blob: 253240665140ddab6d523c9daf02737ff5609d64 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
drhe53831d2007-08-17 01:14:38 +000046#ifndef SQLITE_OMIT_SHARED_CACHE
47/*
danielk1977502b4e02008-09-02 14:07:24 +000048** A list of BtShared objects that are eligible for participation
49** in shared cache. This variable has file scope during normal builds,
50** but the test harness needs to access it so we make it global for
51** test builds.
drh7555d8e2009-03-20 13:15:30 +000052**
53** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000054*/
55#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000056BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000057#else
drh78f82d12008-09-02 00:52:52 +000058static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000059#endif
drhe53831d2007-08-17 01:14:38 +000060#endif /* SQLITE_OMIT_SHARED_CACHE */
61
62#ifndef SQLITE_OMIT_SHARED_CACHE
63/*
64** Enable or disable the shared pager and schema features.
65**
66** This routine has no effect on existing database connections.
67** The shared cache setting effects only future calls to
68** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
69*/
70int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000071 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000072 return SQLITE_OK;
73}
74#endif
75
drhd677b3d2007-08-20 22:48:41 +000076
danielk1977aef0bf62005-12-30 16:28:01 +000077
78#ifdef SQLITE_OMIT_SHARED_CACHE
79 /*
drhc25eabe2009-02-24 18:57:31 +000080 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
81 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000082 ** manipulate entries in the BtShared.pLock linked list used to store
83 ** shared-cache table level locks. If the library is compiled with the
84 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000085 ** of each BtShared structure and so this locking is not necessary.
86 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000087 */
drhc25eabe2009-02-24 18:57:31 +000088 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
89 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
90 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000091 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000092 #define hasSharedCacheTableLock(a,b,c,d) 1
93 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000094#endif
danielk1977aef0bf62005-12-30 16:28:01 +000095
drhe53831d2007-08-17 01:14:38 +000096#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000097
98#ifdef SQLITE_DEBUG
99/*
drh0ee3dbe2009-10-16 15:05:18 +0000100**** This function is only used as part of an assert() statement. ***
101**
102** Check to see if pBtree holds the required locks to read or write to the
103** table with root page iRoot. Return 1 if it does and 0 if not.
104**
105** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000106** Btree connection pBtree:
107**
108** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
109**
drh0ee3dbe2009-10-16 15:05:18 +0000110** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000111** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000112** the corresponding table. This makes things a bit more complicated,
113** as this module treats each table as a separate structure. To determine
114** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000115** function has to search through the database schema.
116**
drh0ee3dbe2009-10-16 15:05:18 +0000117** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000118** hold a write-lock on the schema table (root page 1). This is also
119** acceptable.
120*/
121static int hasSharedCacheTableLock(
122 Btree *pBtree, /* Handle that must hold lock */
123 Pgno iRoot, /* Root page of b-tree */
124 int isIndex, /* True if iRoot is the root of an index b-tree */
125 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
126){
127 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
128 Pgno iTab = 0;
129 BtLock *pLock;
130
drh0ee3dbe2009-10-16 15:05:18 +0000131 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000132 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000133 ** Return true immediately.
134 */
danielk197796d48e92009-06-29 06:00:37 +0000135 if( (pBtree->sharable==0)
136 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000137 ){
138 return 1;
139 }
140
drh0ee3dbe2009-10-16 15:05:18 +0000141 /* If the client is reading or writing an index and the schema is
142 ** not loaded, then it is too difficult to actually check to see if
143 ** the correct locks are held. So do not bother - just return true.
144 ** This case does not come up very often anyhow.
145 */
146 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
147 return 1;
148 }
149
danielk197796d48e92009-06-29 06:00:37 +0000150 /* Figure out the root-page that the lock should be held on. For table
151 ** b-trees, this is just the root page of the b-tree being read or
152 ** written. For index b-trees, it is the root page of the associated
153 ** table. */
154 if( isIndex ){
155 HashElem *p;
156 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
157 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000158 if( pIdx->tnum==(int)iRoot ){
159 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000160 }
161 }
162 }else{
163 iTab = iRoot;
164 }
165
166 /* Search for the required lock. Either a write-lock on root-page iTab, a
167 ** write-lock on the schema table, or (if the client is reading) a
168 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
169 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
170 if( pLock->pBtree==pBtree
171 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
172 && pLock->eLock>=eLockType
173 ){
174 return 1;
175 }
176 }
177
178 /* Failed to find the required lock. */
179 return 0;
180}
drh0ee3dbe2009-10-16 15:05:18 +0000181#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000182
drh0ee3dbe2009-10-16 15:05:18 +0000183#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000184/*
drh0ee3dbe2009-10-16 15:05:18 +0000185**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000186**
drh0ee3dbe2009-10-16 15:05:18 +0000187** Return true if it would be illegal for pBtree to write into the
188** table or index rooted at iRoot because other shared connections are
189** simultaneously reading that same table or index.
190**
191** It is illegal for pBtree to write if some other Btree object that
192** shares the same BtShared object is currently reading or writing
193** the iRoot table. Except, if the other Btree object has the
194** read-uncommitted flag set, then it is OK for the other object to
195** have a read cursor.
196**
197** For example, before writing to any part of the table or index
198** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000199**
200** assert( !hasReadConflicts(pBtree, iRoot) );
201*/
202static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
203 BtCursor *p;
204 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
205 if( p->pgnoRoot==iRoot
206 && p->pBtree!=pBtree
207 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
208 ){
209 return 1;
210 }
211 }
212 return 0;
213}
214#endif /* #ifdef SQLITE_DEBUG */
215
danielk1977da184232006-01-05 11:34:32 +0000216/*
drh0ee3dbe2009-10-16 15:05:18 +0000217** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000218** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000219** SQLITE_OK if the lock may be obtained (by calling
220** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000221*/
drhc25eabe2009-02-24 18:57:31 +0000222static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000223 BtShared *pBt = p->pBt;
224 BtLock *pIter;
225
drh1fee73e2007-08-29 04:00:57 +0000226 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000227 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
228 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000229 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000230
danielk19775b413d72009-04-01 09:41:54 +0000231 /* If requesting a write-lock, then the Btree must have an open write
232 ** transaction on this file. And, obviously, for this to be so there
233 ** must be an open write transaction on the file itself.
234 */
235 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
236 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
237
drh0ee3dbe2009-10-16 15:05:18 +0000238 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000239 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000240 return SQLITE_OK;
241 }
242
danielk1977641b0f42007-12-21 04:47:25 +0000243 /* If some other connection is holding an exclusive lock, the
244 ** requested lock may not be obtained.
245 */
drhc9166342012-01-05 23:32:06 +0000246 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000247 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
248 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000249 }
250
danielk1977e0d9e6f2009-07-03 16:25:06 +0000251 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
252 /* The condition (pIter->eLock!=eLock) in the following if(...)
253 ** statement is a simplification of:
254 **
255 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
256 **
257 ** since we know that if eLock==WRITE_LOCK, then no other connection
258 ** may hold a WRITE_LOCK on any table in this file (since there can
259 ** only be a single writer).
260 */
261 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
262 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
263 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
264 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
265 if( eLock==WRITE_LOCK ){
266 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000267 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000268 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000269 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000270 }
271 }
272 return SQLITE_OK;
273}
drhe53831d2007-08-17 01:14:38 +0000274#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000275
drhe53831d2007-08-17 01:14:38 +0000276#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000277/*
278** Add a lock on the table with root-page iTable to the shared-btree used
279** by Btree handle p. Parameter eLock must be either READ_LOCK or
280** WRITE_LOCK.
281**
danielk19779d104862009-07-09 08:27:14 +0000282** This function assumes the following:
283**
drh0ee3dbe2009-10-16 15:05:18 +0000284** (a) The specified Btree object p is connected to a sharable
285** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000286**
drh0ee3dbe2009-10-16 15:05:18 +0000287** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000288** with the requested lock (i.e. querySharedCacheTableLock() has
289** already been called and returned SQLITE_OK).
290**
291** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
292** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000293*/
drhc25eabe2009-02-24 18:57:31 +0000294static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000295 BtShared *pBt = p->pBt;
296 BtLock *pLock = 0;
297 BtLock *pIter;
298
drh1fee73e2007-08-29 04:00:57 +0000299 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000300 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
301 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000302
danielk1977e0d9e6f2009-07-03 16:25:06 +0000303 /* A connection with the read-uncommitted flag set will never try to
304 ** obtain a read-lock using this function. The only read-lock obtained
305 ** by a connection in read-uncommitted mode is on the sqlite_master
306 ** table, and that lock is obtained in BtreeBeginTrans(). */
307 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
308
danielk19779d104862009-07-09 08:27:14 +0000309 /* This function should only be called on a sharable b-tree after it
310 ** has been determined that no other b-tree holds a conflicting lock. */
311 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000312 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 /* First search the list for an existing lock on this table. */
315 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
316 if( pIter->iTable==iTable && pIter->pBtree==p ){
317 pLock = pIter;
318 break;
319 }
320 }
321
322 /* If the above search did not find a BtLock struct associating Btree p
323 ** with table iTable, allocate one and link it into the list.
324 */
325 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000326 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000327 if( !pLock ){
328 return SQLITE_NOMEM;
329 }
330 pLock->iTable = iTable;
331 pLock->pBtree = p;
332 pLock->pNext = pBt->pLock;
333 pBt->pLock = pLock;
334 }
335
336 /* Set the BtLock.eLock variable to the maximum of the current lock
337 ** and the requested lock. This means if a write-lock was already held
338 ** and a read-lock requested, we don't incorrectly downgrade the lock.
339 */
340 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000341 if( eLock>pLock->eLock ){
342 pLock->eLock = eLock;
343 }
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 return SQLITE_OK;
346}
drhe53831d2007-08-17 01:14:38 +0000347#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000348
drhe53831d2007-08-17 01:14:38 +0000349#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000350/*
drhc25eabe2009-02-24 18:57:31 +0000351** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000352** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000353**
drh0ee3dbe2009-10-16 15:05:18 +0000354** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000355** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000356** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000357*/
drhc25eabe2009-02-24 18:57:31 +0000358static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000359 BtShared *pBt = p->pBt;
360 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000361
drh1fee73e2007-08-29 04:00:57 +0000362 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000363 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000364 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000365
danielk1977aef0bf62005-12-30 16:28:01 +0000366 while( *ppIter ){
367 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000368 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000369 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000370 if( pLock->pBtree==p ){
371 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000372 assert( pLock->iTable!=1 || pLock==&p->lock );
373 if( pLock->iTable!=1 ){
374 sqlite3_free(pLock);
375 }
danielk1977aef0bf62005-12-30 16:28:01 +0000376 }else{
377 ppIter = &pLock->pNext;
378 }
379 }
danielk1977641b0f42007-12-21 04:47:25 +0000380
drhc9166342012-01-05 23:32:06 +0000381 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000382 if( pBt->pWriter==p ){
383 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000384 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000385 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000386 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000387 ** transaction. If there currently exists a writer, and p is not
388 ** that writer, then the number of locks held by connections other
389 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000390 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000391 **
drhc9166342012-01-05 23:32:06 +0000392 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000393 ** be zero already. So this next line is harmless in that case.
394 */
drhc9166342012-01-05 23:32:06 +0000395 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397}
danielk197794b30732009-07-02 17:21:57 +0000398
danielk1977e0d9e6f2009-07-03 16:25:06 +0000399/*
drh0ee3dbe2009-10-16 15:05:18 +0000400** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000401*/
danielk197794b30732009-07-02 17:21:57 +0000402static void downgradeAllSharedCacheTableLocks(Btree *p){
403 BtShared *pBt = p->pBt;
404 if( pBt->pWriter==p ){
405 BtLock *pLock;
406 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000407 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000408 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
409 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
410 pLock->eLock = READ_LOCK;
411 }
412 }
413}
414
danielk1977aef0bf62005-12-30 16:28:01 +0000415#endif /* SQLITE_OMIT_SHARED_CACHE */
416
drh980b1a72006-08-16 16:42:48 +0000417static void releasePage(MemPage *pPage); /* Forward reference */
418
drh1fee73e2007-08-29 04:00:57 +0000419/*
drh0ee3dbe2009-10-16 15:05:18 +0000420***** This routine is used inside of assert() only ****
421**
422** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000423*/
drh0ee3dbe2009-10-16 15:05:18 +0000424#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000425static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000426 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000427}
428#endif
429
430
danielk197792d4d7a2007-05-04 12:05:56 +0000431#ifndef SQLITE_OMIT_INCRBLOB
432/*
433** Invalidate the overflow page-list cache for cursor pCur, if any.
434*/
435static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000436 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000437 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000438 pCur->aOverflow = 0;
439}
440
441/*
442** Invalidate the overflow page-list cache for all cursors opened
443** on the shared btree structure pBt.
444*/
445static void invalidateAllOverflowCache(BtShared *pBt){
446 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000447 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000448 for(p=pBt->pCursor; p; p=p->pNext){
449 invalidateOverflowCache(p);
450 }
451}
danielk197796d48e92009-06-29 06:00:37 +0000452
453/*
454** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000455** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000456** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000457**
458** If argument isClearTable is true, then the entire contents of the
459** table is about to be deleted. In this case invalidate all incrblob
460** cursors open on any row within the table with root-page pgnoRoot.
461**
462** Otherwise, if argument isClearTable is false, then the row with
463** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000464** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000465*/
466static void invalidateIncrblobCursors(
467 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000468 i64 iRow, /* The rowid that might be changing */
469 int isClearTable /* True if all rows are being deleted */
470){
471 BtCursor *p;
472 BtShared *pBt = pBtree->pBt;
473 assert( sqlite3BtreeHoldsMutex(pBtree) );
474 for(p=pBt->pCursor; p; p=p->pNext){
475 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
476 p->eState = CURSOR_INVALID;
477 }
478 }
479}
480
danielk197792d4d7a2007-05-04 12:05:56 +0000481#else
drh0ee3dbe2009-10-16 15:05:18 +0000482 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000483 #define invalidateOverflowCache(x)
484 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000485 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000486#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000487
drh980b1a72006-08-16 16:42:48 +0000488/*
danielk1977bea2a942009-01-20 17:06:27 +0000489** Set bit pgno of the BtShared.pHasContent bitvec. This is called
490** when a page that previously contained data becomes a free-list leaf
491** page.
492**
493** The BtShared.pHasContent bitvec exists to work around an obscure
494** bug caused by the interaction of two useful IO optimizations surrounding
495** free-list leaf pages:
496**
497** 1) When all data is deleted from a page and the page becomes
498** a free-list leaf page, the page is not written to the database
499** (as free-list leaf pages contain no meaningful data). Sometimes
500** such a page is not even journalled (as it will not be modified,
501** why bother journalling it?).
502**
503** 2) When a free-list leaf page is reused, its content is not read
504** from the database or written to the journal file (why should it
505** be, if it is not at all meaningful?).
506**
507** By themselves, these optimizations work fine and provide a handy
508** performance boost to bulk delete or insert operations. However, if
509** a page is moved to the free-list and then reused within the same
510** transaction, a problem comes up. If the page is not journalled when
511** it is moved to the free-list and it is also not journalled when it
512** is extracted from the free-list and reused, then the original data
513** may be lost. In the event of a rollback, it may not be possible
514** to restore the database to its original configuration.
515**
516** The solution is the BtShared.pHasContent bitvec. Whenever a page is
517** moved to become a free-list leaf page, the corresponding bit is
518** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000519** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000520** set in BtShared.pHasContent. The contents of the bitvec are cleared
521** at the end of every transaction.
522*/
523static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
524 int rc = SQLITE_OK;
525 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000526 assert( pgno<=pBt->nPage );
527 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000528 if( !pBt->pHasContent ){
529 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000530 }
531 }
532 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
533 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
534 }
535 return rc;
536}
537
538/*
539** Query the BtShared.pHasContent vector.
540**
541** This function is called when a free-list leaf page is removed from the
542** free-list for reuse. It returns false if it is safe to retrieve the
543** page from the pager layer with the 'no-content' flag set. True otherwise.
544*/
545static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
546 Bitvec *p = pBt->pHasContent;
547 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
548}
549
550/*
551** Clear (destroy) the BtShared.pHasContent bitvec. This should be
552** invoked at the conclusion of each write-transaction.
553*/
554static void btreeClearHasContent(BtShared *pBt){
555 sqlite3BitvecDestroy(pBt->pHasContent);
556 pBt->pHasContent = 0;
557}
558
559/*
drh980b1a72006-08-16 16:42:48 +0000560** Save the current cursor position in the variables BtCursor.nKey
561** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000562**
563** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
564** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000565*/
566static int saveCursorPosition(BtCursor *pCur){
567 int rc;
568
569 assert( CURSOR_VALID==pCur->eState );
570 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000571 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000572
573 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000574 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000575
576 /* If this is an intKey table, then the above call to BtreeKeySize()
577 ** stores the integer key in pCur->nKey. In this case this value is
578 ** all that is required. Otherwise, if pCur is not open on an intKey
579 ** table, then malloc space for and store the pCur->nKey bytes of key
580 ** data.
581 */
drh4c301aa2009-07-15 17:25:45 +0000582 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000583 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000584 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000585 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000586 if( rc==SQLITE_OK ){
587 pCur->pKey = pKey;
588 }else{
drh17435752007-08-16 04:30:38 +0000589 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000590 }
591 }else{
592 rc = SQLITE_NOMEM;
593 }
594 }
danielk197771d5d2c2008-09-29 11:49:47 +0000595 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000596
597 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000598 int i;
599 for(i=0; i<=pCur->iPage; i++){
600 releasePage(pCur->apPage[i]);
601 pCur->apPage[i] = 0;
602 }
603 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000604 pCur->eState = CURSOR_REQUIRESEEK;
605 }
606
danielk197792d4d7a2007-05-04 12:05:56 +0000607 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000608 return rc;
609}
610
611/*
drh0ee3dbe2009-10-16 15:05:18 +0000612** Save the positions of all cursors (except pExcept) that are open on
613** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000614** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
615*/
616static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
617 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000618 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000619 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000620 for(p=pBt->pCursor; p; p=p->pNext){
621 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
622 p->eState==CURSOR_VALID ){
623 int rc = saveCursorPosition(p);
624 if( SQLITE_OK!=rc ){
625 return rc;
626 }
627 }
628 }
629 return SQLITE_OK;
630}
631
632/*
drhbf700f32007-03-31 02:36:44 +0000633** Clear the current cursor position.
634*/
danielk1977be51a652008-10-08 17:58:48 +0000635void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000636 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000637 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000638 pCur->pKey = 0;
639 pCur->eState = CURSOR_INVALID;
640}
641
642/*
danielk19773509a652009-07-06 18:56:13 +0000643** In this version of BtreeMoveto, pKey is a packed index record
644** such as is generated by the OP_MakeRecord opcode. Unpack the
645** record and then call BtreeMovetoUnpacked() to do the work.
646*/
647static int btreeMoveto(
648 BtCursor *pCur, /* Cursor open on the btree to be searched */
649 const void *pKey, /* Packed key if the btree is an index */
650 i64 nKey, /* Integer key for tables. Size of pKey for indices */
651 int bias, /* Bias search to the high end */
652 int *pRes /* Write search results here */
653){
654 int rc; /* Status code */
655 UnpackedRecord *pIdxKey; /* Unpacked index key */
656 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000657 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000658
659 if( pKey ){
660 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000661 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
662 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
663 );
danielk19773509a652009-07-06 18:56:13 +0000664 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000665 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000666 }else{
667 pIdxKey = 0;
668 }
669 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000670 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000671 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000672 }
673 return rc;
674}
675
676/*
drh980b1a72006-08-16 16:42:48 +0000677** Restore the cursor to the position it was in (or as close to as possible)
678** when saveCursorPosition() was called. Note that this call deletes the
679** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000680** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000681** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000682*/
danielk197730548662009-07-09 05:07:37 +0000683static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000684 int rc;
drh1fee73e2007-08-29 04:00:57 +0000685 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000686 assert( pCur->eState>=CURSOR_REQUIRESEEK );
687 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000688 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000689 }
drh980b1a72006-08-16 16:42:48 +0000690 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000691 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000692 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000693 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000694 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000695 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000696 }
697 return rc;
698}
699
drha3460582008-07-11 21:02:53 +0000700#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000701 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000702 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000703 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000704
drha3460582008-07-11 21:02:53 +0000705/*
706** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000707** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000708** at is deleted out from under them.
709**
710** This routine returns an error code if something goes wrong. The
711** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
712*/
713int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
714 int rc;
715
716 rc = restoreCursorPosition(pCur);
717 if( rc ){
718 *pHasMoved = 1;
719 return rc;
720 }
drh4c301aa2009-07-15 17:25:45 +0000721 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000722 *pHasMoved = 1;
723 }else{
724 *pHasMoved = 0;
725 }
726 return SQLITE_OK;
727}
728
danielk1977599fcba2004-11-08 07:13:13 +0000729#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000730/*
drha3152892007-05-05 11:48:52 +0000731** Given a page number of a regular database page, return the page
732** number for the pointer-map page that contains the entry for the
733** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000734**
735** Return 0 (not a valid page) for pgno==1 since there is
736** no pointer map associated with page 1. The integrity_check logic
737** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000738*/
danielk1977266664d2006-02-10 08:24:21 +0000739static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000740 int nPagesPerMapPage;
741 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000742 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000743 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000744 nPagesPerMapPage = (pBt->usableSize/5)+1;
745 iPtrMap = (pgno-2)/nPagesPerMapPage;
746 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000747 if( ret==PENDING_BYTE_PAGE(pBt) ){
748 ret++;
749 }
750 return ret;
751}
danielk1977a19df672004-11-03 11:37:07 +0000752
danielk1977afcdd022004-10-31 16:25:42 +0000753/*
danielk1977afcdd022004-10-31 16:25:42 +0000754** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000755**
756** This routine updates the pointer map entry for page number 'key'
757** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000758**
759** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
760** a no-op. If an error occurs, the appropriate error code is written
761** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000762*/
drh98add2e2009-07-20 17:11:49 +0000763static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000764 DbPage *pDbPage; /* The pointer map page */
765 u8 *pPtrmap; /* The pointer map data */
766 Pgno iPtrmap; /* The pointer map page number */
767 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000768 int rc; /* Return code from subfunctions */
769
770 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000771
drh1fee73e2007-08-29 04:00:57 +0000772 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000773 /* The master-journal page number must never be used as a pointer map page */
774 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
775
danielk1977ac11ee62005-01-15 12:45:51 +0000776 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000777 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000778 *pRC = SQLITE_CORRUPT_BKPT;
779 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000780 }
danielk1977266664d2006-02-10 08:24:21 +0000781 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000782 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000783 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000784 *pRC = rc;
785 return;
danielk1977afcdd022004-10-31 16:25:42 +0000786 }
danielk19778c666b12008-07-18 09:34:57 +0000787 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000788 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000789 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000790 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000791 }
drhfc243732011-05-17 15:21:56 +0000792 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000793 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000794
drh615ae552005-01-16 23:21:00 +0000795 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
796 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000797 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000798 if( rc==SQLITE_OK ){
799 pPtrmap[offset] = eType;
800 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000801 }
danielk1977afcdd022004-10-31 16:25:42 +0000802 }
803
drh4925a552009-07-07 11:39:58 +0000804ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000805 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000806}
807
808/*
809** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000810**
811** This routine retrieves the pointer map entry for page 'key', writing
812** the type and parent page number to *pEType and *pPgno respectively.
813** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000814*/
danielk1977aef0bf62005-12-30 16:28:01 +0000815static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000816 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000817 int iPtrmap; /* Pointer map page index */
818 u8 *pPtrmap; /* Pointer map page data */
819 int offset; /* Offset of entry in pointer map */
820 int rc;
821
drh1fee73e2007-08-29 04:00:57 +0000822 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000823
danielk1977266664d2006-02-10 08:24:21 +0000824 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000825 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000826 if( rc!=0 ){
827 return rc;
828 }
danielk19773b8a05f2007-03-19 17:44:26 +0000829 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000830
danielk19778c666b12008-07-18 09:34:57 +0000831 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000832 if( offset<0 ){
833 sqlite3PagerUnref(pDbPage);
834 return SQLITE_CORRUPT_BKPT;
835 }
836 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000837 assert( pEType!=0 );
838 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000839 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000840
danielk19773b8a05f2007-03-19 17:44:26 +0000841 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000842 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000843 return SQLITE_OK;
844}
845
danielk197785d90ca2008-07-19 14:25:15 +0000846#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000847 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000848 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000849 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000850#endif
danielk1977afcdd022004-10-31 16:25:42 +0000851
drh0d316a42002-08-11 20:10:47 +0000852/*
drh271efa52004-05-30 19:19:05 +0000853** Given a btree page and a cell index (0 means the first cell on
854** the page, 1 means the second cell, and so forth) return a pointer
855** to the cell content.
856**
857** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000858*/
drh1688c862008-07-18 02:44:17 +0000859#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000860 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000861#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
862
drh43605152004-05-29 21:46:49 +0000863
864/*
drh93a960a2008-07-10 00:32:42 +0000865** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000866** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000867*/
868static u8 *findOverflowCell(MemPage *pPage, int iCell){
869 int i;
drh1fee73e2007-08-29 04:00:57 +0000870 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000871 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000872 int k;
873 struct _OvflCell *pOvfl;
874 pOvfl = &pPage->aOvfl[i];
875 k = pOvfl->idx;
876 if( k<=iCell ){
877 if( k==iCell ){
878 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000879 }
880 iCell--;
881 }
882 }
danielk19771cc5ed82007-05-16 17:28:43 +0000883 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000884}
885
886/*
887** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000888** are two versions of this function. btreeParseCell() takes a
889** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000890** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000891**
892** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000893** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000894*/
danielk197730548662009-07-09 05:07:37 +0000895static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000896 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000897 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000898 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000899){
drhf49661a2008-12-10 16:45:50 +0000900 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000901 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000902
drh1fee73e2007-08-29 04:00:57 +0000903 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000904
drh43605152004-05-29 21:46:49 +0000905 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000906 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000907 n = pPage->childPtrSize;
908 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000909 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000910 if( pPage->hasData ){
911 n += getVarint32(&pCell[n], nPayload);
912 }else{
913 nPayload = 0;
914 }
drh1bd10f82008-12-10 21:19:56 +0000915 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000916 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000917 }else{
drh79df1f42008-07-18 00:57:33 +0000918 pInfo->nData = 0;
919 n += getVarint32(&pCell[n], nPayload);
920 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000921 }
drh72365832007-03-06 15:53:44 +0000922 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000923 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000924 testcase( nPayload==pPage->maxLocal );
925 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000926 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000927 /* This is the (easy) common case where the entire payload fits
928 ** on the local page. No overflow is required.
929 */
drh41692e92011-01-25 04:34:51 +0000930 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000931 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000932 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000933 }else{
drh271efa52004-05-30 19:19:05 +0000934 /* If the payload will not fit completely on the local page, we have
935 ** to decide how much to store locally and how much to spill onto
936 ** overflow pages. The strategy is to minimize the amount of unused
937 ** space on overflow pages while keeping the amount of local storage
938 ** in between minLocal and maxLocal.
939 **
940 ** Warning: changing the way overflow payload is distributed in any
941 ** way will result in an incompatible file format.
942 */
943 int minLocal; /* Minimum amount of payload held locally */
944 int maxLocal; /* Maximum amount of payload held locally */
945 int surplus; /* Overflow payload available for local storage */
946
947 minLocal = pPage->minLocal;
948 maxLocal = pPage->maxLocal;
949 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000950 testcase( surplus==maxLocal );
951 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000952 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000953 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000954 }else{
drhf49661a2008-12-10 16:45:50 +0000955 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000956 }
drhf49661a2008-12-10 16:45:50 +0000957 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000958 pInfo->nSize = pInfo->iOverflow + 4;
959 }
drh3aac2dd2004-04-26 14:10:20 +0000960}
danielk19771cc5ed82007-05-16 17:28:43 +0000961#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000962 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
963static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000964 MemPage *pPage, /* Page containing the cell */
965 int iCell, /* The cell index. First cell is 0 */
966 CellInfo *pInfo /* Fill in this structure */
967){
danielk19771cc5ed82007-05-16 17:28:43 +0000968 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000969}
drh3aac2dd2004-04-26 14:10:20 +0000970
971/*
drh43605152004-05-29 21:46:49 +0000972** Compute the total number of bytes that a Cell needs in the cell
973** data area of the btree-page. The return number includes the cell
974** data header and the local payload, but not any overflow page or
975** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000976*/
danielk1977ae5558b2009-04-29 11:31:47 +0000977static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
978 u8 *pIter = &pCell[pPage->childPtrSize];
979 u32 nSize;
980
981#ifdef SQLITE_DEBUG
982 /* The value returned by this function should always be the same as
983 ** the (CellInfo.nSize) value found by doing a full parse of the
984 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
985 ** this function verifies that this invariant is not violated. */
986 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000987 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000988#endif
989
990 if( pPage->intKey ){
991 u8 *pEnd;
992 if( pPage->hasData ){
993 pIter += getVarint32(pIter, nSize);
994 }else{
995 nSize = 0;
996 }
997
998 /* pIter now points at the 64-bit integer key value, a variable length
999 ** integer. The following block moves pIter to point at the first byte
1000 ** past the end of the key value. */
1001 pEnd = &pIter[9];
1002 while( (*pIter++)&0x80 && pIter<pEnd );
1003 }else{
1004 pIter += getVarint32(pIter, nSize);
1005 }
1006
drh0a45c272009-07-08 01:49:11 +00001007 testcase( nSize==pPage->maxLocal );
1008 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001009 if( nSize>pPage->maxLocal ){
1010 int minLocal = pPage->minLocal;
1011 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001012 testcase( nSize==pPage->maxLocal );
1013 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001014 if( nSize>pPage->maxLocal ){
1015 nSize = minLocal;
1016 }
1017 nSize += 4;
1018 }
shane75ac1de2009-06-09 18:58:52 +00001019 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001020
1021 /* The minimum size of any cell is 4 bytes. */
1022 if( nSize<4 ){
1023 nSize = 4;
1024 }
1025
1026 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001027 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001028}
drh0ee3dbe2009-10-16 15:05:18 +00001029
1030#ifdef SQLITE_DEBUG
1031/* This variation on cellSizePtr() is used inside of assert() statements
1032** only. */
drha9121e42008-02-19 14:59:35 +00001033static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001034 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001035}
danielk1977bc6ada42004-06-30 08:20:16 +00001036#endif
drh3b7511c2001-05-26 13:15:44 +00001037
danielk197779a40da2005-01-16 08:00:01 +00001038#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001039/*
danielk197726836652005-01-17 01:33:13 +00001040** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001041** to an overflow page, insert an entry into the pointer-map
1042** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001043*/
drh98add2e2009-07-20 17:11:49 +00001044static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001045 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001046 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001047 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001048 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001049 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001050 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001051 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001052 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001053 }
danielk1977ac11ee62005-01-15 12:45:51 +00001054}
danielk197779a40da2005-01-16 08:00:01 +00001055#endif
1056
danielk1977ac11ee62005-01-15 12:45:51 +00001057
drhda200cc2004-05-09 11:51:38 +00001058/*
drh72f82862001-05-24 21:06:34 +00001059** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001060** end of the page and all free space is collected into one
1061** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001062** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001063*/
shane0af3f892008-11-12 04:55:34 +00001064static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001065 int i; /* Loop counter */
1066 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001067 int hdr; /* Offset to the page header */
1068 int size; /* Size of a cell */
1069 int usableSize; /* Number of usable bytes on a page */
1070 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001071 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001072 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001073 unsigned char *data; /* The page data */
1074 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001075 int iCellFirst; /* First allowable cell index */
1076 int iCellLast; /* Last possible cell index */
1077
drh2af926b2001-05-15 00:39:25 +00001078
danielk19773b8a05f2007-03-19 17:44:26 +00001079 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001080 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001081 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001082 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001083 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001084 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001085 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001086 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001087 cellOffset = pPage->cellOffset;
1088 nCell = pPage->nCell;
1089 assert( nCell==get2byte(&data[hdr+3]) );
1090 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001091 cbrk = get2byte(&data[hdr+5]);
1092 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1093 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001094 iCellFirst = cellOffset + 2*nCell;
1095 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001096 for(i=0; i<nCell; i++){
1097 u8 *pAddr; /* The i-th cell pointer */
1098 pAddr = &data[cellOffset + i*2];
1099 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001100 testcase( pc==iCellFirst );
1101 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001102#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001103 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001104 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1105 */
1106 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001107 return SQLITE_CORRUPT_BKPT;
1108 }
drh17146622009-07-07 17:38:38 +00001109#endif
1110 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001111 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001112 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001113#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1114 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001115 return SQLITE_CORRUPT_BKPT;
1116 }
drh17146622009-07-07 17:38:38 +00001117#else
1118 if( cbrk<iCellFirst || pc+size>usableSize ){
1119 return SQLITE_CORRUPT_BKPT;
1120 }
1121#endif
drh7157e1d2009-07-09 13:25:32 +00001122 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001123 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001124 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001125 memcpy(&data[cbrk], &temp[pc], size);
1126 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001127 }
drh17146622009-07-07 17:38:38 +00001128 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001129 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001130 data[hdr+1] = 0;
1131 data[hdr+2] = 0;
1132 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001133 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001134 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001135 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001136 return SQLITE_CORRUPT_BKPT;
1137 }
shane0af3f892008-11-12 04:55:34 +00001138 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001139}
1140
drha059ad02001-04-17 20:09:11 +00001141/*
danielk19776011a752009-04-01 16:25:32 +00001142** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001143** as the first argument. Write into *pIdx the index into pPage->aData[]
1144** of the first byte of allocated space. Return either SQLITE_OK or
1145** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001146**
drh0a45c272009-07-08 01:49:11 +00001147** The caller guarantees that there is sufficient space to make the
1148** allocation. This routine might need to defragment in order to bring
1149** all the space together, however. This routine will avoid using
1150** the first two bytes past the cell pointer area since presumably this
1151** allocation is being made in order to insert a new cell, so we will
1152** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001153*/
drh0a45c272009-07-08 01:49:11 +00001154static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001155 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1156 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1157 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001158 int top; /* First byte of cell content area */
1159 int gap; /* First byte of gap between cell pointers and cell content */
1160 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001161 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001162
danielk19773b8a05f2007-03-19 17:44:26 +00001163 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001164 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001165 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001166 assert( nByte>=0 ); /* Minimum cell size is 4 */
1167 assert( pPage->nFree>=nByte );
1168 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001169 usableSize = pPage->pBt->usableSize;
1170 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001171
1172 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001173 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1174 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001175 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001176 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001177 testcase( gap+2==top );
1178 testcase( gap+1==top );
1179 testcase( gap==top );
1180
danielk19776011a752009-04-01 16:25:32 +00001181 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001182 /* Always defragment highly fragmented pages */
1183 rc = defragmentPage(pPage);
1184 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001185 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001186 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001187 /* Search the freelist looking for a free slot big enough to satisfy
1188 ** the request. The allocation is made from the first free slot in
1189 ** the list that is large enough to accomadate it.
1190 */
1191 int pc, addr;
1192 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001193 int size; /* Size of the free slot */
1194 if( pc>usableSize-4 || pc<addr+4 ){
1195 return SQLITE_CORRUPT_BKPT;
1196 }
1197 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001198 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001199 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001200 testcase( x==4 );
1201 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001202 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001203 /* Remove the slot from the free-list. Update the number of
1204 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001205 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001206 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001207 }else if( size+pc > usableSize ){
1208 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001209 }else{
danielk1977fad91942009-04-29 17:49:59 +00001210 /* The slot remains on the free-list. Reduce its size to account
1211 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001212 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001213 }
drh0a45c272009-07-08 01:49:11 +00001214 *pIdx = pc + x;
1215 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001216 }
drh9e572e62004-04-23 23:43:10 +00001217 }
1218 }
drh43605152004-05-29 21:46:49 +00001219
drh0a45c272009-07-08 01:49:11 +00001220 /* Check to make sure there is enough space in the gap to satisfy
1221 ** the allocation. If not, defragment.
1222 */
1223 testcase( gap+2+nByte==top );
1224 if( gap+2+nByte>top ){
1225 rc = defragmentPage(pPage);
1226 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001227 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001228 assert( gap+nByte<=top );
1229 }
1230
1231
drh43605152004-05-29 21:46:49 +00001232 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001233 ** and the cell content area. The btreeInitPage() call has already
1234 ** validated the freelist. Given that the freelist is valid, there
1235 ** is no way that the allocation can extend off the end of the page.
1236 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001237 */
drh0a45c272009-07-08 01:49:11 +00001238 top -= nByte;
drh43605152004-05-29 21:46:49 +00001239 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001240 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001241 *pIdx = top;
1242 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001243}
1244
1245/*
drh9e572e62004-04-23 23:43:10 +00001246** Return a section of the pPage->aData to the freelist.
1247** The first byte of the new free block is pPage->aDisk[start]
1248** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001249**
1250** Most of the effort here is involved in coalesing adjacent
1251** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001252*/
shanedcc50b72008-11-13 18:29:50 +00001253static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001254 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001255 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001256 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001257
drh9e572e62004-04-23 23:43:10 +00001258 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001259 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001260 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001261 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001262 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001263 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001264
drhc9166342012-01-05 23:32:06 +00001265 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001266 /* Overwrite deleted information with zeros when the secure_delete
1267 ** option is enabled */
1268 memset(&data[start], 0, size);
1269 }
drhfcce93f2006-02-22 03:08:32 +00001270
drh0a45c272009-07-08 01:49:11 +00001271 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001272 ** even though the freeblock list was checked by btreeInitPage(),
1273 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001274 ** freeblocks that overlapped cells. Nor does it detect when the
1275 ** cell content area exceeds the value in the page header. If these
1276 ** situations arise, then subsequent insert operations might corrupt
1277 ** the freelist. So we do need to check for corruption while scanning
1278 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001279 */
drh43605152004-05-29 21:46:49 +00001280 hdr = pPage->hdrOffset;
1281 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001282 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001283 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001284 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001285 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001286 return SQLITE_CORRUPT_BKPT;
1287 }
drh3aac2dd2004-04-26 14:10:20 +00001288 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001289 }
drh0a45c272009-07-08 01:49:11 +00001290 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001291 return SQLITE_CORRUPT_BKPT;
1292 }
drh3aac2dd2004-04-26 14:10:20 +00001293 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001294 put2byte(&data[addr], start);
1295 put2byte(&data[start], pbegin);
1296 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001297 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001298
1299 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001300 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001301 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001302 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001303 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001304 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001305 pnext = get2byte(&data[pbegin]);
1306 psize = get2byte(&data[pbegin+2]);
1307 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1308 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001309 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001310 return SQLITE_CORRUPT_BKPT;
1311 }
drh0a45c272009-07-08 01:49:11 +00001312 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001313 x = get2byte(&data[pnext]);
1314 put2byte(&data[pbegin], x);
1315 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1316 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001317 }else{
drh3aac2dd2004-04-26 14:10:20 +00001318 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001319 }
1320 }
drh7e3b0a02001-04-28 16:52:40 +00001321
drh43605152004-05-29 21:46:49 +00001322 /* If the cell content area begins with a freeblock, remove it. */
1323 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1324 int top;
1325 pbegin = get2byte(&data[hdr+1]);
1326 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001327 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1328 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001329 }
drhc5053fb2008-11-27 02:22:10 +00001330 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001331 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001332}
1333
1334/*
drh271efa52004-05-30 19:19:05 +00001335** Decode the flags byte (the first byte of the header) for a page
1336** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001337**
1338** Only the following combinations are supported. Anything different
1339** indicates a corrupt database files:
1340**
1341** PTF_ZERODATA
1342** PTF_ZERODATA | PTF_LEAF
1343** PTF_LEAFDATA | PTF_INTKEY
1344** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001345*/
drh44845222008-07-17 18:39:57 +00001346static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001347 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001348
1349 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001350 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001351 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001352 flagByte &= ~PTF_LEAF;
1353 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001354 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001355 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1356 pPage->intKey = 1;
1357 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001358 pPage->maxLocal = pBt->maxLeaf;
1359 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001360 }else if( flagByte==PTF_ZERODATA ){
1361 pPage->intKey = 0;
1362 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001363 pPage->maxLocal = pBt->maxLocal;
1364 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001365 }else{
1366 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001367 }
drhc9166342012-01-05 23:32:06 +00001368 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001369 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001370}
1371
1372/*
drh7e3b0a02001-04-28 16:52:40 +00001373** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001374**
1375** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001376** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001377** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1378** guarantee that the page is well-formed. It only shows that
1379** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001380*/
danielk197730548662009-07-09 05:07:37 +00001381static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001382
danielk197771d5d2c2008-09-29 11:49:47 +00001383 assert( pPage->pBt!=0 );
1384 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001385 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001386 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1387 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001388
1389 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001390 u16 pc; /* Address of a freeblock within pPage->aData[] */
1391 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001392 u8 *data; /* Equal to pPage->aData */
1393 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001394 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001395 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001396 int nFree; /* Number of unused bytes on the page */
1397 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001398 int iCellFirst; /* First allowable cell or freeblock offset */
1399 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001400
1401 pBt = pPage->pBt;
1402
danielk1977eaa06f62008-09-18 17:34:44 +00001403 hdr = pPage->hdrOffset;
1404 data = pPage->aData;
1405 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001406 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1407 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001408 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001409 usableSize = pBt->usableSize;
1410 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001411 pPage->aDataEnd = &data[usableSize];
1412 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001413 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001414 pPage->nCell = get2byte(&data[hdr+3]);
1415 if( pPage->nCell>MX_CELL(pBt) ){
1416 /* To many cells for a single page. The page must be corrupt */
1417 return SQLITE_CORRUPT_BKPT;
1418 }
drhb908d762009-07-08 16:54:40 +00001419 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001420
shane5eff7cf2009-08-10 03:57:58 +00001421 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001422 ** of page when parsing a cell.
1423 **
1424 ** The following block of code checks early to see if a cell extends
1425 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1426 ** returned if it does.
1427 */
drh0a45c272009-07-08 01:49:11 +00001428 iCellFirst = cellOffset + 2*pPage->nCell;
1429 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001430#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001431 {
drh69e931e2009-06-03 21:04:35 +00001432 int i; /* Index into the cell pointer array */
1433 int sz; /* Size of a cell */
1434
drh69e931e2009-06-03 21:04:35 +00001435 if( !pPage->leaf ) iCellLast--;
1436 for(i=0; i<pPage->nCell; i++){
1437 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001438 testcase( pc==iCellFirst );
1439 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001440 if( pc<iCellFirst || pc>iCellLast ){
1441 return SQLITE_CORRUPT_BKPT;
1442 }
1443 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001444 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001445 if( pc+sz>usableSize ){
1446 return SQLITE_CORRUPT_BKPT;
1447 }
1448 }
drh0a45c272009-07-08 01:49:11 +00001449 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001450 }
1451#endif
1452
danielk1977eaa06f62008-09-18 17:34:44 +00001453 /* Compute the total free space on the page */
1454 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001455 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001456 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001457 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001458 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001459 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001460 return SQLITE_CORRUPT_BKPT;
1461 }
1462 next = get2byte(&data[pc]);
1463 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001464 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1465 /* Free blocks must be in ascending order. And the last byte of
1466 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001467 return SQLITE_CORRUPT_BKPT;
1468 }
shane85095702009-06-15 16:27:08 +00001469 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001470 pc = next;
1471 }
danielk197793c829c2009-06-03 17:26:17 +00001472
1473 /* At this point, nFree contains the sum of the offset to the start
1474 ** of the cell-content area plus the number of free bytes within
1475 ** the cell-content area. If this is greater than the usable-size
1476 ** of the page, then the page must be corrupted. This check also
1477 ** serves to verify that the offset to the start of the cell-content
1478 ** area, according to the page header, lies within the page.
1479 */
1480 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001481 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001482 }
shane5eff7cf2009-08-10 03:57:58 +00001483 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001484 pPage->isInit = 1;
1485 }
drh9e572e62004-04-23 23:43:10 +00001486 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001487}
1488
1489/*
drh8b2f49b2001-06-08 00:21:52 +00001490** Set up a raw page so that it looks like a database page holding
1491** no entries.
drhbd03cae2001-06-02 02:40:57 +00001492*/
drh9e572e62004-04-23 23:43:10 +00001493static void zeroPage(MemPage *pPage, int flags){
1494 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001495 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001496 u8 hdr = pPage->hdrOffset;
1497 u16 first;
drh9e572e62004-04-23 23:43:10 +00001498
danielk19773b8a05f2007-03-19 17:44:26 +00001499 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001500 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1501 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001502 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001503 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001504 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001505 memset(&data[hdr], 0, pBt->usableSize - hdr);
1506 }
drh1bd10f82008-12-10 21:19:56 +00001507 data[hdr] = (char)flags;
1508 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001509 memset(&data[hdr+1], 0, 4);
1510 data[hdr+7] = 0;
1511 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001512 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001513 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001514 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001515 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001516 pPage->aDataEnd = &data[pBt->usableSize];
1517 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001518 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001519 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1520 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001521 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001522 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001523}
1524
drh897a8202008-09-18 01:08:15 +00001525
1526/*
1527** Convert a DbPage obtained from the pager into a MemPage used by
1528** the btree layer.
1529*/
1530static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1531 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1532 pPage->aData = sqlite3PagerGetData(pDbPage);
1533 pPage->pDbPage = pDbPage;
1534 pPage->pBt = pBt;
1535 pPage->pgno = pgno;
1536 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1537 return pPage;
1538}
1539
drhbd03cae2001-06-02 02:40:57 +00001540/*
drh3aac2dd2004-04-26 14:10:20 +00001541** Get a page from the pager. Initialize the MemPage.pBt and
1542** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001543**
1544** If the noContent flag is set, it means that we do not care about
1545** the content of the page at this time. So do not go to the disk
1546** to fetch the content. Just fill in the content with zeros for now.
1547** If in the future we call sqlite3PagerWrite() on this page, that
1548** means we have started to be concerned about content and the disk
1549** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001550*/
danielk197730548662009-07-09 05:07:37 +00001551static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001552 BtShared *pBt, /* The btree */
1553 Pgno pgno, /* Number of the page to fetch */
1554 MemPage **ppPage, /* Return the page in this parameter */
1555 int noContent /* Do not load page content if true */
1556){
drh3aac2dd2004-04-26 14:10:20 +00001557 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001558 DbPage *pDbPage;
1559
drh1fee73e2007-08-29 04:00:57 +00001560 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001561 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001562 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001563 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001564 return SQLITE_OK;
1565}
1566
1567/*
danielk1977bea2a942009-01-20 17:06:27 +00001568** Retrieve a page from the pager cache. If the requested page is not
1569** already in the pager cache return NULL. Initialize the MemPage.pBt and
1570** MemPage.aData elements if needed.
1571*/
1572static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1573 DbPage *pDbPage;
1574 assert( sqlite3_mutex_held(pBt->mutex) );
1575 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1576 if( pDbPage ){
1577 return btreePageFromDbPage(pDbPage, pgno, pBt);
1578 }
1579 return 0;
1580}
1581
1582/*
danielk197789d40042008-11-17 14:20:56 +00001583** Return the size of the database file in pages. If there is any kind of
1584** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001585*/
drhb1299152010-03-30 22:58:33 +00001586static Pgno btreePagecount(BtShared *pBt){
1587 return pBt->nPage;
1588}
1589u32 sqlite3BtreeLastPage(Btree *p){
1590 assert( sqlite3BtreeHoldsMutex(p) );
1591 assert( ((p->pBt->nPage)&0x8000000)==0 );
1592 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001593}
1594
1595/*
danielk197789bc4bc2009-07-21 19:25:24 +00001596** Get a page from the pager and initialize it. This routine is just a
1597** convenience wrapper around separate calls to btreeGetPage() and
1598** btreeInitPage().
1599**
1600** If an error occurs, then the value *ppPage is set to is undefined. It
1601** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001602*/
1603static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001604 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001605 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001606 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001607){
1608 int rc;
drh1fee73e2007-08-29 04:00:57 +00001609 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001610
danba3cbf32010-06-30 04:29:03 +00001611 if( pgno>btreePagecount(pBt) ){
1612 rc = SQLITE_CORRUPT_BKPT;
1613 }else{
1614 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1615 if( rc==SQLITE_OK ){
1616 rc = btreeInitPage(*ppPage);
1617 if( rc!=SQLITE_OK ){
1618 releasePage(*ppPage);
1619 }
danielk197789bc4bc2009-07-21 19:25:24 +00001620 }
drhee696e22004-08-30 16:52:17 +00001621 }
danba3cbf32010-06-30 04:29:03 +00001622
1623 testcase( pgno==0 );
1624 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001625 return rc;
1626}
1627
1628/*
drh3aac2dd2004-04-26 14:10:20 +00001629** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001630** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001631*/
drh4b70f112004-05-02 21:12:19 +00001632static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001633 if( pPage ){
1634 assert( pPage->aData );
1635 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001636 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1637 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001638 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001639 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001640 }
1641}
1642
1643/*
drha6abd042004-06-09 17:37:22 +00001644** During a rollback, when the pager reloads information into the cache
1645** so that the cache is restored to its original state at the start of
1646** the transaction, for each page restored this routine is called.
1647**
1648** This routine needs to reset the extra data section at the end of the
1649** page to agree with the restored data.
1650*/
danielk1977eaa06f62008-09-18 17:34:44 +00001651static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001652 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001653 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001654 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001655 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001656 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001657 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001658 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001659 /* pPage might not be a btree page; it might be an overflow page
1660 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001661 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001662 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001663 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001664 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001665 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001666 }
drha6abd042004-06-09 17:37:22 +00001667 }
1668}
1669
1670/*
drhe5fe6902007-12-07 18:55:28 +00001671** Invoke the busy handler for a btree.
1672*/
danielk19771ceedd32008-11-19 10:22:33 +00001673static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001674 BtShared *pBt = (BtShared*)pArg;
1675 assert( pBt->db );
1676 assert( sqlite3_mutex_held(pBt->db->mutex) );
1677 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1678}
1679
1680/*
drhad3e0102004-09-03 23:32:18 +00001681** Open a database file.
1682**
drh382c0242001-10-06 16:33:02 +00001683** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001684** then an ephemeral database is created. The ephemeral database might
1685** be exclusively in memory, or it might use a disk-based memory cache.
1686** Either way, the ephemeral database will be automatically deleted
1687** when sqlite3BtreeClose() is called.
1688**
drhe53831d2007-08-17 01:14:38 +00001689** If zFilename is ":memory:" then an in-memory database is created
1690** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001691**
drh75c014c2010-08-30 15:02:28 +00001692** The "flags" parameter is a bitmask that might contain bits
1693** BTREE_OMIT_JOURNAL and/or BTREE_NO_READLOCK. The BTREE_NO_READLOCK
1694** bit is also set if the SQLITE_NoReadlock flags is set in db->flags.
1695** These flags are passed through into sqlite3PagerOpen() and must
1696** be the same values as PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK.
1697**
drhc47fd8e2009-04-30 13:30:32 +00001698** If the database is already opened in the same database connection
1699** and we are in shared cache mode, then the open will fail with an
1700** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1701** objects in the same database connection since doing so will lead
1702** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001703*/
drh23e11ca2004-05-04 17:27:28 +00001704int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001705 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001706 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001707 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001708 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001709 int flags, /* Options */
1710 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001711){
drh7555d8e2009-03-20 13:15:30 +00001712 BtShared *pBt = 0; /* Shared part of btree structure */
1713 Btree *p; /* Handle to return */
1714 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1715 int rc = SQLITE_OK; /* Result code from this function */
1716 u8 nReserve; /* Byte of unused space on each page */
1717 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001718
drh75c014c2010-08-30 15:02:28 +00001719 /* True if opening an ephemeral, temporary database */
1720 const int isTempDb = zFilename==0 || zFilename[0]==0;
1721
danielk1977aef0bf62005-12-30 16:28:01 +00001722 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001723 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001724 */
drhb0a7c9c2010-12-06 21:09:59 +00001725#ifdef SQLITE_OMIT_MEMORYDB
1726 const int isMemdb = 0;
1727#else
1728 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
1729 || (isTempDb && sqlite3TempInMemory(db));
danielk1977aef0bf62005-12-30 16:28:01 +00001730#endif
1731
drhe5fe6902007-12-07 18:55:28 +00001732 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001733 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001734 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001735 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1736
1737 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1738 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1739
1740 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1741 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001742
drh75c014c2010-08-30 15:02:28 +00001743 if( db->flags & SQLITE_NoReadlock ){
1744 flags |= BTREE_NO_READLOCK;
1745 }
1746 if( isMemdb ){
1747 flags |= BTREE_MEMORY;
1748 }
1749 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1750 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1751 }
drh17435752007-08-16 04:30:38 +00001752 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001753 if( !p ){
1754 return SQLITE_NOMEM;
1755 }
1756 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001757 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001758#ifndef SQLITE_OMIT_SHARED_CACHE
1759 p->lock.pBtree = p;
1760 p->lock.iTable = 1;
1761#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001762
drh198bf392006-01-06 21:52:49 +00001763#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001764 /*
1765 ** If this Btree is a candidate for shared cache, try to find an
1766 ** existing BtShared object that we can share with
1767 */
drh75c014c2010-08-30 15:02:28 +00001768 if( isMemdb==0 && isTempDb==0 ){
drhf1f12682009-09-09 14:17:52 +00001769 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001770 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001771 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001772 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001773 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001774 if( !zFullPathname ){
1775 sqlite3_free(p);
1776 return SQLITE_NOMEM;
1777 }
drh070ad6b2011-11-17 11:43:19 +00001778 rc = sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
1779 if( rc ){
1780 sqlite3_free(zFullPathname);
1781 sqlite3_free(p);
1782 return rc;
1783 }
drh30ddce62011-10-15 00:16:30 +00001784#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001785 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1786 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001787 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001788 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001789#endif
drh78f82d12008-09-02 00:52:52 +00001790 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001791 assert( pBt->nRef>0 );
1792 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1793 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001794 int iDb;
1795 for(iDb=db->nDb-1; iDb>=0; iDb--){
1796 Btree *pExisting = db->aDb[iDb].pBt;
1797 if( pExisting && pExisting->pBt==pBt ){
1798 sqlite3_mutex_leave(mutexShared);
1799 sqlite3_mutex_leave(mutexOpen);
1800 sqlite3_free(zFullPathname);
1801 sqlite3_free(p);
1802 return SQLITE_CONSTRAINT;
1803 }
1804 }
drhff0587c2007-08-29 17:43:19 +00001805 p->pBt = pBt;
1806 pBt->nRef++;
1807 break;
1808 }
1809 }
1810 sqlite3_mutex_leave(mutexShared);
1811 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001812 }
drhff0587c2007-08-29 17:43:19 +00001813#ifdef SQLITE_DEBUG
1814 else{
1815 /* In debug mode, we mark all persistent databases as sharable
1816 ** even when they are not. This exercises the locking code and
1817 ** gives more opportunity for asserts(sqlite3_mutex_held())
1818 ** statements to find locking problems.
1819 */
1820 p->sharable = 1;
1821 }
1822#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001823 }
1824#endif
drha059ad02001-04-17 20:09:11 +00001825 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001826 /*
1827 ** The following asserts make sure that structures used by the btree are
1828 ** the right size. This is to guard against size changes that result
1829 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001830 */
drhe53831d2007-08-17 01:14:38 +00001831 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1832 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1833 assert( sizeof(u32)==4 );
1834 assert( sizeof(u16)==2 );
1835 assert( sizeof(Pgno)==4 );
1836
1837 pBt = sqlite3MallocZero( sizeof(*pBt) );
1838 if( pBt==0 ){
1839 rc = SQLITE_NOMEM;
1840 goto btree_open_out;
1841 }
danielk197771d5d2c2008-09-29 11:49:47 +00001842 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001843 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001844 if( rc==SQLITE_OK ){
1845 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1846 }
1847 if( rc!=SQLITE_OK ){
1848 goto btree_open_out;
1849 }
shanehbd2aaf92010-09-01 02:38:21 +00001850 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001851 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001852 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001853 p->pBt = pBt;
1854
drhe53831d2007-08-17 01:14:38 +00001855 pBt->pCursor = 0;
1856 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001857 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001858#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001859 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001860#endif
drhb2eced52010-08-12 02:41:12 +00001861 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001862 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1863 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001864 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001865#ifndef SQLITE_OMIT_AUTOVACUUM
1866 /* If the magic name ":memory:" will create an in-memory database, then
1867 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1868 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1869 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1870 ** regular file-name. In this case the auto-vacuum applies as per normal.
1871 */
1872 if( zFilename && !isMemdb ){
1873 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1874 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1875 }
1876#endif
1877 nReserve = 0;
1878 }else{
1879 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001880 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001881#ifndef SQLITE_OMIT_AUTOVACUUM
1882 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1883 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1884#endif
1885 }
drhfa9601a2009-06-18 17:22:39 +00001886 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001887 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001888 pBt->usableSize = pBt->pageSize - nReserve;
1889 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001890
1891#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1892 /* Add the new BtShared object to the linked list sharable BtShareds.
1893 */
1894 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001895 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001896 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001897 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001898 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001899 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001900 if( pBt->mutex==0 ){
1901 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001902 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001903 goto btree_open_out;
1904 }
drhff0587c2007-08-29 17:43:19 +00001905 }
drhe53831d2007-08-17 01:14:38 +00001906 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001907 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1908 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001909 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001910 }
drheee46cf2004-11-06 00:02:48 +00001911#endif
drh90f5ecb2004-07-22 01:19:35 +00001912 }
danielk1977aef0bf62005-12-30 16:28:01 +00001913
drhcfed7bc2006-03-13 14:28:05 +00001914#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001915 /* If the new Btree uses a sharable pBtShared, then link the new
1916 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001917 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001918 */
drhe53831d2007-08-17 01:14:38 +00001919 if( p->sharable ){
1920 int i;
1921 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001922 for(i=0; i<db->nDb; i++){
1923 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001924 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1925 if( p->pBt<pSib->pBt ){
1926 p->pNext = pSib;
1927 p->pPrev = 0;
1928 pSib->pPrev = p;
1929 }else{
drhabddb0c2007-08-20 13:14:28 +00001930 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001931 pSib = pSib->pNext;
1932 }
1933 p->pNext = pSib->pNext;
1934 p->pPrev = pSib;
1935 if( p->pNext ){
1936 p->pNext->pPrev = p;
1937 }
1938 pSib->pNext = p;
1939 }
1940 break;
1941 }
1942 }
danielk1977aef0bf62005-12-30 16:28:01 +00001943 }
danielk1977aef0bf62005-12-30 16:28:01 +00001944#endif
1945 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001946
1947btree_open_out:
1948 if( rc!=SQLITE_OK ){
1949 if( pBt && pBt->pPager ){
1950 sqlite3PagerClose(pBt->pPager);
1951 }
drh17435752007-08-16 04:30:38 +00001952 sqlite3_free(pBt);
1953 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001954 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001955 }else{
1956 /* If the B-Tree was successfully opened, set the pager-cache size to the
1957 ** default value. Except, when opening on an existing shared pager-cache,
1958 ** do not change the pager-cache size.
1959 */
1960 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1961 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1962 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001963 }
drh7555d8e2009-03-20 13:15:30 +00001964 if( mutexOpen ){
1965 assert( sqlite3_mutex_held(mutexOpen) );
1966 sqlite3_mutex_leave(mutexOpen);
1967 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001968 return rc;
drha059ad02001-04-17 20:09:11 +00001969}
1970
1971/*
drhe53831d2007-08-17 01:14:38 +00001972** Decrement the BtShared.nRef counter. When it reaches zero,
1973** remove the BtShared structure from the sharing list. Return
1974** true if the BtShared.nRef counter reaches zero and return
1975** false if it is still positive.
1976*/
1977static int removeFromSharingList(BtShared *pBt){
1978#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00001979 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00001980 BtShared *pList;
1981 int removed = 0;
1982
drhd677b3d2007-08-20 22:48:41 +00001983 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00001984 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00001985 sqlite3_mutex_enter(pMaster);
1986 pBt->nRef--;
1987 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001988 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1989 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001990 }else{
drh78f82d12008-09-02 00:52:52 +00001991 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001992 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001993 pList=pList->pNext;
1994 }
drh34004ce2008-07-11 16:15:17 +00001995 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001996 pList->pNext = pBt->pNext;
1997 }
1998 }
drh3285db22007-09-03 22:00:39 +00001999 if( SQLITE_THREADSAFE ){
2000 sqlite3_mutex_free(pBt->mutex);
2001 }
drhe53831d2007-08-17 01:14:38 +00002002 removed = 1;
2003 }
2004 sqlite3_mutex_leave(pMaster);
2005 return removed;
2006#else
2007 return 1;
2008#endif
2009}
2010
2011/*
drhf7141992008-06-19 00:16:08 +00002012** Make sure pBt->pTmpSpace points to an allocation of
2013** MX_CELL_SIZE(pBt) bytes.
2014*/
2015static void allocateTempSpace(BtShared *pBt){
2016 if( !pBt->pTmpSpace ){
2017 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2018 }
2019}
2020
2021/*
2022** Free the pBt->pTmpSpace allocation
2023*/
2024static void freeTempSpace(BtShared *pBt){
2025 sqlite3PageFree( pBt->pTmpSpace);
2026 pBt->pTmpSpace = 0;
2027}
2028
2029/*
drha059ad02001-04-17 20:09:11 +00002030** Close an open database and invalidate all cursors.
2031*/
danielk1977aef0bf62005-12-30 16:28:01 +00002032int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002033 BtShared *pBt = p->pBt;
2034 BtCursor *pCur;
2035
danielk1977aef0bf62005-12-30 16:28:01 +00002036 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002037 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002038 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002039 pCur = pBt->pCursor;
2040 while( pCur ){
2041 BtCursor *pTmp = pCur;
2042 pCur = pCur->pNext;
2043 if( pTmp->pBtree==p ){
2044 sqlite3BtreeCloseCursor(pTmp);
2045 }
drha059ad02001-04-17 20:09:11 +00002046 }
danielk1977aef0bf62005-12-30 16:28:01 +00002047
danielk19778d34dfd2006-01-24 16:37:57 +00002048 /* Rollback any active transaction and free the handle structure.
2049 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2050 ** this handle.
2051 */
danielk1977b597f742006-01-15 11:39:18 +00002052 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00002053 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002054
danielk1977aef0bf62005-12-30 16:28:01 +00002055 /* If there are still other outstanding references to the shared-btree
2056 ** structure, return now. The remainder of this procedure cleans
2057 ** up the shared-btree.
2058 */
drhe53831d2007-08-17 01:14:38 +00002059 assert( p->wantToLock==0 && p->locked==0 );
2060 if( !p->sharable || removeFromSharingList(pBt) ){
2061 /* The pBt is no longer on the sharing list, so we can access
2062 ** it without having to hold the mutex.
2063 **
2064 ** Clean out and delete the BtShared object.
2065 */
2066 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002067 sqlite3PagerClose(pBt->pPager);
2068 if( pBt->xFreeSchema && pBt->pSchema ){
2069 pBt->xFreeSchema(pBt->pSchema);
2070 }
drhb9755982010-07-24 16:34:37 +00002071 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002072 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002073 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002074 }
2075
drhe53831d2007-08-17 01:14:38 +00002076#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002077 assert( p->wantToLock==0 );
2078 assert( p->locked==0 );
2079 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2080 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002081#endif
2082
drhe53831d2007-08-17 01:14:38 +00002083 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002084 return SQLITE_OK;
2085}
2086
2087/*
drhda47d772002-12-02 04:25:19 +00002088** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002089**
2090** The maximum number of cache pages is set to the absolute
2091** value of mxPage. If mxPage is negative, the pager will
2092** operate asynchronously - it will not stop to do fsync()s
2093** to insure data is written to the disk surface before
2094** continuing. Transactions still work if synchronous is off,
2095** and the database cannot be corrupted if this program
2096** crashes. But if the operating system crashes or there is
2097** an abrupt power failure when synchronous is off, the database
2098** could be left in an inconsistent and unrecoverable state.
2099** Synchronous is on by default so database corruption is not
2100** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002101*/
danielk1977aef0bf62005-12-30 16:28:01 +00002102int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2103 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002104 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002105 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002106 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002107 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002108 return SQLITE_OK;
2109}
2110
2111/*
drh973b6e32003-02-12 14:09:42 +00002112** Change the way data is synced to disk in order to increase or decrease
2113** how well the database resists damage due to OS crashes and power
2114** failures. Level 1 is the same as asynchronous (no syncs() occur and
2115** there is a high probability of damage) Level 2 is the default. There
2116** is a very low but non-zero probability of damage. Level 3 reduces the
2117** probability of damage to near zero but with a write performance reduction.
2118*/
danielk197793758c82005-01-21 08:13:14 +00002119#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhc97d8462010-11-19 18:23:35 +00002120int sqlite3BtreeSetSafetyLevel(
2121 Btree *p, /* The btree to set the safety level on */
2122 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
2123 int fullSync, /* PRAGMA fullfsync. */
2124 int ckptFullSync /* PRAGMA checkpoint_fullfync */
2125){
danielk1977aef0bf62005-12-30 16:28:01 +00002126 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002127 assert( sqlite3_mutex_held(p->db->mutex) );
drhc97d8462010-11-19 18:23:35 +00002128 assert( level>=1 && level<=3 );
drhd677b3d2007-08-20 22:48:41 +00002129 sqlite3BtreeEnter(p);
drhc97d8462010-11-19 18:23:35 +00002130 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
drhd677b3d2007-08-20 22:48:41 +00002131 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002132 return SQLITE_OK;
2133}
danielk197793758c82005-01-21 08:13:14 +00002134#endif
drh973b6e32003-02-12 14:09:42 +00002135
drh2c8997b2005-08-27 16:36:48 +00002136/*
2137** Return TRUE if the given btree is set to safety level 1. In other
2138** words, return TRUE if no sync() occurs on the disk files.
2139*/
danielk1977aef0bf62005-12-30 16:28:01 +00002140int sqlite3BtreeSyncDisabled(Btree *p){
2141 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002142 int rc;
drhe5fe6902007-12-07 18:55:28 +00002143 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002144 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002145 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002146 rc = sqlite3PagerNosync(pBt->pPager);
2147 sqlite3BtreeLeave(p);
2148 return rc;
drh2c8997b2005-08-27 16:36:48 +00002149}
2150
drh973b6e32003-02-12 14:09:42 +00002151/*
drh90f5ecb2004-07-22 01:19:35 +00002152** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002153** Or, if the page size has already been fixed, return SQLITE_READONLY
2154** without changing anything.
drh06f50212004-11-02 14:24:33 +00002155**
2156** The page size must be a power of 2 between 512 and 65536. If the page
2157** size supplied does not meet this constraint then the page size is not
2158** changed.
2159**
2160** Page sizes are constrained to be a power of two so that the region
2161** of the database file used for locking (beginning at PENDING_BYTE,
2162** the first byte past the 1GB boundary, 0x40000000) needs to occur
2163** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002164**
2165** If parameter nReserve is less than zero, then the number of reserved
2166** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002167**
drhc9166342012-01-05 23:32:06 +00002168** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002169** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002170*/
drhce4869f2009-04-02 20:16:58 +00002171int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002172 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002173 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002174 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002175 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002176 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002177 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002178 return SQLITE_READONLY;
2179 }
2180 if( nReserve<0 ){
2181 nReserve = pBt->pageSize - pBt->usableSize;
2182 }
drhf49661a2008-12-10 16:45:50 +00002183 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002184 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2185 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002186 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002187 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002188 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002189 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002190 }
drhfa9601a2009-06-18 17:22:39 +00002191 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002192 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002193 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002194 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002195 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002196}
2197
2198/*
2199** Return the currently defined page size
2200*/
danielk1977aef0bf62005-12-30 16:28:01 +00002201int sqlite3BtreeGetPageSize(Btree *p){
2202 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002203}
drh7f751222009-03-17 22:33:00 +00002204
danbb2b4412011-04-06 17:54:31 +00002205#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002206/*
2207** Return the number of bytes of space at the end of every page that
2208** are intentually left unused. This is the "reserved" space that is
2209** sometimes used by extensions.
2210*/
danielk1977aef0bf62005-12-30 16:28:01 +00002211int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002212 int n;
2213 sqlite3BtreeEnter(p);
2214 n = p->pBt->pageSize - p->pBt->usableSize;
2215 sqlite3BtreeLeave(p);
2216 return n;
drh2011d5f2004-07-22 02:40:37 +00002217}
drhf8e632b2007-05-08 14:51:36 +00002218
2219/*
2220** Set the maximum page count for a database if mxPage is positive.
2221** No changes are made if mxPage is 0 or negative.
2222** Regardless of the value of mxPage, return the maximum page count.
2223*/
2224int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002225 int n;
2226 sqlite3BtreeEnter(p);
2227 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2228 sqlite3BtreeLeave(p);
2229 return n;
drhf8e632b2007-05-08 14:51:36 +00002230}
drh5b47efa2010-02-12 18:18:39 +00002231
2232/*
drhc9166342012-01-05 23:32:06 +00002233** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2234** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002235** setting after the change.
2236*/
2237int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2238 int b;
drhaf034ed2010-02-12 19:46:26 +00002239 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002240 sqlite3BtreeEnter(p);
2241 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002242 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2243 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002244 }
drhc9166342012-01-05 23:32:06 +00002245 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002246 sqlite3BtreeLeave(p);
2247 return b;
2248}
danielk1977576ec6b2005-01-21 11:55:25 +00002249#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002250
2251/*
danielk1977951af802004-11-05 15:45:09 +00002252** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2253** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2254** is disabled. The default value for the auto-vacuum property is
2255** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2256*/
danielk1977aef0bf62005-12-30 16:28:01 +00002257int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002258#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002259 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002260#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002261 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002262 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002263 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002264
2265 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002266 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002267 rc = SQLITE_READONLY;
2268 }else{
drh076d4662009-02-18 20:31:18 +00002269 pBt->autoVacuum = av ?1:0;
2270 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002271 }
drhd677b3d2007-08-20 22:48:41 +00002272 sqlite3BtreeLeave(p);
2273 return rc;
danielk1977951af802004-11-05 15:45:09 +00002274#endif
2275}
2276
2277/*
2278** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2279** enabled 1 is returned. Otherwise 0.
2280*/
danielk1977aef0bf62005-12-30 16:28:01 +00002281int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002282#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002283 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002284#else
drhd677b3d2007-08-20 22:48:41 +00002285 int rc;
2286 sqlite3BtreeEnter(p);
2287 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002288 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2289 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2290 BTREE_AUTOVACUUM_INCR
2291 );
drhd677b3d2007-08-20 22:48:41 +00002292 sqlite3BtreeLeave(p);
2293 return rc;
danielk1977951af802004-11-05 15:45:09 +00002294#endif
2295}
2296
2297
2298/*
drha34b6762004-05-07 13:30:42 +00002299** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002300** also acquire a readlock on that file.
2301**
2302** SQLITE_OK is returned on success. If the file is not a
2303** well-formed database file, then SQLITE_CORRUPT is returned.
2304** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002305** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002306*/
danielk1977aef0bf62005-12-30 16:28:01 +00002307static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002308 int rc; /* Result code from subfunctions */
2309 MemPage *pPage1; /* Page 1 of the database file */
2310 int nPage; /* Number of pages in the database */
2311 int nPageFile = 0; /* Number of pages in the database file */
2312 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002313
drh1fee73e2007-08-29 04:00:57 +00002314 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002315 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002316 rc = sqlite3PagerSharedLock(pBt->pPager);
2317 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002318 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002319 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002320
2321 /* Do some checking to help insure the file we opened really is
2322 ** a valid database file.
2323 */
drhc2a4bab2010-04-02 12:46:45 +00002324 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002325 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002326 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002327 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002328 }
2329 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002330 u32 pageSize;
2331 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002332 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002333 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002334 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002335 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002336 }
dan5cf53532010-05-01 16:40:20 +00002337
2338#ifdef SQLITE_OMIT_WAL
2339 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002340 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002341 }
2342 if( page1[19]>1 ){
2343 goto page1_init_failed;
2344 }
2345#else
dane04dc882010-04-20 18:53:15 +00002346 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002347 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002348 }
dane04dc882010-04-20 18:53:15 +00002349 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002350 goto page1_init_failed;
2351 }
drhe5ae5732008-06-15 02:51:47 +00002352
dana470aeb2010-04-21 11:43:38 +00002353 /* If the write version is set to 2, this database should be accessed
2354 ** in WAL mode. If the log is not already open, open it now. Then
2355 ** return SQLITE_OK and return without populating BtShared.pPage1.
2356 ** The caller detects this and calls this function again. This is
2357 ** required as the version of page 1 currently in the page1 buffer
2358 ** may not be the latest version - there may be a newer one in the log
2359 ** file.
2360 */
drhc9166342012-01-05 23:32:06 +00002361 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002362 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002363 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002364 if( rc!=SQLITE_OK ){
2365 goto page1_init_failed;
2366 }else if( isOpen==0 ){
2367 releasePage(pPage1);
2368 return SQLITE_OK;
2369 }
dan8b5444b2010-04-27 14:37:47 +00002370 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002371 }
dan5cf53532010-05-01 16:40:20 +00002372#endif
dane04dc882010-04-20 18:53:15 +00002373
drhe5ae5732008-06-15 02:51:47 +00002374 /* The maximum embedded fraction must be exactly 25%. And the minimum
2375 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2376 ** The original design allowed these amounts to vary, but as of
2377 ** version 3.6.0, we require them to be fixed.
2378 */
2379 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2380 goto page1_init_failed;
2381 }
drhb2eced52010-08-12 02:41:12 +00002382 pageSize = (page1[16]<<8) | (page1[17]<<16);
2383 if( ((pageSize-1)&pageSize)!=0
2384 || pageSize>SQLITE_MAX_PAGE_SIZE
2385 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002386 ){
drh07d183d2005-05-01 22:52:42 +00002387 goto page1_init_failed;
2388 }
2389 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002390 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002391 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002392 /* After reading the first page of the database assuming a page size
2393 ** of BtShared.pageSize, we have discovered that the page-size is
2394 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2395 ** zero and return SQLITE_OK. The caller will call this function
2396 ** again with the correct page-size.
2397 */
2398 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002399 pBt->usableSize = usableSize;
2400 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002401 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002402 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2403 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002404 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002405 }
danecac6702011-02-09 18:19:20 +00002406 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002407 rc = SQLITE_CORRUPT_BKPT;
2408 goto page1_init_failed;
2409 }
drhb33e1b92009-06-18 11:29:20 +00002410 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002411 goto page1_init_failed;
2412 }
drh43b18e12010-08-17 19:40:08 +00002413 pBt->pageSize = pageSize;
2414 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002415#ifndef SQLITE_OMIT_AUTOVACUUM
2416 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002417 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002418#endif
drh306dc212001-05-21 13:45:10 +00002419 }
drhb6f41482004-05-14 01:58:11 +00002420
2421 /* maxLocal is the maximum amount of payload to store locally for
2422 ** a cell. Make sure it is small enough so that at least minFanout
2423 ** cells can will fit on one page. We assume a 10-byte page header.
2424 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002425 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002426 ** 4-byte child pointer
2427 ** 9-byte nKey value
2428 ** 4-byte nData value
2429 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002430 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002431 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2432 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002433 */
shaneh1df2db72010-08-18 02:28:48 +00002434 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2435 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2436 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2437 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002438 if( pBt->maxLocal>127 ){
2439 pBt->max1bytePayload = 127;
2440 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002441 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002442 }
drh2e38c322004-09-03 18:38:44 +00002443 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002444 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002445 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002446 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002447
drh72f82862001-05-24 21:06:34 +00002448page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002449 releasePage(pPage1);
2450 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002451 return rc;
drh306dc212001-05-21 13:45:10 +00002452}
2453
2454/*
drhb8ca3072001-12-05 00:21:20 +00002455** If there are no outstanding cursors and we are not in the middle
2456** of a transaction but there is a read lock on the database, then
2457** this routine unrefs the first page of the database file which
2458** has the effect of releasing the read lock.
2459**
drhb8ca3072001-12-05 00:21:20 +00002460** If there is a transaction in progress, this routine is a no-op.
2461*/
danielk1977aef0bf62005-12-30 16:28:01 +00002462static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002463 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002464 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2465 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002466 assert( pBt->pPage1->aData );
2467 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2468 assert( pBt->pPage1->aData );
2469 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002470 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002471 }
2472}
2473
2474/*
drhe39f2f92009-07-23 01:43:59 +00002475** If pBt points to an empty file then convert that empty file
2476** into a new empty database by initializing the first page of
2477** the database.
drh8b2f49b2001-06-08 00:21:52 +00002478*/
danielk1977aef0bf62005-12-30 16:28:01 +00002479static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002480 MemPage *pP1;
2481 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002482 int rc;
drhd677b3d2007-08-20 22:48:41 +00002483
drh1fee73e2007-08-29 04:00:57 +00002484 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002485 if( pBt->nPage>0 ){
2486 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002487 }
drh3aac2dd2004-04-26 14:10:20 +00002488 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002489 assert( pP1!=0 );
2490 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002491 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002492 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002493 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2494 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002495 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2496 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002497 data[18] = 1;
2498 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002499 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2500 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002501 data[21] = 64;
2502 data[22] = 32;
2503 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002504 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002505 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002506 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002507#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002508 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002509 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002510 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002511 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002512#endif
drhdd3cd972010-03-27 17:12:36 +00002513 pBt->nPage = 1;
2514 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002515 return SQLITE_OK;
2516}
2517
2518/*
danielk1977ee5741e2004-05-31 10:01:34 +00002519** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002520** is started if the second argument is nonzero, otherwise a read-
2521** transaction. If the second argument is 2 or more and exclusive
2522** transaction is started, meaning that no other process is allowed
2523** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002524** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002525** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002526**
danielk1977ee5741e2004-05-31 10:01:34 +00002527** A write-transaction must be started before attempting any
2528** changes to the database. None of the following routines
2529** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002530**
drh23e11ca2004-05-04 17:27:28 +00002531** sqlite3BtreeCreateTable()
2532** sqlite3BtreeCreateIndex()
2533** sqlite3BtreeClearTable()
2534** sqlite3BtreeDropTable()
2535** sqlite3BtreeInsert()
2536** sqlite3BtreeDelete()
2537** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002538**
drhb8ef32c2005-03-14 02:01:49 +00002539** If an initial attempt to acquire the lock fails because of lock contention
2540** and the database was previously unlocked, then invoke the busy handler
2541** if there is one. But if there was previously a read-lock, do not
2542** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2543** returned when there is already a read-lock in order to avoid a deadlock.
2544**
2545** Suppose there are two processes A and B. A has a read lock and B has
2546** a reserved lock. B tries to promote to exclusive but is blocked because
2547** of A's read lock. A tries to promote to reserved but is blocked by B.
2548** One or the other of the two processes must give way or there can be
2549** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2550** when A already has a read lock, we encourage A to give up and let B
2551** proceed.
drha059ad02001-04-17 20:09:11 +00002552*/
danielk1977aef0bf62005-12-30 16:28:01 +00002553int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002554 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002555 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002556 int rc = SQLITE_OK;
2557
drhd677b3d2007-08-20 22:48:41 +00002558 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002559 btreeIntegrity(p);
2560
danielk1977ee5741e2004-05-31 10:01:34 +00002561 /* If the btree is already in a write-transaction, or it
2562 ** is already in a read-transaction and a read-transaction
2563 ** is requested, this is a no-op.
2564 */
danielk1977aef0bf62005-12-30 16:28:01 +00002565 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002566 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002567 }
drhb8ef32c2005-03-14 02:01:49 +00002568
2569 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002570 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002571 rc = SQLITE_READONLY;
2572 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002573 }
2574
danielk1977404ca072009-03-16 13:19:36 +00002575#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002576 /* If another database handle has already opened a write transaction
2577 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002578 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002579 */
drhc9166342012-01-05 23:32:06 +00002580 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2581 || (pBt->btsFlags & BTS_PENDING)!=0
2582 ){
danielk1977404ca072009-03-16 13:19:36 +00002583 pBlock = pBt->pWriter->db;
2584 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002585 BtLock *pIter;
2586 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2587 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002588 pBlock = pIter->pBtree->db;
2589 break;
danielk1977641b0f42007-12-21 04:47:25 +00002590 }
2591 }
2592 }
danielk1977404ca072009-03-16 13:19:36 +00002593 if( pBlock ){
2594 sqlite3ConnectionBlocked(p->db, pBlock);
2595 rc = SQLITE_LOCKED_SHAREDCACHE;
2596 goto trans_begun;
2597 }
danielk1977641b0f42007-12-21 04:47:25 +00002598#endif
2599
danielk1977602b4662009-07-02 07:47:33 +00002600 /* Any read-only or read-write transaction implies a read-lock on
2601 ** page 1. So if some other shared-cache client already has a write-lock
2602 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002603 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2604 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002605
drhc9166342012-01-05 23:32:06 +00002606 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2607 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002608 do {
danielk1977295dc102009-04-01 19:07:03 +00002609 /* Call lockBtree() until either pBt->pPage1 is populated or
2610 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2611 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2612 ** reading page 1 it discovers that the page-size of the database
2613 ** file is not pBt->pageSize. In this case lockBtree() will update
2614 ** pBt->pageSize to the page-size of the file on disk.
2615 */
2616 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002617
drhb8ef32c2005-03-14 02:01:49 +00002618 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002619 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002620 rc = SQLITE_READONLY;
2621 }else{
danielk1977d8293352009-04-30 09:10:37 +00002622 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002623 if( rc==SQLITE_OK ){
2624 rc = newDatabase(pBt);
2625 }
drhb8ef32c2005-03-14 02:01:49 +00002626 }
2627 }
2628
danielk1977bd434552009-03-18 10:33:00 +00002629 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002630 unlockBtreeIfUnused(pBt);
2631 }
danf9b76712010-06-01 14:12:45 +00002632 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002633 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002634
2635 if( rc==SQLITE_OK ){
2636 if( p->inTrans==TRANS_NONE ){
2637 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002638#ifndef SQLITE_OMIT_SHARED_CACHE
2639 if( p->sharable ){
2640 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2641 p->lock.eLock = READ_LOCK;
2642 p->lock.pNext = pBt->pLock;
2643 pBt->pLock = &p->lock;
2644 }
2645#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002646 }
2647 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2648 if( p->inTrans>pBt->inTransaction ){
2649 pBt->inTransaction = p->inTrans;
2650 }
danielk1977404ca072009-03-16 13:19:36 +00002651 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002652 MemPage *pPage1 = pBt->pPage1;
2653#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002654 assert( !pBt->pWriter );
2655 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002656 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2657 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002658#endif
dan59257dc2010-08-04 11:34:31 +00002659
2660 /* If the db-size header field is incorrect (as it may be if an old
2661 ** client has been writing the database file), update it now. Doing
2662 ** this sooner rather than later means the database size can safely
2663 ** re-read the database size from page 1 if a savepoint or transaction
2664 ** rollback occurs within the transaction.
2665 */
2666 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2667 rc = sqlite3PagerWrite(pPage1->pDbPage);
2668 if( rc==SQLITE_OK ){
2669 put4byte(&pPage1->aData[28], pBt->nPage);
2670 }
2671 }
2672 }
danielk1977aef0bf62005-12-30 16:28:01 +00002673 }
2674
drhd677b3d2007-08-20 22:48:41 +00002675
2676trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002677 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002678 /* This call makes sure that the pager has the correct number of
2679 ** open savepoints. If the second parameter is greater than 0 and
2680 ** the sub-journal is not already open, then it will be opened here.
2681 */
danielk1977fd7f0452008-12-17 17:30:26 +00002682 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2683 }
danielk197712dd5492008-12-18 15:45:07 +00002684
danielk1977aef0bf62005-12-30 16:28:01 +00002685 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002686 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002687 return rc;
drha059ad02001-04-17 20:09:11 +00002688}
2689
danielk1977687566d2004-11-02 12:56:41 +00002690#ifndef SQLITE_OMIT_AUTOVACUUM
2691
2692/*
2693** Set the pointer-map entries for all children of page pPage. Also, if
2694** pPage contains cells that point to overflow pages, set the pointer
2695** map entries for the overflow pages as well.
2696*/
2697static int setChildPtrmaps(MemPage *pPage){
2698 int i; /* Counter variable */
2699 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002700 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002701 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002702 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002703 Pgno pgno = pPage->pgno;
2704
drh1fee73e2007-08-29 04:00:57 +00002705 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002706 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002707 if( rc!=SQLITE_OK ){
2708 goto set_child_ptrmaps_out;
2709 }
danielk1977687566d2004-11-02 12:56:41 +00002710 nCell = pPage->nCell;
2711
2712 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002713 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002714
drh98add2e2009-07-20 17:11:49 +00002715 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002716
danielk1977687566d2004-11-02 12:56:41 +00002717 if( !pPage->leaf ){
2718 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002719 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002720 }
2721 }
2722
2723 if( !pPage->leaf ){
2724 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002725 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002726 }
2727
2728set_child_ptrmaps_out:
2729 pPage->isInit = isInitOrig;
2730 return rc;
2731}
2732
2733/*
drhf3aed592009-07-08 18:12:49 +00002734** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2735** that it points to iTo. Parameter eType describes the type of pointer to
2736** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002737**
2738** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2739** page of pPage.
2740**
2741** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2742** page pointed to by one of the cells on pPage.
2743**
2744** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2745** overflow page in the list.
2746*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002747static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002748 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002749 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002750 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002751 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002752 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002753 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002754 }
danielk1977f78fc082004-11-02 14:40:32 +00002755 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002756 }else{
drhf49661a2008-12-10 16:45:50 +00002757 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002758 int i;
2759 int nCell;
2760
danielk197730548662009-07-09 05:07:37 +00002761 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002762 nCell = pPage->nCell;
2763
danielk1977687566d2004-11-02 12:56:41 +00002764 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002765 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002766 if( eType==PTRMAP_OVERFLOW1 ){
2767 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002768 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002769 if( info.iOverflow
2770 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2771 && iFrom==get4byte(&pCell[info.iOverflow])
2772 ){
2773 put4byte(&pCell[info.iOverflow], iTo);
2774 break;
danielk1977687566d2004-11-02 12:56:41 +00002775 }
2776 }else{
2777 if( get4byte(pCell)==iFrom ){
2778 put4byte(pCell, iTo);
2779 break;
2780 }
2781 }
2782 }
2783
2784 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002785 if( eType!=PTRMAP_BTREE ||
2786 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002787 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002788 }
danielk1977687566d2004-11-02 12:56:41 +00002789 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2790 }
2791
2792 pPage->isInit = isInitOrig;
2793 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002794 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002795}
2796
danielk1977003ba062004-11-04 02:57:33 +00002797
danielk19777701e812005-01-10 12:59:51 +00002798/*
2799** Move the open database page pDbPage to location iFreePage in the
2800** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002801**
2802** The isCommit flag indicates that there is no need to remember that
2803** the journal needs to be sync()ed before database page pDbPage->pgno
2804** can be written to. The caller has already promised not to write to that
2805** page.
danielk19777701e812005-01-10 12:59:51 +00002806*/
danielk1977003ba062004-11-04 02:57:33 +00002807static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002808 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002809 MemPage *pDbPage, /* Open page to move */
2810 u8 eType, /* Pointer map 'type' entry for pDbPage */
2811 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002812 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002813 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002814){
2815 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2816 Pgno iDbPage = pDbPage->pgno;
2817 Pager *pPager = pBt->pPager;
2818 int rc;
2819
danielk1977a0bf2652004-11-04 14:30:04 +00002820 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2821 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002822 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002823 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002824
drh85b623f2007-12-13 21:54:09 +00002825 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002826 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2827 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002828 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002829 if( rc!=SQLITE_OK ){
2830 return rc;
2831 }
2832 pDbPage->pgno = iFreePage;
2833
2834 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2835 ** that point to overflow pages. The pointer map entries for all these
2836 ** pages need to be changed.
2837 **
2838 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2839 ** pointer to a subsequent overflow page. If this is the case, then
2840 ** the pointer map needs to be updated for the subsequent overflow page.
2841 */
danielk1977a0bf2652004-11-04 14:30:04 +00002842 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002843 rc = setChildPtrmaps(pDbPage);
2844 if( rc!=SQLITE_OK ){
2845 return rc;
2846 }
2847 }else{
2848 Pgno nextOvfl = get4byte(pDbPage->aData);
2849 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002850 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002851 if( rc!=SQLITE_OK ){
2852 return rc;
2853 }
2854 }
2855 }
2856
2857 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2858 ** that it points at iFreePage. Also fix the pointer map entry for
2859 ** iPtrPage.
2860 */
danielk1977a0bf2652004-11-04 14:30:04 +00002861 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002862 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002863 if( rc!=SQLITE_OK ){
2864 return rc;
2865 }
danielk19773b8a05f2007-03-19 17:44:26 +00002866 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002867 if( rc!=SQLITE_OK ){
2868 releasePage(pPtrPage);
2869 return rc;
2870 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002871 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002872 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002873 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002874 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002875 }
danielk1977003ba062004-11-04 02:57:33 +00002876 }
danielk1977003ba062004-11-04 02:57:33 +00002877 return rc;
2878}
2879
danielk1977dddbcdc2007-04-26 14:42:34 +00002880/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002881static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002882
2883/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002884** Perform a single step of an incremental-vacuum. If successful,
2885** return SQLITE_OK. If there is no work to do (and therefore no
2886** point in calling this function again), return SQLITE_DONE.
2887**
2888** More specificly, this function attempts to re-organize the
2889** database so that the last page of the file currently in use
2890** is no longer in use.
2891**
drhea8ffdf2009-07-22 00:35:23 +00002892** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002893** that the caller will keep calling incrVacuumStep() until
2894** it returns SQLITE_DONE or an error, and that nFin is the
2895** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002896** process is complete. If nFin is zero, it is assumed that
2897** incrVacuumStep() will be called a finite amount of times
2898** which may or may not empty the freelist. A full autovacuum
2899** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002900*/
danielk19773460d192008-12-27 15:23:13 +00002901static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002902 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002903 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002904
drh1fee73e2007-08-29 04:00:57 +00002905 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002906 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002907
2908 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002909 u8 eType;
2910 Pgno iPtrPage;
2911
2912 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002913 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002914 return SQLITE_DONE;
2915 }
2916
2917 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2918 if( rc!=SQLITE_OK ){
2919 return rc;
2920 }
2921 if( eType==PTRMAP_ROOTPAGE ){
2922 return SQLITE_CORRUPT_BKPT;
2923 }
2924
2925 if( eType==PTRMAP_FREEPAGE ){
2926 if( nFin==0 ){
2927 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002928 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002929 ** truncated to zero after this function returns, so it doesn't
2930 ** matter if it still contains some garbage entries.
2931 */
2932 Pgno iFreePg;
2933 MemPage *pFreePg;
2934 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2935 if( rc!=SQLITE_OK ){
2936 return rc;
2937 }
2938 assert( iFreePg==iLastPg );
2939 releasePage(pFreePg);
2940 }
2941 } else {
2942 Pgno iFreePg; /* Index of free page to move pLastPg to */
2943 MemPage *pLastPg;
2944
danielk197730548662009-07-09 05:07:37 +00002945 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002946 if( rc!=SQLITE_OK ){
2947 return rc;
2948 }
2949
danielk1977b4626a32007-04-28 15:47:43 +00002950 /* If nFin is zero, this loop runs exactly once and page pLastPg
2951 ** is swapped with the first free page pulled off the free list.
2952 **
2953 ** On the other hand, if nFin is greater than zero, then keep
2954 ** looping until a free-page located within the first nFin pages
2955 ** of the file is found.
2956 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002957 do {
2958 MemPage *pFreePg;
2959 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2960 if( rc!=SQLITE_OK ){
2961 releasePage(pLastPg);
2962 return rc;
2963 }
2964 releasePage(pFreePg);
2965 }while( nFin!=0 && iFreePg>nFin );
2966 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002967
2968 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002969 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002970 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002971 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002972 releasePage(pLastPg);
2973 if( rc!=SQLITE_OK ){
2974 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002975 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002976 }
2977 }
2978
danielk19773460d192008-12-27 15:23:13 +00002979 if( nFin==0 ){
2980 iLastPg--;
2981 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002982 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2983 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00002984 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002985 if( rc!=SQLITE_OK ){
2986 return rc;
2987 }
2988 rc = sqlite3PagerWrite(pPg->pDbPage);
2989 releasePage(pPg);
2990 if( rc!=SQLITE_OK ){
2991 return rc;
2992 }
2993 }
danielk19773460d192008-12-27 15:23:13 +00002994 iLastPg--;
2995 }
2996 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00002997 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00002998 }
2999 return SQLITE_OK;
3000}
3001
3002/*
3003** A write-transaction must be opened before calling this function.
3004** It performs a single unit of work towards an incremental vacuum.
3005**
3006** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003007** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003008** SQLITE_OK is returned. Otherwise an SQLite error code.
3009*/
3010int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003011 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003012 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003013
3014 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003015 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3016 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003017 rc = SQLITE_DONE;
3018 }else{
3019 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00003020 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00003021 if( rc==SQLITE_OK ){
3022 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3023 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3024 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003025 }
drhd677b3d2007-08-20 22:48:41 +00003026 sqlite3BtreeLeave(p);
3027 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003028}
3029
3030/*
danielk19773b8a05f2007-03-19 17:44:26 +00003031** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00003032** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003033**
3034** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3035** the database file should be truncated to during the commit process.
3036** i.e. the database has been reorganized so that only the first *pnTrunc
3037** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003038*/
danielk19773460d192008-12-27 15:23:13 +00003039static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003040 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003041 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003042 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003043
drh1fee73e2007-08-29 04:00:57 +00003044 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003045 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003046 assert(pBt->autoVacuum);
3047 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003048 Pgno nFin; /* Number of pages in database after autovacuuming */
3049 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003050 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3051 Pgno iFree; /* The next page to be freed */
3052 int nEntry; /* Number of entries on one ptrmap page */
3053 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003054
drhb1299152010-03-30 22:58:33 +00003055 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003056 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3057 /* It is not possible to create a database for which the final page
3058 ** is either a pointer-map page or the pending-byte page. If one
3059 ** is encountered, this indicates corruption.
3060 */
danielk19773460d192008-12-27 15:23:13 +00003061 return SQLITE_CORRUPT_BKPT;
3062 }
danielk1977ef165ce2009-04-06 17:50:03 +00003063
danielk19773460d192008-12-27 15:23:13 +00003064 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00003065 nEntry = pBt->usableSize/5;
3066 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00003067 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00003068 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00003069 nFin--;
3070 }
3071 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3072 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00003073 }
drhc5e47ac2009-06-04 00:11:56 +00003074 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00003075
danielk19773460d192008-12-27 15:23:13 +00003076 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3077 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00003078 }
danielk19773460d192008-12-27 15:23:13 +00003079 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003080 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3081 put4byte(&pBt->pPage1->aData[32], 0);
3082 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003083 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00003084 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00003085 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003086 }
3087 if( rc!=SQLITE_OK ){
3088 sqlite3PagerRollback(pPager);
3089 }
danielk1977687566d2004-11-02 12:56:41 +00003090 }
3091
danielk19773b8a05f2007-03-19 17:44:26 +00003092 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003093 return rc;
3094}
danielk1977dddbcdc2007-04-26 14:42:34 +00003095
danielk1977a50d9aa2009-06-08 14:49:45 +00003096#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3097# define setChildPtrmaps(x) SQLITE_OK
3098#endif
danielk1977687566d2004-11-02 12:56:41 +00003099
3100/*
drh80e35f42007-03-30 14:06:34 +00003101** This routine does the first phase of a two-phase commit. This routine
3102** causes a rollback journal to be created (if it does not already exist)
3103** and populated with enough information so that if a power loss occurs
3104** the database can be restored to its original state by playing back
3105** the journal. Then the contents of the journal are flushed out to
3106** the disk. After the journal is safely on oxide, the changes to the
3107** database are written into the database file and flushed to oxide.
3108** At the end of this call, the rollback journal still exists on the
3109** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003110** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003111** commit process.
3112**
3113** This call is a no-op if no write-transaction is currently active on pBt.
3114**
3115** Otherwise, sync the database file for the btree pBt. zMaster points to
3116** the name of a master journal file that should be written into the
3117** individual journal file, or is NULL, indicating no master journal file
3118** (single database transaction).
3119**
3120** When this is called, the master journal should already have been
3121** created, populated with this journal pointer and synced to disk.
3122**
3123** Once this is routine has returned, the only thing required to commit
3124** the write-transaction for this database file is to delete the journal.
3125*/
3126int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3127 int rc = SQLITE_OK;
3128 if( p->inTrans==TRANS_WRITE ){
3129 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003130 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003131#ifndef SQLITE_OMIT_AUTOVACUUM
3132 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003133 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003134 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003135 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003136 return rc;
3137 }
3138 }
3139#endif
drh49b9d332009-01-02 18:10:42 +00003140 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003141 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003142 }
3143 return rc;
3144}
3145
3146/*
danielk197794b30732009-07-02 17:21:57 +00003147** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3148** at the conclusion of a transaction.
3149*/
3150static void btreeEndTransaction(Btree *p){
3151 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003152 assert( sqlite3BtreeHoldsMutex(p) );
3153
danielk197794b30732009-07-02 17:21:57 +00003154 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003155 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3156 /* If there are other active statements that belong to this database
3157 ** handle, downgrade to a read-only transaction. The other statements
3158 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003159 downgradeAllSharedCacheTableLocks(p);
3160 p->inTrans = TRANS_READ;
3161 }else{
3162 /* If the handle had any kind of transaction open, decrement the
3163 ** transaction count of the shared btree. If the transaction count
3164 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3165 ** call below will unlock the pager. */
3166 if( p->inTrans!=TRANS_NONE ){
3167 clearAllSharedCacheTableLocks(p);
3168 pBt->nTransaction--;
3169 if( 0==pBt->nTransaction ){
3170 pBt->inTransaction = TRANS_NONE;
3171 }
3172 }
3173
3174 /* Set the current transaction state to TRANS_NONE and unlock the
3175 ** pager if this call closed the only read or write transaction. */
3176 p->inTrans = TRANS_NONE;
3177 unlockBtreeIfUnused(pBt);
3178 }
3179
3180 btreeIntegrity(p);
3181}
3182
3183/*
drh2aa679f2001-06-25 02:11:07 +00003184** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003185**
drh6e345992007-03-30 11:12:08 +00003186** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003187** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3188** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3189** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003190** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003191** routine has to do is delete or truncate or zero the header in the
3192** the rollback journal (which causes the transaction to commit) and
3193** drop locks.
drh6e345992007-03-30 11:12:08 +00003194**
dan60939d02011-03-29 15:40:55 +00003195** Normally, if an error occurs while the pager layer is attempting to
3196** finalize the underlying journal file, this function returns an error and
3197** the upper layer will attempt a rollback. However, if the second argument
3198** is non-zero then this b-tree transaction is part of a multi-file
3199** transaction. In this case, the transaction has already been committed
3200** (by deleting a master journal file) and the caller will ignore this
3201** functions return code. So, even if an error occurs in the pager layer,
3202** reset the b-tree objects internal state to indicate that the write
3203** transaction has been closed. This is quite safe, as the pager will have
3204** transitioned to the error state.
3205**
drh5e00f6c2001-09-13 13:46:56 +00003206** This will release the write lock on the database file. If there
3207** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003208*/
dan60939d02011-03-29 15:40:55 +00003209int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003210
drh075ed302010-10-14 01:17:30 +00003211 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003212 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003213 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003214
3215 /* If the handle has a write-transaction open, commit the shared-btrees
3216 ** transaction and set the shared state to TRANS_READ.
3217 */
3218 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003219 int rc;
drh075ed302010-10-14 01:17:30 +00003220 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003221 assert( pBt->inTransaction==TRANS_WRITE );
3222 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003223 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003224 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003225 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003226 return rc;
3227 }
danielk1977aef0bf62005-12-30 16:28:01 +00003228 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003229 }
danielk1977aef0bf62005-12-30 16:28:01 +00003230
danielk197794b30732009-07-02 17:21:57 +00003231 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003232 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003233 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003234}
3235
drh80e35f42007-03-30 14:06:34 +00003236/*
3237** Do both phases of a commit.
3238*/
3239int sqlite3BtreeCommit(Btree *p){
3240 int rc;
drhd677b3d2007-08-20 22:48:41 +00003241 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003242 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3243 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003244 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003245 }
drhd677b3d2007-08-20 22:48:41 +00003246 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003247 return rc;
3248}
3249
danielk1977fbcd5852004-06-15 02:44:18 +00003250#ifndef NDEBUG
3251/*
3252** Return the number of write-cursors open on this handle. This is for use
3253** in assert() expressions, so it is only compiled if NDEBUG is not
3254** defined.
drhfb982642007-08-30 01:19:59 +00003255**
3256** For the purposes of this routine, a write-cursor is any cursor that
3257** is capable of writing to the databse. That means the cursor was
3258** originally opened for writing and the cursor has not be disabled
3259** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003260*/
danielk1977aef0bf62005-12-30 16:28:01 +00003261static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003262 BtCursor *pCur;
3263 int r = 0;
3264 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003265 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003266 }
3267 return r;
3268}
3269#endif
3270
drhc39e0002004-05-07 23:50:57 +00003271/*
drhfb982642007-08-30 01:19:59 +00003272** This routine sets the state to CURSOR_FAULT and the error
3273** code to errCode for every cursor on BtShared that pBtree
3274** references.
3275**
3276** Every cursor is tripped, including cursors that belong
3277** to other database connections that happen to be sharing
3278** the cache with pBtree.
3279**
3280** This routine gets called when a rollback occurs.
3281** All cursors using the same cache must be tripped
3282** to prevent them from trying to use the btree after
3283** the rollback. The rollback may have deleted tables
3284** or moved root pages, so it is not sufficient to
3285** save the state of the cursor. The cursor must be
3286** invalidated.
3287*/
3288void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3289 BtCursor *p;
3290 sqlite3BtreeEnter(pBtree);
3291 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003292 int i;
danielk1977be51a652008-10-08 17:58:48 +00003293 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003294 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003295 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003296 for(i=0; i<=p->iPage; i++){
3297 releasePage(p->apPage[i]);
3298 p->apPage[i] = 0;
3299 }
drhfb982642007-08-30 01:19:59 +00003300 }
3301 sqlite3BtreeLeave(pBtree);
3302}
3303
3304/*
drhecdc7532001-09-23 02:35:53 +00003305** Rollback the transaction in progress. All cursors will be
3306** invalided by this operation. Any attempt to use a cursor
3307** that was open at the beginning of this operation will result
3308** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003309**
3310** This will release the write lock on the database file. If there
3311** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003312*/
danielk1977aef0bf62005-12-30 16:28:01 +00003313int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003314 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003315 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003316 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003317
drhd677b3d2007-08-20 22:48:41 +00003318 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003319 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003320#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003321 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003322 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003323 ** trying to save cursor positions. If this is an automatic rollback (as
3324 ** the result of a constraint, malloc() failure or IO error) then
3325 ** the cache may be internally inconsistent (not contain valid trees) so
3326 ** we cannot simply return the error to the caller. Instead, abort
3327 ** all queries that may be using any of the cursors that failed to save.
3328 */
drhfb982642007-08-30 01:19:59 +00003329 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003330 }
danielk19778d34dfd2006-01-24 16:37:57 +00003331#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003332 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003333
3334 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003335 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003336
danielk19778d34dfd2006-01-24 16:37:57 +00003337 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003338 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003339 if( rc2!=SQLITE_OK ){
3340 rc = rc2;
3341 }
3342
drh24cd67e2004-05-10 16:18:47 +00003343 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003344 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003345 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003346 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003347 int nPage = get4byte(28+(u8*)pPage1->aData);
3348 testcase( nPage==0 );
3349 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3350 testcase( pBt->nPage!=nPage );
3351 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003352 releasePage(pPage1);
3353 }
danielk1977fbcd5852004-06-15 02:44:18 +00003354 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003355 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003356 }
danielk1977aef0bf62005-12-30 16:28:01 +00003357
danielk197794b30732009-07-02 17:21:57 +00003358 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003359 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003360 return rc;
3361}
3362
3363/*
danielk1977bd434552009-03-18 10:33:00 +00003364** Start a statement subtransaction. The subtransaction can can be rolled
3365** back independently of the main transaction. You must start a transaction
3366** before starting a subtransaction. The subtransaction is ended automatically
3367** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003368**
3369** Statement subtransactions are used around individual SQL statements
3370** that are contained within a BEGIN...COMMIT block. If a constraint
3371** error occurs within the statement, the effect of that one statement
3372** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003373**
3374** A statement sub-transaction is implemented as an anonymous savepoint. The
3375** value passed as the second parameter is the total number of savepoints,
3376** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3377** are no active savepoints and no other statement-transactions open,
3378** iStatement is 1. This anonymous savepoint can be released or rolled back
3379** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003380*/
danielk1977bd434552009-03-18 10:33:00 +00003381int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003382 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003383 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003384 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003385 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003386 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003387 assert( iStatement>0 );
3388 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003389 assert( pBt->inTransaction==TRANS_WRITE );
3390 /* At the pager level, a statement transaction is a savepoint with
3391 ** an index greater than all savepoints created explicitly using
3392 ** SQL statements. It is illegal to open, release or rollback any
3393 ** such savepoints while the statement transaction savepoint is active.
3394 */
3395 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003396 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003397 return rc;
3398}
3399
3400/*
danielk1977fd7f0452008-12-17 17:30:26 +00003401** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3402** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003403** savepoint identified by parameter iSavepoint, depending on the value
3404** of op.
3405**
3406** Normally, iSavepoint is greater than or equal to zero. However, if op is
3407** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3408** contents of the entire transaction are rolled back. This is different
3409** from a normal transaction rollback, as no locks are released and the
3410** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003411*/
3412int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3413 int rc = SQLITE_OK;
3414 if( p && p->inTrans==TRANS_WRITE ){
3415 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003416 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3417 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3418 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003419 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003420 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003421 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3422 pBt->nPage = 0;
3423 }
drh9f0bbf92009-01-02 21:08:09 +00003424 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003425 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003426
3427 /* The database size was written into the offset 28 of the header
3428 ** when the transaction started, so we know that the value at offset
3429 ** 28 is nonzero. */
3430 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003431 }
danielk1977fd7f0452008-12-17 17:30:26 +00003432 sqlite3BtreeLeave(p);
3433 }
3434 return rc;
3435}
3436
3437/*
drh8b2f49b2001-06-08 00:21:52 +00003438** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003439** iTable. If a read-only cursor is requested, it is assumed that
3440** the caller already has at least a read-only transaction open
3441** on the database already. If a write-cursor is requested, then
3442** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003443**
3444** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003445** If wrFlag==1, then the cursor can be used for reading or for
3446** writing if other conditions for writing are also met. These
3447** are the conditions that must be met in order for writing to
3448** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003449**
drhf74b8d92002-09-01 23:20:45 +00003450** 1: The cursor must have been opened with wrFlag==1
3451**
drhfe5d71d2007-03-19 11:54:10 +00003452** 2: Other database connections that share the same pager cache
3453** but which are not in the READ_UNCOMMITTED state may not have
3454** cursors open with wrFlag==0 on the same table. Otherwise
3455** the changes made by this write cursor would be visible to
3456** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003457**
3458** 3: The database must be writable (not on read-only media)
3459**
3460** 4: There must be an active transaction.
3461**
drh6446c4d2001-12-15 14:22:18 +00003462** No checking is done to make sure that page iTable really is the
3463** root page of a b-tree. If it is not, then the cursor acquired
3464** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003465**
drhf25a5072009-11-18 23:01:25 +00003466** It is assumed that the sqlite3BtreeCursorZero() has been called
3467** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003468*/
drhd677b3d2007-08-20 22:48:41 +00003469static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003470 Btree *p, /* The btree */
3471 int iTable, /* Root page of table to open */
3472 int wrFlag, /* 1 to write. 0 read-only */
3473 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3474 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003475){
danielk19773e8add92009-07-04 17:16:00 +00003476 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003477
drh1fee73e2007-08-29 04:00:57 +00003478 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003479 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003480
danielk1977602b4662009-07-02 07:47:33 +00003481 /* The following assert statements verify that if this is a sharable
3482 ** b-tree database, the connection is holding the required table locks,
3483 ** and that no other connection has any open cursor that conflicts with
3484 ** this lock. */
3485 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003486 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3487
danielk19773e8add92009-07-04 17:16:00 +00003488 /* Assert that the caller has opened the required transaction. */
3489 assert( p->inTrans>TRANS_NONE );
3490 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3491 assert( pBt->pPage1 && pBt->pPage1->aData );
3492
drhc9166342012-01-05 23:32:06 +00003493 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003494 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003495 }
drhb1299152010-03-30 22:58:33 +00003496 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003497 assert( wrFlag==0 );
3498 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003499 }
danielk1977aef0bf62005-12-30 16:28:01 +00003500
danielk1977aef0bf62005-12-30 16:28:01 +00003501 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003502 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003503 pCur->pgnoRoot = (Pgno)iTable;
3504 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003505 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003506 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003507 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003508 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003509 pCur->pNext = pBt->pCursor;
3510 if( pCur->pNext ){
3511 pCur->pNext->pPrev = pCur;
3512 }
3513 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003514 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003515 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003516 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003517}
drhd677b3d2007-08-20 22:48:41 +00003518int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003519 Btree *p, /* The btree */
3520 int iTable, /* Root page of table to open */
3521 int wrFlag, /* 1 to write. 0 read-only */
3522 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3523 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003524){
3525 int rc;
3526 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003527 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003528 sqlite3BtreeLeave(p);
3529 return rc;
3530}
drh7f751222009-03-17 22:33:00 +00003531
3532/*
3533** Return the size of a BtCursor object in bytes.
3534**
3535** This interfaces is needed so that users of cursors can preallocate
3536** sufficient storage to hold a cursor. The BtCursor object is opaque
3537** to users so they cannot do the sizeof() themselves - they must call
3538** this routine.
3539*/
3540int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003541 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003542}
3543
drh7f751222009-03-17 22:33:00 +00003544/*
drhf25a5072009-11-18 23:01:25 +00003545** Initialize memory that will be converted into a BtCursor object.
3546**
3547** The simple approach here would be to memset() the entire object
3548** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3549** do not need to be zeroed and they are large, so we can save a lot
3550** of run-time by skipping the initialization of those elements.
3551*/
3552void sqlite3BtreeCursorZero(BtCursor *p){
3553 memset(p, 0, offsetof(BtCursor, iPage));
3554}
3555
3556/*
drh7f751222009-03-17 22:33:00 +00003557** Set the cached rowid value of every cursor in the same database file
3558** as pCur and having the same root page number as pCur. The value is
3559** set to iRowid.
3560**
3561** Only positive rowid values are considered valid for this cache.
3562** The cache is initialized to zero, indicating an invalid cache.
3563** A btree will work fine with zero or negative rowids. We just cannot
3564** cache zero or negative rowids, which means tables that use zero or
3565** negative rowids might run a little slower. But in practice, zero
3566** or negative rowids are very uncommon so this should not be a problem.
3567*/
3568void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3569 BtCursor *p;
3570 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3571 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3572 }
3573 assert( pCur->cachedRowid==iRowid );
3574}
drhd677b3d2007-08-20 22:48:41 +00003575
drh7f751222009-03-17 22:33:00 +00003576/*
3577** Return the cached rowid for the given cursor. A negative or zero
3578** return value indicates that the rowid cache is invalid and should be
3579** ignored. If the rowid cache has never before been set, then a
3580** zero is returned.
3581*/
3582sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3583 return pCur->cachedRowid;
3584}
drha059ad02001-04-17 20:09:11 +00003585
3586/*
drh5e00f6c2001-09-13 13:46:56 +00003587** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003588** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003589*/
drh3aac2dd2004-04-26 14:10:20 +00003590int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003591 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003592 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003593 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003594 BtShared *pBt = pCur->pBt;
3595 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003596 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003597 if( pCur->pPrev ){
3598 pCur->pPrev->pNext = pCur->pNext;
3599 }else{
3600 pBt->pCursor = pCur->pNext;
3601 }
3602 if( pCur->pNext ){
3603 pCur->pNext->pPrev = pCur->pPrev;
3604 }
danielk197771d5d2c2008-09-29 11:49:47 +00003605 for(i=0; i<=pCur->iPage; i++){
3606 releasePage(pCur->apPage[i]);
3607 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003608 unlockBtreeIfUnused(pBt);
3609 invalidateOverflowCache(pCur);
3610 /* sqlite3_free(pCur); */
3611 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003612 }
drh8c42ca92001-06-22 19:15:00 +00003613 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003614}
3615
drh5e2f8b92001-05-28 00:41:15 +00003616/*
drh86057612007-06-26 01:04:48 +00003617** Make sure the BtCursor* given in the argument has a valid
3618** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003619** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003620**
3621** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003622** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003623**
3624** 2007-06-25: There is a bug in some versions of MSVC that cause the
3625** compiler to crash when getCellInfo() is implemented as a macro.
3626** But there is a measureable speed advantage to using the macro on gcc
3627** (when less compiler optimizations like -Os or -O0 are used and the
3628** compiler is not doing agressive inlining.) So we use a real function
3629** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003630*/
drh9188b382004-05-14 21:12:22 +00003631#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003632 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003633 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003634 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003635 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003636 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003637 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003638 }
danielk19771cc5ed82007-05-16 17:28:43 +00003639#else
3640 #define assertCellInfo(x)
3641#endif
drh86057612007-06-26 01:04:48 +00003642#ifdef _MSC_VER
3643 /* Use a real function in MSVC to work around bugs in that compiler. */
3644 static void getCellInfo(BtCursor *pCur){
3645 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003646 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003647 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003648 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003649 }else{
3650 assertCellInfo(pCur);
3651 }
3652 }
3653#else /* if not _MSC_VER */
3654 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003655#define getCellInfo(pCur) \
3656 if( pCur->info.nSize==0 ){ \
3657 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003658 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003659 pCur->validNKey = 1; \
3660 }else{ \
3661 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003662 }
3663#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003664
drhea8ffdf2009-07-22 00:35:23 +00003665#ifndef NDEBUG /* The next routine used only within assert() statements */
3666/*
3667** Return true if the given BtCursor is valid. A valid cursor is one
3668** that is currently pointing to a row in a (non-empty) table.
3669** This is a verification routine is used only within assert() statements.
3670*/
3671int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3672 return pCur && pCur->eState==CURSOR_VALID;
3673}
3674#endif /* NDEBUG */
3675
drh9188b382004-05-14 21:12:22 +00003676/*
drh3aac2dd2004-04-26 14:10:20 +00003677** Set *pSize to the size of the buffer needed to hold the value of
3678** the key for the current entry. If the cursor is not pointing
3679** to a valid entry, *pSize is set to 0.
3680**
drh4b70f112004-05-02 21:12:19 +00003681** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003682** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003683**
3684** The caller must position the cursor prior to invoking this routine.
3685**
3686** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003687*/
drh4a1c3802004-05-12 15:15:47 +00003688int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003689 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003690 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3691 if( pCur->eState!=CURSOR_VALID ){
3692 *pSize = 0;
3693 }else{
3694 getCellInfo(pCur);
3695 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003696 }
drhea8ffdf2009-07-22 00:35:23 +00003697 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003698}
drh2af926b2001-05-15 00:39:25 +00003699
drh72f82862001-05-24 21:06:34 +00003700/*
drh0e1c19e2004-05-11 00:58:56 +00003701** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003702** cursor currently points to.
3703**
3704** The caller must guarantee that the cursor is pointing to a non-NULL
3705** valid entry. In other words, the calling procedure must guarantee
3706** that the cursor has Cursor.eState==CURSOR_VALID.
3707**
3708** Failure is not possible. This function always returns SQLITE_OK.
3709** It might just as well be a procedure (returning void) but we continue
3710** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003711*/
3712int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003713 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003714 assert( pCur->eState==CURSOR_VALID );
3715 getCellInfo(pCur);
3716 *pSize = pCur->info.nData;
3717 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003718}
3719
3720/*
danielk1977d04417962007-05-02 13:16:30 +00003721** Given the page number of an overflow page in the database (parameter
3722** ovfl), this function finds the page number of the next page in the
3723** linked list of overflow pages. If possible, it uses the auto-vacuum
3724** pointer-map data instead of reading the content of page ovfl to do so.
3725**
3726** If an error occurs an SQLite error code is returned. Otherwise:
3727**
danielk1977bea2a942009-01-20 17:06:27 +00003728** The page number of the next overflow page in the linked list is
3729** written to *pPgnoNext. If page ovfl is the last page in its linked
3730** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003731**
danielk1977bea2a942009-01-20 17:06:27 +00003732** If ppPage is not NULL, and a reference to the MemPage object corresponding
3733** to page number pOvfl was obtained, then *ppPage is set to point to that
3734** reference. It is the responsibility of the caller to call releasePage()
3735** on *ppPage to free the reference. In no reference was obtained (because
3736** the pointer-map was used to obtain the value for *pPgnoNext), then
3737** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003738*/
3739static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003740 BtShared *pBt, /* The database file */
3741 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003742 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003743 Pgno *pPgnoNext /* OUT: Next overflow page number */
3744){
3745 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003746 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003747 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003748
drh1fee73e2007-08-29 04:00:57 +00003749 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003750 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003751
3752#ifndef SQLITE_OMIT_AUTOVACUUM
3753 /* Try to find the next page in the overflow list using the
3754 ** autovacuum pointer-map pages. Guess that the next page in
3755 ** the overflow list is page number (ovfl+1). If that guess turns
3756 ** out to be wrong, fall back to loading the data of page
3757 ** number ovfl to determine the next page number.
3758 */
3759 if( pBt->autoVacuum ){
3760 Pgno pgno;
3761 Pgno iGuess = ovfl+1;
3762 u8 eType;
3763
3764 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3765 iGuess++;
3766 }
3767
drhb1299152010-03-30 22:58:33 +00003768 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003769 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003770 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003771 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003772 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003773 }
3774 }
3775 }
3776#endif
3777
danielk1977d8a3f3d2009-07-11 11:45:23 +00003778 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003779 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003780 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003781 assert( rc==SQLITE_OK || pPage==0 );
3782 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003783 next = get4byte(pPage->aData);
3784 }
danielk1977443c0592009-01-16 15:21:05 +00003785 }
danielk197745d68822009-01-16 16:23:38 +00003786
danielk1977bea2a942009-01-20 17:06:27 +00003787 *pPgnoNext = next;
3788 if( ppPage ){
3789 *ppPage = pPage;
3790 }else{
3791 releasePage(pPage);
3792 }
3793 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003794}
3795
danielk1977da107192007-05-04 08:32:13 +00003796/*
3797** Copy data from a buffer to a page, or from a page to a buffer.
3798**
3799** pPayload is a pointer to data stored on database page pDbPage.
3800** If argument eOp is false, then nByte bytes of data are copied
3801** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3802** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3803** of data are copied from the buffer pBuf to pPayload.
3804**
3805** SQLITE_OK is returned on success, otherwise an error code.
3806*/
3807static int copyPayload(
3808 void *pPayload, /* Pointer to page data */
3809 void *pBuf, /* Pointer to buffer */
3810 int nByte, /* Number of bytes to copy */
3811 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3812 DbPage *pDbPage /* Page containing pPayload */
3813){
3814 if( eOp ){
3815 /* Copy data from buffer to page (a write operation) */
3816 int rc = sqlite3PagerWrite(pDbPage);
3817 if( rc!=SQLITE_OK ){
3818 return rc;
3819 }
3820 memcpy(pPayload, pBuf, nByte);
3821 }else{
3822 /* Copy data from page to buffer (a read operation) */
3823 memcpy(pBuf, pPayload, nByte);
3824 }
3825 return SQLITE_OK;
3826}
danielk1977d04417962007-05-02 13:16:30 +00003827
3828/*
danielk19779f8d6402007-05-02 17:48:45 +00003829** This function is used to read or overwrite payload information
3830** for the entry that the pCur cursor is pointing to. If the eOp
3831** parameter is 0, this is a read operation (data copied into
3832** buffer pBuf). If it is non-zero, a write (data copied from
3833** buffer pBuf).
3834**
3835** A total of "amt" bytes are read or written beginning at "offset".
3836** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003837**
drh3bcdfd22009-07-12 02:32:21 +00003838** The content being read or written might appear on the main page
3839** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003840**
danielk1977dcbb5d32007-05-04 18:36:44 +00003841** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003842** cursor entry uses one or more overflow pages, this function
3843** allocates space for and lazily popluates the overflow page-list
3844** cache array (BtCursor.aOverflow). Subsequent calls use this
3845** cache to make seeking to the supplied offset more efficient.
3846**
3847** Once an overflow page-list cache has been allocated, it may be
3848** invalidated if some other cursor writes to the same table, or if
3849** the cursor is moved to a different row. Additionally, in auto-vacuum
3850** mode, the following events may invalidate an overflow page-list cache.
3851**
3852** * An incremental vacuum,
3853** * A commit in auto_vacuum="full" mode,
3854** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003855*/
danielk19779f8d6402007-05-02 17:48:45 +00003856static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003857 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003858 u32 offset, /* Begin reading this far into payload */
3859 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003860 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003861 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003862){
3863 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003864 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003865 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003866 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003867 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003868 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003869
danielk1977da107192007-05-04 08:32:13 +00003870 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003871 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003872 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003873 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003874
drh86057612007-06-26 01:04:48 +00003875 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003876 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003877 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003878
drh3bcdfd22009-07-12 02:32:21 +00003879 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003880 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3881 ){
danielk1977da107192007-05-04 08:32:13 +00003882 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003883 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003884 }
danielk1977da107192007-05-04 08:32:13 +00003885
3886 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003887 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003888 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003889 if( a+offset>pCur->info.nLocal ){
3890 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003891 }
danielk1977da107192007-05-04 08:32:13 +00003892 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003893 offset = 0;
drha34b6762004-05-07 13:30:42 +00003894 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003895 amt -= a;
drhdd793422001-06-28 01:54:48 +00003896 }else{
drhfa1a98a2004-05-14 19:08:17 +00003897 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003898 }
danielk1977da107192007-05-04 08:32:13 +00003899
3900 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003901 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003902 Pgno nextPage;
3903
drhfa1a98a2004-05-14 19:08:17 +00003904 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003905
danielk19772dec9702007-05-02 16:48:37 +00003906#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003907 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003908 ** has not been allocated, allocate it now. The array is sized at
3909 ** one entry for each overflow page in the overflow chain. The
3910 ** page number of the first overflow page is stored in aOverflow[0],
3911 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3912 ** (the cache is lazily populated).
3913 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003914 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003915 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003916 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003917 /* nOvfl is always positive. If it were zero, fetchPayload would have
3918 ** been used instead of this routine. */
3919 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003920 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003921 }
3922 }
danielk1977da107192007-05-04 08:32:13 +00003923
3924 /* If the overflow page-list cache has been allocated and the
3925 ** entry for the first required overflow page is valid, skip
3926 ** directly to it.
3927 */
danielk19772dec9702007-05-02 16:48:37 +00003928 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3929 iIdx = (offset/ovflSize);
3930 nextPage = pCur->aOverflow[iIdx];
3931 offset = (offset%ovflSize);
3932 }
3933#endif
danielk1977da107192007-05-04 08:32:13 +00003934
3935 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3936
3937#ifndef SQLITE_OMIT_INCRBLOB
3938 /* If required, populate the overflow page-list cache. */
3939 if( pCur->aOverflow ){
3940 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3941 pCur->aOverflow[iIdx] = nextPage;
3942 }
3943#endif
3944
danielk1977d04417962007-05-02 13:16:30 +00003945 if( offset>=ovflSize ){
3946 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003947 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003948 ** data is not required. So first try to lookup the overflow
3949 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003950 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003951 */
danielk19772dec9702007-05-02 16:48:37 +00003952#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003953 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3954 nextPage = pCur->aOverflow[iIdx+1];
3955 } else
danielk19772dec9702007-05-02 16:48:37 +00003956#endif
danielk1977da107192007-05-04 08:32:13 +00003957 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003958 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003959 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003960 /* Need to read this page properly. It contains some of the
3961 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003962 */
danf4ba1092011-10-08 14:57:07 +00003963#ifdef SQLITE_DIRECT_OVERFLOW_READ
3964 sqlite3_file *fd;
3965#endif
danielk1977cfe9a692004-06-16 12:00:29 +00003966 int a = amt;
danf4ba1092011-10-08 14:57:07 +00003967 if( a + offset > ovflSize ){
3968 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003969 }
danf4ba1092011-10-08 14:57:07 +00003970
3971#ifdef SQLITE_DIRECT_OVERFLOW_READ
3972 /* If all the following are true:
3973 **
3974 ** 1) this is a read operation, and
3975 ** 2) data is required from the start of this overflow page, and
3976 ** 3) the database is file-backed, and
3977 ** 4) there is no open write-transaction, and
3978 ** 5) the database is not a WAL database,
3979 **
3980 ** then data can be read directly from the database file into the
3981 ** output buffer, bypassing the page-cache altogether. This speeds
3982 ** up loading large records that span many overflow pages.
3983 */
3984 if( eOp==0 /* (1) */
3985 && offset==0 /* (2) */
3986 && pBt->inTransaction==TRANS_READ /* (4) */
3987 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
3988 && pBt->pPage1->aData[19]==0x01 /* (5) */
3989 ){
3990 u8 aSave[4];
3991 u8 *aWrite = &pBuf[-4];
3992 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00003993 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00003994 nextPage = get4byte(aWrite);
3995 memcpy(aWrite, aSave, 4);
3996 }else
3997#endif
3998
3999 {
4000 DbPage *pDbPage;
4001 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
4002 if( rc==SQLITE_OK ){
4003 aPayload = sqlite3PagerGetData(pDbPage);
4004 nextPage = get4byte(aPayload);
4005 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4006 sqlite3PagerUnref(pDbPage);
4007 offset = 0;
4008 }
4009 }
4010 amt -= a;
4011 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004012 }
drh2af926b2001-05-15 00:39:25 +00004013 }
drh2af926b2001-05-15 00:39:25 +00004014 }
danielk1977cfe9a692004-06-16 12:00:29 +00004015
danielk1977da107192007-05-04 08:32:13 +00004016 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004017 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004018 }
danielk1977da107192007-05-04 08:32:13 +00004019 return rc;
drh2af926b2001-05-15 00:39:25 +00004020}
4021
drh72f82862001-05-24 21:06:34 +00004022/*
drh3aac2dd2004-04-26 14:10:20 +00004023** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004024** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004025** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004026**
drh5d1a8722009-07-22 18:07:40 +00004027** The caller must ensure that pCur is pointing to a valid row
4028** in the table.
4029**
drh3aac2dd2004-04-26 14:10:20 +00004030** Return SQLITE_OK on success or an error code if anything goes
4031** wrong. An error is returned if "offset+amt" is larger than
4032** the available payload.
drh72f82862001-05-24 21:06:34 +00004033*/
drha34b6762004-05-07 13:30:42 +00004034int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004035 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004036 assert( pCur->eState==CURSOR_VALID );
4037 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4038 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4039 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004040}
4041
4042/*
drh3aac2dd2004-04-26 14:10:20 +00004043** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004044** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004045** begins at "offset".
4046**
4047** Return SQLITE_OK on success or an error code if anything goes
4048** wrong. An error is returned if "offset+amt" is larger than
4049** the available payload.
drh72f82862001-05-24 21:06:34 +00004050*/
drh3aac2dd2004-04-26 14:10:20 +00004051int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004052 int rc;
4053
danielk19773588ceb2008-06-10 17:30:26 +00004054#ifndef SQLITE_OMIT_INCRBLOB
4055 if ( pCur->eState==CURSOR_INVALID ){
4056 return SQLITE_ABORT;
4057 }
4058#endif
4059
drh1fee73e2007-08-29 04:00:57 +00004060 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004061 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004062 if( rc==SQLITE_OK ){
4063 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004064 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4065 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004066 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004067 }
4068 return rc;
drh2af926b2001-05-15 00:39:25 +00004069}
4070
drh72f82862001-05-24 21:06:34 +00004071/*
drh0e1c19e2004-05-11 00:58:56 +00004072** Return a pointer to payload information from the entry that the
4073** pCur cursor is pointing to. The pointer is to the beginning of
4074** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00004075** skipKey==1. The number of bytes of available key/data is written
4076** into *pAmt. If *pAmt==0, then the value returned will not be
4077** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004078**
4079** This routine is an optimization. It is common for the entire key
4080** and data to fit on the local page and for there to be no overflow
4081** pages. When that is so, this routine can be used to access the
4082** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004083** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004084** the key/data and copy it into a preallocated buffer.
4085**
4086** The pointer returned by this routine looks directly into the cached
4087** page of the database. The data might change or move the next time
4088** any btree routine is called.
4089*/
4090static const unsigned char *fetchPayload(
4091 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00004092 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004093 int skipKey /* read beginning at data if this is true */
4094){
4095 unsigned char *aPayload;
4096 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004097 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004098 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004099
danielk197771d5d2c2008-09-29 11:49:47 +00004100 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004101 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004102 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004103 pPage = pCur->apPage[pCur->iPage];
4104 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00004105 if( NEVER(pCur->info.nSize==0) ){
4106 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4107 &pCur->info);
4108 }
drh43605152004-05-29 21:46:49 +00004109 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004110 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004111 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004112 nKey = 0;
4113 }else{
drhf49661a2008-12-10 16:45:50 +00004114 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004115 }
drh0e1c19e2004-05-11 00:58:56 +00004116 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004117 aPayload += nKey;
4118 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004119 }else{
drhfa1a98a2004-05-14 19:08:17 +00004120 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004121 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004122 }
drhe51c44f2004-05-30 20:46:09 +00004123 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004124 return aPayload;
4125}
4126
4127
4128/*
drhe51c44f2004-05-30 20:46:09 +00004129** For the entry that cursor pCur is point to, return as
4130** many bytes of the key or data as are available on the local
4131** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004132**
4133** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004134** or be destroyed on the next call to any Btree routine,
4135** including calls from other threads against the same cache.
4136** Hence, a mutex on the BtShared should be held prior to calling
4137** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004138**
4139** These routines is used to get quick access to key and data
4140** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004141*/
drhe51c44f2004-05-30 20:46:09 +00004142const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004143 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004144 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004145 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004146 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4147 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004148 }
drhfe3313f2009-07-21 19:02:20 +00004149 return p;
drh0e1c19e2004-05-11 00:58:56 +00004150}
drhe51c44f2004-05-30 20:46:09 +00004151const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004152 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004153 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004154 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004155 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4156 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004157 }
drhfe3313f2009-07-21 19:02:20 +00004158 return p;
drh0e1c19e2004-05-11 00:58:56 +00004159}
4160
4161
4162/*
drh8178a752003-01-05 21:41:40 +00004163** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004164** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004165**
4166** This function returns SQLITE_CORRUPT if the page-header flags field of
4167** the new child page does not match the flags field of the parent (i.e.
4168** if an intkey page appears to be the parent of a non-intkey page, or
4169** vice-versa).
drh72f82862001-05-24 21:06:34 +00004170*/
drh3aac2dd2004-04-26 14:10:20 +00004171static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004172 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004173 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004174 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004175 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004176
drh1fee73e2007-08-29 04:00:57 +00004177 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004178 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004179 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4180 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4181 return SQLITE_CORRUPT_BKPT;
4182 }
4183 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004184 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004185 pCur->apPage[i+1] = pNewPage;
4186 pCur->aiIdx[i+1] = 0;
4187 pCur->iPage++;
4188
drh271efa52004-05-30 19:19:05 +00004189 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004190 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004191 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004192 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004193 }
drh72f82862001-05-24 21:06:34 +00004194 return SQLITE_OK;
4195}
4196
danbb246c42012-01-12 14:25:55 +00004197#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004198/*
4199** Page pParent is an internal (non-leaf) tree page. This function
4200** asserts that page number iChild is the left-child if the iIdx'th
4201** cell in page pParent. Or, if iIdx is equal to the total number of
4202** cells in pParent, that page number iChild is the right-child of
4203** the page.
4204*/
4205static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4206 assert( iIdx<=pParent->nCell );
4207 if( iIdx==pParent->nCell ){
4208 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4209 }else{
4210 assert( get4byte(findCell(pParent, iIdx))==iChild );
4211 }
4212}
4213#else
4214# define assertParentIndex(x,y,z)
4215#endif
4216
drh72f82862001-05-24 21:06:34 +00004217/*
drh5e2f8b92001-05-28 00:41:15 +00004218** Move the cursor up to the parent page.
4219**
4220** pCur->idx is set to the cell index that contains the pointer
4221** to the page we are coming from. If we are coming from the
4222** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004223** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004224*/
danielk197730548662009-07-09 05:07:37 +00004225static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004226 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004227 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004228 assert( pCur->iPage>0 );
4229 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004230
4231 /* UPDATE: It is actually possible for the condition tested by the assert
4232 ** below to be untrue if the database file is corrupt. This can occur if
4233 ** one cursor has modified page pParent while a reference to it is held
4234 ** by a second cursor. Which can only happen if a single page is linked
4235 ** into more than one b-tree structure in a corrupt database. */
4236#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004237 assertParentIndex(
4238 pCur->apPage[pCur->iPage-1],
4239 pCur->aiIdx[pCur->iPage-1],
4240 pCur->apPage[pCur->iPage]->pgno
4241 );
danbb246c42012-01-12 14:25:55 +00004242#endif
dan6c2688c2012-01-12 15:05:03 +00004243 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004244
danielk197771d5d2c2008-09-29 11:49:47 +00004245 releasePage(pCur->apPage[pCur->iPage]);
4246 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004247 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004248 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004249}
4250
4251/*
danielk19778f880a82009-07-13 09:41:45 +00004252** Move the cursor to point to the root page of its b-tree structure.
4253**
4254** If the table has a virtual root page, then the cursor is moved to point
4255** to the virtual root page instead of the actual root page. A table has a
4256** virtual root page when the actual root page contains no cells and a
4257** single child page. This can only happen with the table rooted at page 1.
4258**
4259** If the b-tree structure is empty, the cursor state is set to
4260** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4261** cell located on the root (or virtual root) page and the cursor state
4262** is set to CURSOR_VALID.
4263**
4264** If this function returns successfully, it may be assumed that the
4265** page-header flags indicate that the [virtual] root-page is the expected
4266** kind of b-tree page (i.e. if when opening the cursor the caller did not
4267** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4268** indicating a table b-tree, or if the caller did specify a KeyInfo
4269** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4270** b-tree).
drh72f82862001-05-24 21:06:34 +00004271*/
drh5e2f8b92001-05-28 00:41:15 +00004272static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004273 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004274 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004275 Btree *p = pCur->pBtree;
4276 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004277
drh1fee73e2007-08-29 04:00:57 +00004278 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004279 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4280 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4281 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4282 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4283 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004284 assert( pCur->skipNext!=SQLITE_OK );
4285 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004286 }
danielk1977be51a652008-10-08 17:58:48 +00004287 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004288 }
danielk197771d5d2c2008-09-29 11:49:47 +00004289
4290 if( pCur->iPage>=0 ){
4291 int i;
4292 for(i=1; i<=pCur->iPage; i++){
4293 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004294 }
danielk1977172114a2009-07-07 15:47:12 +00004295 pCur->iPage = 0;
dana205a482011-08-27 18:48:57 +00004296 }else if( pCur->pgnoRoot==0 ){
4297 pCur->eState = CURSOR_INVALID;
4298 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004299 }else{
drh4c301aa2009-07-15 17:25:45 +00004300 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4301 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004302 pCur->eState = CURSOR_INVALID;
4303 return rc;
4304 }
danielk1977172114a2009-07-07 15:47:12 +00004305 pCur->iPage = 0;
4306
4307 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4308 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4309 ** NULL, the caller expects a table b-tree. If this is not the case,
4310 ** return an SQLITE_CORRUPT error. */
4311 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4312 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4313 return SQLITE_CORRUPT_BKPT;
4314 }
drhc39e0002004-05-07 23:50:57 +00004315 }
danielk197771d5d2c2008-09-29 11:49:47 +00004316
danielk19778f880a82009-07-13 09:41:45 +00004317 /* Assert that the root page is of the correct type. This must be the
4318 ** case as the call to this function that loaded the root-page (either
4319 ** this call or a previous invocation) would have detected corruption
4320 ** if the assumption were not true, and it is not possible for the flags
4321 ** byte to have been modified while this cursor is holding a reference
4322 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004323 pRoot = pCur->apPage[0];
4324 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004325 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4326
danielk197771d5d2c2008-09-29 11:49:47 +00004327 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004328 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004329 pCur->atLast = 0;
4330 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004331
drh8856d6a2004-04-29 14:42:46 +00004332 if( pRoot->nCell==0 && !pRoot->leaf ){
4333 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004334 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004335 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004336 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004337 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004338 }else{
4339 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004340 }
4341 return rc;
drh72f82862001-05-24 21:06:34 +00004342}
drh2af926b2001-05-15 00:39:25 +00004343
drh5e2f8b92001-05-28 00:41:15 +00004344/*
4345** Move the cursor down to the left-most leaf entry beneath the
4346** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004347**
4348** The left-most leaf is the one with the smallest key - the first
4349** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004350*/
4351static int moveToLeftmost(BtCursor *pCur){
4352 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004353 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004354 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004355
drh1fee73e2007-08-29 04:00:57 +00004356 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004357 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004358 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4359 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4360 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004361 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004362 }
drhd677b3d2007-08-20 22:48:41 +00004363 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004364}
4365
drh2dcc9aa2002-12-04 13:40:25 +00004366/*
4367** Move the cursor down to the right-most leaf entry beneath the
4368** page to which it is currently pointing. Notice the difference
4369** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4370** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4371** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004372**
4373** The right-most entry is the one with the largest key - the last
4374** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004375*/
4376static int moveToRightmost(BtCursor *pCur){
4377 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004378 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004379 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004380
drh1fee73e2007-08-29 04:00:57 +00004381 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004382 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004383 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004384 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004385 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004386 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004387 }
drhd677b3d2007-08-20 22:48:41 +00004388 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004389 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004390 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004391 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004392 }
danielk1977518002e2008-09-05 05:02:46 +00004393 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004394}
4395
drh5e00f6c2001-09-13 13:46:56 +00004396/* Move the cursor to the first entry in the table. Return SQLITE_OK
4397** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004398** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004399*/
drh3aac2dd2004-04-26 14:10:20 +00004400int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004401 int rc;
drhd677b3d2007-08-20 22:48:41 +00004402
drh1fee73e2007-08-29 04:00:57 +00004403 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004404 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004405 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004406 if( rc==SQLITE_OK ){
4407 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004408 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004409 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004410 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004411 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004412 *pRes = 0;
4413 rc = moveToLeftmost(pCur);
4414 }
drh5e00f6c2001-09-13 13:46:56 +00004415 }
drh5e00f6c2001-09-13 13:46:56 +00004416 return rc;
4417}
drh5e2f8b92001-05-28 00:41:15 +00004418
drh9562b552002-02-19 15:00:07 +00004419/* Move the cursor to the last entry in the table. Return SQLITE_OK
4420** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004421** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004422*/
drh3aac2dd2004-04-26 14:10:20 +00004423int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004424 int rc;
drhd677b3d2007-08-20 22:48:41 +00004425
drh1fee73e2007-08-29 04:00:57 +00004426 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004427 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004428
4429 /* If the cursor already points to the last entry, this is a no-op. */
4430 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4431#ifdef SQLITE_DEBUG
4432 /* This block serves to assert() that the cursor really does point
4433 ** to the last entry in the b-tree. */
4434 int ii;
4435 for(ii=0; ii<pCur->iPage; ii++){
4436 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4437 }
4438 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4439 assert( pCur->apPage[pCur->iPage]->leaf );
4440#endif
4441 return SQLITE_OK;
4442 }
4443
drh9562b552002-02-19 15:00:07 +00004444 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004445 if( rc==SQLITE_OK ){
4446 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004447 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004448 *pRes = 1;
4449 }else{
4450 assert( pCur->eState==CURSOR_VALID );
4451 *pRes = 0;
4452 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004453 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004454 }
drh9562b552002-02-19 15:00:07 +00004455 }
drh9562b552002-02-19 15:00:07 +00004456 return rc;
4457}
4458
drhe14006d2008-03-25 17:23:32 +00004459/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004460** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004461**
drhe63d9992008-08-13 19:11:48 +00004462** For INTKEY tables, the intKey parameter is used. pIdxKey
4463** must be NULL. For index tables, pIdxKey is used and intKey
4464** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004465**
drh5e2f8b92001-05-28 00:41:15 +00004466** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004467** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004468** were present. The cursor might point to an entry that comes
4469** before or after the key.
4470**
drh64022502009-01-09 14:11:04 +00004471** An integer is written into *pRes which is the result of
4472** comparing the key with the entry to which the cursor is
4473** pointing. The meaning of the integer written into
4474** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004475**
4476** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004477** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004478** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004479**
4480** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004481** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004482**
4483** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004484** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004485**
drha059ad02001-04-17 20:09:11 +00004486*/
drhe63d9992008-08-13 19:11:48 +00004487int sqlite3BtreeMovetoUnpacked(
4488 BtCursor *pCur, /* The cursor to be moved */
4489 UnpackedRecord *pIdxKey, /* Unpacked index key */
4490 i64 intKey, /* The table key */
4491 int biasRight, /* If true, bias the search to the high end */
4492 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004493){
drh72f82862001-05-24 21:06:34 +00004494 int rc;
drhd677b3d2007-08-20 22:48:41 +00004495
drh1fee73e2007-08-29 04:00:57 +00004496 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004497 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004498 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004499 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004500
4501 /* If the cursor is already positioned at the point we are trying
4502 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004503 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4504 && pCur->apPage[0]->intKey
4505 ){
drhe63d9992008-08-13 19:11:48 +00004506 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004507 *pRes = 0;
4508 return SQLITE_OK;
4509 }
drhe63d9992008-08-13 19:11:48 +00004510 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004511 *pRes = -1;
4512 return SQLITE_OK;
4513 }
4514 }
4515
drh5e2f8b92001-05-28 00:41:15 +00004516 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004517 if( rc ){
4518 return rc;
4519 }
dana205a482011-08-27 18:48:57 +00004520 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4521 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4522 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004523 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004524 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004525 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004526 return SQLITE_OK;
4527 }
danielk197771d5d2c2008-09-29 11:49:47 +00004528 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004529 for(;;){
drhafb98172011-06-04 01:43:53 +00004530 int lwr, upr, idx;
drh72f82862001-05-24 21:06:34 +00004531 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004532 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004533 int c;
4534
4535 /* pPage->nCell must be greater than zero. If this is the root-page
4536 ** the cursor would have been INVALID above and this for(;;) loop
4537 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004538 ** would have already detected db corruption. Similarly, pPage must
4539 ** be the right kind (index or table) of b-tree page. Otherwise
4540 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004541 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004542 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004543 lwr = 0;
4544 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004545 if( biasRight ){
drhafb98172011-06-04 01:43:53 +00004546 pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
drhe4d90812007-03-29 05:51:49 +00004547 }else{
drhafb98172011-06-04 01:43:53 +00004548 pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004549 }
drh64022502009-01-09 14:11:04 +00004550 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004551 u8 *pCell; /* Pointer to current cell in pPage */
4552
drhafb98172011-06-04 01:43:53 +00004553 assert( idx==pCur->aiIdx[pCur->iPage] );
drh366fda62006-01-13 02:35:09 +00004554 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004555 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004556 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004557 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004558 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004559 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004560 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004561 }
drha2c20e42008-03-29 16:01:04 +00004562 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004563 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004564 c = 0;
drhe63d9992008-08-13 19:11:48 +00004565 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004566 c = -1;
4567 }else{
drhe63d9992008-08-13 19:11:48 +00004568 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004569 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004570 }
danielk197711c327a2009-05-04 19:01:26 +00004571 pCur->validNKey = 1;
4572 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004573 }else{
drhb2eced52010-08-12 02:41:12 +00004574 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004575 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004576 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004577 ** varint. This information is used to attempt to avoid parsing
4578 ** the entire cell by checking for the cases where the record is
4579 ** stored entirely within the b-tree page by inspecting the first
4580 ** 2 bytes of the cell.
4581 */
4582 int nCell = pCell[0];
drhc9166342012-01-05 23:32:06 +00004583 if( nCell<=pPage->max1bytePayload
4584 /* && (pCell+nCell)<pPage->aDataEnd */
drh3def2352011-11-11 00:27:15 +00004585 ){
danielk197711c327a2009-05-04 19:01:26 +00004586 /* This branch runs if the record-size field of the cell is a
4587 ** single byte varint and the record fits entirely on the main
4588 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004589 testcase( pCell+nCell+1==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004590 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4591 }else if( !(pCell[1] & 0x80)
4592 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
drhc9166342012-01-05 23:32:06 +00004593 /* && (pCell+nCell+2)<=pPage->aDataEnd */
danielk197711c327a2009-05-04 19:01:26 +00004594 ){
4595 /* The record-size field is a 2 byte varint and the record
4596 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004597 testcase( pCell+nCell+2==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004598 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004599 }else{
danielk197711c327a2009-05-04 19:01:26 +00004600 /* The record flows over onto one or more overflow pages. In
4601 ** this case the whole cell needs to be parsed, a buffer allocated
4602 ** and accessPayload() used to retrieve the record into the
4603 ** buffer before VdbeRecordCompare() can be called. */
4604 void *pCellKey;
4605 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004606 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004607 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004608 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004609 if( pCellKey==0 ){
4610 rc = SQLITE_NOMEM;
4611 goto moveto_finish;
4612 }
drhfb192682009-07-11 18:26:28 +00004613 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004614 if( rc ){
4615 sqlite3_free(pCellKey);
4616 goto moveto_finish;
4617 }
danielk197711c327a2009-05-04 19:01:26 +00004618 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004619 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004620 }
drh3aac2dd2004-04-26 14:10:20 +00004621 }
drh72f82862001-05-24 21:06:34 +00004622 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004623 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004624 lwr = idx;
drh8b18dd42004-05-12 19:18:15 +00004625 break;
4626 }else{
drh64022502009-01-09 14:11:04 +00004627 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004628 rc = SQLITE_OK;
4629 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004630 }
drh72f82862001-05-24 21:06:34 +00004631 }
4632 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004633 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004634 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004635 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004636 }
drhf1d68b32007-03-29 04:43:26 +00004637 if( lwr>upr ){
4638 break;
4639 }
drhafb98172011-06-04 01:43:53 +00004640 pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004641 }
drhb07028f2011-10-14 21:49:18 +00004642 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004643 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004644 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004645 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004646 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004647 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004648 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004649 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004650 }
4651 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004652 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004653 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004654 rc = SQLITE_OK;
4655 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004656 }
drhf49661a2008-12-10 16:45:50 +00004657 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004658 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004659 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004660 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004661 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004662 }
drh1e968a02008-03-25 00:22:21 +00004663moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004664 return rc;
4665}
4666
drhd677b3d2007-08-20 22:48:41 +00004667
drh72f82862001-05-24 21:06:34 +00004668/*
drhc39e0002004-05-07 23:50:57 +00004669** Return TRUE if the cursor is not pointing at an entry of the table.
4670**
4671** TRUE will be returned after a call to sqlite3BtreeNext() moves
4672** past the last entry in the table or sqlite3BtreePrev() moves past
4673** the first entry. TRUE is also returned if the table is empty.
4674*/
4675int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004676 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4677 ** have been deleted? This API will need to change to return an error code
4678 ** as well as the boolean result value.
4679 */
4680 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004681}
4682
4683/*
drhbd03cae2001-06-02 02:40:57 +00004684** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004685** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004686** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004687** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004688*/
drhd094db12008-04-03 21:46:57 +00004689int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004690 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004691 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004692 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004693
drh1fee73e2007-08-29 04:00:57 +00004694 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004695 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004696 if( rc!=SQLITE_OK ){
4697 return rc;
4698 }
drh8c4d3a62007-04-06 01:03:32 +00004699 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004700 if( CURSOR_INVALID==pCur->eState ){
4701 *pRes = 1;
4702 return SQLITE_OK;
4703 }
drh4c301aa2009-07-15 17:25:45 +00004704 if( pCur->skipNext>0 ){
4705 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004706 *pRes = 0;
4707 return SQLITE_OK;
4708 }
drh4c301aa2009-07-15 17:25:45 +00004709 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004710
danielk197771d5d2c2008-09-29 11:49:47 +00004711 pPage = pCur->apPage[pCur->iPage];
4712 idx = ++pCur->aiIdx[pCur->iPage];
4713 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004714
4715 /* If the database file is corrupt, it is possible for the value of idx
4716 ** to be invalid here. This can only occur if a second cursor modifies
4717 ** the page while cursor pCur is holding a reference to it. Which can
4718 ** only happen if the database is corrupt in such a way as to link the
4719 ** page into more than one b-tree structure. */
4720 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004721
drh271efa52004-05-30 19:19:05 +00004722 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004723 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004724 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004725 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004726 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004727 if( rc ) return rc;
4728 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004729 *pRes = 0;
4730 return rc;
drh72f82862001-05-24 21:06:34 +00004731 }
drh5e2f8b92001-05-28 00:41:15 +00004732 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004733 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004734 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004735 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004736 return SQLITE_OK;
4737 }
danielk197730548662009-07-09 05:07:37 +00004738 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004739 pPage = pCur->apPage[pCur->iPage];
4740 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004741 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004742 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004743 rc = sqlite3BtreeNext(pCur, pRes);
4744 }else{
4745 rc = SQLITE_OK;
4746 }
4747 return rc;
drh8178a752003-01-05 21:41:40 +00004748 }
4749 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004750 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004751 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004752 }
drh5e2f8b92001-05-28 00:41:15 +00004753 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004754 return rc;
drh72f82862001-05-24 21:06:34 +00004755}
drhd677b3d2007-08-20 22:48:41 +00004756
drh72f82862001-05-24 21:06:34 +00004757
drh3b7511c2001-05-26 13:15:44 +00004758/*
drh2dcc9aa2002-12-04 13:40:25 +00004759** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004760** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004761** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004762** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004763*/
drhd094db12008-04-03 21:46:57 +00004764int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004765 int rc;
drh8178a752003-01-05 21:41:40 +00004766 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004767
drh1fee73e2007-08-29 04:00:57 +00004768 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004769 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004770 if( rc!=SQLITE_OK ){
4771 return rc;
4772 }
drha2c20e42008-03-29 16:01:04 +00004773 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004774 if( CURSOR_INVALID==pCur->eState ){
4775 *pRes = 1;
4776 return SQLITE_OK;
4777 }
drh4c301aa2009-07-15 17:25:45 +00004778 if( pCur->skipNext<0 ){
4779 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004780 *pRes = 0;
4781 return SQLITE_OK;
4782 }
drh4c301aa2009-07-15 17:25:45 +00004783 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004784
danielk197771d5d2c2008-09-29 11:49:47 +00004785 pPage = pCur->apPage[pCur->iPage];
4786 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004787 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004788 int idx = pCur->aiIdx[pCur->iPage];
4789 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004790 if( rc ){
4791 return rc;
4792 }
drh2dcc9aa2002-12-04 13:40:25 +00004793 rc = moveToRightmost(pCur);
4794 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004795 while( pCur->aiIdx[pCur->iPage]==0 ){
4796 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004797 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004798 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004799 return SQLITE_OK;
4800 }
danielk197730548662009-07-09 05:07:37 +00004801 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004802 }
drh271efa52004-05-30 19:19:05 +00004803 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004804 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004805
4806 pCur->aiIdx[pCur->iPage]--;
4807 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004808 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004809 rc = sqlite3BtreePrevious(pCur, pRes);
4810 }else{
4811 rc = SQLITE_OK;
4812 }
drh2dcc9aa2002-12-04 13:40:25 +00004813 }
drh8178a752003-01-05 21:41:40 +00004814 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004815 return rc;
4816}
4817
4818/*
drh3b7511c2001-05-26 13:15:44 +00004819** Allocate a new page from the database file.
4820**
danielk19773b8a05f2007-03-19 17:44:26 +00004821** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004822** has already been called on the new page.) The new page has also
4823** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004824** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004825**
4826** SQLITE_OK is returned on success. Any other return value indicates
4827** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004828** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004829**
drh199e3cf2002-07-18 11:01:47 +00004830** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4831** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004832** attempt to keep related pages close to each other in the database file,
4833** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004834**
4835** If the "exact" parameter is not 0, and the page-number nearby exists
4836** anywhere on the free-list, then it is guarenteed to be returned. This
4837** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004838*/
drh4f0c5872007-03-26 22:05:01 +00004839static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004840 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004841 MemPage **ppPage,
4842 Pgno *pPgno,
4843 Pgno nearby,
4844 u8 exact
4845){
drh3aac2dd2004-04-26 14:10:20 +00004846 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004847 int rc;
drh35cd6432009-06-05 14:17:21 +00004848 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004849 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004850 MemPage *pTrunk = 0;
4851 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004852 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004853
drh1fee73e2007-08-29 04:00:57 +00004854 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004855 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004856 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004857 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004858 testcase( n==mxPage-1 );
4859 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004860 return SQLITE_CORRUPT_BKPT;
4861 }
drh3aac2dd2004-04-26 14:10:20 +00004862 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004863 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004864 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004865 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4866
4867 /* If the 'exact' parameter was true and a query of the pointer-map
4868 ** shows that the page 'nearby' is somewhere on the free-list, then
4869 ** the entire-list will be searched for that page.
4870 */
4871#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004872 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004873 u8 eType;
4874 assert( nearby>0 );
4875 assert( pBt->autoVacuum );
4876 rc = ptrmapGet(pBt, nearby, &eType, 0);
4877 if( rc ) return rc;
4878 if( eType==PTRMAP_FREEPAGE ){
4879 searchList = 1;
4880 }
4881 *pPgno = nearby;
4882 }
4883#endif
4884
4885 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4886 ** first free-list trunk page. iPrevTrunk is initially 1.
4887 */
danielk19773b8a05f2007-03-19 17:44:26 +00004888 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004889 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004890 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004891
4892 /* The code within this loop is run only once if the 'searchList' variable
4893 ** is not true. Otherwise, it runs once for each trunk-page on the
4894 ** free-list until the page 'nearby' is located.
4895 */
4896 do {
4897 pPrevTrunk = pTrunk;
4898 if( pPrevTrunk ){
4899 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004900 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004901 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004902 }
drhdf35a082009-07-09 02:24:35 +00004903 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004904 if( iTrunk>mxPage ){
4905 rc = SQLITE_CORRUPT_BKPT;
4906 }else{
danielk197730548662009-07-09 05:07:37 +00004907 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004908 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004909 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004910 pTrunk = 0;
4911 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004912 }
drhb07028f2011-10-14 21:49:18 +00004913 assert( pTrunk!=0 );
4914 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004915
drh93b4fc72011-04-07 14:47:01 +00004916 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004917 if( k==0 && !searchList ){
4918 /* The trunk has no leaves and the list is not being searched.
4919 ** So extract the trunk page itself and use it as the newly
4920 ** allocated page */
4921 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004922 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004923 if( rc ){
4924 goto end_allocate_page;
4925 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004926 *pPgno = iTrunk;
4927 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4928 *ppPage = pTrunk;
4929 pTrunk = 0;
4930 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004931 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004932 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004933 rc = SQLITE_CORRUPT_BKPT;
4934 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004935#ifndef SQLITE_OMIT_AUTOVACUUM
4936 }else if( searchList && nearby==iTrunk ){
4937 /* The list is being searched and this trunk page is the page
4938 ** to allocate, regardless of whether it has leaves.
4939 */
4940 assert( *pPgno==iTrunk );
4941 *ppPage = pTrunk;
4942 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004943 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004944 if( rc ){
4945 goto end_allocate_page;
4946 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004947 if( k==0 ){
4948 if( !pPrevTrunk ){
4949 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4950 }else{
danf48c3552010-08-23 15:41:24 +00004951 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
4952 if( rc!=SQLITE_OK ){
4953 goto end_allocate_page;
4954 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004955 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4956 }
4957 }else{
4958 /* The trunk page is required by the caller but it contains
4959 ** pointers to free-list leaves. The first leaf becomes a trunk
4960 ** page in this case.
4961 */
4962 MemPage *pNewTrunk;
4963 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004964 if( iNewTrunk>mxPage ){
4965 rc = SQLITE_CORRUPT_BKPT;
4966 goto end_allocate_page;
4967 }
drhdf35a082009-07-09 02:24:35 +00004968 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004969 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004970 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004971 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004972 }
danielk19773b8a05f2007-03-19 17:44:26 +00004973 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004974 if( rc!=SQLITE_OK ){
4975 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004976 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004977 }
4978 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4979 put4byte(&pNewTrunk->aData[4], k-1);
4980 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004981 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004982 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004983 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004984 put4byte(&pPage1->aData[32], iNewTrunk);
4985 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004986 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004987 if( rc ){
4988 goto end_allocate_page;
4989 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004990 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4991 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004992 }
4993 pTrunk = 0;
4994 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4995#endif
danielk1977e5765212009-06-17 11:13:28 +00004996 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004997 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004998 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004999 Pgno iPage;
5000 unsigned char *aData = pTrunk->aData;
5001 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005002 u32 i;
5003 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005004 closest = 0;
drhd50ffc42011-03-08 02:38:28 +00005005 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005006 for(i=1; i<k; i++){
drhd50ffc42011-03-08 02:38:28 +00005007 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005008 if( d2<dist ){
5009 closest = i;
5010 dist = d2;
5011 }
5012 }
5013 }else{
5014 closest = 0;
5015 }
5016
5017 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005018 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005019 if( iPage>mxPage ){
5020 rc = SQLITE_CORRUPT_BKPT;
5021 goto end_allocate_page;
5022 }
drhdf35a082009-07-09 02:24:35 +00005023 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005024 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00005025 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005026 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005027 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5028 ": %d more free pages\n",
5029 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005030 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5031 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005032 if( closest<k-1 ){
5033 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5034 }
5035 put4byte(&aData[4], k-1);
danielk1977bea2a942009-01-20 17:06:27 +00005036 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00005037 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005038 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005039 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005040 if( rc!=SQLITE_OK ){
5041 releasePage(*ppPage);
5042 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005043 }
5044 searchList = 0;
5045 }
drhee696e22004-08-30 16:52:17 +00005046 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005047 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005048 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005049 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005050 }else{
drh3aac2dd2004-04-26 14:10:20 +00005051 /* There are no pages on the freelist, so create a new page at the
5052 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00005053 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5054 if( rc ) return rc;
5055 pBt->nPage++;
5056 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005057
danielk1977afcdd022004-10-31 16:25:42 +00005058#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005059 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005060 /* If *pPgno refers to a pointer-map page, allocate two new pages
5061 ** at the end of the file instead of one. The first allocated page
5062 ** becomes a new pointer-map page, the second is used by the caller.
5063 */
danielk1977ac861692009-03-28 10:54:22 +00005064 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005065 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5066 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005067 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00005068 if( rc==SQLITE_OK ){
5069 rc = sqlite3PagerWrite(pPg->pDbPage);
5070 releasePage(pPg);
5071 }
5072 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005073 pBt->nPage++;
5074 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005075 }
5076#endif
drhdd3cd972010-03-27 17:12:36 +00005077 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5078 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005079
danielk1977599fcba2004-11-08 07:13:13 +00005080 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005081 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00005082 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005083 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005084 if( rc!=SQLITE_OK ){
5085 releasePage(*ppPage);
5086 }
drh3a4c1412004-05-09 20:40:11 +00005087 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005088 }
danielk1977599fcba2004-11-08 07:13:13 +00005089
5090 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005091
5092end_allocate_page:
5093 releasePage(pTrunk);
5094 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005095 if( rc==SQLITE_OK ){
5096 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5097 releasePage(*ppPage);
5098 return SQLITE_CORRUPT_BKPT;
5099 }
5100 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005101 }else{
5102 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005103 }
drh93b4fc72011-04-07 14:47:01 +00005104 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005105 return rc;
5106}
5107
5108/*
danielk1977bea2a942009-01-20 17:06:27 +00005109** This function is used to add page iPage to the database file free-list.
5110** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005111**
danielk1977bea2a942009-01-20 17:06:27 +00005112** The value passed as the second argument to this function is optional.
5113** If the caller happens to have a pointer to the MemPage object
5114** corresponding to page iPage handy, it may pass it as the second value.
5115** Otherwise, it may pass NULL.
5116**
5117** If a pointer to a MemPage object is passed as the second argument,
5118** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005119*/
danielk1977bea2a942009-01-20 17:06:27 +00005120static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5121 MemPage *pTrunk = 0; /* Free-list trunk page */
5122 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5123 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5124 MemPage *pPage; /* Page being freed. May be NULL. */
5125 int rc; /* Return Code */
5126 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005127
danielk1977bea2a942009-01-20 17:06:27 +00005128 assert( sqlite3_mutex_held(pBt->mutex) );
5129 assert( iPage>1 );
5130 assert( !pMemPage || pMemPage->pgno==iPage );
5131
5132 if( pMemPage ){
5133 pPage = pMemPage;
5134 sqlite3PagerRef(pPage->pDbPage);
5135 }else{
5136 pPage = btreePageLookup(pBt, iPage);
5137 }
drh3aac2dd2004-04-26 14:10:20 +00005138
drha34b6762004-05-07 13:30:42 +00005139 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005140 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005141 if( rc ) goto freepage_out;
5142 nFree = get4byte(&pPage1->aData[36]);
5143 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005144
drhc9166342012-01-05 23:32:06 +00005145 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005146 /* If the secure_delete option is enabled, then
5147 ** always fully overwrite deleted information with zeros.
5148 */
shaneh84f4b2f2010-02-26 01:46:54 +00005149 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5150 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005151 ){
5152 goto freepage_out;
5153 }
5154 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005155 }
drhfcce93f2006-02-22 03:08:32 +00005156
danielk1977687566d2004-11-02 12:56:41 +00005157 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005158 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005159 */
danielk197785d90ca2008-07-19 14:25:15 +00005160 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005161 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005162 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005163 }
danielk1977687566d2004-11-02 12:56:41 +00005164
danielk1977bea2a942009-01-20 17:06:27 +00005165 /* Now manipulate the actual database free-list structure. There are two
5166 ** possibilities. If the free-list is currently empty, or if the first
5167 ** trunk page in the free-list is full, then this page will become a
5168 ** new free-list trunk page. Otherwise, it will become a leaf of the
5169 ** first trunk page in the current free-list. This block tests if it
5170 ** is possible to add the page as a new free-list leaf.
5171 */
5172 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005173 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005174
5175 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005176 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005177 if( rc!=SQLITE_OK ){
5178 goto freepage_out;
5179 }
5180
5181 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005182 assert( pBt->usableSize>32 );
5183 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005184 rc = SQLITE_CORRUPT_BKPT;
5185 goto freepage_out;
5186 }
drheeb844a2009-08-08 18:01:07 +00005187 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005188 /* In this case there is room on the trunk page to insert the page
5189 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005190 **
5191 ** Note that the trunk page is not really full until it contains
5192 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5193 ** coded. But due to a coding error in versions of SQLite prior to
5194 ** 3.6.0, databases with freelist trunk pages holding more than
5195 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5196 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005197 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005198 ** for now. At some point in the future (once everyone has upgraded
5199 ** to 3.6.0 or later) we should consider fixing the conditional above
5200 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5201 */
danielk19773b8a05f2007-03-19 17:44:26 +00005202 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005203 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005204 put4byte(&pTrunk->aData[4], nLeaf+1);
5205 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005206 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005207 sqlite3PagerDontWrite(pPage->pDbPage);
5208 }
danielk1977bea2a942009-01-20 17:06:27 +00005209 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005210 }
drh3a4c1412004-05-09 20:40:11 +00005211 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005212 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005213 }
drh3b7511c2001-05-26 13:15:44 +00005214 }
danielk1977bea2a942009-01-20 17:06:27 +00005215
5216 /* If control flows to this point, then it was not possible to add the
5217 ** the page being freed as a leaf page of the first trunk in the free-list.
5218 ** Possibly because the free-list is empty, or possibly because the
5219 ** first trunk in the free-list is full. Either way, the page being freed
5220 ** will become the new first trunk page in the free-list.
5221 */
drhc046e3e2009-07-15 11:26:44 +00005222 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5223 goto freepage_out;
5224 }
5225 rc = sqlite3PagerWrite(pPage->pDbPage);
5226 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005227 goto freepage_out;
5228 }
5229 put4byte(pPage->aData, iTrunk);
5230 put4byte(&pPage->aData[4], 0);
5231 put4byte(&pPage1->aData[32], iPage);
5232 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5233
5234freepage_out:
5235 if( pPage ){
5236 pPage->isInit = 0;
5237 }
5238 releasePage(pPage);
5239 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005240 return rc;
5241}
drhc314dc72009-07-21 11:52:34 +00005242static void freePage(MemPage *pPage, int *pRC){
5243 if( (*pRC)==SQLITE_OK ){
5244 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5245 }
danielk1977bea2a942009-01-20 17:06:27 +00005246}
drh3b7511c2001-05-26 13:15:44 +00005247
5248/*
drh3aac2dd2004-04-26 14:10:20 +00005249** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005250*/
drh3aac2dd2004-04-26 14:10:20 +00005251static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005252 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005253 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005254 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005255 int rc;
drh94440812007-03-06 11:42:19 +00005256 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005257 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005258
drh1fee73e2007-08-29 04:00:57 +00005259 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005260 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005261 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005262 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005263 }
drhe42a9b42011-08-31 13:27:19 +00005264 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
5265 return SQLITE_CORRUPT; /* Cell extends past end of page */
5266 }
drh6f11bef2004-05-13 01:12:56 +00005267 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005268 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005269 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005270 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5271 assert( ovflPgno==0 || nOvfl>0 );
5272 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005273 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005274 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005275 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005276 /* 0 is not a legal page number and page 1 cannot be an
5277 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5278 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005279 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005280 }
danielk1977bea2a942009-01-20 17:06:27 +00005281 if( nOvfl ){
5282 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5283 if( rc ) return rc;
5284 }
dan887d4b22010-02-25 12:09:16 +00005285
shaneh1da207e2010-03-09 14:41:12 +00005286 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005287 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5288 ){
5289 /* There is no reason any cursor should have an outstanding reference
5290 ** to an overflow page belonging to a cell that is being deleted/updated.
5291 ** So if there exists more than one reference to this page, then it
5292 ** must not really be an overflow page and the database must be corrupt.
5293 ** It is helpful to detect this before calling freePage2(), as
5294 ** freePage2() may zero the page contents if secure-delete mode is
5295 ** enabled. If this 'overflow' page happens to be a page that the
5296 ** caller is iterating through or using in some other way, this
5297 ** can be problematic.
5298 */
5299 rc = SQLITE_CORRUPT_BKPT;
5300 }else{
5301 rc = freePage2(pBt, pOvfl, ovflPgno);
5302 }
5303
danielk1977bea2a942009-01-20 17:06:27 +00005304 if( pOvfl ){
5305 sqlite3PagerUnref(pOvfl->pDbPage);
5306 }
drh3b7511c2001-05-26 13:15:44 +00005307 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005308 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005309 }
drh5e2f8b92001-05-28 00:41:15 +00005310 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005311}
5312
5313/*
drh91025292004-05-03 19:49:32 +00005314** Create the byte sequence used to represent a cell on page pPage
5315** and write that byte sequence into pCell[]. Overflow pages are
5316** allocated and filled in as necessary. The calling procedure
5317** is responsible for making sure sufficient space has been allocated
5318** for pCell[].
5319**
5320** Note that pCell does not necessary need to point to the pPage->aData
5321** area. pCell might point to some temporary storage. The cell will
5322** be constructed in this temporary area then copied into pPage->aData
5323** later.
drh3b7511c2001-05-26 13:15:44 +00005324*/
5325static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005326 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005327 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005328 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005329 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005330 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005331 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005332){
drh3b7511c2001-05-26 13:15:44 +00005333 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005334 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005335 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005336 int spaceLeft;
5337 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005338 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005339 unsigned char *pPrior;
5340 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005341 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005342 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005343 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005344 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005345
drh1fee73e2007-08-29 04:00:57 +00005346 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005347
drhc5053fb2008-11-27 02:22:10 +00005348 /* pPage is not necessarily writeable since pCell might be auxiliary
5349 ** buffer space that is separate from the pPage buffer area */
5350 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5351 || sqlite3PagerIswriteable(pPage->pDbPage) );
5352
drh91025292004-05-03 19:49:32 +00005353 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005354 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005355 if( !pPage->leaf ){
5356 nHeader += 4;
5357 }
drh8b18dd42004-05-12 19:18:15 +00005358 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005359 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005360 }else{
drhb026e052007-05-02 01:34:31 +00005361 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005362 }
drh6f11bef2004-05-13 01:12:56 +00005363 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005364 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005365 assert( info.nHeader==nHeader );
5366 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005367 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005368
5369 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005370 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005371 if( pPage->intKey ){
5372 pSrc = pData;
5373 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005374 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005375 }else{
danielk197731d31b82009-07-13 13:18:07 +00005376 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5377 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005378 }
drhf49661a2008-12-10 16:45:50 +00005379 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005380 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005381 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005382 }
drh6f11bef2004-05-13 01:12:56 +00005383 *pnSize = info.nSize;
5384 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005385 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005386 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005387
drh3b7511c2001-05-26 13:15:44 +00005388 while( nPayload>0 ){
5389 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005390#ifndef SQLITE_OMIT_AUTOVACUUM
5391 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005392 if( pBt->autoVacuum ){
5393 do{
5394 pgnoOvfl++;
5395 } while(
5396 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5397 );
danielk1977b39f70b2007-05-17 18:28:11 +00005398 }
danielk1977afcdd022004-10-31 16:25:42 +00005399#endif
drhf49661a2008-12-10 16:45:50 +00005400 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005401#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005402 /* If the database supports auto-vacuum, and the second or subsequent
5403 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005404 ** for that page now.
5405 **
5406 ** If this is the first overflow page, then write a partial entry
5407 ** to the pointer-map. If we write nothing to this pointer-map slot,
5408 ** then the optimistic overflow chain processing in clearCell()
5409 ** may misinterpret the uninitialised values and delete the
5410 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005411 */
danielk19774ef24492007-05-23 09:52:41 +00005412 if( pBt->autoVacuum && rc==SQLITE_OK ){
5413 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005414 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005415 if( rc ){
5416 releasePage(pOvfl);
5417 }
danielk1977afcdd022004-10-31 16:25:42 +00005418 }
5419#endif
drh3b7511c2001-05-26 13:15:44 +00005420 if( rc ){
drh9b171272004-05-08 02:03:22 +00005421 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005422 return rc;
5423 }
drhc5053fb2008-11-27 02:22:10 +00005424
5425 /* If pToRelease is not zero than pPrior points into the data area
5426 ** of pToRelease. Make sure pToRelease is still writeable. */
5427 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5428
5429 /* If pPrior is part of the data area of pPage, then make sure pPage
5430 ** is still writeable */
5431 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5432 || sqlite3PagerIswriteable(pPage->pDbPage) );
5433
drh3aac2dd2004-04-26 14:10:20 +00005434 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005435 releasePage(pToRelease);
5436 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005437 pPrior = pOvfl->aData;
5438 put4byte(pPrior, 0);
5439 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005440 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005441 }
5442 n = nPayload;
5443 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005444
5445 /* If pToRelease is not zero than pPayload points into the data area
5446 ** of pToRelease. Make sure pToRelease is still writeable. */
5447 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5448
5449 /* If pPayload is part of the data area of pPage, then make sure pPage
5450 ** is still writeable */
5451 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5452 || sqlite3PagerIswriteable(pPage->pDbPage) );
5453
drhb026e052007-05-02 01:34:31 +00005454 if( nSrc>0 ){
5455 if( n>nSrc ) n = nSrc;
5456 assert( pSrc );
5457 memcpy(pPayload, pSrc, n);
5458 }else{
5459 memset(pPayload, 0, n);
5460 }
drh3b7511c2001-05-26 13:15:44 +00005461 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005462 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005463 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005464 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005465 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005466 if( nSrc==0 ){
5467 nSrc = nData;
5468 pSrc = pData;
5469 }
drhdd793422001-06-28 01:54:48 +00005470 }
drh9b171272004-05-08 02:03:22 +00005471 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005472 return SQLITE_OK;
5473}
5474
drh14acc042001-06-10 19:56:58 +00005475/*
5476** Remove the i-th cell from pPage. This routine effects pPage only.
5477** The cell content is not freed or deallocated. It is assumed that
5478** the cell content has been copied someplace else. This routine just
5479** removes the reference to the cell from pPage.
5480**
5481** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005482*/
drh98add2e2009-07-20 17:11:49 +00005483static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005484 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005485 u8 *data; /* pPage->aData */
5486 u8 *ptr; /* Used to move bytes around within data[] */
drhc3f1d5f2011-05-30 23:42:16 +00005487 u8 *endPtr; /* End of loop */
shanedcc50b72008-11-13 18:29:50 +00005488 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005489 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005490
drh98add2e2009-07-20 17:11:49 +00005491 if( *pRC ) return;
5492
drh8c42ca92001-06-22 19:15:00 +00005493 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005494 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005495 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005496 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005497 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005498 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005499 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005500 hdr = pPage->hdrOffset;
5501 testcase( pc==get2byte(&data[hdr+5]) );
5502 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005503 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005504 *pRC = SQLITE_CORRUPT_BKPT;
5505 return;
shane0af3f892008-11-12 04:55:34 +00005506 }
shanedcc50b72008-11-13 18:29:50 +00005507 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005508 if( rc ){
5509 *pRC = rc;
5510 return;
shanedcc50b72008-11-13 18:29:50 +00005511 }
drh3def2352011-11-11 00:27:15 +00005512 endPtr = &pPage->aCellIdx[2*pPage->nCell - 2];
drh2ce71b42011-06-06 13:38:11 +00005513 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drhc3f1d5f2011-05-30 23:42:16 +00005514 while( ptr<endPtr ){
drh61d2fe92011-06-03 23:28:33 +00005515 *(u16*)ptr = *(u16*)&ptr[2];
drhc3f1d5f2011-05-30 23:42:16 +00005516 ptr += 2;
drh14acc042001-06-10 19:56:58 +00005517 }
5518 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005519 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005520 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005521}
5522
5523/*
5524** Insert a new cell on pPage at cell index "i". pCell points to the
5525** content of the cell.
5526**
5527** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005528** will not fit, then make a copy of the cell content into pTemp if
5529** pTemp is not null. Regardless of pTemp, allocate a new entry
5530** in pPage->aOvfl[] and make it point to the cell content (either
5531** in pTemp or the original pCell) and also record its index.
5532** Allocating a new entry in pPage->aCell[] implies that
5533** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005534**
5535** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5536** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005537** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005538** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005539*/
drh98add2e2009-07-20 17:11:49 +00005540static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005541 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005542 int i, /* New cell becomes the i-th cell of the page */
5543 u8 *pCell, /* Content of the new cell */
5544 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005545 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005546 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5547 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005548){
drh383d30f2010-02-26 13:07:37 +00005549 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005550 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005551 int end; /* First byte past the last cell pointer in data[] */
5552 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005553 int cellOffset; /* Address of first cell pointer in data[] */
5554 u8 *data; /* The content of the whole page */
5555 u8 *ptr; /* Used for moving information around in data[] */
drh61d2fe92011-06-03 23:28:33 +00005556 u8 *endPtr; /* End of the loop */
drh43605152004-05-29 21:46:49 +00005557
danielk19774dbaa892009-06-16 16:50:22 +00005558 int nSkip = (iChild ? 4 : 0);
5559
drh98add2e2009-07-20 17:11:49 +00005560 if( *pRC ) return;
5561
drh43605152004-05-29 21:46:49 +00005562 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005563 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drhf49661a2008-12-10 16:45:50 +00005564 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005565 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005566 /* The cell should normally be sized correctly. However, when moving a
5567 ** malformed cell from a leaf page to an interior page, if the cell size
5568 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5569 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5570 ** the term after the || in the following assert(). */
5571 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005572 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005573 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005574 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005575 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005576 }
danielk19774dbaa892009-06-16 16:50:22 +00005577 if( iChild ){
5578 put4byte(pCell, iChild);
5579 }
drh43605152004-05-29 21:46:49 +00005580 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005581 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005582 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005583 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005584 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005585 int rc = sqlite3PagerWrite(pPage->pDbPage);
5586 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005587 *pRC = rc;
5588 return;
danielk19776e465eb2007-08-21 13:11:00 +00005589 }
5590 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005591 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005592 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005593 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005594 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005595 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005596 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005597 /* The allocateSpace() routine guarantees the following two properties
5598 ** if it returns success */
5599 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005600 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005601 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005602 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005603 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005604 if( iChild ){
5605 put4byte(&data[idx], iChild);
5606 }
drh61d2fe92011-06-03 23:28:33 +00005607 ptr = &data[end];
5608 endPtr = &data[ins];
drh2ce71b42011-06-06 13:38:11 +00005609 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drh61d2fe92011-06-03 23:28:33 +00005610 while( ptr>endPtr ){
5611 *(u16*)ptr = *(u16*)&ptr[-2];
5612 ptr -= 2;
drhda200cc2004-05-09 11:51:38 +00005613 }
drh43605152004-05-29 21:46:49 +00005614 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005615 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005616#ifndef SQLITE_OMIT_AUTOVACUUM
5617 if( pPage->pBt->autoVacuum ){
5618 /* The cell may contain a pointer to an overflow page. If so, write
5619 ** the entry for the overflow page into the pointer map.
5620 */
drh98add2e2009-07-20 17:11:49 +00005621 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005622 }
5623#endif
drh14acc042001-06-10 19:56:58 +00005624 }
5625}
5626
5627/*
drhfa1a98a2004-05-14 19:08:17 +00005628** Add a list of cells to a page. The page should be initially empty.
5629** The cells are guaranteed to fit on the page.
5630*/
5631static void assemblePage(
5632 MemPage *pPage, /* The page to be assemblied */
5633 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005634 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005635 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005636){
5637 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005638 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005639 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005640 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5641 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5642 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005643
drh43605152004-05-29 21:46:49 +00005644 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005645 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005646 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5647 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005648 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005649
5650 /* Check that the page has just been zeroed by zeroPage() */
5651 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005652 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005653
drh3def2352011-11-11 00:27:15 +00005654 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005655 cellbody = nUsable;
5656 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005657 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005658 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005659 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005660 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005661 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005662 }
danielk1977fad91942009-04-29 17:49:59 +00005663 put2byte(&data[hdr+3], nCell);
5664 put2byte(&data[hdr+5], cellbody);
5665 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005666 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005667}
5668
drh14acc042001-06-10 19:56:58 +00005669/*
drhc3b70572003-01-04 19:44:07 +00005670** The following parameters determine how many adjacent pages get involved
5671** in a balancing operation. NN is the number of neighbors on either side
5672** of the page that participate in the balancing operation. NB is the
5673** total number of pages that participate, including the target page and
5674** NN neighbors on either side.
5675**
5676** The minimum value of NN is 1 (of course). Increasing NN above 1
5677** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5678** in exchange for a larger degradation in INSERT and UPDATE performance.
5679** The value of NN appears to give the best results overall.
5680*/
5681#define NN 1 /* Number of neighbors on either side of pPage */
5682#define NB (NN*2+1) /* Total pages involved in the balance */
5683
danielk1977ac245ec2005-01-14 13:50:11 +00005684
drh615ae552005-01-16 23:21:00 +00005685#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005686/*
5687** This version of balance() handles the common special case where
5688** a new entry is being inserted on the extreme right-end of the
5689** tree, in other words, when the new entry will become the largest
5690** entry in the tree.
5691**
drhc314dc72009-07-21 11:52:34 +00005692** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005693** a new page to the right-hand side and put the one new entry in
5694** that page. This leaves the right side of the tree somewhat
5695** unbalanced. But odds are that we will be inserting new entries
5696** at the end soon afterwards so the nearly empty page will quickly
5697** fill up. On average.
5698**
5699** pPage is the leaf page which is the right-most page in the tree.
5700** pParent is its parent. pPage must have a single overflow entry
5701** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005702**
5703** The pSpace buffer is used to store a temporary copy of the divider
5704** cell that will be inserted into pParent. Such a cell consists of a 4
5705** byte page number followed by a variable length integer. In other
5706** words, at most 13 bytes. Hence the pSpace buffer must be at
5707** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005708*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005709static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5710 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005711 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005712 int rc; /* Return Code */
5713 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005714
drh1fee73e2007-08-29 04:00:57 +00005715 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005716 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005717 assert( pPage->nOverflow==1 );
5718
drh5d433ce2010-08-14 16:02:52 +00005719 /* This error condition is now caught prior to reaching this function */
drh6b47fca2010-08-19 14:22:42 +00005720 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005721
danielk1977a50d9aa2009-06-08 14:49:45 +00005722 /* Allocate a new page. This page will become the right-sibling of
5723 ** pPage. Make the parent page writable, so that the new divider cell
5724 ** may be inserted. If both these operations are successful, proceed.
5725 */
drh4f0c5872007-03-26 22:05:01 +00005726 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005727
danielk1977eaa06f62008-09-18 17:34:44 +00005728 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005729
5730 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005731 u8 *pCell = pPage->aOvfl[0].pCell;
5732 u16 szCell = cellSizePtr(pPage, pCell);
5733 u8 *pStop;
5734
drhc5053fb2008-11-27 02:22:10 +00005735 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005736 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5737 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005738 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005739
5740 /* If this is an auto-vacuum database, update the pointer map
5741 ** with entries for the new page, and any pointer from the
5742 ** cell on the page to an overflow page. If either of these
5743 ** operations fails, the return code is set, but the contents
5744 ** of the parent page are still manipulated by thh code below.
5745 ** That is Ok, at this point the parent page is guaranteed to
5746 ** be marked as dirty. Returning an error code will cause a
5747 ** rollback, undoing any changes made to the parent page.
5748 */
5749 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005750 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5751 if( szCell>pNew->minLocal ){
5752 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005753 }
5754 }
danielk1977eaa06f62008-09-18 17:34:44 +00005755
danielk19776f235cc2009-06-04 14:46:08 +00005756 /* Create a divider cell to insert into pParent. The divider cell
5757 ** consists of a 4-byte page number (the page number of pPage) and
5758 ** a variable length key value (which must be the same value as the
5759 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005760 **
danielk19776f235cc2009-06-04 14:46:08 +00005761 ** To find the largest key value on pPage, first find the right-most
5762 ** cell on pPage. The first two fields of this cell are the
5763 ** record-length (a variable length integer at most 32-bits in size)
5764 ** and the key value (a variable length integer, may have any value).
5765 ** The first of the while(...) loops below skips over the record-length
5766 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005767 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005768 */
danielk1977eaa06f62008-09-18 17:34:44 +00005769 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005770 pStop = &pCell[9];
5771 while( (*(pCell++)&0x80) && pCell<pStop );
5772 pStop = &pCell[9];
5773 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5774
danielk19774dbaa892009-06-16 16:50:22 +00005775 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005776 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5777 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005778
5779 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005780 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5781
danielk1977e08a3c42008-09-18 18:17:03 +00005782 /* Release the reference to the new page. */
5783 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005784 }
5785
danielk1977eaa06f62008-09-18 17:34:44 +00005786 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005787}
drh615ae552005-01-16 23:21:00 +00005788#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005789
danielk19774dbaa892009-06-16 16:50:22 +00005790#if 0
drhc3b70572003-01-04 19:44:07 +00005791/*
danielk19774dbaa892009-06-16 16:50:22 +00005792** This function does not contribute anything to the operation of SQLite.
5793** it is sometimes activated temporarily while debugging code responsible
5794** for setting pointer-map entries.
5795*/
5796static int ptrmapCheckPages(MemPage **apPage, int nPage){
5797 int i, j;
5798 for(i=0; i<nPage; i++){
5799 Pgno n;
5800 u8 e;
5801 MemPage *pPage = apPage[i];
5802 BtShared *pBt = pPage->pBt;
5803 assert( pPage->isInit );
5804
5805 for(j=0; j<pPage->nCell; j++){
5806 CellInfo info;
5807 u8 *z;
5808
5809 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005810 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005811 if( info.iOverflow ){
5812 Pgno ovfl = get4byte(&z[info.iOverflow]);
5813 ptrmapGet(pBt, ovfl, &e, &n);
5814 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5815 }
5816 if( !pPage->leaf ){
5817 Pgno child = get4byte(z);
5818 ptrmapGet(pBt, child, &e, &n);
5819 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5820 }
5821 }
5822 if( !pPage->leaf ){
5823 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5824 ptrmapGet(pBt, child, &e, &n);
5825 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5826 }
5827 }
5828 return 1;
5829}
5830#endif
5831
danielk1977cd581a72009-06-23 15:43:39 +00005832/*
5833** This function is used to copy the contents of the b-tree node stored
5834** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5835** the pointer-map entries for each child page are updated so that the
5836** parent page stored in the pointer map is page pTo. If pFrom contained
5837** any cells with overflow page pointers, then the corresponding pointer
5838** map entries are also updated so that the parent page is page pTo.
5839**
5840** If pFrom is currently carrying any overflow cells (entries in the
5841** MemPage.aOvfl[] array), they are not copied to pTo.
5842**
danielk197730548662009-07-09 05:07:37 +00005843** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005844**
5845** The performance of this function is not critical. It is only used by
5846** the balance_shallower() and balance_deeper() procedures, neither of
5847** which are called often under normal circumstances.
5848*/
drhc314dc72009-07-21 11:52:34 +00005849static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5850 if( (*pRC)==SQLITE_OK ){
5851 BtShared * const pBt = pFrom->pBt;
5852 u8 * const aFrom = pFrom->aData;
5853 u8 * const aTo = pTo->aData;
5854 int const iFromHdr = pFrom->hdrOffset;
5855 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005856 int rc;
drhc314dc72009-07-21 11:52:34 +00005857 int iData;
5858
5859
5860 assert( pFrom->isInit );
5861 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00005862 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00005863
5864 /* Copy the b-tree node content from page pFrom to page pTo. */
5865 iData = get2byte(&aFrom[iFromHdr+5]);
5866 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5867 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5868
5869 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005870 ** match the new data. The initialization of pTo can actually fail under
5871 ** fairly obscure circumstances, even though it is a copy of initialized
5872 ** page pFrom.
5873 */
drhc314dc72009-07-21 11:52:34 +00005874 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005875 rc = btreeInitPage(pTo);
5876 if( rc!=SQLITE_OK ){
5877 *pRC = rc;
5878 return;
5879 }
drhc314dc72009-07-21 11:52:34 +00005880
5881 /* If this is an auto-vacuum database, update the pointer-map entries
5882 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5883 */
5884 if( ISAUTOVACUUM ){
5885 *pRC = setChildPtrmaps(pTo);
5886 }
danielk1977cd581a72009-06-23 15:43:39 +00005887 }
danielk1977cd581a72009-06-23 15:43:39 +00005888}
5889
5890/*
danielk19774dbaa892009-06-16 16:50:22 +00005891** This routine redistributes cells on the iParentIdx'th child of pParent
5892** (hereafter "the page") and up to 2 siblings so that all pages have about the
5893** same amount of free space. Usually a single sibling on either side of the
5894** page are used in the balancing, though both siblings might come from one
5895** side if the page is the first or last child of its parent. If the page
5896** has fewer than 2 siblings (something which can only happen if the page
5897** is a root page or a child of a root page) then all available siblings
5898** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005899**
danielk19774dbaa892009-06-16 16:50:22 +00005900** The number of siblings of the page might be increased or decreased by
5901** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005902**
danielk19774dbaa892009-06-16 16:50:22 +00005903** Note that when this routine is called, some of the cells on the page
5904** might not actually be stored in MemPage.aData[]. This can happen
5905** if the page is overfull. This routine ensures that all cells allocated
5906** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005907**
danielk19774dbaa892009-06-16 16:50:22 +00005908** In the course of balancing the page and its siblings, cells may be
5909** inserted into or removed from the parent page (pParent). Doing so
5910** may cause the parent page to become overfull or underfull. If this
5911** happens, it is the responsibility of the caller to invoke the correct
5912** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005913**
drh5e00f6c2001-09-13 13:46:56 +00005914** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005915** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005916** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005917**
5918** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005919** buffer big enough to hold one page. If while inserting cells into the parent
5920** page (pParent) the parent page becomes overfull, this buffer is
5921** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005922** a maximum of four divider cells into the parent page, and the maximum
5923** size of a cell stored within an internal node is always less than 1/4
5924** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5925** enough for all overflow cells.
5926**
5927** If aOvflSpace is set to a null pointer, this function returns
5928** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005929*/
danielk19774dbaa892009-06-16 16:50:22 +00005930static int balance_nonroot(
5931 MemPage *pParent, /* Parent page of siblings being balanced */
5932 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005933 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5934 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005935){
drh16a9b832007-05-05 18:39:25 +00005936 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005937 int nCell = 0; /* Number of cells in apCell[] */
5938 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005939 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005940 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005941 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005942 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005943 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005944 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005945 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005946 int usableSpace; /* Bytes in pPage beyond the header */
5947 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005948 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005949 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005950 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005951 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005952 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005953 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005954 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005955 u8 *pRight; /* Location in parent of right-sibling pointer */
5956 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005957 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5958 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005959 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005960 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005961 u8 *aSpace1; /* Space for copies of dividers cells */
5962 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005963
danielk1977a50d9aa2009-06-08 14:49:45 +00005964 pBt = pParent->pBt;
5965 assert( sqlite3_mutex_held(pBt->mutex) );
5966 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005967
danielk1977e5765212009-06-17 11:13:28 +00005968#if 0
drh43605152004-05-29 21:46:49 +00005969 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005970#endif
drh2e38c322004-09-03 18:38:44 +00005971
danielk19774dbaa892009-06-16 16:50:22 +00005972 /* At this point pParent may have at most one overflow cell. And if
5973 ** this overflow cell is present, it must be the cell with
5974 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005975 ** is called (indirectly) from sqlite3BtreeDelete().
5976 */
danielk19774dbaa892009-06-16 16:50:22 +00005977 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5978 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5979
danielk197711a8a862009-06-17 11:49:52 +00005980 if( !aOvflSpace ){
5981 return SQLITE_NOMEM;
5982 }
5983
danielk1977a50d9aa2009-06-08 14:49:45 +00005984 /* Find the sibling pages to balance. Also locate the cells in pParent
5985 ** that divide the siblings. An attempt is made to find NN siblings on
5986 ** either side of pPage. More siblings are taken from one side, however,
5987 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005988 ** has NB or fewer children then all children of pParent are taken.
5989 **
5990 ** This loop also drops the divider cells from the parent page. This
5991 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005992 ** overflow cells in the parent page, since if any existed they will
5993 ** have already been removed.
5994 */
danielk19774dbaa892009-06-16 16:50:22 +00005995 i = pParent->nOverflow + pParent->nCell;
5996 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005997 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005998 nOld = i+1;
5999 }else{
6000 nOld = 3;
6001 if( iParentIdx==0 ){
6002 nxDiv = 0;
6003 }else if( iParentIdx==i ){
6004 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00006005 }else{
danielk19774dbaa892009-06-16 16:50:22 +00006006 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006007 }
danielk19774dbaa892009-06-16 16:50:22 +00006008 i = 2;
6009 }
6010 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6011 pRight = &pParent->aData[pParent->hdrOffset+8];
6012 }else{
6013 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6014 }
6015 pgno = get4byte(pRight);
6016 while( 1 ){
6017 rc = getAndInitPage(pBt, pgno, &apOld[i]);
6018 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006019 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006020 goto balance_cleanup;
6021 }
danielk1977634f2982005-03-28 08:44:07 +00006022 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006023 if( (i--)==0 ) break;
6024
drhcd09c532009-07-20 19:30:00 +00006025 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00006026 apDiv[i] = pParent->aOvfl[0].pCell;
6027 pgno = get4byte(apDiv[i]);
6028 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6029 pParent->nOverflow = 0;
6030 }else{
6031 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6032 pgno = get4byte(apDiv[i]);
6033 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6034
6035 /* Drop the cell from the parent page. apDiv[i] still points to
6036 ** the cell within the parent, even though it has been dropped.
6037 ** This is safe because dropping a cell only overwrites the first
6038 ** four bytes of it, and this function does not need the first
6039 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006040 ** later on.
6041 **
drh8a575d92011-10-12 17:00:28 +00006042 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006043 ** the dropCell() routine will overwrite the entire cell with zeroes.
6044 ** In this case, temporarily copy the cell into the aOvflSpace[]
6045 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6046 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006047 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006048 int iOff;
6049
6050 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006051 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006052 rc = SQLITE_CORRUPT_BKPT;
6053 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6054 goto balance_cleanup;
6055 }else{
6056 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6057 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6058 }
drh5b47efa2010-02-12 18:18:39 +00006059 }
drh98add2e2009-07-20 17:11:49 +00006060 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006061 }
drh8b2f49b2001-06-08 00:21:52 +00006062 }
6063
drha9121e42008-02-19 14:59:35 +00006064 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006065 ** alignment */
drha9121e42008-02-19 14:59:35 +00006066 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006067
drh8b2f49b2001-06-08 00:21:52 +00006068 /*
danielk1977634f2982005-03-28 08:44:07 +00006069 ** Allocate space for memory structures
6070 */
danielk19774dbaa892009-06-16 16:50:22 +00006071 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006072 szScratch =
drha9121e42008-02-19 14:59:35 +00006073 nMaxCells*sizeof(u8*) /* apCell */
6074 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006075 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006076 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006077 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006078 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006079 rc = SQLITE_NOMEM;
6080 goto balance_cleanup;
6081 }
drha9121e42008-02-19 14:59:35 +00006082 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006083 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006084 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006085
6086 /*
6087 ** Load pointers to all cells on sibling pages and the divider cells
6088 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00006089 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00006090 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006091 **
6092 ** If the siblings are on leaf pages, then the child pointers of the
6093 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006094 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006095 ** child pointers. If siblings are not leaves, then all cell in
6096 ** apCell[] include child pointers. Either way, all cells in apCell[]
6097 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006098 **
6099 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6100 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006101 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006102 leafCorrection = apOld[0]->leaf*4;
6103 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006104 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006105 int limit;
6106
6107 /* Before doing anything else, take a copy of the i'th original sibling
6108 ** The rest of this function will use data from the copies rather
6109 ** that the original pages since the original pages will be in the
6110 ** process of being overwritten. */
6111 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6112 memcpy(pOld, apOld[i], sizeof(MemPage));
6113 pOld->aData = (void*)&pOld[1];
6114 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6115
6116 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006117 if( pOld->nOverflow>0 ){
6118 for(j=0; j<limit; j++){
6119 assert( nCell<nMaxCells );
6120 apCell[nCell] = findOverflowCell(pOld, j);
6121 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6122 nCell++;
6123 }
6124 }else{
6125 u8 *aData = pOld->aData;
6126 u16 maskPage = pOld->maskPage;
6127 u16 cellOffset = pOld->cellOffset;
6128 for(j=0; j<limit; j++){
6129 assert( nCell<nMaxCells );
6130 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6131 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6132 nCell++;
6133 }
6134 }
danielk19774dbaa892009-06-16 16:50:22 +00006135 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006136 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006137 u8 *pTemp;
6138 assert( nCell<nMaxCells );
6139 szCell[nCell] = sz;
6140 pTemp = &aSpace1[iSpace1];
6141 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006142 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006143 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006144 memcpy(pTemp, apDiv[i], sz);
6145 apCell[nCell] = pTemp+leafCorrection;
6146 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006147 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006148 if( !pOld->leaf ){
6149 assert( leafCorrection==0 );
6150 assert( pOld->hdrOffset==0 );
6151 /* The right pointer of the child page pOld becomes the left
6152 ** pointer of the divider cell */
6153 memcpy(apCell[nCell], &pOld->aData[8], 4);
6154 }else{
6155 assert( leafCorrection==4 );
6156 if( szCell[nCell]<4 ){
6157 /* Do not allow any cells smaller than 4 bytes. */
6158 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006159 }
6160 }
drh14acc042001-06-10 19:56:58 +00006161 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006162 }
drh8b2f49b2001-06-08 00:21:52 +00006163 }
6164
6165 /*
drh6019e162001-07-02 17:51:45 +00006166 ** Figure out the number of pages needed to hold all nCell cells.
6167 ** Store this number in "k". Also compute szNew[] which is the total
6168 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006169 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006170 ** cntNew[k] should equal nCell.
6171 **
drh96f5b762004-05-16 16:24:36 +00006172 ** Values computed by this block:
6173 **
6174 ** k: The total number of sibling pages
6175 ** szNew[i]: Spaced used on the i-th sibling page.
6176 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6177 ** the right of the i-th sibling page.
6178 ** usableSpace: Number of bytes of space available on each sibling.
6179 **
drh8b2f49b2001-06-08 00:21:52 +00006180 */
drh43605152004-05-29 21:46:49 +00006181 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006182 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006183 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006184 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006185 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006186 szNew[k] = subtotal - szCell[i];
6187 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006188 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006189 subtotal = 0;
6190 k++;
drh9978c972010-02-23 17:36:32 +00006191 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006192 }
6193 }
6194 szNew[k] = subtotal;
6195 cntNew[k] = nCell;
6196 k++;
drh96f5b762004-05-16 16:24:36 +00006197
6198 /*
6199 ** The packing computed by the previous block is biased toward the siblings
6200 ** on the left side. The left siblings are always nearly full, while the
6201 ** right-most sibling might be nearly empty. This block of code attempts
6202 ** to adjust the packing of siblings to get a better balance.
6203 **
6204 ** This adjustment is more than an optimization. The packing above might
6205 ** be so out of balance as to be illegal. For example, the right-most
6206 ** sibling might be completely empty. This adjustment is not optional.
6207 */
drh6019e162001-07-02 17:51:45 +00006208 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006209 int szRight = szNew[i]; /* Size of sibling on the right */
6210 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6211 int r; /* Index of right-most cell in left sibling */
6212 int d; /* Index of first cell to the left of right sibling */
6213
6214 r = cntNew[i-1] - 1;
6215 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006216 assert( d<nMaxCells );
6217 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00006218 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
6219 szRight += szCell[d] + 2;
6220 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006221 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006222 r = cntNew[i-1] - 1;
6223 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006224 }
drh96f5b762004-05-16 16:24:36 +00006225 szNew[i] = szRight;
6226 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006227 }
drh09d0deb2005-08-02 17:13:09 +00006228
danielk19776f235cc2009-06-04 14:46:08 +00006229 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006230 ** a virtual root page. A virtual root page is when the real root
6231 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006232 **
6233 ** UPDATE: The assert() below is not necessarily true if the database
6234 ** file is corrupt. The corruption will be detected and reported later
6235 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006236 */
drh2f32fba2012-01-02 16:38:57 +00006237#if 0
drh09d0deb2005-08-02 17:13:09 +00006238 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006239#endif
drh8b2f49b2001-06-08 00:21:52 +00006240
danielk1977e5765212009-06-17 11:13:28 +00006241 TRACE(("BALANCE: old: %d %d %d ",
6242 apOld[0]->pgno,
6243 nOld>=2 ? apOld[1]->pgno : 0,
6244 nOld>=3 ? apOld[2]->pgno : 0
6245 ));
6246
drh8b2f49b2001-06-08 00:21:52 +00006247 /*
drh6b308672002-07-08 02:16:37 +00006248 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006249 */
drheac74422009-06-14 12:47:11 +00006250 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006251 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006252 goto balance_cleanup;
6253 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006254 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006255 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006256 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006257 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006258 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006259 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006260 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006261 nNew++;
danielk197728129562005-01-11 10:25:06 +00006262 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006263 }else{
drh7aa8f852006-03-28 00:24:44 +00006264 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00006265 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00006266 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006267 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006268 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006269
6270 /* Set the pointer-map entry for the new sibling page. */
6271 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006272 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006273 if( rc!=SQLITE_OK ){
6274 goto balance_cleanup;
6275 }
6276 }
drh6b308672002-07-08 02:16:37 +00006277 }
drh8b2f49b2001-06-08 00:21:52 +00006278 }
6279
danielk1977299b1872004-11-22 10:02:10 +00006280 /* Free any old pages that were not reused as new pages.
6281 */
6282 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006283 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006284 if( rc ) goto balance_cleanup;
6285 releasePage(apOld[i]);
6286 apOld[i] = 0;
6287 i++;
6288 }
6289
drh8b2f49b2001-06-08 00:21:52 +00006290 /*
drhf9ffac92002-03-02 19:00:31 +00006291 ** Put the new pages in accending order. This helps to
6292 ** keep entries in the disk file in order so that a scan
6293 ** of the table is a linear scan through the file. That
6294 ** in turn helps the operating system to deliver pages
6295 ** from the disk more rapidly.
6296 **
6297 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006298 ** n is never more than NB (a small constant), that should
6299 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006300 **
drhc3b70572003-01-04 19:44:07 +00006301 ** When NB==3, this one optimization makes the database
6302 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006303 */
6304 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006305 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006306 int minI = i;
6307 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006308 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006309 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006310 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006311 }
6312 }
6313 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006314 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006315 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006316 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006317 apNew[minI] = pT;
6318 }
6319 }
danielk1977e5765212009-06-17 11:13:28 +00006320 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006321 apNew[0]->pgno, szNew[0],
6322 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6323 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6324 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6325 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6326
6327 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6328 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006329
drhf9ffac92002-03-02 19:00:31 +00006330 /*
drh14acc042001-06-10 19:56:58 +00006331 ** Evenly distribute the data in apCell[] across the new pages.
6332 ** Insert divider cells into pParent as necessary.
6333 */
6334 j = 0;
6335 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006336 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006337 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006338 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006339 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006340 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006341 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006342 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006343
danielk1977ac11ee62005-01-15 12:45:51 +00006344 j = cntNew[i];
6345
6346 /* If the sibling page assembled above was not the right-most sibling,
6347 ** insert a divider cell into the parent page.
6348 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006349 assert( i<nNew-1 || j==nCell );
6350 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006351 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006352 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006353 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006354
6355 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006356 pCell = apCell[j];
6357 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006358 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006359 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006360 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006361 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006362 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006363 ** then there is no divider cell in apCell[]. Instead, the divider
6364 ** cell consists of the integer key for the right-most cell of
6365 ** the sibling-page assembled above only.
6366 */
drh6f11bef2004-05-13 01:12:56 +00006367 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006368 j--;
danielk197730548662009-07-09 05:07:37 +00006369 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006370 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006371 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006372 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006373 }else{
6374 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006375 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006376 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006377 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006378 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006379 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006380 ** insertCell(), so reparse the cell now.
6381 **
6382 ** Note that this can never happen in an SQLite data file, as all
6383 ** cells are at least 4 bytes. It only happens in b-trees used
6384 ** to evaluate "IN (SELECT ...)" and similar clauses.
6385 */
6386 if( szCell[j]==4 ){
6387 assert(leafCorrection==4);
6388 sz = cellSizePtr(pParent, pCell);
6389 }
drh4b70f112004-05-02 21:12:19 +00006390 }
danielk19776067a9b2009-06-09 09:41:00 +00006391 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006392 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006393 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006394 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006395 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006396 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006397
drh14acc042001-06-10 19:56:58 +00006398 j++;
6399 nxDiv++;
6400 }
6401 }
drh6019e162001-07-02 17:51:45 +00006402 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006403 assert( nOld>0 );
6404 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006405 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006406 u8 *zChild = &apCopy[nOld-1]->aData[8];
6407 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006408 }
6409
danielk197713bd99f2009-06-24 05:40:34 +00006410 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6411 /* The root page of the b-tree now contains no cells. The only sibling
6412 ** page is the right-child of the parent. Copy the contents of the
6413 ** child page into the parent, decreasing the overall height of the
6414 ** b-tree structure by one. This is described as the "balance-shallower"
6415 ** sub-algorithm in some documentation.
6416 **
6417 ** If this is an auto-vacuum database, the call to copyNodeContent()
6418 ** sets all pointer-map entries corresponding to database image pages
6419 ** for which the pointer is stored within the content being copied.
6420 **
6421 ** The second assert below verifies that the child page is defragmented
6422 ** (it must be, as it was just reconstructed using assemblePage()). This
6423 ** is important if the parent page happens to be page 1 of the database
6424 ** image. */
6425 assert( nNew==1 );
6426 assert( apNew[0]->nFree ==
6427 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6428 );
drhc314dc72009-07-21 11:52:34 +00006429 copyNodeContent(apNew[0], pParent, &rc);
6430 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006431 }else if( ISAUTOVACUUM ){
6432 /* Fix the pointer-map entries for all the cells that were shifted around.
6433 ** There are several different types of pointer-map entries that need to
6434 ** be dealt with by this routine. Some of these have been set already, but
6435 ** many have not. The following is a summary:
6436 **
6437 ** 1) The entries associated with new sibling pages that were not
6438 ** siblings when this function was called. These have already
6439 ** been set. We don't need to worry about old siblings that were
6440 ** moved to the free-list - the freePage() code has taken care
6441 ** of those.
6442 **
6443 ** 2) The pointer-map entries associated with the first overflow
6444 ** page in any overflow chains used by new divider cells. These
6445 ** have also already been taken care of by the insertCell() code.
6446 **
6447 ** 3) If the sibling pages are not leaves, then the child pages of
6448 ** cells stored on the sibling pages may need to be updated.
6449 **
6450 ** 4) If the sibling pages are not internal intkey nodes, then any
6451 ** overflow pages used by these cells may need to be updated
6452 ** (internal intkey nodes never contain pointers to overflow pages).
6453 **
6454 ** 5) If the sibling pages are not leaves, then the pointer-map
6455 ** entries for the right-child pages of each sibling may need
6456 ** to be updated.
6457 **
6458 ** Cases 1 and 2 are dealt with above by other code. The next
6459 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6460 ** setting a pointer map entry is a relatively expensive operation, this
6461 ** code only sets pointer map entries for child or overflow pages that have
6462 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006463 MemPage *pNew = apNew[0];
6464 MemPage *pOld = apCopy[0];
6465 int nOverflow = pOld->nOverflow;
6466 int iNextOld = pOld->nCell + nOverflow;
6467 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6468 j = 0; /* Current 'old' sibling page */
6469 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006470 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006471 int isDivider = 0;
6472 while( i==iNextOld ){
6473 /* Cell i is the cell immediately following the last cell on old
6474 ** sibling page j. If the siblings are not leaf pages of an
6475 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006476 assert( j+1 < ArraySize(apCopy) );
danielk19774dbaa892009-06-16 16:50:22 +00006477 pOld = apCopy[++j];
6478 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6479 if( pOld->nOverflow ){
6480 nOverflow = pOld->nOverflow;
6481 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6482 }
6483 isDivider = !leafData;
6484 }
6485
6486 assert(nOverflow>0 || iOverflow<i );
6487 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6488 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6489 if( i==iOverflow ){
6490 isDivider = 1;
6491 if( (--nOverflow)>0 ){
6492 iOverflow++;
6493 }
6494 }
6495
6496 if( i==cntNew[k] ){
6497 /* Cell i is the cell immediately following the last cell on new
6498 ** sibling page k. If the siblings are not leaf pages of an
6499 ** intkey b-tree, then cell i is a divider cell. */
6500 pNew = apNew[++k];
6501 if( !leafData ) continue;
6502 }
danielk19774dbaa892009-06-16 16:50:22 +00006503 assert( j<nOld );
6504 assert( k<nNew );
6505
6506 /* If the cell was originally divider cell (and is not now) or
6507 ** an overflow cell, or if the cell was located on a different sibling
6508 ** page before the balancing, then the pointer map entries associated
6509 ** with any child or overflow pages need to be updated. */
6510 if( isDivider || pOld->pgno!=pNew->pgno ){
6511 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006512 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006513 }
drh98add2e2009-07-20 17:11:49 +00006514 if( szCell[i]>pNew->minLocal ){
6515 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006516 }
6517 }
6518 }
6519
6520 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006521 for(i=0; i<nNew; i++){
6522 u32 key = get4byte(&apNew[i]->aData[8]);
6523 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006524 }
6525 }
6526
6527#if 0
6528 /* The ptrmapCheckPages() contains assert() statements that verify that
6529 ** all pointer map pages are set correctly. This is helpful while
6530 ** debugging. This is usually disabled because a corrupt database may
6531 ** cause an assert() statement to fail. */
6532 ptrmapCheckPages(apNew, nNew);
6533 ptrmapCheckPages(&pParent, 1);
6534#endif
6535 }
6536
danielk197771d5d2c2008-09-29 11:49:47 +00006537 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006538 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6539 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006540
drh8b2f49b2001-06-08 00:21:52 +00006541 /*
drh14acc042001-06-10 19:56:58 +00006542 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006543 */
drh14acc042001-06-10 19:56:58 +00006544balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006545 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006546 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006547 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006548 }
drh14acc042001-06-10 19:56:58 +00006549 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006550 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006551 }
danielk1977eaa06f62008-09-18 17:34:44 +00006552
drh8b2f49b2001-06-08 00:21:52 +00006553 return rc;
6554}
6555
drh43605152004-05-29 21:46:49 +00006556
6557/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006558** This function is called when the root page of a b-tree structure is
6559** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006560**
danielk1977a50d9aa2009-06-08 14:49:45 +00006561** A new child page is allocated and the contents of the current root
6562** page, including overflow cells, are copied into the child. The root
6563** page is then overwritten to make it an empty page with the right-child
6564** pointer pointing to the new page.
6565**
6566** Before returning, all pointer-map entries corresponding to pages
6567** that the new child-page now contains pointers to are updated. The
6568** entry corresponding to the new right-child pointer of the root
6569** page is also updated.
6570**
6571** If successful, *ppChild is set to contain a reference to the child
6572** page and SQLITE_OK is returned. In this case the caller is required
6573** to call releasePage() on *ppChild exactly once. If an error occurs,
6574** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006575*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006576static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6577 int rc; /* Return value from subprocedures */
6578 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006579 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006580 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006581
danielk1977a50d9aa2009-06-08 14:49:45 +00006582 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006583 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006584
danielk1977a50d9aa2009-06-08 14:49:45 +00006585 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6586 ** page that will become the new right-child of pPage. Copy the contents
6587 ** of the node stored on pRoot into the new child page.
6588 */
drh98add2e2009-07-20 17:11:49 +00006589 rc = sqlite3PagerWrite(pRoot->pDbPage);
6590 if( rc==SQLITE_OK ){
6591 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006592 copyNodeContent(pRoot, pChild, &rc);
6593 if( ISAUTOVACUUM ){
6594 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006595 }
6596 }
6597 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006598 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006599 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006600 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006601 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006602 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6603 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6604 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006605
danielk1977a50d9aa2009-06-08 14:49:45 +00006606 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6607
6608 /* Copy the overflow cells from pRoot to pChild */
6609 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6610 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006611
6612 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6613 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6614 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6615
6616 *ppChild = pChild;
6617 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006618}
6619
6620/*
danielk197771d5d2c2008-09-29 11:49:47 +00006621** The page that pCur currently points to has just been modified in
6622** some way. This function figures out if this modification means the
6623** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006624** routine. Balancing routines are:
6625**
6626** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006627** balance_deeper()
6628** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006629*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006630static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006631 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006632 const int nMin = pCur->pBt->usableSize * 2 / 3;
6633 u8 aBalanceQuickSpace[13];
6634 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006635
shane75ac1de2009-06-09 18:58:52 +00006636 TESTONLY( int balance_quick_called = 0 );
6637 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006638
6639 do {
6640 int iPage = pCur->iPage;
6641 MemPage *pPage = pCur->apPage[iPage];
6642
6643 if( iPage==0 ){
6644 if( pPage->nOverflow ){
6645 /* The root page of the b-tree is overfull. In this case call the
6646 ** balance_deeper() function to create a new child for the root-page
6647 ** and copy the current contents of the root-page to it. The
6648 ** next iteration of the do-loop will balance the child page.
6649 */
6650 assert( (balance_deeper_called++)==0 );
6651 rc = balance_deeper(pPage, &pCur->apPage[1]);
6652 if( rc==SQLITE_OK ){
6653 pCur->iPage = 1;
6654 pCur->aiIdx[0] = 0;
6655 pCur->aiIdx[1] = 0;
6656 assert( pCur->apPage[1]->nOverflow );
6657 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006658 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006659 break;
6660 }
6661 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6662 break;
6663 }else{
6664 MemPage * const pParent = pCur->apPage[iPage-1];
6665 int const iIdx = pCur->aiIdx[iPage-1];
6666
6667 rc = sqlite3PagerWrite(pParent->pDbPage);
6668 if( rc==SQLITE_OK ){
6669#ifndef SQLITE_OMIT_QUICKBALANCE
6670 if( pPage->hasData
6671 && pPage->nOverflow==1
6672 && pPage->aOvfl[0].idx==pPage->nCell
6673 && pParent->pgno!=1
6674 && pParent->nCell==iIdx
6675 ){
6676 /* Call balance_quick() to create a new sibling of pPage on which
6677 ** to store the overflow cell. balance_quick() inserts a new cell
6678 ** into pParent, which may cause pParent overflow. If this
6679 ** happens, the next interation of the do-loop will balance pParent
6680 ** use either balance_nonroot() or balance_deeper(). Until this
6681 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6682 ** buffer.
6683 **
6684 ** The purpose of the following assert() is to check that only a
6685 ** single call to balance_quick() is made for each call to this
6686 ** function. If this were not verified, a subtle bug involving reuse
6687 ** of the aBalanceQuickSpace[] might sneak in.
6688 */
6689 assert( (balance_quick_called++)==0 );
6690 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6691 }else
6692#endif
6693 {
6694 /* In this case, call balance_nonroot() to redistribute cells
6695 ** between pPage and up to 2 of its sibling pages. This involves
6696 ** modifying the contents of pParent, which may cause pParent to
6697 ** become overfull or underfull. The next iteration of the do-loop
6698 ** will balance the parent page to correct this.
6699 **
6700 ** If the parent page becomes overfull, the overflow cell or cells
6701 ** are stored in the pSpace buffer allocated immediately below.
6702 ** A subsequent iteration of the do-loop will deal with this by
6703 ** calling balance_nonroot() (balance_deeper() may be called first,
6704 ** but it doesn't deal with overflow cells - just moves them to a
6705 ** different page). Once this subsequent call to balance_nonroot()
6706 ** has completed, it is safe to release the pSpace buffer used by
6707 ** the previous call, as the overflow cell data will have been
6708 ** copied either into the body of a database page or into the new
6709 ** pSpace buffer passed to the latter call to balance_nonroot().
6710 */
6711 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006712 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006713 if( pFree ){
6714 /* If pFree is not NULL, it points to the pSpace buffer used
6715 ** by a previous call to balance_nonroot(). Its contents are
6716 ** now stored either on real database pages or within the
6717 ** new pSpace buffer, so it may be safely freed here. */
6718 sqlite3PageFree(pFree);
6719 }
6720
danielk19774dbaa892009-06-16 16:50:22 +00006721 /* The pSpace buffer will be freed after the next call to
6722 ** balance_nonroot(), or just before this function returns, whichever
6723 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006724 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006725 }
6726 }
6727
6728 pPage->nOverflow = 0;
6729
6730 /* The next iteration of the do-loop balances the parent page. */
6731 releasePage(pPage);
6732 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006733 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006734 }while( rc==SQLITE_OK );
6735
6736 if( pFree ){
6737 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006738 }
6739 return rc;
6740}
6741
drhf74b8d92002-09-01 23:20:45 +00006742
6743/*
drh3b7511c2001-05-26 13:15:44 +00006744** Insert a new record into the BTree. The key is given by (pKey,nKey)
6745** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006746** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006747** is left pointing at a random location.
6748**
6749** For an INTKEY table, only the nKey value of the key is used. pKey is
6750** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006751**
6752** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006753** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006754** been performed. seekResult is the search result returned (a negative
6755** number if pCur points at an entry that is smaller than (pKey, nKey), or
6756** a positive value if pCur points at an etry that is larger than
6757** (pKey, nKey)).
6758**
drh3e9ca092009-09-08 01:14:48 +00006759** If the seekResult parameter is non-zero, then the caller guarantees that
6760** cursor pCur is pointing at the existing copy of a row that is to be
6761** overwritten. If the seekResult parameter is 0, then cursor pCur may
6762** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006763** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006764*/
drh3aac2dd2004-04-26 14:10:20 +00006765int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006766 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006767 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006768 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006769 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006770 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006771 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006772){
drh3b7511c2001-05-26 13:15:44 +00006773 int rc;
drh3e9ca092009-09-08 01:14:48 +00006774 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006775 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006776 int idx;
drh3b7511c2001-05-26 13:15:44 +00006777 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006778 Btree *p = pCur->pBtree;
6779 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006780 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006781 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006782
drh98add2e2009-07-20 17:11:49 +00006783 if( pCur->eState==CURSOR_FAULT ){
6784 assert( pCur->skipNext!=SQLITE_OK );
6785 return pCur->skipNext;
6786 }
6787
drh1fee73e2007-08-29 04:00:57 +00006788 assert( cursorHoldsMutex(pCur) );
drhc9166342012-01-05 23:32:06 +00006789 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
6790 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006791 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6792
danielk197731d31b82009-07-13 13:18:07 +00006793 /* Assert that the caller has been consistent. If this cursor was opened
6794 ** expecting an index b-tree, then the caller should be inserting blob
6795 ** keys with no associated data. If the cursor was opened expecting an
6796 ** intkey table, the caller should be inserting integer keys with a
6797 ** blob of associated data. */
6798 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6799
danielk197796d48e92009-06-29 06:00:37 +00006800 /* If this is an insert into a table b-tree, invalidate any incrblob
6801 ** cursors open on the row being replaced (assuming this is a replace
6802 ** operation - if it is not, the following is a no-op). */
6803 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006804 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006805 }
danielk197796d48e92009-06-29 06:00:37 +00006806
danielk19779c3acf32009-05-02 07:36:49 +00006807 /* Save the positions of any other cursors open on this table.
6808 **
danielk19773509a652009-07-06 18:56:13 +00006809 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006810 ** example, when inserting data into a table with auto-generated integer
6811 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6812 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006813 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006814 ** that the cursor is already where it needs to be and returns without
6815 ** doing any work. To avoid thwarting these optimizations, it is important
6816 ** not to clear the cursor here.
6817 */
drh4c301aa2009-07-15 17:25:45 +00006818 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6819 if( rc ) return rc;
6820 if( !loc ){
6821 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6822 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006823 }
danielk1977b980d2212009-06-22 18:03:51 +00006824 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006825
danielk197771d5d2c2008-09-29 11:49:47 +00006826 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006827 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006828 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006829
drh3a4c1412004-05-09 20:40:11 +00006830 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6831 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6832 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006833 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006834 allocateTempSpace(pBt);
6835 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006836 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006837 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006838 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006839 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00006840 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006841 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006842 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006843 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006844 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006845 rc = sqlite3PagerWrite(pPage->pDbPage);
6846 if( rc ){
6847 goto end_insert;
6848 }
danielk197771d5d2c2008-09-29 11:49:47 +00006849 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006850 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006851 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006852 }
drh43605152004-05-29 21:46:49 +00006853 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006854 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006855 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006856 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006857 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006858 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006859 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006860 }else{
drh4b70f112004-05-02 21:12:19 +00006861 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006862 }
drh98add2e2009-07-20 17:11:49 +00006863 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006864 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006865
danielk1977a50d9aa2009-06-08 14:49:45 +00006866 /* If no error has occured and pPage has an overflow cell, call balance()
6867 ** to redistribute the cells within the tree. Since balance() may move
6868 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6869 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006870 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006871 ** Previous versions of SQLite called moveToRoot() to move the cursor
6872 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006873 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6874 ** set the cursor state to "invalid". This makes common insert operations
6875 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006876 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006877 ** There is a subtle but important optimization here too. When inserting
6878 ** multiple records into an intkey b-tree using a single cursor (as can
6879 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6880 ** is advantageous to leave the cursor pointing to the last entry in
6881 ** the b-tree if possible. If the cursor is left pointing to the last
6882 ** entry in the table, and the next row inserted has an integer key
6883 ** larger than the largest existing key, it is possible to insert the
6884 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006885 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006886 pCur->info.nSize = 0;
6887 pCur->validNKey = 0;
6888 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006889 rc = balance(pCur);
6890
6891 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006892 ** fails. Internal data structure corruption will result otherwise.
6893 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6894 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006895 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006896 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006897 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006898 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006899
drh2e38c322004-09-03 18:38:44 +00006900end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006901 return rc;
6902}
6903
6904/*
drh4b70f112004-05-02 21:12:19 +00006905** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006906** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006907*/
drh3aac2dd2004-04-26 14:10:20 +00006908int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006909 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006910 BtShared *pBt = p->pBt;
6911 int rc; /* Return code */
6912 MemPage *pPage; /* Page to delete cell from */
6913 unsigned char *pCell; /* Pointer to cell to delete */
6914 int iCellIdx; /* Index of cell to delete */
6915 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006916
drh1fee73e2007-08-29 04:00:57 +00006917 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006918 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00006919 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh64022502009-01-09 14:11:04 +00006920 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006921 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6922 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6923
danielk19774dbaa892009-06-16 16:50:22 +00006924 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6925 || NEVER(pCur->eState!=CURSOR_VALID)
6926 ){
6927 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006928 }
danielk1977da184232006-01-05 11:34:32 +00006929
danielk197796d48e92009-06-29 06:00:37 +00006930 /* If this is a delete operation to remove a row from a table b-tree,
6931 ** invalidate any incrblob cursors open on the row being deleted. */
6932 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006933 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006934 }
6935
6936 iCellDepth = pCur->iPage;
6937 iCellIdx = pCur->aiIdx[iCellDepth];
6938 pPage = pCur->apPage[iCellDepth];
6939 pCell = findCell(pPage, iCellIdx);
6940
6941 /* If the page containing the entry to delete is not a leaf page, move
6942 ** the cursor to the largest entry in the tree that is smaller than
6943 ** the entry being deleted. This cell will replace the cell being deleted
6944 ** from the internal node. The 'previous' entry is used for this instead
6945 ** of the 'next' entry, as the previous entry is always a part of the
6946 ** sub-tree headed by the child page of the cell being deleted. This makes
6947 ** balancing the tree following the delete operation easier. */
6948 if( !pPage->leaf ){
6949 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006950 rc = sqlite3BtreePrevious(pCur, &notUsed);
6951 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006952 }
6953
6954 /* Save the positions of any other cursors open on this table before
6955 ** making any modifications. Make the page containing the entry to be
6956 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006957 ** entry and finally remove the cell itself from within the page.
6958 */
6959 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6960 if( rc ) return rc;
6961 rc = sqlite3PagerWrite(pPage->pDbPage);
6962 if( rc ) return rc;
6963 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006964 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006965 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006966
danielk19774dbaa892009-06-16 16:50:22 +00006967 /* If the cell deleted was not located on a leaf page, then the cursor
6968 ** is currently pointing to the largest entry in the sub-tree headed
6969 ** by the child-page of the cell that was just deleted from an internal
6970 ** node. The cell from the leaf node needs to be moved to the internal
6971 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006972 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006973 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6974 int nCell;
6975 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6976 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006977
danielk19774dbaa892009-06-16 16:50:22 +00006978 pCell = findCell(pLeaf, pLeaf->nCell-1);
6979 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00006980 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006981
danielk19774dbaa892009-06-16 16:50:22 +00006982 allocateTempSpace(pBt);
6983 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006984
drha4ec1d42009-07-11 13:13:11 +00006985 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006986 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6987 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006988 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006989 }
danielk19774dbaa892009-06-16 16:50:22 +00006990
6991 /* Balance the tree. If the entry deleted was located on a leaf page,
6992 ** then the cursor still points to that page. In this case the first
6993 ** call to balance() repairs the tree, and the if(...) condition is
6994 ** never true.
6995 **
6996 ** Otherwise, if the entry deleted was on an internal node page, then
6997 ** pCur is pointing to the leaf page from which a cell was removed to
6998 ** replace the cell deleted from the internal node. This is slightly
6999 ** tricky as the leaf node may be underfull, and the internal node may
7000 ** be either under or overfull. In this case run the balancing algorithm
7001 ** on the leaf node first. If the balance proceeds far enough up the
7002 ** tree that we can be sure that any problem in the internal node has
7003 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7004 ** walk the cursor up the tree to the internal node and balance it as
7005 ** well. */
7006 rc = balance(pCur);
7007 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7008 while( pCur->iPage>iCellDepth ){
7009 releasePage(pCur->apPage[pCur->iPage--]);
7010 }
7011 rc = balance(pCur);
7012 }
7013
danielk19776b456a22005-03-21 04:04:02 +00007014 if( rc==SQLITE_OK ){
7015 moveToRoot(pCur);
7016 }
drh5e2f8b92001-05-28 00:41:15 +00007017 return rc;
drh3b7511c2001-05-26 13:15:44 +00007018}
drh8b2f49b2001-06-08 00:21:52 +00007019
7020/*
drhc6b52df2002-01-04 03:09:29 +00007021** Create a new BTree table. Write into *piTable the page
7022** number for the root page of the new table.
7023**
drhab01f612004-05-22 02:55:23 +00007024** The type of type is determined by the flags parameter. Only the
7025** following values of flags are currently in use. Other values for
7026** flags might not work:
7027**
7028** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7029** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007030*/
drhd4187c72010-08-30 22:15:45 +00007031static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007032 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007033 MemPage *pRoot;
7034 Pgno pgnoRoot;
7035 int rc;
drhd4187c72010-08-30 22:15:45 +00007036 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007037
drh1fee73e2007-08-29 04:00:57 +00007038 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007039 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007040 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007041
danielk1977003ba062004-11-04 02:57:33 +00007042#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007043 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007044 if( rc ){
7045 return rc;
7046 }
danielk1977003ba062004-11-04 02:57:33 +00007047#else
danielk1977687566d2004-11-02 12:56:41 +00007048 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007049 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7050 MemPage *pPageMove; /* The page to move to. */
7051
danielk197720713f32007-05-03 11:43:33 +00007052 /* Creating a new table may probably require moving an existing database
7053 ** to make room for the new tables root page. In case this page turns
7054 ** out to be an overflow page, delete all overflow page-map caches
7055 ** held by open cursors.
7056 */
danielk197792d4d7a2007-05-04 12:05:56 +00007057 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007058
danielk1977003ba062004-11-04 02:57:33 +00007059 /* Read the value of meta[3] from the database to determine where the
7060 ** root page of the new table should go. meta[3] is the largest root-page
7061 ** created so far, so the new root-page is (meta[3]+1).
7062 */
danielk1977602b4662009-07-02 07:47:33 +00007063 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007064 pgnoRoot++;
7065
danielk1977599fcba2004-11-08 07:13:13 +00007066 /* The new root-page may not be allocated on a pointer-map page, or the
7067 ** PENDING_BYTE page.
7068 */
drh72190432008-01-31 14:54:43 +00007069 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007070 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007071 pgnoRoot++;
7072 }
7073 assert( pgnoRoot>=3 );
7074
7075 /* Allocate a page. The page that currently resides at pgnoRoot will
7076 ** be moved to the allocated page (unless the allocated page happens
7077 ** to reside at pgnoRoot).
7078 */
drh4f0c5872007-03-26 22:05:01 +00007079 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00007080 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007081 return rc;
7082 }
danielk1977003ba062004-11-04 02:57:33 +00007083
7084 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007085 /* pgnoRoot is the page that will be used for the root-page of
7086 ** the new table (assuming an error did not occur). But we were
7087 ** allocated pgnoMove. If required (i.e. if it was not allocated
7088 ** by extending the file), the current page at position pgnoMove
7089 ** is already journaled.
7090 */
drheeb844a2009-08-08 18:01:07 +00007091 u8 eType = 0;
7092 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007093
7094 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00007095
7096 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00007097 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007098 if( rc!=SQLITE_OK ){
7099 return rc;
7100 }
7101 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007102 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7103 rc = SQLITE_CORRUPT_BKPT;
7104 }
7105 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007106 releasePage(pRoot);
7107 return rc;
7108 }
drhccae6022005-02-26 17:31:26 +00007109 assert( eType!=PTRMAP_ROOTPAGE );
7110 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007111 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007112 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007113
7114 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007115 if( rc!=SQLITE_OK ){
7116 return rc;
7117 }
danielk197730548662009-07-09 05:07:37 +00007118 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007119 if( rc!=SQLITE_OK ){
7120 return rc;
7121 }
danielk19773b8a05f2007-03-19 17:44:26 +00007122 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007123 if( rc!=SQLITE_OK ){
7124 releasePage(pRoot);
7125 return rc;
7126 }
7127 }else{
7128 pRoot = pPageMove;
7129 }
7130
danielk197742741be2005-01-08 12:42:39 +00007131 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007132 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007133 if( rc ){
7134 releasePage(pRoot);
7135 return rc;
7136 }
drhbf592832010-03-30 15:51:12 +00007137
7138 /* When the new root page was allocated, page 1 was made writable in
7139 ** order either to increase the database filesize, or to decrement the
7140 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7141 */
7142 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007143 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007144 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007145 releasePage(pRoot);
7146 return rc;
7147 }
danielk197742741be2005-01-08 12:42:39 +00007148
danielk1977003ba062004-11-04 02:57:33 +00007149 }else{
drh4f0c5872007-03-26 22:05:01 +00007150 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007151 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007152 }
7153#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007154 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007155 if( createTabFlags & BTREE_INTKEY ){
7156 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7157 }else{
7158 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7159 }
7160 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007161 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007162 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007163 *piTable = (int)pgnoRoot;
7164 return SQLITE_OK;
7165}
drhd677b3d2007-08-20 22:48:41 +00007166int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7167 int rc;
7168 sqlite3BtreeEnter(p);
7169 rc = btreeCreateTable(p, piTable, flags);
7170 sqlite3BtreeLeave(p);
7171 return rc;
7172}
drh8b2f49b2001-06-08 00:21:52 +00007173
7174/*
7175** Erase the given database page and all its children. Return
7176** the page to the freelist.
7177*/
drh4b70f112004-05-02 21:12:19 +00007178static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007179 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007180 Pgno pgno, /* Page number to clear */
7181 int freePageFlag, /* Deallocate page if true */
7182 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007183){
danielk1977146ba992009-07-22 14:08:13 +00007184 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007185 int rc;
drh4b70f112004-05-02 21:12:19 +00007186 unsigned char *pCell;
7187 int i;
drh8b2f49b2001-06-08 00:21:52 +00007188
drh1fee73e2007-08-29 04:00:57 +00007189 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007190 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007191 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007192 }
7193
danielk197771d5d2c2008-09-29 11:49:47 +00007194 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00007195 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007196 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007197 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007198 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007199 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007200 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007201 }
drh4b70f112004-05-02 21:12:19 +00007202 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007203 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007204 }
drha34b6762004-05-07 13:30:42 +00007205 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007206 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007207 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007208 }else if( pnChange ){
7209 assert( pPage->intKey );
7210 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007211 }
7212 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007213 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007214 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007215 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007216 }
danielk19776b456a22005-03-21 04:04:02 +00007217
7218cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007219 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007220 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007221}
7222
7223/*
drhab01f612004-05-22 02:55:23 +00007224** Delete all information from a single table in the database. iTable is
7225** the page number of the root of the table. After this routine returns,
7226** the root page is empty, but still exists.
7227**
7228** This routine will fail with SQLITE_LOCKED if there are any open
7229** read cursors on the table. Open write cursors are moved to the
7230** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007231**
7232** If pnChange is not NULL, then table iTable must be an intkey table. The
7233** integer value pointed to by pnChange is incremented by the number of
7234** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007235*/
danielk1977c7af4842008-10-27 13:59:33 +00007236int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007237 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007238 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007239 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007240 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007241
7242 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7243 ** is the root of a table b-tree - if it is not, the following call is
7244 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00007245 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00007246
drhc046e3e2009-07-15 11:26:44 +00007247 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7248 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00007249 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007250 }
drhd677b3d2007-08-20 22:48:41 +00007251 sqlite3BtreeLeave(p);
7252 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007253}
7254
7255/*
7256** Erase all information in a table and add the root of the table to
7257** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007258** page 1) is never added to the freelist.
7259**
7260** This routine will fail with SQLITE_LOCKED if there are any open
7261** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007262**
7263** If AUTOVACUUM is enabled and the page at iTable is not the last
7264** root page in the database file, then the last root page
7265** in the database file is moved into the slot formerly occupied by
7266** iTable and that last slot formerly occupied by the last root page
7267** is added to the freelist instead of iTable. In this say, all
7268** root pages are kept at the beginning of the database file, which
7269** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7270** page number that used to be the last root page in the file before
7271** the move. If no page gets moved, *piMoved is set to 0.
7272** The last root page is recorded in meta[3] and the value of
7273** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007274*/
danielk197789d40042008-11-17 14:20:56 +00007275static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007276 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007277 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007278 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007279
drh1fee73e2007-08-29 04:00:57 +00007280 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007281 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007282
danielk1977e6efa742004-11-10 11:55:10 +00007283 /* It is illegal to drop a table if any cursors are open on the
7284 ** database. This is because in auto-vacuum mode the backend may
7285 ** need to move another root-page to fill a gap left by the deleted
7286 ** root page. If an open cursor was using this page a problem would
7287 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007288 **
7289 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007290 */
drhc046e3e2009-07-15 11:26:44 +00007291 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007292 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7293 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007294 }
danielk1977a0bf2652004-11-04 14:30:04 +00007295
danielk197730548662009-07-09 05:07:37 +00007296 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007297 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007298 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007299 if( rc ){
7300 releasePage(pPage);
7301 return rc;
7302 }
danielk1977a0bf2652004-11-04 14:30:04 +00007303
drh205f48e2004-11-05 00:43:11 +00007304 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007305
drh4b70f112004-05-02 21:12:19 +00007306 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007307#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007308 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007309 releasePage(pPage);
7310#else
7311 if( pBt->autoVacuum ){
7312 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007313 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007314
7315 if( iTable==maxRootPgno ){
7316 /* If the table being dropped is the table with the largest root-page
7317 ** number in the database, put the root page on the free list.
7318 */
drhc314dc72009-07-21 11:52:34 +00007319 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007320 releasePage(pPage);
7321 if( rc!=SQLITE_OK ){
7322 return rc;
7323 }
7324 }else{
7325 /* The table being dropped does not have the largest root-page
7326 ** number in the database. So move the page that does into the
7327 ** gap left by the deleted root-page.
7328 */
7329 MemPage *pMove;
7330 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007331 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007332 if( rc!=SQLITE_OK ){
7333 return rc;
7334 }
danielk19774c999992008-07-16 18:17:55 +00007335 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007336 releasePage(pMove);
7337 if( rc!=SQLITE_OK ){
7338 return rc;
7339 }
drhfe3313f2009-07-21 19:02:20 +00007340 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007341 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007342 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007343 releasePage(pMove);
7344 if( rc!=SQLITE_OK ){
7345 return rc;
7346 }
7347 *piMoved = maxRootPgno;
7348 }
7349
danielk1977599fcba2004-11-08 07:13:13 +00007350 /* Set the new 'max-root-page' value in the database header. This
7351 ** is the old value less one, less one more if that happens to
7352 ** be a root-page number, less one again if that is the
7353 ** PENDING_BYTE_PAGE.
7354 */
danielk197787a6e732004-11-05 12:58:25 +00007355 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007356 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7357 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007358 maxRootPgno--;
7359 }
danielk1977599fcba2004-11-08 07:13:13 +00007360 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7361
danielk1977aef0bf62005-12-30 16:28:01 +00007362 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007363 }else{
drhc314dc72009-07-21 11:52:34 +00007364 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007365 releasePage(pPage);
7366 }
7367#endif
drh2aa679f2001-06-25 02:11:07 +00007368 }else{
drhc046e3e2009-07-15 11:26:44 +00007369 /* If sqlite3BtreeDropTable was called on page 1.
7370 ** This really never should happen except in a corrupt
7371 ** database.
7372 */
drha34b6762004-05-07 13:30:42 +00007373 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007374 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007375 }
drh8b2f49b2001-06-08 00:21:52 +00007376 return rc;
7377}
drhd677b3d2007-08-20 22:48:41 +00007378int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7379 int rc;
7380 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007381 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007382 sqlite3BtreeLeave(p);
7383 return rc;
7384}
drh8b2f49b2001-06-08 00:21:52 +00007385
drh001bbcb2003-03-19 03:14:00 +00007386
drh8b2f49b2001-06-08 00:21:52 +00007387/*
danielk1977602b4662009-07-02 07:47:33 +00007388** This function may only be called if the b-tree connection already
7389** has a read or write transaction open on the database.
7390**
drh23e11ca2004-05-04 17:27:28 +00007391** Read the meta-information out of a database file. Meta[0]
7392** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007393** through meta[15] are available for use by higher layers. Meta[0]
7394** is read-only, the others are read/write.
7395**
7396** The schema layer numbers meta values differently. At the schema
7397** layer (and the SetCookie and ReadCookie opcodes) the number of
7398** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007399*/
danielk1977602b4662009-07-02 07:47:33 +00007400void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007401 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007402
drhd677b3d2007-08-20 22:48:41 +00007403 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007404 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007405 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007406 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007407 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007408
danielk1977602b4662009-07-02 07:47:33 +00007409 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007410
danielk1977602b4662009-07-02 07:47:33 +00007411 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7412 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007413#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007414 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7415 pBt->btsFlags |= BTS_READ_ONLY;
7416 }
danielk1977003ba062004-11-04 02:57:33 +00007417#endif
drhae157872004-08-14 19:20:09 +00007418
drhd677b3d2007-08-20 22:48:41 +00007419 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007420}
7421
7422/*
drh23e11ca2004-05-04 17:27:28 +00007423** Write meta-information back into the database. Meta[0] is
7424** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007425*/
danielk1977aef0bf62005-12-30 16:28:01 +00007426int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7427 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007428 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007429 int rc;
drh23e11ca2004-05-04 17:27:28 +00007430 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007431 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007432 assert( p->inTrans==TRANS_WRITE );
7433 assert( pBt->pPage1!=0 );
7434 pP1 = pBt->pPage1->aData;
7435 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7436 if( rc==SQLITE_OK ){
7437 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007438#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007439 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007440 assert( pBt->autoVacuum || iMeta==0 );
7441 assert( iMeta==0 || iMeta==1 );
7442 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007443 }
drh64022502009-01-09 14:11:04 +00007444#endif
drh5df72a52002-06-06 23:16:05 +00007445 }
drhd677b3d2007-08-20 22:48:41 +00007446 sqlite3BtreeLeave(p);
7447 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007448}
drh8c42ca92001-06-22 19:15:00 +00007449
danielk1977a5533162009-02-24 10:01:51 +00007450#ifndef SQLITE_OMIT_BTREECOUNT
7451/*
7452** The first argument, pCur, is a cursor opened on some b-tree. Count the
7453** number of entries in the b-tree and write the result to *pnEntry.
7454**
7455** SQLITE_OK is returned if the operation is successfully executed.
7456** Otherwise, if an error is encountered (i.e. an IO error or database
7457** corruption) an SQLite error code is returned.
7458*/
7459int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7460 i64 nEntry = 0; /* Value to return in *pnEntry */
7461 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007462
7463 if( pCur->pgnoRoot==0 ){
7464 *pnEntry = 0;
7465 return SQLITE_OK;
7466 }
danielk1977a5533162009-02-24 10:01:51 +00007467 rc = moveToRoot(pCur);
7468
7469 /* Unless an error occurs, the following loop runs one iteration for each
7470 ** page in the B-Tree structure (not including overflow pages).
7471 */
7472 while( rc==SQLITE_OK ){
7473 int iIdx; /* Index of child node in parent */
7474 MemPage *pPage; /* Current page of the b-tree */
7475
7476 /* If this is a leaf page or the tree is not an int-key tree, then
7477 ** this page contains countable entries. Increment the entry counter
7478 ** accordingly.
7479 */
7480 pPage = pCur->apPage[pCur->iPage];
7481 if( pPage->leaf || !pPage->intKey ){
7482 nEntry += pPage->nCell;
7483 }
7484
7485 /* pPage is a leaf node. This loop navigates the cursor so that it
7486 ** points to the first interior cell that it points to the parent of
7487 ** the next page in the tree that has not yet been visited. The
7488 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7489 ** of the page, or to the number of cells in the page if the next page
7490 ** to visit is the right-child of its parent.
7491 **
7492 ** If all pages in the tree have been visited, return SQLITE_OK to the
7493 ** caller.
7494 */
7495 if( pPage->leaf ){
7496 do {
7497 if( pCur->iPage==0 ){
7498 /* All pages of the b-tree have been visited. Return successfully. */
7499 *pnEntry = nEntry;
7500 return SQLITE_OK;
7501 }
danielk197730548662009-07-09 05:07:37 +00007502 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007503 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7504
7505 pCur->aiIdx[pCur->iPage]++;
7506 pPage = pCur->apPage[pCur->iPage];
7507 }
7508
7509 /* Descend to the child node of the cell that the cursor currently
7510 ** points at. This is the right-child if (iIdx==pPage->nCell).
7511 */
7512 iIdx = pCur->aiIdx[pCur->iPage];
7513 if( iIdx==pPage->nCell ){
7514 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7515 }else{
7516 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7517 }
7518 }
7519
shanebe217792009-03-05 04:20:31 +00007520 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007521 return rc;
7522}
7523#endif
drhdd793422001-06-28 01:54:48 +00007524
drhdd793422001-06-28 01:54:48 +00007525/*
drh5eddca62001-06-30 21:53:53 +00007526** Return the pager associated with a BTree. This routine is used for
7527** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007528*/
danielk1977aef0bf62005-12-30 16:28:01 +00007529Pager *sqlite3BtreePager(Btree *p){
7530 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007531}
drh5eddca62001-06-30 21:53:53 +00007532
drhb7f91642004-10-31 02:22:47 +00007533#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007534/*
7535** Append a message to the error message string.
7536*/
drh2e38c322004-09-03 18:38:44 +00007537static void checkAppendMsg(
7538 IntegrityCk *pCheck,
7539 char *zMsg1,
7540 const char *zFormat,
7541 ...
7542){
7543 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007544 if( !pCheck->mxErr ) return;
7545 pCheck->mxErr--;
7546 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007547 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007548 if( pCheck->errMsg.nChar ){
7549 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007550 }
drhf089aa42008-07-08 19:34:06 +00007551 if( zMsg1 ){
7552 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7553 }
7554 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7555 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007556 if( pCheck->errMsg.mallocFailed ){
7557 pCheck->mallocFailed = 1;
7558 }
drh5eddca62001-06-30 21:53:53 +00007559}
drhb7f91642004-10-31 02:22:47 +00007560#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007561
drhb7f91642004-10-31 02:22:47 +00007562#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007563/*
7564** Add 1 to the reference count for page iPage. If this is the second
7565** reference to the page, add an error message to pCheck->zErrMsg.
7566** Return 1 if there are 2 ore more references to the page and 0 if
7567** if this is the first reference to the page.
7568**
7569** Also check that the page number is in bounds.
7570*/
danielk197789d40042008-11-17 14:20:56 +00007571static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007572 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007573 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007574 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007575 return 1;
7576 }
7577 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007578 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007579 return 1;
7580 }
7581 return (pCheck->anRef[iPage]++)>1;
7582}
7583
danielk1977afcdd022004-10-31 16:25:42 +00007584#ifndef SQLITE_OMIT_AUTOVACUUM
7585/*
7586** Check that the entry in the pointer-map for page iChild maps to
7587** page iParent, pointer type ptrType. If not, append an error message
7588** to pCheck.
7589*/
7590static void checkPtrmap(
7591 IntegrityCk *pCheck, /* Integrity check context */
7592 Pgno iChild, /* Child page number */
7593 u8 eType, /* Expected pointer map type */
7594 Pgno iParent, /* Expected pointer map parent page number */
7595 char *zContext /* Context description (used for error msg) */
7596){
7597 int rc;
7598 u8 ePtrmapType;
7599 Pgno iPtrmapParent;
7600
7601 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7602 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007603 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007604 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7605 return;
7606 }
7607
7608 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7609 checkAppendMsg(pCheck, zContext,
7610 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7611 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7612 }
7613}
7614#endif
7615
drh5eddca62001-06-30 21:53:53 +00007616/*
7617** Check the integrity of the freelist or of an overflow page list.
7618** Verify that the number of pages on the list is N.
7619*/
drh30e58752002-03-02 20:41:57 +00007620static void checkList(
7621 IntegrityCk *pCheck, /* Integrity checking context */
7622 int isFreeList, /* True for a freelist. False for overflow page list */
7623 int iPage, /* Page number for first page in the list */
7624 int N, /* Expected number of pages in the list */
7625 char *zContext /* Context for error messages */
7626){
7627 int i;
drh3a4c1412004-05-09 20:40:11 +00007628 int expected = N;
7629 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007630 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007631 DbPage *pOvflPage;
7632 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007633 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007634 checkAppendMsg(pCheck, zContext,
7635 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007636 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007637 break;
7638 }
7639 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007640 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007641 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007642 break;
7643 }
danielk19773b8a05f2007-03-19 17:44:26 +00007644 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007645 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007646 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007647#ifndef SQLITE_OMIT_AUTOVACUUM
7648 if( pCheck->pBt->autoVacuum ){
7649 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7650 }
7651#endif
drh43b18e12010-08-17 19:40:08 +00007652 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007653 checkAppendMsg(pCheck, zContext,
7654 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007655 N--;
7656 }else{
7657 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007658 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007659#ifndef SQLITE_OMIT_AUTOVACUUM
7660 if( pCheck->pBt->autoVacuum ){
7661 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7662 }
7663#endif
7664 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007665 }
7666 N -= n;
drh30e58752002-03-02 20:41:57 +00007667 }
drh30e58752002-03-02 20:41:57 +00007668 }
danielk1977afcdd022004-10-31 16:25:42 +00007669#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007670 else{
7671 /* If this database supports auto-vacuum and iPage is not the last
7672 ** page in this overflow list, check that the pointer-map entry for
7673 ** the following page matches iPage.
7674 */
7675 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007676 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007677 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7678 }
danielk1977afcdd022004-10-31 16:25:42 +00007679 }
7680#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007681 iPage = get4byte(pOvflData);
7682 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007683 }
7684}
drhb7f91642004-10-31 02:22:47 +00007685#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007686
drhb7f91642004-10-31 02:22:47 +00007687#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007688/*
7689** Do various sanity checks on a single page of a tree. Return
7690** the tree depth. Root pages return 0. Parents of root pages
7691** return 1, and so forth.
7692**
7693** These checks are done:
7694**
7695** 1. Make sure that cells and freeblocks do not overlap
7696** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007697** NO 2. Make sure cell keys are in order.
7698** NO 3. Make sure no key is less than or equal to zLowerBound.
7699** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007700** 5. Check the integrity of overflow pages.
7701** 6. Recursively call checkTreePage on all children.
7702** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007703** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007704** the root of the tree.
7705*/
7706static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007707 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007708 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007709 char *zParentContext, /* Parent context */
7710 i64 *pnParentMinKey,
7711 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007712){
7713 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007714 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007715 int hdr, cellStart;
7716 int nCell;
drhda200cc2004-05-09 11:51:38 +00007717 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007718 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007719 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007720 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007721 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007722 i64 nMinKey = 0;
7723 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007724
drh5bb3eb92007-05-04 13:15:55 +00007725 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007726
drh5eddca62001-06-30 21:53:53 +00007727 /* Check that the page exists
7728 */
drhd9cb6ac2005-10-20 07:28:17 +00007729 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007730 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007731 if( iPage==0 ) return 0;
7732 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007733 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007734 checkAppendMsg(pCheck, zContext,
7735 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007736 return 0;
7737 }
danielk197793caf5a2009-07-11 06:55:33 +00007738
7739 /* Clear MemPage.isInit to make sure the corruption detection code in
7740 ** btreeInitPage() is executed. */
7741 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007742 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007743 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007744 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007745 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007746 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007747 return 0;
7748 }
7749
7750 /* Check out all the cells.
7751 */
7752 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007753 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007754 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007755 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007756 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007757
7758 /* Check payload overflow pages
7759 */
drh5bb3eb92007-05-04 13:15:55 +00007760 sqlite3_snprintf(sizeof(zContext), zContext,
7761 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007762 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007763 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007764 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007765 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007766 /* For intKey pages, check that the keys are in order.
7767 */
7768 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7769 else{
7770 if( info.nKey <= nMaxKey ){
7771 checkAppendMsg(pCheck, zContext,
7772 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7773 }
7774 nMaxKey = info.nKey;
7775 }
drh72365832007-03-06 15:53:44 +00007776 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007777 if( (sz>info.nLocal)
7778 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7779 ){
drhb6f41482004-05-14 01:58:11 +00007780 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007781 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7782#ifndef SQLITE_OMIT_AUTOVACUUM
7783 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007784 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007785 }
7786#endif
7787 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007788 }
7789
7790 /* Check sanity of left child page.
7791 */
drhda200cc2004-05-09 11:51:38 +00007792 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007793 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007794#ifndef SQLITE_OMIT_AUTOVACUUM
7795 if( pBt->autoVacuum ){
7796 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7797 }
7798#endif
shaneh195475d2010-02-19 04:28:08 +00007799 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007800 if( i>0 && d2!=depth ){
7801 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7802 }
7803 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007804 }
drh5eddca62001-06-30 21:53:53 +00007805 }
shaneh195475d2010-02-19 04:28:08 +00007806
drhda200cc2004-05-09 11:51:38 +00007807 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007808 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007809 sqlite3_snprintf(sizeof(zContext), zContext,
7810 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007811#ifndef SQLITE_OMIT_AUTOVACUUM
7812 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007813 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007814 }
7815#endif
shaneh195475d2010-02-19 04:28:08 +00007816 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007817 }
drh5eddca62001-06-30 21:53:53 +00007818
shaneh195475d2010-02-19 04:28:08 +00007819 /* For intKey leaf pages, check that the min/max keys are in order
7820 ** with any left/parent/right pages.
7821 */
7822 if( pPage->leaf && pPage->intKey ){
7823 /* if we are a left child page */
7824 if( pnParentMinKey ){
7825 /* if we are the left most child page */
7826 if( !pnParentMaxKey ){
7827 if( nMaxKey > *pnParentMinKey ){
7828 checkAppendMsg(pCheck, zContext,
7829 "Rowid %lld out of order (max larger than parent min of %lld)",
7830 nMaxKey, *pnParentMinKey);
7831 }
7832 }else{
7833 if( nMinKey <= *pnParentMinKey ){
7834 checkAppendMsg(pCheck, zContext,
7835 "Rowid %lld out of order (min less than parent min of %lld)",
7836 nMinKey, *pnParentMinKey);
7837 }
7838 if( nMaxKey > *pnParentMaxKey ){
7839 checkAppendMsg(pCheck, zContext,
7840 "Rowid %lld out of order (max larger than parent max of %lld)",
7841 nMaxKey, *pnParentMaxKey);
7842 }
7843 *pnParentMinKey = nMaxKey;
7844 }
7845 /* else if we're a right child page */
7846 } else if( pnParentMaxKey ){
7847 if( nMinKey <= *pnParentMaxKey ){
7848 checkAppendMsg(pCheck, zContext,
7849 "Rowid %lld out of order (min less than parent max of %lld)",
7850 nMinKey, *pnParentMaxKey);
7851 }
7852 }
7853 }
7854
drh5eddca62001-06-30 21:53:53 +00007855 /* Check for complete coverage of the page
7856 */
drhda200cc2004-05-09 11:51:38 +00007857 data = pPage->aData;
7858 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007859 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007860 if( hit==0 ){
7861 pCheck->mallocFailed = 1;
7862 }else{
drh5d433ce2010-08-14 16:02:52 +00007863 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007864 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007865 memset(hit+contentOffset, 0, usableSize-contentOffset);
7866 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007867 nCell = get2byte(&data[hdr+3]);
7868 cellStart = hdr + 12 - 4*pPage->leaf;
7869 for(i=0; i<nCell; i++){
7870 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00007871 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00007872 int j;
drh8c2bbb62009-07-10 02:52:20 +00007873 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007874 size = cellSizePtr(pPage, &data[pc]);
7875 }
drh43b18e12010-08-17 19:40:08 +00007876 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007877 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007878 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007879 }else{
7880 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7881 }
drh2e38c322004-09-03 18:38:44 +00007882 }
drh8c2bbb62009-07-10 02:52:20 +00007883 i = get2byte(&data[hdr+1]);
7884 while( i>0 ){
7885 int size, j;
7886 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7887 size = get2byte(&data[i+2]);
7888 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7889 for(j=i+size-1; j>=i; j--) hit[j]++;
7890 j = get2byte(&data[i]);
7891 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7892 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7893 i = j;
drh2e38c322004-09-03 18:38:44 +00007894 }
7895 for(i=cnt=0; i<usableSize; i++){
7896 if( hit[i]==0 ){
7897 cnt++;
7898 }else if( hit[i]>1 ){
7899 checkAppendMsg(pCheck, 0,
7900 "Multiple uses for byte %d of page %d", i, iPage);
7901 break;
7902 }
7903 }
7904 if( cnt!=data[hdr+7] ){
7905 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007906 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007907 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007908 }
7909 }
drh8c2bbb62009-07-10 02:52:20 +00007910 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007911 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007912 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007913}
drhb7f91642004-10-31 02:22:47 +00007914#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007915
drhb7f91642004-10-31 02:22:47 +00007916#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007917/*
7918** This routine does a complete check of the given BTree file. aRoot[] is
7919** an array of pages numbers were each page number is the root page of
7920** a table. nRoot is the number of entries in aRoot.
7921**
danielk19773509a652009-07-06 18:56:13 +00007922** A read-only or read-write transaction must be opened before calling
7923** this function.
7924**
drhc890fec2008-08-01 20:10:08 +00007925** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007926** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007927** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007928** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007929*/
drh1dcdbc02007-01-27 02:24:54 +00007930char *sqlite3BtreeIntegrityCheck(
7931 Btree *p, /* The btree to be checked */
7932 int *aRoot, /* An array of root pages numbers for individual trees */
7933 int nRoot, /* Number of entries in aRoot[] */
7934 int mxErr, /* Stop reporting errors after this many */
7935 int *pnErr /* Write number of errors seen to this variable */
7936){
danielk197789d40042008-11-17 14:20:56 +00007937 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007938 int nRef;
drhaaab5722002-02-19 13:39:21 +00007939 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007940 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007941 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007942
drhd677b3d2007-08-20 22:48:41 +00007943 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007944 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007945 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007946 sCheck.pBt = pBt;
7947 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00007948 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007949 sCheck.mxErr = mxErr;
7950 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007951 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007952 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007953 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007954 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007955 return 0;
7956 }
drhe5ae5732008-06-15 02:51:47 +00007957 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007958 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007959 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007960 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007961 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007962 }
drhda200cc2004-05-09 11:51:38 +00007963 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007964 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007965 if( i<=sCheck.nPage ){
7966 sCheck.anRef[i] = 1;
7967 }
drhf089aa42008-07-08 19:34:06 +00007968 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drhb9755982010-07-24 16:34:37 +00007969 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00007970
7971 /* Check the integrity of the freelist
7972 */
drha34b6762004-05-07 13:30:42 +00007973 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7974 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007975
7976 /* Check all the tables.
7977 */
danielk197789d40042008-11-17 14:20:56 +00007978 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007979 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007980#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007981 if( pBt->autoVacuum && aRoot[i]>1 ){
7982 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7983 }
7984#endif
shaneh195475d2010-02-19 04:28:08 +00007985 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00007986 }
7987
7988 /* Make sure every page in the file is referenced
7989 */
drh1dcdbc02007-01-27 02:24:54 +00007990 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007991#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007992 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007993 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007994 }
danielk1977afcdd022004-10-31 16:25:42 +00007995#else
7996 /* If the database supports auto-vacuum, make sure no tables contain
7997 ** references to pointer-map pages.
7998 */
7999 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008000 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008001 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8002 }
8003 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008004 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008005 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8006 }
8007#endif
drh5eddca62001-06-30 21:53:53 +00008008 }
8009
drh64022502009-01-09 14:11:04 +00008010 /* Make sure this analysis did not leave any unref() pages.
8011 ** This is an internal consistency check; an integrity check
8012 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008013 */
drh64022502009-01-09 14:11:04 +00008014 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008015 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008016 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008017 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008018 );
drh5eddca62001-06-30 21:53:53 +00008019 }
8020
8021 /* Clean up and report errors.
8022 */
drhd677b3d2007-08-20 22:48:41 +00008023 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00008024 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00008025 if( sCheck.mallocFailed ){
8026 sqlite3StrAccumReset(&sCheck.errMsg);
8027 *pnErr = sCheck.nErr+1;
8028 return 0;
8029 }
drh1dcdbc02007-01-27 02:24:54 +00008030 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008031 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8032 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008033}
drhb7f91642004-10-31 02:22:47 +00008034#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008035
drh73509ee2003-04-06 20:44:45 +00008036/*
8037** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00008038**
8039** The pager filename is invariant as long as the pager is
8040** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008041*/
danielk1977aef0bf62005-12-30 16:28:01 +00008042const char *sqlite3BtreeGetFilename(Btree *p){
8043 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008044 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00008045}
8046
8047/*
danielk19775865e3d2004-06-14 06:03:57 +00008048** Return the pathname of the journal file for this database. The return
8049** value of this routine is the same regardless of whether the journal file
8050** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008051**
8052** The pager journal filename is invariant as long as the pager is
8053** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008054*/
danielk1977aef0bf62005-12-30 16:28:01 +00008055const char *sqlite3BtreeGetJournalname(Btree *p){
8056 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008057 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008058}
8059
danielk19771d850a72004-05-31 08:26:49 +00008060/*
8061** Return non-zero if a transaction is active.
8062*/
danielk1977aef0bf62005-12-30 16:28:01 +00008063int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008064 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008065 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008066}
8067
dana550f2d2010-08-02 10:47:05 +00008068#ifndef SQLITE_OMIT_WAL
8069/*
8070** Run a checkpoint on the Btree passed as the first argument.
8071**
8072** Return SQLITE_LOCKED if this or any other connection has an open
8073** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008074**
dancdc1f042010-11-18 12:11:05 +00008075** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008076*/
dancdc1f042010-11-18 12:11:05 +00008077int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008078 int rc = SQLITE_OK;
8079 if( p ){
8080 BtShared *pBt = p->pBt;
8081 sqlite3BtreeEnter(p);
8082 if( pBt->inTransaction!=TRANS_NONE ){
8083 rc = SQLITE_LOCKED;
8084 }else{
dancdc1f042010-11-18 12:11:05 +00008085 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008086 }
8087 sqlite3BtreeLeave(p);
8088 }
8089 return rc;
8090}
8091#endif
8092
danielk19771d850a72004-05-31 08:26:49 +00008093/*
danielk19772372c2b2006-06-27 16:34:56 +00008094** Return non-zero if a read (or write) transaction is active.
8095*/
8096int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008097 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008098 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008099 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008100}
8101
danielk197704103022009-02-03 16:51:24 +00008102int sqlite3BtreeIsInBackup(Btree *p){
8103 assert( p );
8104 assert( sqlite3_mutex_held(p->db->mutex) );
8105 return p->nBackup!=0;
8106}
8107
danielk19772372c2b2006-06-27 16:34:56 +00008108/*
danielk1977da184232006-01-05 11:34:32 +00008109** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008110** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008111** purposes (for example, to store a high-level schema associated with
8112** the shared-btree). The btree layer manages reference counting issues.
8113**
8114** The first time this is called on a shared-btree, nBytes bytes of memory
8115** are allocated, zeroed, and returned to the caller. For each subsequent
8116** call the nBytes parameter is ignored and a pointer to the same blob
8117** of memory returned.
8118**
danielk1977171bfed2008-06-23 09:50:50 +00008119** If the nBytes parameter is 0 and the blob of memory has not yet been
8120** allocated, a null pointer is returned. If the blob has already been
8121** allocated, it is returned as normal.
8122**
danielk1977da184232006-01-05 11:34:32 +00008123** Just before the shared-btree is closed, the function passed as the
8124** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008125** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008126** on the memory, the btree layer does that.
8127*/
8128void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8129 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008130 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008131 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008132 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008133 pBt->xFreeSchema = xFree;
8134 }
drh27641702007-08-22 02:56:42 +00008135 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008136 return pBt->pSchema;
8137}
8138
danielk1977c87d34d2006-01-06 13:00:28 +00008139/*
danielk1977404ca072009-03-16 13:19:36 +00008140** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8141** btree as the argument handle holds an exclusive lock on the
8142** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008143*/
8144int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008145 int rc;
drhe5fe6902007-12-07 18:55:28 +00008146 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008147 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008148 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8149 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008150 sqlite3BtreeLeave(p);
8151 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008152}
8153
drha154dcd2006-03-22 22:10:07 +00008154
8155#ifndef SQLITE_OMIT_SHARED_CACHE
8156/*
8157** Obtain a lock on the table whose root page is iTab. The
8158** lock is a write lock if isWritelock is true or a read lock
8159** if it is false.
8160*/
danielk1977c00da102006-01-07 13:21:04 +00008161int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008162 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008163 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008164 if( p->sharable ){
8165 u8 lockType = READ_LOCK + isWriteLock;
8166 assert( READ_LOCK+1==WRITE_LOCK );
8167 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008168
drh6a9ad3d2008-04-02 16:29:30 +00008169 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008170 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008171 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008172 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008173 }
8174 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008175 }
8176 return rc;
8177}
drha154dcd2006-03-22 22:10:07 +00008178#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008179
danielk1977b4e9af92007-05-01 17:49:49 +00008180#ifndef SQLITE_OMIT_INCRBLOB
8181/*
8182** Argument pCsr must be a cursor opened for writing on an
8183** INTKEY table currently pointing at a valid table entry.
8184** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008185**
8186** Only the data content may only be modified, it is not possible to
8187** change the length of the data stored. If this function is called with
8188** parameters that attempt to write past the end of the existing data,
8189** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008190*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008191int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008192 int rc;
drh1fee73e2007-08-29 04:00:57 +00008193 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008194 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008195 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008196
danielk1977c9000e62009-07-08 13:55:28 +00008197 rc = restoreCursorPosition(pCsr);
8198 if( rc!=SQLITE_OK ){
8199 return rc;
8200 }
danielk19773588ceb2008-06-10 17:30:26 +00008201 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8202 if( pCsr->eState!=CURSOR_VALID ){
8203 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008204 }
8205
danielk1977c9000e62009-07-08 13:55:28 +00008206 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008207 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008208 ** (b) there is a read/write transaction open,
8209 ** (c) the connection holds a write-lock on the table (if required),
8210 ** (d) there are no conflicting read-locks, and
8211 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008212 */
danielk19774f029602009-07-08 18:45:37 +00008213 if( !pCsr->wrFlag ){
8214 return SQLITE_READONLY;
8215 }
drhc9166342012-01-05 23:32:06 +00008216 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8217 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008218 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8219 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008220 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008221
drhfb192682009-07-11 18:26:28 +00008222 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008223}
danielk19772dec9702007-05-02 16:48:37 +00008224
8225/*
8226** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008227** overflow list for the current row. This is used by cursors opened
8228** for incremental blob IO only.
8229**
8230** This function sets a flag only. The actual page location cache
8231** (stored in BtCursor.aOverflow[]) is allocated and used by function
8232** accessPayload() (the worker function for sqlite3BtreeData() and
8233** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008234*/
8235void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008236 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008237 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008238 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008239 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008240}
danielk1977b4e9af92007-05-01 17:49:49 +00008241#endif
dane04dc882010-04-20 18:53:15 +00008242
8243/*
8244** Set both the "read version" (single byte at byte offset 18) and
8245** "write version" (single byte at byte offset 19) fields in the database
8246** header to iVersion.
8247*/
8248int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8249 BtShared *pBt = pBtree->pBt;
8250 int rc; /* Return code */
8251
dane04dc882010-04-20 18:53:15 +00008252 assert( iVersion==1 || iVersion==2 );
8253
danb9780022010-04-21 18:37:57 +00008254 /* If setting the version fields to 1, do not automatically open the
8255 ** WAL connection, even if the version fields are currently set to 2.
8256 */
drhc9166342012-01-05 23:32:06 +00008257 pBt->btsFlags &= ~BTS_NO_WAL;
8258 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008259
8260 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008261 if( rc==SQLITE_OK ){
8262 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008263 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008264 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008265 if( rc==SQLITE_OK ){
8266 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8267 if( rc==SQLITE_OK ){
8268 aData[18] = (u8)iVersion;
8269 aData[19] = (u8)iVersion;
8270 }
8271 }
8272 }
dane04dc882010-04-20 18:53:15 +00008273 }
8274
drhc9166342012-01-05 23:32:06 +00008275 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008276 return rc;
8277}