lastRowid; /* Remember rowid changes made by xSFunc */
danielk19777e18c252004-05-25 11:47:24 +00001688
drh90669c12006-01-20 15:45:36 +00001689 /* If the function returned an error, throw an exception */
drh9c7c9132015-06-26 18:16:52 +00001690 if( pCtx->fErrorOrAux ){
1691 if( pCtx->isError ){
1692 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1693 rc = pCtx->isError;
drh9b47ee32013-08-20 03:13:51 +00001694 }
drhb9626cf2016-02-22 16:04:31 +00001695 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00001696 if( rc ) goto abort_due_to_error;
drh90669c12006-01-20 15:45:36 +00001697 }
1698
drh9cbf3422008-01-17 16:22:13 +00001699 /* Copy the result of the function into register P3 */
drhe2d9e7c2015-06-26 18:47:53 +00001700 if( pOut->flags & (MEM_Str|MEM_Blob) ){
1701 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1702 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
drh023ae032007-05-08 12:12:16 +00001703 }
drh7b94e7f2011-04-04 12:29:20 +00001704
drh9c7c9132015-06-26 18:16:52 +00001705 REGISTER_TRACE(pOp->p3, pCtx->pOut);
1706 UPDATE_MAX_BLOBSIZE(pCtx->pOut);
drh8e0a2f92002-02-23 23:45:45 +00001707 break;
1708}
1709
drh98757152008-01-09 23:04:12 +00001710/* Opcode: BitAnd P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001711** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001712**
drh98757152008-01-09 23:04:12 +00001713** Take the bit-wise AND of the values in register P1 and P2 and
1714** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001715** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001716*/
drh98757152008-01-09 23:04:12 +00001717/* Opcode: BitOr P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001718** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001719**
drh98757152008-01-09 23:04:12 +00001720** Take the bit-wise OR of the values in register P1 and P2 and
1721** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001722** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001723*/
drh98757152008-01-09 23:04:12 +00001724/* Opcode: ShiftLeft P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001725** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001726**
drh98757152008-01-09 23:04:12 +00001727** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001728** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001729** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001730** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001731*/
drh98757152008-01-09 23:04:12 +00001732/* Opcode: ShiftRight P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001733** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001734**
drh98757152008-01-09 23:04:12 +00001735** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001736** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001737** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001738** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001739*/
drh5b6afba2008-01-05 16:29:28 +00001740case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1741case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1742case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1743case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001744 i64 iA;
1745 u64 uA;
1746 i64 iB;
1747 u8 op;
drh6810ce62004-01-31 19:22:56 +00001748
drh3c657212009-11-17 23:59:58 +00001749 pIn1 = &aMem[pOp->p1];
1750 pIn2 = &aMem[pOp->p2];
1751 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001752 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001753 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001754 break;
1755 }
drh158b9cb2011-03-05 20:59:46 +00001756 iA = sqlite3VdbeIntValue(pIn2);
1757 iB = sqlite3VdbeIntValue(pIn1);
1758 op = pOp->opcode;
1759 if( op==OP_BitAnd ){
1760 iA &= iB;
1761 }else if( op==OP_BitOr ){
1762 iA |= iB;
1763 }else if( iB!=0 ){
1764 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1765
1766 /* If shifting by a negative amount, shift in the other direction */
1767 if( iB<0 ){
1768 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1769 op = 2*OP_ShiftLeft + 1 - op;
1770 iB = iB>(-64) ? -iB : 64;
1771 }
1772
1773 if( iB>=64 ){
1774 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1775 }else{
1776 memcpy(&uA, &iA, sizeof(uA));
1777 if( op==OP_ShiftLeft ){
1778 uA <<= iB;
1779 }else{
1780 uA >>= iB;
1781 /* Sign-extend on a right shift of a negative number */
1782 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1783 }
1784 memcpy(&iA, &uA, sizeof(iA));
1785 }
drhbf4133c2001-10-13 02:59:08 +00001786 }
drh158b9cb2011-03-05 20:59:46 +00001787 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001788 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001789 break;
1790}
1791
drh8558cde2008-01-05 05:20:10 +00001792/* Opcode: AddImm P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00001793** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001794**
danielk19770cdc0222008-06-26 18:04:03 +00001795** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001796** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001797**
drh8558cde2008-01-05 05:20:10 +00001798** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001799*/
drh9cbf3422008-01-17 16:22:13 +00001800case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001801 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001802 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001803 sqlite3VdbeMemIntegerify(pIn1);
1804 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001805 break;
1806}
1807
drh9cbf3422008-01-17 16:22:13 +00001808/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001809**
drh9cbf3422008-01-17 16:22:13 +00001810** Force the value in register P1 to be an integer. If the value
1811** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001812** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001813** raise an SQLITE_MISMATCH exception.
1814*/
drh9cbf3422008-01-17 16:22:13 +00001815case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001816 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001817 if( (pIn1->flags & MEM_Int)==0 ){
drh83b301b2013-11-20 00:59:02 +00001818 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
drh688852a2014-02-17 22:40:43 +00001819 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
drh83b301b2013-11-20 00:59:02 +00001820 if( (pIn1->flags & MEM_Int)==0 ){
1821 if( pOp->p2==0 ){
1822 rc = SQLITE_MISMATCH;
1823 goto abort_due_to_error;
1824 }else{
drhf56fa462015-04-13 21:39:54 +00001825 goto jump_to_p2;
drh83b301b2013-11-20 00:59:02 +00001826 }
drh8aff1012001-12-22 14:49:24 +00001827 }
drh8aff1012001-12-22 14:49:24 +00001828 }
drh83b301b2013-11-20 00:59:02 +00001829 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001830 break;
1831}
1832
drh13573c72010-01-12 17:04:07 +00001833#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001834/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001835**
drh2133d822008-01-03 18:44:59 +00001836** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001837**
drh8a512562005-11-14 22:29:05 +00001838** This opcode is used when extracting information from a column that
1839** has REAL affinity. Such column values may still be stored as
1840** integers, for space efficiency, but after extraction we want them
1841** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001842*/
drh9cbf3422008-01-17 16:22:13 +00001843case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001844 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001845 if( pIn1->flags & MEM_Int ){
1846 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001847 }
drh487e2622005-06-25 18:42:14 +00001848 break;
1849}
drh13573c72010-01-12 17:04:07 +00001850#endif
drh487e2622005-06-25 18:42:14 +00001851
drh8df447f2005-11-01 15:48:24 +00001852#ifndef SQLITE_OMIT_CAST
drh4169e432014-08-25 20:11:52 +00001853/* Opcode: Cast P1 P2 * * *
mistachkina1dc42a2014-08-27 17:53:40 +00001854** Synopsis: affinity(r[P1])
drh487e2622005-06-25 18:42:14 +00001855**
drh4169e432014-08-25 20:11:52 +00001856** Force the value in register P1 to be the type defined by P2.
1857**
1858** <ul>
1859** <li value="97"> TEXT
1860** <li value="98"> BLOB
1861** <li value="99"> NUMERIC
1862** <li value="100"> INTEGER
1863** <li value="101"> REAL
1864** </ul>
drh487e2622005-06-25 18:42:14 +00001865**
1866** A NULL value is not changed by this routine. It remains NULL.
1867*/
drh4169e432014-08-25 20:11:52 +00001868case OP_Cast: { /* in1 */
drh05883a32015-06-02 15:32:08 +00001869 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
drh05bbb2e2014-08-25 22:37:19 +00001870 testcase( pOp->p2==SQLITE_AFF_TEXT );
drh05883a32015-06-02 15:32:08 +00001871 testcase( pOp->p2==SQLITE_AFF_BLOB );
drh05bbb2e2014-08-25 22:37:19 +00001872 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1873 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1874 testcase( pOp->p2==SQLITE_AFF_REAL );
drh3c657212009-11-17 23:59:58 +00001875 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001876 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001877 rc = ExpandBlob(pIn1);
drh4169e432014-08-25 20:11:52 +00001878 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
drhb7654112008-01-12 12:48:07 +00001879 UPDATE_MAX_BLOBSIZE(pIn1);
drh9467abf2016-02-17 18:44:11 +00001880 if( rc ) goto abort_due_to_error;
drh487e2622005-06-25 18:42:14 +00001881 break;
1882}
drh8a512562005-11-14 22:29:05 +00001883#endif /* SQLITE_OMIT_CAST */
1884
drh79752b62016-08-13 10:02:17 +00001885/* Opcode: Eq P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001886** Synopsis: IF r[P3]==r[P1]
drh79752b62016-08-13 10:02:17 +00001887**
1888** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
1889** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then
1890** store the result of comparison in register P2.
1891**
1892** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1893** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1894** to coerce both inputs according to this affinity before the
1895** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1896** affinity is used. Note that the affinity conversions are stored
1897** back into the input registers P1 and P3. So this opcode can cause
1898** persistent changes to registers P1 and P3.
1899**
1900** Once any conversions have taken place, and neither value is NULL,
1901** the values are compared. If both values are blobs then memcmp() is
1902** used to determine the results of the comparison. If both values
1903** are text, then the appropriate collating function specified in
1904** P4 is used to do the comparison. If P4 is not specified then
1905** memcmp() is used to compare text string. If both values are
1906** numeric, then a numeric comparison is used. If the two values
1907** are of different types, then numbers are considered less than
1908** strings and strings are considered less than blobs.
1909**
1910** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1911** true or false and is never NULL. If both operands are NULL then the result
1912** of comparison is true. If either operand is NULL then the result is false.
1913** If neither operand is NULL the result is the same as it would be if
1914** the SQLITE_NULLEQ flag were omitted from P5.
1915**
1916** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
drh3fffbf92016-09-05 15:02:41 +00001917** content of r[P2] is only changed if the new value is NULL or 0 (false).
1918** In other words, a prior r[P2] value will not be overwritten by 1 (true).
drh79752b62016-08-13 10:02:17 +00001919*/
1920/* Opcode: Ne P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001921** Synopsis: IF r[P3]!=r[P1]
drh79752b62016-08-13 10:02:17 +00001922**
1923** This works just like the Eq opcode except that the jump is taken if
1924** the operands in registers P1 and P3 are not equal. See the Eq opcode for
1925** additional information.
1926**
1927** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
drh3fffbf92016-09-05 15:02:41 +00001928** content of r[P2] is only changed if the new value is NULL or 1 (true).
1929** In other words, a prior r[P2] value will not be overwritten by 0 (false).
drh79752b62016-08-13 10:02:17 +00001930*/
drh35573352008-01-08 23:54:25 +00001931/* Opcode: Lt P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001932** Synopsis: IF r[P3]<r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001933**
drh35573352008-01-08 23:54:25 +00001934** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
drh79752b62016-08-13 10:02:17 +00001935** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store
1936** the result of comparison (0 or 1 or NULL) into register P2.
drhf5905aa2002-05-26 20:54:33 +00001937**
drh35573352008-01-08 23:54:25 +00001938** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
drh79752b62016-08-13 10:02:17 +00001939** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001940** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001941**
drh35573352008-01-08 23:54:25 +00001942** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001943** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001944** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001945** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001946** affinity is used. Note that the affinity conversions are stored
1947** back into the input registers P1 and P3. So this opcode can cause
1948** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001949**
1950** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001951** the values are compared. If both values are blobs then memcmp() is
1952** used to determine the results of the comparison. If both values
1953** are text, then the appropriate collating function specified in
1954** P4 is used to do the comparison. If P4 is not specified then
1955** memcmp() is used to compare text string. If both values are
1956** numeric, then a numeric comparison is used. If the two values
1957** are of different types, then numbers are considered less than
1958** strings and strings are considered less than blobs.
drh5e00f6c2001-09-13 13:46:56 +00001959*/
drh9cbf3422008-01-17 16:22:13 +00001960/* Opcode: Le P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001961** Synopsis: IF r[P3]<=r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001962**
drh35573352008-01-08 23:54:25 +00001963** This works just like the Lt opcode except that the jump is taken if
1964** the content of register P3 is less than or equal to the content of
1965** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001966*/
drh9cbf3422008-01-17 16:22:13 +00001967/* Opcode: Gt P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001968** Synopsis: IF r[P3]>r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001969**
drh35573352008-01-08 23:54:25 +00001970** This works just like the Lt opcode except that the jump is taken if
1971** the content of register P3 is greater than the content of
1972** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001973*/
drh9cbf3422008-01-17 16:22:13 +00001974/* Opcode: Ge P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001975** Synopsis: IF r[P3]>=r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001976**
drh35573352008-01-08 23:54:25 +00001977** This works just like the Lt opcode except that the jump is taken if
1978** the content of register P3 is greater than or equal to the content of
1979** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001980*/
drh9cbf3422008-01-17 16:22:13 +00001981case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1982case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1983case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1984case OP_Le: /* same as TK_LE, jump, in1, in3 */
1985case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1986case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh4910a762016-09-03 01:46:15 +00001987 int res, res2; /* Result of the comparison of pIn1 against pIn3 */
drh6a2fe092009-09-23 02:29:36 +00001988 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001989 u16 flags1; /* Copy of initial value of pIn1->flags */
1990 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001991
drh3c657212009-11-17 23:59:58 +00001992 pIn1 = &aMem[pOp->p1];
1993 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001994 flags1 = pIn1->flags;
1995 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001996 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001997 /* One or both operands are NULL */
1998 if( pOp->p5 & SQLITE_NULLEQ ){
1999 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2000 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2001 ** or not both operands are null.
2002 */
2003 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00002004 assert( (flags1 & MEM_Cleared)==0 );
drh3d77dee2014-02-19 14:20:49 +00002005 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
drhc3191d22016-10-18 16:36:15 +00002006 if( (flags1&flags3&MEM_Null)!=0
drh053a1282012-09-19 21:15:46 +00002007 && (flags3&MEM_Cleared)==0
2008 ){
drh4910a762016-09-03 01:46:15 +00002009 res = 0; /* Operands are equal */
drh053a1282012-09-19 21:15:46 +00002010 }else{
drh4910a762016-09-03 01:46:15 +00002011 res = 1; /* Operands are not equal */
drh053a1282012-09-19 21:15:46 +00002012 }
drh6a2fe092009-09-23 02:29:36 +00002013 }else{
2014 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2015 ** then the result is always NULL.
2016 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2017 */
drh688852a2014-02-17 22:40:43 +00002018 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00002019 pOut = &aMem[pOp->p2];
drh4910a762016-09-03 01:46:15 +00002020 iCompare = 1; /* Operands are not equal */
danb1d6b532015-12-14 19:42:19 +00002021 memAboutToChange(p, pOut);
drh6a2fe092009-09-23 02:29:36 +00002022 MemSetTypeFlag(pOut, MEM_Null);
2023 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00002024 }else{
drhf4345e42014-02-18 11:31:59 +00002025 VdbeBranchTaken(2,3);
drh688852a2014-02-17 22:40:43 +00002026 if( pOp->p5 & SQLITE_JUMPIFNULL ){
drhf56fa462015-04-13 21:39:54 +00002027 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00002028 }
drh6a2fe092009-09-23 02:29:36 +00002029 }
2030 break;
danielk1977a37cdde2004-05-16 11:15:36 +00002031 }
drh6a2fe092009-09-23 02:29:36 +00002032 }else{
2033 /* Neither operand is NULL. Do a comparison. */
2034 affinity = pOp->p5 & SQLITE_AFF_MASK;
drh24a09622014-09-18 16:28:59 +00002035 if( affinity>=SQLITE_AFF_NUMERIC ){
drh5fd0c122016-04-04 13:46:24 +00002036 if( (flags1 | flags3)&MEM_Str ){
2037 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2038 applyNumericAffinity(pIn1,0);
drh64caee42016-09-09 19:33:00 +00002039 testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */
drh4b37cd42016-06-25 11:43:47 +00002040 flags3 = pIn3->flags;
drh5fd0c122016-04-04 13:46:24 +00002041 }
2042 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2043 applyNumericAffinity(pIn3,0);
2044 }
drh24a09622014-09-18 16:28:59 +00002045 }
drh64caee42016-09-09 19:33:00 +00002046 /* Handle the common case of integer comparison here, as an
2047 ** optimization, to avoid a call to sqlite3MemCompare() */
2048 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
2049 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
2050 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
2051 res = 0;
2052 goto compare_op;
2053 }
drh24a09622014-09-18 16:28:59 +00002054 }else if( affinity==SQLITE_AFF_TEXT ){
drhe5520e22015-12-31 04:34:26 +00002055 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00002056 testcase( pIn1->flags & MEM_Int );
2057 testcase( pIn1->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00002058 sqlite3VdbeMemStringify(pIn1, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00002059 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2060 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
drh21e19b42016-09-15 14:54:51 +00002061 assert( pIn1!=pIn3 );
drh24a09622014-09-18 16:28:59 +00002062 }
drhe5520e22015-12-31 04:34:26 +00002063 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00002064 testcase( pIn3->flags & MEM_Int );
2065 testcase( pIn3->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00002066 sqlite3VdbeMemStringify(pIn3, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00002067 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2068 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00002069 }
drh6a2fe092009-09-23 02:29:36 +00002070 }
drh6a2fe092009-09-23 02:29:36 +00002071 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
drh4910a762016-09-03 01:46:15 +00002072 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00002073 }
drh64caee42016-09-09 19:33:00 +00002074compare_op:
danielk1977a37cdde2004-05-16 11:15:36 +00002075 switch( pOp->opcode ){
drh4910a762016-09-03 01:46:15 +00002076 case OP_Eq: res2 = res==0; break;
2077 case OP_Ne: res2 = res; break;
2078 case OP_Lt: res2 = res<0; break;
2079 case OP_Le: res2 = res<=0; break;
2080 case OP_Gt: res2 = res>0; break;
2081 default: res2 = res>=0; break;
danielk1977a37cdde2004-05-16 11:15:36 +00002082 }
2083
drhf56fa462015-04-13 21:39:54 +00002084 /* Undo any changes made by applyAffinity() to the input registers. */
2085 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2086 pIn1->flags = flags1;
2087 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2088 pIn3->flags = flags3;
2089
drh35573352008-01-08 23:54:25 +00002090 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00002091 pOut = &aMem[pOp->p2];
drh4910a762016-09-03 01:46:15 +00002092 iCompare = res;
2093 res2 = res2!=0; /* For this path res2 must be exactly 0 or 1 */
drh3fffbf92016-09-05 15:02:41 +00002094 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
drh79752b62016-08-13 10:02:17 +00002095 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
drh3fffbf92016-09-05 15:02:41 +00002096 ** and prevents OP_Ne from overwriting NULL with 0. This flag
2097 ** is only used in contexts where either:
2098 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2099 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2100 ** Therefore it is not necessary to check the content of r[P2] for
2101 ** NULL. */
drh79752b62016-08-13 10:02:17 +00002102 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
drh4910a762016-09-03 01:46:15 +00002103 assert( res2==0 || res2==1 );
drh3fffbf92016-09-05 15:02:41 +00002104 testcase( res2==0 && pOp->opcode==OP_Eq );
2105 testcase( res2==1 && pOp->opcode==OP_Eq );
2106 testcase( res2==0 && pOp->opcode==OP_Ne );
2107 testcase( res2==1 && pOp->opcode==OP_Ne );
drh4910a762016-09-03 01:46:15 +00002108 if( (pOp->opcode==OP_Eq)==res2 ) break;
drh79752b62016-08-13 10:02:17 +00002109 }
drh2b4ded92010-09-27 21:09:31 +00002110 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00002111 MemSetTypeFlag(pOut, MEM_Int);
drh4910a762016-09-03 01:46:15 +00002112 pOut->u.i = res2;
drh35573352008-01-08 23:54:25 +00002113 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00002114 }else{
drhf4345e42014-02-18 11:31:59 +00002115 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
drh4910a762016-09-03 01:46:15 +00002116 if( res2 ){
drhf56fa462015-04-13 21:39:54 +00002117 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00002118 }
danielk1977a37cdde2004-05-16 11:15:36 +00002119 }
2120 break;
2121}
drhc9b84a12002-06-20 11:36:48 +00002122
drh79752b62016-08-13 10:02:17 +00002123/* Opcode: ElseNotEq * P2 * * *
2124**
drhfd7459e2016-09-17 17:39:01 +00002125** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
2126** If result of an OP_Eq comparison on the same two operands
2127** would have be NULL or false (0), then then jump to P2.
2128** If the result of an OP_Eq comparison on the two previous operands
2129** would have been true (1), then fall through.
drh79752b62016-08-13 10:02:17 +00002130*/
2131case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */
2132 assert( pOp>aOp );
2133 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
drh4910a762016-09-03 01:46:15 +00002134 assert( pOp[-1].p5 & SQLITE_STOREP2 );
drh0f825a72016-08-13 14:17:02 +00002135 VdbeBranchTaken(iCompare!=0, 2);
2136 if( iCompare!=0 ) goto jump_to_p2;
drh79752b62016-08-13 10:02:17 +00002137 break;
2138}
2139
2140
drh0acb7e42008-06-25 00:12:41 +00002141/* Opcode: Permutation * * * P4 *
2142**
shanebe217792009-03-05 04:20:31 +00002143** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00002144** of integers in P4.
2145**
drh953f7612012-12-07 22:18:54 +00002146** The permutation is only valid until the next OP_Compare that has
2147** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2148** occur immediately prior to the OP_Compare.
drhb1702022016-01-30 00:45:18 +00002149**
2150** The first integer in the P4 integer array is the length of the array
2151** and does not become part of the permutation.
drh0acb7e42008-06-25 00:12:41 +00002152*/
2153case OP_Permutation: {
2154 assert( pOp->p4type==P4_INTARRAY );
2155 assert( pOp->p4.ai );
drhb1702022016-01-30 00:45:18 +00002156 aPermute = pOp->p4.ai + 1;
drh0acb7e42008-06-25 00:12:41 +00002157 break;
2158}
2159
drh953f7612012-12-07 22:18:54 +00002160/* Opcode: Compare P1 P2 P3 P4 P5
drh079a3072014-03-19 14:10:55 +00002161** Synopsis: r[P1@P3] <-> r[P2@P3]
drh16ee60f2008-06-20 18:13:25 +00002162**
drh710c4842010-08-30 01:17:20 +00002163** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2164** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00002165** the comparison for use by the next OP_Jump instruct.
2166**
drh0ca10df2012-12-08 13:26:23 +00002167** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2168** determined by the most recent OP_Permutation operator. If the
2169** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2170** order.
2171**
drh0acb7e42008-06-25 00:12:41 +00002172** P4 is a KeyInfo structure that defines collating sequences and sort
2173** orders for the comparison. The permutation applies to registers
2174** only. The KeyInfo elements are used sequentially.
2175**
2176** The comparison is a sort comparison, so NULLs compare equal,
2177** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00002178** and strings are less than blobs.
2179*/
2180case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00002181 int n;
2182 int i;
2183 int p1;
2184 int p2;
2185 const KeyInfo *pKeyInfo;
2186 int idx;
2187 CollSeq *pColl; /* Collating sequence to use on this term */
2188 int bRev; /* True for DESCENDING sort order */
2189
drh953f7612012-12-07 22:18:54 +00002190 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
drh856c1032009-06-02 15:21:42 +00002191 n = pOp->p3;
2192 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002193 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002194 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002195 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002196 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00002197#if SQLITE_DEBUG
2198 if( aPermute ){
2199 int k, mx = 0;
2200 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
drh9f6168b2016-03-19 23:32:58 +00002201 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2202 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002203 }else{
drh9f6168b2016-03-19 23:32:58 +00002204 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2205 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002206 }
2207#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002208 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002209 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002210 assert( memIsValid(&aMem[p1+idx]) );
2211 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002212 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2213 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00002214 assert( i<pKeyInfo->nField );
2215 pColl = pKeyInfo->aColl[i];
2216 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00002217 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002218 if( iCompare ){
2219 if( bRev ) iCompare = -iCompare;
2220 break;
2221 }
drh16ee60f2008-06-20 18:13:25 +00002222 }
drh0acb7e42008-06-25 00:12:41 +00002223 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00002224 break;
2225}
2226
2227/* Opcode: Jump P1 P2 P3 * *
2228**
2229** Jump to the instruction at address P1, P2, or P3 depending on whether
2230** in the most recent OP_Compare instruction the P1 vector was less than
2231** equal to, or greater than the P2 vector, respectively.
2232*/
drh0acb7e42008-06-25 00:12:41 +00002233case OP_Jump: { /* jump */
2234 if( iCompare<0 ){
drhf56fa462015-04-13 21:39:54 +00002235 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
drh0acb7e42008-06-25 00:12:41 +00002236 }else if( iCompare==0 ){
drhf56fa462015-04-13 21:39:54 +00002237 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
drh16ee60f2008-06-20 18:13:25 +00002238 }else{
drhf56fa462015-04-13 21:39:54 +00002239 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
drh16ee60f2008-06-20 18:13:25 +00002240 }
2241 break;
2242}
2243
drh5b6afba2008-01-05 16:29:28 +00002244/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002245** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002246**
drh5b6afba2008-01-05 16:29:28 +00002247** Take the logical AND of the values in registers P1 and P2 and
2248** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002249**
drh5b6afba2008-01-05 16:29:28 +00002250** If either P1 or P2 is 0 (false) then the result is 0 even if
2251** the other input is NULL. A NULL and true or two NULLs give
2252** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002253*/
drh5b6afba2008-01-05 16:29:28 +00002254/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002255** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002256**
2257** Take the logical OR of the values in register P1 and P2 and
2258** store the answer in register P3.
2259**
2260** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2261** even if the other input is NULL. A NULL and false or two NULLs
2262** give a NULL output.
2263*/
2264case OP_And: /* same as TK_AND, in1, in2, out3 */
2265case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002266 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2267 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002268
drh3c657212009-11-17 23:59:58 +00002269 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002270 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002271 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002272 }else{
drh5b6afba2008-01-05 16:29:28 +00002273 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002274 }
drh3c657212009-11-17 23:59:58 +00002275 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002276 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002277 v2 = 2;
2278 }else{
drh5b6afba2008-01-05 16:29:28 +00002279 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002280 }
2281 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002282 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002283 v1 = and_logic[v1*3+v2];
2284 }else{
drh5b6afba2008-01-05 16:29:28 +00002285 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002286 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002287 }
drh3c657212009-11-17 23:59:58 +00002288 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002289 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002290 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002291 }else{
drh5b6afba2008-01-05 16:29:28 +00002292 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002293 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002294 }
drh5e00f6c2001-09-13 13:46:56 +00002295 break;
2296}
2297
drhe99fa2a2008-12-15 15:27:51 +00002298/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002299** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002300**
drhe99fa2a2008-12-15 15:27:51 +00002301** Interpret the value in register P1 as a boolean value. Store the
2302** boolean complement in register P2. If the value in register P1 is
2303** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002304*/
drh93952eb2009-11-13 19:43:43 +00002305case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002306 pIn1 = &aMem[pOp->p1];
2307 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002308 sqlite3VdbeMemSetNull(pOut);
2309 if( (pIn1->flags & MEM_Null)==0 ){
2310 pOut->flags = MEM_Int;
2311 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002312 }
drh5e00f6c2001-09-13 13:46:56 +00002313 break;
2314}
2315
drhe99fa2a2008-12-15 15:27:51 +00002316/* Opcode: BitNot P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002317** Synopsis: r[P1]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002318**
drhe99fa2a2008-12-15 15:27:51 +00002319** Interpret the content of register P1 as an integer. Store the
2320** ones-complement of the P1 value into register P2. If P1 holds
2321** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002322*/
drh93952eb2009-11-13 19:43:43 +00002323case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002324 pIn1 = &aMem[pOp->p1];
2325 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002326 sqlite3VdbeMemSetNull(pOut);
2327 if( (pIn1->flags & MEM_Null)==0 ){
2328 pOut->flags = MEM_Int;
2329 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002330 }
drhbf4133c2001-10-13 02:59:08 +00002331 break;
2332}
2333
drh48f2d3b2011-09-16 01:34:43 +00002334/* Opcode: Once P1 P2 * * *
2335**
drh9e5eb9c2016-09-18 16:08:10 +00002336** If the P1 value is equal to the P1 value on the OP_Init opcode at
2337** instruction 0, then jump to P2. If the two P1 values differ, then
2338** set the P1 value on this opcode to equal the P1 value on the OP_Init
2339** and fall through.
drh48f2d3b2011-09-16 01:34:43 +00002340*/
dan1d8cb212011-12-09 13:24:16 +00002341case OP_Once: { /* jump */
drh9e5eb9c2016-09-18 16:08:10 +00002342 assert( p->aOp[0].opcode==OP_Init );
2343 VdbeBranchTaken(p->aOp[0].p1==pOp->p1, 2);
2344 if( p->aOp[0].p1==pOp->p1 ){
drhf56fa462015-04-13 21:39:54 +00002345 goto jump_to_p2;
dan1d8cb212011-12-09 13:24:16 +00002346 }else{
drh9e5eb9c2016-09-18 16:08:10 +00002347 pOp->p1 = p->aOp[0].p1;
dan1d8cb212011-12-09 13:24:16 +00002348 }
2349 break;
2350}
2351
drh3c84ddf2008-01-09 02:15:38 +00002352/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002353**
drhef8662b2011-06-20 21:47:58 +00002354** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002355** is considered true if it is numeric and non-zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002356** in P1 is NULL then take the jump if and only if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002357*/
drh3c84ddf2008-01-09 02:15:38 +00002358/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002359**
drhef8662b2011-06-20 21:47:58 +00002360** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002361** is considered false if it has a numeric value of zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002362** in P1 is NULL then take the jump if and only if P3 is non-zero.
drhf5905aa2002-05-26 20:54:33 +00002363*/
drh9cbf3422008-01-17 16:22:13 +00002364case OP_If: /* jump, in1 */
2365case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002366 int c;
drh3c657212009-11-17 23:59:58 +00002367 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002368 if( pIn1->flags & MEM_Null ){
2369 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002370 }else{
drhba0232a2005-06-06 17:27:19 +00002371#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002372 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002373#else
drh3c84ddf2008-01-09 02:15:38 +00002374 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002375#endif
drhf5905aa2002-05-26 20:54:33 +00002376 if( pOp->opcode==OP_IfNot ) c = !c;
2377 }
drh688852a2014-02-17 22:40:43 +00002378 VdbeBranchTaken(c!=0, 2);
drh3c84ddf2008-01-09 02:15:38 +00002379 if( c ){
drhf56fa462015-04-13 21:39:54 +00002380 goto jump_to_p2;
drh3c84ddf2008-01-09 02:15:38 +00002381 }
drh5e00f6c2001-09-13 13:46:56 +00002382 break;
2383}
2384
drh830ecf92009-06-18 00:41:55 +00002385/* Opcode: IsNull P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00002386** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002387**
drh830ecf92009-06-18 00:41:55 +00002388** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002389*/
drh9cbf3422008-01-17 16:22:13 +00002390case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002391 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002392 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
drh830ecf92009-06-18 00:41:55 +00002393 if( (pIn1->flags & MEM_Null)!=0 ){
drhf56fa462015-04-13 21:39:54 +00002394 goto jump_to_p2;
drh830ecf92009-06-18 00:41:55 +00002395 }
drh477df4b2008-01-05 18:48:24 +00002396 break;
2397}
2398
drh98757152008-01-09 23:04:12 +00002399/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002400** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002401**
drh6a288a32008-01-07 19:20:24 +00002402** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002403*/
drh9cbf3422008-01-17 16:22:13 +00002404case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002405 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002406 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
drh6a288a32008-01-07 19:20:24 +00002407 if( (pIn1->flags & MEM_Null)==0 ){
drhf56fa462015-04-13 21:39:54 +00002408 goto jump_to_p2;
drh6a288a32008-01-07 19:20:24 +00002409 }
drh5e00f6c2001-09-13 13:46:56 +00002410 break;
2411}
2412
drh3e9ca092009-09-08 01:14:48 +00002413/* Opcode: Column P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +00002414** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002415**
danielk1977cfcdaef2004-05-12 07:33:33 +00002416** Interpret the data that cursor P1 points to as a structure built using
2417** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002418** information about the format of the data.) Extract the P2-th column
2419** from this record. If there are less that (P2+1)
2420** values in the record, extract a NULL.
2421**
drh9cbf3422008-01-17 16:22:13 +00002422** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002423**
danielk19771f4aa332008-01-03 09:51:55 +00002424** If the column contains fewer than P2 fields, then extract a NULL. Or,
2425** if the P4 argument is a P4_MEM use the value of the P4 argument as
2426** the result.
drh3e9ca092009-09-08 01:14:48 +00002427**
2428** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2429** then the cache of the cursor is reset prior to extracting the column.
2430** The first OP_Column against a pseudo-table after the value of the content
2431** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002432**
drhdda5c082012-03-28 13:41:10 +00002433** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2434** the result is guaranteed to only be used as the argument of a length()
2435** or typeof() function, respectively. The loading of large blobs can be
2436** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002437*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002438case OP_Column: {
drh856c1032009-06-02 15:21:42 +00002439 int p2; /* column number to retrieve */
2440 VdbeCursor *pC; /* The VDBE cursor */
drhd3194f52004-05-27 19:59:32 +00002441 BtCursor *pCrsr; /* The BTree cursor */
drhd3194f52004-05-27 19:59:32 +00002442 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk1977cfcdaef2004-05-12 07:33:33 +00002443 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002444 int i; /* Loop counter */
drhd4e70eb2008-01-02 00:34:36 +00002445 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002446 Mem sMem; /* For storing the record being decoded */
drh399af1d2013-11-20 17:25:55 +00002447 const u8 *zData; /* Part of the record being decoded */
2448 const u8 *zHdr; /* Next unparsed byte of the header */
2449 const u8 *zEndHdr; /* Pointer to first byte after the header */
drh35cd6432009-06-05 14:17:21 +00002450 u32 offset; /* Offset into the data */
drhc6ce38832015-10-15 21:30:24 +00002451 u64 offset64; /* 64-bit offset */
drh501932c2013-11-21 21:59:53 +00002452 u32 avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002453 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002454 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002455
dande892d92016-01-29 19:29:45 +00002456 pC = p->apCsr[pOp->p1];
drh856c1032009-06-02 15:21:42 +00002457 p2 = pOp->p2;
dande892d92016-01-29 19:29:45 +00002458
2459 /* If the cursor cache is stale, bring it up-to-date */
2460 rc = sqlite3VdbeCursorMoveto(&pC, &p2);
drh4ca239f2016-05-19 11:12:43 +00002461 if( rc ) goto abort_due_to_error;
dande892d92016-01-29 19:29:45 +00002462
drh9f6168b2016-03-19 23:32:58 +00002463 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002464 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002465 memAboutToChange(p, pDest);
drhc8606e42013-11-20 19:28:03 +00002466 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
danielk19776c924092007-11-12 08:09:34 +00002467 assert( pC!=0 );
drhc8606e42013-11-20 19:28:03 +00002468 assert( p2<pC->nField );
drhb53a5a92014-10-12 22:37:22 +00002469 aOffset = pC->aOffset;
drh62aaa6c2015-11-21 17:27:42 +00002470 assert( pC->eCurType!=CURTYPE_VTAB );
drhc960dcb2015-11-20 19:22:01 +00002471 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2472 assert( pC->eCurType!=CURTYPE_SORTER );
2473 pCrsr = pC->uc.pCursor;
drh399af1d2013-11-20 17:25:55 +00002474
drha43a02e2016-05-19 17:51:19 +00002475 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
danielk1977192ac1d2004-05-10 07:17:30 +00002476 if( pC->nullRow ){
drhc960dcb2015-11-20 19:22:01 +00002477 if( pC->eCurType==CURTYPE_PSEUDO ){
2478 assert( pC->uc.pseudoTableReg>0 );
2479 pReg = &aMem[pC->uc.pseudoTableReg];
drhc8606e42013-11-20 19:28:03 +00002480 assert( pReg->flags & MEM_Blob );
2481 assert( memIsValid(pReg) );
2482 pC->payloadSize = pC->szRow = avail = pReg->n;
2483 pC->aRow = (u8*)pReg->z;
2484 }else{
drh6b5631e2014-11-05 15:57:39 +00002485 sqlite3VdbeMemSetNull(pDest);
drh399af1d2013-11-20 17:25:55 +00002486 goto op_column_out;
2487 }
danielk1977192ac1d2004-05-10 07:17:30 +00002488 }else{
drhc960dcb2015-11-20 19:22:01 +00002489 assert( pC->eCurType==CURTYPE_BTREE );
drhc8606e42013-11-20 19:28:03 +00002490 assert( pCrsr );
drha7c90c42016-06-04 20:37:10 +00002491 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2492 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2493 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &avail);
drh399af1d2013-11-20 17:25:55 +00002494 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2495 if( pC->payloadSize <= (u32)avail ){
2496 pC->szRow = pC->payloadSize;
drh5f7dacb2015-11-20 13:33:56 +00002497 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2498 goto too_big;
drhe61cffc2004-06-12 18:12:15 +00002499 }else{
drh399af1d2013-11-20 17:25:55 +00002500 pC->szRow = avail;
2501 }
danielk1977192ac1d2004-05-10 07:17:30 +00002502 }
drhd3194f52004-05-27 19:59:32 +00002503 pC->cacheStatus = p->cacheCtr;
drh399af1d2013-11-20 17:25:55 +00002504 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2505 pC->nHdrParsed = 0;
2506 aOffset[0] = offset;
drh35cd6432009-06-05 14:17:21 +00002507
drhc81aa2e2014-10-11 23:31:52 +00002508
drha43a02e2016-05-19 17:51:19 +00002509 if( avail<offset ){ /*OPTIMIZATION-IF-FALSE*/
drhc81aa2e2014-10-11 23:31:52 +00002510 /* pC->aRow does not have to hold the entire row, but it does at least
2511 ** need to cover the header of the record. If pC->aRow does not contain
2512 ** the complete header, then set it to zero, forcing the header to be
2513 ** dynamically allocated. */
2514 pC->aRow = 0;
2515 pC->szRow = 0;
drh848a3322015-10-16 12:53:47 +00002516
2517 /* Make sure a corrupt database has not given us an oversize header.
2518 ** Do this now to avoid an oversize memory allocation.
2519 **
2520 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2521 ** types use so much data space that there can only be 4096 and 32 of
2522 ** them, respectively. So the maximum header length results from a
2523 ** 3-byte type for each of the maximum of 32768 columns plus three
2524 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2525 */
2526 if( offset > 98307 || offset > pC->payloadSize ){
2527 rc = SQLITE_CORRUPT_BKPT;
drh9467abf2016-02-17 18:44:11 +00002528 goto abort_due_to_error;
drh848a3322015-10-16 12:53:47 +00002529 }
drh0eda6cd2016-05-19 16:58:42 +00002530 }else if( offset>0 ){ /*OPTIMIZATION-IF-TRUE*/
2531 /* The following goto is an optimization. It can be omitted and
2532 ** everything will still work. But OP_Column is measurably faster
2533 ** by skipping the subsequent conditional, which is always true.
2534 */
2535 zData = pC->aRow;
2536 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2537 goto op_column_read_header;
drhc81aa2e2014-10-11 23:31:52 +00002538 }
drh399af1d2013-11-20 17:25:55 +00002539 }
drh35cd6432009-06-05 14:17:21 +00002540
drh399af1d2013-11-20 17:25:55 +00002541 /* Make sure at least the first p2+1 entries of the header have been
drh0c8f7602014-09-19 16:56:45 +00002542 ** parsed and valid information is in aOffset[] and pC->aType[].
drh399af1d2013-11-20 17:25:55 +00002543 */
drhc8606e42013-11-20 19:28:03 +00002544 if( pC->nHdrParsed<=p2 ){
drh380d6852013-11-20 20:58:00 +00002545 /* If there is more header available for parsing in the record, try
2546 ** to extract additional fields up through the p2+1-th field
drh35cd6432009-06-05 14:17:21 +00002547 */
drhc8606e42013-11-20 19:28:03 +00002548 if( pC->iHdrOffset<aOffset[0] ){
2549 /* Make sure zData points to enough of the record to cover the header. */
2550 if( pC->aRow==0 ){
2551 memset(&sMem, 0, sizeof(sMem));
drh95fa6062015-10-16 13:50:08 +00002552 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem);
drh9467abf2016-02-17 18:44:11 +00002553 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhc8606e42013-11-20 19:28:03 +00002554 zData = (u8*)sMem.z;
2555 }else{
2556 zData = pC->aRow;
drh9188b382004-05-14 21:12:22 +00002557 }
drhc8606e42013-11-20 19:28:03 +00002558
drh0c8f7602014-09-19 16:56:45 +00002559 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
drh0eda6cd2016-05-19 16:58:42 +00002560 op_column_read_header:
drhc8606e42013-11-20 19:28:03 +00002561 i = pC->nHdrParsed;
drhc6ce38832015-10-15 21:30:24 +00002562 offset64 = aOffset[i];
drhc8606e42013-11-20 19:28:03 +00002563 zHdr = zData + pC->iHdrOffset;
2564 zEndHdr = zData + aOffset[0];
drhc8606e42013-11-20 19:28:03 +00002565 do{
drh95fa6062015-10-16 13:50:08 +00002566 if( (t = zHdr[0])<0x80 ){
drhc8606e42013-11-20 19:28:03 +00002567 zHdr++;
drhfaf37272015-10-16 14:23:42 +00002568 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002569 }else{
drhc8606e42013-11-20 19:28:03 +00002570 zHdr += sqlite3GetVarint32(zHdr, &t);
drhfaf37272015-10-16 14:23:42 +00002571 offset64 += sqlite3VdbeSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002572 }
drhfaf37272015-10-16 14:23:42 +00002573 pC->aType[i++] = t;
drhc6ce38832015-10-15 21:30:24 +00002574 aOffset[i] = (u32)(offset64 & 0xffffffff);
drhc8606e42013-11-20 19:28:03 +00002575 }while( i<=p2 && zHdr<zEndHdr );
drh170c2762016-05-20 21:40:11 +00002576
drh8dd83622014-10-13 23:39:02 +00002577 /* The record is corrupt if any of the following are true:
2578 ** (1) the bytes of the header extend past the declared header size
drh8dd83622014-10-13 23:39:02 +00002579 ** (2) the entire header was used but not all data was used
drh8dd83622014-10-13 23:39:02 +00002580 ** (3) the end of the data extends beyond the end of the record.
drhc8606e42013-11-20 19:28:03 +00002581 */
drhc6ce38832015-10-15 21:30:24 +00002582 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2583 || (offset64 > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002584 ){
drhddb2b4a2016-03-25 12:10:32 +00002585 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
drhc8606e42013-11-20 19:28:03 +00002586 rc = SQLITE_CORRUPT_BKPT;
drh9467abf2016-02-17 18:44:11 +00002587 goto abort_due_to_error;
danielk1977dedf45b2006-01-13 17:12:01 +00002588 }
drhddb2b4a2016-03-25 12:10:32 +00002589
drh170c2762016-05-20 21:40:11 +00002590 pC->nHdrParsed = i;
2591 pC->iHdrOffset = (u32)(zHdr - zData);
2592 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
mistachkin8c7cd6a2015-12-16 21:09:53 +00002593 }else{
drh9fbc8852016-01-04 03:48:46 +00002594 t = 0;
drh9188b382004-05-14 21:12:22 +00002595 }
drhd3194f52004-05-27 19:59:32 +00002596
drhf2db3382015-04-30 20:33:25 +00002597 /* If after trying to extract new entries from the header, nHdrParsed is
drh380d6852013-11-20 20:58:00 +00002598 ** still not up to p2, that means that the record has fewer than p2
2599 ** columns. So the result will be either the default value or a NULL.
drhd3194f52004-05-27 19:59:32 +00002600 */
drhc8606e42013-11-20 19:28:03 +00002601 if( pC->nHdrParsed<=p2 ){
2602 if( pOp->p4type==P4_MEM ){
2603 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2604 }else{
drh22e8d832014-10-29 00:58:38 +00002605 sqlite3VdbeMemSetNull(pDest);
drhc8606e42013-11-20 19:28:03 +00002606 }
danielk19773c9cc8d2005-01-17 03:40:08 +00002607 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002608 }
drh95fa6062015-10-16 13:50:08 +00002609 }else{
2610 t = pC->aType[p2];
danielk1977cfcdaef2004-05-12 07:33:33 +00002611 }
danielk1977192ac1d2004-05-10 07:17:30 +00002612
drh380d6852013-11-20 20:58:00 +00002613 /* Extract the content for the p2+1-th column. Control can only
drh0c8f7602014-09-19 16:56:45 +00002614 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
drh380d6852013-11-20 20:58:00 +00002615 ** all valid.
drh9188b382004-05-14 21:12:22 +00002616 */
drhc8606e42013-11-20 19:28:03 +00002617 assert( p2<pC->nHdrParsed );
2618 assert( rc==SQLITE_OK );
drh75fd0542014-03-01 16:24:44 +00002619 assert( sqlite3VdbeCheckMemInvariants(pDest) );
drha1851ef2016-05-20 19:51:28 +00002620 if( VdbeMemDynamic(pDest) ){
2621 sqlite3VdbeMemSetNull(pDest);
2622 }
drh95fa6062015-10-16 13:50:08 +00002623 assert( t==pC->aType[p2] );
drhc8606e42013-11-20 19:28:03 +00002624 if( pC->szRow>=aOffset[p2+1] ){
drh380d6852013-11-20 20:58:00 +00002625 /* This is the common case where the desired content fits on the original
2626 ** page - where the content is not on an overflow page */
drh69f6e252016-01-11 18:05:00 +00002627 zData = pC->aRow + aOffset[p2];
2628 if( t<12 ){
2629 sqlite3VdbeSerialGet(zData, t, pDest);
2630 }else{
2631 /* If the column value is a string, we need a persistent value, not
2632 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
2633 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2634 */
2635 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2636 pDest->n = len = (t-12)/2;
drha1851ef2016-05-20 19:51:28 +00002637 pDest->enc = encoding;
drh69f6e252016-01-11 18:05:00 +00002638 if( pDest->szMalloc < len+2 ){
2639 pDest->flags = MEM_Null;
2640 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2641 }else{
2642 pDest->z = pDest->zMalloc;
2643 }
2644 memcpy(pDest->z, zData, len);
2645 pDest->z[len] = 0;
2646 pDest->z[len+1] = 0;
2647 pDest->flags = aFlag[t&1];
2648 }
danielk197736963fd2005-02-19 08:18:05 +00002649 }else{
drha1851ef2016-05-20 19:51:28 +00002650 pDest->enc = encoding;
drh58c96082013-12-23 11:33:32 +00002651 /* This branch happens only when content is on overflow pages */
drh380d6852013-11-20 20:58:00 +00002652 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2653 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2654 || (len = sqlite3VdbeSerialTypeLen(t))==0
drhc8606e42013-11-20 19:28:03 +00002655 ){
drh2a2a6962014-09-16 18:22:44 +00002656 /* Content is irrelevant for
2657 ** 1. the typeof() function,
2658 ** 2. the length(X) function if X is a blob, and
2659 ** 3. if the content length is zero.
2660 ** So we might as well use bogus content rather than reading
drh69f6e252016-01-11 18:05:00 +00002661 ** content from disk. */
2662 static u8 aZero[8]; /* This is the bogus content */
2663 sqlite3VdbeSerialGet(aZero, t, pDest);
danielk1977aee18ef2005-03-09 12:26:50 +00002664 }else{
drh14da87f2013-11-20 21:51:33 +00002665 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
drh2a2a6962014-09-16 18:22:44 +00002666 pDest);
drh9467abf2016-02-17 18:44:11 +00002667 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2668 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2669 pDest->flags &= ~MEM_Ephem;
danielk1977aee18ef2005-03-09 12:26:50 +00002670 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002671 }
drhd3194f52004-05-27 19:59:32 +00002672
danielk19773c9cc8d2005-01-17 03:40:08 +00002673op_column_out:
drhb7654112008-01-12 12:48:07 +00002674 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002675 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002676 break;
2677}
2678
danielk1977751de562008-04-18 09:01:15 +00002679/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002680** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002681**
2682** Apply affinities to a range of P2 registers starting with P1.
2683**
2684** P4 is a string that is P2 characters long. The nth character of the
2685** string indicates the column affinity that should be used for the nth
2686** memory cell in the range.
2687*/
2688case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002689 const char *zAffinity; /* The affinity to be applied */
2690 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002691
drh856c1032009-06-02 15:21:42 +00002692 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002693 assert( zAffinity!=0 );
2694 assert( zAffinity[pOp->p2]==0 );
2695 pIn1 = &aMem[pOp->p1];
2696 while( (cAff = *(zAffinity++))!=0 ){
drh9f6168b2016-03-19 23:32:58 +00002697 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00002698 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002699 applyAffinity(pIn1, cAff, encoding);
2700 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002701 }
2702 break;
2703}
2704
drh1db639c2008-01-17 02:36:28 +00002705/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002706** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002707**
drh710c4842010-08-30 01:17:20 +00002708** Convert P2 registers beginning with P1 into the [record format]
2709** use as a data record in a database table or as a key
2710** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002711**
danielk1977751de562008-04-18 09:01:15 +00002712** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002713** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002714** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002715**
drh8a512562005-11-14 22:29:05 +00002716** The mapping from character to affinity is given by the SQLITE_AFF_
2717** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002718**
drh05883a32015-06-02 15:32:08 +00002719** If P4 is NULL then all index fields have the affinity BLOB.
drh7f057c92005-06-24 03:53:06 +00002720*/
drh1db639c2008-01-17 02:36:28 +00002721case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002722 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2723 Mem *pRec; /* The new record */
2724 u64 nData; /* Number of bytes of data space */
2725 int nHdr; /* Number of bytes of header space */
2726 i64 nByte; /* Data space required for this record */
drh4a335072015-04-11 02:08:48 +00002727 i64 nZero; /* Number of zero bytes at the end of the record */
drh856c1032009-06-02 15:21:42 +00002728 int nVarint; /* Number of bytes in a varint */
2729 u32 serial_type; /* Type field */
2730 Mem *pData0; /* First field to be combined into the record */
2731 Mem *pLast; /* Last field of the record */
2732 int nField; /* Number of fields in the record */
2733 char *zAffinity; /* The affinity string for the record */
2734 int file_format; /* File format to use for encoding */
drh59bf00c2013-12-08 23:33:28 +00002735 int i; /* Space used in zNewRecord[] header */
2736 int j; /* Space used in zNewRecord[] content */
drhbe37c122015-10-16 14:54:17 +00002737 u32 len; /* Length of a field */
drh856c1032009-06-02 15:21:42 +00002738
drhf3218fe2004-05-28 08:21:02 +00002739 /* Assuming the record contains N fields, the record format looks
2740 ** like this:
2741 **
drh7a224de2004-06-02 01:22:02 +00002742 ** ------------------------------------------------------------------------
2743 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2744 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002745 **
drh9cbf3422008-01-17 16:22:13 +00002746 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
peter.d.reid60ec9142014-09-06 16:39:46 +00002747 ** and so forth.
drhf3218fe2004-05-28 08:21:02 +00002748 **
2749 ** Each type field is a varint representing the serial type of the
2750 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002751 ** hdr-size field is also a varint which is the offset from the beginning
2752 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002753 */
drh856c1032009-06-02 15:21:42 +00002754 nData = 0; /* Number of bytes of data space */
2755 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002756 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002757 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002758 zAffinity = pOp->p4.z;
drh9f6168b2016-03-19 23:32:58 +00002759 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002760 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002761 nField = pOp->p2;
2762 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002763 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002764
drh2b4ded92010-09-27 21:09:31 +00002765 /* Identify the output register */
2766 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2767 pOut = &aMem[pOp->p3];
2768 memAboutToChange(p, pOut);
2769
drh3e6c0602013-12-10 20:53:01 +00002770 /* Apply the requested affinity to all inputs
2771 */
2772 assert( pData0<=pLast );
2773 if( zAffinity ){
2774 pRec = pData0;
2775 do{
drh57bf4a82014-02-17 14:59:22 +00002776 applyAffinity(pRec++, *(zAffinity++), encoding);
2777 assert( zAffinity[0]==0 || pRec<=pLast );
2778 }while( zAffinity[0] );
drh3e6c0602013-12-10 20:53:01 +00002779 }
2780
drhf3218fe2004-05-28 08:21:02 +00002781 /* Loop through the elements that will make up the record to figure
2782 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002783 */
drh038b7bc2013-12-09 23:17:22 +00002784 pRec = pLast;
drh59bf00c2013-12-08 23:33:28 +00002785 do{
drh2b4ded92010-09-27 21:09:31 +00002786 assert( memIsValid(pRec) );
drhbe37c122015-10-16 14:54:17 +00002787 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
drhfdf972a2007-05-02 13:30:27 +00002788 if( pRec->flags & MEM_Zero ){
drh038b7bc2013-12-09 23:17:22 +00002789 if( nData ){
drh53e66c32015-07-24 15:49:23 +00002790 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
drh038b7bc2013-12-09 23:17:22 +00002791 }else{
2792 nZero += pRec->u.nZero;
2793 len -= pRec->u.nZero;
2794 }
drhfdf972a2007-05-02 13:30:27 +00002795 }
drh8079a0d2006-01-12 17:20:50 +00002796 nData += len;
drh59bf00c2013-12-08 23:33:28 +00002797 testcase( serial_type==127 );
2798 testcase( serial_type==128 );
drh2a242872013-12-08 22:59:29 +00002799 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
drh45c3c662016-04-07 14:16:16 +00002800 if( pRec==pData0 ) break;
2801 pRec--;
2802 }while(1);
danielk19773d1bfea2004-05-14 11:00:53 +00002803
drh654858d2014-11-20 02:18:14 +00002804 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2805 ** which determines the total number of bytes in the header. The varint
2806 ** value is the size of the header in bytes including the size varint
2807 ** itself. */
drh59bf00c2013-12-08 23:33:28 +00002808 testcase( nHdr==126 );
2809 testcase( nHdr==127 );
drh2a242872013-12-08 22:59:29 +00002810 if( nHdr<=126 ){
2811 /* The common case */
2812 nHdr += 1;
2813 }else{
2814 /* Rare case of a really large header */
2815 nVarint = sqlite3VarintLen(nHdr);
2816 nHdr += nVarint;
2817 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
drhcb9882a2005-03-17 03:15:40 +00002818 }
drh038b7bc2013-12-09 23:17:22 +00002819 nByte = nHdr+nData;
drh4a335072015-04-11 02:08:48 +00002820 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002821 goto too_big;
2822 }
drhf3218fe2004-05-28 08:21:02 +00002823
danielk1977a7a8e142008-02-13 18:25:27 +00002824 /* Make sure the output register has a buffer large enough to store
2825 ** the new record. The output register (pOp->p3) is not allowed to
2826 ** be one of the input registers (because the following call to
drh322f2852014-09-19 00:43:39 +00002827 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
danielk1977a7a8e142008-02-13 18:25:27 +00002828 */
drh322f2852014-09-19 00:43:39 +00002829 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002830 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002831 }
danielk1977a7a8e142008-02-13 18:25:27 +00002832 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002833
2834 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002835 i = putVarint32(zNewRecord, nHdr);
drh59bf00c2013-12-08 23:33:28 +00002836 j = nHdr;
2837 assert( pData0<=pLast );
2838 pRec = pData0;
2839 do{
drhfacf47a2014-10-13 20:12:47 +00002840 serial_type = pRec->uTemp;
drh654858d2014-11-20 02:18:14 +00002841 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2842 ** additional varints, one per column. */
drh038b7bc2013-12-09 23:17:22 +00002843 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
drh654858d2014-11-20 02:18:14 +00002844 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2845 ** immediately follow the header. */
drha9ab4812013-12-11 11:00:44 +00002846 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
drh59bf00c2013-12-08 23:33:28 +00002847 }while( (++pRec)<=pLast );
2848 assert( i==nHdr );
2849 assert( j==nByte );
drhf3218fe2004-05-28 08:21:02 +00002850
drh9f6168b2016-03-19 23:32:58 +00002851 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drh9c1905f2008-12-10 22:32:56 +00002852 pOut->n = (int)nByte;
drhc91b2fd2014-03-01 18:13:23 +00002853 pOut->flags = MEM_Blob;
drhfdf972a2007-05-02 13:30:27 +00002854 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002855 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002856 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002857 }
drh477df4b2008-01-05 18:48:24 +00002858 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002859 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002860 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002861 break;
2862}
2863
danielk1977a5533162009-02-24 10:01:51 +00002864/* Opcode: Count P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002865** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00002866**
2867** Store the number of entries (an integer value) in the table or index
2868** opened by cursor P1 in register P2
2869*/
2870#ifndef SQLITE_OMIT_BTREECOUNT
drh27a348c2015-04-13 19:14:06 +00002871case OP_Count: { /* out2 */
danielk1977a5533162009-02-24 10:01:51 +00002872 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002873 BtCursor *pCrsr;
2874
drhc960dcb2015-11-20 19:22:01 +00002875 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2876 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00002877 assert( pCrsr );
drh2dc06482013-12-11 00:59:10 +00002878 nEntry = 0; /* Not needed. Only used to silence a warning. */
drh3da046d2013-11-11 03:24:11 +00002879 rc = sqlite3BtreeCount(pCrsr, &nEntry);
drh9467abf2016-02-17 18:44:11 +00002880 if( rc ) goto abort_due_to_error;
drh27a348c2015-04-13 19:14:06 +00002881 pOut = out2Prerelease(p, pOp);
danielk1977a5533162009-02-24 10:01:51 +00002882 pOut->u.i = nEntry;
2883 break;
2884}
2885#endif
2886
danielk1977fd7f0452008-12-17 17:30:26 +00002887/* Opcode: Savepoint P1 * * P4 *
2888**
2889** Open, release or rollback the savepoint named by parameter P4, depending
2890** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2891** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2892*/
2893case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002894 int p1; /* Value of P1 operand */
2895 char *zName; /* Name of savepoint */
2896 int nName;
2897 Savepoint *pNew;
2898 Savepoint *pSavepoint;
2899 Savepoint *pTmp;
2900 int iSavepoint;
2901 int ii;
2902
2903 p1 = pOp->p1;
2904 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002905
2906 /* Assert that the p1 parameter is valid. Also that if there is no open
2907 ** transaction, then there cannot be any savepoints.
2908 */
2909 assert( db->pSavepoint==0 || db->autoCommit==0 );
2910 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2911 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2912 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002913 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002914
2915 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002916 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002917 /* A new savepoint cannot be created if there are active write
2918 ** statements (i.e. open read/write incremental blob handles).
2919 */
drh22c17b82015-05-15 04:13:15 +00002920 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002921 rc = SQLITE_BUSY;
2922 }else{
drh856c1032009-06-02 15:21:42 +00002923 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002924
drhbe07ec52011-06-03 12:15:26 +00002925#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002926 /* This call is Ok even if this savepoint is actually a transaction
2927 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2928 ** If this is a transaction savepoint being opened, it is guaranteed
2929 ** that the db->aVTrans[] array is empty. */
2930 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002931 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2932 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002933 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002934#endif
dand9495cd2011-04-27 12:08:04 +00002935
danielk1977fd7f0452008-12-17 17:30:26 +00002936 /* Create a new savepoint structure. */
drh575fad62016-02-05 13:38:36 +00002937 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
danielk1977fd7f0452008-12-17 17:30:26 +00002938 if( pNew ){
2939 pNew->zName = (char *)&pNew[1];
2940 memcpy(pNew->zName, zName, nName+1);
2941
2942 /* If there is no open transaction, then mark this as a special
2943 ** "transaction savepoint". */
2944 if( db->autoCommit ){
2945 db->autoCommit = 0;
2946 db->isTransactionSavepoint = 1;
2947 }else{
2948 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002949 }
dan21e8d012011-03-03 20:05:59 +00002950
danielk1977fd7f0452008-12-17 17:30:26 +00002951 /* Link the new savepoint into the database handle's list. */
2952 pNew->pNext = db->pSavepoint;
2953 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002954 pNew->nDeferredCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00002955 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002956 }
2957 }
2958 }else{
drh856c1032009-06-02 15:21:42 +00002959 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002960
2961 /* Find the named savepoint. If there is no such savepoint, then an
2962 ** an error is returned to the user. */
2963 for(
drh856c1032009-06-02 15:21:42 +00002964 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002965 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002966 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002967 ){
2968 iSavepoint++;
2969 }
2970 if( !pSavepoint ){
drh22c17b82015-05-15 04:13:15 +00002971 sqlite3VdbeError(p, "no such savepoint: %s", zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002972 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00002973 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002974 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002975 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002976 */
drh22c17b82015-05-15 04:13:15 +00002977 sqlite3VdbeError(p, "cannot release savepoint - "
2978 "SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002979 rc = SQLITE_BUSY;
2980 }else{
2981
2982 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002983 ** and this is a RELEASE command, then the current transaction
2984 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002985 */
2986 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2987 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002988 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002989 goto vdbe_return;
2990 }
danielk1977fd7f0452008-12-17 17:30:26 +00002991 db->autoCommit = 1;
2992 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00002993 p->pc = (int)(pOp - aOp);
danielk1977fd7f0452008-12-17 17:30:26 +00002994 db->autoCommit = 0;
2995 p->rc = rc = SQLITE_BUSY;
2996 goto vdbe_return;
2997 }
danielk197734cf35d2008-12-18 18:31:38 +00002998 db->isTransactionSavepoint = 0;
2999 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00003000 }else{
drh47b7fc72014-11-11 01:33:57 +00003001 int isSchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00003002 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00003003 if( p1==SAVEPOINT_ROLLBACK ){
drh47b7fc72014-11-11 01:33:57 +00003004 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
drh31f10052012-03-31 17:17:26 +00003005 for(ii=0; ii<db->nDb; ii++){
drh77b1dee2014-11-17 17:13:06 +00003006 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3007 SQLITE_ABORT_ROLLBACK,
drh47b7fc72014-11-11 01:33:57 +00003008 isSchemaChange==0);
dan80231042014-11-12 14:56:02 +00003009 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh31f10052012-03-31 17:17:26 +00003010 }
drh47b7fc72014-11-11 01:33:57 +00003011 }else{
3012 isSchemaChange = 0;
drh0f198a72012-02-13 16:43:16 +00003013 }
3014 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00003015 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3016 if( rc!=SQLITE_OK ){
3017 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00003018 }
danielk1977fd7f0452008-12-17 17:30:26 +00003019 }
drh47b7fc72014-11-11 01:33:57 +00003020 if( isSchemaChange ){
danielk1977fd7f0452008-12-17 17:30:26 +00003021 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00003022 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00003023 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00003024 }
3025 }
3026
3027 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3028 ** savepoints nested inside of the savepoint being operated on. */
3029 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00003030 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00003031 db->pSavepoint = pTmp->pNext;
3032 sqlite3DbFree(db, pTmp);
3033 db->nSavepoint--;
3034 }
3035
dan1da40a32009-09-19 17:00:31 +00003036 /* If it is a RELEASE, then destroy the savepoint being operated on
3037 ** too. If it is a ROLLBACK TO, then set the number of deferred
3038 ** constraint violations present in the database to the value stored
3039 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00003040 if( p1==SAVEPOINT_RELEASE ){
3041 assert( pSavepoint==db->pSavepoint );
3042 db->pSavepoint = pSavepoint->pNext;
3043 sqlite3DbFree(db, pSavepoint);
3044 if( !isTransaction ){
3045 db->nSavepoint--;
3046 }
dan1da40a32009-09-19 17:00:31 +00003047 }else{
3048 db->nDeferredCons = pSavepoint->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003049 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00003050 }
dand9495cd2011-04-27 12:08:04 +00003051
danea8562e2015-04-18 16:25:54 +00003052 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
dand9495cd2011-04-27 12:08:04 +00003053 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3054 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3055 }
danielk1977fd7f0452008-12-17 17:30:26 +00003056 }
3057 }
drh9467abf2016-02-17 18:44:11 +00003058 if( rc ) goto abort_due_to_error;
danielk1977fd7f0452008-12-17 17:30:26 +00003059
3060 break;
3061}
3062
drh98757152008-01-09 23:04:12 +00003063/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00003064**
3065** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00003066** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00003067** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3068** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00003069**
3070** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00003071*/
drh9cbf3422008-01-17 16:22:13 +00003072case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00003073 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00003074 int iRollback;
danielk19771d850a72004-05-31 08:26:49 +00003075
drh856c1032009-06-02 15:21:42 +00003076 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00003077 iRollback = pOp->p2;
drhad4a4b82008-11-05 16:37:34 +00003078 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00003079 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00003080 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00003081 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00003082
drhb0c88652016-02-01 13:21:13 +00003083 if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00003084 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00003085 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00003086 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00003087 db->autoCommit = 1;
drhb0c88652016-02-01 13:21:13 +00003088 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3089 /* If this instruction implements a COMMIT and other VMs are writing
3090 ** return an error indicating that the other VMs must complete first.
3091 */
3092 sqlite3VdbeError(p, "cannot commit transaction - "
3093 "SQL statements in progress");
3094 rc = SQLITE_BUSY;
drh9467abf2016-02-17 18:44:11 +00003095 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00003096 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00003097 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00003098 }else{
shane7d3846a2008-12-11 02:58:26 +00003099 db->autoCommit = (u8)desiredAutoCommit;
drh8ff25872015-07-31 18:59:56 +00003100 }
3101 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3102 p->pc = (int)(pOp - aOp);
3103 db->autoCommit = (u8)(1-desiredAutoCommit);
3104 p->rc = rc = SQLITE_BUSY;
3105 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003106 }
danielk1977bd434552009-03-18 10:33:00 +00003107 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00003108 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00003109 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00003110 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00003111 }else{
drh900b31e2007-08-28 02:27:51 +00003112 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00003113 }
drh900b31e2007-08-28 02:27:51 +00003114 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003115 }else{
drh22c17b82015-05-15 04:13:15 +00003116 sqlite3VdbeError(p,
drhad4a4b82008-11-05 16:37:34 +00003117 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00003118 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00003119 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00003120
3121 rc = SQLITE_ERROR;
drh9467abf2016-02-17 18:44:11 +00003122 goto abort_due_to_error;
drh663fc632002-02-02 18:49:19 +00003123 }
3124 break;
3125}
3126
drhb22f7c82014-02-06 23:56:27 +00003127/* Opcode: Transaction P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003128**
drh05a86c52014-02-16 01:55:49 +00003129** Begin a transaction on database P1 if a transaction is not already
3130** active.
3131** If P2 is non-zero, then a write-transaction is started, or if a
3132** read-transaction is already active, it is upgraded to a write-transaction.
3133** If P2 is zero, then a read-transaction is started.
drh5e00f6c2001-09-13 13:46:56 +00003134**
drh001bbcb2003-03-19 03:14:00 +00003135** P1 is the index of the database file on which the transaction is
3136** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00003137** file used for temporary tables. Indices of 2 or more are used for
3138** attached databases.
drhcabb0812002-09-14 13:47:32 +00003139**
dane0af83a2009-09-08 19:15:01 +00003140** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3141** true (this flag is set if the Vdbe may modify more than one row and may
3142** throw an ABORT exception), a statement transaction may also be opened.
3143** More specifically, a statement transaction is opened iff the database
3144** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00003145** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00003146** VDBE to be rolled back after an error without having to roll back the
3147** entire transaction. If no error is encountered, the statement transaction
3148** will automatically commit when the VDBE halts.
3149**
drhb22f7c82014-02-06 23:56:27 +00003150** If P5!=0 then this opcode also checks the schema cookie against P3
3151** and the schema generation counter against P4.
3152** The cookie changes its value whenever the database schema changes.
3153** This operation is used to detect when that the cookie has changed
drh05a86c52014-02-16 01:55:49 +00003154** and that the current process needs to reread the schema. If the schema
3155** cookie in P3 differs from the schema cookie in the database header or
3156** if the schema generation counter in P4 differs from the current
3157** generation counter, then an SQLITE_SCHEMA error is raised and execution
3158** halts. The sqlite3_step() wrapper function might then reprepare the
3159** statement and rerun it from the beginning.
drh5e00f6c2001-09-13 13:46:56 +00003160*/
drh9cbf3422008-01-17 16:22:13 +00003161case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00003162 Btree *pBt;
drhb22f7c82014-02-06 23:56:27 +00003163 int iMeta;
3164 int iGen;
danielk19771d850a72004-05-31 08:26:49 +00003165
drh1713afb2013-06-28 01:24:57 +00003166 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003167 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00003168 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003169 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh13447bf2013-07-10 13:33:49 +00003170 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3171 rc = SQLITE_READONLY;
3172 goto abort_due_to_error;
3173 }
drh653b82a2009-06-22 11:10:47 +00003174 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003175
danielk197724162fe2004-06-04 06:22:00 +00003176 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00003177 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
drhcbd8db32015-08-20 17:18:32 +00003178 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3179 testcase( rc==SQLITE_BUSY_RECOVERY );
drh9e9f1bd2009-10-13 15:36:51 +00003180 if( rc!=SQLITE_OK ){
drhfadd2b12016-09-19 23:39:34 +00003181 if( (rc&0xff)==SQLITE_BUSY ){
3182 p->pc = (int)(pOp - aOp);
3183 p->rc = rc;
3184 goto vdbe_return;
3185 }
danielk197724162fe2004-06-04 06:22:00 +00003186 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003187 }
dane0af83a2009-09-08 19:15:01 +00003188
3189 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00003190 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003191 ){
3192 assert( sqlite3BtreeIsInTrans(pBt) );
3193 if( p->iStatement==0 ){
3194 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3195 db->nStatement++;
3196 p->iStatement = db->nSavepoint + db->nStatement;
3197 }
dana311b802011-04-26 19:21:34 +00003198
drh346506f2011-05-25 01:16:42 +00003199 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003200 if( rc==SQLITE_OK ){
3201 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3202 }
dan1da40a32009-09-19 17:00:31 +00003203
3204 /* Store the current value of the database handles deferred constraint
3205 ** counter. If the statement transaction needs to be rolled back,
3206 ** the value of this counter needs to be restored too. */
3207 p->nStmtDefCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003208 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003209 }
drhb22f7c82014-02-06 23:56:27 +00003210
drh51a74d42015-02-28 01:04:27 +00003211 /* Gather the schema version number for checking:
drh96fdcb42016-09-27 00:09:33 +00003212 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3213 ** version is checked to ensure that the schema has not changed since the
3214 ** SQL statement was prepared.
drh51a74d42015-02-28 01:04:27 +00003215 */
drhb22f7c82014-02-06 23:56:27 +00003216 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3217 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3218 }else{
3219 iGen = iMeta = 0;
3220 }
3221 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3222 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3223 sqlite3DbFree(db, p->zErrMsg);
3224 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3225 /* If the schema-cookie from the database file matches the cookie
3226 ** stored with the in-memory representation of the schema, do
3227 ** not reload the schema from the database file.
3228 **
3229 ** If virtual-tables are in use, this is not just an optimization.
3230 ** Often, v-tables store their data in other SQLite tables, which
3231 ** are queried from within xNext() and other v-table methods using
3232 ** prepared queries. If such a query is out-of-date, we do not want to
3233 ** discard the database schema, as the user code implementing the
3234 ** v-table would have to be ready for the sqlite3_vtab structure itself
3235 ** to be invalidated whenever sqlite3_step() is called from within
3236 ** a v-table method.
3237 */
3238 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3239 sqlite3ResetOneSchema(db, pOp->p1);
3240 }
3241 p->expired = 1;
3242 rc = SQLITE_SCHEMA;
drhb86ccfb2003-01-28 23:13:10 +00003243 }
drh9467abf2016-02-17 18:44:11 +00003244 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003245 break;
3246}
3247
drhb1fdb2a2008-01-05 04:06:03 +00003248/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003249**
drh9cbf3422008-01-17 16:22:13 +00003250** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003251** P3==1 is the schema version. P3==2 is the database format.
3252** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003253** the main database file and P1==1 is the database file used to store
3254** temporary tables.
drh4a324312001-12-21 14:30:42 +00003255**
drh50e5dad2001-09-15 00:57:28 +00003256** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003257** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003258** executing this instruction.
3259*/
drh27a348c2015-04-13 19:14:06 +00003260case OP_ReadCookie: { /* out2 */
drhf328bc82004-05-10 23:29:49 +00003261 int iMeta;
drh856c1032009-06-02 15:21:42 +00003262 int iDb;
3263 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003264
drh1713afb2013-06-28 01:24:57 +00003265 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003266 iDb = pOp->p1;
3267 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003268 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003269 assert( iDb>=0 && iDb<db->nDb );
3270 assert( db->aDb[iDb].pBt!=0 );
drha7ab6d82014-07-21 15:44:39 +00003271 assert( DbMaskTest(p->btreeMask, iDb) );
danielk19770d19f7a2009-06-03 11:25:07 +00003272
danielk1977602b4662009-07-02 07:47:33 +00003273 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh27a348c2015-04-13 19:14:06 +00003274 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00003275 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003276 break;
3277}
3278
drh98757152008-01-09 23:04:12 +00003279/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003280**
drh1861afc2016-02-01 21:48:34 +00003281** Write the integer value P3 into cookie number P2 of database P1.
3282** P2==1 is the schema version. P2==2 is the database format.
3283** P2==3 is the recommended pager cache
danielk19770d19f7a2009-06-03 11:25:07 +00003284** size, and so forth. P1==0 is the main database file and P1==1 is the
3285** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003286**
3287** A transaction must be started before executing this opcode.
3288*/
drh1861afc2016-02-01 21:48:34 +00003289case OP_SetCookie: {
drh3f7d4e42004-07-24 14:35:58 +00003290 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003291 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003292 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003293 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00003294 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003295 pDb = &db->aDb[pOp->p1];
3296 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003297 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drha3b321d2004-05-11 09:31:31 +00003298 /* See note about index shifting on OP_ReadCookie */
drh1861afc2016-02-01 21:48:34 +00003299 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
danielk19770d19f7a2009-06-03 11:25:07 +00003300 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003301 /* When the schema cookie changes, record the new cookie internally */
drh1861afc2016-02-01 21:48:34 +00003302 pDb->pSchema->schema_cookie = pOp->p3;
drh3f7d4e42004-07-24 14:35:58 +00003303 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003304 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003305 /* Record changes in the file format */
drh1861afc2016-02-01 21:48:34 +00003306 pDb->pSchema->file_format = pOp->p3;
drh3f7d4e42004-07-24 14:35:58 +00003307 }
drhfd426c62006-01-30 15:34:22 +00003308 if( pOp->p1==1 ){
3309 /* Invalidate all prepared statements whenever the TEMP database
3310 ** schema is changed. Ticket #1644 */
3311 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003312 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003313 }
drh9467abf2016-02-17 18:44:11 +00003314 if( rc ) goto abort_due_to_error;
drh50e5dad2001-09-15 00:57:28 +00003315 break;
3316}
3317
drh98757152008-01-09 23:04:12 +00003318/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003319** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003320**
drhecdc7532001-09-23 02:35:53 +00003321** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003322** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003323** P3==0 means the main database, P3==1 means the database used for
3324** temporary tables, and P3>1 means used the corresponding attached
3325** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003326** values need not be contiguous but all P1 values should be small integers.
3327** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003328**
drh98757152008-01-09 23:04:12 +00003329** If P5!=0 then use the content of register P2 as the root page, not
3330** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003331**
drhb19a2bc2001-09-16 00:13:26 +00003332** There will be a read lock on the database whenever there is an
3333** open cursor. If the database was unlocked prior to this instruction
3334** then a read lock is acquired as part of this instruction. A read
3335** lock allows other processes to read the database but prohibits
3336** any other process from modifying the database. The read lock is
3337** released when all cursors are closed. If this instruction attempts
3338** to get a read lock but fails, the script terminates with an
3339** SQLITE_BUSY error code.
3340**
danielk1977d336e222009-02-20 10:58:41 +00003341** The P4 value may be either an integer (P4_INT32) or a pointer to
3342** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3343** structure, then said structure defines the content and collating
3344** sequence of the index being opened. Otherwise, if P4 is an integer
3345** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003346**
drh35263192014-07-22 20:02:19 +00003347** See also: OpenWrite, ReopenIdx
3348*/
3349/* Opcode: ReopenIdx P1 P2 P3 P4 P5
3350** Synopsis: root=P2 iDb=P3
3351**
3352** The ReopenIdx opcode works exactly like ReadOpen except that it first
3353** checks to see if the cursor on P1 is already open with a root page
3354** number of P2 and if it is this opcode becomes a no-op. In other words,
3355** if the cursor is already open, do not reopen it.
3356**
3357** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3358** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3359** every other ReopenIdx or OpenRead for the same cursor number.
3360**
3361** See the OpenRead opcode documentation for additional information.
drh5e00f6c2001-09-13 13:46:56 +00003362*/
drh98757152008-01-09 23:04:12 +00003363/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003364** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003365**
3366** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003367** page is P2. Or if P5!=0 use the content of register P2 to find the
3368** root page.
drhecdc7532001-09-23 02:35:53 +00003369**
danielk1977d336e222009-02-20 10:58:41 +00003370** The P4 value may be either an integer (P4_INT32) or a pointer to
3371** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3372** structure, then said structure defines the content and collating
3373** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003374** value, it is set to the number of columns in the table, or to the
3375** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003376**
drh001bbcb2003-03-19 03:14:00 +00003377** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003378** in read/write mode. For a given table, there can be one or more read-only
3379** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003380**
drh001bbcb2003-03-19 03:14:00 +00003381** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003382*/
drh35263192014-07-22 20:02:19 +00003383case OP_ReopenIdx: {
drh856c1032009-06-02 15:21:42 +00003384 int nField;
3385 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003386 int p2;
3387 int iDb;
drhf57b3392001-10-08 13:22:32 +00003388 int wrFlag;
3389 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003390 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003391 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003392
drhe0997b32015-03-20 14:57:50 +00003393 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh35263192014-07-22 20:02:19 +00003394 assert( pOp->p4type==P4_KEYINFO );
3395 pCur = p->apCsr[pOp->p1];
drhe8f2c9d2014-08-06 17:49:13 +00003396 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
drh35263192014-07-22 20:02:19 +00003397 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
drhe0997b32015-03-20 14:57:50 +00003398 goto open_cursor_set_hints;
drh35263192014-07-22 20:02:19 +00003399 }
3400 /* If the cursor is not currently open or is open on a different
3401 ** index, then fall through into OP_OpenRead to force a reopen */
drh5e00f6c2001-09-13 13:46:56 +00003402case OP_OpenRead:
drh1fa509a2015-03-20 16:34:49 +00003403case OP_OpenWrite:
drh856c1032009-06-02 15:21:42 +00003404
drhe0997b32015-03-20 14:57:50 +00003405 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh1713afb2013-06-28 01:24:57 +00003406 assert( p->bIsReader );
drh35263192014-07-22 20:02:19 +00003407 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3408 || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003409
danfa401de2009-10-16 14:55:03 +00003410 if( p->expired ){
drh47b7fc72014-11-11 01:33:57 +00003411 rc = SQLITE_ABORT_ROLLBACK;
drh9467abf2016-02-17 18:44:11 +00003412 goto abort_due_to_error;
danfa401de2009-10-16 14:55:03 +00003413 }
3414
drh856c1032009-06-02 15:21:42 +00003415 nField = 0;
3416 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003417 p2 = pOp->p2;
3418 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003419 assert( iDb>=0 && iDb<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003420 assert( DbMaskTest(p->btreeMask, iDb) );
drhd946db02005-12-29 19:23:06 +00003421 pDb = &db->aDb[iDb];
3422 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003423 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003424 if( pOp->opcode==OP_OpenWrite ){
danfd261ec2015-10-22 20:54:33 +00003425 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3426 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
drh21206082011-04-04 18:22:02 +00003427 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003428 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3429 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003430 }
3431 }else{
3432 wrFlag = 0;
3433 }
dan428c2182012-08-06 18:50:11 +00003434 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003435 assert( p2>0 );
drh9f6168b2016-03-19 23:32:58 +00003436 assert( p2<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00003437 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003438 assert( memIsValid(pIn2) );
3439 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003440 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003441 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003442 /* The p2 value always comes from a prior OP_CreateTable opcode and
3443 ** that opcode will always set the p2 value to 2 or more or else fail.
3444 ** If there were a failure, the prepared statement would have halted
3445 ** before reaching this instruction. */
drh9467abf2016-02-17 18:44:11 +00003446 assert( p2>=2 );
drh5edc3122001-09-13 21:53:09 +00003447 }
danielk1977d336e222009-02-20 10:58:41 +00003448 if( pOp->p4type==P4_KEYINFO ){
3449 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003450 assert( pKeyInfo->enc==ENC(db) );
3451 assert( pKeyInfo->db==db );
drhad124322013-10-23 13:30:58 +00003452 nField = pKeyInfo->nField+pKeyInfo->nXField;
danielk1977d336e222009-02-20 10:58:41 +00003453 }else if( pOp->p4type==P4_INT32 ){
3454 nField = pOp->p4.i;
3455 }
drh653b82a2009-06-22 11:10:47 +00003456 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003457 assert( nField>=0 );
3458 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
drhc960dcb2015-11-20 19:22:01 +00003459 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
drh4774b132004-06-12 20:12:51 +00003460 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003461 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003462 pCur->isOrdered = 1;
drh35263192014-07-22 20:02:19 +00003463 pCur->pgnoRoot = p2;
drhb89aeb62016-01-27 15:49:32 +00003464#ifdef SQLITE_DEBUG
3465 pCur->wrFlag = wrFlag;
3466#endif
drhc960dcb2015-11-20 19:22:01 +00003467 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
danielk1977d336e222009-02-20 10:58:41 +00003468 pCur->pKeyInfo = pKeyInfo;
drh14da87f2013-11-20 21:51:33 +00003469 /* Set the VdbeCursor.isTable variable. Previous versions of
danielk1977172114a2009-07-07 15:47:12 +00003470 ** SQLite used to check if the root-page flags were sane at this point
3471 ** and report database corruption if they were not, but this check has
3472 ** since moved into the btree layer. */
3473 pCur->isTable = pOp->p4type!=P4_KEYINFO;
drhe0997b32015-03-20 14:57:50 +00003474
3475open_cursor_set_hints:
3476 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3477 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
drh0403cb32015-08-14 23:57:04 +00003478 testcase( pOp->p5 & OPFLAG_BULKCSR );
drh9abe8412016-01-02 05:00:31 +00003479#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh0403cb32015-08-14 23:57:04 +00003480 testcase( pOp->p2 & OPFLAG_SEEKEQ );
3481#endif
drhc960dcb2015-11-20 19:22:01 +00003482 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
drhf7854c72015-10-27 13:24:37 +00003483 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
drh9467abf2016-02-17 18:44:11 +00003484 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003485 break;
3486}
3487
drh2a5d9902011-08-26 00:34:45 +00003488/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003489** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003490**
drhb9bb7c12006-06-11 23:41:55 +00003491** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003492** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003493** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003494** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003495**
drh25d3adb2010-04-05 15:11:08 +00003496** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003497** The cursor points to a BTree table if P4==0 and to a BTree index
3498** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003499** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003500**
drh2a5d9902011-08-26 00:34:45 +00003501** The P5 parameter can be a mask of the BTREE_* flags defined
3502** in btree.h. These flags control aspects of the operation of
3503** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3504** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003505*/
drha21a64d2010-04-06 22:33:55 +00003506/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003507** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003508**
3509** This opcode works the same as OP_OpenEphemeral. It has a
3510** different name to distinguish its use. Tables created using
3511** by this opcode will be used for automatically created transient
3512** indices in joins.
3513*/
3514case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003515case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003516 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003517 KeyInfo *pKeyInfo;
3518
drhd4187c72010-08-30 22:15:45 +00003519 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003520 SQLITE_OPEN_READWRITE |
3521 SQLITE_OPEN_CREATE |
3522 SQLITE_OPEN_EXCLUSIVE |
3523 SQLITE_OPEN_DELETEONCLOSE |
3524 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003525 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003526 assert( pOp->p2>=0 );
drhc960dcb2015-11-20 19:22:01 +00003527 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
drh4774b132004-06-12 20:12:51 +00003528 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003529 pCx->nullRow = 1;
drh079a3072014-03-19 14:10:55 +00003530 pCx->isEphemeral = 1;
dan3a6d8ae2011-04-23 15:54:54 +00003531 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
drhd4187c72010-08-30 22:15:45 +00003532 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003533 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003534 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003535 }
3536 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003537 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003538 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003539 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003540 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003541 */
drh41e13e12013-11-07 14:09:39 +00003542 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
drhc6b52df2002-01-04 03:09:29 +00003543 int pgno;
drh66a51672008-01-03 00:01:23 +00003544 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003545 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003546 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003547 assert( pgno==MASTER_ROOT+1 );
drh41e13e12013-11-07 14:09:39 +00003548 assert( pKeyInfo->db==db );
3549 assert( pKeyInfo->enc==ENC(db) );
3550 pCx->pKeyInfo = pKeyInfo;
drh62aaa6c2015-11-21 17:27:42 +00003551 rc = sqlite3BtreeCursor(pCx->pBt, pgno, BTREE_WRCSR,
3552 pKeyInfo, pCx->uc.pCursor);
drhc6b52df2002-01-04 03:09:29 +00003553 }
drhf0863fe2005-06-12 21:35:51 +00003554 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003555 }else{
drh62aaa6c2015-11-21 17:27:42 +00003556 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, BTREE_WRCSR,
3557 0, pCx->uc.pCursor);
drhf0863fe2005-06-12 21:35:51 +00003558 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003559 }
drh5e00f6c2001-09-13 13:46:56 +00003560 }
drh9467abf2016-02-17 18:44:11 +00003561 if( rc ) goto abort_due_to_error;
drhd4187c72010-08-30 22:15:45 +00003562 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
dan5134d132011-09-02 10:31:11 +00003563 break;
3564}
3565
danfad9f9a2014-04-01 18:41:51 +00003566/* Opcode: SorterOpen P1 P2 P3 P4 *
dan5134d132011-09-02 10:31:11 +00003567**
3568** This opcode works like OP_OpenEphemeral except that it opens
3569** a transient index that is specifically designed to sort large
3570** tables using an external merge-sort algorithm.
danfad9f9a2014-04-01 18:41:51 +00003571**
3572** If argument P3 is non-zero, then it indicates that the sorter may
3573** assume that a stable sort considering the first P3 fields of each
3574** key is sufficient to produce the required results.
dan5134d132011-09-02 10:31:11 +00003575*/
drhca892a72011-09-03 00:17:51 +00003576case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003577 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003578
drh399af1d2013-11-20 17:25:55 +00003579 assert( pOp->p1>=0 );
3580 assert( pOp->p2>=0 );
drhc960dcb2015-11-20 19:22:01 +00003581 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
dan5134d132011-09-02 10:31:11 +00003582 if( pCx==0 ) goto no_mem;
3583 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003584 assert( pCx->pKeyInfo->db==db );
3585 assert( pCx->pKeyInfo->enc==ENC(db) );
danfad9f9a2014-04-01 18:41:51 +00003586 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
drh9467abf2016-02-17 18:44:11 +00003587 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003588 break;
3589}
3590
dan78d58432014-03-25 15:04:07 +00003591/* Opcode: SequenceTest P1 P2 * * *
3592** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3593**
3594** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3595** to P2. Regardless of whether or not the jump is taken, increment the
3596** the sequence value.
3597*/
3598case OP_SequenceTest: {
3599 VdbeCursor *pC;
3600 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3601 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00003602 assert( isSorter(pC) );
dan78d58432014-03-25 15:04:07 +00003603 if( (pC->seqCount++)==0 ){
drhf56fa462015-04-13 21:39:54 +00003604 goto jump_to_p2;
dan78d58432014-03-25 15:04:07 +00003605 }
drh5e00f6c2001-09-13 13:46:56 +00003606 break;
3607}
3608
drh5f612292014-02-08 23:20:32 +00003609/* Opcode: OpenPseudo P1 P2 P3 * *
drh60830e32014-02-10 15:56:34 +00003610** Synopsis: P3 columns in r[P2]
drh70ce3f02003-04-15 19:22:22 +00003611**
3612** Open a new cursor that points to a fake table that contains a single
drh5f612292014-02-08 23:20:32 +00003613** row of data. The content of that one row is the content of memory
3614** register P2. In other words, cursor P1 becomes an alias for the
3615** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003616**
drh2d8d7ce2010-02-15 15:17:05 +00003617** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003618** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003619** individual columns using the OP_Column opcode. The OP_Column opcode
3620** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003621**
3622** P3 is the number of fields in the records that will be stored by
3623** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003624*/
drh9cbf3422008-01-17 16:22:13 +00003625case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003626 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003627
drh653b82a2009-06-22 11:10:47 +00003628 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003629 assert( pOp->p3>=0 );
drhc960dcb2015-11-20 19:22:01 +00003630 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
drh4774b132004-06-12 20:12:51 +00003631 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003632 pCx->nullRow = 1;
drhc960dcb2015-11-20 19:22:01 +00003633 pCx->uc.pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003634 pCx->isTable = 1;
drh5f612292014-02-08 23:20:32 +00003635 assert( pOp->p5==0 );
drh70ce3f02003-04-15 19:22:22 +00003636 break;
3637}
3638
drh98757152008-01-09 23:04:12 +00003639/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003640**
3641** Close a cursor previously opened as P1. If P1 is not
3642** currently open, this instruction is a no-op.
3643*/
drh9cbf3422008-01-17 16:22:13 +00003644case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003645 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3646 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3647 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003648 break;
3649}
3650
drh97bae792015-06-05 15:59:57 +00003651#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3652/* Opcode: ColumnsUsed P1 * * P4 *
3653**
3654** This opcode (which only exists if SQLite was compiled with
3655** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3656** table or index for cursor P1 are used. P4 is a 64-bit integer
3657** (P4_INT64) in which the first 63 bits are one for each of the
3658** first 63 columns of the table or index that are actually used
3659** by the cursor. The high-order bit is set if any column after
3660** the 64th is used.
3661*/
3662case OP_ColumnsUsed: {
3663 VdbeCursor *pC;
3664 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00003665 assert( pC->eCurType==CURTYPE_BTREE );
drh97bae792015-06-05 15:59:57 +00003666 pC->maskUsed = *(u64*)pOp->p4.pI64;
3667 break;
3668}
3669#endif
3670
drh8af3f772014-07-25 18:01:06 +00003671/* Opcode: SeekGE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003672** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003673**
danielk1977b790c6c2008-04-18 10:25:24 +00003674** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003675** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003676** to an SQL index, then P3 is the first in an array of P4 registers
3677** that are used as an unpacked index key.
3678**
3679** Reposition cursor P1 so that it points to the smallest entry that
3680** is greater than or equal to the key value. If there are no records
3681** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003682**
drhb1d607d2015-11-05 22:30:54 +00003683** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3684** opcode will always land on a record that equally equals the key, or
3685** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3686** opcode must be followed by an IdxLE opcode with the same arguments.
3687** The IdxLE opcode will be skipped if this opcode succeeds, but the
3688** IdxLE opcode will be used on subsequent loop iterations.
3689**
drh8af3f772014-07-25 18:01:06 +00003690** This opcode leaves the cursor configured to move in forward order,
drhbc5cf382014-08-06 01:08:07 +00003691** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003692** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003693**
drh935850e2014-05-24 17:15:15 +00003694** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003695*/
drh8af3f772014-07-25 18:01:06 +00003696/* Opcode: SeekGT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003697** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00003698**
danielk1977b790c6c2008-04-18 10:25:24 +00003699** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003700** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003701** to an SQL index, then P3 is the first in an array of P4 registers
3702** that are used as an unpacked index key.
3703**
3704** Reposition cursor P1 so that it points to the smallest entry that
3705** is greater than the key value. If there are no records greater than
3706** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003707**
drh8af3f772014-07-25 18:01:06 +00003708** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00003709** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003710** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003711**
drh935850e2014-05-24 17:15:15 +00003712** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003713*/
drh8af3f772014-07-25 18:01:06 +00003714/* Opcode: SeekLT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003715** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00003716**
danielk1977b790c6c2008-04-18 10:25:24 +00003717** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003718** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003719** to an SQL index, then P3 is the first in an array of P4 registers
3720** that are used as an unpacked index key.
3721**
3722** Reposition cursor P1 so that it points to the largest entry that
3723** is less than the key value. If there are no records less than
3724** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003725**
drh8af3f772014-07-25 18:01:06 +00003726** This opcode leaves the cursor configured to move in reverse order,
3727** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003728** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003729**
drh935850e2014-05-24 17:15:15 +00003730** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003731*/
drh8af3f772014-07-25 18:01:06 +00003732/* Opcode: SeekLE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003733** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00003734**
danielk1977b790c6c2008-04-18 10:25:24 +00003735** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003736** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003737** to an SQL index, then P3 is the first in an array of P4 registers
3738** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003739**
danielk1977b790c6c2008-04-18 10:25:24 +00003740** Reposition cursor P1 so that it points to the largest entry that
3741** is less than or equal to the key value. If there are no records
3742** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003743**
drh8af3f772014-07-25 18:01:06 +00003744** This opcode leaves the cursor configured to move in reverse order,
3745** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003746** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003747**
drhb1d607d2015-11-05 22:30:54 +00003748** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3749** opcode will always land on a record that equally equals the key, or
3750** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3751** opcode must be followed by an IdxGE opcode with the same arguments.
3752** The IdxGE opcode will be skipped if this opcode succeeds, but the
3753** IdxGE opcode will be used on subsequent loop iterations.
3754**
drh935850e2014-05-24 17:15:15 +00003755** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003756*/
drh4a1d3652014-02-14 15:13:36 +00003757case OP_SeekLT: /* jump, in3 */
3758case OP_SeekLE: /* jump, in3 */
3759case OP_SeekGE: /* jump, in3 */
3760case OP_SeekGT: { /* jump, in3 */
drhb1d607d2015-11-05 22:30:54 +00003761 int res; /* Comparison result */
3762 int oc; /* Opcode */
3763 VdbeCursor *pC; /* The cursor to seek */
3764 UnpackedRecord r; /* The key to seek for */
3765 int nField; /* Number of columns or fields in the key */
3766 i64 iKey; /* The rowid we are to seek to */
drhd6b79462015-11-07 01:19:00 +00003767 int eqOnly; /* Only interested in == results */
drh80ff32f2001-11-04 18:32:46 +00003768
drh653b82a2009-06-22 11:10:47 +00003769 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003770 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003771 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003772 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00003773 assert( pC->eCurType==CURTYPE_BTREE );
drh4a1d3652014-02-14 15:13:36 +00003774 assert( OP_SeekLE == OP_SeekLT+1 );
3775 assert( OP_SeekGE == OP_SeekLT+2 );
3776 assert( OP_SeekGT == OP_SeekLT+3 );
drhd4187c72010-08-30 22:15:45 +00003777 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00003778 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00003779 oc = pOp->opcode;
drhd6b79462015-11-07 01:19:00 +00003780 eqOnly = 0;
drh3da046d2013-11-11 03:24:11 +00003781 pC->nullRow = 0;
drh8af3f772014-07-25 18:01:06 +00003782#ifdef SQLITE_DEBUG
3783 pC->seekOp = pOp->opcode;
3784#endif
drhe0997b32015-03-20 14:57:50 +00003785
drh3da046d2013-11-11 03:24:11 +00003786 if( pC->isTable ){
drhd6b79462015-11-07 01:19:00 +00003787 /* The BTREE_SEEK_EQ flag is only set on index cursors */
drhc960dcb2015-11-20 19:22:01 +00003788 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 );
drhd6b79462015-11-07 01:19:00 +00003789
drh3da046d2013-11-11 03:24:11 +00003790 /* The input value in P3 might be of any type: integer, real, string,
3791 ** blob, or NULL. But it needs to be an integer before we can do
peter.d.reid60ec9142014-09-06 16:39:46 +00003792 ** the seek, so convert it. */
drh3da046d2013-11-11 03:24:11 +00003793 pIn3 = &aMem[pOp->p3];
drh11a6eee2014-09-19 22:01:54 +00003794 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drhbd9507c2014-08-23 17:21:37 +00003795 applyNumericAffinity(pIn3, 0);
3796 }
drh3da046d2013-11-11 03:24:11 +00003797 iKey = sqlite3VdbeIntValue(pIn3);
drh959403f2008-12-12 17:56:16 +00003798
drh3da046d2013-11-11 03:24:11 +00003799 /* If the P3 value could not be converted into an integer without
3800 ** loss of information, then special processing is required... */
3801 if( (pIn3->flags & MEM_Int)==0 ){
3802 if( (pIn3->flags & MEM_Real)==0 ){
3803 /* If the P3 value cannot be converted into any kind of a number,
3804 ** then the seek is not possible, so jump to P2 */
drhf56fa462015-04-13 21:39:54 +00003805 VdbeBranchTaken(1,2); goto jump_to_p2;
drh3da046d2013-11-11 03:24:11 +00003806 break;
3807 }
drh959403f2008-12-12 17:56:16 +00003808
danaa1776f2013-11-26 18:22:59 +00003809 /* If the approximation iKey is larger than the actual real search
3810 ** term, substitute >= for > and < for <=. e.g. if the search term
3811 ** is 4.9 and the integer approximation 5:
3812 **
3813 ** (x > 4.9) -> (x >= 5)
3814 ** (x <= 4.9) -> (x < 5)
3815 */
drh74eaba42014-09-18 17:52:15 +00003816 if( pIn3->u.r<(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003817 assert( OP_SeekGE==(OP_SeekGT-1) );
3818 assert( OP_SeekLT==(OP_SeekLE-1) );
3819 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3820 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
danaa1776f2013-11-26 18:22:59 +00003821 }
3822
3823 /* If the approximation iKey is smaller than the actual real search
3824 ** term, substitute <= for < and > for >=. */
drh74eaba42014-09-18 17:52:15 +00003825 else if( pIn3->u.r>(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003826 assert( OP_SeekLE==(OP_SeekLT+1) );
3827 assert( OP_SeekGT==(OP_SeekGE+1) );
3828 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3829 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
drh8721ce42001-11-07 14:22:00 +00003830 }
drh3da046d2013-11-11 03:24:11 +00003831 }
drhc960dcb2015-11-20 19:22:01 +00003832 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003833 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003834 if( rc!=SQLITE_OK ){
3835 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00003836 }
drhaa736092009-06-22 00:55:30 +00003837 }else{
drhd6b79462015-11-07 01:19:00 +00003838 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3839 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3840 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3841 */
drhc960dcb2015-11-20 19:22:01 +00003842 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
drhd6b79462015-11-07 01:19:00 +00003843 eqOnly = 1;
3844 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3845 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3846 assert( pOp[1].p1==pOp[0].p1 );
3847 assert( pOp[1].p2==pOp[0].p2 );
3848 assert( pOp[1].p3==pOp[0].p3 );
3849 assert( pOp[1].p4.i==pOp[0].p4.i );
3850 }
3851
drh3da046d2013-11-11 03:24:11 +00003852 nField = pOp->p4.i;
3853 assert( pOp->p4type==P4_INT32 );
3854 assert( nField>0 );
3855 r.pKeyInfo = pC->pKeyInfo;
3856 r.nField = (u16)nField;
3857
3858 /* The next line of code computes as follows, only faster:
drh4a1d3652014-02-14 15:13:36 +00003859 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
dan1fed5da2014-02-25 21:01:25 +00003860 ** r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00003861 ** }else{
dan1fed5da2014-02-25 21:01:25 +00003862 ** r.default_rc = +1;
drh3da046d2013-11-11 03:24:11 +00003863 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00003864 */
dan1fed5da2014-02-25 21:01:25 +00003865 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3866 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3867 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3868 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3869 assert( oc!=OP_SeekLT || r.default_rc==+1 );
drh3da046d2013-11-11 03:24:11 +00003870
3871 r.aMem = &aMem[pOp->p3];
3872#ifdef SQLITE_DEBUG
3873 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3874#endif
drh70528d72015-11-05 20:25:09 +00003875 r.eqSeen = 0;
drhc960dcb2015-11-20 19:22:01 +00003876 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
drh3da046d2013-11-11 03:24:11 +00003877 if( rc!=SQLITE_OK ){
3878 goto abort_due_to_error;
3879 }
drhb1d607d2015-11-05 22:30:54 +00003880 if( eqOnly && r.eqSeen==0 ){
3881 assert( res!=0 );
3882 goto seek_not_found;
drh70528d72015-11-05 20:25:09 +00003883 }
drh3da046d2013-11-11 03:24:11 +00003884 }
3885 pC->deferredMoveto = 0;
3886 pC->cacheStatus = CACHE_STALE;
3887#ifdef SQLITE_TEST
3888 sqlite3_search_count++;
3889#endif
drh4a1d3652014-02-14 15:13:36 +00003890 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3891 if( res<0 || (res==0 && oc==OP_SeekGT) ){
drhe39a7322014-02-03 14:04:11 +00003892 res = 0;
drhc960dcb2015-11-20 19:22:01 +00003893 rc = sqlite3BtreeNext(pC->uc.pCursor, &res);
drh3da046d2013-11-11 03:24:11 +00003894 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003895 }else{
3896 res = 0;
3897 }
3898 }else{
drh4a1d3652014-02-14 15:13:36 +00003899 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3900 if( res>0 || (res==0 && oc==OP_SeekLT) ){
drhe39a7322014-02-03 14:04:11 +00003901 res = 0;
drhc960dcb2015-11-20 19:22:01 +00003902 rc = sqlite3BtreePrevious(pC->uc.pCursor, &res);
drh3da046d2013-11-11 03:24:11 +00003903 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003904 }else{
3905 /* res might be negative because the table is empty. Check to
3906 ** see if this is the case.
3907 */
drhc960dcb2015-11-20 19:22:01 +00003908 res = sqlite3BtreeEof(pC->uc.pCursor);
drh3da046d2013-11-11 03:24:11 +00003909 }
3910 }
drhb1d607d2015-11-05 22:30:54 +00003911seek_not_found:
drh3da046d2013-11-11 03:24:11 +00003912 assert( pOp->p2>0 );
drh688852a2014-02-17 22:40:43 +00003913 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00003914 if( res ){
drhf56fa462015-04-13 21:39:54 +00003915 goto jump_to_p2;
drhb1d607d2015-11-05 22:30:54 +00003916 }else if( eqOnly ){
3917 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3918 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
drh5e00f6c2001-09-13 13:46:56 +00003919 }
drh5e00f6c2001-09-13 13:46:56 +00003920 break;
3921}
dan71c57db2016-07-09 20:23:55 +00003922
drh8cff69d2009-11-12 19:59:44 +00003923/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003924** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003925**
drh8cff69d2009-11-12 19:59:44 +00003926** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3927** P4>0 then register P3 is the first of P4 registers that form an unpacked
3928** record.
3929**
3930** Cursor P1 is on an index btree. If the record identified by P3 and P4
3931** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003932** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00003933**
drhcefc87f2014-08-01 01:40:33 +00003934** This operation leaves the cursor in a state where it can be
3935** advanced in the forward direction. The Next instruction will work,
3936** but not the Prev instruction.
drh8af3f772014-07-25 18:01:06 +00003937**
drh6f225d02013-10-26 13:36:51 +00003938** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00003939*/
drh8cff69d2009-11-12 19:59:44 +00003940/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003941** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003942**
drh8cff69d2009-11-12 19:59:44 +00003943** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3944** P4>0 then register P3 is the first of P4 registers that form an unpacked
3945** record.
3946**
3947** Cursor P1 is on an index btree. If the record identified by P3 and P4
3948** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3949** does contain an entry whose prefix matches the P3/P4 record then control
3950** falls through to the next instruction and P1 is left pointing at the
3951** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003952**
drh8af3f772014-07-25 18:01:06 +00003953** This operation leaves the cursor in a state where it cannot be
3954** advanced in either direction. In other words, the Next and Prev
3955** opcodes do not work after this operation.
3956**
drh6f225d02013-10-26 13:36:51 +00003957** See also: Found, NotExists, NoConflict
drh5e00f6c2001-09-13 13:46:56 +00003958*/
drh6f225d02013-10-26 13:36:51 +00003959/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00003960** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00003961**
3962** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3963** P4>0 then register P3 is the first of P4 registers that form an unpacked
3964** record.
3965**
3966** Cursor P1 is on an index btree. If the record identified by P3 and P4
3967** contains any NULL value, jump immediately to P2. If all terms of the
3968** record are not-NULL then a check is done to determine if any row in the
3969** P1 index btree has a matching key prefix. If there are no matches, jump
3970** immediately to P2. If there is a match, fall through and leave the P1
3971** cursor pointing to the matching row.
3972**
3973** This opcode is similar to OP_NotFound with the exceptions that the
3974** branch is always taken if any part of the search key input is NULL.
3975**
drh8af3f772014-07-25 18:01:06 +00003976** This operation leaves the cursor in a state where it cannot be
3977** advanced in either direction. In other words, the Next and Prev
3978** opcodes do not work after this operation.
3979**
drh6f225d02013-10-26 13:36:51 +00003980** See also: NotFound, Found, NotExists
3981*/
3982case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00003983case OP_NotFound: /* jump, in3 */
3984case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003985 int alreadyExists;
drhf56fa462015-04-13 21:39:54 +00003986 int takeJump;
drh6f225d02013-10-26 13:36:51 +00003987 int ii;
drhdfe88ec2008-11-03 20:55:06 +00003988 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003989 int res;
dan03e9cfc2011-09-05 14:20:27 +00003990 char *pFree;
drh856c1032009-06-02 15:21:42 +00003991 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003992 UnpackedRecord r;
drhb4139222013-11-06 14:36:08 +00003993 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
drh856c1032009-06-02 15:21:42 +00003994
dan0ff297e2009-09-25 17:03:14 +00003995#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00003996 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00003997#endif
3998
drhaa736092009-06-22 00:55:30 +00003999 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00004000 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00004001 pC = p->apCsr[pOp->p1];
4002 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00004003#ifdef SQLITE_DEBUG
drhcefc87f2014-08-01 01:40:33 +00004004 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00004005#endif
drh3c657212009-11-17 23:59:58 +00004006 pIn3 = &aMem[pOp->p3];
drhc960dcb2015-11-20 19:22:01 +00004007 assert( pC->eCurType==CURTYPE_BTREE );
4008 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00004009 assert( pC->isTable==0 );
drhf56fa462015-04-13 21:39:54 +00004010 pFree = 0;
drh3da046d2013-11-11 03:24:11 +00004011 if( pOp->p4.i>0 ){
4012 r.pKeyInfo = pC->pKeyInfo;
4013 r.nField = (u16)pOp->p4.i;
4014 r.aMem = pIn3;
drh8aaf7bc2016-09-20 01:19:18 +00004015#ifdef SQLITE_DEBUG
drh826af372014-02-08 19:12:21 +00004016 for(ii=0; ii<r.nField; ii++){
4017 assert( memIsValid(&r.aMem[ii]) );
drh8aaf7bc2016-09-20 01:19:18 +00004018 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
drh826af372014-02-08 19:12:21 +00004019 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
drh826af372014-02-08 19:12:21 +00004020 }
drh8aaf7bc2016-09-20 01:19:18 +00004021#endif
drh3da046d2013-11-11 03:24:11 +00004022 pIdxKey = &r;
4023 }else{
4024 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
4025 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
danb391b942014-11-07 14:41:11 +00004026 );
drh3da046d2013-11-11 03:24:11 +00004027 if( pIdxKey==0 ) goto no_mem;
4028 assert( pIn3->flags & MEM_Blob );
drh2eb22af2016-09-10 19:51:40 +00004029 (void)ExpandBlob(pIn3);
drh3da046d2013-11-11 03:24:11 +00004030 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh5e00f6c2001-09-13 13:46:56 +00004031 }
dan1fed5da2014-02-25 21:01:25 +00004032 pIdxKey->default_rc = 0;
drhf56fa462015-04-13 21:39:54 +00004033 takeJump = 0;
drh3da046d2013-11-11 03:24:11 +00004034 if( pOp->opcode==OP_NoConflict ){
4035 /* For the OP_NoConflict opcode, take the jump if any of the
4036 ** input fields are NULL, since any key with a NULL will not
4037 ** conflict */
mistachkin7bb6e8e2015-01-12 18:52:41 +00004038 for(ii=0; ii<pIdxKey->nField; ii++){
4039 if( pIdxKey->aMem[ii].flags & MEM_Null ){
drhf56fa462015-04-13 21:39:54 +00004040 takeJump = 1;
drh3da046d2013-11-11 03:24:11 +00004041 break;
drh6f225d02013-10-26 13:36:51 +00004042 }
4043 }
drh5e00f6c2001-09-13 13:46:56 +00004044 }
drhc960dcb2015-11-20 19:22:01 +00004045 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
drhf56fa462015-04-13 21:39:54 +00004046 sqlite3DbFree(db, pFree);
drh3da046d2013-11-11 03:24:11 +00004047 if( rc!=SQLITE_OK ){
drh9467abf2016-02-17 18:44:11 +00004048 goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00004049 }
4050 pC->seekResult = res;
4051 alreadyExists = (res==0);
4052 pC->nullRow = 1-alreadyExists;
4053 pC->deferredMoveto = 0;
4054 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004055 if( pOp->opcode==OP_Found ){
drh688852a2014-02-17 22:40:43 +00004056 VdbeBranchTaken(alreadyExists!=0,2);
drhf56fa462015-04-13 21:39:54 +00004057 if( alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004058 }else{
drhf56fa462015-04-13 21:39:54 +00004059 VdbeBranchTaken(takeJump||alreadyExists==0,2);
4060 if( takeJump || !alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004061 }
drh5e00f6c2001-09-13 13:46:56 +00004062 break;
4063}
4064
drheeb95652016-05-26 20:56:38 +00004065/* Opcode: SeekRowid P1 P2 P3 * *
4066** Synopsis: intkey=r[P3]
4067**
4068** P1 is the index of a cursor open on an SQL table btree (with integer
4069** keys). If register P3 does not contain an integer or if P1 does not
4070** contain a record with rowid P3 then jump immediately to P2.
4071** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4072** a record with rowid P3 then
4073** leave the cursor pointing at that record and fall through to the next
4074** instruction.
4075**
4076** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4077** the P3 register must be guaranteed to contain an integer value. With this
4078** opcode, register P3 might not contain an integer.
4079**
4080** The OP_NotFound opcode performs the same operation on index btrees
4081** (with arbitrary multi-value keys).
4082**
4083** This opcode leaves the cursor in a state where it cannot be advanced
4084** in either direction. In other words, the Next and Prev opcodes will
4085** not work following this opcode.
4086**
4087** See also: Found, NotFound, NoConflict, SeekRowid
4088*/
drh9cbf3422008-01-17 16:22:13 +00004089/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004090** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00004091**
drh261c02d2013-10-25 14:46:15 +00004092** P1 is the index of a cursor open on an SQL table btree (with integer
4093** keys). P3 is an integer rowid. If P1 does not contain a record with
danc6157e12015-09-14 09:23:47 +00004094** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
4095** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4096** leave the cursor pointing at that record and fall through to the next
4097** instruction.
drh6b125452002-01-28 15:53:03 +00004098**
drheeb95652016-05-26 20:56:38 +00004099** The OP_SeekRowid opcode performs the same operation but also allows the
4100** P3 register to contain a non-integer value, in which case the jump is
4101** always taken. This opcode requires that P3 always contain an integer.
4102**
drh261c02d2013-10-25 14:46:15 +00004103** The OP_NotFound opcode performs the same operation on index btrees
4104** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00004105**
drh8af3f772014-07-25 18:01:06 +00004106** This opcode leaves the cursor in a state where it cannot be advanced
4107** in either direction. In other words, the Next and Prev opcodes will
4108** not work following this opcode.
4109**
drheeb95652016-05-26 20:56:38 +00004110** See also: Found, NotFound, NoConflict, SeekRowid
drh6b125452002-01-28 15:53:03 +00004111*/
drheeb95652016-05-26 20:56:38 +00004112case OP_SeekRowid: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00004113 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00004114 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004115 int res;
4116 u64 iKey;
4117
drh3c657212009-11-17 23:59:58 +00004118 pIn3 = &aMem[pOp->p3];
drheeb95652016-05-26 20:56:38 +00004119 if( (pIn3->flags & MEM_Int)==0 ){
4120 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
4121 if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2;
4122 }
4123 /* Fall through into OP_NotExists */
4124case OP_NotExists: /* jump, in3 */
4125 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00004126 assert( pIn3->flags & MEM_Int );
4127 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4128 pC = p->apCsr[pOp->p1];
4129 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00004130#ifdef SQLITE_DEBUG
4131 pC->seekOp = 0;
4132#endif
drhaa736092009-06-22 00:55:30 +00004133 assert( pC->isTable );
drhc960dcb2015-11-20 19:22:01 +00004134 assert( pC->eCurType==CURTYPE_BTREE );
4135 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00004136 assert( pCrsr!=0 );
4137 res = 0;
4138 iKey = pIn3->u.i;
4139 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drhb79d5522015-09-14 19:26:37 +00004140 assert( rc==SQLITE_OK || res==0 );
drhb53a5a92014-10-12 22:37:22 +00004141 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00004142 pC->nullRow = 0;
4143 pC->cacheStatus = CACHE_STALE;
4144 pC->deferredMoveto = 0;
drh688852a2014-02-17 22:40:43 +00004145 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00004146 pC->seekResult = res;
danc6157e12015-09-14 09:23:47 +00004147 if( res!=0 ){
drhb79d5522015-09-14 19:26:37 +00004148 assert( rc==SQLITE_OK );
4149 if( pOp->p2==0 ){
4150 rc = SQLITE_CORRUPT_BKPT;
4151 }else{
4152 goto jump_to_p2;
4153 }
danc6157e12015-09-14 09:23:47 +00004154 }
drh9467abf2016-02-17 18:44:11 +00004155 if( rc ) goto abort_due_to_error;
drh6b125452002-01-28 15:53:03 +00004156 break;
4157}
4158
drh4c583122008-01-04 22:01:03 +00004159/* Opcode: Sequence P1 P2 * * *
drh079a3072014-03-19 14:10:55 +00004160** Synopsis: r[P2]=cursor[P1].ctr++
drh4db38a72005-09-01 12:16:28 +00004161**
drh4c583122008-01-04 22:01:03 +00004162** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00004163** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00004164** The sequence number on the cursor is incremented after this
4165** instruction.
drh4db38a72005-09-01 12:16:28 +00004166*/
drh27a348c2015-04-13 19:14:06 +00004167case OP_Sequence: { /* out2 */
drh653b82a2009-06-22 11:10:47 +00004168 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4169 assert( p->apCsr[pOp->p1]!=0 );
drhc960dcb2015-11-20 19:22:01 +00004170 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
drh27a348c2015-04-13 19:14:06 +00004171 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004172 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00004173 break;
4174}
4175
4176
drh98757152008-01-09 23:04:12 +00004177/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004178** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004179**
drhf0863fe2005-06-12 21:35:51 +00004180** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00004181** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00004182** table that cursor P1 points to. The new record number is written
4183** written to register P2.
drh205f48e2004-11-05 00:43:11 +00004184**
dan76d462e2009-08-30 11:42:51 +00004185** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4186** the largest previously generated record number. No new record numbers are
4187** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00004188** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00004189** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00004190** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00004191*/
drh27a348c2015-04-13 19:14:06 +00004192case OP_NewRowid: { /* out2 */
drhaa736092009-06-22 00:55:30 +00004193 i64 v; /* The new rowid */
4194 VdbeCursor *pC; /* Cursor of table to get the new rowid */
4195 int res; /* Result of an sqlite3BtreeLast() */
4196 int cnt; /* Counter to limit the number of searches */
4197 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00004198 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00004199
drh856c1032009-06-02 15:21:42 +00004200 v = 0;
4201 res = 0;
drh27a348c2015-04-13 19:14:06 +00004202 pOut = out2Prerelease(p, pOp);
drhaa736092009-06-22 00:55:30 +00004203 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4204 pC = p->apCsr[pOp->p1];
4205 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004206 assert( pC->eCurType==CURTYPE_BTREE );
4207 assert( pC->uc.pCursor!=0 );
drh98ef0f62015-06-30 01:25:52 +00004208 {
drh5cf8e8c2002-02-19 22:42:05 +00004209 /* The next rowid or record number (different terms for the same
4210 ** thing) is obtained in a two-step algorithm.
4211 **
4212 ** First we attempt to find the largest existing rowid and add one
4213 ** to that. But if the largest existing rowid is already the maximum
4214 ** positive integer, we have to fall through to the second
4215 ** probabilistic algorithm
4216 **
4217 ** The second algorithm is to select a rowid at random and see if
4218 ** it already exists in the table. If it does not exist, we have
4219 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00004220 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00004221 */
drhaa736092009-06-22 00:55:30 +00004222 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00004223
drh75f86a42005-02-17 00:03:06 +00004224#ifdef SQLITE_32BIT_ROWID
4225# define MAX_ROWID 0x7fffffff
4226#else
drhfe2093d2005-01-20 22:48:47 +00004227 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4228 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4229 ** to provide the constant while making all compilers happy.
4230 */
danielk197764202cf2008-11-17 15:31:47 +00004231# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00004232#endif
drhfe2093d2005-01-20 22:48:47 +00004233
drh5cf8e8c2002-02-19 22:42:05 +00004234 if( !pC->useRandomRowid ){
drhc960dcb2015-11-20 19:22:01 +00004235 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
drhe0670b62014-02-12 21:31:12 +00004236 if( rc!=SQLITE_OK ){
4237 goto abort_due_to_error;
4238 }
4239 if( res ){
4240 v = 1; /* IMP: R-61914-48074 */
4241 }else{
drhc960dcb2015-11-20 19:22:01 +00004242 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
drha7c90c42016-06-04 20:37:10 +00004243 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drhe0670b62014-02-12 21:31:12 +00004244 if( v>=MAX_ROWID ){
4245 pC->useRandomRowid = 1;
drh5cf8e8c2002-02-19 22:42:05 +00004246 }else{
drhe0670b62014-02-12 21:31:12 +00004247 v++; /* IMP: R-29538-34987 */
drh5cf8e8c2002-02-19 22:42:05 +00004248 }
drh3fc190c2001-09-14 03:24:23 +00004249 }
drhe0670b62014-02-12 21:31:12 +00004250 }
drh205f48e2004-11-05 00:43:11 +00004251
4252#ifndef SQLITE_OMIT_AUTOINCREMENT
drhe0670b62014-02-12 21:31:12 +00004253 if( pOp->p3 ){
4254 /* Assert that P3 is a valid memory cell. */
4255 assert( pOp->p3>0 );
4256 if( p->pFrame ){
4257 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00004258 /* Assert that P3 is a valid memory cell. */
drhe0670b62014-02-12 21:31:12 +00004259 assert( pOp->p3<=pFrame->nMem );
4260 pMem = &pFrame->aMem[pOp->p3];
4261 }else{
4262 /* Assert that P3 is a valid memory cell. */
drh9f6168b2016-03-19 23:32:58 +00004263 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhe0670b62014-02-12 21:31:12 +00004264 pMem = &aMem[pOp->p3];
4265 memAboutToChange(p, pMem);
drh205f48e2004-11-05 00:43:11 +00004266 }
drhe0670b62014-02-12 21:31:12 +00004267 assert( memIsValid(pMem) );
drh205f48e2004-11-05 00:43:11 +00004268
drhe0670b62014-02-12 21:31:12 +00004269 REGISTER_TRACE(pOp->p3, pMem);
4270 sqlite3VdbeMemIntegerify(pMem);
4271 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4272 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhe77caa12016-11-02 13:18:46 +00004273 rc = SQLITE_FULL; /* IMP: R-17817-00630 */
drhe0670b62014-02-12 21:31:12 +00004274 goto abort_due_to_error;
4275 }
4276 if( v<pMem->u.i+1 ){
4277 v = pMem->u.i + 1;
4278 }
4279 pMem->u.i = v;
drh5cf8e8c2002-02-19 22:42:05 +00004280 }
drhe0670b62014-02-12 21:31:12 +00004281#endif
drh5cf8e8c2002-02-19 22:42:05 +00004282 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00004283 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00004284 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00004285 ** engine starts picking positive candidate ROWIDs at random until
4286 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00004287 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4288 ** an AUTOINCREMENT table. */
drh5cf8e8c2002-02-19 22:42:05 +00004289 cnt = 0;
drh2c4dc632014-09-25 12:31:28 +00004290 do{
4291 sqlite3_randomness(sizeof(v), &v);
drhd8633462014-09-25 17:42:41 +00004292 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
drhc960dcb2015-11-20 19:22:01 +00004293 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
drh748a52c2010-09-01 11:50:08 +00004294 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004295 && (res==0)
drh2c4dc632014-09-25 12:31:28 +00004296 && (++cnt<100));
drh9467abf2016-02-17 18:44:11 +00004297 if( rc ) goto abort_due_to_error;
4298 if( res==0 ){
drhc79c7612010-01-01 18:57:48 +00004299 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004300 goto abort_due_to_error;
4301 }
drh748a52c2010-09-01 11:50:08 +00004302 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004303 }
drha11846b2004-01-07 18:52:56 +00004304 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004305 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004306 }
drh4c583122008-01-04 22:01:03 +00004307 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004308 break;
4309}
4310
danielk19771f4aa332008-01-03 09:51:55 +00004311/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004312** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004313**
jplyon5a564222003-06-02 06:15:58 +00004314** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004315** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004316** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004317** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004318** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004319**
danielk19771f4aa332008-01-03 09:51:55 +00004320** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4321** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004322** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004323** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004324**
drh3e9ca092009-09-08 01:14:48 +00004325** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
drheeb95652016-05-26 20:56:38 +00004326** the last seek operation (OP_NotExists or OP_SeekRowid) was a success,
4327** then this
drh3e9ca092009-09-08 01:14:48 +00004328** operation will not attempt to find the appropriate row before doing
4329** the insert but will instead overwrite the row that the cursor is
drheeb95652016-05-26 20:56:38 +00004330** currently pointing to. Presumably, the prior OP_NotExists or
4331** OP_SeekRowid opcode
drh3e9ca092009-09-08 01:14:48 +00004332** has already positioned the cursor correctly. This is an optimization
4333** that boosts performance by avoiding redundant seeks.
4334**
4335** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4336** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4337** is part of an INSERT operation. The difference is only important to
4338** the update hook.
4339**
dan319eeb72011-03-19 08:38:50 +00004340** Parameter P4 may point to a Table structure, or may be NULL. If it is
4341** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4342** following a successful insert.
danielk19771f6eec52006-06-16 06:17:47 +00004343**
drh93aed5a2008-01-16 17:46:38 +00004344** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4345** allocated, then ownership of P2 is transferred to the pseudo-cursor
4346** and register P2 becomes ephemeral. If the cursor is changed, the
4347** value of register P2 will then change. Make sure this does not
4348** cause any problems.)
4349**
drhf0863fe2005-06-12 21:35:51 +00004350** This instruction only works on tables. The equivalent instruction
4351** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004352*/
drhe05c9292009-10-29 13:48:10 +00004353/* Opcode: InsertInt P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +00004354** Synopsis: intkey=P3 data=r[P2]
drhe05c9292009-10-29 13:48:10 +00004355**
4356** This works exactly like OP_Insert except that the key is the
4357** integer value P3, not the value of the integer stored in register P3.
4358*/
4359case OP_Insert:
4360case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004361 Mem *pData; /* MEM cell holding data for the record to be inserted */
4362 Mem *pKey; /* MEM cell holding key for the record */
drh3e9ca092009-09-08 01:14:48 +00004363 VdbeCursor *pC; /* Cursor to table into which insert is written */
drh3e9ca092009-09-08 01:14:48 +00004364 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4365 const char *zDb; /* database name - used by the update hook */
dan319eeb72011-03-19 08:38:50 +00004366 Table *pTab; /* Table structure - used by update and pre-update hooks */
drh74c33022016-03-30 12:56:55 +00004367 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh8eeb4462016-05-21 20:03:42 +00004368 BtreePayload x; /* Payload to be inserted */
drh856c1032009-06-02 15:21:42 +00004369
drh74c33022016-03-30 12:56:55 +00004370 op = 0;
drha6c2ed92009-11-14 23:22:23 +00004371 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004372 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004373 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004374 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004375 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004376 assert( pC->eCurType==CURTYPE_BTREE );
4377 assert( pC->uc.pCursor!=0 );
drha05a7222008-01-19 03:35:58 +00004378 assert( pC->isTable );
drhcbf1b8e2013-11-11 22:55:26 +00004379 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
drh5b6afba2008-01-05 16:29:28 +00004380 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004381
drhe05c9292009-10-29 13:48:10 +00004382 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004383 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004384 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004385 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004386 REGISTER_TRACE(pOp->p3, pKey);
drh8eeb4462016-05-21 20:03:42 +00004387 x.nKey = pKey->u.i;
drhe05c9292009-10-29 13:48:10 +00004388 }else{
4389 assert( pOp->opcode==OP_InsertInt );
drh8eeb4462016-05-21 20:03:42 +00004390 x.nKey = pOp->p3;
drhe05c9292009-10-29 13:48:10 +00004391 }
4392
drh9b1c62d2011-03-30 21:04:43 +00004393 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00004394 assert( pC->isTable );
4395 assert( pC->iDb>=0 );
drh69c33822016-08-18 14:33:11 +00004396 zDb = db->aDb[pC->iDb].zDbSName;
dan319eeb72011-03-19 08:38:50 +00004397 pTab = pOp->p4.pTab;
drhc556f3c2016-03-30 15:30:07 +00004398 assert( HasRowid(pTab) );
dan46c47d42011-03-01 18:42:07 +00004399 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drh74c33022016-03-30 12:56:55 +00004400 }else{
4401 pTab = 0; /* Not needed. Silence a comiler warning. */
4402 zDb = 0; /* Not needed. Silence a compiler warning. */
dan46c47d42011-03-01 18:42:07 +00004403 }
4404
drh9b1c62d2011-03-30 21:04:43 +00004405#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004406 /* Invoke the pre-update hook, if any */
4407 if( db->xPreUpdateCallback
dan319eeb72011-03-19 08:38:50 +00004408 && pOp->p4type==P4_TABLE
drh92fe38e2014-10-14 13:41:32 +00004409 && !(pOp->p5 & OPFLAG_ISUPDATE)
dan46c47d42011-03-01 18:42:07 +00004410 ){
drh8eeb4462016-05-21 20:03:42 +00004411 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2);
dan46c47d42011-03-01 18:42:07 +00004412 }
drh9b1c62d2011-03-30 21:04:43 +00004413#endif
dan46c47d42011-03-01 18:42:07 +00004414
drha05a7222008-01-19 03:35:58 +00004415 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh8eeb4462016-05-21 20:03:42 +00004416 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = x.nKey;
drha05a7222008-01-19 03:35:58 +00004417 if( pData->flags & MEM_Null ){
drh8eeb4462016-05-21 20:03:42 +00004418 x.pData = 0;
4419 x.nData = 0;
drha05a7222008-01-19 03:35:58 +00004420 }else{
4421 assert( pData->flags & (MEM_Blob|MEM_Str) );
drh8eeb4462016-05-21 20:03:42 +00004422 x.pData = pData->z;
4423 x.nData = pData->n;
drha05a7222008-01-19 03:35:58 +00004424 }
drh3e9ca092009-09-08 01:14:48 +00004425 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4426 if( pData->flags & MEM_Zero ){
drh8eeb4462016-05-21 20:03:42 +00004427 x.nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004428 }else{
drh8eeb4462016-05-21 20:03:42 +00004429 x.nZero = 0;
drha05a7222008-01-19 03:35:58 +00004430 }
drh8eeb4462016-05-21 20:03:42 +00004431 x.pKey = 0;
4432 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
drhebf10b12013-11-25 17:38:26 +00004433 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
drh3e9ca092009-09-08 01:14:48 +00004434 );
drha05a7222008-01-19 03:35:58 +00004435 pC->deferredMoveto = 0;
4436 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004437
drha05a7222008-01-19 03:35:58 +00004438 /* Invoke the update-hook if required. */
drh9467abf2016-02-17 18:44:11 +00004439 if( rc ) goto abort_due_to_error;
drhc556f3c2016-03-30 15:30:07 +00004440 if( db->xUpdateCallback && op ){
drh8eeb4462016-05-21 20:03:42 +00004441 db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, x.nKey);
drha05a7222008-01-19 03:35:58 +00004442 }
drh5e00f6c2001-09-13 13:46:56 +00004443 break;
4444}
4445
dan438b8812015-09-15 15:55:15 +00004446/* Opcode: Delete P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004447**
drh5edc3122001-09-13 21:53:09 +00004448** Delete the record at which the P1 cursor is currently pointing.
4449**
drhe807bdb2016-01-21 17:06:33 +00004450** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4451** the cursor will be left pointing at either the next or the previous
4452** record in the table. If it is left pointing at the next record, then
4453** the next Next instruction will be a no-op. As a result, in this case
4454** it is ok to delete a record from within a Next loop. If
4455** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4456** left in an undefined state.
drhc8d30ac2002-04-12 10:08:59 +00004457**
drhdef19e32016-01-27 16:26:25 +00004458** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4459** delete one of several associated with deleting a table row and all its
4460** associated index entries. Exactly one of those deletes is the "primary"
4461** delete. The others are all on OPFLAG_FORDELETE cursors or else are
4462** marked with the AUXDELETE flag.
drhe807bdb2016-01-21 17:06:33 +00004463**
4464** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4465** change count is incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004466**
drh91fd4d42008-01-19 20:11:25 +00004467** P1 must not be pseudo-table. It has to be a real table with
4468** multiple rows.
4469**
drh5e769a52016-09-28 16:05:53 +00004470** If P4 is not NULL then it points to a Table object. In this case either
dan319eeb72011-03-19 08:38:50 +00004471** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4472** have been positioned using OP_NotFound prior to invoking this opcode in
4473** this case. Specifically, if one is configured, the pre-update hook is
4474** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4475** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
dan46c47d42011-03-01 18:42:07 +00004476**
4477** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4478** of the memory cell that contains the value that the rowid of the row will
4479** be set to by the update.
drh5e00f6c2001-09-13 13:46:56 +00004480*/
drh9cbf3422008-01-17 16:22:13 +00004481case OP_Delete: {
drhdfe88ec2008-11-03 20:55:06 +00004482 VdbeCursor *pC;
dan46c47d42011-03-01 18:42:07 +00004483 const char *zDb;
dan319eeb72011-03-19 08:38:50 +00004484 Table *pTab;
dan46c47d42011-03-01 18:42:07 +00004485 int opflags;
drh91fd4d42008-01-19 20:11:25 +00004486
dan46c47d42011-03-01 18:42:07 +00004487 opflags = pOp->p2;
drh653b82a2009-06-22 11:10:47 +00004488 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4489 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004490 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004491 assert( pC->eCurType==CURTYPE_BTREE );
4492 assert( pC->uc.pCursor!=0 );
drh9a65f2c2009-06-22 19:05:40 +00004493 assert( pC->deferredMoveto==0 );
drh9a65f2c2009-06-22 19:05:40 +00004494
drhb53a5a92014-10-12 22:37:22 +00004495#ifdef SQLITE_DEBUG
dan438b8812015-09-15 15:55:15 +00004496 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4497 /* If p5 is zero, the seek operation that positioned the cursor prior to
4498 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4499 ** the row that is being deleted */
drha7c90c42016-06-04 20:37:10 +00004500 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drh92fe38e2014-10-14 13:41:32 +00004501 assert( pC->movetoTarget==iKey );
drhb53a5a92014-10-12 22:37:22 +00004502 }
4503#endif
drh91fd4d42008-01-19 20:11:25 +00004504
dan438b8812015-09-15 15:55:15 +00004505 /* If the update-hook or pre-update-hook will be invoked, set zDb to
4506 ** the name of the db to pass as to it. Also set local pTab to a copy
4507 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4508 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4509 ** VdbeCursor.movetoTarget to the current rowid. */
drhc556f3c2016-03-30 15:30:07 +00004510 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00004511 assert( pC->iDb>=0 );
drhc556f3c2016-03-30 15:30:07 +00004512 assert( pOp->p4.pTab!=0 );
drh69c33822016-08-18 14:33:11 +00004513 zDb = db->aDb[pC->iDb].zDbSName;
dan319eeb72011-03-19 08:38:50 +00004514 pTab = pOp->p4.pTab;
drhc556f3c2016-03-30 15:30:07 +00004515 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
drha7c90c42016-06-04 20:37:10 +00004516 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
dan438b8812015-09-15 15:55:15 +00004517 }
drh74c33022016-03-30 12:56:55 +00004518 }else{
4519 zDb = 0; /* Not needed. Silence a compiler warning. */
4520 pTab = 0; /* Not needed. Silence a compiler warning. */
drh92fe38e2014-10-14 13:41:32 +00004521 }
dan46c47d42011-03-01 18:42:07 +00004522
drh9b1c62d2011-03-30 21:04:43 +00004523#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004524 /* Invoke the pre-update-hook if required. */
dan438b8812015-09-15 15:55:15 +00004525 if( db->xPreUpdateCallback && pOp->p4.pTab && HasRowid(pTab) ){
dan46c47d42011-03-01 18:42:07 +00004526 assert( !(opflags & OPFLAG_ISUPDATE) || (aMem[pOp->p3].flags & MEM_Int) );
4527 sqlite3VdbePreUpdateHook(p, pC,
4528 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
drh92fe38e2014-10-14 13:41:32 +00004529 zDb, pTab, pC->movetoTarget,
dan37db03b2011-03-16 19:59:18 +00004530 pOp->p3
dan46c47d42011-03-01 18:42:07 +00004531 );
4532 }
dan46c47d42011-03-01 18:42:07 +00004533 if( opflags & OPFLAG_ISNOOP ) break;
drhc556f3c2016-03-30 15:30:07 +00004534#endif
drhb53a5a92014-10-12 22:37:22 +00004535
drhdef19e32016-01-27 16:26:25 +00004536 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4537 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
drhe807bdb2016-01-21 17:06:33 +00004538 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
drhdef19e32016-01-27 16:26:25 +00004539 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
drhb89aeb62016-01-27 15:49:32 +00004540
4541#ifdef SQLITE_DEBUG
dane61bbf42016-01-28 17:06:17 +00004542 if( p->pFrame==0 ){
4543 if( pC->isEphemeral==0
4544 && (pOp->p5 & OPFLAG_AUXDELETE)==0
4545 && (pC->wrFlag & OPFLAG_FORDELETE)==0
4546 ){
4547 nExtraDelete++;
4548 }
4549 if( pOp->p2 & OPFLAG_NCHANGE ){
4550 nExtraDelete--;
4551 }
drhb89aeb62016-01-27 15:49:32 +00004552 }
4553#endif
4554
drhc960dcb2015-11-20 19:22:01 +00004555 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
drh91fd4d42008-01-19 20:11:25 +00004556 pC->cacheStatus = CACHE_STALE;
drhd3e1af42016-02-25 18:54:30 +00004557 if( rc ) goto abort_due_to_error;
danielk197794eb6a12005-12-15 15:22:08 +00004558
drh91fd4d42008-01-19 20:11:25 +00004559 /* Invoke the update-hook if required. */
dan46c47d42011-03-01 18:42:07 +00004560 if( opflags & OPFLAG_NCHANGE ){
4561 p->nChange++;
drhc556f3c2016-03-30 15:30:07 +00004562 if( db->xUpdateCallback && HasRowid(pTab) ){
drh92fe38e2014-10-14 13:41:32 +00004563 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
dan438b8812015-09-15 15:55:15 +00004564 pC->movetoTarget);
4565 assert( pC->iDb>=0 );
dan46c47d42011-03-01 18:42:07 +00004566 }
drh5e00f6c2001-09-13 13:46:56 +00004567 }
dan438b8812015-09-15 15:55:15 +00004568
rdcb0c374f2004-02-20 22:53:38 +00004569 break;
4570}
drhb7f1d9a2009-09-08 02:27:58 +00004571/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004572**
drhb7f1d9a2009-09-08 02:27:58 +00004573** The value of the change counter is copied to the database handle
4574** change counter (returned by subsequent calls to sqlite3_changes()).
4575** Then the VMs internal change counter resets to 0.
4576** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004577*/
drh9cbf3422008-01-17 16:22:13 +00004578case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004579 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004580 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004581 break;
4582}
4583
drh1153c7b2013-11-01 22:02:56 +00004584/* Opcode: SorterCompare P1 P2 P3 P4
drh72e26de2016-08-24 21:24:04 +00004585** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00004586**
drh1153c7b2013-11-01 22:02:56 +00004587** P1 is a sorter cursor. This instruction compares a prefix of the
drhbc5cf382014-08-06 01:08:07 +00004588** record blob in register P3 against a prefix of the entry that
drhac502322014-07-30 13:56:48 +00004589** the sorter cursor currently points to. Only the first P4 fields
4590** of r[P3] and the sorter record are compared.
drh1153c7b2013-11-01 22:02:56 +00004591**
4592** If either P3 or the sorter contains a NULL in one of their significant
4593** fields (not counting the P4 fields at the end which are ignored) then
4594** the comparison is assumed to be equal.
4595**
4596** Fall through to next instruction if the two records compare equal to
4597** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00004598*/
4599case OP_SorterCompare: {
4600 VdbeCursor *pC;
4601 int res;
drhac502322014-07-30 13:56:48 +00004602 int nKeyCol;
dan5134d132011-09-02 10:31:11 +00004603
4604 pC = p->apCsr[pOp->p1];
4605 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00004606 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00004607 pIn3 = &aMem[pOp->p3];
drhac502322014-07-30 13:56:48 +00004608 nKeyCol = pOp->p4.i;
drh958d2612014-04-18 13:40:07 +00004609 res = 0;
drhac502322014-07-30 13:56:48 +00004610 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
drh688852a2014-02-17 22:40:43 +00004611 VdbeBranchTaken(res!=0,2);
drh9467abf2016-02-17 18:44:11 +00004612 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00004613 if( res ) goto jump_to_p2;
dan5134d132011-09-02 10:31:11 +00004614 break;
4615};
4616
drh6cf4a7d2014-10-13 13:00:58 +00004617/* Opcode: SorterData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004618** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00004619**
4620** Write into register P2 the current sorter data for sorter cursor P1.
drh6cf4a7d2014-10-13 13:00:58 +00004621** Then clear the column header cache on cursor P3.
4622**
4623** This opcode is normally use to move a record out of the sorter and into
4624** a register that is the source for a pseudo-table cursor created using
4625** OpenPseudo. That pseudo-table cursor is the one that is identified by
4626** parameter P3. Clearing the P3 column cache as part of this opcode saves
4627** us from having to issue a separate NullRow instruction to clear that cache.
dan5134d132011-09-02 10:31:11 +00004628*/
4629case OP_SorterData: {
4630 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004631
dan5134d132011-09-02 10:31:11 +00004632 pOut = &aMem[pOp->p2];
4633 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004634 assert( isSorter(pC) );
dan5134d132011-09-02 10:31:11 +00004635 rc = sqlite3VdbeSorterRowkey(pC, pOut);
dan38524132014-05-01 20:26:48 +00004636 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
drh6cf4a7d2014-10-13 13:00:58 +00004637 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9467abf2016-02-17 18:44:11 +00004638 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00004639 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
dan5134d132011-09-02 10:31:11 +00004640 break;
4641}
4642
drh98757152008-01-09 23:04:12 +00004643/* Opcode: RowData P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004644** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00004645**
drh98757152008-01-09 23:04:12 +00004646** Write into register P2 the complete row data for cursor P1.
4647** There is no interpretation of the data.
4648** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004649** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004650**
drhde4fcfd2008-01-19 23:50:26 +00004651** If the P1 cursor must be pointing to a valid row (not a NULL row)
4652** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004653*/
drh98757152008-01-09 23:04:12 +00004654/* Opcode: RowKey P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004655** Synopsis: r[P2]=key
drh143f3c42004-01-07 20:37:52 +00004656**
drh98757152008-01-09 23:04:12 +00004657** Write into register P2 the complete row key for cursor P1.
4658** There is no interpretation of the data.
drh0fd61352014-02-07 02:29:45 +00004659** The key is copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004660** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004661**
drhde4fcfd2008-01-19 23:50:26 +00004662** If the P1 cursor must be pointing to a valid row (not a NULL row)
4663** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004664*/
danielk1977a7a8e142008-02-13 18:25:27 +00004665case OP_RowKey:
4666case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004667 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004668 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004669 u32 n;
drh70ce3f02003-04-15 19:22:22 +00004670
drha6c2ed92009-11-14 23:22:23 +00004671 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004672 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004673
drhf0863fe2005-06-12 21:35:51 +00004674 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004675 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4676 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00004677 assert( pC!=0 );
4678 assert( pC->eCurType==CURTYPE_BTREE );
drh14da87f2013-11-20 21:51:33 +00004679 assert( isSorter(pC)==0 );
drhc6aff302011-09-01 15:32:47 +00004680 assert( pC->isTable || pOp->opcode!=OP_RowData );
drh14da87f2013-11-20 21:51:33 +00004681 assert( pC->isTable==0 || pOp->opcode==OP_RowData );
drhde4fcfd2008-01-19 23:50:26 +00004682 assert( pC->nullRow==0 );
drhc960dcb2015-11-20 19:22:01 +00004683 assert( pC->uc.pCursor!=0 );
4684 pCrsr = pC->uc.pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004685
4686 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
drheeb95652016-05-26 20:56:38 +00004687 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
4688 ** that might invalidate the cursor.
4689 ** If this where not the case, on of the following assert()s
drhc22284f2014-10-13 16:02:20 +00004690 ** would fail. Should this ever change (because of changes in the code
4691 ** generator) then the fix would be to insert a call to
4692 ** sqlite3VdbeCursorMoveto().
drh9a65f2c2009-06-22 19:05:40 +00004693 */
4694 assert( pC->deferredMoveto==0 );
drhc22284f2014-10-13 16:02:20 +00004695 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4696#if 0 /* Not required due to the previous to assert() statements */
drhde4fcfd2008-01-19 23:50:26 +00004697 rc = sqlite3VdbeCursorMoveto(pC);
drhc22284f2014-10-13 16:02:20 +00004698 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4699#endif
drh9a65f2c2009-06-22 19:05:40 +00004700
drha7c90c42016-06-04 20:37:10 +00004701 n = sqlite3BtreePayloadSize(pCrsr);
drhd66c4f82016-06-04 20:58:35 +00004702 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drha7c90c42016-06-04 20:37:10 +00004703 goto too_big;
drhde4fcfd2008-01-19 23:50:26 +00004704 }
drh722246e2014-10-07 23:02:24 +00004705 testcase( n==0 );
4706 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
danielk1977a7a8e142008-02-13 18:25:27 +00004707 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004708 }
danielk1977a7a8e142008-02-13 18:25:27 +00004709 pOut->n = n;
4710 MemSetTypeFlag(pOut, MEM_Blob);
drh14da87f2013-11-20 21:51:33 +00004711 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004712 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4713 }else{
4714 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004715 }
drh9467abf2016-02-17 18:44:11 +00004716 if( rc ) goto abort_due_to_error;
danielk197796cb76f2008-01-04 13:24:28 +00004717 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004718 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00004719 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00004720 break;
4721}
4722
drh2133d822008-01-03 18:44:59 +00004723/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004724** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004725**
drh2133d822008-01-03 18:44:59 +00004726** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004727** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004728**
4729** P1 can be either an ordinary table or a virtual table. There used to
4730** be a separate OP_VRowid opcode for use with virtual tables, but this
4731** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004732*/
drh27a348c2015-04-13 19:14:06 +00004733case OP_Rowid: { /* out2 */
drhdfe88ec2008-11-03 20:55:06 +00004734 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004735 i64 v;
drh856c1032009-06-02 15:21:42 +00004736 sqlite3_vtab *pVtab;
4737 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004738
drh27a348c2015-04-13 19:14:06 +00004739 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004740 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4741 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004742 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004743 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004744 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004745 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004746 break;
4747 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004748 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004749#ifndef SQLITE_OMIT_VIRTUALTABLE
drhc960dcb2015-11-20 19:22:01 +00004750 }else if( pC->eCurType==CURTYPE_VTAB ){
4751 assert( pC->uc.pVCur!=0 );
4752 pVtab = pC->uc.pVCur->pVtab;
drh044925b2009-04-22 17:15:02 +00004753 pModule = pVtab->pModule;
4754 assert( pModule->xRowid );
drhc960dcb2015-11-20 19:22:01 +00004755 rc = pModule->xRowid(pC->uc.pVCur, &v);
dan016f7812013-08-21 17:35:48 +00004756 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00004757 if( rc ) goto abort_due_to_error;
drh044925b2009-04-22 17:15:02 +00004758#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004759 }else{
drhc960dcb2015-11-20 19:22:01 +00004760 assert( pC->eCurType==CURTYPE_BTREE );
4761 assert( pC->uc.pCursor!=0 );
drhc22284f2014-10-13 16:02:20 +00004762 rc = sqlite3VdbeCursorRestore(pC);
drh61495262009-04-22 15:32:59 +00004763 if( rc ) goto abort_due_to_error;
dan2b8669a2014-11-17 19:42:48 +00004764 if( pC->nullRow ){
4765 pOut->flags = MEM_Null;
4766 break;
4767 }
drha7c90c42016-06-04 20:37:10 +00004768 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drh5e00f6c2001-09-13 13:46:56 +00004769 }
drh4c583122008-01-04 22:01:03 +00004770 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004771 break;
4772}
4773
drh9cbf3422008-01-17 16:22:13 +00004774/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004775**
4776** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004777** that occur while the cursor is on the null row will always
4778** write a NULL.
drh17f71932002-02-21 12:01:27 +00004779*/
drh9cbf3422008-01-17 16:22:13 +00004780case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004781 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004782
drh653b82a2009-06-22 11:10:47 +00004783 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4784 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004785 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004786 pC->nullRow = 1;
drh399af1d2013-11-20 17:25:55 +00004787 pC->cacheStatus = CACHE_STALE;
drhc960dcb2015-11-20 19:22:01 +00004788 if( pC->eCurType==CURTYPE_BTREE ){
4789 assert( pC->uc.pCursor!=0 );
4790 sqlite3BtreeClearCursor(pC->uc.pCursor);
danielk1977be51a652008-10-08 17:58:48 +00004791 }
drh17f71932002-02-21 12:01:27 +00004792 break;
4793}
4794
danb18e60b2015-04-01 16:18:00 +00004795/* Opcode: Last P1 P2 P3 * *
drh9562b552002-02-19 15:00:07 +00004796**
drh8af3f772014-07-25 18:01:06 +00004797** The next use of the Rowid or Column or Prev instruction for P1
drh9562b552002-02-19 15:00:07 +00004798** will refer to the last entry in the database table or index.
4799** If the table or index is empty and P2>0, then jump immediately to P2.
4800** If P2 is 0 or if the table or index is not empty, fall through
4801** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00004802**
4803** This opcode leaves the cursor configured to move in reverse order,
4804** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004805** configured to use Prev, not Next.
drh9562b552002-02-19 15:00:07 +00004806*/
drh9cbf3422008-01-17 16:22:13 +00004807case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004808 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004809 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004810 int res;
drh9562b552002-02-19 15:00:07 +00004811
drh653b82a2009-06-22 11:10:47 +00004812 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4813 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004814 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004815 assert( pC->eCurType==CURTYPE_BTREE );
4816 pCrsr = pC->uc.pCursor;
drh7abc5402011-10-22 21:00:46 +00004817 res = 0;
drh3da046d2013-11-11 03:24:11 +00004818 assert( pCrsr!=0 );
4819 rc = sqlite3BtreeLast(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004820 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004821 pC->deferredMoveto = 0;
4822 pC->cacheStatus = CACHE_STALE;
danb18e60b2015-04-01 16:18:00 +00004823 pC->seekResult = pOp->p3;
drh8af3f772014-07-25 18:01:06 +00004824#ifdef SQLITE_DEBUG
4825 pC->seekOp = OP_Last;
4826#endif
drh9467abf2016-02-17 18:44:11 +00004827 if( rc ) goto abort_due_to_error;
drh688852a2014-02-17 22:40:43 +00004828 if( pOp->p2>0 ){
4829 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004830 if( res ) goto jump_to_p2;
drh9562b552002-02-19 15:00:07 +00004831 }
4832 break;
4833}
4834
drh0342b1f2005-09-01 03:07:44 +00004835
drh9cbf3422008-01-17 16:22:13 +00004836/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004837**
4838** This opcode does exactly the same thing as OP_Rewind except that
4839** it increments an undocumented global variable used for testing.
4840**
4841** Sorting is accomplished by writing records into a sorting index,
4842** then rewinding that index and playing it back from beginning to
4843** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4844** rewinding so that the global variable will be incremented and
4845** regression tests can determine whether or not the optimizer is
4846** correctly optimizing out sorts.
4847*/
drhc6aff302011-09-01 15:32:47 +00004848case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004849case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004850#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004851 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004852 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004853#endif
drh9b47ee32013-08-20 03:13:51 +00004854 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00004855 /* Fall through into OP_Rewind */
4856}
drh9cbf3422008-01-17 16:22:13 +00004857/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004858**
drhf0863fe2005-06-12 21:35:51 +00004859** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004860** will refer to the first entry in the database table or index.
dan04489b62014-10-31 20:11:32 +00004861** If the table or index is empty, jump immediately to P2.
4862** If the table or index is not empty, fall through to the following
4863** instruction.
drh8af3f772014-07-25 18:01:06 +00004864**
4865** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00004866** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004867** configured to use Next, not Prev.
drh5e00f6c2001-09-13 13:46:56 +00004868*/
drh9cbf3422008-01-17 16:22:13 +00004869case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004870 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004871 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004872 int res;
drh5e00f6c2001-09-13 13:46:56 +00004873
drh653b82a2009-06-22 11:10:47 +00004874 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4875 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004876 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004877 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004878 res = 1;
drh8af3f772014-07-25 18:01:06 +00004879#ifdef SQLITE_DEBUG
4880 pC->seekOp = OP_Rewind;
4881#endif
dan689ab892011-08-12 15:02:00 +00004882 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004883 rc = sqlite3VdbeSorterRewind(pC, &res);
dana205a482011-08-27 18:48:57 +00004884 }else{
drhc960dcb2015-11-20 19:22:01 +00004885 assert( pC->eCurType==CURTYPE_BTREE );
4886 pCrsr = pC->uc.pCursor;
dana205a482011-08-27 18:48:57 +00004887 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004888 rc = sqlite3BtreeFirst(pCrsr, &res);
drha11846b2004-01-07 18:52:56 +00004889 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004890 pC->cacheStatus = CACHE_STALE;
drhf4dada72004-05-11 09:57:35 +00004891 }
drh9467abf2016-02-17 18:44:11 +00004892 if( rc ) goto abort_due_to_error;
drh9c1905f2008-12-10 22:32:56 +00004893 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004894 assert( pOp->p2>0 && pOp->p2<p->nOp );
drh688852a2014-02-17 22:40:43 +00004895 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004896 if( res ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004897 break;
4898}
4899
drh0fd61352014-02-07 02:29:45 +00004900/* Opcode: Next P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004901**
4902** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004903** table or index. If there are no more key/value pairs then fall through
4904** to the following instruction. But if the cursor advance was successful,
4905** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004906**
drh5dad9a32014-07-25 18:37:42 +00004907** The Next opcode is only valid following an SeekGT, SeekGE, or
4908** OP_Rewind opcode used to position the cursor. Next is not allowed
4909** to follow SeekLT, SeekLE, or OP_Last.
drh8af3f772014-07-25 18:01:06 +00004910**
drhf93cd942013-11-21 03:12:25 +00004911** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4912** been opened prior to this opcode or the program will segfault.
drh60a713c2008-01-21 16:22:45 +00004913**
drhe39a7322014-02-03 14:04:11 +00004914** The P3 value is a hint to the btree implementation. If P3==1, that
4915** means P1 is an SQL index and that this instruction could have been
4916** omitted if that index had been unique. P3 is usually 0. P3 is
4917** always either 0 or 1.
4918**
dana205a482011-08-27 18:48:57 +00004919** P4 is always of type P4_ADVANCE. The function pointer points to
4920** sqlite3BtreeNext().
4921**
drhafc266a2010-03-31 17:47:44 +00004922** If P5 is positive and the jump is taken, then event counter
4923** number P5-1 in the prepared statement is incremented.
4924**
drhf93cd942013-11-21 03:12:25 +00004925** See also: Prev, NextIfOpen
4926*/
drh0fd61352014-02-07 02:29:45 +00004927/* Opcode: NextIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004928**
drh5dad9a32014-07-25 18:37:42 +00004929** This opcode works just like Next except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004930** open it behaves a no-op.
drh8721ce42001-11-07 14:22:00 +00004931*/
drh0fd61352014-02-07 02:29:45 +00004932/* Opcode: Prev P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004933**
4934** Back up cursor P1 so that it points to the previous key/data pair in its
4935** table or index. If there is no previous key/value pairs then fall through
4936** to the following instruction. But if the cursor backup was successful,
4937** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004938**
drh8af3f772014-07-25 18:01:06 +00004939**
drh5dad9a32014-07-25 18:37:42 +00004940** The Prev opcode is only valid following an SeekLT, SeekLE, or
4941** OP_Last opcode used to position the cursor. Prev is not allowed
4942** to follow SeekGT, SeekGE, or OP_Rewind.
drh8af3f772014-07-25 18:01:06 +00004943**
drhf93cd942013-11-21 03:12:25 +00004944** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4945** not open then the behavior is undefined.
drhafc266a2010-03-31 17:47:44 +00004946**
drhe39a7322014-02-03 14:04:11 +00004947** The P3 value is a hint to the btree implementation. If P3==1, that
4948** means P1 is an SQL index and that this instruction could have been
4949** omitted if that index had been unique. P3 is usually 0. P3 is
4950** always either 0 or 1.
4951**
dana205a482011-08-27 18:48:57 +00004952** P4 is always of type P4_ADVANCE. The function pointer points to
4953** sqlite3BtreePrevious().
4954**
drhafc266a2010-03-31 17:47:44 +00004955** If P5 is positive and the jump is taken, then event counter
4956** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004957*/
drh0fd61352014-02-07 02:29:45 +00004958/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004959**
drh5dad9a32014-07-25 18:37:42 +00004960** This opcode works just like Prev except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004961** open it behaves a no-op.
4962*/
4963case OP_SorterNext: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004964 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004965 int res;
drh8721ce42001-11-07 14:22:00 +00004966
drhf93cd942013-11-21 03:12:25 +00004967 pC = p->apCsr[pOp->p1];
4968 assert( isSorter(pC) );
drh323913c2014-03-23 16:29:23 +00004969 res = 0;
drhf93cd942013-11-21 03:12:25 +00004970 rc = sqlite3VdbeSorterNext(db, pC, &res);
4971 goto next_tail;
4972case OP_PrevIfOpen: /* jump */
4973case OP_NextIfOpen: /* jump */
4974 if( p->apCsr[pOp->p1]==0 ) break;
4975 /* Fall through */
4976case OP_Prev: /* jump */
4977case OP_Next: /* jump */
drh70ce3f02003-04-15 19:22:22 +00004978 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00004979 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004980 pC = p->apCsr[pOp->p1];
drhe39a7322014-02-03 14:04:11 +00004981 res = pOp->p3;
drhf93cd942013-11-21 03:12:25 +00004982 assert( pC!=0 );
4983 assert( pC->deferredMoveto==0 );
drhc960dcb2015-11-20 19:22:01 +00004984 assert( pC->eCurType==CURTYPE_BTREE );
drhe39a7322014-02-03 14:04:11 +00004985 assert( res==0 || (res==1 && pC->isTable==0) );
4986 testcase( res==1 );
drhf93cd942013-11-21 03:12:25 +00004987 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4988 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4989 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4990 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
drh8af3f772014-07-25 18:01:06 +00004991
4992 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4993 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4994 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4995 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
drhcefc87f2014-08-01 01:40:33 +00004996 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
drh8af3f772014-07-25 18:01:06 +00004997 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4998 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4999 || pC->seekOp==OP_Last );
5000
drhc960dcb2015-11-20 19:22:01 +00005001 rc = pOp->p4.xAdvance(pC->uc.pCursor, &res);
drhf93cd942013-11-21 03:12:25 +00005002next_tail:
drha3460582008-07-11 21:02:53 +00005003 pC->cacheStatus = CACHE_STALE;
drh688852a2014-02-17 22:40:43 +00005004 VdbeBranchTaken(res==0,2);
drh9467abf2016-02-17 18:44:11 +00005005 if( rc ) goto abort_due_to_error;
drha3460582008-07-11 21:02:53 +00005006 if( res==0 ){
drhf93cd942013-11-21 03:12:25 +00005007 pC->nullRow = 0;
drh9b47ee32013-08-20 03:13:51 +00005008 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00005009#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00005010 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00005011#endif
drhf56fa462015-04-13 21:39:54 +00005012 goto jump_to_p2_and_check_for_interrupt;
drhf93cd942013-11-21 03:12:25 +00005013 }else{
5014 pC->nullRow = 1;
drh8721ce42001-11-07 14:22:00 +00005015 }
drh49afe3a2013-07-10 03:05:14 +00005016 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00005017}
5018
danielk1977de630352009-05-04 11:42:29 +00005019/* Opcode: IdxInsert P1 P2 P3 * P5
drh81316f82013-10-29 20:40:47 +00005020** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005021**
drhef8662b2011-06-20 21:47:58 +00005022** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00005023** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00005024** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00005025**
drhaa9b8962008-01-08 02:57:55 +00005026** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00005027** insert is likely to be an append.
5028**
mistachkin21a919f2014-02-07 03:28:02 +00005029** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5030** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
5031** then the change counter is unchanged.
drh0fd61352014-02-07 02:29:45 +00005032**
mistachkin21a919f2014-02-07 03:28:02 +00005033** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
5034** just done a seek to the spot where the new entry is to be inserted.
5035** This flag avoids doing an extra seek.
drh0fd61352014-02-07 02:29:45 +00005036**
drhf0863fe2005-06-12 21:35:51 +00005037** This instruction only works for indices. The equivalent instruction
5038** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00005039*/
drhf013e202016-10-15 18:37:05 +00005040/* Opcode: SorterInsert P1 P2 * * *
5041** Synopsis: key=r[P2]
5042**
5043** Register P2 holds an SQL index key made using the
5044** MakeRecord instructions. This opcode writes that key
5045** into the sorter P1. Data for the entry is nil.
5046*/
drhca892a72011-09-03 00:17:51 +00005047case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00005048case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00005049 VdbeCursor *pC;
drh8eeb4462016-05-21 20:03:42 +00005050 BtreePayload x;
drh856c1032009-06-02 15:21:42 +00005051
drh653b82a2009-06-22 11:10:47 +00005052 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5053 pC = p->apCsr[pOp->p1];
5054 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00005055 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00005056 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00005057 assert( pIn2->flags & MEM_Blob );
drh6546af12013-11-04 15:23:25 +00005058 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhc960dcb2015-11-20 19:22:01 +00005059 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
drh3da046d2013-11-11 03:24:11 +00005060 assert( pC->isTable==0 );
5061 rc = ExpandBlob(pIn2);
drh9467abf2016-02-17 18:44:11 +00005062 if( rc ) goto abort_due_to_error;
5063 if( pOp->opcode==OP_SorterInsert ){
5064 rc = sqlite3VdbeSorterWrite(pC, pIn2);
5065 }else{
drh8eeb4462016-05-21 20:03:42 +00005066 x.nKey = pIn2->n;
5067 x.pKey = pIn2->z;
drh8eeb4462016-05-21 20:03:42 +00005068 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, pOp->p3,
drh9467abf2016-02-17 18:44:11 +00005069 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5070 );
5071 assert( pC->deferredMoveto==0 );
5072 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00005073 }
drh9467abf2016-02-17 18:44:11 +00005074 if( rc) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005075 break;
5076}
5077
drhd1d38482008-10-07 23:46:38 +00005078/* Opcode: IdxDelete P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00005079** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00005080**
drhe14006d2008-03-25 17:23:32 +00005081** The content of P3 registers starting at register P2 form
5082** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00005083** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00005084*/
drhe14006d2008-03-25 17:23:32 +00005085case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00005086 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00005087 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00005088 int res;
5089 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00005090
drhe14006d2008-03-25 17:23:32 +00005091 assert( pOp->p3>0 );
drh9f6168b2016-03-19 23:32:58 +00005092 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00005093 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5094 pC = p->apCsr[pOp->p1];
5095 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005096 assert( pC->eCurType==CURTYPE_BTREE );
5097 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00005098 assert( pCrsr!=0 );
drh4308e342013-11-11 16:55:52 +00005099 assert( pOp->p5==0 );
drh3da046d2013-11-11 03:24:11 +00005100 r.pKeyInfo = pC->pKeyInfo;
5101 r.nField = (u16)pOp->p3;
dan1fed5da2014-02-25 21:01:25 +00005102 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005103 r.aMem = &aMem[pOp->p2];
drh3da046d2013-11-11 03:24:11 +00005104 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
drh9467abf2016-02-17 18:44:11 +00005105 if( rc ) goto abort_due_to_error;
5106 if( res==0 ){
dane61bbf42016-01-28 17:06:17 +00005107 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
drh9467abf2016-02-17 18:44:11 +00005108 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005109 }
drh3da046d2013-11-11 03:24:11 +00005110 assert( pC->deferredMoveto==0 );
5111 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00005112 break;
5113}
5114
drh784c1b92016-01-30 16:59:56 +00005115/* Opcode: Seek P1 * P3 P4 *
drh72e26de2016-08-24 21:24:04 +00005116** Synopsis: Move P3 to P1.rowid
drh784c1b92016-01-30 16:59:56 +00005117**
5118** P1 is an open index cursor and P3 is a cursor on the corresponding
5119** table. This opcode does a deferred seek of the P3 table cursor
5120** to the row that corresponds to the current row of P1.
5121**
5122** This is a deferred seek. Nothing actually happens until
5123** the cursor is used to read a record. That way, if no reads
5124** occur, no unnecessary I/O happens.
5125**
5126** P4 may be an array of integers (type P4_INTARRAY) containing
drh19d720d2016-02-03 19:52:06 +00005127** one entry for each column in the P3 table. If array entry a(i)
5128** is non-zero, then reading column a(i)-1 from cursor P3 is
drh784c1b92016-01-30 16:59:56 +00005129** equivalent to performing the deferred seek and then reading column i
5130** from P1. This information is stored in P3 and used to redirect
5131** reads against P3 over to P1, thus possibly avoiding the need to
5132** seek and read cursor P3.
5133*/
drh2133d822008-01-03 18:44:59 +00005134/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005135** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00005136**
drh2133d822008-01-03 18:44:59 +00005137** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00005138** the end of the index key pointed to by cursor P1. This integer should be
5139** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00005140**
drh9437bd22009-02-01 00:29:56 +00005141** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00005142*/
drh784c1b92016-01-30 16:59:56 +00005143case OP_Seek:
drh27a348c2015-04-13 19:14:06 +00005144case OP_IdxRowid: { /* out2 */
drh784c1b92016-01-30 16:59:56 +00005145 VdbeCursor *pC; /* The P1 index cursor */
5146 VdbeCursor *pTabCur; /* The P2 table cursor (OP_Seek only) */
5147 i64 rowid; /* Rowid that P1 current points to */
drh8721ce42001-11-07 14:22:00 +00005148
drh653b82a2009-06-22 11:10:47 +00005149 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5150 pC = p->apCsr[pOp->p1];
5151 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005152 assert( pC->eCurType==CURTYPE_BTREE );
drh784c1b92016-01-30 16:59:56 +00005153 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00005154 assert( pC->isTable==0 );
drhc22284f2014-10-13 16:02:20 +00005155 assert( pC->deferredMoveto==0 );
drh784c1b92016-01-30 16:59:56 +00005156 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5157
5158 /* The IdxRowid and Seek opcodes are combined because of the commonality
5159 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5160 rc = sqlite3VdbeCursorRestore(pC);
drhc22284f2014-10-13 16:02:20 +00005161
5162 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
drh784c1b92016-01-30 16:59:56 +00005163 ** out from under the cursor. That will never happens for an IdxRowid
5164 ** or Seek opcode */
drhc22284f2014-10-13 16:02:20 +00005165 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5166
drh3da046d2013-11-11 03:24:11 +00005167 if( !pC->nullRow ){
drh2dc06482013-12-11 00:59:10 +00005168 rowid = 0; /* Not needed. Only used to silence a warning. */
drh784c1b92016-01-30 16:59:56 +00005169 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
drh3da046d2013-11-11 03:24:11 +00005170 if( rc!=SQLITE_OK ){
5171 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00005172 }
drh784c1b92016-01-30 16:59:56 +00005173 if( pOp->opcode==OP_Seek ){
5174 assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5175 pTabCur = p->apCsr[pOp->p3];
5176 assert( pTabCur!=0 );
5177 assert( pTabCur->eCurType==CURTYPE_BTREE );
5178 assert( pTabCur->uc.pCursor!=0 );
5179 assert( pTabCur->isTable );
5180 pTabCur->nullRow = 0;
5181 pTabCur->movetoTarget = rowid;
5182 pTabCur->deferredMoveto = 1;
5183 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5184 pTabCur->aAltMap = pOp->p4.ai;
5185 pTabCur->pAltCursor = pC;
5186 }else{
5187 pOut = out2Prerelease(p, pOp);
5188 pOut->u.i = rowid;
5189 pOut->flags = MEM_Int;
5190 }
5191 }else{
5192 assert( pOp->opcode==OP_IdxRowid );
5193 sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
drh8721ce42001-11-07 14:22:00 +00005194 }
5195 break;
5196}
5197
danielk197761dd5832008-04-18 11:31:12 +00005198/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005199** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00005200**
danielk197761dd5832008-04-18 11:31:12 +00005201** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005202** key that omits the PRIMARY KEY. Compare this key value against the index
5203** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5204** fields at the end.
drhf3218fe2004-05-28 08:21:02 +00005205**
danielk197761dd5832008-04-18 11:31:12 +00005206** If the P1 index entry is greater than or equal to the key value
5207** then jump to P2. Otherwise fall through to the next instruction.
drh4a1d3652014-02-14 15:13:36 +00005208*/
5209/* Opcode: IdxGT P1 P2 P3 P4 P5
5210** Synopsis: key=r[P3@P4]
drh772ae622004-05-19 13:13:08 +00005211**
drh4a1d3652014-02-14 15:13:36 +00005212** The P4 register values beginning with P3 form an unpacked index
5213** key that omits the PRIMARY KEY. Compare this key value against the index
5214** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5215** fields at the end.
5216**
5217** If the P1 index entry is greater than the key value
5218** then jump to P2. Otherwise fall through to the next instruction.
drh8721ce42001-11-07 14:22:00 +00005219*/
drh3bb9b932010-08-06 02:10:00 +00005220/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005221** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00005222**
danielk197761dd5832008-04-18 11:31:12 +00005223** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005224** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5225** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5226** ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00005227**
danielk197761dd5832008-04-18 11:31:12 +00005228** If the P1 index entry is less than the key value then jump to P2.
5229** Otherwise fall through to the next instruction.
drhc045ec52002-12-04 20:01:06 +00005230*/
drh4a1d3652014-02-14 15:13:36 +00005231/* Opcode: IdxLE P1 P2 P3 P4 P5
5232** Synopsis: key=r[P3@P4]
5233**
5234** The P4 register values beginning with P3 form an unpacked index
5235** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5236** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5237** ROWID on the P1 index.
5238**
5239** If the P1 index entry is less than or equal to the key value then jump
5240** to P2. Otherwise fall through to the next instruction.
5241*/
5242case OP_IdxLE: /* jump */
5243case OP_IdxGT: /* jump */
drh93952eb2009-11-13 19:43:43 +00005244case OP_IdxLT: /* jump */
drh4a1d3652014-02-14 15:13:36 +00005245case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00005246 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00005247 int res;
5248 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00005249
drh653b82a2009-06-22 11:10:47 +00005250 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5251 pC = p->apCsr[pOp->p1];
5252 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00005253 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00005254 assert( pC->eCurType==CURTYPE_BTREE );
5255 assert( pC->uc.pCursor!=0);
drh3da046d2013-11-11 03:24:11 +00005256 assert( pC->deferredMoveto==0 );
5257 assert( pOp->p5==0 || pOp->p5==1 );
5258 assert( pOp->p4type==P4_INT32 );
5259 r.pKeyInfo = pC->pKeyInfo;
5260 r.nField = (u16)pOp->p4.i;
drh4a1d3652014-02-14 15:13:36 +00005261 if( pOp->opcode<OP_IdxLT ){
5262 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
dan1fed5da2014-02-25 21:01:25 +00005263 r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00005264 }else{
drh4a1d3652014-02-14 15:13:36 +00005265 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
dan1fed5da2014-02-25 21:01:25 +00005266 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005267 }
5268 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005269#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00005270 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00005271#endif
drh2dc06482013-12-11 00:59:10 +00005272 res = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00005273 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
drh4a1d3652014-02-14 15:13:36 +00005274 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5275 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5276 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
drh3da046d2013-11-11 03:24:11 +00005277 res = -res;
5278 }else{
drh4a1d3652014-02-14 15:13:36 +00005279 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
drh3da046d2013-11-11 03:24:11 +00005280 res++;
5281 }
drh688852a2014-02-17 22:40:43 +00005282 VdbeBranchTaken(res>0,2);
drh9467abf2016-02-17 18:44:11 +00005283 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00005284 if( res>0 ) goto jump_to_p2;
drh8721ce42001-11-07 14:22:00 +00005285 break;
5286}
5287
drh98757152008-01-09 23:04:12 +00005288/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00005289**
5290** Delete an entire database table or index whose root page in the database
5291** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00005292**
drh98757152008-01-09 23:04:12 +00005293** The table being destroyed is in the main database file if P3==0. If
5294** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00005295** that is used to store tables create using CREATE TEMPORARY TABLE.
5296**
drh205f48e2004-11-05 00:43:11 +00005297** If AUTOVACUUM is enabled then it is possible that another root page
5298** might be moved into the newly deleted root page in order to keep all
5299** root pages contiguous at the beginning of the database. The former
5300** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00005301** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00005302** movement was required (because the table being dropped was already
5303** the last one in the database) then a zero is stored in register P2.
5304** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00005305**
drhb19a2bc2001-09-16 00:13:26 +00005306** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00005307*/
drh27a348c2015-04-13 19:14:06 +00005308case OP_Destroy: { /* out2 */
danielk1977a0bf2652004-11-04 14:30:04 +00005309 int iMoved;
drh856c1032009-06-02 15:21:42 +00005310 int iDb;
drh3a949872012-09-18 13:20:13 +00005311
drh9e92a472013-06-27 17:40:30 +00005312 assert( p->readOnly==0 );
drh055f2982016-01-15 15:06:41 +00005313 assert( pOp->p1>1 );
drh27a348c2015-04-13 19:14:06 +00005314 pOut = out2Prerelease(p, pOp);
drh3c657212009-11-17 23:59:58 +00005315 pOut->flags = MEM_Null;
drh086723a2015-03-24 12:51:52 +00005316 if( db->nVdbeRead > db->nVDestroy+1 ){
danielk1977e6efa742004-11-10 11:55:10 +00005317 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00005318 p->errorAction = OE_Abort;
drh9467abf2016-02-17 18:44:11 +00005319 goto abort_due_to_error;
danielk1977e6efa742004-11-10 11:55:10 +00005320 }else{
drh856c1032009-06-02 15:21:42 +00005321 iDb = pOp->p3;
drha7ab6d82014-07-21 15:44:39 +00005322 assert( DbMaskTest(p->btreeMask, iDb) );
drh2dc06482013-12-11 00:59:10 +00005323 iMoved = 0; /* Not needed. Only to silence a warning. */
drh98757152008-01-09 23:04:12 +00005324 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00005325 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00005326 pOut->u.i = iMoved;
drh9467abf2016-02-17 18:44:11 +00005327 if( rc ) goto abort_due_to_error;
drh3765df42006-06-28 18:18:09 +00005328#ifndef SQLITE_OMIT_AUTOVACUUM
drh9467abf2016-02-17 18:44:11 +00005329 if( iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00005330 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5331 /* All OP_Destroy operations occur on the same btree */
5332 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5333 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00005334 }
drh3765df42006-06-28 18:18:09 +00005335#endif
danielk1977a0bf2652004-11-04 14:30:04 +00005336 }
drh5e00f6c2001-09-13 13:46:56 +00005337 break;
5338}
5339
danielk1977c7af4842008-10-27 13:59:33 +00005340/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00005341**
5342** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00005343** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00005344** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00005345**
drhf57b3392001-10-08 13:22:32 +00005346** The table being clear is in the main database file if P2==0. If
5347** P2==1 then the table to be clear is in the auxiliary database file
5348** that is used to store tables create using CREATE TEMPORARY TABLE.
5349**
shanebe217792009-03-05 04:20:31 +00005350** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00005351** intkey table (an SQL table, not an index). In this case the row change
5352** count is incremented by the number of rows in the table being cleared.
5353** If P3 is greater than zero, then the value stored in register P3 is
5354** also incremented by the number of rows in the table being cleared.
5355**
drhb19a2bc2001-09-16 00:13:26 +00005356** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00005357*/
drh9cbf3422008-01-17 16:22:13 +00005358case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00005359 int nChange;
5360
5361 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00005362 assert( p->readOnly==0 );
drha7ab6d82014-07-21 15:44:39 +00005363 assert( DbMaskTest(p->btreeMask, pOp->p2) );
danielk1977c7af4842008-10-27 13:59:33 +00005364 rc = sqlite3BtreeClearTable(
5365 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5366 );
5367 if( pOp->p3 ){
5368 p->nChange += nChange;
5369 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00005370 assert( memIsValid(&aMem[pOp->p3]) );
5371 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00005372 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00005373 }
5374 }
drh9467abf2016-02-17 18:44:11 +00005375 if( rc ) goto abort_due_to_error;
drh5edc3122001-09-13 21:53:09 +00005376 break;
5377}
5378
drh65ea12c2014-03-19 17:41:36 +00005379/* Opcode: ResetSorter P1 * * * *
drh079a3072014-03-19 14:10:55 +00005380**
drh65ea12c2014-03-19 17:41:36 +00005381** Delete all contents from the ephemeral table or sorter
5382** that is open on cursor P1.
drh079a3072014-03-19 14:10:55 +00005383**
drh65ea12c2014-03-19 17:41:36 +00005384** This opcode only works for cursors used for sorting and
5385** opened with OP_OpenEphemeral or OP_SorterOpen.
drh079a3072014-03-19 14:10:55 +00005386*/
drh65ea12c2014-03-19 17:41:36 +00005387case OP_ResetSorter: {
drh079a3072014-03-19 14:10:55 +00005388 VdbeCursor *pC;
5389
5390 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5391 pC = p->apCsr[pOp->p1];
5392 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005393 if( isSorter(pC) ){
5394 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
drh65ea12c2014-03-19 17:41:36 +00005395 }else{
drhc960dcb2015-11-20 19:22:01 +00005396 assert( pC->eCurType==CURTYPE_BTREE );
drh65ea12c2014-03-19 17:41:36 +00005397 assert( pC->isEphemeral );
drhc960dcb2015-11-20 19:22:01 +00005398 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
drh9467abf2016-02-17 18:44:11 +00005399 if( rc ) goto abort_due_to_error;
drh65ea12c2014-03-19 17:41:36 +00005400 }
drh079a3072014-03-19 14:10:55 +00005401 break;
5402}
5403
drh4c583122008-01-04 22:01:03 +00005404/* Opcode: CreateTable P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005405** Synopsis: r[P2]=root iDb=P1
drh5b2fd562001-09-13 15:21:31 +00005406**
drh4c583122008-01-04 22:01:03 +00005407** Allocate a new table in the main database file if P1==0 or in the
5408** auxiliary database file if P1==1 or in an attached database if
5409** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005410** register P2
drh5b2fd562001-09-13 15:21:31 +00005411**
drhc6b52df2002-01-04 03:09:29 +00005412** The difference between a table and an index is this: A table must
5413** have a 4-byte integer key and can have arbitrary data. An index
5414** has an arbitrary key but no data.
5415**
drhb19a2bc2001-09-16 00:13:26 +00005416** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00005417*/
drh4c583122008-01-04 22:01:03 +00005418/* Opcode: CreateIndex P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005419** Synopsis: r[P2]=root iDb=P1
drhf57b3392001-10-08 13:22:32 +00005420**
drh4c583122008-01-04 22:01:03 +00005421** Allocate a new index in the main database file if P1==0 or in the
5422** auxiliary database file if P1==1 or in an attached database if
5423** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005424** register P2.
drhf57b3392001-10-08 13:22:32 +00005425**
drhc6b52df2002-01-04 03:09:29 +00005426** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00005427*/
drh27a348c2015-04-13 19:14:06 +00005428case OP_CreateIndex: /* out2 */
5429case OP_CreateTable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00005430 int pgno;
drhf328bc82004-05-10 23:29:49 +00005431 int flags;
drh234c39d2004-07-24 03:30:47 +00005432 Db *pDb;
drh856c1032009-06-02 15:21:42 +00005433
drh27a348c2015-04-13 19:14:06 +00005434 pOut = out2Prerelease(p, pOp);
drh856c1032009-06-02 15:21:42 +00005435 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00005436 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005437 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005438 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00005439 pDb = &db->aDb[pOp->p1];
5440 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00005441 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00005442 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00005443 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00005444 }else{
drhd4187c72010-08-30 22:15:45 +00005445 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00005446 }
drh234c39d2004-07-24 03:30:47 +00005447 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh9467abf2016-02-17 18:44:11 +00005448 if( rc ) goto abort_due_to_error;
drh88a003e2008-12-11 16:17:03 +00005449 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00005450 break;
5451}
5452
drh22645842011-03-24 01:34:03 +00005453/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00005454**
5455** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00005456** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00005457**
5458** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00005459** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00005460*/
drh9cbf3422008-01-17 16:22:13 +00005461case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00005462 int iDb;
5463 const char *zMaster;
5464 char *zSql;
5465 InitData initData;
5466
drhbdaec522011-04-04 00:14:43 +00005467 /* Any prepared statement that invokes this opcode will hold mutexes
5468 ** on every btree. This is a prerequisite for invoking
5469 ** sqlite3InitCallback().
5470 */
5471#ifdef SQLITE_DEBUG
5472 for(iDb=0; iDb<db->nDb; iDb++){
5473 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5474 }
5475#endif
drhbdaec522011-04-04 00:14:43 +00005476
drh856c1032009-06-02 15:21:42 +00005477 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00005478 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00005479 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00005480 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00005481 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00005482 initData.db = db;
5483 initData.iDb = pOp->p1;
5484 initData.pzErrMsg = &p->zErrMsg;
5485 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00005486 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
drh69c33822016-08-18 14:33:11 +00005487 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
danielk1977a8bbef82009-03-23 17:11:26 +00005488 if( zSql==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005489 rc = SQLITE_NOMEM_BKPT;
danielk1977a8bbef82009-03-23 17:11:26 +00005490 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00005491 assert( db->init.busy==0 );
5492 db->init.busy = 1;
5493 initData.rc = SQLITE_OK;
5494 assert( !db->mallocFailed );
5495 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5496 if( rc==SQLITE_OK ) rc = initData.rc;
5497 sqlite3DbFree(db, zSql);
5498 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00005499 }
drh3c23a882007-01-09 14:01:13 +00005500 }
drh9467abf2016-02-17 18:44:11 +00005501 if( rc ){
5502 sqlite3ResetAllSchemasOfConnection(db);
5503 if( rc==SQLITE_NOMEM ){
5504 goto no_mem;
5505 }
5506 goto abort_due_to_error;
danielk1977261919c2005-12-06 12:52:59 +00005507 }
drh234c39d2004-07-24 03:30:47 +00005508 break;
5509}
5510
drh8bfdf722009-06-19 14:06:03 +00005511#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00005512/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00005513**
5514** Read the sqlite_stat1 table for database P1 and load the content
5515** of that table into the internal index hash table. This will cause
5516** the analysis to be used when preparing all subsequent queries.
5517*/
drh9cbf3422008-01-17 16:22:13 +00005518case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00005519 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5520 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00005521 if( rc ) goto abort_due_to_error;
drh497e4462005-07-23 03:18:40 +00005522 break;
5523}
drh8bfdf722009-06-19 14:06:03 +00005524#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00005525
drh98757152008-01-09 23:04:12 +00005526/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005527**
5528** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005529** the table named P4 in database P1. This is called after a table
drh5dad9a32014-07-25 18:37:42 +00005530** is dropped from disk (using the Destroy opcode) in order to keep
5531** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005532** schema consistent with what is on disk.
5533*/
drh9cbf3422008-01-17 16:22:13 +00005534case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00005535 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005536 break;
5537}
5538
drh98757152008-01-09 23:04:12 +00005539/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005540**
5541** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005542** the index named P4 in database P1. This is called after an index
drh5dad9a32014-07-25 18:37:42 +00005543** is dropped from disk (using the Destroy opcode)
5544** in order to keep the internal representation of the
drh956bc922004-07-24 17:38:29 +00005545** schema consistent with what is on disk.
5546*/
drh9cbf3422008-01-17 16:22:13 +00005547case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00005548 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005549 break;
5550}
5551
drh98757152008-01-09 23:04:12 +00005552/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005553**
5554** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005555** the trigger named P4 in database P1. This is called after a trigger
drh5dad9a32014-07-25 18:37:42 +00005556** is dropped from disk (using the Destroy opcode) in order to keep
5557** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005558** schema consistent with what is on disk.
5559*/
drh9cbf3422008-01-17 16:22:13 +00005560case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00005561 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005562 break;
5563}
5564
drh234c39d2004-07-24 03:30:47 +00005565
drhb7f91642004-10-31 02:22:47 +00005566#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98968b22016-03-15 22:00:39 +00005567/* Opcode: IntegrityCk P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00005568**
drh98757152008-01-09 23:04:12 +00005569** Do an analysis of the currently open database. Store in
5570** register P1 the text of an error message describing any problems.
5571** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00005572**
drh98757152008-01-09 23:04:12 +00005573** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00005574** At most reg(P3) errors will be reported.
5575** In other words, the analysis stops as soon as reg(P1) errors are
5576** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00005577**
drh98968b22016-03-15 22:00:39 +00005578** The root page numbers of all tables in the database are integers
5579** stored in P4_INTARRAY argument.
drh21504322002-06-25 13:16:02 +00005580**
drh98757152008-01-09 23:04:12 +00005581** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00005582** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00005583**
drh1dcdbc02007-01-27 02:24:54 +00005584** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00005585*/
drhaaab5722002-02-19 13:39:21 +00005586case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00005587 int nRoot; /* Number of tables to check. (Number of root pages.) */
5588 int *aRoot; /* Array of rootpage numbers for tables to be checked */
drh98757152008-01-09 23:04:12 +00005589 int nErr; /* Number of errors reported */
5590 char *z; /* Text of the error report */
5591 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00005592
drh1713afb2013-06-28 01:24:57 +00005593 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005594 nRoot = pOp->p2;
drh98968b22016-03-15 22:00:39 +00005595 aRoot = pOp->p4.ai;
drh79069752004-05-22 21:30:40 +00005596 assert( nRoot>0 );
drh98968b22016-03-15 22:00:39 +00005597 assert( aRoot[nRoot]==0 );
drh9f6168b2016-03-19 23:32:58 +00005598 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005599 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005600 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005601 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005602 pIn1 = &aMem[pOp->p1];
drh98757152008-01-09 23:04:12 +00005603 assert( pOp->p5<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005604 assert( DbMaskTest(p->btreeMask, pOp->p5) );
drh98757152008-01-09 23:04:12 +00005605 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00005606 (int)pnErr->u.i, &nErr);
drh3c024d62007-03-30 11:23:45 +00005607 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005608 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005609 if( nErr==0 ){
5610 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005611 }else if( z==0 ){
5612 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005613 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005614 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005615 }
drhb7654112008-01-12 12:48:07 +00005616 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005617 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005618 break;
5619}
drhb7f91642004-10-31 02:22:47 +00005620#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005621
drh3d4501e2008-12-04 20:40:10 +00005622/* Opcode: RowSetAdd P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00005623** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005624**
drh3d4501e2008-12-04 20:40:10 +00005625** Insert the integer value held by register P2 into a boolean index
5626** held in register P1.
5627**
5628** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005629*/
drh93952eb2009-11-13 19:43:43 +00005630case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005631 pIn1 = &aMem[pOp->p1];
5632 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005633 assert( (pIn2->flags & MEM_Int)!=0 );
5634 if( (pIn1->flags & MEM_RowSet)==0 ){
5635 sqlite3VdbeMemSetRowSet(pIn1);
5636 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005637 }
drh93952eb2009-11-13 19:43:43 +00005638 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005639 break;
5640}
5641
5642/* Opcode: RowSetRead P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00005643** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00005644**
5645** Extract the smallest value from boolean index P1 and put that value into
5646** register P3. Or, if boolean index P1 is initially empty, leave P3
5647** unchanged and jump to instruction P2.
5648*/
drh93952eb2009-11-13 19:43:43 +00005649case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005650 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005651
drh3c657212009-11-17 23:59:58 +00005652 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005653 if( (pIn1->flags & MEM_RowSet)==0
5654 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005655 ){
5656 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005657 sqlite3VdbeMemSetNull(pIn1);
drh688852a2014-02-17 22:40:43 +00005658 VdbeBranchTaken(1,2);
drhf56fa462015-04-13 21:39:54 +00005659 goto jump_to_p2_and_check_for_interrupt;
drh3d4501e2008-12-04 20:40:10 +00005660 }else{
5661 /* A value was pulled from the index */
drh688852a2014-02-17 22:40:43 +00005662 VdbeBranchTaken(0,2);
drhf56fa462015-04-13 21:39:54 +00005663 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005664 }
drh49afe3a2013-07-10 03:05:14 +00005665 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005666}
5667
drh1b26c7c2009-04-22 02:15:47 +00005668/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00005669** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00005670**
drhade97602009-04-21 15:05:18 +00005671** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005672** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005673** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005674** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005675** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005676**
drh1b26c7c2009-04-22 02:15:47 +00005677** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005678** of integers, where each set contains no duplicates. Each set
5679** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005680** must have P4==0, the final set P4=-1. P4 must be either -1 or
5681** non-negative. For non-negative values of P4 only the lower 4
5682** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005683**
5684** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005685** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005686** (b) when P4==-1 there is no need to insert the value, as it will
5687** never be tested for, and (c) when a value that is part of set X is
5688** inserted, there is no need to search to see if the same value was
5689** previously inserted as part of set X (only if it was previously
5690** inserted as part of some other set).
5691*/
drh1b26c7c2009-04-22 02:15:47 +00005692case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005693 int iSet;
5694 int exists;
5695
drh3c657212009-11-17 23:59:58 +00005696 pIn1 = &aMem[pOp->p1];
5697 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005698 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005699 assert( pIn3->flags&MEM_Int );
5700
drh1b26c7c2009-04-22 02:15:47 +00005701 /* If there is anything other than a rowset object in memory cell P1,
5702 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005703 */
drh733bf1b2009-04-22 00:47:00 +00005704 if( (pIn1->flags & MEM_RowSet)==0 ){
5705 sqlite3VdbeMemSetRowSet(pIn1);
5706 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005707 }
5708
5709 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005710 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005711 if( iSet ){
drhd83cad22014-04-10 02:24:48 +00005712 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
drh688852a2014-02-17 22:40:43 +00005713 VdbeBranchTaken(exists!=0,2);
drhf56fa462015-04-13 21:39:54 +00005714 if( exists ) goto jump_to_p2;
danielk19771d461462009-04-21 09:02:45 +00005715 }
5716 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005717 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005718 }
5719 break;
5720}
5721
drh5e00f6c2001-09-13 13:46:56 +00005722
danielk197793758c82005-01-21 08:13:14 +00005723#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005724
drh0fd61352014-02-07 02:29:45 +00005725/* Opcode: Program P1 P2 P3 P4 P5
dan165921a2009-08-28 18:53:45 +00005726**
dan76d462e2009-08-30 11:42:51 +00005727** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005728**
dan76d462e2009-08-30 11:42:51 +00005729** P1 contains the address of the memory cell that contains the first memory
5730** cell in an array of values used as arguments to the sub-program. P2
5731** contains the address to jump to if the sub-program throws an IGNORE
5732** exception using the RAISE() function. Register P3 contains the address
5733** of a memory cell in this (the parent) VM that is used to allocate the
5734** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005735**
5736** P4 is a pointer to the VM containing the trigger program.
drh0fd61352014-02-07 02:29:45 +00005737**
5738** If P5 is non-zero, then recursive program invocation is enabled.
dan165921a2009-08-28 18:53:45 +00005739*/
dan76d462e2009-08-30 11:42:51 +00005740case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005741 int nMem; /* Number of memory registers for sub-program */
5742 int nByte; /* Bytes of runtime space required for sub-program */
5743 Mem *pRt; /* Register to allocate runtime space */
5744 Mem *pMem; /* Used to iterate through memory cells */
5745 Mem *pEnd; /* Last memory cell in new array */
5746 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5747 SubProgram *pProgram; /* Sub-program to execute */
5748 void *t; /* Token identifying trigger */
5749
5750 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005751 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005752 assert( pProgram->nOp>0 );
5753
dan1da40a32009-09-19 17:00:31 +00005754 /* If the p5 flag is clear, then recursive invocation of triggers is
5755 ** disabled for backwards compatibility (p5 is set if this sub-program
5756 ** is really a trigger, not a foreign key action, and the flag set
5757 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005758 **
5759 ** It is recursive invocation of triggers, at the SQL level, that is
5760 ** disabled. In some cases a single trigger may generate more than one
5761 ** SubProgram (if the trigger may be executed with more than one different
5762 ** ON CONFLICT algorithm). SubProgram structures associated with a
5763 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005764 ** variable. */
5765 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005766 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005767 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5768 if( pFrame ) break;
5769 }
5770
danf5894502009-10-07 18:41:19 +00005771 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005772 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00005773 sqlite3VdbeError(p, "too many levels of trigger recursion");
drh9467abf2016-02-17 18:44:11 +00005774 goto abort_due_to_error;
dan165921a2009-08-28 18:53:45 +00005775 }
5776
5777 /* Register pRt is used to store the memory required to save the state
5778 ** of the current program, and the memory required at runtime to execute
5779 ** the trigger program. If this trigger has been fired before, then pRt
5780 ** is already allocated. Otherwise, it must be initialized. */
5781 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005782 /* SubProgram.nMem is set to the number of memory cells used by the
5783 ** program stored in SubProgram.aOp. As well as these, one memory
5784 ** cell is required for each cursor used by the program. Set local
5785 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5786 */
dan65a7cd12009-09-01 12:16:01 +00005787 nMem = pProgram->nMem + pProgram->nCsr;
drh3cdce922016-03-21 00:30:40 +00005788 assert( nMem>0 );
5789 if( pProgram->nCsr==0 ) nMem++;
dan65a7cd12009-09-01 12:16:01 +00005790 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005791 + nMem * sizeof(Mem)
drh9e5eb9c2016-09-18 16:08:10 +00005792 + pProgram->nCsr * sizeof(VdbeCursor *);
dan165921a2009-08-28 18:53:45 +00005793 pFrame = sqlite3DbMallocZero(db, nByte);
5794 if( !pFrame ){
5795 goto no_mem;
5796 }
5797 sqlite3VdbeMemRelease(pRt);
5798 pRt->flags = MEM_Frame;
5799 pRt->u.pFrame = pFrame;
5800
5801 pFrame->v = p;
5802 pFrame->nChildMem = nMem;
5803 pFrame->nChildCsr = pProgram->nCsr;
drhf56fa462015-04-13 21:39:54 +00005804 pFrame->pc = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +00005805 pFrame->aMem = p->aMem;
5806 pFrame->nMem = p->nMem;
5807 pFrame->apCsr = p->apCsr;
5808 pFrame->nCursor = p->nCursor;
5809 pFrame->aOp = p->aOp;
5810 pFrame->nOp = p->nOp;
5811 pFrame->token = pProgram->token;
dane2f771b2014-11-03 15:33:17 +00005812#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005813 pFrame->anExec = p->anExec;
dane2f771b2014-11-03 15:33:17 +00005814#endif
dan165921a2009-08-28 18:53:45 +00005815
5816 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5817 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drha5750cf2014-02-07 13:20:31 +00005818 pMem->flags = MEM_Undefined;
dan165921a2009-08-28 18:53:45 +00005819 pMem->db = db;
5820 }
5821 }else{
5822 pFrame = pRt->u.pFrame;
drh9f6168b2016-03-19 23:32:58 +00005823 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
5824 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
dan165921a2009-08-28 18:53:45 +00005825 assert( pProgram->nCsr==pFrame->nChildCsr );
drhf56fa462015-04-13 21:39:54 +00005826 assert( (int)(pOp - aOp)==pFrame->pc );
dan165921a2009-08-28 18:53:45 +00005827 }
5828
5829 p->nFrame++;
5830 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005831 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005832 pFrame->nChange = p->nChange;
danc3da6672014-10-28 18:24:16 +00005833 pFrame->nDbChange = p->db->nChange;
dan32001322016-02-19 18:54:29 +00005834 assert( pFrame->pAuxData==0 );
5835 pFrame->pAuxData = p->pAuxData;
5836 p->pAuxData = 0;
dan2832ad42009-08-31 15:27:27 +00005837 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005838 p->pFrame = pFrame;
drh9f6168b2016-03-19 23:32:58 +00005839 p->aMem = aMem = VdbeFrameMem(pFrame);
dan165921a2009-08-28 18:53:45 +00005840 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005841 p->nCursor = (u16)pFrame->nChildCsr;
drh9f6168b2016-03-19 23:32:58 +00005842 p->apCsr = (VdbeCursor **)&aMem[p->nMem];
drhbbe879d2009-11-14 18:04:35 +00005843 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005844 p->nOp = pProgram->nOp;
dane2f771b2014-11-03 15:33:17 +00005845#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005846 p->anExec = 0;
dane2f771b2014-11-03 15:33:17 +00005847#endif
drhf56fa462015-04-13 21:39:54 +00005848 pOp = &aOp[-1];
dan165921a2009-08-28 18:53:45 +00005849
5850 break;
5851}
5852
dan76d462e2009-08-30 11:42:51 +00005853/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005854**
dan76d462e2009-08-30 11:42:51 +00005855** This opcode is only ever present in sub-programs called via the
5856** OP_Program instruction. Copy a value currently stored in a memory
5857** cell of the calling (parent) frame to cell P2 in the current frames
5858** address space. This is used by trigger programs to access the new.*
5859** and old.* values.
dan165921a2009-08-28 18:53:45 +00005860**
dan76d462e2009-08-30 11:42:51 +00005861** The address of the cell in the parent frame is determined by adding
5862** the value of the P1 argument to the value of the P1 argument to the
5863** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005864*/
drh27a348c2015-04-13 19:14:06 +00005865case OP_Param: { /* out2 */
dan65a7cd12009-09-01 12:16:01 +00005866 VdbeFrame *pFrame;
5867 Mem *pIn;
drh27a348c2015-04-13 19:14:06 +00005868 pOut = out2Prerelease(p, pOp);
dan65a7cd12009-09-01 12:16:01 +00005869 pFrame = p->pFrame;
5870 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005871 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5872 break;
5873}
5874
danielk197793758c82005-01-21 08:13:14 +00005875#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005876
dan1da40a32009-09-19 17:00:31 +00005877#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005878/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005879** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00005880**
dan0ff297e2009-09-25 17:03:14 +00005881** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5882** If P1 is non-zero, the database constraint counter is incremented
5883** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005884** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005885*/
dan32b09f22009-09-23 17:29:59 +00005886case OP_FkCounter: {
drh963c74d2013-07-11 12:19:12 +00005887 if( db->flags & SQLITE_DeferFKs ){
dancb3e4b72013-07-03 19:53:05 +00005888 db->nDeferredImmCons += pOp->p2;
5889 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00005890 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005891 }else{
dan0ff297e2009-09-25 17:03:14 +00005892 p->nFkConstraint += pOp->p2;
5893 }
5894 break;
5895}
5896
5897/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005898** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00005899**
5900** This opcode tests if a foreign key constraint-counter is currently zero.
5901** If so, jump to instruction P2. Otherwise, fall through to the next
5902** instruction.
5903**
5904** If P1 is non-zero, then the jump is taken if the database constraint-counter
5905** is zero (the one that counts deferred constraint violations). If P1 is
5906** zero, the jump is taken if the statement constraint-counter is zero
5907** (immediate foreign key constraint violations).
5908*/
5909case OP_FkIfZero: { /* jump */
5910 if( pOp->p1 ){
drh688852a2014-02-17 22:40:43 +00005911 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005912 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan0ff297e2009-09-25 17:03:14 +00005913 }else{
drh688852a2014-02-17 22:40:43 +00005914 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005915 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan32b09f22009-09-23 17:29:59 +00005916 }
dan1da40a32009-09-19 17:00:31 +00005917 break;
5918}
5919#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5920
drh205f48e2004-11-05 00:43:11 +00005921#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005922/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005923** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00005924**
dan76d462e2009-08-30 11:42:51 +00005925** P1 is a register in the root frame of this VM (the root frame is
5926** different from the current frame if this instruction is being executed
5927** within a sub-program). Set the value of register P1 to the maximum of
5928** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005929**
5930** This instruction throws an error if the memory cell is not initially
5931** an integer.
5932*/
dan76d462e2009-08-30 11:42:51 +00005933case OP_MemMax: { /* in2 */
dan76d462e2009-08-30 11:42:51 +00005934 VdbeFrame *pFrame;
5935 if( p->pFrame ){
5936 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5937 pIn1 = &pFrame->aMem[pOp->p1];
5938 }else{
drha6c2ed92009-11-14 23:22:23 +00005939 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005940 }
drh2b4ded92010-09-27 21:09:31 +00005941 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005942 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005943 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005944 sqlite3VdbeMemIntegerify(pIn2);
5945 if( pIn1->u.i<pIn2->u.i){
5946 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005947 }
5948 break;
5949}
5950#endif /* SQLITE_OMIT_AUTOINCREMENT */
5951
drh8b0cf382015-10-06 21:07:06 +00005952/* Opcode: IfPos P1 P2 P3 * *
5953** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00005954**
drh16897072015-03-07 00:57:37 +00005955** Register P1 must contain an integer.
mistachkin91a3ecb2015-10-06 21:49:55 +00005956** If the value of register P1 is 1 or greater, subtract P3 from the
drh8b0cf382015-10-06 21:07:06 +00005957** value in P1 and jump to P2.
drh6f58f702006-01-08 05:26:41 +00005958**
drh16897072015-03-07 00:57:37 +00005959** If the initial value of register P1 is less than 1, then the
5960** value is unchanged and control passes through to the next instruction.
danielk1977a2dc3b12005-02-05 12:48:48 +00005961*/
drh9cbf3422008-01-17 16:22:13 +00005962case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005963 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005964 assert( pIn1->flags&MEM_Int );
drh688852a2014-02-17 22:40:43 +00005965 VdbeBranchTaken( pIn1->u.i>0, 2);
drh8b0cf382015-10-06 21:07:06 +00005966 if( pIn1->u.i>0 ){
5967 pIn1->u.i -= pOp->p3;
5968 goto jump_to_p2;
5969 }
drhec7429a2005-10-06 16:53:14 +00005970 break;
5971}
5972
drhcc2fa4c2016-01-25 15:57:29 +00005973/* Opcode: OffsetLimit P1 P2 P3 * *
5974** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
drh15007a92006-01-08 18:10:17 +00005975**
drhcc2fa4c2016-01-25 15:57:29 +00005976** This opcode performs a commonly used computation associated with
5977** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
5978** holds the offset counter. The opcode computes the combined value
5979** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
5980** value computed is the total number of rows that will need to be
5981** visited in order to complete the query.
5982**
5983** If r[P3] is zero or negative, that means there is no OFFSET
5984** and r[P2] is set to be the value of the LIMIT, r[P1].
5985**
5986** if r[P1] is zero or negative, that means there is no LIMIT
5987** and r[P2] is set to -1.
5988**
5989** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
drh15007a92006-01-08 18:10:17 +00005990*/
drhcc2fa4c2016-01-25 15:57:29 +00005991case OP_OffsetLimit: { /* in1, out2, in3 */
drh3c657212009-11-17 23:59:58 +00005992 pIn1 = &aMem[pOp->p1];
drhcc2fa4c2016-01-25 15:57:29 +00005993 pIn3 = &aMem[pOp->p3];
5994 pOut = out2Prerelease(p, pOp);
5995 assert( pIn1->flags & MEM_Int );
5996 assert( pIn3->flags & MEM_Int );
5997 pOut->u.i = pIn1->u.i<=0 ? -1 : pIn1->u.i+(pIn3->u.i>0?pIn3->u.i:0);
drh15007a92006-01-08 18:10:17 +00005998 break;
5999}
6000
drh16897072015-03-07 00:57:37 +00006001/* Opcode: IfNotZero P1 P2 P3 * *
drh8b0cf382015-10-06 21:07:06 +00006002** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2
drhec7429a2005-10-06 16:53:14 +00006003**
drh16897072015-03-07 00:57:37 +00006004** Register P1 must contain an integer. If the content of register P1 is
mistachkin91a3ecb2015-10-06 21:49:55 +00006005** initially nonzero, then subtract P3 from the value in register P1 and
drh8b0cf382015-10-06 21:07:06 +00006006** jump to P2. If register P1 is initially zero, leave it unchanged
6007** and fall through.
drhec7429a2005-10-06 16:53:14 +00006008*/
drh16897072015-03-07 00:57:37 +00006009case OP_IfNotZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00006010 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00006011 assert( pIn1->flags&MEM_Int );
drh16897072015-03-07 00:57:37 +00006012 VdbeBranchTaken(pIn1->u.i<0, 2);
6013 if( pIn1->u.i ){
drh8b0cf382015-10-06 21:07:06 +00006014 pIn1->u.i -= pOp->p3;
drhf56fa462015-04-13 21:39:54 +00006015 goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00006016 }
6017 break;
6018}
6019
6020/* Opcode: DecrJumpZero P1 P2 * * *
6021** Synopsis: if (--r[P1])==0 goto P2
6022**
6023** Register P1 must hold an integer. Decrement the value in register P1
6024** then jump to P2 if the new value is exactly zero.
6025*/
6026case OP_DecrJumpZero: { /* jump, in1 */
6027 pIn1 = &aMem[pOp->p1];
6028 assert( pIn1->flags&MEM_Int );
6029 pIn1->u.i--;
drh688852a2014-02-17 22:40:43 +00006030 VdbeBranchTaken(pIn1->u.i==0, 2);
drhf56fa462015-04-13 21:39:54 +00006031 if( pIn1->u.i==0 ) goto jump_to_p2;
drha2a49dc2008-01-02 14:28:13 +00006032 break;
6033}
6034
drh16897072015-03-07 00:57:37 +00006035
drhe2d9e7c2015-06-26 18:47:53 +00006036/* Opcode: AggStep0 * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006037** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00006038**
drh0bce8352002-02-28 00:41:10 +00006039** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00006040** function has P5 arguments. P4 is a pointer to the FuncDef
drhe2d9e7c2015-06-26 18:47:53 +00006041** structure that specifies the function. Register P3 is the
6042** accumulator.
drhe5095352002-02-24 03:25:14 +00006043**
drh98757152008-01-09 23:04:12 +00006044** The P5 arguments are taken from register P2 and its
6045** successors.
drhe5095352002-02-24 03:25:14 +00006046*/
drhe2d9e7c2015-06-26 18:47:53 +00006047/* Opcode: AggStep * P2 P3 P4 P5
6048** Synopsis: accum=r[P3] step(r[P2@P5])
6049**
6050** Execute the step function for an aggregate. The
6051** function has P5 arguments. P4 is a pointer to an sqlite3_context
6052** object that is used to run the function. Register P3 is
6053** as the accumulator.
6054**
6055** The P5 arguments are taken from register P2 and its
6056** successors.
6057**
6058** This opcode is initially coded as OP_AggStep0. On first evaluation,
6059** the FuncDef stored in P4 is converted into an sqlite3_context and
6060** the opcode is changed. In this way, the initialization of the
6061** sqlite3_context only happens once, instead of on each call to the
6062** step function.
6063*/
drh9c7c9132015-06-26 18:16:52 +00006064case OP_AggStep0: {
drh856c1032009-06-02 15:21:42 +00006065 int n;
drh9c7c9132015-06-26 18:16:52 +00006066 sqlite3_context *pCtx;
drhe5095352002-02-24 03:25:14 +00006067
drh9c7c9132015-06-26 18:16:52 +00006068 assert( pOp->p4type==P4_FUNCDEF );
drh856c1032009-06-02 15:21:42 +00006069 n = pOp->p5;
drh9f6168b2016-03-19 23:32:58 +00006070 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6071 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
drh9c7c9132015-06-26 18:16:52 +00006072 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drh575fad62016-02-05 13:38:36 +00006073 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
drh9c7c9132015-06-26 18:16:52 +00006074 if( pCtx==0 ) goto no_mem;
6075 pCtx->pMem = 0;
6076 pCtx->pFunc = pOp->p4.pFunc;
6077 pCtx->iOp = (int)(pOp - aOp);
6078 pCtx->pVdbe = p;
6079 pCtx->argc = n;
6080 pOp->p4type = P4_FUNCCTX;
6081 pOp->p4.pCtx = pCtx;
6082 pOp->opcode = OP_AggStep;
6083 /* Fall through into OP_AggStep */
6084}
6085case OP_AggStep: {
6086 int i;
6087 sqlite3_context *pCtx;
6088 Mem *pMem;
6089 Mem t;
6090
6091 assert( pOp->p4type==P4_FUNCCTX );
6092 pCtx = pOp->p4.pCtx;
6093 pMem = &aMem[pOp->p3];
6094
6095 /* If this function is inside of a trigger, the register array in aMem[]
6096 ** might change from one evaluation to the next. The next block of code
6097 ** checks to see if the register array has changed, and if so it
6098 ** reinitializes the relavant parts of the sqlite3_context object */
6099 if( pCtx->pMem != pMem ){
6100 pCtx->pMem = pMem;
6101 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6102 }
6103
6104#ifdef SQLITE_DEBUG
6105 for(i=0; i<pCtx->argc; i++){
6106 assert( memIsValid(pCtx->argv[i]) );
6107 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6108 }
6109#endif
6110
drhabfcea22005-09-06 20:36:48 +00006111 pMem->n++;
drhd3b74202014-09-17 16:41:15 +00006112 sqlite3VdbeMemInit(&t, db, MEM_Null);
drh9c7c9132015-06-26 18:16:52 +00006113 pCtx->pOut = &t;
6114 pCtx->fErrorOrAux = 0;
6115 pCtx->skipFlag = 0;
drh2d801512016-01-14 22:19:58 +00006116 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
drh9c7c9132015-06-26 18:16:52 +00006117 if( pCtx->fErrorOrAux ){
6118 if( pCtx->isError ){
6119 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
6120 rc = pCtx->isError;
6121 }
6122 sqlite3VdbeMemRelease(&t);
drh9467abf2016-02-17 18:44:11 +00006123 if( rc ) goto abort_due_to_error;
drh9c7c9132015-06-26 18:16:52 +00006124 }else{
6125 assert( t.flags==MEM_Null );
drh1350b032002-02-27 19:00:20 +00006126 }
drh9c7c9132015-06-26 18:16:52 +00006127 if( pCtx->skipFlag ){
drh7a957892012-02-02 17:35:43 +00006128 assert( pOp[-1].opcode==OP_CollSeq );
6129 i = pOp[-1].p1;
6130 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6131 }
drh5e00f6c2001-09-13 13:46:56 +00006132 break;
6133}
6134
drh98757152008-01-09 23:04:12 +00006135/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00006136** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00006137**
drh13449892005-09-07 21:22:45 +00006138** Execute the finalizer function for an aggregate. P1 is
6139** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00006140**
6141** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00006142** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00006143** argument is not used by this opcode. It is only there to disambiguate
6144** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00006145** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00006146** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00006147*/
drh9cbf3422008-01-17 16:22:13 +00006148case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00006149 Mem *pMem;
drh9f6168b2016-03-19 23:32:58 +00006150 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006151 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00006152 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00006153 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00006154 if( rc ){
drh22c17b82015-05-15 04:13:15 +00006155 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
drh9467abf2016-02-17 18:44:11 +00006156 goto abort_due_to_error;
drh90669c12006-01-20 15:45:36 +00006157 }
drh2dca8682008-03-21 17:13:13 +00006158 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00006159 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00006160 if( sqlite3VdbeMemTooBig(pMem) ){
6161 goto too_big;
6162 }
drh5e00f6c2001-09-13 13:46:56 +00006163 break;
6164}
6165
dan5cf53532010-05-01 16:40:20 +00006166#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00006167/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006168**
6169** Checkpoint database P1. This is a no-op if P1 is not currently in
drha25165f2014-12-04 04:50:59 +00006170** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6171** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
drh30aa3b92011-02-07 23:56:01 +00006172** SQLITE_BUSY or not, respectively. Write the number of pages in the
6173** WAL after the checkpoint into mem[P3+1] and the number of pages
6174** in the WAL that have been checkpointed after the checkpoint
6175** completes into mem[P3+2]. However on an error, mem[P3+1] and
6176** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00006177*/
6178case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00006179 int i; /* Loop counter */
6180 int aRes[3]; /* Results */
6181 Mem *pMem; /* Write results here */
6182
drh9e92a472013-06-27 17:40:30 +00006183 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00006184 aRes[0] = 0;
6185 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00006186 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6187 || pOp->p2==SQLITE_CHECKPOINT_FULL
6188 || pOp->p2==SQLITE_CHECKPOINT_RESTART
danf26a1542014-12-02 19:04:54 +00006189 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
dancdc1f042010-11-18 12:11:05 +00006190 );
drh30aa3b92011-02-07 23:56:01 +00006191 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
drh9467abf2016-02-17 18:44:11 +00006192 if( rc ){
6193 if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
dancdc1f042010-11-18 12:11:05 +00006194 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00006195 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00006196 }
drh30aa3b92011-02-07 23:56:01 +00006197 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6198 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6199 }
dan7c246102010-04-12 19:00:29 +00006200 break;
6201};
dan5cf53532010-05-01 16:40:20 +00006202#endif
drh5e00f6c2001-09-13 13:46:56 +00006203
drhcac29a62010-07-02 19:36:52 +00006204#ifndef SQLITE_OMIT_PRAGMA
drh0fd61352014-02-07 02:29:45 +00006205/* Opcode: JournalMode P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006206**
6207** Change the journal mode of database P1 to P3. P3 must be one of the
6208** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6209** modes (delete, truncate, persist, off and memory), this is a simple
6210** operation. No IO is required.
6211**
6212** If changing into or out of WAL mode the procedure is more complicated.
6213**
6214** Write a string containing the final journal-mode to register P2.
6215*/
drh27a348c2015-04-13 19:14:06 +00006216case OP_JournalMode: { /* out2 */
dane04dc882010-04-20 18:53:15 +00006217 Btree *pBt; /* Btree to change journal mode of */
6218 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00006219 int eNew; /* New journal mode */
6220 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00006221#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00006222 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00006223#endif
dane04dc882010-04-20 18:53:15 +00006224
drh27a348c2015-04-13 19:14:06 +00006225 pOut = out2Prerelease(p, pOp);
drhd80b2332010-05-01 00:59:37 +00006226 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00006227 assert( eNew==PAGER_JOURNALMODE_DELETE
6228 || eNew==PAGER_JOURNALMODE_TRUNCATE
6229 || eNew==PAGER_JOURNALMODE_PERSIST
6230 || eNew==PAGER_JOURNALMODE_OFF
6231 || eNew==PAGER_JOURNALMODE_MEMORY
6232 || eNew==PAGER_JOURNALMODE_WAL
6233 || eNew==PAGER_JOURNALMODE_QUERY
6234 );
6235 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00006236 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00006237
dane04dc882010-04-20 18:53:15 +00006238 pBt = db->aDb[pOp->p1].pBt;
6239 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00006240 eOld = sqlite3PagerGetJournalMode(pPager);
6241 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6242 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00006243
6244#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00006245 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00006246
drhd80b2332010-05-01 00:59:37 +00006247 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00006248 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00006249 */
6250 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00006251 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00006252 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00006253 ){
drh0b9b4302010-06-11 17:01:24 +00006254 eNew = eOld;
dane180c292010-04-26 17:42:56 +00006255 }
6256
drh0b9b4302010-06-11 17:01:24 +00006257 if( (eNew!=eOld)
6258 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6259 ){
danc0537fe2013-06-28 19:41:43 +00006260 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00006261 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00006262 sqlite3VdbeError(p,
drh0b9b4302010-06-11 17:01:24 +00006263 "cannot change %s wal mode from within a transaction",
6264 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6265 );
drh9467abf2016-02-17 18:44:11 +00006266 goto abort_due_to_error;
drh0b9b4302010-06-11 17:01:24 +00006267 }else{
6268
6269 if( eOld==PAGER_JOURNALMODE_WAL ){
6270 /* If leaving WAL mode, close the log file. If successful, the call
6271 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6272 ** file. An EXCLUSIVE lock may still be held on the database file
6273 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00006274 */
dan7fb89902016-08-12 16:21:15 +00006275 rc = sqlite3PagerCloseWal(pPager, db);
drhab9b7442010-05-10 11:20:05 +00006276 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00006277 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00006278 }
drh242c4f72010-06-22 14:49:39 +00006279 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6280 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
6281 ** as an intermediate */
6282 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00006283 }
6284
6285 /* Open a transaction on the database file. Regardless of the journal
6286 ** mode, this transaction always uses a rollback journal.
6287 */
6288 assert( sqlite3BtreeIsInTrans(pBt)==0 );
6289 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00006290 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00006291 }
6292 }
6293 }
dan5cf53532010-05-01 16:40:20 +00006294#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00006295
drh9467abf2016-02-17 18:44:11 +00006296 if( rc ) eNew = eOld;
drh0b9b4302010-06-11 17:01:24 +00006297 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00006298
dane04dc882010-04-20 18:53:15 +00006299 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00006300 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00006301 pOut->n = sqlite3Strlen30(pOut->z);
6302 pOut->enc = SQLITE_UTF8;
6303 sqlite3VdbeChangeEncoding(pOut, encoding);
drh9467abf2016-02-17 18:44:11 +00006304 if( rc ) goto abort_due_to_error;
dane04dc882010-04-20 18:53:15 +00006305 break;
drhcac29a62010-07-02 19:36:52 +00006306};
6307#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00006308
drhfdbcdee2007-03-27 14:44:50 +00006309#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh9ef5e772016-08-19 14:20:56 +00006310/* Opcode: Vacuum P1 * * * *
drh6f8c91c2003-12-07 00:24:35 +00006311**
drh9ef5e772016-08-19 14:20:56 +00006312** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
6313** for an attached database. The "temp" database may not be vacuumed.
drh6f8c91c2003-12-07 00:24:35 +00006314*/
drh9cbf3422008-01-17 16:22:13 +00006315case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00006316 assert( p->readOnly==0 );
drh9ef5e772016-08-19 14:20:56 +00006317 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00006318 if( rc ) goto abort_due_to_error;
drh6f8c91c2003-12-07 00:24:35 +00006319 break;
6320}
drh154d4b22006-09-21 11:02:16 +00006321#endif
drh6f8c91c2003-12-07 00:24:35 +00006322
danielk1977dddbcdc2007-04-26 14:42:34 +00006323#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00006324/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00006325**
6326** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00006327** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00006328** P2. Otherwise, fall through to the next instruction.
6329*/
drh9cbf3422008-01-17 16:22:13 +00006330case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00006331 Btree *pBt;
6332
6333 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006334 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00006335 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00006336 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00006337 rc = sqlite3BtreeIncrVacuum(pBt);
drh688852a2014-02-17 22:40:43 +00006338 VdbeBranchTaken(rc==SQLITE_DONE,2);
drh9467abf2016-02-17 18:44:11 +00006339 if( rc ){
6340 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
danielk1977dddbcdc2007-04-26 14:42:34 +00006341 rc = SQLITE_OK;
drhf56fa462015-04-13 21:39:54 +00006342 goto jump_to_p2;
danielk1977dddbcdc2007-04-26 14:42:34 +00006343 }
6344 break;
6345}
6346#endif
6347
drh98757152008-01-09 23:04:12 +00006348/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00006349**
drh25df48d2014-07-22 14:58:12 +00006350** Cause precompiled statements to expire. When an expired statement
6351** is executed using sqlite3_step() it will either automatically
6352** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6353** or it will fail with SQLITE_SCHEMA.
danielk1977a21c6b62005-01-24 10:25:59 +00006354**
6355** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
drh25df48d2014-07-22 14:58:12 +00006356** then only the currently executing statement is expired.
danielk1977a21c6b62005-01-24 10:25:59 +00006357*/
drh9cbf3422008-01-17 16:22:13 +00006358case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00006359 if( !pOp->p1 ){
6360 sqlite3ExpirePreparedStatements(db);
6361 }else{
6362 p->expired = 1;
6363 }
6364 break;
6365}
6366
danielk1977c00da102006-01-07 13:21:04 +00006367#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00006368/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00006369** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00006370**
6371** Obtain a lock on a particular table. This instruction is only used when
6372** the shared-cache feature is enabled.
6373**
danielk197796d48e92009-06-29 06:00:37 +00006374** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00006375** on which the lock is acquired. A readlock is obtained if P3==0 or
6376** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00006377**
6378** P2 contains the root-page of the table to lock.
6379**
drh66a51672008-01-03 00:01:23 +00006380** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00006381** used to generate an error message if the lock cannot be obtained.
6382*/
drh9cbf3422008-01-17 16:22:13 +00006383case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00006384 u8 isWriteLock = (u8)pOp->p3;
6385 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6386 int p1 = pOp->p1;
6387 assert( p1>=0 && p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006388 assert( DbMaskTest(p->btreeMask, p1) );
danielk1977e0d9e6f2009-07-03 16:25:06 +00006389 assert( isWriteLock==0 || isWriteLock==1 );
6390 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
drh9467abf2016-02-17 18:44:11 +00006391 if( rc ){
6392 if( (rc&0xFF)==SQLITE_LOCKED ){
6393 const char *z = pOp->p4.z;
6394 sqlite3VdbeError(p, "database table is locked: %s", z);
6395 }
6396 goto abort_due_to_error;
danielk1977e0d9e6f2009-07-03 16:25:06 +00006397 }
danielk1977c00da102006-01-07 13:21:04 +00006398 }
6399 break;
6400}
drhb9bb7c12006-06-11 23:41:55 +00006401#endif /* SQLITE_OMIT_SHARED_CACHE */
6402
6403#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006404/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006405**
danielk19773e3a84d2008-08-01 17:37:40 +00006406** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6407** xBegin method for that table.
6408**
6409** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00006410** within a callback to a virtual table xSync() method. If it is, the error
6411** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00006412*/
drh9cbf3422008-01-17 16:22:13 +00006413case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00006414 VTable *pVTab;
6415 pVTab = pOp->p4.pVtab;
6416 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00006417 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
drh9467abf2016-02-17 18:44:11 +00006418 if( rc ) goto abort_due_to_error;
danielk1977f9e7dda2006-06-16 16:08:53 +00006419 break;
6420}
6421#endif /* SQLITE_OMIT_VIRTUALTABLE */
6422
6423#ifndef SQLITE_OMIT_VIRTUALTABLE
dan73779452015-03-19 18:56:17 +00006424/* Opcode: VCreate P1 P2 * * *
danielk1977f9e7dda2006-06-16 16:08:53 +00006425**
dan73779452015-03-19 18:56:17 +00006426** P2 is a register that holds the name of a virtual table in database
6427** P1. Call the xCreate method for that table.
danielk1977f9e7dda2006-06-16 16:08:53 +00006428*/
drh9cbf3422008-01-17 16:22:13 +00006429case OP_VCreate: {
dan73779452015-03-19 18:56:17 +00006430 Mem sMem; /* For storing the record being decoded */
drh47464062015-03-21 12:22:16 +00006431 const char *zTab; /* Name of the virtual table */
6432
dan73779452015-03-19 18:56:17 +00006433 memset(&sMem, 0, sizeof(sMem));
6434 sMem.db = db;
drh47464062015-03-21 12:22:16 +00006435 /* Because P2 is always a static string, it is impossible for the
6436 ** sqlite3VdbeMemCopy() to fail */
6437 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6438 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
dan73779452015-03-19 18:56:17 +00006439 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
drh47464062015-03-21 12:22:16 +00006440 assert( rc==SQLITE_OK );
6441 zTab = (const char*)sqlite3_value_text(&sMem);
6442 assert( zTab || db->mallocFailed );
6443 if( zTab ){
6444 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
dan73779452015-03-19 18:56:17 +00006445 }
6446 sqlite3VdbeMemRelease(&sMem);
drh9467abf2016-02-17 18:44:11 +00006447 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00006448 break;
6449}
6450#endif /* SQLITE_OMIT_VIRTUALTABLE */
6451
6452#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006453/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006454**
drh66a51672008-01-03 00:01:23 +00006455** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00006456** of that table.
drhb9bb7c12006-06-11 23:41:55 +00006457*/
drh9cbf3422008-01-17 16:22:13 +00006458case OP_VDestroy: {
drh086723a2015-03-24 12:51:52 +00006459 db->nVDestroy++;
danielk19772dca4ac2008-01-03 11:50:29 +00006460 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
drh086723a2015-03-24 12:51:52 +00006461 db->nVDestroy--;
drh9467abf2016-02-17 18:44:11 +00006462 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00006463 break;
6464}
6465#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00006466
drh9eff6162006-06-12 21:59:13 +00006467#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006468/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00006469**
drh66a51672008-01-03 00:01:23 +00006470** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00006471** P1 is a cursor number. This opcode opens a cursor to the virtual
6472** table and stores that cursor in P1.
6473*/
drh9cbf3422008-01-17 16:22:13 +00006474case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00006475 VdbeCursor *pCur;
drhc960dcb2015-11-20 19:22:01 +00006476 sqlite3_vtab_cursor *pVCur;
drh856c1032009-06-02 15:21:42 +00006477 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006478 const sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006479
drh1713afb2013-06-28 01:24:57 +00006480 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00006481 pCur = 0;
drhc960dcb2015-11-20 19:22:01 +00006482 pVCur = 0;
danielk1977595a5232009-07-24 17:58:53 +00006483 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006484 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6485 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00006486 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00006487 }
6488 pModule = pVtab->pModule;
drhc960dcb2015-11-20 19:22:01 +00006489 rc = pModule->xOpen(pVtab, &pVCur);
dan016f7812013-08-21 17:35:48 +00006490 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006491 if( rc ) goto abort_due_to_error;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006492
drh9467abf2016-02-17 18:44:11 +00006493 /* Initialize sqlite3_vtab_cursor base class */
6494 pVCur->pVtab = pVtab;
6495
6496 /* Initialize vdbe cursor object */
6497 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6498 if( pCur ){
6499 pCur->uc.pVCur = pVCur;
6500 pVtab->nRef++;
6501 }else{
6502 assert( db->mallocFailed );
6503 pModule->xClose(pVCur);
6504 goto no_mem;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006505 }
drh9eff6162006-06-12 21:59:13 +00006506 break;
6507}
6508#endif /* SQLITE_OMIT_VIRTUALTABLE */
6509
6510#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00006511/* Opcode: VFilter P1 P2 P3 P4 *
drh831116d2014-04-03 14:31:00 +00006512** Synopsis: iplan=r[P3] zplan='P4'
drh9eff6162006-06-12 21:59:13 +00006513**
6514** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6515** the filtered result set is empty.
6516**
drh66a51672008-01-03 00:01:23 +00006517** P4 is either NULL or a string that was generated by the xBestIndex
6518** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00006519** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00006520**
drh9eff6162006-06-12 21:59:13 +00006521** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00006522** by P1. The integer query plan parameter to xFilter is stored in register
6523** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00006524** xFilter method. Registers P3+2..P3+1+argc are the argc
6525** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00006526** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00006527**
danielk19776dbee812008-01-03 18:39:41 +00006528** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00006529*/
drh9cbf3422008-01-17 16:22:13 +00006530case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006531 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00006532 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006533 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006534 Mem *pQuery;
6535 Mem *pArgc;
drhc960dcb2015-11-20 19:22:01 +00006536 sqlite3_vtab_cursor *pVCur;
drh4dc754d2008-07-23 18:17:32 +00006537 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00006538 VdbeCursor *pCur;
6539 int res;
6540 int i;
6541 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006542
drha6c2ed92009-11-14 23:22:23 +00006543 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00006544 pArgc = &pQuery[1];
6545 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00006546 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00006547 REGISTER_TRACE(pOp->p3, pQuery);
drhc960dcb2015-11-20 19:22:01 +00006548 assert( pCur->eCurType==CURTYPE_VTAB );
6549 pVCur = pCur->uc.pVCur;
6550 pVtab = pVCur->pVtab;
drh4dc754d2008-07-23 18:17:32 +00006551 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006552
drh9cbf3422008-01-17 16:22:13 +00006553 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00006554 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00006555 nArg = (int)pArgc->u.i;
6556 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006557
drh644a5292006-12-20 14:53:38 +00006558 /* Invoke the xFilter method */
drhf56fa462015-04-13 21:39:54 +00006559 res = 0;
6560 apArg = p->apArg;
6561 for(i = 0; i<nArg; i++){
6562 apArg[i] = &pArgc[i+1];
6563 }
drhc960dcb2015-11-20 19:22:01 +00006564 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
drhf56fa462015-04-13 21:39:54 +00006565 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006566 if( rc ) goto abort_due_to_error;
6567 res = pModule->xEof(pVCur);
drh1d454a32008-01-31 19:34:51 +00006568 pCur->nullRow = 0;
drhf56fa462015-04-13 21:39:54 +00006569 VdbeBranchTaken(res!=0,2);
6570 if( res ) goto jump_to_p2;
drh9eff6162006-06-12 21:59:13 +00006571 break;
6572}
6573#endif /* SQLITE_OMIT_VIRTUALTABLE */
6574
6575#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006576/* Opcode: VColumn P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00006577** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00006578**
drh2133d822008-01-03 18:44:59 +00006579** Store the value of the P2-th column of
6580** the row of the virtual-table that the
6581** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00006582*/
6583case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00006584 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006585 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00006586 Mem *pDest;
6587 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006588
drhdfe88ec2008-11-03 20:55:06 +00006589 VdbeCursor *pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00006590 assert( pCur->eCurType==CURTYPE_VTAB );
drh9f6168b2016-03-19 23:32:58 +00006591 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006592 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00006593 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00006594 if( pCur->nullRow ){
6595 sqlite3VdbeMemSetNull(pDest);
6596 break;
6597 }
drhc960dcb2015-11-20 19:22:01 +00006598 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00006599 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006600 assert( pModule->xColumn );
6601 memset(&sContext, 0, sizeof(sContext));
drh9bd038f2014-08-27 14:14:06 +00006602 sContext.pOut = pDest;
6603 MemSetTypeFlag(pDest, MEM_Null);
drhc960dcb2015-11-20 19:22:01 +00006604 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00006605 sqlite3VtabImportErrmsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00006606 if( sContext.isError ){
6607 rc = sContext.isError;
6608 }
drh9bd038f2014-08-27 14:14:06 +00006609 sqlite3VdbeChangeEncoding(pDest, encoding);
drh5ff44372009-11-24 16:26:17 +00006610 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00006611 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006612
drhde4fcfd2008-01-19 23:50:26 +00006613 if( sqlite3VdbeMemTooBig(pDest) ){
6614 goto too_big;
6615 }
drh9467abf2016-02-17 18:44:11 +00006616 if( rc ) goto abort_due_to_error;
drh9eff6162006-06-12 21:59:13 +00006617 break;
6618}
6619#endif /* SQLITE_OMIT_VIRTUALTABLE */
6620
6621#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006622/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00006623**
6624** Advance virtual table P1 to the next row in its result set and
6625** jump to instruction P2. Or, if the virtual table has reached
6626** the end of its result set, then fall through to the next instruction.
6627*/
drh9cbf3422008-01-17 16:22:13 +00006628case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00006629 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006630 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00006631 int res;
drh856c1032009-06-02 15:21:42 +00006632 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006633
drhc54a6172009-06-02 16:06:03 +00006634 res = 0;
drh856c1032009-06-02 15:21:42 +00006635 pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00006636 assert( pCur->eCurType==CURTYPE_VTAB );
drh2945b4a2008-01-31 15:53:45 +00006637 if( pCur->nullRow ){
6638 break;
6639 }
drhc960dcb2015-11-20 19:22:01 +00006640 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00006641 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006642 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00006643
drhde4fcfd2008-01-19 23:50:26 +00006644 /* Invoke the xNext() method of the module. There is no way for the
6645 ** underlying implementation to return an error if one occurs during
6646 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6647 ** data is available) and the error code returned when xColumn or
6648 ** some other method is next invoked on the save virtual table cursor.
6649 */
drhc960dcb2015-11-20 19:22:01 +00006650 rc = pModule->xNext(pCur->uc.pVCur);
dan016f7812013-08-21 17:35:48 +00006651 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006652 if( rc ) goto abort_due_to_error;
6653 res = pModule->xEof(pCur->uc.pVCur);
drh688852a2014-02-17 22:40:43 +00006654 VdbeBranchTaken(!res,2);
drhde4fcfd2008-01-19 23:50:26 +00006655 if( !res ){
6656 /* If there is data, jump to P2 */
drhf56fa462015-04-13 21:39:54 +00006657 goto jump_to_p2_and_check_for_interrupt;
drhde4fcfd2008-01-19 23:50:26 +00006658 }
drh49afe3a2013-07-10 03:05:14 +00006659 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00006660}
6661#endif /* SQLITE_OMIT_VIRTUALTABLE */
6662
danielk1977182c4ba2007-06-27 15:53:34 +00006663#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006664/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00006665**
drh66a51672008-01-03 00:01:23 +00006666** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00006667** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00006668** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00006669*/
drh9cbf3422008-01-17 16:22:13 +00006670case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00006671 sqlite3_vtab *pVtab;
6672 Mem *pName;
6673
danielk1977595a5232009-07-24 17:58:53 +00006674 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00006675 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00006676 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00006677 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00006678 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00006679 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00006680 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00006681 testcase( pName->enc==SQLITE_UTF8 );
6682 testcase( pName->enc==SQLITE_UTF16BE );
6683 testcase( pName->enc==SQLITE_UTF16LE );
6684 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
drh9467abf2016-02-17 18:44:11 +00006685 if( rc ) goto abort_due_to_error;
6686 rc = pVtab->pModule->xRename(pVtab, pName->z);
6687 sqlite3VtabImportErrmsg(p, pVtab);
6688 p->expired = 0;
6689 if( rc ) goto abort_due_to_error;
danielk1977182c4ba2007-06-27 15:53:34 +00006690 break;
6691}
6692#endif
drh4cbdda92006-06-14 19:00:20 +00006693
6694#ifndef SQLITE_OMIT_VIRTUALTABLE
drh0fd61352014-02-07 02:29:45 +00006695/* Opcode: VUpdate P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006696** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00006697**
drh66a51672008-01-03 00:01:23 +00006698** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006699** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006700** are contiguous memory cells starting at P3 to pass to the xUpdate
6701** invocation. The value in register (P3+P2-1) corresponds to the
6702** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006703**
6704** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006705** The argv[0] element (which corresponds to memory cell P3)
6706** is the rowid of a row to delete. If argv[0] is NULL then no
6707** deletion occurs. The argv[1] element is the rowid of the new
6708** row. This can be NULL to have the virtual table select the new
6709** rowid for itself. The subsequent elements in the array are
6710** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006711**
6712** If P2==1 then no insert is performed. argv[0] is the rowid of
6713** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006714**
6715** P1 is a boolean flag. If it is set to true and the xUpdate call
6716** is successful, then the value returned by sqlite3_last_insert_rowid()
6717** is set to the value of the rowid for the row just inserted.
drh0fd61352014-02-07 02:29:45 +00006718**
6719** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6720** apply in the case of a constraint failure on an insert or update.
danielk1977399918f2006-06-14 13:03:23 +00006721*/
drh9cbf3422008-01-17 16:22:13 +00006722case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006723 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006724 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006725 int nArg;
6726 int i;
6727 sqlite_int64 rowid;
6728 Mem **apArg;
6729 Mem *pX;
6730
danb061d052011-04-25 18:49:57 +00006731 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6732 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6733 );
drh9e92a472013-06-27 17:40:30 +00006734 assert( p->readOnly==0 );
danielk1977595a5232009-07-24 17:58:53 +00006735 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006736 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6737 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00006738 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00006739 }
6740 pModule = pVtab->pModule;
drh856c1032009-06-02 15:21:42 +00006741 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006742 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006743 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006744 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006745 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006746 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006747 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006748 assert( memIsValid(pX) );
6749 memAboutToChange(p, pX);
drh9c419382006-06-16 21:13:21 +00006750 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006751 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006752 }
danb061d052011-04-25 18:49:57 +00006753 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006754 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006755 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006756 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006757 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006758 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006759 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006760 }
drhd91c1a12013-02-09 13:58:25 +00006761 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006762 if( pOp->p5==OE_Ignore ){
6763 rc = SQLITE_OK;
6764 }else{
6765 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6766 }
6767 }else{
6768 p->nChange++;
6769 }
drh9467abf2016-02-17 18:44:11 +00006770 if( rc ) goto abort_due_to_error;
danielk1977399918f2006-06-14 13:03:23 +00006771 }
drh4cbdda92006-06-14 19:00:20 +00006772 break;
danielk1977399918f2006-06-14 13:03:23 +00006773}
6774#endif /* SQLITE_OMIT_VIRTUALTABLE */
6775
danielk197759a93792008-05-15 17:48:20 +00006776#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6777/* Opcode: Pagecount P1 P2 * * *
6778**
6779** Write the current number of pages in database P1 to memory cell P2.
6780*/
drh27a348c2015-04-13 19:14:06 +00006781case OP_Pagecount: { /* out2 */
6782 pOut = out2Prerelease(p, pOp);
drhb1299152010-03-30 22:58:33 +00006783 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006784 break;
6785}
6786#endif
6787
drh60ac3f42010-11-23 18:59:27 +00006788
6789#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6790/* Opcode: MaxPgcnt P1 P2 P3 * *
6791**
6792** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006793** Do not let the maximum page count fall below the current page count and
6794** do not change the maximum page count value if P3==0.
6795**
drh60ac3f42010-11-23 18:59:27 +00006796** Store the maximum page count after the change in register P2.
6797*/
drh27a348c2015-04-13 19:14:06 +00006798case OP_MaxPgcnt: { /* out2 */
drhc84e0332010-11-23 20:25:08 +00006799 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006800 Btree *pBt;
6801
drh27a348c2015-04-13 19:14:06 +00006802 pOut = out2Prerelease(p, pOp);
drh60ac3f42010-11-23 18:59:27 +00006803 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006804 newMax = 0;
6805 if( pOp->p3 ){
6806 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006807 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006808 }
6809 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006810 break;
6811}
6812#endif
6813
6814
drh9e5eb9c2016-09-18 16:08:10 +00006815/* Opcode: Init P1 P2 * P4 *
drh72e26de2016-08-24 21:24:04 +00006816** Synopsis: Start at P2
drhaceb31b2014-02-08 01:40:27 +00006817**
6818** Programs contain a single instance of this opcode as the very first
6819** opcode.
drh949f9cd2008-01-12 21:35:57 +00006820**
6821** If tracing is enabled (by the sqlite3_trace()) interface, then
6822** the UTF-8 string contained in P4 is emitted on the trace callback.
drhaceb31b2014-02-08 01:40:27 +00006823** Or if P4 is blank, use the string returned by sqlite3_sql().
6824**
6825** If P2 is not zero, jump to instruction P2.
drh9e5eb9c2016-09-18 16:08:10 +00006826**
6827** Increment the value of P1 so that OP_Once opcodes will jump the
6828** first time they are evaluated for this run.
drh949f9cd2008-01-12 21:35:57 +00006829*/
drhaceb31b2014-02-08 01:40:27 +00006830case OP_Init: { /* jump */
drh856c1032009-06-02 15:21:42 +00006831 char *zTrace;
drh9e5eb9c2016-09-18 16:08:10 +00006832 int i;
drh5fe63bf2016-07-25 02:42:22 +00006833
6834 /* If the P4 argument is not NULL, then it must be an SQL comment string.
6835 ** The "--" string is broken up to prevent false-positives with srcck1.c.
6836 **
6837 ** This assert() provides evidence for:
6838 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
6839 ** would have been returned by the legacy sqlite3_trace() interface by
6840 ** using the X argument when X begins with "--" and invoking
6841 ** sqlite3_expanded_sql(P) otherwise.
6842 */
6843 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
drh9e5eb9c2016-09-18 16:08:10 +00006844 assert( pOp==p->aOp ); /* Always instruction 0 */
drh856c1032009-06-02 15:21:42 +00006845
drhaceb31b2014-02-08 01:40:27 +00006846#ifndef SQLITE_OMIT_TRACE
drhfca760c2016-07-14 01:09:08 +00006847 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
drh37f58e92012-09-04 21:34:26 +00006848 && !p->doingRerun
6849 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6850 ){
drh3d2a5292016-07-13 22:55:01 +00006851#ifndef SQLITE_OMIT_DEPRECATED
drhfca760c2016-07-14 01:09:08 +00006852 if( db->mTrace & SQLITE_TRACE_LEGACY ){
6853 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
drh5fe63bf2016-07-25 02:42:22 +00006854 char *z = sqlite3VdbeExpandSql(p, zTrace);
drhfca760c2016-07-14 01:09:08 +00006855 x(db->pTraceArg, z);
drhbd441f72016-07-25 02:31:48 +00006856 sqlite3_free(z);
drhfca760c2016-07-14 01:09:08 +00006857 }else
drh3d2a5292016-07-13 22:55:01 +00006858#endif
drhfca760c2016-07-14 01:09:08 +00006859 {
drhbd441f72016-07-25 02:31:48 +00006860 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
drh3d2a5292016-07-13 22:55:01 +00006861 }
drh949f9cd2008-01-12 21:35:57 +00006862 }
drh8f8b2312013-10-18 20:03:43 +00006863#ifdef SQLITE_USE_FCNTL_TRACE
6864 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6865 if( zTrace ){
mistachkind8992ce2016-09-20 17:49:01 +00006866 int j;
6867 for(j=0; j<db->nDb; j++){
6868 if( DbMaskTest(p->btreeMask, j)==0 ) continue;
6869 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
drh8f8b2312013-10-18 20:03:43 +00006870 }
6871 }
6872#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00006873#ifdef SQLITE_DEBUG
6874 if( (db->flags & SQLITE_SqlTrace)!=0
6875 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6876 ){
6877 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6878 }
6879#endif /* SQLITE_DEBUG */
drhaceb31b2014-02-08 01:40:27 +00006880#endif /* SQLITE_OMIT_TRACE */
drh4910a762016-09-03 01:46:15 +00006881 assert( pOp->p2>0 );
drh9e5eb9c2016-09-18 16:08:10 +00006882 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
6883 for(i=1; i<p->nOp; i++){
6884 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
6885 }
6886 pOp->p1 = 0;
6887 }
6888 pOp->p1++;
drh4910a762016-09-03 01:46:15 +00006889 goto jump_to_p2;
drh949f9cd2008-01-12 21:35:57 +00006890}
drh949f9cd2008-01-12 21:35:57 +00006891
drh28935362013-12-07 20:39:19 +00006892#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh0df57012015-08-14 15:05:55 +00006893/* Opcode: CursorHint P1 * * P4 *
drh28935362013-12-07 20:39:19 +00006894**
6895** Provide a hint to cursor P1 that it only needs to return rows that
drh0df57012015-08-14 15:05:55 +00006896** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
6897** to values currently held in registers. TK_COLUMN terms in the P4
6898** expression refer to columns in the b-tree to which cursor P1 is pointing.
drh28935362013-12-07 20:39:19 +00006899*/
6900case OP_CursorHint: {
6901 VdbeCursor *pC;
6902
6903 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6904 assert( pOp->p4type==P4_EXPR );
6905 pC = p->apCsr[pOp->p1];
dan91d3a612014-07-15 11:59:44 +00006906 if( pC ){
drhc960dcb2015-11-20 19:22:01 +00006907 assert( pC->eCurType==CURTYPE_BTREE );
drh62aaa6c2015-11-21 17:27:42 +00006908 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
6909 pOp->p4.pExpr, aMem);
dan91d3a612014-07-15 11:59:44 +00006910 }
drh28935362013-12-07 20:39:19 +00006911 break;
6912}
6913#endif /* SQLITE_ENABLE_CURSOR_HINTS */
drh91fd4d42008-01-19 20:11:25 +00006914
6915/* Opcode: Noop * * * * *
6916**
6917** Do nothing. This instruction is often useful as a jump
6918** destination.
drh5e00f6c2001-09-13 13:46:56 +00006919*/
drh91fd4d42008-01-19 20:11:25 +00006920/*
6921** The magic Explain opcode are only inserted when explain==2 (which
6922** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6923** This opcode records information from the optimizer. It is the
6924** the same as a no-op. This opcodesnever appears in a real VM program.
6925*/
6926default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006927 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006928 break;
6929}
6930
6931/*****************************************************************************
6932** The cases of the switch statement above this line should all be indented
6933** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6934** readability. From this point on down, the normal indentation rules are
6935** restored.
6936*****************************************************************************/
6937 }
drh6e142f52000-06-08 13:36:40 +00006938
drh7b396862003-01-01 23:06:20 +00006939#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006940 {
drha01c7c72014-04-25 12:35:31 +00006941 u64 endTime = sqlite3Hwtime();
drh6dc41482015-04-16 17:31:02 +00006942 if( endTime>start ) pOrigOp->cycles += endTime - start;
6943 pOrigOp->cnt++;
drh8178a752003-01-05 21:41:40 +00006944 }
drh7b396862003-01-01 23:06:20 +00006945#endif
6946
drh6e142f52000-06-08 13:36:40 +00006947 /* The following code adds nothing to the actual functionality
6948 ** of the program. It is only here for testing and debugging.
6949 ** On the other hand, it does burn CPU cycles every time through
6950 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6951 */
6952#ifndef NDEBUG
drh6dc41482015-04-16 17:31:02 +00006953 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
drhae7e1512007-05-02 16:51:59 +00006954
drhcf1023c2007-05-08 20:59:49 +00006955#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00006956 if( db->flags & SQLITE_VdbeTrace ){
drh7cc84c22016-04-11 13:36:42 +00006957 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
drh84e55a82013-11-13 17:58:23 +00006958 if( rc!=0 ) printf("rc=%d\n",rc);
drh7cc84c22016-04-11 13:36:42 +00006959 if( opProperty & (OPFLG_OUT2) ){
drh6dc41482015-04-16 17:31:02 +00006960 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
drh75897232000-05-29 14:26:00 +00006961 }
drh7cc84c22016-04-11 13:36:42 +00006962 if( opProperty & OPFLG_OUT3 ){
drh6dc41482015-04-16 17:31:02 +00006963 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006964 }
drh75897232000-05-29 14:26:00 +00006965 }
danielk1977b5402fb2005-01-12 07:15:04 +00006966#endif /* SQLITE_DEBUG */
6967#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006968 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006969
drha05a7222008-01-19 03:35:58 +00006970 /* If we reach this point, it means that execution is finished with
6971 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006972 */
drh9467abf2016-02-17 18:44:11 +00006973abort_due_to_error:
6974 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
drha05a7222008-01-19 03:35:58 +00006975 assert( rc );
drh9467abf2016-02-17 18:44:11 +00006976 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
6977 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6978 }
drha05a7222008-01-19 03:35:58 +00006979 p->rc = rc;
drhf68521c2016-03-21 12:28:02 +00006980 sqlite3SystemError(db, rc);
drha64fa912010-03-04 00:53:32 +00006981 testcase( sqlite3GlobalConfig.xLog!=0 );
6982 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
drhf56fa462015-04-13 21:39:54 +00006983 (int)(pOp - aOp), p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006984 sqlite3VdbeHalt(p);
drh4a642b62016-02-05 01:55:27 +00006985 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
danielk19777eaabcd2008-07-07 14:56:56 +00006986 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006987 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006988 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006989 }
drh900b31e2007-08-28 02:27:51 +00006990
6991 /* This is the only way out of this procedure. We have to
6992 ** release the mutexes on btrees that were acquired at the
6993 ** top. */
6994vdbe_return:
drh99a66922011-05-13 18:51:42 +00006995 db->lastRowid = lastRowid;
drh77dfd5b2013-08-19 11:15:48 +00006996 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00006997 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00006998 sqlite3VdbeLeave(p);
dan83f0ab82016-01-29 18:04:31 +00006999 assert( rc!=SQLITE_OK || nExtraDelete==0
7000 || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7001 );
drhb86ccfb2003-01-28 23:13:10 +00007002 return rc;
7003
drh023ae032007-05-08 12:12:16 +00007004 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7005 ** is encountered.
7006 */
7007too_big:
drh22c17b82015-05-15 04:13:15 +00007008 sqlite3VdbeError(p, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00007009 rc = SQLITE_TOOBIG;
drh9467abf2016-02-17 18:44:11 +00007010 goto abort_due_to_error;
drh023ae032007-05-08 12:12:16 +00007011
drh98640a32007-06-07 19:08:32 +00007012 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00007013 */
7014no_mem:
drh4a642b62016-02-05 01:55:27 +00007015 sqlite3OomFault(db);
drh22c17b82015-05-15 04:13:15 +00007016 sqlite3VdbeError(p, "out of memory");
mistachkinfad30392016-02-13 23:43:46 +00007017 rc = SQLITE_NOMEM_BKPT;
drh9467abf2016-02-17 18:44:11 +00007018 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00007019
danielk19776f8a5032004-05-10 10:34:51 +00007020 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00007021 ** flag.
7022 */
7023abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00007024 assert( db->u1.isInterrupted );
mistachkinfad30392016-02-13 23:43:46 +00007025 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00007026 p->rc = rc;
drh22c17b82015-05-15 04:13:15 +00007027 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
drh9467abf2016-02-17 18:44:11 +00007028 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00007029}