blob: 68f196206fb5f5c31566e45c2073e86a12000d63 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
danielk197796d48e92009-06-29 06:00:37 +000012** $Id: btree.c,v 1.646 2009/06/29 06:00:37 danielk1977 Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000015** See the header comment on "btreeInt.h" for additional information.
16** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000017*/
drha3152892007-05-05 11:48:52 +000018#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000019
drh8c42ca92001-06-22 19:15:00 +000020/*
drha3152892007-05-05 11:48:52 +000021** The header string that appears at the beginning of every
22** SQLite database.
drh556b2a22005-06-14 16:04:05 +000023*/
drh556b2a22005-06-14 16:04:05 +000024static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000025
drh8c42ca92001-06-22 19:15:00 +000026/*
drha3152892007-05-05 11:48:52 +000027** Set this global variable to 1 to enable tracing using the TRACE
28** macro.
drh615ae552005-01-16 23:21:00 +000029*/
drhe8f52c52008-07-12 14:52:20 +000030#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000031int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000032# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
33#else
34# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000035#endif
drh615ae552005-01-16 23:21:00 +000036
drh86f8c192007-08-22 00:39:19 +000037
38
drhe53831d2007-08-17 01:14:38 +000039#ifndef SQLITE_OMIT_SHARED_CACHE
40/*
danielk1977502b4e02008-09-02 14:07:24 +000041** A list of BtShared objects that are eligible for participation
42** in shared cache. This variable has file scope during normal builds,
43** but the test harness needs to access it so we make it global for
44** test builds.
drh7555d8e2009-03-20 13:15:30 +000045**
46** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000047*/
48#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000049BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#else
drh78f82d12008-09-02 00:52:52 +000051static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000052#endif
drhe53831d2007-08-17 01:14:38 +000053#endif /* SQLITE_OMIT_SHARED_CACHE */
54
55#ifndef SQLITE_OMIT_SHARED_CACHE
56/*
57** Enable or disable the shared pager and schema features.
58**
59** This routine has no effect on existing database connections.
60** The shared cache setting effects only future calls to
61** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
62*/
63int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000064 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000065 return SQLITE_OK;
66}
67#endif
68
drhd677b3d2007-08-20 22:48:41 +000069
danielk1977aef0bf62005-12-30 16:28:01 +000070
71#ifdef SQLITE_OMIT_SHARED_CACHE
72 /*
drhc25eabe2009-02-24 18:57:31 +000073 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
74 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000075 ** manipulate entries in the BtShared.pLock linked list used to store
76 ** shared-cache table level locks. If the library is compiled with the
77 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000078 ** of each BtShared structure and so this locking is not necessary.
79 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000080 */
drhc25eabe2009-02-24 18:57:31 +000081 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
82 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
83 #define clearAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000084 #define hasSharedCacheTableLock(a,b,c,d) 1
85 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000086#endif
danielk1977aef0bf62005-12-30 16:28:01 +000087
drhe53831d2007-08-17 01:14:38 +000088#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000089
90#ifdef SQLITE_DEBUG
91/*
92** This function is only used as part of an assert() statement. It checks
93** that connection p holds the required locks to read or write to the
94** b-tree with root page iRoot. If so, true is returned. Otherwise, false.
95** For example, when writing to a table b-tree with root-page iRoot via
96** Btree connection pBtree:
97**
98** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
99**
100** When writing to an index b-tree that resides in a sharable database, the
101** caller should have first obtained a lock specifying the root page of
102** the corresponding table b-tree. This makes things a bit more complicated,
103** as this module treats each b-tree as a separate structure. To determine
104** the table b-tree corresponding to the index b-tree being written, this
105** function has to search through the database schema.
106**
107** Instead of a lock on the b-tree rooted at page iRoot, the caller may
108** hold a write-lock on the schema table (root page 1). This is also
109** acceptable.
110*/
111static int hasSharedCacheTableLock(
112 Btree *pBtree, /* Handle that must hold lock */
113 Pgno iRoot, /* Root page of b-tree */
114 int isIndex, /* True if iRoot is the root of an index b-tree */
115 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
116){
117 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
118 Pgno iTab = 0;
119 BtLock *pLock;
120
121 /* If this b-tree database is not shareable, or if the client is reading
122 ** and has the read-uncommitted flag set, then no lock is required.
123 ** In these cases return true immediately. If the client is reading
124 ** or writing an index b-tree, but the schema is not loaded, then return
125 ** true also. In this case the lock is required, but it is too difficult
126 ** to check if the client actually holds it. This doesn't happen very
127 ** often. */
128 if( (pBtree->sharable==0)
129 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
130 || (isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0 ))
131 ){
132 return 1;
133 }
134
135 /* Figure out the root-page that the lock should be held on. For table
136 ** b-trees, this is just the root page of the b-tree being read or
137 ** written. For index b-trees, it is the root page of the associated
138 ** table. */
139 if( isIndex ){
140 HashElem *p;
141 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
142 Index *pIdx = (Index *)sqliteHashData(p);
143 if( pIdx->tnum==iRoot ){
144 iTab = pIdx->pTable->tnum;
145 }
146 }
147 }else{
148 iTab = iRoot;
149 }
150
151 /* Search for the required lock. Either a write-lock on root-page iTab, a
152 ** write-lock on the schema table, or (if the client is reading) a
153 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
154 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
155 if( pLock->pBtree==pBtree
156 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
157 && pLock->eLock>=eLockType
158 ){
159 return 1;
160 }
161 }
162
163 /* Failed to find the required lock. */
164 return 0;
165}
166
167/*
168** This function is also used as part of assert() statements only. It
169** returns true if there exist one or more cursors open on the table
170** with root page iRoot that do not belong to either connection pBtree
171** or some other connection that has the read-uncommitted flag set.
172**
173** For example, before writing to page iRoot:
174**
175** assert( !hasReadConflicts(pBtree, iRoot) );
176*/
177static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
178 BtCursor *p;
179 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
180 if( p->pgnoRoot==iRoot
181 && p->pBtree!=pBtree
182 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
183 ){
184 return 1;
185 }
186 }
187 return 0;
188}
189#endif /* #ifdef SQLITE_DEBUG */
190
danielk1977da184232006-01-05 11:34:32 +0000191/*
danielk1977aef0bf62005-12-30 16:28:01 +0000192** Query to see if btree handle p may obtain a lock of type eLock
193** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000194** SQLITE_OK if the lock may be obtained (by calling
195** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000196*/
drhc25eabe2009-02-24 18:57:31 +0000197static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000198 BtShared *pBt = p->pBt;
199 BtLock *pIter;
200
drh1fee73e2007-08-29 04:00:57 +0000201 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000202 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
203 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000204
danielk19775b413d72009-04-01 09:41:54 +0000205 /* If requesting a write-lock, then the Btree must have an open write
206 ** transaction on this file. And, obviously, for this to be so there
207 ** must be an open write transaction on the file itself.
208 */
209 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
210 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
211
danielk1977da184232006-01-05 11:34:32 +0000212 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000213 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000214 return SQLITE_OK;
215 }
216
danielk1977641b0f42007-12-21 04:47:25 +0000217 /* If some other connection is holding an exclusive lock, the
218 ** requested lock may not be obtained.
219 */
danielk1977404ca072009-03-16 13:19:36 +0000220 if( pBt->pWriter!=p && pBt->isExclusive ){
221 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
222 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000223 }
224
drhc25eabe2009-02-24 18:57:31 +0000225 /* This (along with setSharedCacheTableLock()) is where
226 ** the ReadUncommitted flag is dealt with.
227 ** If the caller is querying for a read-lock on any table
drhc74d0b1d2009-02-24 16:18:05 +0000228 ** other than the sqlite_master table (table 1) and if the ReadUncommitted
229 ** flag is set, then the lock granted even if there are write-locks
danielk1977da184232006-01-05 11:34:32 +0000230 ** on the table. If a write-lock is requested, the ReadUncommitted flag
231 ** is not considered.
232 **
drhc25eabe2009-02-24 18:57:31 +0000233 ** In function setSharedCacheTableLock(), if a read-lock is demanded and the
danielk1977da184232006-01-05 11:34:32 +0000234 ** ReadUncommitted flag is set, no entry is added to the locks list
235 ** (BtShared.pLock).
236 **
drhc74d0b1d2009-02-24 16:18:05 +0000237 ** To summarize: If the ReadUncommitted flag is set, then read cursors
238 ** on non-schema tables do not create or respect table locks. The locking
239 ** procedure for a write-cursor does not change.
danielk1977da184232006-01-05 11:34:32 +0000240 */
241 if(
drhe5fe6902007-12-07 18:55:28 +0000242 0==(p->db->flags&SQLITE_ReadUncommitted) ||
danielk1977da184232006-01-05 11:34:32 +0000243 eLock==WRITE_LOCK ||
drh47ded162006-01-06 01:42:58 +0000244 iTab==MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000245 ){
246 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
danielk19775b413d72009-04-01 09:41:54 +0000247 /* The condition (pIter->eLock!=eLock) in the following if(...)
248 ** statement is a simplification of:
249 **
250 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
251 **
252 ** since we know that if eLock==WRITE_LOCK, then no other connection
253 ** may hold a WRITE_LOCK on any table in this file (since there can
254 ** only be a single writer).
255 */
256 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
257 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
258 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
danielk1977404ca072009-03-16 13:19:36 +0000259 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
260 if( eLock==WRITE_LOCK ){
261 assert( p==pBt->pWriter );
262 pBt->isPending = 1;
263 }
264 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977da184232006-01-05 11:34:32 +0000265 }
danielk1977aef0bf62005-12-30 16:28:01 +0000266 }
267 }
268 return SQLITE_OK;
269}
drhe53831d2007-08-17 01:14:38 +0000270#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000271
drhe53831d2007-08-17 01:14:38 +0000272#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000273/*
274** Add a lock on the table with root-page iTable to the shared-btree used
275** by Btree handle p. Parameter eLock must be either READ_LOCK or
276** WRITE_LOCK.
277**
278** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
279** SQLITE_NOMEM may also be returned.
280*/
drhc25eabe2009-02-24 18:57:31 +0000281static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000282 BtShared *pBt = p->pBt;
283 BtLock *pLock = 0;
284 BtLock *pIter;
285
drh1fee73e2007-08-29 04:00:57 +0000286 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000287 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
288 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000289
danielk1977da184232006-01-05 11:34:32 +0000290 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000291 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000292 return SQLITE_OK;
293 }
294
drhc25eabe2009-02-24 18:57:31 +0000295 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000296
drhc74d0b1d2009-02-24 16:18:05 +0000297 /* If the read-uncommitted flag is set and a read-lock is requested on
298 ** a non-schema table, then the lock is always granted. Return early
299 ** without adding an entry to the BtShared.pLock list. See
drhc25eabe2009-02-24 18:57:31 +0000300 ** comment in function querySharedCacheTableLock() for more info
301 ** on handling the ReadUncommitted flag.
danielk1977da184232006-01-05 11:34:32 +0000302 */
303 if(
drhe5fe6902007-12-07 18:55:28 +0000304 (p->db->flags&SQLITE_ReadUncommitted) &&
danielk1977da184232006-01-05 11:34:32 +0000305 (eLock==READ_LOCK) &&
drh47ded162006-01-06 01:42:58 +0000306 iTable!=MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000307 ){
308 return SQLITE_OK;
309 }
310
danielk1977aef0bf62005-12-30 16:28:01 +0000311 /* First search the list for an existing lock on this table. */
312 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
313 if( pIter->iTable==iTable && pIter->pBtree==p ){
314 pLock = pIter;
315 break;
316 }
317 }
318
319 /* If the above search did not find a BtLock struct associating Btree p
320 ** with table iTable, allocate one and link it into the list.
321 */
322 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000323 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000324 if( !pLock ){
325 return SQLITE_NOMEM;
326 }
327 pLock->iTable = iTable;
328 pLock->pBtree = p;
329 pLock->pNext = pBt->pLock;
330 pBt->pLock = pLock;
331 }
332
333 /* Set the BtLock.eLock variable to the maximum of the current lock
334 ** and the requested lock. This means if a write-lock was already held
335 ** and a read-lock requested, we don't incorrectly downgrade the lock.
336 */
337 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000338 if( eLock>pLock->eLock ){
339 pLock->eLock = eLock;
340 }
danielk1977aef0bf62005-12-30 16:28:01 +0000341
342 return SQLITE_OK;
343}
drhe53831d2007-08-17 01:14:38 +0000344#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000345
drhe53831d2007-08-17 01:14:38 +0000346#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000347/*
drhc25eabe2009-02-24 18:57:31 +0000348** Release all the table locks (locks obtained via calls to
349** the setSharedCacheTableLock() procedure) held by Btree handle p.
danielk1977fa542f12009-04-02 18:28:08 +0000350**
351** This function assumes that handle p has an open read or write
352** transaction. If it does not, then the BtShared.isPending variable
353** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000354*/
drhc25eabe2009-02-24 18:57:31 +0000355static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000356 BtShared *pBt = p->pBt;
357 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000358
drh1fee73e2007-08-29 04:00:57 +0000359 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000360 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000361 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000362
danielk1977aef0bf62005-12-30 16:28:01 +0000363 while( *ppIter ){
364 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000365 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000366 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000367 if( pLock->pBtree==p ){
368 *ppIter = pLock->pNext;
drh17435752007-08-16 04:30:38 +0000369 sqlite3_free(pLock);
danielk1977aef0bf62005-12-30 16:28:01 +0000370 }else{
371 ppIter = &pLock->pNext;
372 }
373 }
danielk1977641b0f42007-12-21 04:47:25 +0000374
danielk1977404ca072009-03-16 13:19:36 +0000375 assert( pBt->isPending==0 || pBt->pWriter );
376 if( pBt->pWriter==p ){
377 pBt->pWriter = 0;
378 pBt->isExclusive = 0;
379 pBt->isPending = 0;
380 }else if( pBt->nTransaction==2 ){
381 /* This function is called when connection p is concluding its
382 ** transaction. If there currently exists a writer, and p is not
383 ** that writer, then the number of locks held by connections other
384 ** than the writer must be about to drop to zero. In this case
385 ** set the isPending flag to 0.
386 **
387 ** If there is not currently a writer, then BtShared.isPending must
388 ** be zero already. So this next line is harmless in that case.
389 */
390 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000391 }
danielk1977aef0bf62005-12-30 16:28:01 +0000392}
393#endif /* SQLITE_OMIT_SHARED_CACHE */
394
drh980b1a72006-08-16 16:42:48 +0000395static void releasePage(MemPage *pPage); /* Forward reference */
396
drh1fee73e2007-08-29 04:00:57 +0000397/*
398** Verify that the cursor holds a mutex on the BtShared
399*/
400#ifndef NDEBUG
401static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000402 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000403}
404#endif
405
406
danielk197792d4d7a2007-05-04 12:05:56 +0000407#ifndef SQLITE_OMIT_INCRBLOB
408/*
409** Invalidate the overflow page-list cache for cursor pCur, if any.
410*/
411static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000412 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000413 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000414 pCur->aOverflow = 0;
415}
416
417/*
418** Invalidate the overflow page-list cache for all cursors opened
419** on the shared btree structure pBt.
420*/
421static void invalidateAllOverflowCache(BtShared *pBt){
422 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000423 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000424 for(p=pBt->pCursor; p; p=p->pNext){
425 invalidateOverflowCache(p);
426 }
427}
danielk197796d48e92009-06-29 06:00:37 +0000428
429/*
430** This function is called before modifying the contents of a table
431** b-tree to invalidate any incrblob cursors that are open on the
432** row or one of the rows being modified. Argument pgnoRoot is the
433** root-page of the table b-tree.
434**
435** If argument isClearTable is true, then the entire contents of the
436** table is about to be deleted. In this case invalidate all incrblob
437** cursors open on any row within the table with root-page pgnoRoot.
438**
439** Otherwise, if argument isClearTable is false, then the row with
440** rowid iRow is being replaced or deleted. In this case invalidate
441** only those incrblob cursors open on this specific row.
442*/
443static void invalidateIncrblobCursors(
444 Btree *pBtree, /* The database file to check */
445 Pgno pgnoRoot, /* Look for read cursors on this btree */
446 i64 iRow, /* The rowid that might be changing */
447 int isClearTable /* True if all rows are being deleted */
448){
449 BtCursor *p;
450 BtShared *pBt = pBtree->pBt;
451 assert( sqlite3BtreeHoldsMutex(pBtree) );
452 for(p=pBt->pCursor; p; p=p->pNext){
453 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
454 p->eState = CURSOR_INVALID;
455 }
456 }
457}
458
danielk197792d4d7a2007-05-04 12:05:56 +0000459#else
460 #define invalidateOverflowCache(x)
461 #define invalidateAllOverflowCache(x)
danielk197796d48e92009-06-29 06:00:37 +0000462 #define invalidateIncrblobCursors(w,x,y,z)
danielk197792d4d7a2007-05-04 12:05:56 +0000463#endif
464
drh980b1a72006-08-16 16:42:48 +0000465/*
danielk1977bea2a942009-01-20 17:06:27 +0000466** Set bit pgno of the BtShared.pHasContent bitvec. This is called
467** when a page that previously contained data becomes a free-list leaf
468** page.
469**
470** The BtShared.pHasContent bitvec exists to work around an obscure
471** bug caused by the interaction of two useful IO optimizations surrounding
472** free-list leaf pages:
473**
474** 1) When all data is deleted from a page and the page becomes
475** a free-list leaf page, the page is not written to the database
476** (as free-list leaf pages contain no meaningful data). Sometimes
477** such a page is not even journalled (as it will not be modified,
478** why bother journalling it?).
479**
480** 2) When a free-list leaf page is reused, its content is not read
481** from the database or written to the journal file (why should it
482** be, if it is not at all meaningful?).
483**
484** By themselves, these optimizations work fine and provide a handy
485** performance boost to bulk delete or insert operations. However, if
486** a page is moved to the free-list and then reused within the same
487** transaction, a problem comes up. If the page is not journalled when
488** it is moved to the free-list and it is also not journalled when it
489** is extracted from the free-list and reused, then the original data
490** may be lost. In the event of a rollback, it may not be possible
491** to restore the database to its original configuration.
492**
493** The solution is the BtShared.pHasContent bitvec. Whenever a page is
494** moved to become a free-list leaf page, the corresponding bit is
495** set in the bitvec. Whenever a leaf page is extracted from the free-list,
496** optimization 2 above is ommitted if the corresponding bit is already
497** set in BtShared.pHasContent. The contents of the bitvec are cleared
498** at the end of every transaction.
499*/
500static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
501 int rc = SQLITE_OK;
502 if( !pBt->pHasContent ){
503 int nPage;
504 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
505 if( rc==SQLITE_OK ){
506 pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
507 if( !pBt->pHasContent ){
508 rc = SQLITE_NOMEM;
509 }
510 }
511 }
512 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
513 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
514 }
515 return rc;
516}
517
518/*
519** Query the BtShared.pHasContent vector.
520**
521** This function is called when a free-list leaf page is removed from the
522** free-list for reuse. It returns false if it is safe to retrieve the
523** page from the pager layer with the 'no-content' flag set. True otherwise.
524*/
525static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
526 Bitvec *p = pBt->pHasContent;
527 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
528}
529
530/*
531** Clear (destroy) the BtShared.pHasContent bitvec. This should be
532** invoked at the conclusion of each write-transaction.
533*/
534static void btreeClearHasContent(BtShared *pBt){
535 sqlite3BitvecDestroy(pBt->pHasContent);
536 pBt->pHasContent = 0;
537}
538
539/*
drh980b1a72006-08-16 16:42:48 +0000540** Save the current cursor position in the variables BtCursor.nKey
541** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
542*/
543static int saveCursorPosition(BtCursor *pCur){
544 int rc;
545
546 assert( CURSOR_VALID==pCur->eState );
547 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000548 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000549
550 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
551
552 /* If this is an intKey table, then the above call to BtreeKeySize()
553 ** stores the integer key in pCur->nKey. In this case this value is
554 ** all that is required. Otherwise, if pCur is not open on an intKey
555 ** table, then malloc space for and store the pCur->nKey bytes of key
556 ** data.
557 */
danielk197771d5d2c2008-09-29 11:49:47 +0000558 if( rc==SQLITE_OK && 0==pCur->apPage[0]->intKey){
drhf49661a2008-12-10 16:45:50 +0000559 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000560 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000561 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000562 if( rc==SQLITE_OK ){
563 pCur->pKey = pKey;
564 }else{
drh17435752007-08-16 04:30:38 +0000565 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000566 }
567 }else{
568 rc = SQLITE_NOMEM;
569 }
570 }
danielk197771d5d2c2008-09-29 11:49:47 +0000571 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000572
573 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000574 int i;
575 for(i=0; i<=pCur->iPage; i++){
576 releasePage(pCur->apPage[i]);
577 pCur->apPage[i] = 0;
578 }
579 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000580 pCur->eState = CURSOR_REQUIRESEEK;
581 }
582
danielk197792d4d7a2007-05-04 12:05:56 +0000583 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000584 return rc;
585}
586
587/*
588** Save the positions of all cursors except pExcept open on the table
589** with root-page iRoot. Usually, this is called just before cursor
590** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
591*/
592static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
593 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000594 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000595 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000596 for(p=pBt->pCursor; p; p=p->pNext){
597 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
598 p->eState==CURSOR_VALID ){
599 int rc = saveCursorPosition(p);
600 if( SQLITE_OK!=rc ){
601 return rc;
602 }
603 }
604 }
605 return SQLITE_OK;
606}
607
608/*
drhbf700f32007-03-31 02:36:44 +0000609** Clear the current cursor position.
610*/
danielk1977be51a652008-10-08 17:58:48 +0000611void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000612 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000613 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000614 pCur->pKey = 0;
615 pCur->eState = CURSOR_INVALID;
616}
617
618/*
drh980b1a72006-08-16 16:42:48 +0000619** Restore the cursor to the position it was in (or as close to as possible)
620** when saveCursorPosition() was called. Note that this call deletes the
621** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000622** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000623** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000624*/
drha3460582008-07-11 21:02:53 +0000625int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000626 int rc;
drh1fee73e2007-08-29 04:00:57 +0000627 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000628 assert( pCur->eState>=CURSOR_REQUIRESEEK );
629 if( pCur->eState==CURSOR_FAULT ){
630 return pCur->skip;
631 }
drh980b1a72006-08-16 16:42:48 +0000632 pCur->eState = CURSOR_INVALID;
drhe63d9992008-08-13 19:11:48 +0000633 rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
drh980b1a72006-08-16 16:42:48 +0000634 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000635 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000636 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000637 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000638 }
639 return rc;
640}
641
drha3460582008-07-11 21:02:53 +0000642#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000643 (p->eState>=CURSOR_REQUIRESEEK ? \
drha3460582008-07-11 21:02:53 +0000644 sqlite3BtreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000645 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000646
drha3460582008-07-11 21:02:53 +0000647/*
648** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000649** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000650** at is deleted out from under them.
651**
652** This routine returns an error code if something goes wrong. The
653** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
654*/
655int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
656 int rc;
657
658 rc = restoreCursorPosition(pCur);
659 if( rc ){
660 *pHasMoved = 1;
661 return rc;
662 }
663 if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
664 *pHasMoved = 1;
665 }else{
666 *pHasMoved = 0;
667 }
668 return SQLITE_OK;
669}
670
danielk1977599fcba2004-11-08 07:13:13 +0000671#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000672/*
drha3152892007-05-05 11:48:52 +0000673** Given a page number of a regular database page, return the page
674** number for the pointer-map page that contains the entry for the
675** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000676*/
danielk1977266664d2006-02-10 08:24:21 +0000677static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000678 int nPagesPerMapPage;
679 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000680 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000681 nPagesPerMapPage = (pBt->usableSize/5)+1;
682 iPtrMap = (pgno-2)/nPagesPerMapPage;
683 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000684 if( ret==PENDING_BYTE_PAGE(pBt) ){
685 ret++;
686 }
687 return ret;
688}
danielk1977a19df672004-11-03 11:37:07 +0000689
danielk1977afcdd022004-10-31 16:25:42 +0000690/*
danielk1977afcdd022004-10-31 16:25:42 +0000691** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000692**
693** This routine updates the pointer map entry for page number 'key'
694** so that it maps to type 'eType' and parent page number 'pgno'.
695** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000696*/
danielk1977aef0bf62005-12-30 16:28:01 +0000697static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk19773b8a05f2007-03-19 17:44:26 +0000698 DbPage *pDbPage; /* The pointer map page */
699 u8 *pPtrmap; /* The pointer map data */
700 Pgno iPtrmap; /* The pointer map page number */
701 int offset; /* Offset in pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000702 int rc;
703
drh1fee73e2007-08-29 04:00:57 +0000704 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000705 /* The master-journal page number must never be used as a pointer map page */
706 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
707
danielk1977ac11ee62005-01-15 12:45:51 +0000708 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000709 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000710 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000711 }
danielk1977266664d2006-02-10 08:24:21 +0000712 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000713 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000714 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000715 return rc;
716 }
danielk19778c666b12008-07-18 09:34:57 +0000717 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000718 if( offset<0 ){
719 return SQLITE_CORRUPT_BKPT;
720 }
danielk19773b8a05f2007-03-19 17:44:26 +0000721 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000722
drh615ae552005-01-16 23:21:00 +0000723 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
724 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk19773b8a05f2007-03-19 17:44:26 +0000725 rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000726 if( rc==SQLITE_OK ){
727 pPtrmap[offset] = eType;
728 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000729 }
danielk1977afcdd022004-10-31 16:25:42 +0000730 }
731
danielk19773b8a05f2007-03-19 17:44:26 +0000732 sqlite3PagerUnref(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000733 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000734}
735
736/*
737** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000738**
739** This routine retrieves the pointer map entry for page 'key', writing
740** the type and parent page number to *pEType and *pPgno respectively.
741** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000742*/
danielk1977aef0bf62005-12-30 16:28:01 +0000743static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000744 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000745 int iPtrmap; /* Pointer map page index */
746 u8 *pPtrmap; /* Pointer map page data */
747 int offset; /* Offset of entry in pointer map */
748 int rc;
749
drh1fee73e2007-08-29 04:00:57 +0000750 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000751
danielk1977266664d2006-02-10 08:24:21 +0000752 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000753 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000754 if( rc!=0 ){
755 return rc;
756 }
danielk19773b8a05f2007-03-19 17:44:26 +0000757 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000758
danielk19778c666b12008-07-18 09:34:57 +0000759 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000760 assert( pEType!=0 );
761 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000762 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000763
danielk19773b8a05f2007-03-19 17:44:26 +0000764 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000765 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000766 return SQLITE_OK;
767}
768
danielk197785d90ca2008-07-19 14:25:15 +0000769#else /* if defined SQLITE_OMIT_AUTOVACUUM */
770 #define ptrmapPut(w,x,y,z) SQLITE_OK
771 #define ptrmapGet(w,x,y,z) SQLITE_OK
danielk197785d90ca2008-07-19 14:25:15 +0000772#endif
danielk1977afcdd022004-10-31 16:25:42 +0000773
drh0d316a42002-08-11 20:10:47 +0000774/*
drh271efa52004-05-30 19:19:05 +0000775** Given a btree page and a cell index (0 means the first cell on
776** the page, 1 means the second cell, and so forth) return a pointer
777** to the cell content.
778**
779** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000780*/
drh1688c862008-07-18 02:44:17 +0000781#define findCell(P,I) \
782 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000783
784/*
drh93a960a2008-07-10 00:32:42 +0000785** This a more complex version of findCell() that works for
drh43605152004-05-29 21:46:49 +0000786** pages that do contain overflow cells. See insert
787*/
788static u8 *findOverflowCell(MemPage *pPage, int iCell){
789 int i;
drh1fee73e2007-08-29 04:00:57 +0000790 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000791 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000792 int k;
793 struct _OvflCell *pOvfl;
794 pOvfl = &pPage->aOvfl[i];
795 k = pOvfl->idx;
796 if( k<=iCell ){
797 if( k==iCell ){
798 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000799 }
800 iCell--;
801 }
802 }
danielk19771cc5ed82007-05-16 17:28:43 +0000803 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000804}
805
806/*
807** Parse a cell content block and fill in the CellInfo structure. There
drh16a9b832007-05-05 18:39:25 +0000808** are two versions of this function. sqlite3BtreeParseCell() takes a
809** cell index as the second argument and sqlite3BtreeParseCellPtr()
810** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000811**
812** Within this file, the parseCell() macro can be called instead of
813** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000814*/
drh16a9b832007-05-05 18:39:25 +0000815void sqlite3BtreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000816 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000817 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000818 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000819){
drhf49661a2008-12-10 16:45:50 +0000820 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000821 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000822
drh1fee73e2007-08-29 04:00:57 +0000823 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000824
drh43605152004-05-29 21:46:49 +0000825 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000826 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000827 n = pPage->childPtrSize;
828 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000829 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000830 if( pPage->hasData ){
831 n += getVarint32(&pCell[n], nPayload);
832 }else{
833 nPayload = 0;
834 }
drh1bd10f82008-12-10 21:19:56 +0000835 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000836 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000837 }else{
drh79df1f42008-07-18 00:57:33 +0000838 pInfo->nData = 0;
839 n += getVarint32(&pCell[n], nPayload);
840 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000841 }
drh72365832007-03-06 15:53:44 +0000842 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000843 pInfo->nHeader = n;
drh79df1f42008-07-18 00:57:33 +0000844 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000845 /* This is the (easy) common case where the entire payload fits
846 ** on the local page. No overflow is required.
847 */
848 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000849 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000850 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000851 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000852 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000853 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000854 }
drh1bd10f82008-12-10 21:19:56 +0000855 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000856 }else{
drh271efa52004-05-30 19:19:05 +0000857 /* If the payload will not fit completely on the local page, we have
858 ** to decide how much to store locally and how much to spill onto
859 ** overflow pages. The strategy is to minimize the amount of unused
860 ** space on overflow pages while keeping the amount of local storage
861 ** in between minLocal and maxLocal.
862 **
863 ** Warning: changing the way overflow payload is distributed in any
864 ** way will result in an incompatible file format.
865 */
866 int minLocal; /* Minimum amount of payload held locally */
867 int maxLocal; /* Maximum amount of payload held locally */
868 int surplus; /* Overflow payload available for local storage */
869
870 minLocal = pPage->minLocal;
871 maxLocal = pPage->maxLocal;
872 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000873 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000874 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000875 }else{
drhf49661a2008-12-10 16:45:50 +0000876 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000877 }
drhf49661a2008-12-10 16:45:50 +0000878 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000879 pInfo->nSize = pInfo->iOverflow + 4;
880 }
drh3aac2dd2004-04-26 14:10:20 +0000881}
danielk19771cc5ed82007-05-16 17:28:43 +0000882#define parseCell(pPage, iCell, pInfo) \
883 sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
drh16a9b832007-05-05 18:39:25 +0000884void sqlite3BtreeParseCell(
drh43605152004-05-29 21:46:49 +0000885 MemPage *pPage, /* Page containing the cell */
886 int iCell, /* The cell index. First cell is 0 */
887 CellInfo *pInfo /* Fill in this structure */
888){
danielk19771cc5ed82007-05-16 17:28:43 +0000889 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000890}
drh3aac2dd2004-04-26 14:10:20 +0000891
892/*
drh43605152004-05-29 21:46:49 +0000893** Compute the total number of bytes that a Cell needs in the cell
894** data area of the btree-page. The return number includes the cell
895** data header and the local payload, but not any overflow page or
896** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000897*/
danielk1977ae5558b2009-04-29 11:31:47 +0000898static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
899 u8 *pIter = &pCell[pPage->childPtrSize];
900 u32 nSize;
901
902#ifdef SQLITE_DEBUG
903 /* The value returned by this function should always be the same as
904 ** the (CellInfo.nSize) value found by doing a full parse of the
905 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
906 ** this function verifies that this invariant is not violated. */
907 CellInfo debuginfo;
908 sqlite3BtreeParseCellPtr(pPage, pCell, &debuginfo);
909#endif
910
911 if( pPage->intKey ){
912 u8 *pEnd;
913 if( pPage->hasData ){
914 pIter += getVarint32(pIter, nSize);
915 }else{
916 nSize = 0;
917 }
918
919 /* pIter now points at the 64-bit integer key value, a variable length
920 ** integer. The following block moves pIter to point at the first byte
921 ** past the end of the key value. */
922 pEnd = &pIter[9];
923 while( (*pIter++)&0x80 && pIter<pEnd );
924 }else{
925 pIter += getVarint32(pIter, nSize);
926 }
927
928 if( nSize>pPage->maxLocal ){
929 int minLocal = pPage->minLocal;
930 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
931 if( nSize>pPage->maxLocal ){
932 nSize = minLocal;
933 }
934 nSize += 4;
935 }
shane75ac1de2009-06-09 18:58:52 +0000936 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +0000937
938 /* The minimum size of any cell is 4 bytes. */
939 if( nSize<4 ){
940 nSize = 4;
941 }
942
943 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +0000944 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +0000945}
danielk1977bc6ada42004-06-30 08:20:16 +0000946#ifndef NDEBUG
drha9121e42008-02-19 14:59:35 +0000947static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +0000948 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +0000949}
danielk1977bc6ada42004-06-30 08:20:16 +0000950#endif
drh3b7511c2001-05-26 13:15:44 +0000951
danielk197779a40da2005-01-16 08:00:01 +0000952#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +0000953/*
danielk197726836652005-01-17 01:33:13 +0000954** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +0000955** to an overflow page, insert an entry into the pointer-map
956** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +0000957*/
danielk197726836652005-01-17 01:33:13 +0000958static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
drhfa67c3c2008-07-11 02:21:40 +0000959 CellInfo info;
960 assert( pCell!=0 );
961 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
962 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +0000963 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +0000964 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
965 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +0000966 }
danielk197779a40da2005-01-16 08:00:01 +0000967 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +0000968}
danielk197779a40da2005-01-16 08:00:01 +0000969#endif
970
danielk1977ac11ee62005-01-15 12:45:51 +0000971
drhda200cc2004-05-09 11:51:38 +0000972/*
drh72f82862001-05-24 21:06:34 +0000973** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +0000974** end of the page and all free space is collected into one
975** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +0000976** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +0000977*/
shane0af3f892008-11-12 04:55:34 +0000978static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +0000979 int i; /* Loop counter */
980 int pc; /* Address of a i-th cell */
981 int addr; /* Offset of first byte after cell pointer array */
982 int hdr; /* Offset to the page header */
983 int size; /* Size of a cell */
984 int usableSize; /* Number of usable bytes on a page */
985 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +0000986 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +0000987 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +0000988 unsigned char *data; /* The page data */
989 unsigned char *temp; /* Temp area for cell content */
drh2af926b2001-05-15 00:39:25 +0000990
danielk19773b8a05f2007-03-19 17:44:26 +0000991 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000992 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +0000993 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +0000994 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +0000995 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +0000996 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +0000997 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +0000998 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000999 cellOffset = pPage->cellOffset;
1000 nCell = pPage->nCell;
1001 assert( nCell==get2byte(&data[hdr+3]) );
1002 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001003 cbrk = get2byte(&data[hdr+5]);
1004 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1005 cbrk = usableSize;
drh43605152004-05-29 21:46:49 +00001006 for(i=0; i<nCell; i++){
1007 u8 *pAddr; /* The i-th cell pointer */
1008 pAddr = &data[cellOffset + i*2];
1009 pc = get2byte(pAddr);
shanedcc50b72008-11-13 18:29:50 +00001010 if( pc>=usableSize ){
shane0af3f892008-11-12 04:55:34 +00001011 return SQLITE_CORRUPT_BKPT;
1012 }
drh43605152004-05-29 21:46:49 +00001013 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001014 cbrk -= size;
danielk19770d065412008-11-12 18:21:36 +00001015 if( cbrk<cellOffset+2*nCell || pc+size>usableSize ){
shane0af3f892008-11-12 04:55:34 +00001016 return SQLITE_CORRUPT_BKPT;
1017 }
danielk19770d065412008-11-12 18:21:36 +00001018 assert( cbrk+size<=usableSize && cbrk>=0 );
drh281b21d2008-08-22 12:57:08 +00001019 memcpy(&data[cbrk], &temp[pc], size);
1020 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001021 }
drh281b21d2008-08-22 12:57:08 +00001022 assert( cbrk>=cellOffset+2*nCell );
1023 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001024 data[hdr+1] = 0;
1025 data[hdr+2] = 0;
1026 data[hdr+7] = 0;
1027 addr = cellOffset+2*nCell;
drh281b21d2008-08-22 12:57:08 +00001028 memset(&data[addr], 0, cbrk-addr);
drhc5053fb2008-11-27 02:22:10 +00001029 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977360e6342008-11-12 08:49:51 +00001030 if( cbrk-addr!=pPage->nFree ){
1031 return SQLITE_CORRUPT_BKPT;
1032 }
shane0af3f892008-11-12 04:55:34 +00001033 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001034}
1035
drha059ad02001-04-17 20:09:11 +00001036/*
danielk19776011a752009-04-01 16:25:32 +00001037** Allocate nByte bytes of space from within the B-Tree page passed
1038** as the first argument. Return the index into pPage->aData[] of the
1039** first byte of allocated space.
drhbd03cae2001-06-02 02:40:57 +00001040**
danielk19776011a752009-04-01 16:25:32 +00001041** The caller guarantees that the space between the end of the cell-offset
1042** array and the start of the cell-content area is at least nByte bytes
1043** in size. So this routine can never fail.
drh2af926b2001-05-15 00:39:25 +00001044**
danielk19776011a752009-04-01 16:25:32 +00001045** If there are already 60 or more bytes of fragments within the page,
1046** the page is defragmented before returning. If this were not done there
1047** is a chance that the number of fragmented bytes could eventually
1048** overflow the single-byte field of the page-header in which this value
1049** is stored.
drh7e3b0a02001-04-28 16:52:40 +00001050*/
drh9e572e62004-04-23 23:43:10 +00001051static int allocateSpace(MemPage *pPage, int nByte){
danielk19776011a752009-04-01 16:25:32 +00001052 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1053 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1054 int nFrag; /* Number of fragmented bytes on pPage */
drh43605152004-05-29 21:46:49 +00001055 int top;
drh43605152004-05-29 21:46:49 +00001056
danielk19773b8a05f2007-03-19 17:44:26 +00001057 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001058 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001059 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001060 assert( nByte>=0 ); /* Minimum cell size is 4 */
1061 assert( pPage->nFree>=nByte );
1062 assert( pPage->nOverflow==0 );
drh43605152004-05-29 21:46:49 +00001063
danielk19776011a752009-04-01 16:25:32 +00001064 /* Assert that the space between the cell-offset array and the
1065 ** cell-content area is greater than nByte bytes.
1066 */
1067 assert( nByte <= (
1068 get2byte(&data[hdr+5])-(hdr+8+(pPage->leaf?0:4)+2*get2byte(&data[hdr+3]))
1069 ));
1070
drh43605152004-05-29 21:46:49 +00001071 nFrag = data[hdr+7];
danielk19776011a752009-04-01 16:25:32 +00001072 if( nFrag>=60 ){
1073 defragmentPage(pPage);
1074 }else{
1075 /* Search the freelist looking for a free slot big enough to satisfy
1076 ** the request. The allocation is made from the first free slot in
1077 ** the list that is large enough to accomadate it.
1078 */
1079 int pc, addr;
1080 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
1081 int size = get2byte(&data[pc+2]); /* Size of free slot */
drh43605152004-05-29 21:46:49 +00001082 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001083 int x = size - nByte;
danielk19776011a752009-04-01 16:25:32 +00001084 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001085 /* Remove the slot from the free-list. Update the number of
1086 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001087 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001088 data[hdr+7] = (u8)(nFrag + x);
drh43605152004-05-29 21:46:49 +00001089 }else{
danielk1977fad91942009-04-29 17:49:59 +00001090 /* The slot remains on the free-list. Reduce its size to account
1091 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001092 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001093 }
danielk19776011a752009-04-01 16:25:32 +00001094 return pc + x;
drh43605152004-05-29 21:46:49 +00001095 }
drh9e572e62004-04-23 23:43:10 +00001096 }
1097 }
drh43605152004-05-29 21:46:49 +00001098
1099 /* Allocate memory from the gap in between the cell pointer array
1100 ** and the cell content area.
1101 */
danielk19776011a752009-04-01 16:25:32 +00001102 top = get2byte(&data[hdr+5]) - nByte;
drh43605152004-05-29 21:46:49 +00001103 put2byte(&data[hdr+5], top);
1104 return top;
drh7e3b0a02001-04-28 16:52:40 +00001105}
1106
1107/*
drh9e572e62004-04-23 23:43:10 +00001108** Return a section of the pPage->aData to the freelist.
1109** The first byte of the new free block is pPage->aDisk[start]
1110** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001111**
1112** Most of the effort here is involved in coalesing adjacent
1113** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001114*/
shanedcc50b72008-11-13 18:29:50 +00001115static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001116 int addr, pbegin, hdr;
drh9e572e62004-04-23 23:43:10 +00001117 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001118
drh9e572e62004-04-23 23:43:10 +00001119 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001120 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001121 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +00001122 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001123 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001124 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001125
drhfcce93f2006-02-22 03:08:32 +00001126#ifdef SQLITE_SECURE_DELETE
1127 /* Overwrite deleted information with zeros when the SECURE_DELETE
1128 ** option is enabled at compile-time */
1129 memset(&data[start], 0, size);
1130#endif
1131
drh9e572e62004-04-23 23:43:10 +00001132 /* Add the space back into the linked list of freeblocks */
drh43605152004-05-29 21:46:49 +00001133 hdr = pPage->hdrOffset;
1134 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001135 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +00001136 assert( pbegin<=pPage->pBt->usableSize-4 );
shanedcc50b72008-11-13 18:29:50 +00001137 if( pbegin<=addr ) {
1138 return SQLITE_CORRUPT_BKPT;
1139 }
drh3aac2dd2004-04-26 14:10:20 +00001140 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001141 }
shanedcc50b72008-11-13 18:29:50 +00001142 if ( pbegin>pPage->pBt->usableSize-4 ) {
1143 return SQLITE_CORRUPT_BKPT;
1144 }
drh3aac2dd2004-04-26 14:10:20 +00001145 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001146 put2byte(&data[addr], start);
1147 put2byte(&data[start], pbegin);
1148 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001149 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001150
1151 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +00001152 addr = pPage->hdrOffset + 1;
1153 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001154 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001155 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001156 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001157 pnext = get2byte(&data[pbegin]);
1158 psize = get2byte(&data[pbegin+2]);
1159 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1160 int frag = pnext - (pbegin+psize);
drhf49661a2008-12-10 16:45:50 +00001161 if( (frag<0) || (frag>(int)data[pPage->hdrOffset+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001162 return SQLITE_CORRUPT_BKPT;
1163 }
drhf49661a2008-12-10 16:45:50 +00001164 data[pPage->hdrOffset+7] -= (u8)frag;
1165 x = get2byte(&data[pnext]);
1166 put2byte(&data[pbegin], x);
1167 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1168 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001169 }else{
drh3aac2dd2004-04-26 14:10:20 +00001170 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001171 }
1172 }
drh7e3b0a02001-04-28 16:52:40 +00001173
drh43605152004-05-29 21:46:49 +00001174 /* If the cell content area begins with a freeblock, remove it. */
1175 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1176 int top;
1177 pbegin = get2byte(&data[hdr+1]);
1178 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001179 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1180 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001181 }
drhc5053fb2008-11-27 02:22:10 +00001182 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001183 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001184}
1185
1186/*
drh271efa52004-05-30 19:19:05 +00001187** Decode the flags byte (the first byte of the header) for a page
1188** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001189**
1190** Only the following combinations are supported. Anything different
1191** indicates a corrupt database files:
1192**
1193** PTF_ZERODATA
1194** PTF_ZERODATA | PTF_LEAF
1195** PTF_LEAFDATA | PTF_INTKEY
1196** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001197*/
drh44845222008-07-17 18:39:57 +00001198static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001199 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001200
1201 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001202 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001203 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001204 flagByte &= ~PTF_LEAF;
1205 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001206 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001207 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1208 pPage->intKey = 1;
1209 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001210 pPage->maxLocal = pBt->maxLeaf;
1211 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001212 }else if( flagByte==PTF_ZERODATA ){
1213 pPage->intKey = 0;
1214 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001215 pPage->maxLocal = pBt->maxLocal;
1216 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001217 }else{
1218 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001219 }
drh44845222008-07-17 18:39:57 +00001220 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001221}
1222
1223/*
drh7e3b0a02001-04-28 16:52:40 +00001224** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001225**
1226** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001227** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001228** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1229** guarantee that the page is well-formed. It only shows that
1230** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001231*/
danielk197771d5d2c2008-09-29 11:49:47 +00001232int sqlite3BtreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001233
danielk197771d5d2c2008-09-29 11:49:47 +00001234 assert( pPage->pBt!=0 );
1235 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001236 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001237 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1238 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001239
1240 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001241 u16 pc; /* Address of a freeblock within pPage->aData[] */
1242 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001243 u8 *data; /* Equal to pPage->aData */
1244 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001245 u16 usableSize; /* Amount of usable space on each page */
1246 u16 cellOffset; /* Offset from start of page to first cell pointer */
1247 u16 nFree; /* Number of unused bytes on the page */
1248 u16 top; /* First byte of the cell content area */
danielk197771d5d2c2008-09-29 11:49:47 +00001249
1250 pBt = pPage->pBt;
1251
danielk1977eaa06f62008-09-18 17:34:44 +00001252 hdr = pPage->hdrOffset;
1253 data = pPage->aData;
1254 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1255 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1256 pPage->maskPage = pBt->pageSize - 1;
1257 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001258 usableSize = pBt->usableSize;
1259 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1260 top = get2byte(&data[hdr+5]);
1261 pPage->nCell = get2byte(&data[hdr+3]);
1262 if( pPage->nCell>MX_CELL(pBt) ){
1263 /* To many cells for a single page. The page must be corrupt */
1264 return SQLITE_CORRUPT_BKPT;
1265 }
drh69e931e2009-06-03 21:04:35 +00001266
1267 /* A malformed database page might cause use to read past the end
1268 ** of page when parsing a cell.
1269 **
1270 ** The following block of code checks early to see if a cell extends
1271 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1272 ** returned if it does.
1273 */
drh3b2a3fa2009-06-09 13:42:24 +00001274#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001275 {
1276 int iCellFirst; /* First allowable cell index */
1277 int iCellLast; /* Last possible cell index */
1278 int i; /* Index into the cell pointer array */
1279 int sz; /* Size of a cell */
1280
1281 iCellFirst = cellOffset + 2*pPage->nCell;
1282 iCellLast = usableSize - 4;
1283 if( !pPage->leaf ) iCellLast--;
1284 for(i=0; i<pPage->nCell; i++){
1285 pc = get2byte(&data[cellOffset+i*2]);
1286 if( pc<iCellFirst || pc>iCellLast ){
1287 return SQLITE_CORRUPT_BKPT;
1288 }
1289 sz = cellSizePtr(pPage, &data[pc]);
1290 if( pc+sz>usableSize ){
1291 return SQLITE_CORRUPT_BKPT;
1292 }
1293 }
1294 }
1295#endif
1296
danielk1977eaa06f62008-09-18 17:34:44 +00001297 /* Compute the total free space on the page */
1298 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001299 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001300 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001301 u16 next, size;
danielk1977eaa06f62008-09-18 17:34:44 +00001302 if( pc>usableSize-4 ){
1303 /* Free block is off the page */
1304 return SQLITE_CORRUPT_BKPT;
1305 }
1306 next = get2byte(&data[pc]);
1307 size = get2byte(&data[pc+2]);
1308 if( next>0 && next<=pc+size+3 ){
1309 /* Free blocks must be in accending order */
1310 return SQLITE_CORRUPT_BKPT;
1311 }
shane85095702009-06-15 16:27:08 +00001312 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001313 pc = next;
1314 }
danielk197793c829c2009-06-03 17:26:17 +00001315
1316 /* At this point, nFree contains the sum of the offset to the start
1317 ** of the cell-content area plus the number of free bytes within
1318 ** the cell-content area. If this is greater than the usable-size
1319 ** of the page, then the page must be corrupted. This check also
1320 ** serves to verify that the offset to the start of the cell-content
1321 ** area, according to the page header, lies within the page.
1322 */
1323 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001324 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001325 }
danielk197793c829c2009-06-03 17:26:17 +00001326 pPage->nFree = nFree - (cellOffset + 2*pPage->nCell);
drh9e572e62004-04-23 23:43:10 +00001327
drh1688c862008-07-18 02:44:17 +00001328#if 0
1329 /* Check that all the offsets in the cell offset array are within range.
1330 **
1331 ** Omitting this consistency check and using the pPage->maskPage mask
1332 ** to prevent overrunning the page buffer in findCell() results in a
1333 ** 2.5% performance gain.
1334 */
1335 {
1336 u8 *pOff; /* Iterator used to check all cell offsets are in range */
1337 u8 *pEnd; /* Pointer to end of cell offset array */
1338 u8 mask; /* Mask of bits that must be zero in MSB of cell offsets */
1339 mask = ~(((u8)(pBt->pageSize>>8))-1);
1340 pEnd = &data[cellOffset + pPage->nCell*2];
1341 for(pOff=&data[cellOffset]; pOff!=pEnd && !((*pOff)&mask); pOff+=2);
1342 if( pOff!=pEnd ){
1343 return SQLITE_CORRUPT_BKPT;
1344 }
danielk1977e16535f2008-06-11 18:15:29 +00001345 }
drh1688c862008-07-18 02:44:17 +00001346#endif
danielk1977e16535f2008-06-11 18:15:29 +00001347
danielk197771d5d2c2008-09-29 11:49:47 +00001348 pPage->isInit = 1;
1349 }
drh9e572e62004-04-23 23:43:10 +00001350 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001351}
1352
1353/*
drh8b2f49b2001-06-08 00:21:52 +00001354** Set up a raw page so that it looks like a database page holding
1355** no entries.
drhbd03cae2001-06-02 02:40:57 +00001356*/
drh9e572e62004-04-23 23:43:10 +00001357static void zeroPage(MemPage *pPage, int flags){
1358 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001359 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001360 u8 hdr = pPage->hdrOffset;
1361 u16 first;
drh9e572e62004-04-23 23:43:10 +00001362
danielk19773b8a05f2007-03-19 17:44:26 +00001363 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001364 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1365 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001366 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001367 assert( sqlite3_mutex_held(pBt->mutex) );
drh1af4a6e2008-07-18 03:32:51 +00001368 /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
drh1bd10f82008-12-10 21:19:56 +00001369 data[hdr] = (char)flags;
1370 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001371 memset(&data[hdr+1], 0, 4);
1372 data[hdr+7] = 0;
1373 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001374 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001375 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001376 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001377 pPage->cellOffset = first;
1378 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001379 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1380 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001381 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001382 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001383}
1384
drh897a8202008-09-18 01:08:15 +00001385
1386/*
1387** Convert a DbPage obtained from the pager into a MemPage used by
1388** the btree layer.
1389*/
1390static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1391 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1392 pPage->aData = sqlite3PagerGetData(pDbPage);
1393 pPage->pDbPage = pDbPage;
1394 pPage->pBt = pBt;
1395 pPage->pgno = pgno;
1396 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1397 return pPage;
1398}
1399
drhbd03cae2001-06-02 02:40:57 +00001400/*
drh3aac2dd2004-04-26 14:10:20 +00001401** Get a page from the pager. Initialize the MemPage.pBt and
1402** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001403**
1404** If the noContent flag is set, it means that we do not care about
1405** the content of the page at this time. So do not go to the disk
1406** to fetch the content. Just fill in the content with zeros for now.
1407** If in the future we call sqlite3PagerWrite() on this page, that
1408** means we have started to be concerned about content and the disk
1409** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001410*/
drh16a9b832007-05-05 18:39:25 +00001411int sqlite3BtreeGetPage(
1412 BtShared *pBt, /* The btree */
1413 Pgno pgno, /* Number of the page to fetch */
1414 MemPage **ppPage, /* Return the page in this parameter */
1415 int noContent /* Do not load page content if true */
1416){
drh3aac2dd2004-04-26 14:10:20 +00001417 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001418 DbPage *pDbPage;
1419
drh1fee73e2007-08-29 04:00:57 +00001420 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001421 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001422 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001423 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001424 return SQLITE_OK;
1425}
1426
1427/*
danielk1977bea2a942009-01-20 17:06:27 +00001428** Retrieve a page from the pager cache. If the requested page is not
1429** already in the pager cache return NULL. Initialize the MemPage.pBt and
1430** MemPage.aData elements if needed.
1431*/
1432static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1433 DbPage *pDbPage;
1434 assert( sqlite3_mutex_held(pBt->mutex) );
1435 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1436 if( pDbPage ){
1437 return btreePageFromDbPage(pDbPage, pgno, pBt);
1438 }
1439 return 0;
1440}
1441
1442/*
danielk197789d40042008-11-17 14:20:56 +00001443** Return the size of the database file in pages. If there is any kind of
1444** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001445*/
danielk197789d40042008-11-17 14:20:56 +00001446static Pgno pagerPagecount(BtShared *pBt){
1447 int nPage = -1;
danielk197767fd7a92008-09-10 17:53:35 +00001448 int rc;
danielk197789d40042008-11-17 14:20:56 +00001449 assert( pBt->pPage1 );
1450 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1451 assert( rc==SQLITE_OK || nPage==-1 );
1452 return (Pgno)nPage;
danielk197767fd7a92008-09-10 17:53:35 +00001453}
1454
1455/*
drhde647132004-05-07 17:57:49 +00001456** Get a page from the pager and initialize it. This routine
1457** is just a convenience wrapper around separate calls to
drh16a9b832007-05-05 18:39:25 +00001458** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
drhde647132004-05-07 17:57:49 +00001459*/
1460static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001461 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001462 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001463 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001464){
1465 int rc;
drh897a8202008-09-18 01:08:15 +00001466 MemPage *pPage;
1467
drh1fee73e2007-08-29 04:00:57 +00001468 assert( sqlite3_mutex_held(pBt->mutex) );
drh897a8202008-09-18 01:08:15 +00001469 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001470 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001471 }
danielk19779f580ad2008-09-10 14:45:57 +00001472
drh897a8202008-09-18 01:08:15 +00001473 /* It is often the case that the page we want is already in cache.
1474 ** If so, get it directly. This saves us from having to call
1475 ** pagerPagecount() to make sure pgno is within limits, which results
1476 ** in a measureable performance improvements.
1477 */
danielk1977bea2a942009-01-20 17:06:27 +00001478 *ppPage = pPage = btreePageLookup(pBt, pgno);
1479 if( pPage ){
drh897a8202008-09-18 01:08:15 +00001480 /* Page is already in cache */
drh897a8202008-09-18 01:08:15 +00001481 rc = SQLITE_OK;
1482 }else{
1483 /* Page not in cache. Acquire it. */
danielk197789d40042008-11-17 14:20:56 +00001484 if( pgno>pagerPagecount(pBt) ){
drh897a8202008-09-18 01:08:15 +00001485 return SQLITE_CORRUPT_BKPT;
1486 }
1487 rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
1488 if( rc ) return rc;
1489 pPage = *ppPage;
1490 }
danielk197771d5d2c2008-09-29 11:49:47 +00001491 if( !pPage->isInit ){
1492 rc = sqlite3BtreeInitPage(pPage);
drh897a8202008-09-18 01:08:15 +00001493 }
1494 if( rc!=SQLITE_OK ){
1495 releasePage(pPage);
1496 *ppPage = 0;
1497 }
drhde647132004-05-07 17:57:49 +00001498 return rc;
1499}
1500
1501/*
drh3aac2dd2004-04-26 14:10:20 +00001502** Release a MemPage. This should be called once for each prior
drh16a9b832007-05-05 18:39:25 +00001503** call to sqlite3BtreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001504*/
drh4b70f112004-05-02 21:12:19 +00001505static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001506 if( pPage ){
drh30df0092008-12-23 15:58:06 +00001507 assert( pPage->nOverflow==0 || sqlite3PagerPageRefcount(pPage->pDbPage)>1 );
drh3aac2dd2004-04-26 14:10:20 +00001508 assert( pPage->aData );
1509 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001510 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1511 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001512 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001513 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001514 }
1515}
1516
1517/*
drha6abd042004-06-09 17:37:22 +00001518** During a rollback, when the pager reloads information into the cache
1519** so that the cache is restored to its original state at the start of
1520** the transaction, for each page restored this routine is called.
1521**
1522** This routine needs to reset the extra data section at the end of the
1523** page to agree with the restored data.
1524*/
danielk1977eaa06f62008-09-18 17:34:44 +00001525static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001526 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001527 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001528 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001529 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001530 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001531 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001532 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001533 /* pPage might not be a btree page; it might be an overflow page
1534 ** or ptrmap page or a free page. In those cases, the following
1535 ** call to sqlite3BtreeInitPage() will likely return SQLITE_CORRUPT.
1536 ** But no harm is done by this. And it is very important that
1537 ** sqlite3BtreeInitPage() be called on every btree page so we make
1538 ** the call for every page that comes in for re-initing. */
danielk197771d5d2c2008-09-29 11:49:47 +00001539 sqlite3BtreeInitPage(pPage);
1540 }
drha6abd042004-06-09 17:37:22 +00001541 }
1542}
1543
1544/*
drhe5fe6902007-12-07 18:55:28 +00001545** Invoke the busy handler for a btree.
1546*/
danielk19771ceedd32008-11-19 10:22:33 +00001547static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001548 BtShared *pBt = (BtShared*)pArg;
1549 assert( pBt->db );
1550 assert( sqlite3_mutex_held(pBt->db->mutex) );
1551 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1552}
1553
1554/*
drhad3e0102004-09-03 23:32:18 +00001555** Open a database file.
1556**
drh382c0242001-10-06 16:33:02 +00001557** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001558** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001559** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001560** If zFilename is ":memory:" then an in-memory database is created
1561** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001562**
1563** If the database is already opened in the same database connection
1564** and we are in shared cache mode, then the open will fail with an
1565** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1566** objects in the same database connection since doing so will lead
1567** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001568*/
drh23e11ca2004-05-04 17:27:28 +00001569int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001570 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001571 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001572 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001573 int flags, /* Options */
1574 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001575){
drh7555d8e2009-03-20 13:15:30 +00001576 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1577 BtShared *pBt = 0; /* Shared part of btree structure */
1578 Btree *p; /* Handle to return */
1579 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1580 int rc = SQLITE_OK; /* Result code from this function */
1581 u8 nReserve; /* Byte of unused space on each page */
1582 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001583
1584 /* Set the variable isMemdb to true for an in-memory database, or
1585 ** false for a file-based database. This symbol is only required if
1586 ** either of the shared-data or autovacuum features are compiled
1587 ** into the library.
1588 */
1589#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1590 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001591 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001592 #else
drh980b1a72006-08-16 16:42:48 +00001593 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001594 #endif
1595#endif
1596
drhe5fe6902007-12-07 18:55:28 +00001597 assert( db!=0 );
1598 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001599
drhe5fe6902007-12-07 18:55:28 +00001600 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001601 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001602 if( !p ){
1603 return SQLITE_NOMEM;
1604 }
1605 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001606 p->db = db;
danielk1977aef0bf62005-12-30 16:28:01 +00001607
drh198bf392006-01-06 21:52:49 +00001608#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001609 /*
1610 ** If this Btree is a candidate for shared cache, try to find an
1611 ** existing BtShared object that we can share with
1612 */
danielk197720c6cc22009-04-01 18:03:00 +00001613 if( isMemdb==0 && zFilename && zFilename[0] ){
danielk1977502b4e02008-09-02 14:07:24 +00001614 if( sqlite3GlobalConfig.sharedCacheEnabled ){
danielk1977adfb9b02007-09-17 07:02:56 +00001615 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001616 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001617 sqlite3_mutex *mutexShared;
1618 p->sharable = 1;
drh34004ce2008-07-11 16:15:17 +00001619 db->flags |= SQLITE_SharedCache;
drhff0587c2007-08-29 17:43:19 +00001620 if( !zFullPathname ){
1621 sqlite3_free(p);
1622 return SQLITE_NOMEM;
1623 }
danielk1977adfb9b02007-09-17 07:02:56 +00001624 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001625 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1626 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001627 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001628 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001629 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001630 assert( pBt->nRef>0 );
1631 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1632 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001633 int iDb;
1634 for(iDb=db->nDb-1; iDb>=0; iDb--){
1635 Btree *pExisting = db->aDb[iDb].pBt;
1636 if( pExisting && pExisting->pBt==pBt ){
1637 sqlite3_mutex_leave(mutexShared);
1638 sqlite3_mutex_leave(mutexOpen);
1639 sqlite3_free(zFullPathname);
1640 sqlite3_free(p);
1641 return SQLITE_CONSTRAINT;
1642 }
1643 }
drhff0587c2007-08-29 17:43:19 +00001644 p->pBt = pBt;
1645 pBt->nRef++;
1646 break;
1647 }
1648 }
1649 sqlite3_mutex_leave(mutexShared);
1650 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001651 }
drhff0587c2007-08-29 17:43:19 +00001652#ifdef SQLITE_DEBUG
1653 else{
1654 /* In debug mode, we mark all persistent databases as sharable
1655 ** even when they are not. This exercises the locking code and
1656 ** gives more opportunity for asserts(sqlite3_mutex_held())
1657 ** statements to find locking problems.
1658 */
1659 p->sharable = 1;
1660 }
1661#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001662 }
1663#endif
drha059ad02001-04-17 20:09:11 +00001664 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001665 /*
1666 ** The following asserts make sure that structures used by the btree are
1667 ** the right size. This is to guard against size changes that result
1668 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001669 */
drhe53831d2007-08-17 01:14:38 +00001670 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1671 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1672 assert( sizeof(u32)==4 );
1673 assert( sizeof(u16)==2 );
1674 assert( sizeof(Pgno)==4 );
1675
1676 pBt = sqlite3MallocZero( sizeof(*pBt) );
1677 if( pBt==0 ){
1678 rc = SQLITE_NOMEM;
1679 goto btree_open_out;
1680 }
danielk197771d5d2c2008-09-29 11:49:47 +00001681 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh33f4e022007-09-03 15:19:34 +00001682 EXTRA_SIZE, flags, vfsFlags);
drhe53831d2007-08-17 01:14:38 +00001683 if( rc==SQLITE_OK ){
1684 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1685 }
1686 if( rc!=SQLITE_OK ){
1687 goto btree_open_out;
1688 }
danielk19772a50ff02009-04-10 09:47:06 +00001689 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001690 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001691 p->pBt = pBt;
1692
drhe53831d2007-08-17 01:14:38 +00001693 sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
1694 pBt->pCursor = 0;
1695 pBt->pPage1 = 0;
1696 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1697 pBt->pageSize = get2byte(&zDbHeader[16]);
1698 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1699 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001700 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001701#ifndef SQLITE_OMIT_AUTOVACUUM
1702 /* If the magic name ":memory:" will create an in-memory database, then
1703 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1704 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1705 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1706 ** regular file-name. In this case the auto-vacuum applies as per normal.
1707 */
1708 if( zFilename && !isMemdb ){
1709 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1710 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1711 }
1712#endif
1713 nReserve = 0;
1714 }else{
1715 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001716 pBt->pageSizeFixed = 1;
1717#ifndef SQLITE_OMIT_AUTOVACUUM
1718 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1719 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1720#endif
1721 }
drhfa9601a2009-06-18 17:22:39 +00001722 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001723 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001724 pBt->usableSize = pBt->pageSize - nReserve;
1725 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001726
1727#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1728 /* Add the new BtShared object to the linked list sharable BtShareds.
1729 */
1730 if( p->sharable ){
1731 sqlite3_mutex *mutexShared;
1732 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001733 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001734 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001735 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001736 if( pBt->mutex==0 ){
1737 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001738 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001739 goto btree_open_out;
1740 }
drhff0587c2007-08-29 17:43:19 +00001741 }
drhe53831d2007-08-17 01:14:38 +00001742 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001743 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1744 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001745 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001746 }
drheee46cf2004-11-06 00:02:48 +00001747#endif
drh90f5ecb2004-07-22 01:19:35 +00001748 }
danielk1977aef0bf62005-12-30 16:28:01 +00001749
drhcfed7bc2006-03-13 14:28:05 +00001750#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001751 /* If the new Btree uses a sharable pBtShared, then link the new
1752 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001753 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001754 */
drhe53831d2007-08-17 01:14:38 +00001755 if( p->sharable ){
1756 int i;
1757 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001758 for(i=0; i<db->nDb; i++){
1759 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001760 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1761 if( p->pBt<pSib->pBt ){
1762 p->pNext = pSib;
1763 p->pPrev = 0;
1764 pSib->pPrev = p;
1765 }else{
drhabddb0c2007-08-20 13:14:28 +00001766 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001767 pSib = pSib->pNext;
1768 }
1769 p->pNext = pSib->pNext;
1770 p->pPrev = pSib;
1771 if( p->pNext ){
1772 p->pNext->pPrev = p;
1773 }
1774 pSib->pNext = p;
1775 }
1776 break;
1777 }
1778 }
danielk1977aef0bf62005-12-30 16:28:01 +00001779 }
danielk1977aef0bf62005-12-30 16:28:01 +00001780#endif
1781 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001782
1783btree_open_out:
1784 if( rc!=SQLITE_OK ){
1785 if( pBt && pBt->pPager ){
1786 sqlite3PagerClose(pBt->pPager);
1787 }
drh17435752007-08-16 04:30:38 +00001788 sqlite3_free(pBt);
1789 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001790 *ppBtree = 0;
1791 }
drh7555d8e2009-03-20 13:15:30 +00001792 if( mutexOpen ){
1793 assert( sqlite3_mutex_held(mutexOpen) );
1794 sqlite3_mutex_leave(mutexOpen);
1795 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001796 return rc;
drha059ad02001-04-17 20:09:11 +00001797}
1798
1799/*
drhe53831d2007-08-17 01:14:38 +00001800** Decrement the BtShared.nRef counter. When it reaches zero,
1801** remove the BtShared structure from the sharing list. Return
1802** true if the BtShared.nRef counter reaches zero and return
1803** false if it is still positive.
1804*/
1805static int removeFromSharingList(BtShared *pBt){
1806#ifndef SQLITE_OMIT_SHARED_CACHE
1807 sqlite3_mutex *pMaster;
1808 BtShared *pList;
1809 int removed = 0;
1810
drhd677b3d2007-08-20 22:48:41 +00001811 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001812 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001813 sqlite3_mutex_enter(pMaster);
1814 pBt->nRef--;
1815 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001816 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1817 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001818 }else{
drh78f82d12008-09-02 00:52:52 +00001819 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001820 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001821 pList=pList->pNext;
1822 }
drh34004ce2008-07-11 16:15:17 +00001823 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001824 pList->pNext = pBt->pNext;
1825 }
1826 }
drh3285db22007-09-03 22:00:39 +00001827 if( SQLITE_THREADSAFE ){
1828 sqlite3_mutex_free(pBt->mutex);
1829 }
drhe53831d2007-08-17 01:14:38 +00001830 removed = 1;
1831 }
1832 sqlite3_mutex_leave(pMaster);
1833 return removed;
1834#else
1835 return 1;
1836#endif
1837}
1838
1839/*
drhf7141992008-06-19 00:16:08 +00001840** Make sure pBt->pTmpSpace points to an allocation of
1841** MX_CELL_SIZE(pBt) bytes.
1842*/
1843static void allocateTempSpace(BtShared *pBt){
1844 if( !pBt->pTmpSpace ){
1845 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1846 }
1847}
1848
1849/*
1850** Free the pBt->pTmpSpace allocation
1851*/
1852static void freeTempSpace(BtShared *pBt){
1853 sqlite3PageFree( pBt->pTmpSpace);
1854 pBt->pTmpSpace = 0;
1855}
1856
1857/*
drha059ad02001-04-17 20:09:11 +00001858** Close an open database and invalidate all cursors.
1859*/
danielk1977aef0bf62005-12-30 16:28:01 +00001860int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001861 BtShared *pBt = p->pBt;
1862 BtCursor *pCur;
1863
danielk1977aef0bf62005-12-30 16:28:01 +00001864 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001865 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001866 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001867 pCur = pBt->pCursor;
1868 while( pCur ){
1869 BtCursor *pTmp = pCur;
1870 pCur = pCur->pNext;
1871 if( pTmp->pBtree==p ){
1872 sqlite3BtreeCloseCursor(pTmp);
1873 }
drha059ad02001-04-17 20:09:11 +00001874 }
danielk1977aef0bf62005-12-30 16:28:01 +00001875
danielk19778d34dfd2006-01-24 16:37:57 +00001876 /* Rollback any active transaction and free the handle structure.
1877 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1878 ** this handle.
1879 */
danielk1977b597f742006-01-15 11:39:18 +00001880 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001881 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001882
danielk1977aef0bf62005-12-30 16:28:01 +00001883 /* If there are still other outstanding references to the shared-btree
1884 ** structure, return now. The remainder of this procedure cleans
1885 ** up the shared-btree.
1886 */
drhe53831d2007-08-17 01:14:38 +00001887 assert( p->wantToLock==0 && p->locked==0 );
1888 if( !p->sharable || removeFromSharingList(pBt) ){
1889 /* The pBt is no longer on the sharing list, so we can access
1890 ** it without having to hold the mutex.
1891 **
1892 ** Clean out and delete the BtShared object.
1893 */
1894 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001895 sqlite3PagerClose(pBt->pPager);
1896 if( pBt->xFreeSchema && pBt->pSchema ){
1897 pBt->xFreeSchema(pBt->pSchema);
1898 }
1899 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00001900 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00001901 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001902 }
1903
drhe53831d2007-08-17 01:14:38 +00001904#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00001905 assert( p->wantToLock==0 );
1906 assert( p->locked==0 );
1907 if( p->pPrev ) p->pPrev->pNext = p->pNext;
1908 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00001909#endif
1910
drhe53831d2007-08-17 01:14:38 +00001911 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00001912 return SQLITE_OK;
1913}
1914
1915/*
drhda47d772002-12-02 04:25:19 +00001916** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001917**
1918** The maximum number of cache pages is set to the absolute
1919** value of mxPage. If mxPage is negative, the pager will
1920** operate asynchronously - it will not stop to do fsync()s
1921** to insure data is written to the disk surface before
1922** continuing. Transactions still work if synchronous is off,
1923** and the database cannot be corrupted if this program
1924** crashes. But if the operating system crashes or there is
1925** an abrupt power failure when synchronous is off, the database
1926** could be left in an inconsistent and unrecoverable state.
1927** Synchronous is on by default so database corruption is not
1928** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00001929*/
danielk1977aef0bf62005-12-30 16:28:01 +00001930int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
1931 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00001932 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001933 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001934 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00001935 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00001936 return SQLITE_OK;
1937}
1938
1939/*
drh973b6e32003-02-12 14:09:42 +00001940** Change the way data is synced to disk in order to increase or decrease
1941** how well the database resists damage due to OS crashes and power
1942** failures. Level 1 is the same as asynchronous (no syncs() occur and
1943** there is a high probability of damage) Level 2 is the default. There
1944** is a very low but non-zero probability of damage. Level 3 reduces the
1945** probability of damage to near zero but with a write performance reduction.
1946*/
danielk197793758c82005-01-21 08:13:14 +00001947#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00001948int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00001949 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00001950 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001951 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001952 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00001953 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00001954 return SQLITE_OK;
1955}
danielk197793758c82005-01-21 08:13:14 +00001956#endif
drh973b6e32003-02-12 14:09:42 +00001957
drh2c8997b2005-08-27 16:36:48 +00001958/*
1959** Return TRUE if the given btree is set to safety level 1. In other
1960** words, return TRUE if no sync() occurs on the disk files.
1961*/
danielk1977aef0bf62005-12-30 16:28:01 +00001962int sqlite3BtreeSyncDisabled(Btree *p){
1963 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001964 int rc;
drhe5fe6902007-12-07 18:55:28 +00001965 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001966 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00001967 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00001968 rc = sqlite3PagerNosync(pBt->pPager);
1969 sqlite3BtreeLeave(p);
1970 return rc;
drh2c8997b2005-08-27 16:36:48 +00001971}
1972
danielk1977576ec6b2005-01-21 11:55:25 +00001973#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00001974/*
drh90f5ecb2004-07-22 01:19:35 +00001975** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00001976** Or, if the page size has already been fixed, return SQLITE_READONLY
1977** without changing anything.
drh06f50212004-11-02 14:24:33 +00001978**
1979** The page size must be a power of 2 between 512 and 65536. If the page
1980** size supplied does not meet this constraint then the page size is not
1981** changed.
1982**
1983** Page sizes are constrained to be a power of two so that the region
1984** of the database file used for locking (beginning at PENDING_BYTE,
1985** the first byte past the 1GB boundary, 0x40000000) needs to occur
1986** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00001987**
1988** If parameter nReserve is less than zero, then the number of reserved
1989** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00001990**
1991** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
1992** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00001993*/
drhce4869f2009-04-02 20:16:58 +00001994int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00001995 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00001996 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00001997 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00001998 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00001999 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002000 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002001 return SQLITE_READONLY;
2002 }
2003 if( nReserve<0 ){
2004 nReserve = pBt->pageSize - pBt->usableSize;
2005 }
drhf49661a2008-12-10 16:45:50 +00002006 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002007 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2008 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002009 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002010 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00002011 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002012 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002013 }
drhfa9601a2009-06-18 17:22:39 +00002014 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002015 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002016 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002017 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002018 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002019}
2020
2021/*
2022** Return the currently defined page size
2023*/
danielk1977aef0bf62005-12-30 16:28:01 +00002024int sqlite3BtreeGetPageSize(Btree *p){
2025 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002026}
drh7f751222009-03-17 22:33:00 +00002027
2028/*
2029** Return the number of bytes of space at the end of every page that
2030** are intentually left unused. This is the "reserved" space that is
2031** sometimes used by extensions.
2032*/
danielk1977aef0bf62005-12-30 16:28:01 +00002033int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002034 int n;
2035 sqlite3BtreeEnter(p);
2036 n = p->pBt->pageSize - p->pBt->usableSize;
2037 sqlite3BtreeLeave(p);
2038 return n;
drh2011d5f2004-07-22 02:40:37 +00002039}
drhf8e632b2007-05-08 14:51:36 +00002040
2041/*
2042** Set the maximum page count for a database if mxPage is positive.
2043** No changes are made if mxPage is 0 or negative.
2044** Regardless of the value of mxPage, return the maximum page count.
2045*/
2046int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002047 int n;
2048 sqlite3BtreeEnter(p);
2049 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2050 sqlite3BtreeLeave(p);
2051 return n;
drhf8e632b2007-05-08 14:51:36 +00002052}
danielk1977576ec6b2005-01-21 11:55:25 +00002053#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002054
2055/*
danielk1977951af802004-11-05 15:45:09 +00002056** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2057** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2058** is disabled. The default value for the auto-vacuum property is
2059** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2060*/
danielk1977aef0bf62005-12-30 16:28:01 +00002061int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002062#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002063 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002064#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002065 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002066 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002067 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002068
2069 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002070 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002071 rc = SQLITE_READONLY;
2072 }else{
drh076d4662009-02-18 20:31:18 +00002073 pBt->autoVacuum = av ?1:0;
2074 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002075 }
drhd677b3d2007-08-20 22:48:41 +00002076 sqlite3BtreeLeave(p);
2077 return rc;
danielk1977951af802004-11-05 15:45:09 +00002078#endif
2079}
2080
2081/*
2082** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2083** enabled 1 is returned. Otherwise 0.
2084*/
danielk1977aef0bf62005-12-30 16:28:01 +00002085int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002086#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002087 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002088#else
drhd677b3d2007-08-20 22:48:41 +00002089 int rc;
2090 sqlite3BtreeEnter(p);
2091 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002092 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2093 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2094 BTREE_AUTOVACUUM_INCR
2095 );
drhd677b3d2007-08-20 22:48:41 +00002096 sqlite3BtreeLeave(p);
2097 return rc;
danielk1977951af802004-11-05 15:45:09 +00002098#endif
2099}
2100
2101
2102/*
drha34b6762004-05-07 13:30:42 +00002103** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002104** also acquire a readlock on that file.
2105**
2106** SQLITE_OK is returned on success. If the file is not a
2107** well-formed database file, then SQLITE_CORRUPT is returned.
2108** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002109** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002110*/
danielk1977aef0bf62005-12-30 16:28:01 +00002111static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00002112 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002113 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00002114 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002115
drh1fee73e2007-08-29 04:00:57 +00002116 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002117 assert( pBt->pPage1==0 );
drh16a9b832007-05-05 18:39:25 +00002118 rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002119 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002120
2121 /* Do some checking to help insure the file we opened really is
2122 ** a valid database file.
2123 */
danielk1977ad0132d2008-06-07 08:58:22 +00002124 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2125 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00002126 goto page1_init_failed;
2127 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002128 int pageSize;
2129 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002130 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002131 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002132 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002133 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002134 }
drh309169a2007-04-24 17:27:51 +00002135 if( page1[18]>1 ){
2136 pBt->readOnly = 1;
2137 }
2138 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00002139 goto page1_init_failed;
2140 }
drhe5ae5732008-06-15 02:51:47 +00002141
2142 /* The maximum embedded fraction must be exactly 25%. And the minimum
2143 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2144 ** The original design allowed these amounts to vary, but as of
2145 ** version 3.6.0, we require them to be fixed.
2146 */
2147 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2148 goto page1_init_failed;
2149 }
drh07d183d2005-05-01 22:52:42 +00002150 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002151 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2152 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2153 ){
drh07d183d2005-05-01 22:52:42 +00002154 goto page1_init_failed;
2155 }
2156 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002157 usableSize = pageSize - page1[20];
2158 if( pageSize!=pBt->pageSize ){
2159 /* After reading the first page of the database assuming a page size
2160 ** of BtShared.pageSize, we have discovered that the page-size is
2161 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2162 ** zero and return SQLITE_OK. The caller will call this function
2163 ** again with the correct page-size.
2164 */
2165 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002166 pBt->usableSize = (u16)usableSize;
2167 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002168 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002169 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2170 pageSize-usableSize);
drhc0b61812009-04-30 01:22:41 +00002171 if( rc ) goto page1_init_failed;
danielk1977f653d782008-03-20 11:04:21 +00002172 return SQLITE_OK;
2173 }
drhb33e1b92009-06-18 11:29:20 +00002174 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002175 goto page1_init_failed;
2176 }
drh1bd10f82008-12-10 21:19:56 +00002177 pBt->pageSize = (u16)pageSize;
2178 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002179#ifndef SQLITE_OMIT_AUTOVACUUM
2180 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002181 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002182#endif
drh306dc212001-05-21 13:45:10 +00002183 }
drhb6f41482004-05-14 01:58:11 +00002184
2185 /* maxLocal is the maximum amount of payload to store locally for
2186 ** a cell. Make sure it is small enough so that at least minFanout
2187 ** cells can will fit on one page. We assume a 10-byte page header.
2188 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002189 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002190 ** 4-byte child pointer
2191 ** 9-byte nKey value
2192 ** 4-byte nData value
2193 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002194 ** So a cell consists of a 2-byte poiner, a header which is as much as
2195 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2196 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002197 */
drhe5ae5732008-06-15 02:51:47 +00002198 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2199 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002200 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002201 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002202 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002203 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00002204 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002205
drh72f82862001-05-24 21:06:34 +00002206page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002207 releasePage(pPage1);
2208 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002209 return rc;
drh306dc212001-05-21 13:45:10 +00002210}
2211
2212/*
drhb8ef32c2005-03-14 02:01:49 +00002213** This routine works like lockBtree() except that it also invokes the
2214** busy callback if there is lock contention.
2215*/
danielk1977aef0bf62005-12-30 16:28:01 +00002216static int lockBtreeWithRetry(Btree *pRef){
drhb8ef32c2005-03-14 02:01:49 +00002217 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00002218
drh1fee73e2007-08-29 04:00:57 +00002219 assert( sqlite3BtreeHoldsMutex(pRef) );
danielk1977aef0bf62005-12-30 16:28:01 +00002220 if( pRef->inTrans==TRANS_NONE ){
2221 u8 inTransaction = pRef->pBt->inTransaction;
2222 btreeIntegrity(pRef);
2223 rc = sqlite3BtreeBeginTrans(pRef, 0);
2224 pRef->pBt->inTransaction = inTransaction;
2225 pRef->inTrans = TRANS_NONE;
2226 if( rc==SQLITE_OK ){
2227 pRef->pBt->nTransaction--;
2228 }
2229 btreeIntegrity(pRef);
drhb8ef32c2005-03-14 02:01:49 +00002230 }
2231 return rc;
2232}
2233
2234
2235/*
drhb8ca3072001-12-05 00:21:20 +00002236** If there are no outstanding cursors and we are not in the middle
2237** of a transaction but there is a read lock on the database, then
2238** this routine unrefs the first page of the database file which
2239** has the effect of releasing the read lock.
2240**
2241** If there are any outstanding cursors, this routine is a no-op.
2242**
2243** If there is a transaction in progress, this routine is a no-op.
2244*/
danielk1977aef0bf62005-12-30 16:28:01 +00002245static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002246 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00002247 if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002248 assert( pBt->pPage1->aData );
2249 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2250 assert( pBt->pPage1->aData );
2251 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002252 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002253 }
2254}
2255
2256/*
drh9e572e62004-04-23 23:43:10 +00002257** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00002258** file.
drh8b2f49b2001-06-08 00:21:52 +00002259*/
danielk1977aef0bf62005-12-30 16:28:01 +00002260static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002261 MemPage *pP1;
2262 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002263 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00002264 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002265
drh1fee73e2007-08-29 04:00:57 +00002266 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00002267 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2268 if( rc!=SQLITE_OK || nPage>0 ){
2269 return rc;
2270 }
drh3aac2dd2004-04-26 14:10:20 +00002271 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002272 assert( pP1!=0 );
2273 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002274 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002275 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002276 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2277 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002278 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002279 data[18] = 1;
2280 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002281 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2282 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002283 data[21] = 64;
2284 data[22] = 32;
2285 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002286 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002287 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002288 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002289#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002290 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002291 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002292 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002293 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002294#endif
drh8b2f49b2001-06-08 00:21:52 +00002295 return SQLITE_OK;
2296}
2297
2298/*
danielk1977ee5741e2004-05-31 10:01:34 +00002299** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002300** is started if the second argument is nonzero, otherwise a read-
2301** transaction. If the second argument is 2 or more and exclusive
2302** transaction is started, meaning that no other process is allowed
2303** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002304** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002305** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002306**
danielk1977ee5741e2004-05-31 10:01:34 +00002307** A write-transaction must be started before attempting any
2308** changes to the database. None of the following routines
2309** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002310**
drh23e11ca2004-05-04 17:27:28 +00002311** sqlite3BtreeCreateTable()
2312** sqlite3BtreeCreateIndex()
2313** sqlite3BtreeClearTable()
2314** sqlite3BtreeDropTable()
2315** sqlite3BtreeInsert()
2316** sqlite3BtreeDelete()
2317** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002318**
drhb8ef32c2005-03-14 02:01:49 +00002319** If an initial attempt to acquire the lock fails because of lock contention
2320** and the database was previously unlocked, then invoke the busy handler
2321** if there is one. But if there was previously a read-lock, do not
2322** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2323** returned when there is already a read-lock in order to avoid a deadlock.
2324**
2325** Suppose there are two processes A and B. A has a read lock and B has
2326** a reserved lock. B tries to promote to exclusive but is blocked because
2327** of A's read lock. A tries to promote to reserved but is blocked by B.
2328** One or the other of the two processes must give way or there can be
2329** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2330** when A already has a read lock, we encourage A to give up and let B
2331** proceed.
drha059ad02001-04-17 20:09:11 +00002332*/
danielk1977aef0bf62005-12-30 16:28:01 +00002333int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002334 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002335 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002336 int rc = SQLITE_OK;
2337
drhd677b3d2007-08-20 22:48:41 +00002338 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002339 btreeIntegrity(p);
2340
danielk1977ee5741e2004-05-31 10:01:34 +00002341 /* If the btree is already in a write-transaction, or it
2342 ** is already in a read-transaction and a read-transaction
2343 ** is requested, this is a no-op.
2344 */
danielk1977aef0bf62005-12-30 16:28:01 +00002345 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002346 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002347 }
drhb8ef32c2005-03-14 02:01:49 +00002348
2349 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002350 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002351 rc = SQLITE_READONLY;
2352 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002353 }
2354
danielk1977404ca072009-03-16 13:19:36 +00002355#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002356 /* If another database handle has already opened a write transaction
2357 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002358 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002359 */
danielk1977404ca072009-03-16 13:19:36 +00002360 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2361 pBlock = pBt->pWriter->db;
2362 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002363 BtLock *pIter;
2364 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2365 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002366 pBlock = pIter->pBtree->db;
2367 break;
danielk1977641b0f42007-12-21 04:47:25 +00002368 }
2369 }
2370 }
danielk1977404ca072009-03-16 13:19:36 +00002371 if( pBlock ){
2372 sqlite3ConnectionBlocked(p->db, pBlock);
2373 rc = SQLITE_LOCKED_SHAREDCACHE;
2374 goto trans_begun;
2375 }
danielk1977641b0f42007-12-21 04:47:25 +00002376#endif
2377
drhb8ef32c2005-03-14 02:01:49 +00002378 do {
danielk1977295dc102009-04-01 19:07:03 +00002379 /* Call lockBtree() until either pBt->pPage1 is populated or
2380 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2381 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2382 ** reading page 1 it discovers that the page-size of the database
2383 ** file is not pBt->pageSize. In this case lockBtree() will update
2384 ** pBt->pageSize to the page-size of the file on disk.
2385 */
2386 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002387
drhb8ef32c2005-03-14 02:01:49 +00002388 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002389 if( pBt->readOnly ){
2390 rc = SQLITE_READONLY;
2391 }else{
danielk1977d8293352009-04-30 09:10:37 +00002392 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002393 if( rc==SQLITE_OK ){
2394 rc = newDatabase(pBt);
2395 }
drhb8ef32c2005-03-14 02:01:49 +00002396 }
2397 }
2398
danielk1977bd434552009-03-18 10:33:00 +00002399 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002400 unlockBtreeIfUnused(pBt);
2401 }
danielk1977aef0bf62005-12-30 16:28:01 +00002402 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002403 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002404
2405 if( rc==SQLITE_OK ){
2406 if( p->inTrans==TRANS_NONE ){
2407 pBt->nTransaction++;
2408 }
2409 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2410 if( p->inTrans>pBt->inTransaction ){
2411 pBt->inTransaction = p->inTrans;
2412 }
danielk1977641b0f42007-12-21 04:47:25 +00002413#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002414 if( wrflag ){
2415 assert( !pBt->pWriter );
2416 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002417 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002418 }
2419#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002420 }
2421
drhd677b3d2007-08-20 22:48:41 +00002422
2423trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002424 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002425 /* This call makes sure that the pager has the correct number of
2426 ** open savepoints. If the second parameter is greater than 0 and
2427 ** the sub-journal is not already open, then it will be opened here.
2428 */
danielk1977fd7f0452008-12-17 17:30:26 +00002429 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2430 }
danielk197712dd5492008-12-18 15:45:07 +00002431
danielk1977aef0bf62005-12-30 16:28:01 +00002432 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002433 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002434 return rc;
drha059ad02001-04-17 20:09:11 +00002435}
2436
danielk1977687566d2004-11-02 12:56:41 +00002437#ifndef SQLITE_OMIT_AUTOVACUUM
2438
2439/*
2440** Set the pointer-map entries for all children of page pPage. Also, if
2441** pPage contains cells that point to overflow pages, set the pointer
2442** map entries for the overflow pages as well.
2443*/
2444static int setChildPtrmaps(MemPage *pPage){
2445 int i; /* Counter variable */
2446 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002447 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002448 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002449 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002450 Pgno pgno = pPage->pgno;
2451
drh1fee73e2007-08-29 04:00:57 +00002452 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197771d5d2c2008-09-29 11:49:47 +00002453 rc = sqlite3BtreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002454 if( rc!=SQLITE_OK ){
2455 goto set_child_ptrmaps_out;
2456 }
danielk1977687566d2004-11-02 12:56:41 +00002457 nCell = pPage->nCell;
2458
2459 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002460 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002461
danielk197726836652005-01-17 01:33:13 +00002462 rc = ptrmapPutOvflPtr(pPage, pCell);
2463 if( rc!=SQLITE_OK ){
2464 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002465 }
danielk197726836652005-01-17 01:33:13 +00002466
danielk1977687566d2004-11-02 12:56:41 +00002467 if( !pPage->leaf ){
2468 Pgno childPgno = get4byte(pCell);
2469 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
danielk197700a696d2008-09-29 16:41:31 +00002470 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002471 }
2472 }
2473
2474 if( !pPage->leaf ){
2475 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2476 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2477 }
2478
2479set_child_ptrmaps_out:
2480 pPage->isInit = isInitOrig;
2481 return rc;
2482}
2483
2484/*
danielk1977fa542f12009-04-02 18:28:08 +00002485** Somewhere on pPage, which is guaranteed to be a btree page, not an overflow
danielk1977687566d2004-11-02 12:56:41 +00002486** page, is a pointer to page iFrom. Modify this pointer so that it points to
2487** iTo. Parameter eType describes the type of pointer to be modified, as
2488** follows:
2489**
2490** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2491** page of pPage.
2492**
2493** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2494** page pointed to by one of the cells on pPage.
2495**
2496** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2497** overflow page in the list.
2498*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002499static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002500 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002501 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002502 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002503 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002504 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002505 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002506 }
danielk1977f78fc082004-11-02 14:40:32 +00002507 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002508 }else{
drhf49661a2008-12-10 16:45:50 +00002509 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002510 int i;
2511 int nCell;
2512
danielk197771d5d2c2008-09-29 11:49:47 +00002513 sqlite3BtreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002514 nCell = pPage->nCell;
2515
danielk1977687566d2004-11-02 12:56:41 +00002516 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002517 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002518 if( eType==PTRMAP_OVERFLOW1 ){
2519 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00002520 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002521 if( info.iOverflow ){
2522 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2523 put4byte(&pCell[info.iOverflow], iTo);
2524 break;
2525 }
2526 }
2527 }else{
2528 if( get4byte(pCell)==iFrom ){
2529 put4byte(pCell, iTo);
2530 break;
2531 }
2532 }
2533 }
2534
2535 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002536 if( eType!=PTRMAP_BTREE ||
2537 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002538 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002539 }
danielk1977687566d2004-11-02 12:56:41 +00002540 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2541 }
2542
2543 pPage->isInit = isInitOrig;
2544 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002545 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002546}
2547
danielk1977003ba062004-11-04 02:57:33 +00002548
danielk19777701e812005-01-10 12:59:51 +00002549/*
2550** Move the open database page pDbPage to location iFreePage in the
2551** database. The pDbPage reference remains valid.
2552*/
danielk1977003ba062004-11-04 02:57:33 +00002553static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002554 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002555 MemPage *pDbPage, /* Open page to move */
2556 u8 eType, /* Pointer map 'type' entry for pDbPage */
2557 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002558 Pgno iFreePage, /* The location to move pDbPage to */
2559 int isCommit
danielk1977003ba062004-11-04 02:57:33 +00002560){
2561 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2562 Pgno iDbPage = pDbPage->pgno;
2563 Pager *pPager = pBt->pPager;
2564 int rc;
2565
danielk1977a0bf2652004-11-04 14:30:04 +00002566 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2567 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002568 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002569 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002570
drh85b623f2007-12-13 21:54:09 +00002571 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002572 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2573 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002574 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002575 if( rc!=SQLITE_OK ){
2576 return rc;
2577 }
2578 pDbPage->pgno = iFreePage;
2579
2580 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2581 ** that point to overflow pages. The pointer map entries for all these
2582 ** pages need to be changed.
2583 **
2584 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2585 ** pointer to a subsequent overflow page. If this is the case, then
2586 ** the pointer map needs to be updated for the subsequent overflow page.
2587 */
danielk1977a0bf2652004-11-04 14:30:04 +00002588 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002589 rc = setChildPtrmaps(pDbPage);
2590 if( rc!=SQLITE_OK ){
2591 return rc;
2592 }
2593 }else{
2594 Pgno nextOvfl = get4byte(pDbPage->aData);
2595 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002596 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2597 if( rc!=SQLITE_OK ){
2598 return rc;
2599 }
2600 }
2601 }
2602
2603 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2604 ** that it points at iFreePage. Also fix the pointer map entry for
2605 ** iPtrPage.
2606 */
danielk1977a0bf2652004-11-04 14:30:04 +00002607 if( eType!=PTRMAP_ROOTPAGE ){
drh16a9b832007-05-05 18:39:25 +00002608 rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002609 if( rc!=SQLITE_OK ){
2610 return rc;
2611 }
danielk19773b8a05f2007-03-19 17:44:26 +00002612 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002613 if( rc!=SQLITE_OK ){
2614 releasePage(pPtrPage);
2615 return rc;
2616 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002617 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002618 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002619 if( rc==SQLITE_OK ){
2620 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2621 }
danielk1977003ba062004-11-04 02:57:33 +00002622 }
danielk1977003ba062004-11-04 02:57:33 +00002623 return rc;
2624}
2625
danielk1977dddbcdc2007-04-26 14:42:34 +00002626/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002627static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002628
2629/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002630** Perform a single step of an incremental-vacuum. If successful,
2631** return SQLITE_OK. If there is no work to do (and therefore no
2632** point in calling this function again), return SQLITE_DONE.
2633**
2634** More specificly, this function attempts to re-organize the
2635** database so that the last page of the file currently in use
2636** is no longer in use.
2637**
2638** If the nFin parameter is non-zero, the implementation assumes
2639** that the caller will keep calling incrVacuumStep() until
2640** it returns SQLITE_DONE or an error, and that nFin is the
2641** number of pages the database file will contain after this
2642** process is complete.
2643*/
danielk19773460d192008-12-27 15:23:13 +00002644static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002645 Pgno nFreeList; /* Number of pages still on the free-list */
2646
drh1fee73e2007-08-29 04:00:57 +00002647 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002648 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002649
2650 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2651 int rc;
2652 u8 eType;
2653 Pgno iPtrPage;
2654
2655 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002656 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002657 return SQLITE_DONE;
2658 }
2659
2660 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2661 if( rc!=SQLITE_OK ){
2662 return rc;
2663 }
2664 if( eType==PTRMAP_ROOTPAGE ){
2665 return SQLITE_CORRUPT_BKPT;
2666 }
2667
2668 if( eType==PTRMAP_FREEPAGE ){
2669 if( nFin==0 ){
2670 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002671 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002672 ** truncated to zero after this function returns, so it doesn't
2673 ** matter if it still contains some garbage entries.
2674 */
2675 Pgno iFreePg;
2676 MemPage *pFreePg;
2677 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2678 if( rc!=SQLITE_OK ){
2679 return rc;
2680 }
2681 assert( iFreePg==iLastPg );
2682 releasePage(pFreePg);
2683 }
2684 } else {
2685 Pgno iFreePg; /* Index of free page to move pLastPg to */
2686 MemPage *pLastPg;
2687
drh16a9b832007-05-05 18:39:25 +00002688 rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002689 if( rc!=SQLITE_OK ){
2690 return rc;
2691 }
2692
danielk1977b4626a32007-04-28 15:47:43 +00002693 /* If nFin is zero, this loop runs exactly once and page pLastPg
2694 ** is swapped with the first free page pulled off the free list.
2695 **
2696 ** On the other hand, if nFin is greater than zero, then keep
2697 ** looping until a free-page located within the first nFin pages
2698 ** of the file is found.
2699 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002700 do {
2701 MemPage *pFreePg;
2702 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2703 if( rc!=SQLITE_OK ){
2704 releasePage(pLastPg);
2705 return rc;
2706 }
2707 releasePage(pFreePg);
2708 }while( nFin!=0 && iFreePg>nFin );
2709 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002710
2711 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002712 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002713 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002714 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002715 releasePage(pLastPg);
2716 if( rc!=SQLITE_OK ){
2717 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002718 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002719 }
2720 }
2721
danielk19773460d192008-12-27 15:23:13 +00002722 if( nFin==0 ){
2723 iLastPg--;
2724 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002725 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2726 MemPage *pPg;
2727 int rc = sqlite3BtreeGetPage(pBt, iLastPg, &pPg, 0);
2728 if( rc!=SQLITE_OK ){
2729 return rc;
2730 }
2731 rc = sqlite3PagerWrite(pPg->pDbPage);
2732 releasePage(pPg);
2733 if( rc!=SQLITE_OK ){
2734 return rc;
2735 }
2736 }
danielk19773460d192008-12-27 15:23:13 +00002737 iLastPg--;
2738 }
2739 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
danielk1977dddbcdc2007-04-26 14:42:34 +00002740 }
2741 return SQLITE_OK;
2742}
2743
2744/*
2745** A write-transaction must be opened before calling this function.
2746** It performs a single unit of work towards an incremental vacuum.
2747**
2748** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002749** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002750** SQLITE_OK is returned. Otherwise an SQLite error code.
2751*/
2752int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002753 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002754 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002755
2756 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002757 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2758 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002759 rc = SQLITE_DONE;
2760 }else{
2761 invalidateAllOverflowCache(pBt);
danielk1977bea2a942009-01-20 17:06:27 +00002762 rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
danielk1977dddbcdc2007-04-26 14:42:34 +00002763 }
drhd677b3d2007-08-20 22:48:41 +00002764 sqlite3BtreeLeave(p);
2765 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002766}
2767
2768/*
danielk19773b8a05f2007-03-19 17:44:26 +00002769** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002770** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002771**
2772** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2773** the database file should be truncated to during the commit process.
2774** i.e. the database has been reorganized so that only the first *pnTrunc
2775** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002776*/
danielk19773460d192008-12-27 15:23:13 +00002777static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002778 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002779 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002780 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002781
drh1fee73e2007-08-29 04:00:57 +00002782 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002783 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002784 assert(pBt->autoVacuum);
2785 if( !pBt->incrVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002786 Pgno nFin;
2787 Pgno nFree;
2788 Pgno nPtrmap;
2789 Pgno iFree;
2790 const int pgsz = pBt->pageSize;
2791 Pgno nOrig = pagerPagecount(pBt);
danielk1977687566d2004-11-02 12:56:41 +00002792
danielk1977ef165ce2009-04-06 17:50:03 +00002793 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2794 /* It is not possible to create a database for which the final page
2795 ** is either a pointer-map page or the pending-byte page. If one
2796 ** is encountered, this indicates corruption.
2797 */
danielk19773460d192008-12-27 15:23:13 +00002798 return SQLITE_CORRUPT_BKPT;
2799 }
danielk1977ef165ce2009-04-06 17:50:03 +00002800
danielk19773460d192008-12-27 15:23:13 +00002801 nFree = get4byte(&pBt->pPage1->aData[36]);
2802 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
2803 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002804 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002805 nFin--;
2806 }
2807 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2808 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002809 }
drhc5e47ac2009-06-04 00:11:56 +00002810 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002811
danielk19773460d192008-12-27 15:23:13 +00002812 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2813 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002814 }
danielk19773460d192008-12-27 15:23:13 +00002815 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002816 rc = SQLITE_OK;
danielk19773460d192008-12-27 15:23:13 +00002817 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2818 put4byte(&pBt->pPage1->aData[32], 0);
2819 put4byte(&pBt->pPage1->aData[36], 0);
2820 sqlite3PagerTruncateImage(pBt->pPager, nFin);
danielk1977dddbcdc2007-04-26 14:42:34 +00002821 }
2822 if( rc!=SQLITE_OK ){
2823 sqlite3PagerRollback(pPager);
2824 }
danielk1977687566d2004-11-02 12:56:41 +00002825 }
2826
danielk19773b8a05f2007-03-19 17:44:26 +00002827 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002828 return rc;
2829}
danielk1977dddbcdc2007-04-26 14:42:34 +00002830
danielk1977a50d9aa2009-06-08 14:49:45 +00002831#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
2832# define setChildPtrmaps(x) SQLITE_OK
2833#endif
danielk1977687566d2004-11-02 12:56:41 +00002834
2835/*
drh80e35f42007-03-30 14:06:34 +00002836** This routine does the first phase of a two-phase commit. This routine
2837** causes a rollback journal to be created (if it does not already exist)
2838** and populated with enough information so that if a power loss occurs
2839** the database can be restored to its original state by playing back
2840** the journal. Then the contents of the journal are flushed out to
2841** the disk. After the journal is safely on oxide, the changes to the
2842** database are written into the database file and flushed to oxide.
2843** At the end of this call, the rollback journal still exists on the
2844** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002845** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002846** commit process.
2847**
2848** This call is a no-op if no write-transaction is currently active on pBt.
2849**
2850** Otherwise, sync the database file for the btree pBt. zMaster points to
2851** the name of a master journal file that should be written into the
2852** individual journal file, or is NULL, indicating no master journal file
2853** (single database transaction).
2854**
2855** When this is called, the master journal should already have been
2856** created, populated with this journal pointer and synced to disk.
2857**
2858** Once this is routine has returned, the only thing required to commit
2859** the write-transaction for this database file is to delete the journal.
2860*/
2861int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2862 int rc = SQLITE_OK;
2863 if( p->inTrans==TRANS_WRITE ){
2864 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002865 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002866#ifndef SQLITE_OMIT_AUTOVACUUM
2867 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002868 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00002869 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002870 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002871 return rc;
2872 }
2873 }
2874#endif
drh49b9d332009-01-02 18:10:42 +00002875 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00002876 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002877 }
2878 return rc;
2879}
2880
2881/*
drh2aa679f2001-06-25 02:11:07 +00002882** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00002883**
drh6e345992007-03-30 11:12:08 +00002884** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00002885** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
2886** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
2887** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00002888** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00002889** routine has to do is delete or truncate or zero the header in the
2890** the rollback journal (which causes the transaction to commit) and
2891** drop locks.
drh6e345992007-03-30 11:12:08 +00002892**
drh5e00f6c2001-09-13 13:46:56 +00002893** This will release the write lock on the database file. If there
2894** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002895*/
drh80e35f42007-03-30 14:06:34 +00002896int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002897 BtShared *pBt = p->pBt;
2898
drhd677b3d2007-08-20 22:48:41 +00002899 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002900 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002901
2902 /* If the handle has a write-transaction open, commit the shared-btrees
2903 ** transaction and set the shared state to TRANS_READ.
2904 */
2905 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00002906 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002907 assert( pBt->inTransaction==TRANS_WRITE );
2908 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00002909 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00002910 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002911 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002912 return rc;
2913 }
danielk1977aef0bf62005-12-30 16:28:01 +00002914 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00002915 }
danielk1977aef0bf62005-12-30 16:28:01 +00002916
2917 /* If the handle has any kind of transaction open, decrement the transaction
2918 ** count of the shared btree. If the transaction count reaches 0, set
2919 ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
2920 ** will unlock the pager.
2921 */
2922 if( p->inTrans!=TRANS_NONE ){
danielk1977fa542f12009-04-02 18:28:08 +00002923 clearAllSharedCacheTableLocks(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002924 pBt->nTransaction--;
2925 if( 0==pBt->nTransaction ){
2926 pBt->inTransaction = TRANS_NONE;
2927 }
2928 }
2929
drh51898cf2009-04-19 20:51:06 +00002930 /* Set the current transaction state to TRANS_NONE and unlock
danielk1977aef0bf62005-12-30 16:28:01 +00002931 ** the pager if this call closed the only read or write transaction.
2932 */
danielk1977bea2a942009-01-20 17:06:27 +00002933 btreeClearHasContent(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002934 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00002935 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002936
2937 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002938 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002939 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002940}
2941
drh80e35f42007-03-30 14:06:34 +00002942/*
2943** Do both phases of a commit.
2944*/
2945int sqlite3BtreeCommit(Btree *p){
2946 int rc;
drhd677b3d2007-08-20 22:48:41 +00002947 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002948 rc = sqlite3BtreeCommitPhaseOne(p, 0);
2949 if( rc==SQLITE_OK ){
2950 rc = sqlite3BtreeCommitPhaseTwo(p);
2951 }
drhd677b3d2007-08-20 22:48:41 +00002952 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002953 return rc;
2954}
2955
danielk1977fbcd5852004-06-15 02:44:18 +00002956#ifndef NDEBUG
2957/*
2958** Return the number of write-cursors open on this handle. This is for use
2959** in assert() expressions, so it is only compiled if NDEBUG is not
2960** defined.
drhfb982642007-08-30 01:19:59 +00002961**
2962** For the purposes of this routine, a write-cursor is any cursor that
2963** is capable of writing to the databse. That means the cursor was
2964** originally opened for writing and the cursor has not be disabled
2965** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00002966*/
danielk1977aef0bf62005-12-30 16:28:01 +00002967static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00002968 BtCursor *pCur;
2969 int r = 0;
2970 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00002971 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00002972 }
2973 return r;
2974}
2975#endif
2976
drhc39e0002004-05-07 23:50:57 +00002977/*
drhfb982642007-08-30 01:19:59 +00002978** This routine sets the state to CURSOR_FAULT and the error
2979** code to errCode for every cursor on BtShared that pBtree
2980** references.
2981**
2982** Every cursor is tripped, including cursors that belong
2983** to other database connections that happen to be sharing
2984** the cache with pBtree.
2985**
2986** This routine gets called when a rollback occurs.
2987** All cursors using the same cache must be tripped
2988** to prevent them from trying to use the btree after
2989** the rollback. The rollback may have deleted tables
2990** or moved root pages, so it is not sufficient to
2991** save the state of the cursor. The cursor must be
2992** invalidated.
2993*/
2994void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
2995 BtCursor *p;
2996 sqlite3BtreeEnter(pBtree);
2997 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00002998 int i;
danielk1977be51a652008-10-08 17:58:48 +00002999 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003000 p->eState = CURSOR_FAULT;
3001 p->skip = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003002 for(i=0; i<=p->iPage; i++){
3003 releasePage(p->apPage[i]);
3004 p->apPage[i] = 0;
3005 }
drhfb982642007-08-30 01:19:59 +00003006 }
3007 sqlite3BtreeLeave(pBtree);
3008}
3009
3010/*
drhecdc7532001-09-23 02:35:53 +00003011** Rollback the transaction in progress. All cursors will be
3012** invalided by this operation. Any attempt to use a cursor
3013** that was open at the beginning of this operation will result
3014** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003015**
3016** This will release the write lock on the database file. If there
3017** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003018*/
danielk1977aef0bf62005-12-30 16:28:01 +00003019int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003020 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003021 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003022 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003023
drhd677b3d2007-08-20 22:48:41 +00003024 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003025 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003026#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003027 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003028 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003029 ** trying to save cursor positions. If this is an automatic rollback (as
3030 ** the result of a constraint, malloc() failure or IO error) then
3031 ** the cache may be internally inconsistent (not contain valid trees) so
3032 ** we cannot simply return the error to the caller. Instead, abort
3033 ** all queries that may be using any of the cursors that failed to save.
3034 */
drhfb982642007-08-30 01:19:59 +00003035 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003036 }
danielk19778d34dfd2006-01-24 16:37:57 +00003037#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003038 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003039
3040 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003041 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003042
danielk19778d34dfd2006-01-24 16:37:57 +00003043 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003044 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003045 if( rc2!=SQLITE_OK ){
3046 rc = rc2;
3047 }
3048
drh24cd67e2004-05-10 16:18:47 +00003049 /* The rollback may have destroyed the pPage1->aData value. So
drh16a9b832007-05-05 18:39:25 +00003050 ** call sqlite3BtreeGetPage() on page 1 again to make
3051 ** sure pPage1->aData is set correctly. */
3052 if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00003053 releasePage(pPage1);
3054 }
danielk1977fbcd5852004-06-15 02:44:18 +00003055 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003056 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003057 }
danielk1977aef0bf62005-12-30 16:28:01 +00003058
3059 if( p->inTrans!=TRANS_NONE ){
danielk1977fa542f12009-04-02 18:28:08 +00003060 clearAllSharedCacheTableLocks(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003061 assert( pBt->nTransaction>0 );
3062 pBt->nTransaction--;
3063 if( 0==pBt->nTransaction ){
3064 pBt->inTransaction = TRANS_NONE;
3065 }
3066 }
3067
danielk1977bea2a942009-01-20 17:06:27 +00003068 btreeClearHasContent(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00003069 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00003070 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00003071
3072 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003073 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003074 return rc;
3075}
3076
3077/*
danielk1977bd434552009-03-18 10:33:00 +00003078** Start a statement subtransaction. The subtransaction can can be rolled
3079** back independently of the main transaction. You must start a transaction
3080** before starting a subtransaction. The subtransaction is ended automatically
3081** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003082**
3083** Statement subtransactions are used around individual SQL statements
3084** that are contained within a BEGIN...COMMIT block. If a constraint
3085** error occurs within the statement, the effect of that one statement
3086** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003087**
3088** A statement sub-transaction is implemented as an anonymous savepoint. The
3089** value passed as the second parameter is the total number of savepoints,
3090** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3091** are no active savepoints and no other statement-transactions open,
3092** iStatement is 1. This anonymous savepoint can be released or rolled back
3093** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003094*/
danielk1977bd434552009-03-18 10:33:00 +00003095int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003096 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003097 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003098 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003099 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003100 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003101 assert( iStatement>0 );
3102 assert( iStatement>p->db->nSavepoint );
3103 if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
drh64022502009-01-09 14:11:04 +00003104 rc = SQLITE_INTERNAL;
drhd677b3d2007-08-20 22:48:41 +00003105 }else{
3106 assert( pBt->inTransaction==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003107 /* At the pager level, a statement transaction is a savepoint with
3108 ** an index greater than all savepoints created explicitly using
3109 ** SQL statements. It is illegal to open, release or rollback any
3110 ** such savepoints while the statement transaction savepoint is active.
3111 */
danielk1977bd434552009-03-18 10:33:00 +00003112 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danielk197797a227c2006-01-20 16:32:04 +00003113 }
drhd677b3d2007-08-20 22:48:41 +00003114 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003115 return rc;
3116}
3117
3118/*
danielk1977fd7f0452008-12-17 17:30:26 +00003119** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3120** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003121** savepoint identified by parameter iSavepoint, depending on the value
3122** of op.
3123**
3124** Normally, iSavepoint is greater than or equal to zero. However, if op is
3125** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3126** contents of the entire transaction are rolled back. This is different
3127** from a normal transaction rollback, as no locks are released and the
3128** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003129*/
3130int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3131 int rc = SQLITE_OK;
3132 if( p && p->inTrans==TRANS_WRITE ){
3133 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003134 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3135 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3136 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003137 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003138 if( rc==SQLITE_OK ){
3139 rc = newDatabase(pBt);
3140 }
danielk1977fd7f0452008-12-17 17:30:26 +00003141 sqlite3BtreeLeave(p);
3142 }
3143 return rc;
3144}
3145
3146/*
drh8b2f49b2001-06-08 00:21:52 +00003147** Create a new cursor for the BTree whose root is on the page
3148** iTable. The act of acquiring a cursor gets a read lock on
3149** the database file.
drh1bee3d72001-10-15 00:44:35 +00003150**
3151** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003152** If wrFlag==1, then the cursor can be used for reading or for
3153** writing if other conditions for writing are also met. These
3154** are the conditions that must be met in order for writing to
3155** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003156**
drhf74b8d92002-09-01 23:20:45 +00003157** 1: The cursor must have been opened with wrFlag==1
3158**
drhfe5d71d2007-03-19 11:54:10 +00003159** 2: Other database connections that share the same pager cache
3160** but which are not in the READ_UNCOMMITTED state may not have
3161** cursors open with wrFlag==0 on the same table. Otherwise
3162** the changes made by this write cursor would be visible to
3163** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003164**
3165** 3: The database must be writable (not on read-only media)
3166**
3167** 4: There must be an active transaction.
3168**
drh6446c4d2001-12-15 14:22:18 +00003169** No checking is done to make sure that page iTable really is the
3170** root page of a b-tree. If it is not, then the cursor acquired
3171** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003172**
3173** It is assumed that the sqlite3BtreeCursorSize() bytes of memory
3174** pointed to by pCur have been zeroed by the caller.
drha059ad02001-04-17 20:09:11 +00003175*/
drhd677b3d2007-08-20 22:48:41 +00003176static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003177 Btree *p, /* The btree */
3178 int iTable, /* Root page of table to open */
3179 int wrFlag, /* 1 to write. 0 read-only */
3180 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3181 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003182){
drha059ad02001-04-17 20:09:11 +00003183 int rc;
danielk197789d40042008-11-17 14:20:56 +00003184 Pgno nPage;
danielk1977aef0bf62005-12-30 16:28:01 +00003185 BtShared *pBt = p->pBt;
drhecdc7532001-09-23 02:35:53 +00003186
drh1fee73e2007-08-29 04:00:57 +00003187 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003188 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003189
3190 /* The following assert statements verify that if this is a sharable b-tree
3191 ** database, the connection is holding the required table locks, and that
3192 ** no other connection has any open cursor that conflicts with this lock.
3193 **
3194 ** The exception to this is read-only cursors open on the schema table.
3195 ** Such a cursor is opened without a lock while reading the database
3196 ** schema. This is safe because BtShared.mutex is held for the entire
3197 ** lifetime of this cursor. */
3198 assert( (iTable==1 && wrFlag==0)
3199 || hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1)
3200 );
3201 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3202
3203 if( NEVER(wrFlag && pBt->readOnly) ){
3204 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003205 }
danielk1977aef0bf62005-12-30 16:28:01 +00003206
drh4b70f112004-05-02 21:12:19 +00003207 if( pBt->pPage1==0 ){
danielk1977aef0bf62005-12-30 16:28:01 +00003208 rc = lockBtreeWithRetry(p);
drha059ad02001-04-17 20:09:11 +00003209 if( rc!=SQLITE_OK ){
drha059ad02001-04-17 20:09:11 +00003210 return rc;
3211 }
3212 }
drh8b2f49b2001-06-08 00:21:52 +00003213 pCur->pgnoRoot = (Pgno)iTable;
danielk197789d40042008-11-17 14:20:56 +00003214 rc = sqlite3PagerPagecount(pBt->pPager, (int *)&nPage);
3215 if( rc!=SQLITE_OK ){
3216 return rc;
3217 }
3218 if( iTable==1 && nPage==0 ){
drh24cd67e2004-05-10 16:18:47 +00003219 rc = SQLITE_EMPTY;
3220 goto create_cursor_exception;
3221 }
danielk197771d5d2c2008-09-29 11:49:47 +00003222 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
drhbd03cae2001-06-02 02:40:57 +00003223 if( rc!=SQLITE_OK ){
3224 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00003225 }
danielk1977aef0bf62005-12-30 16:28:01 +00003226
danielk1977aef0bf62005-12-30 16:28:01 +00003227 /* Now that no other errors can occur, finish filling in the BtCursor
3228 ** variables, link the cursor into the BtShared list and set *ppCur (the
3229 ** output argument to this function).
3230 */
drh1e968a02008-03-25 00:22:21 +00003231 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003232 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003233 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003234 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003235 pCur->pNext = pBt->pCursor;
3236 if( pCur->pNext ){
3237 pCur->pNext->pPrev = pCur;
3238 }
3239 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003240 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003241 pCur->cachedRowid = 0;
drhbd03cae2001-06-02 02:40:57 +00003242
danielk1977aef0bf62005-12-30 16:28:01 +00003243 return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003244
drhbd03cae2001-06-02 02:40:57 +00003245create_cursor_exception:
danielk197771d5d2c2008-09-29 11:49:47 +00003246 releasePage(pCur->apPage[0]);
drh5e00f6c2001-09-13 13:46:56 +00003247 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00003248 return rc;
drha059ad02001-04-17 20:09:11 +00003249}
drhd677b3d2007-08-20 22:48:41 +00003250int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003251 Btree *p, /* The btree */
3252 int iTable, /* Root page of table to open */
3253 int wrFlag, /* 1 to write. 0 read-only */
3254 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3255 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003256){
3257 int rc;
3258 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003259 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003260 sqlite3BtreeLeave(p);
3261 return rc;
3262}
drh7f751222009-03-17 22:33:00 +00003263
3264/*
3265** Return the size of a BtCursor object in bytes.
3266**
3267** This interfaces is needed so that users of cursors can preallocate
3268** sufficient storage to hold a cursor. The BtCursor object is opaque
3269** to users so they cannot do the sizeof() themselves - they must call
3270** this routine.
3271*/
3272int sqlite3BtreeCursorSize(void){
danielk1977cd3e8f72008-03-25 09:47:35 +00003273 return sizeof(BtCursor);
3274}
3275
drh7f751222009-03-17 22:33:00 +00003276/*
3277** Set the cached rowid value of every cursor in the same database file
3278** as pCur and having the same root page number as pCur. The value is
3279** set to iRowid.
3280**
3281** Only positive rowid values are considered valid for this cache.
3282** The cache is initialized to zero, indicating an invalid cache.
3283** A btree will work fine with zero or negative rowids. We just cannot
3284** cache zero or negative rowids, which means tables that use zero or
3285** negative rowids might run a little slower. But in practice, zero
3286** or negative rowids are very uncommon so this should not be a problem.
3287*/
3288void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3289 BtCursor *p;
3290 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3291 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3292 }
3293 assert( pCur->cachedRowid==iRowid );
3294}
drhd677b3d2007-08-20 22:48:41 +00003295
drh7f751222009-03-17 22:33:00 +00003296/*
3297** Return the cached rowid for the given cursor. A negative or zero
3298** return value indicates that the rowid cache is invalid and should be
3299** ignored. If the rowid cache has never before been set, then a
3300** zero is returned.
3301*/
3302sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3303 return pCur->cachedRowid;
3304}
drha059ad02001-04-17 20:09:11 +00003305
3306/*
drh5e00f6c2001-09-13 13:46:56 +00003307** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003308** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003309*/
drh3aac2dd2004-04-26 14:10:20 +00003310int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003311 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003312 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003313 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003314 BtShared *pBt = pCur->pBt;
3315 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003316 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003317 if( pCur->pPrev ){
3318 pCur->pPrev->pNext = pCur->pNext;
3319 }else{
3320 pBt->pCursor = pCur->pNext;
3321 }
3322 if( pCur->pNext ){
3323 pCur->pNext->pPrev = pCur->pPrev;
3324 }
danielk197771d5d2c2008-09-29 11:49:47 +00003325 for(i=0; i<=pCur->iPage; i++){
3326 releasePage(pCur->apPage[i]);
3327 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003328 unlockBtreeIfUnused(pBt);
3329 invalidateOverflowCache(pCur);
3330 /* sqlite3_free(pCur); */
3331 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003332 }
drh8c42ca92001-06-22 19:15:00 +00003333 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003334}
3335
drh0d588bb2009-06-17 13:09:38 +00003336#ifdef SQLITE_TEST
drh7e3b0a02001-04-28 16:52:40 +00003337/*
drh5e2f8b92001-05-28 00:41:15 +00003338** Make a temporary cursor by filling in the fields of pTempCur.
3339** The temporary cursor is not on the cursor list for the Btree.
3340*/
drh16a9b832007-05-05 18:39:25 +00003341void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003342 int i;
drh1fee73e2007-08-29 04:00:57 +00003343 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003344 memcpy(pTempCur, pCur, sizeof(BtCursor));
drh5e2f8b92001-05-28 00:41:15 +00003345 pTempCur->pNext = 0;
3346 pTempCur->pPrev = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003347 for(i=0; i<=pTempCur->iPage; i++){
3348 sqlite3PagerRef(pTempCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003349 }
danielk197736e20932008-11-26 07:40:30 +00003350 assert( pTempCur->pKey==0 );
drh5e2f8b92001-05-28 00:41:15 +00003351}
drh0d588bb2009-06-17 13:09:38 +00003352#endif /* SQLITE_TEST */
drh5e2f8b92001-05-28 00:41:15 +00003353
drh0d588bb2009-06-17 13:09:38 +00003354#ifdef SQLITE_TEST
drh5e2f8b92001-05-28 00:41:15 +00003355/*
drhbd03cae2001-06-02 02:40:57 +00003356** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00003357** function above.
3358*/
drh16a9b832007-05-05 18:39:25 +00003359void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003360 int i;
drh1fee73e2007-08-29 04:00:57 +00003361 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003362 for(i=0; i<=pCur->iPage; i++){
3363 sqlite3PagerUnref(pCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003364 }
danielk197736e20932008-11-26 07:40:30 +00003365 sqlite3_free(pCur->pKey);
drh5e2f8b92001-05-28 00:41:15 +00003366}
drh0d588bb2009-06-17 13:09:38 +00003367#endif /* SQLITE_TEST */
drh7f751222009-03-17 22:33:00 +00003368
drh5e2f8b92001-05-28 00:41:15 +00003369/*
drh86057612007-06-26 01:04:48 +00003370** Make sure the BtCursor* given in the argument has a valid
3371** BtCursor.info structure. If it is not already valid, call
danielk19771cc5ed82007-05-16 17:28:43 +00003372** sqlite3BtreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003373**
3374** BtCursor.info is a cache of the information in the current cell.
drh16a9b832007-05-05 18:39:25 +00003375** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
drh86057612007-06-26 01:04:48 +00003376**
3377** 2007-06-25: There is a bug in some versions of MSVC that cause the
3378** compiler to crash when getCellInfo() is implemented as a macro.
3379** But there is a measureable speed advantage to using the macro on gcc
3380** (when less compiler optimizations like -Os or -O0 are used and the
3381** compiler is not doing agressive inlining.) So we use a real function
3382** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003383*/
drh9188b382004-05-14 21:12:22 +00003384#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003385 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003386 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003387 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003388 memset(&info, 0, sizeof(info));
danielk197771d5d2c2008-09-29 11:49:47 +00003389 sqlite3BtreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003390 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003391 }
danielk19771cc5ed82007-05-16 17:28:43 +00003392#else
3393 #define assertCellInfo(x)
3394#endif
drh86057612007-06-26 01:04:48 +00003395#ifdef _MSC_VER
3396 /* Use a real function in MSVC to work around bugs in that compiler. */
3397 static void getCellInfo(BtCursor *pCur){
3398 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003399 int iPage = pCur->iPage;
3400 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003401 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003402 }else{
3403 assertCellInfo(pCur);
3404 }
3405 }
3406#else /* if not _MSC_VER */
3407 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003408#define getCellInfo(pCur) \
3409 if( pCur->info.nSize==0 ){ \
3410 int iPage = pCur->iPage; \
3411 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3412 pCur->validNKey = 1; \
3413 }else{ \
3414 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003415 }
3416#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003417
3418/*
drh3aac2dd2004-04-26 14:10:20 +00003419** Set *pSize to the size of the buffer needed to hold the value of
3420** the key for the current entry. If the cursor is not pointing
3421** to a valid entry, *pSize is set to 0.
3422**
drh4b70f112004-05-02 21:12:19 +00003423** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003424** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00003425*/
drh4a1c3802004-05-12 15:15:47 +00003426int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003427 int rc;
3428
drh1fee73e2007-08-29 04:00:57 +00003429 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003430 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003431 if( rc==SQLITE_OK ){
3432 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3433 if( pCur->eState==CURSOR_INVALID ){
3434 *pSize = 0;
3435 }else{
drh86057612007-06-26 01:04:48 +00003436 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003437 *pSize = pCur->info.nKey;
3438 }
drh72f82862001-05-24 21:06:34 +00003439 }
danielk1977da184232006-01-05 11:34:32 +00003440 return rc;
drha059ad02001-04-17 20:09:11 +00003441}
drh2af926b2001-05-15 00:39:25 +00003442
drh72f82862001-05-24 21:06:34 +00003443/*
drh0e1c19e2004-05-11 00:58:56 +00003444** Set *pSize to the number of bytes of data in the entry the
3445** cursor currently points to. Always return SQLITE_OK.
3446** Failure is not possible. If the cursor is not currently
3447** pointing to an entry (which can happen, for example, if
3448** the database is empty) then *pSize is set to 0.
3449*/
3450int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003451 int rc;
3452
drh1fee73e2007-08-29 04:00:57 +00003453 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003454 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003455 if( rc==SQLITE_OK ){
3456 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3457 if( pCur->eState==CURSOR_INVALID ){
3458 /* Not pointing at a valid entry - set *pSize to 0. */
3459 *pSize = 0;
3460 }else{
drh86057612007-06-26 01:04:48 +00003461 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003462 *pSize = pCur->info.nData;
3463 }
drh0e1c19e2004-05-11 00:58:56 +00003464 }
danielk1977da184232006-01-05 11:34:32 +00003465 return rc;
drh0e1c19e2004-05-11 00:58:56 +00003466}
3467
3468/*
danielk1977d04417962007-05-02 13:16:30 +00003469** Given the page number of an overflow page in the database (parameter
3470** ovfl), this function finds the page number of the next page in the
3471** linked list of overflow pages. If possible, it uses the auto-vacuum
3472** pointer-map data instead of reading the content of page ovfl to do so.
3473**
3474** If an error occurs an SQLite error code is returned. Otherwise:
3475**
danielk1977bea2a942009-01-20 17:06:27 +00003476** The page number of the next overflow page in the linked list is
3477** written to *pPgnoNext. If page ovfl is the last page in its linked
3478** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003479**
danielk1977bea2a942009-01-20 17:06:27 +00003480** If ppPage is not NULL, and a reference to the MemPage object corresponding
3481** to page number pOvfl was obtained, then *ppPage is set to point to that
3482** reference. It is the responsibility of the caller to call releasePage()
3483** on *ppPage to free the reference. In no reference was obtained (because
3484** the pointer-map was used to obtain the value for *pPgnoNext), then
3485** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003486*/
3487static int getOverflowPage(
3488 BtShared *pBt,
3489 Pgno ovfl, /* Overflow page */
danielk1977bea2a942009-01-20 17:06:27 +00003490 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003491 Pgno *pPgnoNext /* OUT: Next overflow page number */
3492){
3493 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003494 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003495 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003496
drh1fee73e2007-08-29 04:00:57 +00003497 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003498 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003499
3500#ifndef SQLITE_OMIT_AUTOVACUUM
3501 /* Try to find the next page in the overflow list using the
3502 ** autovacuum pointer-map pages. Guess that the next page in
3503 ** the overflow list is page number (ovfl+1). If that guess turns
3504 ** out to be wrong, fall back to loading the data of page
3505 ** number ovfl to determine the next page number.
3506 */
3507 if( pBt->autoVacuum ){
3508 Pgno pgno;
3509 Pgno iGuess = ovfl+1;
3510 u8 eType;
3511
3512 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3513 iGuess++;
3514 }
3515
danielk197789d40042008-11-17 14:20:56 +00003516 if( iGuess<=pagerPagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003517 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003518 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003519 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003520 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003521 }
3522 }
3523 }
3524#endif
3525
danielk1977bea2a942009-01-20 17:06:27 +00003526 if( rc==SQLITE_OK ){
3527 rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d04417962007-05-02 13:16:30 +00003528 assert(rc==SQLITE_OK || pPage==0);
3529 if( next==0 && rc==SQLITE_OK ){
3530 next = get4byte(pPage->aData);
3531 }
danielk1977443c0592009-01-16 15:21:05 +00003532 }
danielk197745d68822009-01-16 16:23:38 +00003533
danielk1977bea2a942009-01-20 17:06:27 +00003534 *pPgnoNext = next;
3535 if( ppPage ){
3536 *ppPage = pPage;
3537 }else{
3538 releasePage(pPage);
3539 }
3540 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003541}
3542
danielk1977da107192007-05-04 08:32:13 +00003543/*
3544** Copy data from a buffer to a page, or from a page to a buffer.
3545**
3546** pPayload is a pointer to data stored on database page pDbPage.
3547** If argument eOp is false, then nByte bytes of data are copied
3548** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3549** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3550** of data are copied from the buffer pBuf to pPayload.
3551**
3552** SQLITE_OK is returned on success, otherwise an error code.
3553*/
3554static int copyPayload(
3555 void *pPayload, /* Pointer to page data */
3556 void *pBuf, /* Pointer to buffer */
3557 int nByte, /* Number of bytes to copy */
3558 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3559 DbPage *pDbPage /* Page containing pPayload */
3560){
3561 if( eOp ){
3562 /* Copy data from buffer to page (a write operation) */
3563 int rc = sqlite3PagerWrite(pDbPage);
3564 if( rc!=SQLITE_OK ){
3565 return rc;
3566 }
3567 memcpy(pPayload, pBuf, nByte);
3568 }else{
3569 /* Copy data from page to buffer (a read operation) */
3570 memcpy(pBuf, pPayload, nByte);
3571 }
3572 return SQLITE_OK;
3573}
danielk1977d04417962007-05-02 13:16:30 +00003574
3575/*
danielk19779f8d6402007-05-02 17:48:45 +00003576** This function is used to read or overwrite payload information
3577** for the entry that the pCur cursor is pointing to. If the eOp
3578** parameter is 0, this is a read operation (data copied into
3579** buffer pBuf). If it is non-zero, a write (data copied from
3580** buffer pBuf).
3581**
3582** A total of "amt" bytes are read or written beginning at "offset".
3583** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003584**
3585** This routine does not make a distinction between key and data.
danielk19779f8d6402007-05-02 17:48:45 +00003586** It just reads or writes bytes from the payload area. Data might
3587** appear on the main page or be scattered out on multiple overflow
3588** pages.
danielk1977da107192007-05-04 08:32:13 +00003589**
danielk1977dcbb5d32007-05-04 18:36:44 +00003590** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003591** cursor entry uses one or more overflow pages, this function
3592** allocates space for and lazily popluates the overflow page-list
3593** cache array (BtCursor.aOverflow). Subsequent calls use this
3594** cache to make seeking to the supplied offset more efficient.
3595**
3596** Once an overflow page-list cache has been allocated, it may be
3597** invalidated if some other cursor writes to the same table, or if
3598** the cursor is moved to a different row. Additionally, in auto-vacuum
3599** mode, the following events may invalidate an overflow page-list cache.
3600**
3601** * An incremental vacuum,
3602** * A commit in auto_vacuum="full" mode,
3603** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003604*/
danielk19779f8d6402007-05-02 17:48:45 +00003605static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003606 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003607 u32 offset, /* Begin reading this far into payload */
3608 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003609 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003610 int skipKey, /* offset begins at data if this is true */
3611 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003612){
3613 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003614 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003615 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003616 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003617 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003618 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003619
danielk1977da107192007-05-04 08:32:13 +00003620 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003621 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003622 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003623 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003624
drh86057612007-06-26 01:04:48 +00003625 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003626 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003627 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003628
drh3aac2dd2004-04-26 14:10:20 +00003629 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003630 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00003631 }
danielk19770d065412008-11-12 18:21:36 +00003632 if( offset+amt > nKey+pCur->info.nData
3633 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3634 ){
danielk1977da107192007-05-04 08:32:13 +00003635 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003636 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003637 }
danielk1977da107192007-05-04 08:32:13 +00003638
3639 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003640 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003641 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003642 if( a+offset>pCur->info.nLocal ){
3643 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003644 }
danielk1977da107192007-05-04 08:32:13 +00003645 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003646 offset = 0;
drha34b6762004-05-07 13:30:42 +00003647 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003648 amt -= a;
drhdd793422001-06-28 01:54:48 +00003649 }else{
drhfa1a98a2004-05-14 19:08:17 +00003650 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003651 }
danielk1977da107192007-05-04 08:32:13 +00003652
3653 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003654 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003655 Pgno nextPage;
3656
drhfa1a98a2004-05-14 19:08:17 +00003657 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003658
danielk19772dec9702007-05-02 16:48:37 +00003659#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003660 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003661 ** has not been allocated, allocate it now. The array is sized at
3662 ** one entry for each overflow page in the overflow chain. The
3663 ** page number of the first overflow page is stored in aOverflow[0],
3664 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3665 ** (the cache is lazily populated).
3666 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003667 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003668 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003669 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
danielk19772dec9702007-05-02 16:48:37 +00003670 if( nOvfl && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003671 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003672 }
3673 }
danielk1977da107192007-05-04 08:32:13 +00003674
3675 /* If the overflow page-list cache has been allocated and the
3676 ** entry for the first required overflow page is valid, skip
3677 ** directly to it.
3678 */
danielk19772dec9702007-05-02 16:48:37 +00003679 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3680 iIdx = (offset/ovflSize);
3681 nextPage = pCur->aOverflow[iIdx];
3682 offset = (offset%ovflSize);
3683 }
3684#endif
danielk1977da107192007-05-04 08:32:13 +00003685
3686 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3687
3688#ifndef SQLITE_OMIT_INCRBLOB
3689 /* If required, populate the overflow page-list cache. */
3690 if( pCur->aOverflow ){
3691 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3692 pCur->aOverflow[iIdx] = nextPage;
3693 }
3694#endif
3695
danielk1977d04417962007-05-02 13:16:30 +00003696 if( offset>=ovflSize ){
3697 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003698 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003699 ** data is not required. So first try to lookup the overflow
3700 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003701 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003702 */
danielk19772dec9702007-05-02 16:48:37 +00003703#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003704 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3705 nextPage = pCur->aOverflow[iIdx+1];
3706 } else
danielk19772dec9702007-05-02 16:48:37 +00003707#endif
danielk1977da107192007-05-04 08:32:13 +00003708 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003709 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003710 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003711 /* Need to read this page properly. It contains some of the
3712 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003713 */
3714 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003715 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003716 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003717 if( rc==SQLITE_OK ){
3718 aPayload = sqlite3PagerGetData(pDbPage);
3719 nextPage = get4byte(aPayload);
3720 if( a + offset > ovflSize ){
3721 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003722 }
danielk1977da107192007-05-04 08:32:13 +00003723 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3724 sqlite3PagerUnref(pDbPage);
3725 offset = 0;
3726 amt -= a;
3727 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003728 }
danielk1977cfe9a692004-06-16 12:00:29 +00003729 }
drh2af926b2001-05-15 00:39:25 +00003730 }
drh2af926b2001-05-15 00:39:25 +00003731 }
danielk1977cfe9a692004-06-16 12:00:29 +00003732
danielk1977da107192007-05-04 08:32:13 +00003733 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003734 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003735 }
danielk1977da107192007-05-04 08:32:13 +00003736 return rc;
drh2af926b2001-05-15 00:39:25 +00003737}
3738
drh72f82862001-05-24 21:06:34 +00003739/*
drh3aac2dd2004-04-26 14:10:20 +00003740** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003741** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003742** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003743**
drh3aac2dd2004-04-26 14:10:20 +00003744** Return SQLITE_OK on success or an error code if anything goes
3745** wrong. An error is returned if "offset+amt" is larger than
3746** the available payload.
drh72f82862001-05-24 21:06:34 +00003747*/
drha34b6762004-05-07 13:30:42 +00003748int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003749 int rc;
3750
drh1fee73e2007-08-29 04:00:57 +00003751 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003752 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003753 if( rc==SQLITE_OK ){
3754 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003755 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3756 if( pCur->apPage[0]->intKey ){
danielk1977da184232006-01-05 11:34:32 +00003757 return SQLITE_CORRUPT_BKPT;
3758 }
danielk197771d5d2c2008-09-29 11:49:47 +00003759 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003760 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
drh6575a222005-03-10 17:06:34 +00003761 }
danielk1977da184232006-01-05 11:34:32 +00003762 return rc;
drh3aac2dd2004-04-26 14:10:20 +00003763}
3764
3765/*
drh3aac2dd2004-04-26 14:10:20 +00003766** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003767** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003768** begins at "offset".
3769**
3770** Return SQLITE_OK on success or an error code if anything goes
3771** wrong. An error is returned if "offset+amt" is larger than
3772** the available payload.
drh72f82862001-05-24 21:06:34 +00003773*/
drh3aac2dd2004-04-26 14:10:20 +00003774int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003775 int rc;
3776
danielk19773588ceb2008-06-10 17:30:26 +00003777#ifndef SQLITE_OMIT_INCRBLOB
3778 if ( pCur->eState==CURSOR_INVALID ){
3779 return SQLITE_ABORT;
3780 }
3781#endif
3782
drh1fee73e2007-08-29 04:00:57 +00003783 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003784 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003785 if( rc==SQLITE_OK ){
3786 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003787 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3788 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003789 rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
danielk1977da184232006-01-05 11:34:32 +00003790 }
3791 return rc;
drh2af926b2001-05-15 00:39:25 +00003792}
3793
drh72f82862001-05-24 21:06:34 +00003794/*
drh0e1c19e2004-05-11 00:58:56 +00003795** Return a pointer to payload information from the entry that the
3796** pCur cursor is pointing to. The pointer is to the beginning of
3797** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003798** skipKey==1. The number of bytes of available key/data is written
3799** into *pAmt. If *pAmt==0, then the value returned will not be
3800** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003801**
3802** This routine is an optimization. It is common for the entire key
3803** and data to fit on the local page and for there to be no overflow
3804** pages. When that is so, this routine can be used to access the
3805** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003806** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003807** the key/data and copy it into a preallocated buffer.
3808**
3809** The pointer returned by this routine looks directly into the cached
3810** page of the database. The data might change or move the next time
3811** any btree routine is called.
3812*/
3813static const unsigned char *fetchPayload(
3814 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003815 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003816 int skipKey /* read beginning at data if this is true */
3817){
3818 unsigned char *aPayload;
3819 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003820 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003821 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003822
danielk197771d5d2c2008-09-29 11:49:47 +00003823 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003824 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003825 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003826 pPage = pCur->apPage[pCur->iPage];
3827 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh86057612007-06-26 01:04:48 +00003828 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003829 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003830 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003831 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003832 nKey = 0;
3833 }else{
drhf49661a2008-12-10 16:45:50 +00003834 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003835 }
drh0e1c19e2004-05-11 00:58:56 +00003836 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003837 aPayload += nKey;
3838 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003839 }else{
drhfa1a98a2004-05-14 19:08:17 +00003840 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003841 if( nLocal>nKey ){
3842 nLocal = nKey;
3843 }
drh0e1c19e2004-05-11 00:58:56 +00003844 }
drhe51c44f2004-05-30 20:46:09 +00003845 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003846 return aPayload;
3847}
3848
3849
3850/*
drhe51c44f2004-05-30 20:46:09 +00003851** For the entry that cursor pCur is point to, return as
3852** many bytes of the key or data as are available on the local
3853** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003854**
3855** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003856** or be destroyed on the next call to any Btree routine,
3857** including calls from other threads against the same cache.
3858** Hence, a mutex on the BtShared should be held prior to calling
3859** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003860**
3861** These routines is used to get quick access to key and data
3862** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003863*/
drhe51c44f2004-05-30 20:46:09 +00003864const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003865 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003866 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003867 if( pCur->eState==CURSOR_VALID ){
3868 return (const void*)fetchPayload(pCur, pAmt, 0);
3869 }
3870 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003871}
drhe51c44f2004-05-30 20:46:09 +00003872const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003873 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003874 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003875 if( pCur->eState==CURSOR_VALID ){
3876 return (const void*)fetchPayload(pCur, pAmt, 1);
3877 }
3878 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003879}
3880
3881
3882/*
drh8178a752003-01-05 21:41:40 +00003883** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003884** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00003885*/
drh3aac2dd2004-04-26 14:10:20 +00003886static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003887 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003888 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003889 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003890 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003891
drh1fee73e2007-08-29 04:00:57 +00003892 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003893 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003894 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3895 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3896 return SQLITE_CORRUPT_BKPT;
3897 }
3898 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003899 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003900 pCur->apPage[i+1] = pNewPage;
3901 pCur->aiIdx[i+1] = 0;
3902 pCur->iPage++;
3903
drh271efa52004-05-30 19:19:05 +00003904 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003905 pCur->validNKey = 0;
drh4be295b2003-12-16 03:44:47 +00003906 if( pNewPage->nCell<1 ){
drh49285702005-09-17 15:20:26 +00003907 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003908 }
drh72f82862001-05-24 21:06:34 +00003909 return SQLITE_OK;
3910}
3911
danielk1977bf93c562008-09-29 15:53:25 +00003912#ifndef NDEBUG
3913/*
3914** Page pParent is an internal (non-leaf) tree page. This function
3915** asserts that page number iChild is the left-child if the iIdx'th
3916** cell in page pParent. Or, if iIdx is equal to the total number of
3917** cells in pParent, that page number iChild is the right-child of
3918** the page.
3919*/
3920static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
3921 assert( iIdx<=pParent->nCell );
3922 if( iIdx==pParent->nCell ){
3923 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
3924 }else{
3925 assert( get4byte(findCell(pParent, iIdx))==iChild );
3926 }
3927}
3928#else
3929# define assertParentIndex(x,y,z)
3930#endif
3931
drh72f82862001-05-24 21:06:34 +00003932/*
drh5e2f8b92001-05-28 00:41:15 +00003933** Move the cursor up to the parent page.
3934**
3935** pCur->idx is set to the cell index that contains the pointer
3936** to the page we are coming from. If we are coming from the
3937** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003938** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003939*/
drh16a9b832007-05-05 18:39:25 +00003940void sqlite3BtreeMoveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00003941 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003942 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003943 assert( pCur->iPage>0 );
3944 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00003945 assertParentIndex(
3946 pCur->apPage[pCur->iPage-1],
3947 pCur->aiIdx[pCur->iPage-1],
3948 pCur->apPage[pCur->iPage]->pgno
3949 );
danielk197771d5d2c2008-09-29 11:49:47 +00003950 releasePage(pCur->apPage[pCur->iPage]);
3951 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00003952 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003953 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00003954}
3955
3956/*
3957** Move the cursor to the root page
3958*/
drh5e2f8b92001-05-28 00:41:15 +00003959static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00003960 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00003961 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003962 Btree *p = pCur->pBtree;
3963 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00003964
drh1fee73e2007-08-29 04:00:57 +00003965 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00003966 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
3967 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
3968 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
3969 if( pCur->eState>=CURSOR_REQUIRESEEK ){
3970 if( pCur->eState==CURSOR_FAULT ){
3971 return pCur->skip;
3972 }
danielk1977be51a652008-10-08 17:58:48 +00003973 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00003974 }
danielk197771d5d2c2008-09-29 11:49:47 +00003975
3976 if( pCur->iPage>=0 ){
3977 int i;
3978 for(i=1; i<=pCur->iPage; i++){
3979 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00003980 }
drh777e4c42006-01-13 04:31:58 +00003981 }else{
3982 if(
danielk197771d5d2c2008-09-29 11:49:47 +00003983 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]))
drh777e4c42006-01-13 04:31:58 +00003984 ){
3985 pCur->eState = CURSOR_INVALID;
3986 return rc;
3987 }
drhc39e0002004-05-07 23:50:57 +00003988 }
danielk197771d5d2c2008-09-29 11:49:47 +00003989
3990 pRoot = pCur->apPage[0];
3991 assert( pRoot->pgno==pCur->pgnoRoot );
3992 pCur->iPage = 0;
3993 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00003994 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003995 pCur->atLast = 0;
3996 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003997
drh8856d6a2004-04-29 14:42:46 +00003998 if( pRoot->nCell==0 && !pRoot->leaf ){
3999 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004000 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh8856d6a2004-04-29 14:42:46 +00004001 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00004002 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00004003 assert( subpage>0 );
danielk1977da184232006-01-05 11:34:32 +00004004 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004005 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004006 }else{
4007 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004008 }
4009 return rc;
drh72f82862001-05-24 21:06:34 +00004010}
drh2af926b2001-05-15 00:39:25 +00004011
drh5e2f8b92001-05-28 00:41:15 +00004012/*
4013** Move the cursor down to the left-most leaf entry beneath the
4014** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004015**
4016** The left-most leaf is the one with the smallest key - the first
4017** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004018*/
4019static int moveToLeftmost(BtCursor *pCur){
4020 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004021 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004022 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004023
drh1fee73e2007-08-29 04:00:57 +00004024 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004025 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004026 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4027 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4028 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004029 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004030 }
drhd677b3d2007-08-20 22:48:41 +00004031 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004032}
4033
drh2dcc9aa2002-12-04 13:40:25 +00004034/*
4035** Move the cursor down to the right-most leaf entry beneath the
4036** page to which it is currently pointing. Notice the difference
4037** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4038** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4039** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004040**
4041** The right-most entry is the one with the largest key - the last
4042** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004043*/
4044static int moveToRightmost(BtCursor *pCur){
4045 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004046 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004047 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004048
drh1fee73e2007-08-29 04:00:57 +00004049 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004050 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004051 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004052 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004053 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004054 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004055 }
drhd677b3d2007-08-20 22:48:41 +00004056 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004057 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004058 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004059 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004060 }
danielk1977518002e2008-09-05 05:02:46 +00004061 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004062}
4063
drh5e00f6c2001-09-13 13:46:56 +00004064/* Move the cursor to the first entry in the table. Return SQLITE_OK
4065** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004066** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004067*/
drh3aac2dd2004-04-26 14:10:20 +00004068int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004069 int rc;
drhd677b3d2007-08-20 22:48:41 +00004070
drh1fee73e2007-08-29 04:00:57 +00004071 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004072 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004073 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004074 if( rc==SQLITE_OK ){
4075 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004076 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004077 *pRes = 1;
4078 rc = SQLITE_OK;
4079 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004080 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004081 *pRes = 0;
4082 rc = moveToLeftmost(pCur);
4083 }
drh5e00f6c2001-09-13 13:46:56 +00004084 }
drh5e00f6c2001-09-13 13:46:56 +00004085 return rc;
4086}
drh5e2f8b92001-05-28 00:41:15 +00004087
drh9562b552002-02-19 15:00:07 +00004088/* Move the cursor to the last entry in the table. Return SQLITE_OK
4089** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004090** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004091*/
drh3aac2dd2004-04-26 14:10:20 +00004092int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004093 int rc;
drhd677b3d2007-08-20 22:48:41 +00004094
drh1fee73e2007-08-29 04:00:57 +00004095 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004096 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004097
4098 /* If the cursor already points to the last entry, this is a no-op. */
4099 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4100#ifdef SQLITE_DEBUG
4101 /* This block serves to assert() that the cursor really does point
4102 ** to the last entry in the b-tree. */
4103 int ii;
4104 for(ii=0; ii<pCur->iPage; ii++){
4105 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4106 }
4107 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4108 assert( pCur->apPage[pCur->iPage]->leaf );
4109#endif
4110 return SQLITE_OK;
4111 }
4112
drh9562b552002-02-19 15:00:07 +00004113 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004114 if( rc==SQLITE_OK ){
4115 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004116 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004117 *pRes = 1;
4118 }else{
4119 assert( pCur->eState==CURSOR_VALID );
4120 *pRes = 0;
4121 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004122 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004123 }
drh9562b552002-02-19 15:00:07 +00004124 }
drh9562b552002-02-19 15:00:07 +00004125 return rc;
4126}
4127
drhe14006d2008-03-25 17:23:32 +00004128/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004129** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004130**
drhe63d9992008-08-13 19:11:48 +00004131** For INTKEY tables, the intKey parameter is used. pIdxKey
4132** must be NULL. For index tables, pIdxKey is used and intKey
4133** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004134**
drh5e2f8b92001-05-28 00:41:15 +00004135** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004136** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004137** were present. The cursor might point to an entry that comes
4138** before or after the key.
4139**
drh64022502009-01-09 14:11:04 +00004140** An integer is written into *pRes which is the result of
4141** comparing the key with the entry to which the cursor is
4142** pointing. The meaning of the integer written into
4143** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004144**
4145** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004146** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004147** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004148**
4149** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004150** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004151**
4152** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004153** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004154**
drha059ad02001-04-17 20:09:11 +00004155*/
drhe63d9992008-08-13 19:11:48 +00004156int sqlite3BtreeMovetoUnpacked(
4157 BtCursor *pCur, /* The cursor to be moved */
4158 UnpackedRecord *pIdxKey, /* Unpacked index key */
4159 i64 intKey, /* The table key */
4160 int biasRight, /* If true, bias the search to the high end */
4161 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004162){
drh72f82862001-05-24 21:06:34 +00004163 int rc;
drhd677b3d2007-08-20 22:48:41 +00004164
drh1fee73e2007-08-29 04:00:57 +00004165 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004166 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drha2c20e42008-03-29 16:01:04 +00004167
4168 /* If the cursor is already positioned at the point we are trying
4169 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004170 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4171 && pCur->apPage[0]->intKey
4172 ){
drhe63d9992008-08-13 19:11:48 +00004173 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004174 *pRes = 0;
4175 return SQLITE_OK;
4176 }
drhe63d9992008-08-13 19:11:48 +00004177 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004178 *pRes = -1;
4179 return SQLITE_OK;
4180 }
4181 }
4182
drh5e2f8b92001-05-28 00:41:15 +00004183 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004184 if( rc ){
4185 return rc;
4186 }
danielk197771d5d2c2008-09-29 11:49:47 +00004187 assert( pCur->apPage[pCur->iPage] );
4188 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977da184232006-01-05 11:34:32 +00004189 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004190 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004191 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004192 return SQLITE_OK;
4193 }
danielk197771d5d2c2008-09-29 11:49:47 +00004194 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004195 for(;;){
drh72f82862001-05-24 21:06:34 +00004196 int lwr, upr;
4197 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004198 MemPage *pPage = pCur->apPage[pCur->iPage];
drh1a844c32002-12-04 22:29:28 +00004199 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00004200 lwr = 0;
4201 upr = pPage->nCell-1;
drh64022502009-01-09 14:11:04 +00004202 if( (!pPage->intKey && pIdxKey==0) || upr<0 ){
drh1e968a02008-03-25 00:22:21 +00004203 rc = SQLITE_CORRUPT_BKPT;
4204 goto moveto_finish;
drh4eec4c12005-01-21 00:22:37 +00004205 }
drhe4d90812007-03-29 05:51:49 +00004206 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004207 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004208 }else{
drhf49661a2008-12-10 16:45:50 +00004209 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004210 }
drh64022502009-01-09 14:11:04 +00004211 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004212 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4213 u8 *pCell; /* Pointer to current cell in pPage */
4214
drh366fda62006-01-13 02:35:09 +00004215 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004216 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004217 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004218 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004219 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004220 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004221 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004222 }
drha2c20e42008-03-29 16:01:04 +00004223 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004224 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004225 c = 0;
drhe63d9992008-08-13 19:11:48 +00004226 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004227 c = -1;
4228 }else{
drhe63d9992008-08-13 19:11:48 +00004229 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004230 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004231 }
danielk197711c327a2009-05-04 19:01:26 +00004232 pCur->validNKey = 1;
4233 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004234 }else{
danielk197711c327a2009-05-04 19:01:26 +00004235 /* The maximum supported page-size is 32768 bytes. This means that
4236 ** the maximum number of record bytes stored on an index B-Tree
4237 ** page is at most 8198 bytes, which may be stored as a 2-byte
4238 ** varint. This information is used to attempt to avoid parsing
4239 ** the entire cell by checking for the cases where the record is
4240 ** stored entirely within the b-tree page by inspecting the first
4241 ** 2 bytes of the cell.
4242 */
4243 int nCell = pCell[0];
4244 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4245 /* This branch runs if the record-size field of the cell is a
4246 ** single byte varint and the record fits entirely on the main
4247 ** b-tree page. */
4248 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4249 }else if( !(pCell[1] & 0x80)
4250 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4251 ){
4252 /* The record-size field is a 2 byte varint and the record
4253 ** fits entirely on the main b-tree page. */
4254 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004255 }else{
danielk197711c327a2009-05-04 19:01:26 +00004256 /* The record flows over onto one or more overflow pages. In
4257 ** this case the whole cell needs to be parsed, a buffer allocated
4258 ** and accessPayload() used to retrieve the record into the
4259 ** buffer before VdbeRecordCompare() can be called. */
4260 void *pCellKey;
4261 u8 * const pCellBody = pCell - pPage->childPtrSize;
4262 sqlite3BtreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004263 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004264 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004265 if( pCellKey==0 ){
4266 rc = SQLITE_NOMEM;
4267 goto moveto_finish;
4268 }
danielk197711c327a2009-05-04 19:01:26 +00004269 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0, 0);
4270 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004271 sqlite3_free(pCellKey);
drh1e968a02008-03-25 00:22:21 +00004272 if( rc ) goto moveto_finish;
drhe51c44f2004-05-30 20:46:09 +00004273 }
drh3aac2dd2004-04-26 14:10:20 +00004274 }
drh72f82862001-05-24 21:06:34 +00004275 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004276 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004277 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004278 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004279 break;
4280 }else{
drh64022502009-01-09 14:11:04 +00004281 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004282 rc = SQLITE_OK;
4283 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004284 }
drh72f82862001-05-24 21:06:34 +00004285 }
4286 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004287 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004288 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004289 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004290 }
drhf1d68b32007-03-29 04:43:26 +00004291 if( lwr>upr ){
4292 break;
4293 }
drhf49661a2008-12-10 16:45:50 +00004294 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004295 }
4296 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004297 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004298 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004299 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004300 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004301 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004302 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004303 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004304 }
4305 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004306 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh72f82862001-05-24 21:06:34 +00004307 if( pRes ) *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004308 rc = SQLITE_OK;
4309 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004310 }
drhf49661a2008-12-10 16:45:50 +00004311 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004312 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004313 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004314 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004315 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004316 }
drh1e968a02008-03-25 00:22:21 +00004317moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004318 return rc;
4319}
4320
4321/*
4322** In this version of BtreeMoveto, pKey is a packed index record
4323** such as is generated by the OP_MakeRecord opcode. Unpack the
4324** record and then call BtreeMovetoUnpacked() to do the work.
4325*/
4326int sqlite3BtreeMoveto(
4327 BtCursor *pCur, /* Cursor open on the btree to be searched */
4328 const void *pKey, /* Packed key if the btree is an index */
4329 i64 nKey, /* Integer key for tables. Size of pKey for indices */
4330 int bias, /* Bias search to the high end */
4331 int *pRes /* Write search results here */
4332){
4333 int rc; /* Status code */
4334 UnpackedRecord *pIdxKey; /* Unpacked index key */
drh8c5d1522009-04-10 00:56:28 +00004335 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
4336
drhe63d9992008-08-13 19:11:48 +00004337
drhe14006d2008-03-25 17:23:32 +00004338 if( pKey ){
drhf49661a2008-12-10 16:45:50 +00004339 assert( nKey==(i64)(int)nKey );
4340 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
drh23f79d02008-08-20 22:06:47 +00004341 aSpace, sizeof(aSpace));
drhe63d9992008-08-13 19:11:48 +00004342 if( pIdxKey==0 ) return SQLITE_NOMEM;
4343 }else{
4344 pIdxKey = 0;
4345 }
4346 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
4347 if( pKey ){
4348 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
drhe14006d2008-03-25 17:23:32 +00004349 }
drh1e968a02008-03-25 00:22:21 +00004350 return rc;
drh72f82862001-05-24 21:06:34 +00004351}
4352
drhd677b3d2007-08-20 22:48:41 +00004353
drh72f82862001-05-24 21:06:34 +00004354/*
drhc39e0002004-05-07 23:50:57 +00004355** Return TRUE if the cursor is not pointing at an entry of the table.
4356**
4357** TRUE will be returned after a call to sqlite3BtreeNext() moves
4358** past the last entry in the table or sqlite3BtreePrev() moves past
4359** the first entry. TRUE is also returned if the table is empty.
4360*/
4361int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004362 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4363 ** have been deleted? This API will need to change to return an error code
4364 ** as well as the boolean result value.
4365 */
4366 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004367}
4368
4369/*
drhbd03cae2001-06-02 02:40:57 +00004370** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004371** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004372** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004373** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004374*/
drhd094db12008-04-03 21:46:57 +00004375int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004376 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004377 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004378 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004379
drh1fee73e2007-08-29 04:00:57 +00004380 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004381 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004382 if( rc!=SQLITE_OK ){
4383 return rc;
4384 }
drh8c4d3a62007-04-06 01:03:32 +00004385 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004386 if( CURSOR_INVALID==pCur->eState ){
4387 *pRes = 1;
4388 return SQLITE_OK;
4389 }
danielk1977da184232006-01-05 11:34:32 +00004390 if( pCur->skip>0 ){
4391 pCur->skip = 0;
4392 *pRes = 0;
4393 return SQLITE_OK;
4394 }
4395 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004396
danielk197771d5d2c2008-09-29 11:49:47 +00004397 pPage = pCur->apPage[pCur->iPage];
4398 idx = ++pCur->aiIdx[pCur->iPage];
4399 assert( pPage->isInit );
4400 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004401
drh271efa52004-05-30 19:19:05 +00004402 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004403 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004404 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004405 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004406 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004407 if( rc ) return rc;
4408 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004409 *pRes = 0;
4410 return rc;
drh72f82862001-05-24 21:06:34 +00004411 }
drh5e2f8b92001-05-28 00:41:15 +00004412 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004413 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004414 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004415 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004416 return SQLITE_OK;
4417 }
drh16a9b832007-05-05 18:39:25 +00004418 sqlite3BtreeMoveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004419 pPage = pCur->apPage[pCur->iPage];
4420 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004421 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004422 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004423 rc = sqlite3BtreeNext(pCur, pRes);
4424 }else{
4425 rc = SQLITE_OK;
4426 }
4427 return rc;
drh8178a752003-01-05 21:41:40 +00004428 }
4429 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004430 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004431 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004432 }
drh5e2f8b92001-05-28 00:41:15 +00004433 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004434 return rc;
drh72f82862001-05-24 21:06:34 +00004435}
drhd677b3d2007-08-20 22:48:41 +00004436
drh72f82862001-05-24 21:06:34 +00004437
drh3b7511c2001-05-26 13:15:44 +00004438/*
drh2dcc9aa2002-12-04 13:40:25 +00004439** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004440** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004441** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004442** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004443*/
drhd094db12008-04-03 21:46:57 +00004444int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004445 int rc;
drh8178a752003-01-05 21:41:40 +00004446 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004447
drh1fee73e2007-08-29 04:00:57 +00004448 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004449 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004450 if( rc!=SQLITE_OK ){
4451 return rc;
4452 }
drha2c20e42008-03-29 16:01:04 +00004453 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004454 if( CURSOR_INVALID==pCur->eState ){
4455 *pRes = 1;
4456 return SQLITE_OK;
4457 }
danielk1977da184232006-01-05 11:34:32 +00004458 if( pCur->skip<0 ){
4459 pCur->skip = 0;
4460 *pRes = 0;
4461 return SQLITE_OK;
4462 }
4463 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004464
danielk197771d5d2c2008-09-29 11:49:47 +00004465 pPage = pCur->apPage[pCur->iPage];
4466 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004467 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004468 int idx = pCur->aiIdx[pCur->iPage];
4469 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004470 if( rc ){
4471 return rc;
4472 }
drh2dcc9aa2002-12-04 13:40:25 +00004473 rc = moveToRightmost(pCur);
4474 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004475 while( pCur->aiIdx[pCur->iPage]==0 ){
4476 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004477 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004478 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004479 return SQLITE_OK;
4480 }
drh16a9b832007-05-05 18:39:25 +00004481 sqlite3BtreeMoveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004482 }
drh271efa52004-05-30 19:19:05 +00004483 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004484 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004485
4486 pCur->aiIdx[pCur->iPage]--;
4487 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004488 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004489 rc = sqlite3BtreePrevious(pCur, pRes);
4490 }else{
4491 rc = SQLITE_OK;
4492 }
drh2dcc9aa2002-12-04 13:40:25 +00004493 }
drh8178a752003-01-05 21:41:40 +00004494 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004495 return rc;
4496}
4497
4498/*
drh3b7511c2001-05-26 13:15:44 +00004499** Allocate a new page from the database file.
4500**
danielk19773b8a05f2007-03-19 17:44:26 +00004501** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004502** has already been called on the new page.) The new page has also
4503** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004504** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004505**
4506** SQLITE_OK is returned on success. Any other return value indicates
4507** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004508** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004509**
drh199e3cf2002-07-18 11:01:47 +00004510** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4511** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004512** attempt to keep related pages close to each other in the database file,
4513** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004514**
4515** If the "exact" parameter is not 0, and the page-number nearby exists
4516** anywhere on the free-list, then it is guarenteed to be returned. This
4517** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004518*/
drh4f0c5872007-03-26 22:05:01 +00004519static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004520 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004521 MemPage **ppPage,
4522 Pgno *pPgno,
4523 Pgno nearby,
4524 u8 exact
4525){
drh3aac2dd2004-04-26 14:10:20 +00004526 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004527 int rc;
drh35cd6432009-06-05 14:17:21 +00004528 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004529 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004530 MemPage *pTrunk = 0;
4531 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004532 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004533
drh1fee73e2007-08-29 04:00:57 +00004534 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004535 pPage1 = pBt->pPage1;
drh1662b5a2009-06-04 19:06:09 +00004536 mxPage = pagerPagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004537 n = get4byte(&pPage1->aData[36]);
drh1662b5a2009-06-04 19:06:09 +00004538 if( n>mxPage ){
4539 return SQLITE_CORRUPT_BKPT;
4540 }
drh3aac2dd2004-04-26 14:10:20 +00004541 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004542 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004543 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004544 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4545
4546 /* If the 'exact' parameter was true and a query of the pointer-map
4547 ** shows that the page 'nearby' is somewhere on the free-list, then
4548 ** the entire-list will be searched for that page.
4549 */
4550#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004551 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004552 u8 eType;
4553 assert( nearby>0 );
4554 assert( pBt->autoVacuum );
4555 rc = ptrmapGet(pBt, nearby, &eType, 0);
4556 if( rc ) return rc;
4557 if( eType==PTRMAP_FREEPAGE ){
4558 searchList = 1;
4559 }
4560 *pPgno = nearby;
4561 }
4562#endif
4563
4564 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4565 ** first free-list trunk page. iPrevTrunk is initially 1.
4566 */
danielk19773b8a05f2007-03-19 17:44:26 +00004567 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004568 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004569 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004570
4571 /* The code within this loop is run only once if the 'searchList' variable
4572 ** is not true. Otherwise, it runs once for each trunk-page on the
4573 ** free-list until the page 'nearby' is located.
4574 */
4575 do {
4576 pPrevTrunk = pTrunk;
4577 if( pPrevTrunk ){
4578 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004579 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004580 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004581 }
drh1662b5a2009-06-04 19:06:09 +00004582 if( iTrunk>mxPage ){
4583 rc = SQLITE_CORRUPT_BKPT;
4584 }else{
4585 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
4586 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004587 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004588 pTrunk = 0;
4589 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004590 }
4591
4592 k = get4byte(&pTrunk->aData[4]);
4593 if( k==0 && !searchList ){
4594 /* The trunk has no leaves and the list is not being searched.
4595 ** So extract the trunk page itself and use it as the newly
4596 ** allocated page */
4597 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004598 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004599 if( rc ){
4600 goto end_allocate_page;
4601 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004602 *pPgno = iTrunk;
4603 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4604 *ppPage = pTrunk;
4605 pTrunk = 0;
4606 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004607 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004608 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004609 rc = SQLITE_CORRUPT_BKPT;
4610 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004611#ifndef SQLITE_OMIT_AUTOVACUUM
4612 }else if( searchList && nearby==iTrunk ){
4613 /* The list is being searched and this trunk page is the page
4614 ** to allocate, regardless of whether it has leaves.
4615 */
4616 assert( *pPgno==iTrunk );
4617 *ppPage = pTrunk;
4618 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004619 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004620 if( rc ){
4621 goto end_allocate_page;
4622 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004623 if( k==0 ){
4624 if( !pPrevTrunk ){
4625 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4626 }else{
4627 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4628 }
4629 }else{
4630 /* The trunk page is required by the caller but it contains
4631 ** pointers to free-list leaves. The first leaf becomes a trunk
4632 ** page in this case.
4633 */
4634 MemPage *pNewTrunk;
4635 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004636 if( iNewTrunk>mxPage ){
4637 rc = SQLITE_CORRUPT_BKPT;
4638 goto end_allocate_page;
4639 }
drh16a9b832007-05-05 18:39:25 +00004640 rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004641 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004642 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004643 }
danielk19773b8a05f2007-03-19 17:44:26 +00004644 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004645 if( rc!=SQLITE_OK ){
4646 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004647 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004648 }
4649 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4650 put4byte(&pNewTrunk->aData[4], k-1);
4651 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004652 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004653 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004654 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004655 put4byte(&pPage1->aData[32], iNewTrunk);
4656 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004657 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004658 if( rc ){
4659 goto end_allocate_page;
4660 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004661 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4662 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004663 }
4664 pTrunk = 0;
4665 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4666#endif
danielk1977e5765212009-06-17 11:13:28 +00004667 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004668 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004669 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004670 Pgno iPage;
4671 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004672 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004673 if( rc ){
4674 goto end_allocate_page;
4675 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004676 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004677 u32 i;
4678 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004679 closest = 0;
4680 dist = get4byte(&aData[8]) - nearby;
4681 if( dist<0 ) dist = -dist;
4682 for(i=1; i<k; i++){
4683 int d2 = get4byte(&aData[8+i*4]) - nearby;
4684 if( d2<0 ) d2 = -d2;
4685 if( d2<dist ){
4686 closest = i;
4687 dist = d2;
4688 }
4689 }
4690 }else{
4691 closest = 0;
4692 }
4693
4694 iPage = get4byte(&aData[8+closest*4]);
drh1662b5a2009-06-04 19:06:09 +00004695 if( iPage>mxPage ){
4696 rc = SQLITE_CORRUPT_BKPT;
4697 goto end_allocate_page;
4698 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004699 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004700 int noContent;
danielk197789d40042008-11-17 14:20:56 +00004701 Pgno nPage;
shane1f9e6aa2008-06-09 19:27:11 +00004702 *pPgno = iPage;
danielk197789d40042008-11-17 14:20:56 +00004703 nPage = pagerPagecount(pBt);
danielk19774dbaa892009-06-16 16:50:22 +00004704 if( iPage>nPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004705 /* Free page off the end of the file */
danielk197743e377a2008-05-05 12:09:32 +00004706 rc = SQLITE_CORRUPT_BKPT;
4707 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004708 }
4709 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4710 ": %d more free pages\n",
4711 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4712 if( closest<k-1 ){
4713 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4714 }
4715 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004716 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004717 noContent = !btreeGetHasContent(pBt, *pPgno);
4718 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004719 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004720 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004721 if( rc!=SQLITE_OK ){
4722 releasePage(*ppPage);
4723 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004724 }
4725 searchList = 0;
4726 }
drhee696e22004-08-30 16:52:17 +00004727 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004728 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004729 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004730 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004731 }else{
drh3aac2dd2004-04-26 14:10:20 +00004732 /* There are no pages on the freelist, so create a new page at the
4733 ** end of the file */
danielk197789d40042008-11-17 14:20:56 +00004734 int nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004735 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004736
danielk1977bea2a942009-01-20 17:06:27 +00004737 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4738 (*pPgno)++;
4739 }
4740
danielk1977afcdd022004-10-31 16:25:42 +00004741#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00004742 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004743 /* If *pPgno refers to a pointer-map page, allocate two new pages
4744 ** at the end of the file instead of one. The first allocated page
4745 ** becomes a new pointer-map page, the second is used by the caller.
4746 */
danielk1977ac861692009-03-28 10:54:22 +00004747 MemPage *pPg = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004748 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004749 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk1977ac861692009-03-28 10:54:22 +00004750 rc = sqlite3BtreeGetPage(pBt, *pPgno, &pPg, 0);
4751 if( rc==SQLITE_OK ){
4752 rc = sqlite3PagerWrite(pPg->pDbPage);
4753 releasePage(pPg);
4754 }
4755 if( rc ) return rc;
danielk1977afcdd022004-10-31 16:25:42 +00004756 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004757 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004758 }
4759#endif
4760
danielk1977599fcba2004-11-08 07:13:13 +00004761 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh16a9b832007-05-05 18:39:25 +00004762 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004763 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004764 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004765 if( rc!=SQLITE_OK ){
4766 releasePage(*ppPage);
4767 }
drh3a4c1412004-05-09 20:40:11 +00004768 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004769 }
danielk1977599fcba2004-11-08 07:13:13 +00004770
4771 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004772
4773end_allocate_page:
4774 releasePage(pTrunk);
4775 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004776 if( rc==SQLITE_OK ){
4777 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4778 releasePage(*ppPage);
4779 return SQLITE_CORRUPT_BKPT;
4780 }
4781 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004782 }else{
4783 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004784 }
drh3b7511c2001-05-26 13:15:44 +00004785 return rc;
4786}
4787
4788/*
danielk1977bea2a942009-01-20 17:06:27 +00004789** This function is used to add page iPage to the database file free-list.
4790** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004791**
danielk1977bea2a942009-01-20 17:06:27 +00004792** The value passed as the second argument to this function is optional.
4793** If the caller happens to have a pointer to the MemPage object
4794** corresponding to page iPage handy, it may pass it as the second value.
4795** Otherwise, it may pass NULL.
4796**
4797** If a pointer to a MemPage object is passed as the second argument,
4798** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004799*/
danielk1977bea2a942009-01-20 17:06:27 +00004800static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4801 MemPage *pTrunk = 0; /* Free-list trunk page */
4802 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4803 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4804 MemPage *pPage; /* Page being freed. May be NULL. */
4805 int rc; /* Return Code */
4806 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004807
danielk1977bea2a942009-01-20 17:06:27 +00004808 assert( sqlite3_mutex_held(pBt->mutex) );
4809 assert( iPage>1 );
4810 assert( !pMemPage || pMemPage->pgno==iPage );
4811
4812 if( pMemPage ){
4813 pPage = pMemPage;
4814 sqlite3PagerRef(pPage->pDbPage);
4815 }else{
4816 pPage = btreePageLookup(pBt, iPage);
4817 }
drh3aac2dd2004-04-26 14:10:20 +00004818
drha34b6762004-05-07 13:30:42 +00004819 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004820 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004821 if( rc ) goto freepage_out;
4822 nFree = get4byte(&pPage1->aData[36]);
4823 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004824
drhfcce93f2006-02-22 03:08:32 +00004825#ifdef SQLITE_SECURE_DELETE
4826 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4827 ** always fully overwrite deleted information with zeros.
4828 */
danielk1977bea2a942009-01-20 17:06:27 +00004829 if( (!pPage && (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0)))
4830 || (rc = sqlite3PagerWrite(pPage->pDbPage))
4831 ){
4832 goto freepage_out;
4833 }
drhfcce93f2006-02-22 03:08:32 +00004834 memset(pPage->aData, 0, pPage->pBt->pageSize);
4835#endif
4836
danielk1977687566d2004-11-02 12:56:41 +00004837 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004838 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004839 */
danielk197785d90ca2008-07-19 14:25:15 +00004840 if( ISAUTOVACUUM ){
danielk1977bea2a942009-01-20 17:06:27 +00004841 rc = ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0);
4842 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004843 }
danielk1977687566d2004-11-02 12:56:41 +00004844
danielk1977bea2a942009-01-20 17:06:27 +00004845 /* Now manipulate the actual database free-list structure. There are two
4846 ** possibilities. If the free-list is currently empty, or if the first
4847 ** trunk page in the free-list is full, then this page will become a
4848 ** new free-list trunk page. Otherwise, it will become a leaf of the
4849 ** first trunk page in the current free-list. This block tests if it
4850 ** is possible to add the page as a new free-list leaf.
4851 */
4852 if( nFree!=0 ){
4853 int nLeaf; /* Initial number of leaf cells on trunk page */
4854
4855 iTrunk = get4byte(&pPage1->aData[32]);
4856 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
4857 if( rc!=SQLITE_OK ){
4858 goto freepage_out;
4859 }
4860
4861 nLeaf = get4byte(&pTrunk->aData[4]);
4862 if( nLeaf<0 ){
4863 rc = SQLITE_CORRUPT_BKPT;
4864 goto freepage_out;
4865 }
4866 if( nLeaf<pBt->usableSize/4 - 8 ){
4867 /* In this case there is room on the trunk page to insert the page
4868 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004869 **
4870 ** Note that the trunk page is not really full until it contains
4871 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4872 ** coded. But due to a coding error in versions of SQLite prior to
4873 ** 3.6.0, databases with freelist trunk pages holding more than
4874 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4875 ** to maintain backwards compatibility with older versions of SQLite,
4876 ** we will contain to restrict the number of entries to usableSize/4 - 8
4877 ** for now. At some point in the future (once everyone has upgraded
4878 ** to 3.6.0 or later) we should consider fixing the conditional above
4879 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4880 */
danielk19773b8a05f2007-03-19 17:44:26 +00004881 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004882 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004883 put4byte(&pTrunk->aData[4], nLeaf+1);
4884 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhfcce93f2006-02-22 03:08:32 +00004885#ifndef SQLITE_SECURE_DELETE
danielk1977bea2a942009-01-20 17:06:27 +00004886 if( pPage ){
4887 sqlite3PagerDontWrite(pPage->pDbPage);
4888 }
drhfcce93f2006-02-22 03:08:32 +00004889#endif
danielk1977bea2a942009-01-20 17:06:27 +00004890 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00004891 }
drh3a4c1412004-05-09 20:40:11 +00004892 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00004893 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00004894 }
drh3b7511c2001-05-26 13:15:44 +00004895 }
danielk1977bea2a942009-01-20 17:06:27 +00004896
4897 /* If control flows to this point, then it was not possible to add the
4898 ** the page being freed as a leaf page of the first trunk in the free-list.
4899 ** Possibly because the free-list is empty, or possibly because the
4900 ** first trunk in the free-list is full. Either way, the page being freed
4901 ** will become the new first trunk page in the free-list.
4902 */
shane63207ab2009-02-04 01:49:30 +00004903 if( ((!pPage) && (0 != (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0))))
4904 || (0 != (rc = sqlite3PagerWrite(pPage->pDbPage)))
danielk1977bea2a942009-01-20 17:06:27 +00004905 ){
4906 goto freepage_out;
4907 }
4908 put4byte(pPage->aData, iTrunk);
4909 put4byte(&pPage->aData[4], 0);
4910 put4byte(&pPage1->aData[32], iPage);
4911 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
4912
4913freepage_out:
4914 if( pPage ){
4915 pPage->isInit = 0;
4916 }
4917 releasePage(pPage);
4918 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00004919 return rc;
4920}
danielk1977bea2a942009-01-20 17:06:27 +00004921static int freePage(MemPage *pPage){
4922 return freePage2(pPage->pBt, pPage, pPage->pgno);
4923}
drh3b7511c2001-05-26 13:15:44 +00004924
4925/*
drh3aac2dd2004-04-26 14:10:20 +00004926** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00004927*/
drh3aac2dd2004-04-26 14:10:20 +00004928static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00004929 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00004930 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00004931 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00004932 int rc;
drh94440812007-03-06 11:42:19 +00004933 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00004934 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00004935
drh1fee73e2007-08-29 04:00:57 +00004936 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh16a9b832007-05-05 18:39:25 +00004937 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004938 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00004939 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00004940 }
drh6f11bef2004-05-13 01:12:56 +00004941 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00004942 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00004943 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00004944 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
4945 assert( ovflPgno==0 || nOvfl>0 );
4946 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00004947 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004948 MemPage *pOvfl = 0;
danielk1977e589a672009-04-11 16:06:15 +00004949 if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
4950 /* 0 is not a legal page number and page 1 cannot be an
4951 ** overflow page. Therefore if ovflPgno<2 or past the end of the
4952 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00004953 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00004954 }
danielk1977bea2a942009-01-20 17:06:27 +00004955 if( nOvfl ){
4956 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
4957 if( rc ) return rc;
4958 }
4959 rc = freePage2(pBt, pOvfl, ovflPgno);
4960 if( pOvfl ){
4961 sqlite3PagerUnref(pOvfl->pDbPage);
4962 }
drh3b7511c2001-05-26 13:15:44 +00004963 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00004964 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00004965 }
drh5e2f8b92001-05-28 00:41:15 +00004966 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00004967}
4968
4969/*
drh91025292004-05-03 19:49:32 +00004970** Create the byte sequence used to represent a cell on page pPage
4971** and write that byte sequence into pCell[]. Overflow pages are
4972** allocated and filled in as necessary. The calling procedure
4973** is responsible for making sure sufficient space has been allocated
4974** for pCell[].
4975**
4976** Note that pCell does not necessary need to point to the pPage->aData
4977** area. pCell might point to some temporary storage. The cell will
4978** be constructed in this temporary area then copied into pPage->aData
4979** later.
drh3b7511c2001-05-26 13:15:44 +00004980*/
4981static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00004982 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00004983 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00004984 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00004985 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00004986 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00004987 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00004988){
drh3b7511c2001-05-26 13:15:44 +00004989 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00004990 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00004991 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00004992 int spaceLeft;
4993 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00004994 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00004995 unsigned char *pPrior;
4996 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00004997 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00004998 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00004999 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005000 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005001
drh1fee73e2007-08-29 04:00:57 +00005002 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005003
drhc5053fb2008-11-27 02:22:10 +00005004 /* pPage is not necessarily writeable since pCell might be auxiliary
5005 ** buffer space that is separate from the pPage buffer area */
5006 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5007 || sqlite3PagerIswriteable(pPage->pDbPage) );
5008
drh91025292004-05-03 19:49:32 +00005009 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005010 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005011 if( !pPage->leaf ){
5012 nHeader += 4;
5013 }
drh8b18dd42004-05-12 19:18:15 +00005014 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005015 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005016 }else{
drhb026e052007-05-02 01:34:31 +00005017 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005018 }
drh6f11bef2004-05-13 01:12:56 +00005019 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh16a9b832007-05-05 18:39:25 +00005020 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005021 assert( info.nHeader==nHeader );
5022 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005023 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005024
5025 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005026 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005027 if( pPage->intKey ){
5028 pSrc = pData;
5029 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005030 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005031 }else{
drh20abac22009-01-28 20:21:17 +00005032 if( nKey>0x7fffffff || pKey==0 ){
5033 return SQLITE_CORRUPT;
5034 }
drhf49661a2008-12-10 16:45:50 +00005035 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005036 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005037 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005038 }
drh6f11bef2004-05-13 01:12:56 +00005039 *pnSize = info.nSize;
5040 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005041 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005042 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005043
drh3b7511c2001-05-26 13:15:44 +00005044 while( nPayload>0 ){
5045 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005046#ifndef SQLITE_OMIT_AUTOVACUUM
5047 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005048 if( pBt->autoVacuum ){
5049 do{
5050 pgnoOvfl++;
5051 } while(
5052 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5053 );
danielk1977b39f70b2007-05-17 18:28:11 +00005054 }
danielk1977afcdd022004-10-31 16:25:42 +00005055#endif
drhf49661a2008-12-10 16:45:50 +00005056 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005057#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005058 /* If the database supports auto-vacuum, and the second or subsequent
5059 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005060 ** for that page now.
5061 **
5062 ** If this is the first overflow page, then write a partial entry
5063 ** to the pointer-map. If we write nothing to this pointer-map slot,
5064 ** then the optimistic overflow chain processing in clearCell()
5065 ** may misinterpret the uninitialised values and delete the
5066 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005067 */
danielk19774ef24492007-05-23 09:52:41 +00005068 if( pBt->autoVacuum && rc==SQLITE_OK ){
5069 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
5070 rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
danielk197789a4be82007-05-23 13:34:32 +00005071 if( rc ){
5072 releasePage(pOvfl);
5073 }
danielk1977afcdd022004-10-31 16:25:42 +00005074 }
5075#endif
drh3b7511c2001-05-26 13:15:44 +00005076 if( rc ){
drh9b171272004-05-08 02:03:22 +00005077 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005078 return rc;
5079 }
drhc5053fb2008-11-27 02:22:10 +00005080
5081 /* If pToRelease is not zero than pPrior points into the data area
5082 ** of pToRelease. Make sure pToRelease is still writeable. */
5083 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5084
5085 /* If pPrior is part of the data area of pPage, then make sure pPage
5086 ** is still writeable */
5087 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5088 || sqlite3PagerIswriteable(pPage->pDbPage) );
5089
drh3aac2dd2004-04-26 14:10:20 +00005090 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005091 releasePage(pToRelease);
5092 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005093 pPrior = pOvfl->aData;
5094 put4byte(pPrior, 0);
5095 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005096 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005097 }
5098 n = nPayload;
5099 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005100
5101 /* If pToRelease is not zero than pPayload points into the data area
5102 ** of pToRelease. Make sure pToRelease is still writeable. */
5103 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5104
5105 /* If pPayload is part of the data area of pPage, then make sure pPage
5106 ** is still writeable */
5107 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5108 || sqlite3PagerIswriteable(pPage->pDbPage) );
5109
drhb026e052007-05-02 01:34:31 +00005110 if( nSrc>0 ){
5111 if( n>nSrc ) n = nSrc;
5112 assert( pSrc );
5113 memcpy(pPayload, pSrc, n);
5114 }else{
5115 memset(pPayload, 0, n);
5116 }
drh3b7511c2001-05-26 13:15:44 +00005117 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005118 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005119 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005120 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005121 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005122 if( nSrc==0 ){
5123 nSrc = nData;
5124 pSrc = pData;
5125 }
drhdd793422001-06-28 01:54:48 +00005126 }
drh9b171272004-05-08 02:03:22 +00005127 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005128 return SQLITE_OK;
5129}
5130
drh14acc042001-06-10 19:56:58 +00005131/*
5132** Remove the i-th cell from pPage. This routine effects pPage only.
5133** The cell content is not freed or deallocated. It is assumed that
5134** the cell content has been copied someplace else. This routine just
5135** removes the reference to the cell from pPage.
5136**
5137** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005138*/
shane0af3f892008-11-12 04:55:34 +00005139static int dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00005140 int i; /* Loop counter */
5141 int pc; /* Offset to cell content of cell being deleted */
5142 u8 *data; /* pPage->aData */
5143 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005144 int rc; /* The return code */
drh43605152004-05-29 21:46:49 +00005145
drh8c42ca92001-06-22 19:15:00 +00005146 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005147 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005148 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005149 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005150 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005151 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005152 pc = get2byte(ptr);
drhc5053fb2008-11-27 02:22:10 +00005153 if( (pc<pPage->hdrOffset+6+(pPage->leaf?0:4))
5154 || (pc+sz>pPage->pBt->usableSize) ){
shane0af3f892008-11-12 04:55:34 +00005155 return SQLITE_CORRUPT_BKPT;
5156 }
shanedcc50b72008-11-13 18:29:50 +00005157 rc = freeSpace(pPage, pc, sz);
5158 if( rc!=SQLITE_OK ){
5159 return rc;
5160 }
drh43605152004-05-29 21:46:49 +00005161 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5162 ptr[0] = ptr[2];
5163 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005164 }
5165 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00005166 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
5167 pPage->nFree += 2;
shane0af3f892008-11-12 04:55:34 +00005168 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005169}
5170
5171/*
5172** Insert a new cell on pPage at cell index "i". pCell points to the
5173** content of the cell.
5174**
5175** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005176** will not fit, then make a copy of the cell content into pTemp if
5177** pTemp is not null. Regardless of pTemp, allocate a new entry
5178** in pPage->aOvfl[] and make it point to the cell content (either
5179** in pTemp or the original pCell) and also record its index.
5180** Allocating a new entry in pPage->aCell[] implies that
5181** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005182**
5183** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5184** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005185** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005186** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005187*/
danielk1977e80463b2004-11-03 03:01:16 +00005188static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00005189 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005190 int i, /* New cell becomes the i-th cell of the page */
5191 u8 *pCell, /* Content of the new cell */
5192 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005193 u8 *pTemp, /* Temp storage space for pCell, if needed */
danielk19774dbaa892009-06-16 16:50:22 +00005194 Pgno iChild /* If non-zero, replace first 4 bytes with this value */
drh24cd67e2004-05-10 16:18:47 +00005195){
drh43605152004-05-29 21:46:49 +00005196 int idx; /* Where to write new cell content in data[] */
5197 int j; /* Loop counter */
5198 int top; /* First byte of content for any cell in data[] */
5199 int end; /* First byte past the last cell pointer in data[] */
5200 int ins; /* Index in data[] where new cell pointer is inserted */
5201 int hdr; /* Offset into data[] of the page header */
5202 int cellOffset; /* Address of first cell pointer in data[] */
5203 u8 *data; /* The content of the whole page */
5204 u8 *ptr; /* Used for moving information around in data[] */
5205
danielk19774dbaa892009-06-16 16:50:22 +00005206 int nSkip = (iChild ? 4 : 0);
5207
drh43605152004-05-29 21:46:49 +00005208 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005209 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5210 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh43605152004-05-29 21:46:49 +00005211 assert( sz==cellSizePtr(pPage, pCell) );
drh1fee73e2007-08-29 04:00:57 +00005212 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00005213 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005214 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005215 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005216 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005217 }
danielk19774dbaa892009-06-16 16:50:22 +00005218 if( iChild ){
5219 put4byte(pCell, iChild);
5220 }
drh43605152004-05-29 21:46:49 +00005221 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005222 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005223 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005224 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005225 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005226 int rc = sqlite3PagerWrite(pPage->pDbPage);
5227 if( rc!=SQLITE_OK ){
5228 return rc;
5229 }
5230 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005231 data = pPage->aData;
5232 hdr = pPage->hdrOffset;
5233 top = get2byte(&data[hdr+5]);
5234 cellOffset = pPage->cellOffset;
5235 end = cellOffset + 2*pPage->nCell + 2;
5236 ins = cellOffset + 2*i;
5237 if( end > top - sz ){
shane0af3f892008-11-12 04:55:34 +00005238 rc = defragmentPage(pPage);
5239 if( rc!=SQLITE_OK ){
5240 return rc;
5241 }
drh43605152004-05-29 21:46:49 +00005242 top = get2byte(&data[hdr+5]);
5243 assert( end + sz <= top );
5244 }
5245 idx = allocateSpace(pPage, sz);
5246 assert( idx>0 );
5247 assert( end <= get2byte(&data[hdr+5]) );
shane0af3f892008-11-12 04:55:34 +00005248 if (idx+sz > pPage->pBt->usableSize) {
shane34ac18d2008-11-11 22:18:20 +00005249 return SQLITE_CORRUPT_BKPT;
shane0af3f892008-11-12 04:55:34 +00005250 }
drh43605152004-05-29 21:46:49 +00005251 pPage->nCell++;
shane36840fd2009-06-26 16:32:13 +00005252 pPage->nFree = pPage->nFree - (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005253 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005254 if( iChild ){
5255 put4byte(&data[idx], iChild);
5256 }
drh43605152004-05-29 21:46:49 +00005257 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
5258 ptr[0] = ptr[-2];
5259 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005260 }
drh43605152004-05-29 21:46:49 +00005261 put2byte(&data[ins], idx);
5262 put2byte(&data[hdr+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005263#ifndef SQLITE_OMIT_AUTOVACUUM
5264 if( pPage->pBt->autoVacuum ){
5265 /* The cell may contain a pointer to an overflow page. If so, write
5266 ** the entry for the overflow page into the pointer map.
5267 */
danielk197746aa38f2009-06-25 16:11:05 +00005268 return ptrmapPutOvflPtr(pPage, pCell);
danielk1977a19df672004-11-03 11:37:07 +00005269 }
5270#endif
drh14acc042001-06-10 19:56:58 +00005271 }
danielk1977e80463b2004-11-03 03:01:16 +00005272
danielk1977e80463b2004-11-03 03:01:16 +00005273 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005274}
5275
5276/*
drhfa1a98a2004-05-14 19:08:17 +00005277** Add a list of cells to a page. The page should be initially empty.
5278** The cells are guaranteed to fit on the page.
5279*/
5280static void assemblePage(
5281 MemPage *pPage, /* The page to be assemblied */
5282 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005283 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005284 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005285){
5286 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005287 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005288 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005289 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5290 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5291 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005292
drh43605152004-05-29 21:46:49 +00005293 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005294 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005295 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005296 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005297
5298 /* Check that the page has just been zeroed by zeroPage() */
5299 assert( pPage->nCell==0 );
5300 assert( get2byte(&data[hdr+5])==nUsable );
5301
5302 pCellptr = &data[pPage->cellOffset + nCell*2];
5303 cellbody = nUsable;
5304 for(i=nCell-1; i>=0; i--){
5305 pCellptr -= 2;
5306 cellbody -= aSize[i];
5307 put2byte(pCellptr, cellbody);
5308 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005309 }
danielk1977fad91942009-04-29 17:49:59 +00005310 put2byte(&data[hdr+3], nCell);
5311 put2byte(&data[hdr+5], cellbody);
5312 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005313 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005314}
5315
drh14acc042001-06-10 19:56:58 +00005316/*
drhc3b70572003-01-04 19:44:07 +00005317** The following parameters determine how many adjacent pages get involved
5318** in a balancing operation. NN is the number of neighbors on either side
5319** of the page that participate in the balancing operation. NB is the
5320** total number of pages that participate, including the target page and
5321** NN neighbors on either side.
5322**
5323** The minimum value of NN is 1 (of course). Increasing NN above 1
5324** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5325** in exchange for a larger degradation in INSERT and UPDATE performance.
5326** The value of NN appears to give the best results overall.
5327*/
5328#define NN 1 /* Number of neighbors on either side of pPage */
5329#define NB (NN*2+1) /* Total pages involved in the balance */
5330
danielk1977ac245ec2005-01-14 13:50:11 +00005331
drh615ae552005-01-16 23:21:00 +00005332#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005333/*
5334** This version of balance() handles the common special case where
5335** a new entry is being inserted on the extreme right-end of the
5336** tree, in other words, when the new entry will become the largest
5337** entry in the tree.
5338**
5339** Instead of trying balance the 3 right-most leaf pages, just add
5340** a new page to the right-hand side and put the one new entry in
5341** that page. This leaves the right side of the tree somewhat
5342** unbalanced. But odds are that we will be inserting new entries
5343** at the end soon afterwards so the nearly empty page will quickly
5344** fill up. On average.
5345**
5346** pPage is the leaf page which is the right-most page in the tree.
5347** pParent is its parent. pPage must have a single overflow entry
5348** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005349**
5350** The pSpace buffer is used to store a temporary copy of the divider
5351** cell that will be inserted into pParent. Such a cell consists of a 4
5352** byte page number followed by a variable length integer. In other
5353** words, at most 13 bytes. Hence the pSpace buffer must be at
5354** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005355*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005356static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5357 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005358 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005359 int rc; /* Return Code */
5360 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005361
drh1fee73e2007-08-29 04:00:57 +00005362 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005363 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005364 assert( pPage->nOverflow==1 );
5365
drhd46b6c22009-06-04 17:02:51 +00005366 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005367
danielk1977a50d9aa2009-06-08 14:49:45 +00005368 /* Allocate a new page. This page will become the right-sibling of
5369 ** pPage. Make the parent page writable, so that the new divider cell
5370 ** may be inserted. If both these operations are successful, proceed.
5371 */
drh4f0c5872007-03-26 22:05:01 +00005372 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005373
danielk1977eaa06f62008-09-18 17:34:44 +00005374 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005375
5376 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005377 u8 *pCell = pPage->aOvfl[0].pCell;
5378 u16 szCell = cellSizePtr(pPage, pCell);
5379 u8 *pStop;
5380
drhc5053fb2008-11-27 02:22:10 +00005381 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005382 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5383 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005384 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005385
5386 /* If this is an auto-vacuum database, update the pointer map
5387 ** with entries for the new page, and any pointer from the
5388 ** cell on the page to an overflow page. If either of these
5389 ** operations fails, the return code is set, but the contents
5390 ** of the parent page are still manipulated by thh code below.
5391 ** That is Ok, at this point the parent page is guaranteed to
5392 ** be marked as dirty. Returning an error code will cause a
5393 ** rollback, undoing any changes made to the parent page.
5394 */
5395 if( ISAUTOVACUUM ){
5396 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
5397 if( szCell>pNew->minLocal && rc==SQLITE_OK ){
5398 rc = ptrmapPutOvflPtr(pNew, pCell);
5399 }
5400 }
danielk1977eaa06f62008-09-18 17:34:44 +00005401
danielk19776f235cc2009-06-04 14:46:08 +00005402 /* Create a divider cell to insert into pParent. The divider cell
5403 ** consists of a 4-byte page number (the page number of pPage) and
5404 ** a variable length key value (which must be the same value as the
5405 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005406 **
danielk19776f235cc2009-06-04 14:46:08 +00005407 ** To find the largest key value on pPage, first find the right-most
5408 ** cell on pPage. The first two fields of this cell are the
5409 ** record-length (a variable length integer at most 32-bits in size)
5410 ** and the key value (a variable length integer, may have any value).
5411 ** The first of the while(...) loops below skips over the record-length
5412 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005413 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005414 */
danielk1977eaa06f62008-09-18 17:34:44 +00005415 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005416 pStop = &pCell[9];
5417 while( (*(pCell++)&0x80) && pCell<pStop );
5418 pStop = &pCell[9];
5419 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5420
danielk19774dbaa892009-06-16 16:50:22 +00005421 /* Insert the new divider cell into pParent. */
5422 insertCell(pParent,pParent->nCell,pSpace,(int)(pOut-pSpace),0,pPage->pgno);
danielk19776f235cc2009-06-04 14:46:08 +00005423
5424 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005425 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5426
danielk1977e08a3c42008-09-18 18:17:03 +00005427 /* Release the reference to the new page. */
5428 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005429 }
5430
danielk1977eaa06f62008-09-18 17:34:44 +00005431 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005432}
drh615ae552005-01-16 23:21:00 +00005433#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005434
danielk19774dbaa892009-06-16 16:50:22 +00005435#if 0
drhc3b70572003-01-04 19:44:07 +00005436/*
danielk19774dbaa892009-06-16 16:50:22 +00005437** This function does not contribute anything to the operation of SQLite.
5438** it is sometimes activated temporarily while debugging code responsible
5439** for setting pointer-map entries.
5440*/
5441static int ptrmapCheckPages(MemPage **apPage, int nPage){
5442 int i, j;
5443 for(i=0; i<nPage; i++){
5444 Pgno n;
5445 u8 e;
5446 MemPage *pPage = apPage[i];
5447 BtShared *pBt = pPage->pBt;
5448 assert( pPage->isInit );
5449
5450 for(j=0; j<pPage->nCell; j++){
5451 CellInfo info;
5452 u8 *z;
5453
5454 z = findCell(pPage, j);
5455 sqlite3BtreeParseCellPtr(pPage, z, &info);
5456 if( info.iOverflow ){
5457 Pgno ovfl = get4byte(&z[info.iOverflow]);
5458 ptrmapGet(pBt, ovfl, &e, &n);
5459 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5460 }
5461 if( !pPage->leaf ){
5462 Pgno child = get4byte(z);
5463 ptrmapGet(pBt, child, &e, &n);
5464 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5465 }
5466 }
5467 if( !pPage->leaf ){
5468 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5469 ptrmapGet(pBt, child, &e, &n);
5470 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5471 }
5472 }
5473 return 1;
5474}
5475#endif
5476
danielk1977cd581a72009-06-23 15:43:39 +00005477/*
5478** This function is used to copy the contents of the b-tree node stored
5479** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5480** the pointer-map entries for each child page are updated so that the
5481** parent page stored in the pointer map is page pTo. If pFrom contained
5482** any cells with overflow page pointers, then the corresponding pointer
5483** map entries are also updated so that the parent page is page pTo.
5484**
5485** If pFrom is currently carrying any overflow cells (entries in the
5486** MemPage.aOvfl[] array), they are not copied to pTo.
5487**
5488** Before returning, page pTo is reinitialized using sqlite3BtreeInitPage().
5489**
5490** The performance of this function is not critical. It is only used by
5491** the balance_shallower() and balance_deeper() procedures, neither of
5492** which are called often under normal circumstances.
5493*/
5494static int copyNodeContent(MemPage *pFrom, MemPage *pTo){
5495 BtShared * const pBt = pFrom->pBt;
5496 u8 * const aFrom = pFrom->aData;
5497 u8 * const aTo = pTo->aData;
5498 int const iFromHdr = pFrom->hdrOffset;
5499 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
5500 int rc = SQLITE_OK;
5501 int iData;
5502
5503 assert( pFrom->isInit );
5504 assert( pFrom->nFree>=iToHdr );
5505 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5506
5507 /* Copy the b-tree node content from page pFrom to page pTo. */
5508 iData = get2byte(&aFrom[iFromHdr+5]);
5509 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5510 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5511
5512 /* Reinitialize page pTo so that the contents of the MemPage structure
5513 ** match the new data. The initialization of pTo "cannot" fail, as the
5514 ** data copied from pFrom is known to be valid. */
5515 pTo->isInit = 0;
5516 TESTONLY(rc = ) sqlite3BtreeInitPage(pTo);
5517 assert( rc==SQLITE_OK );
5518
5519 /* If this is an auto-vacuum database, update the pointer-map entries
5520 ** for any b-tree or overflow pages that pTo now contains the pointers to. */
5521 if( ISAUTOVACUUM ){
5522 rc = setChildPtrmaps(pTo);
5523 }
5524 return rc;
5525}
5526
5527/*
danielk19774dbaa892009-06-16 16:50:22 +00005528** This routine redistributes cells on the iParentIdx'th child of pParent
5529** (hereafter "the page") and up to 2 siblings so that all pages have about the
5530** same amount of free space. Usually a single sibling on either side of the
5531** page are used in the balancing, though both siblings might come from one
5532** side if the page is the first or last child of its parent. If the page
5533** has fewer than 2 siblings (something which can only happen if the page
5534** is a root page or a child of a root page) then all available siblings
5535** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005536**
danielk19774dbaa892009-06-16 16:50:22 +00005537** The number of siblings of the page might be increased or decreased by
5538** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005539**
danielk19774dbaa892009-06-16 16:50:22 +00005540** Note that when this routine is called, some of the cells on the page
5541** might not actually be stored in MemPage.aData[]. This can happen
5542** if the page is overfull. This routine ensures that all cells allocated
5543** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005544**
danielk19774dbaa892009-06-16 16:50:22 +00005545** In the course of balancing the page and its siblings, cells may be
5546** inserted into or removed from the parent page (pParent). Doing so
5547** may cause the parent page to become overfull or underfull. If this
5548** happens, it is the responsibility of the caller to invoke the correct
5549** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005550**
drh5e00f6c2001-09-13 13:46:56 +00005551** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005552** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005553** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005554**
5555** The third argument to this function, aOvflSpace, is a pointer to a
5556** buffer page-size bytes in size. If, in inserting cells into the parent
5557** page (pParent), the parent page becomes overfull, this buffer is
5558** used to store the parents overflow cells. Because this function inserts
5559** a maximum of four divider cells into the parent page, and the maximum
5560** size of a cell stored within an internal node is always less than 1/4
5561** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5562** enough for all overflow cells.
5563**
5564** If aOvflSpace is set to a null pointer, this function returns
5565** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005566*/
danielk19774dbaa892009-06-16 16:50:22 +00005567static int balance_nonroot(
5568 MemPage *pParent, /* Parent page of siblings being balanced */
5569 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005570 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5571 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005572){
drh16a9b832007-05-05 18:39:25 +00005573 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005574 int nCell = 0; /* Number of cells in apCell[] */
5575 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005576 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005577 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005578 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005579 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005580 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005581 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005582 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005583 int usableSpace; /* Bytes in pPage beyond the header */
5584 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005585 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005586 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005587 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005588 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005589 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005590 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005591 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005592 u8 *pRight; /* Location in parent of right-sibling pointer */
5593 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005594 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5595 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005596 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005597 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005598 u8 *aSpace1; /* Space for copies of dividers cells */
5599 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005600
danielk1977a50d9aa2009-06-08 14:49:45 +00005601 pBt = pParent->pBt;
5602 assert( sqlite3_mutex_held(pBt->mutex) );
5603 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005604
danielk1977e5765212009-06-17 11:13:28 +00005605#if 0
drh43605152004-05-29 21:46:49 +00005606 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005607#endif
drh2e38c322004-09-03 18:38:44 +00005608
danielk19774dbaa892009-06-16 16:50:22 +00005609 /* At this point pParent may have at most one overflow cell. And if
5610 ** this overflow cell is present, it must be the cell with
5611 ** index iParentIdx. This scenario comes about when this function
5612 ** is called (indirectly) from sqlite3BtreeDelete(). */
5613 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5614 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5615
danielk197711a8a862009-06-17 11:49:52 +00005616 if( !aOvflSpace ){
5617 return SQLITE_NOMEM;
5618 }
5619
danielk1977a50d9aa2009-06-08 14:49:45 +00005620 /* Find the sibling pages to balance. Also locate the cells in pParent
5621 ** that divide the siblings. An attempt is made to find NN siblings on
5622 ** either side of pPage. More siblings are taken from one side, however,
5623 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005624 ** has NB or fewer children then all children of pParent are taken.
5625 **
5626 ** This loop also drops the divider cells from the parent page. This
5627 ** way, the remainder of the function does not have to deal with any
5628 ** overflow cells in the parent page, as if one existed it has already
5629 ** been removed. */
5630 i = pParent->nOverflow + pParent->nCell;
5631 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005632 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005633 nOld = i+1;
5634 }else{
5635 nOld = 3;
5636 if( iParentIdx==0 ){
5637 nxDiv = 0;
5638 }else if( iParentIdx==i ){
5639 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005640 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005641 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005642 }
danielk19774dbaa892009-06-16 16:50:22 +00005643 i = 2;
5644 }
5645 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5646 pRight = &pParent->aData[pParent->hdrOffset+8];
5647 }else{
5648 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5649 }
5650 pgno = get4byte(pRight);
5651 while( 1 ){
5652 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5653 if( rc ){
5654 memset(apOld, 0, i*sizeof(MemPage*));
5655 goto balance_cleanup;
5656 }
danielk1977634f2982005-03-28 08:44:07 +00005657 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005658 if( (i--)==0 ) break;
5659
5660 if( pParent->nOverflow && i+nxDiv==pParent->aOvfl[0].idx ){
5661 apDiv[i] = pParent->aOvfl[0].pCell;
5662 pgno = get4byte(apDiv[i]);
5663 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5664 pParent->nOverflow = 0;
5665 }else{
5666 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5667 pgno = get4byte(apDiv[i]);
5668 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5669
5670 /* Drop the cell from the parent page. apDiv[i] still points to
5671 ** the cell within the parent, even though it has been dropped.
5672 ** This is safe because dropping a cell only overwrites the first
5673 ** four bytes of it, and this function does not need the first
5674 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005675 ** later on.
5676 **
5677 ** Unless SQLite is compiled in secure-delete mode. In this case,
5678 ** the dropCell() routine will overwrite the entire cell with zeroes.
5679 ** In this case, temporarily copy the cell into the aOvflSpace[]
5680 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5681 ** is allocated. */
5682#ifdef SQLITE_SECURE_DELETE
5683 memcpy(&aOvflSpace[apDiv[i]-pParent->aData], apDiv[i], szNew[i]);
5684 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5685#endif
danielk19774dbaa892009-06-16 16:50:22 +00005686 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i]);
5687 }
drh8b2f49b2001-06-08 00:21:52 +00005688 }
5689
drha9121e42008-02-19 14:59:35 +00005690 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005691 ** alignment */
drha9121e42008-02-19 14:59:35 +00005692 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005693
drh8b2f49b2001-06-08 00:21:52 +00005694 /*
danielk1977634f2982005-03-28 08:44:07 +00005695 ** Allocate space for memory structures
5696 */
danielk19774dbaa892009-06-16 16:50:22 +00005697 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005698 szScratch =
drha9121e42008-02-19 14:59:35 +00005699 nMaxCells*sizeof(u8*) /* apCell */
5700 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005701 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005702 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005703 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005704 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005705 rc = SQLITE_NOMEM;
5706 goto balance_cleanup;
5707 }
drha9121e42008-02-19 14:59:35 +00005708 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005709 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005710 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005711
5712 /*
5713 ** Load pointers to all cells on sibling pages and the divider cells
5714 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005715 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005716 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005717 **
5718 ** If the siblings are on leaf pages, then the child pointers of the
5719 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005720 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005721 ** child pointers. If siblings are not leaves, then all cell in
5722 ** apCell[] include child pointers. Either way, all cells in apCell[]
5723 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005724 **
5725 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5726 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005727 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005728 leafCorrection = apOld[0]->leaf*4;
5729 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005730 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005731 int limit;
5732
5733 /* Before doing anything else, take a copy of the i'th original sibling
5734 ** The rest of this function will use data from the copies rather
5735 ** that the original pages since the original pages will be in the
5736 ** process of being overwritten. */
5737 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
5738 memcpy(pOld, apOld[i], sizeof(MemPage));
5739 pOld->aData = (void*)&pOld[1];
5740 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
5741
5742 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00005743 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005744 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005745 apCell[nCell] = findOverflowCell(pOld, j);
5746 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00005747 nCell++;
5748 }
5749 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00005750 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00005751 u8 *pTemp;
5752 assert( nCell<nMaxCells );
5753 szCell[nCell] = sz;
5754 pTemp = &aSpace1[iSpace1];
5755 iSpace1 += sz;
5756 assert( sz<=pBt->pageSize/4 );
5757 assert( iSpace1<=pBt->pageSize );
5758 memcpy(pTemp, apDiv[i], sz);
5759 apCell[nCell] = pTemp+leafCorrection;
5760 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00005761 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00005762 if( !pOld->leaf ){
5763 assert( leafCorrection==0 );
5764 assert( pOld->hdrOffset==0 );
5765 /* The right pointer of the child page pOld becomes the left
5766 ** pointer of the divider cell */
5767 memcpy(apCell[nCell], &pOld->aData[8], 4);
5768 }else{
5769 assert( leafCorrection==4 );
5770 if( szCell[nCell]<4 ){
5771 /* Do not allow any cells smaller than 4 bytes. */
5772 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00005773 }
5774 }
drh14acc042001-06-10 19:56:58 +00005775 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005776 }
drh8b2f49b2001-06-08 00:21:52 +00005777 }
5778
5779 /*
drh6019e162001-07-02 17:51:45 +00005780 ** Figure out the number of pages needed to hold all nCell cells.
5781 ** Store this number in "k". Also compute szNew[] which is the total
5782 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005783 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005784 ** cntNew[k] should equal nCell.
5785 **
drh96f5b762004-05-16 16:24:36 +00005786 ** Values computed by this block:
5787 **
5788 ** k: The total number of sibling pages
5789 ** szNew[i]: Spaced used on the i-th sibling page.
5790 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5791 ** the right of the i-th sibling page.
5792 ** usableSpace: Number of bytes of space available on each sibling.
5793 **
drh8b2f49b2001-06-08 00:21:52 +00005794 */
drh43605152004-05-29 21:46:49 +00005795 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005796 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005797 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005798 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005799 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005800 szNew[k] = subtotal - szCell[i];
5801 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005802 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005803 subtotal = 0;
5804 k++;
drheac74422009-06-14 12:47:11 +00005805 if( k>NB+1 ){ rc = SQLITE_CORRUPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00005806 }
5807 }
5808 szNew[k] = subtotal;
5809 cntNew[k] = nCell;
5810 k++;
drh96f5b762004-05-16 16:24:36 +00005811
5812 /*
5813 ** The packing computed by the previous block is biased toward the siblings
5814 ** on the left side. The left siblings are always nearly full, while the
5815 ** right-most sibling might be nearly empty. This block of code attempts
5816 ** to adjust the packing of siblings to get a better balance.
5817 **
5818 ** This adjustment is more than an optimization. The packing above might
5819 ** be so out of balance as to be illegal. For example, the right-most
5820 ** sibling might be completely empty. This adjustment is not optional.
5821 */
drh6019e162001-07-02 17:51:45 +00005822 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005823 int szRight = szNew[i]; /* Size of sibling on the right */
5824 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5825 int r; /* Index of right-most cell in left sibling */
5826 int d; /* Index of first cell to the left of right sibling */
5827
5828 r = cntNew[i-1] - 1;
5829 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005830 assert( d<nMaxCells );
5831 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005832 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5833 szRight += szCell[d] + 2;
5834 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005835 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005836 r = cntNew[i-1] - 1;
5837 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005838 }
drh96f5b762004-05-16 16:24:36 +00005839 szNew[i] = szRight;
5840 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005841 }
drh09d0deb2005-08-02 17:13:09 +00005842
danielk19776f235cc2009-06-04 14:46:08 +00005843 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00005844 ** a virtual root page. A virtual root page is when the real root
5845 ** page is page 1 and we are the only child of that page.
5846 */
5847 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005848
danielk1977e5765212009-06-17 11:13:28 +00005849 TRACE(("BALANCE: old: %d %d %d ",
5850 apOld[0]->pgno,
5851 nOld>=2 ? apOld[1]->pgno : 0,
5852 nOld>=3 ? apOld[2]->pgno : 0
5853 ));
5854
drh8b2f49b2001-06-08 00:21:52 +00005855 /*
drh6b308672002-07-08 02:16:37 +00005856 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005857 */
drheac74422009-06-14 12:47:11 +00005858 if( apOld[0]->pgno<=1 ){
5859 rc = SQLITE_CORRUPT;
5860 goto balance_cleanup;
5861 }
danielk1977a50d9aa2009-06-08 14:49:45 +00005862 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00005863 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005864 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005865 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005866 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005867 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005868 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005869 nNew++;
danielk197728129562005-01-11 10:25:06 +00005870 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005871 }else{
drh7aa8f852006-03-28 00:24:44 +00005872 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00005873 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00005874 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005875 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005876 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00005877
5878 /* Set the pointer-map entry for the new sibling page. */
5879 if( ISAUTOVACUUM ){
5880 rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
5881 if( rc!=SQLITE_OK ){
5882 goto balance_cleanup;
5883 }
5884 }
drh6b308672002-07-08 02:16:37 +00005885 }
drh8b2f49b2001-06-08 00:21:52 +00005886 }
5887
danielk1977299b1872004-11-22 10:02:10 +00005888 /* Free any old pages that were not reused as new pages.
5889 */
5890 while( i<nOld ){
5891 rc = freePage(apOld[i]);
5892 if( rc ) goto balance_cleanup;
5893 releasePage(apOld[i]);
5894 apOld[i] = 0;
5895 i++;
5896 }
5897
drh8b2f49b2001-06-08 00:21:52 +00005898 /*
drhf9ffac92002-03-02 19:00:31 +00005899 ** Put the new pages in accending order. This helps to
5900 ** keep entries in the disk file in order so that a scan
5901 ** of the table is a linear scan through the file. That
5902 ** in turn helps the operating system to deliver pages
5903 ** from the disk more rapidly.
5904 **
5905 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00005906 ** n is never more than NB (a small constant), that should
5907 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00005908 **
drhc3b70572003-01-04 19:44:07 +00005909 ** When NB==3, this one optimization makes the database
5910 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00005911 */
5912 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005913 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005914 int minI = i;
5915 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00005916 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00005917 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00005918 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005919 }
5920 }
5921 if( minI>i ){
5922 int t;
5923 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00005924 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005925 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00005926 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00005927 apNew[minI] = pT;
5928 }
5929 }
danielk1977e5765212009-06-17 11:13:28 +00005930 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00005931 apNew[0]->pgno, szNew[0],
5932 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
5933 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
5934 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
5935 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
5936
5937 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
5938 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00005939
drhf9ffac92002-03-02 19:00:31 +00005940 /*
drh14acc042001-06-10 19:56:58 +00005941 ** Evenly distribute the data in apCell[] across the new pages.
5942 ** Insert divider cells into pParent as necessary.
5943 */
5944 j = 0;
5945 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00005946 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00005947 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00005948 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00005949 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00005950 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00005951 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00005952 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00005953
danielk1977ac11ee62005-01-15 12:45:51 +00005954 j = cntNew[i];
5955
5956 /* If the sibling page assembled above was not the right-most sibling,
5957 ** insert a divider cell into the parent page.
5958 */
danielk19771c3d2bf2009-06-23 16:40:17 +00005959 assert( i<nNew-1 || j==nCell );
5960 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00005961 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00005962 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00005963 int sz;
danielk1977634f2982005-03-28 08:44:07 +00005964
5965 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00005966 pCell = apCell[j];
5967 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00005968 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00005969 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00005970 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00005971 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00005972 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00005973 ** then there is no divider cell in apCell[]. Instead, the divider
5974 ** cell consists of the integer key for the right-most cell of
5975 ** the sibling-page assembled above only.
5976 */
drh6f11bef2004-05-13 01:12:56 +00005977 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00005978 j--;
drh16a9b832007-05-05 18:39:25 +00005979 sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00005980 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00005981 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00005982 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00005983 }else{
5984 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00005985 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00005986 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00005987 ** bytes, then it may actually be smaller than this
5988 ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00005989 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00005990 ** insertCell(), so reparse the cell now.
5991 **
5992 ** Note that this can never happen in an SQLite data file, as all
5993 ** cells are at least 4 bytes. It only happens in b-trees used
5994 ** to evaluate "IN (SELECT ...)" and similar clauses.
5995 */
5996 if( szCell[j]==4 ){
5997 assert(leafCorrection==4);
5998 sz = cellSizePtr(pParent, pCell);
5999 }
drh4b70f112004-05-02 21:12:19 +00006000 }
danielk19776067a9b2009-06-09 09:41:00 +00006001 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00006002 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00006003 assert( iOvflSpace<=pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006004 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno);
danielk1977e80463b2004-11-03 03:01:16 +00006005 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006006 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006007
drh14acc042001-06-10 19:56:58 +00006008 j++;
6009 nxDiv++;
6010 }
6011 }
drh6019e162001-07-02 17:51:45 +00006012 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006013 assert( nOld>0 );
6014 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006015 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006016 u8 *zChild = &apCopy[nOld-1]->aData[8];
6017 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006018 }
6019
danielk197713bd99f2009-06-24 05:40:34 +00006020 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6021 /* The root page of the b-tree now contains no cells. The only sibling
6022 ** page is the right-child of the parent. Copy the contents of the
6023 ** child page into the parent, decreasing the overall height of the
6024 ** b-tree structure by one. This is described as the "balance-shallower"
6025 ** sub-algorithm in some documentation.
6026 **
6027 ** If this is an auto-vacuum database, the call to copyNodeContent()
6028 ** sets all pointer-map entries corresponding to database image pages
6029 ** for which the pointer is stored within the content being copied.
6030 **
6031 ** The second assert below verifies that the child page is defragmented
6032 ** (it must be, as it was just reconstructed using assemblePage()). This
6033 ** is important if the parent page happens to be page 1 of the database
6034 ** image. */
6035 assert( nNew==1 );
6036 assert( apNew[0]->nFree ==
6037 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6038 );
6039 if( SQLITE_OK==(rc = copyNodeContent(apNew[0], pParent)) ){
6040 rc = freePage(apNew[0]);
6041 }
6042 }else if( ISAUTOVACUUM ){
6043 /* Fix the pointer-map entries for all the cells that were shifted around.
6044 ** There are several different types of pointer-map entries that need to
6045 ** be dealt with by this routine. Some of these have been set already, but
6046 ** many have not. The following is a summary:
6047 **
6048 ** 1) The entries associated with new sibling pages that were not
6049 ** siblings when this function was called. These have already
6050 ** been set. We don't need to worry about old siblings that were
6051 ** moved to the free-list - the freePage() code has taken care
6052 ** of those.
6053 **
6054 ** 2) The pointer-map entries associated with the first overflow
6055 ** page in any overflow chains used by new divider cells. These
6056 ** have also already been taken care of by the insertCell() code.
6057 **
6058 ** 3) If the sibling pages are not leaves, then the child pages of
6059 ** cells stored on the sibling pages may need to be updated.
6060 **
6061 ** 4) If the sibling pages are not internal intkey nodes, then any
6062 ** overflow pages used by these cells may need to be updated
6063 ** (internal intkey nodes never contain pointers to overflow pages).
6064 **
6065 ** 5) If the sibling pages are not leaves, then the pointer-map
6066 ** entries for the right-child pages of each sibling may need
6067 ** to be updated.
6068 **
6069 ** Cases 1 and 2 are dealt with above by other code. The next
6070 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6071 ** setting a pointer map entry is a relatively expensive operation, this
6072 ** code only sets pointer map entries for child or overflow pages that have
6073 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006074 MemPage *pNew = apNew[0];
6075 MemPage *pOld = apCopy[0];
6076 int nOverflow = pOld->nOverflow;
6077 int iNextOld = pOld->nCell + nOverflow;
6078 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6079 j = 0; /* Current 'old' sibling page */
6080 k = 0; /* Current 'new' sibling page */
6081 for(i=0; i<nCell && rc==SQLITE_OK; i++){
6082 int isDivider = 0;
6083 while( i==iNextOld ){
6084 /* Cell i is the cell immediately following the last cell on old
6085 ** sibling page j. If the siblings are not leaf pages of an
6086 ** intkey b-tree, then cell i was a divider cell. */
6087 pOld = apCopy[++j];
6088 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6089 if( pOld->nOverflow ){
6090 nOverflow = pOld->nOverflow;
6091 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6092 }
6093 isDivider = !leafData;
6094 }
6095
6096 assert(nOverflow>0 || iOverflow<i );
6097 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6098 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6099 if( i==iOverflow ){
6100 isDivider = 1;
6101 if( (--nOverflow)>0 ){
6102 iOverflow++;
6103 }
6104 }
6105
6106 if( i==cntNew[k] ){
6107 /* Cell i is the cell immediately following the last cell on new
6108 ** sibling page k. If the siblings are not leaf pages of an
6109 ** intkey b-tree, then cell i is a divider cell. */
6110 pNew = apNew[++k];
6111 if( !leafData ) continue;
6112 }
6113 assert( rc==SQLITE_OK );
6114 assert( j<nOld );
6115 assert( k<nNew );
6116
6117 /* If the cell was originally divider cell (and is not now) or
6118 ** an overflow cell, or if the cell was located on a different sibling
6119 ** page before the balancing, then the pointer map entries associated
6120 ** with any child or overflow pages need to be updated. */
6121 if( isDivider || pOld->pgno!=pNew->pgno ){
6122 if( !leafCorrection ){
6123 rc = ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno);
6124 }
6125 if( szCell[i]>pNew->minLocal && rc==SQLITE_OK ){
6126 rc = ptrmapPutOvflPtr(pNew, apCell[i]);
6127 }
6128 }
6129 }
6130
6131 if( !leafCorrection ){
6132 for(i=0; rc==SQLITE_OK && i<nNew; i++){
6133 rc = ptrmapPut(
6134 pBt, get4byte(&apNew[i]->aData[8]), PTRMAP_BTREE, apNew[i]->pgno);
6135 }
6136 }
6137
6138#if 0
6139 /* The ptrmapCheckPages() contains assert() statements that verify that
6140 ** all pointer map pages are set correctly. This is helpful while
6141 ** debugging. This is usually disabled because a corrupt database may
6142 ** cause an assert() statement to fail. */
6143 ptrmapCheckPages(apNew, nNew);
6144 ptrmapCheckPages(&pParent, 1);
6145#endif
6146 }
6147
danielk197771d5d2c2008-09-29 11:49:47 +00006148 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006149 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6150 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006151
drh8b2f49b2001-06-08 00:21:52 +00006152 /*
drh14acc042001-06-10 19:56:58 +00006153 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006154 */
drh14acc042001-06-10 19:56:58 +00006155balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006156 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006157 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006158 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006159 }
drh14acc042001-06-10 19:56:58 +00006160 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006161 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006162 }
danielk1977eaa06f62008-09-18 17:34:44 +00006163
drh8b2f49b2001-06-08 00:21:52 +00006164 return rc;
6165}
6166
drh43605152004-05-29 21:46:49 +00006167
6168/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006169** This function is called when the root page of a b-tree structure is
6170** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006171**
danielk1977a50d9aa2009-06-08 14:49:45 +00006172** A new child page is allocated and the contents of the current root
6173** page, including overflow cells, are copied into the child. The root
6174** page is then overwritten to make it an empty page with the right-child
6175** pointer pointing to the new page.
6176**
6177** Before returning, all pointer-map entries corresponding to pages
6178** that the new child-page now contains pointers to are updated. The
6179** entry corresponding to the new right-child pointer of the root
6180** page is also updated.
6181**
6182** If successful, *ppChild is set to contain a reference to the child
6183** page and SQLITE_OK is returned. In this case the caller is required
6184** to call releasePage() on *ppChild exactly once. If an error occurs,
6185** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006186*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006187static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6188 int rc; /* Return value from subprocedures */
6189 MemPage *pChild = 0; /* Pointer to a new child page */
6190 Pgno pgnoChild; /* Page number of the new child page */
6191 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006192
danielk1977a50d9aa2009-06-08 14:49:45 +00006193 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006194 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006195
danielk1977a50d9aa2009-06-08 14:49:45 +00006196 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6197 ** page that will become the new right-child of pPage. Copy the contents
6198 ** of the node stored on pRoot into the new child page.
6199 */
6200 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pRoot->pDbPage))
6201 || SQLITE_OK!=(rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0))
6202 || SQLITE_OK!=(rc = copyNodeContent(pRoot, pChild))
6203 || (ISAUTOVACUUM &&
6204 SQLITE_OK!=(rc = ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno)))
6205 ){
6206 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006207 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006208 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006209 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006210 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6211 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6212 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006213
danielk1977a50d9aa2009-06-08 14:49:45 +00006214 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6215
6216 /* Copy the overflow cells from pRoot to pChild */
6217 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6218 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006219
6220 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6221 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6222 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6223
6224 *ppChild = pChild;
6225 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006226}
6227
6228/*
danielk197771d5d2c2008-09-29 11:49:47 +00006229** The page that pCur currently points to has just been modified in
6230** some way. This function figures out if this modification means the
6231** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006232** routine. Balancing routines are:
6233**
6234** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006235** balance_deeper()
6236** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006237*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006238static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006239 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006240 const int nMin = pCur->pBt->usableSize * 2 / 3;
6241 u8 aBalanceQuickSpace[13];
6242 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006243
shane75ac1de2009-06-09 18:58:52 +00006244 TESTONLY( int balance_quick_called = 0 );
6245 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006246
6247 do {
6248 int iPage = pCur->iPage;
6249 MemPage *pPage = pCur->apPage[iPage];
6250
6251 if( iPage==0 ){
6252 if( pPage->nOverflow ){
6253 /* The root page of the b-tree is overfull. In this case call the
6254 ** balance_deeper() function to create a new child for the root-page
6255 ** and copy the current contents of the root-page to it. The
6256 ** next iteration of the do-loop will balance the child page.
6257 */
6258 assert( (balance_deeper_called++)==0 );
6259 rc = balance_deeper(pPage, &pCur->apPage[1]);
6260 if( rc==SQLITE_OK ){
6261 pCur->iPage = 1;
6262 pCur->aiIdx[0] = 0;
6263 pCur->aiIdx[1] = 0;
6264 assert( pCur->apPage[1]->nOverflow );
6265 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006266 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006267 break;
6268 }
6269 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6270 break;
6271 }else{
6272 MemPage * const pParent = pCur->apPage[iPage-1];
6273 int const iIdx = pCur->aiIdx[iPage-1];
6274
6275 rc = sqlite3PagerWrite(pParent->pDbPage);
6276 if( rc==SQLITE_OK ){
6277#ifndef SQLITE_OMIT_QUICKBALANCE
6278 if( pPage->hasData
6279 && pPage->nOverflow==1
6280 && pPage->aOvfl[0].idx==pPage->nCell
6281 && pParent->pgno!=1
6282 && pParent->nCell==iIdx
6283 ){
6284 /* Call balance_quick() to create a new sibling of pPage on which
6285 ** to store the overflow cell. balance_quick() inserts a new cell
6286 ** into pParent, which may cause pParent overflow. If this
6287 ** happens, the next interation of the do-loop will balance pParent
6288 ** use either balance_nonroot() or balance_deeper(). Until this
6289 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6290 ** buffer.
6291 **
6292 ** The purpose of the following assert() is to check that only a
6293 ** single call to balance_quick() is made for each call to this
6294 ** function. If this were not verified, a subtle bug involving reuse
6295 ** of the aBalanceQuickSpace[] might sneak in.
6296 */
6297 assert( (balance_quick_called++)==0 );
6298 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6299 }else
6300#endif
6301 {
6302 /* In this case, call balance_nonroot() to redistribute cells
6303 ** between pPage and up to 2 of its sibling pages. This involves
6304 ** modifying the contents of pParent, which may cause pParent to
6305 ** become overfull or underfull. The next iteration of the do-loop
6306 ** will balance the parent page to correct this.
6307 **
6308 ** If the parent page becomes overfull, the overflow cell or cells
6309 ** are stored in the pSpace buffer allocated immediately below.
6310 ** A subsequent iteration of the do-loop will deal with this by
6311 ** calling balance_nonroot() (balance_deeper() may be called first,
6312 ** but it doesn't deal with overflow cells - just moves them to a
6313 ** different page). Once this subsequent call to balance_nonroot()
6314 ** has completed, it is safe to release the pSpace buffer used by
6315 ** the previous call, as the overflow cell data will have been
6316 ** copied either into the body of a database page or into the new
6317 ** pSpace buffer passed to the latter call to balance_nonroot().
6318 */
6319 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006320 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006321 if( pFree ){
6322 /* If pFree is not NULL, it points to the pSpace buffer used
6323 ** by a previous call to balance_nonroot(). Its contents are
6324 ** now stored either on real database pages or within the
6325 ** new pSpace buffer, so it may be safely freed here. */
6326 sqlite3PageFree(pFree);
6327 }
6328
danielk19774dbaa892009-06-16 16:50:22 +00006329 /* The pSpace buffer will be freed after the next call to
6330 ** balance_nonroot(), or just before this function returns, whichever
6331 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006332 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006333 }
6334 }
6335
6336 pPage->nOverflow = 0;
6337
6338 /* The next iteration of the do-loop balances the parent page. */
6339 releasePage(pPage);
6340 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006341 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006342 }while( rc==SQLITE_OK );
6343
6344 if( pFree ){
6345 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006346 }
6347 return rc;
6348}
6349
drhf74b8d92002-09-01 23:20:45 +00006350
6351/*
drh3b7511c2001-05-26 13:15:44 +00006352** Insert a new record into the BTree. The key is given by (pKey,nKey)
6353** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006354** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006355** is left pointing at a random location.
6356**
6357** For an INTKEY table, only the nKey value of the key is used. pKey is
6358** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006359**
6360** If the seekResult parameter is non-zero, then a successful call to
6361** sqlite3BtreeMoveto() to seek cursor pCur to (pKey, nKey) has already
6362** been performed. seekResult is the search result returned (a negative
6363** number if pCur points at an entry that is smaller than (pKey, nKey), or
6364** a positive value if pCur points at an etry that is larger than
6365** (pKey, nKey)).
6366**
6367** If the seekResult parameter is 0, then cursor pCur may point to any
6368** entry or to no entry at all. In this case this function has to seek
6369** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006370*/
drh3aac2dd2004-04-26 14:10:20 +00006371int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006372 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006373 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006374 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006375 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006376 int appendBias, /* True if this is likely an append */
6377 int seekResult /* Result of prior sqlite3BtreeMoveto() call */
drh3b7511c2001-05-26 13:15:44 +00006378){
drh3b7511c2001-05-26 13:15:44 +00006379 int rc;
danielk1977de630352009-05-04 11:42:29 +00006380 int loc = seekResult;
drh14acc042001-06-10 19:56:58 +00006381 int szNew;
danielk197771d5d2c2008-09-29 11:49:47 +00006382 int idx;
drh3b7511c2001-05-26 13:15:44 +00006383 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006384 Btree *p = pCur->pBtree;
6385 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006386 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006387 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006388
drh1fee73e2007-08-29 04:00:57 +00006389 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006390 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006391 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006392 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006393 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6394
6395 /* If this is an insert into a table b-tree, invalidate any incrblob
6396 ** cursors open on the row being replaced (assuming this is a replace
6397 ** operation - if it is not, the following is a no-op). */
6398 if( pCur->pKeyInfo==0 ){
6399 invalidateIncrblobCursors(p, pCur->pgnoRoot, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006400 }
danielk197796d48e92009-06-29 06:00:37 +00006401
drhfb982642007-08-30 01:19:59 +00006402 if( pCur->eState==CURSOR_FAULT ){
6403 return pCur->skip;
6404 }
danielk1977da184232006-01-05 11:34:32 +00006405
danielk19779c3acf32009-05-02 07:36:49 +00006406 /* Save the positions of any other cursors open on this table.
6407 **
6408 ** In some cases, the call to sqlite3BtreeMoveto() below is a no-op. For
6409 ** example, when inserting data into a table with auto-generated integer
6410 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6411 ** integer key to use. It then calls this function to actually insert the
6412 ** data into the intkey B-Tree. In this case sqlite3BtreeMoveto() recognizes
6413 ** that the cursor is already where it needs to be and returns without
6414 ** doing any work. To avoid thwarting these optimizations, it is important
6415 ** not to clear the cursor here.
6416 */
danielk1977de630352009-05-04 11:42:29 +00006417 if(
6418 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || (!loc &&
drhe63d9992008-08-13 19:11:48 +00006419 SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
danielk1977de630352009-05-04 11:42:29 +00006420 )){
danielk1977da184232006-01-05 11:34:32 +00006421 return rc;
6422 }
danielk1977b980d2212009-06-22 18:03:51 +00006423 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006424
danielk197771d5d2c2008-09-29 11:49:47 +00006425 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006426 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006427 assert( pPage->leaf || !pPage->intKey );
drh3a4c1412004-05-09 20:40:11 +00006428 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6429 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6430 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006431 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006432 allocateTempSpace(pBt);
6433 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006434 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006435 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006436 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006437 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006438 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006439 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006440 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006441 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006442 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006443 rc = sqlite3PagerWrite(pPage->pDbPage);
6444 if( rc ){
6445 goto end_insert;
6446 }
danielk197771d5d2c2008-09-29 11:49:47 +00006447 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006448 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006449 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006450 }
drh43605152004-05-29 21:46:49 +00006451 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006452 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00006453 if( rc ) goto end_insert;
shane0af3f892008-11-12 04:55:34 +00006454 rc = dropCell(pPage, idx, szOld);
6455 if( rc!=SQLITE_OK ) {
6456 goto end_insert;
6457 }
drh7c717f72001-06-24 20:39:41 +00006458 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006459 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006460 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006461 }else{
drh4b70f112004-05-02 21:12:19 +00006462 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006463 }
danielk197771d5d2c2008-09-29 11:49:47 +00006464 rc = insertCell(pPage, idx, newCell, szNew, 0, 0);
danielk19773f632d52009-05-02 10:03:09 +00006465 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006466
danielk1977a50d9aa2009-06-08 14:49:45 +00006467 /* If no error has occured and pPage has an overflow cell, call balance()
6468 ** to redistribute the cells within the tree. Since balance() may move
6469 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6470 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006471 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006472 ** Previous versions of SQLite called moveToRoot() to move the cursor
6473 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006474 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6475 ** set the cursor state to "invalid". This makes common insert operations
6476 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006477 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006478 ** There is a subtle but important optimization here too. When inserting
6479 ** multiple records into an intkey b-tree using a single cursor (as can
6480 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6481 ** is advantageous to leave the cursor pointing to the last entry in
6482 ** the b-tree if possible. If the cursor is left pointing to the last
6483 ** entry in the table, and the next row inserted has an integer key
6484 ** larger than the largest existing key, it is possible to insert the
6485 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006486 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006487 pCur->info.nSize = 0;
6488 pCur->validNKey = 0;
6489 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006490 rc = balance(pCur);
6491
6492 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006493 ** fails. Internal data structure corruption will result otherwise.
6494 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6495 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006496 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006497 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006498 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006499 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006500
drh2e38c322004-09-03 18:38:44 +00006501end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006502 return rc;
6503}
6504
6505/*
drh4b70f112004-05-02 21:12:19 +00006506** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006507** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006508*/
drh3aac2dd2004-04-26 14:10:20 +00006509int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006510 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006511 BtShared *pBt = p->pBt;
6512 int rc; /* Return code */
6513 MemPage *pPage; /* Page to delete cell from */
6514 unsigned char *pCell; /* Pointer to cell to delete */
6515 int iCellIdx; /* Index of cell to delete */
6516 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006517
drh1fee73e2007-08-29 04:00:57 +00006518 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006519 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006520 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006521 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006522 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6523 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6524
danielk19774dbaa892009-06-16 16:50:22 +00006525 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6526 || NEVER(pCur->eState!=CURSOR_VALID)
6527 ){
6528 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006529 }
danielk1977da184232006-01-05 11:34:32 +00006530
danielk197796d48e92009-06-29 06:00:37 +00006531 /* If this is a delete operation to remove a row from a table b-tree,
6532 ** invalidate any incrblob cursors open on the row being deleted. */
6533 if( pCur->pKeyInfo==0 ){
6534 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006535 }
6536
6537 iCellDepth = pCur->iPage;
6538 iCellIdx = pCur->aiIdx[iCellDepth];
6539 pPage = pCur->apPage[iCellDepth];
6540 pCell = findCell(pPage, iCellIdx);
6541
6542 /* If the page containing the entry to delete is not a leaf page, move
6543 ** the cursor to the largest entry in the tree that is smaller than
6544 ** the entry being deleted. This cell will replace the cell being deleted
6545 ** from the internal node. The 'previous' entry is used for this instead
6546 ** of the 'next' entry, as the previous entry is always a part of the
6547 ** sub-tree headed by the child page of the cell being deleted. This makes
6548 ** balancing the tree following the delete operation easier. */
6549 if( !pPage->leaf ){
6550 int notUsed;
6551 if( SQLITE_OK!=(rc = sqlite3BtreePrevious(pCur, &notUsed)) ){
6552 return rc;
6553 }
6554 }
6555
6556 /* Save the positions of any other cursors open on this table before
6557 ** making any modifications. Make the page containing the entry to be
6558 ** deleted writable. Then free any overflow pages associated with the
6559 ** entry and finally remove the cell itself from within the page. */
6560 if( SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))
6561 || SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage))
6562 || SQLITE_OK!=(rc = clearCell(pPage, pCell))
6563 || SQLITE_OK!=(rc = dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell)))
danielk1977da184232006-01-05 11:34:32 +00006564 ){
6565 return rc;
6566 }
danielk1977e6efa742004-11-10 11:55:10 +00006567
danielk19774dbaa892009-06-16 16:50:22 +00006568 /* If the cell deleted was not located on a leaf page, then the cursor
6569 ** is currently pointing to the largest entry in the sub-tree headed
6570 ** by the child-page of the cell that was just deleted from an internal
6571 ** node. The cell from the leaf node needs to be moved to the internal
6572 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006573 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006574 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6575 int nCell;
6576 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6577 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006578
danielk19774dbaa892009-06-16 16:50:22 +00006579 pCell = findCell(pLeaf, pLeaf->nCell-1);
6580 nCell = cellSizePtr(pLeaf, pCell);
6581 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006582
danielk19774dbaa892009-06-16 16:50:22 +00006583 allocateTempSpace(pBt);
6584 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006585
danielk19774dbaa892009-06-16 16:50:22 +00006586 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pLeaf->pDbPage))
6587 || SQLITE_OK!=(rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n))
6588 || SQLITE_OK!=(rc = dropCell(pLeaf, pLeaf->nCell-1, nCell))
6589 ){
6590 return rc;
shanedcc50b72008-11-13 18:29:50 +00006591 }
drh5e2f8b92001-05-28 00:41:15 +00006592 }
danielk19774dbaa892009-06-16 16:50:22 +00006593
6594 /* Balance the tree. If the entry deleted was located on a leaf page,
6595 ** then the cursor still points to that page. In this case the first
6596 ** call to balance() repairs the tree, and the if(...) condition is
6597 ** never true.
6598 **
6599 ** Otherwise, if the entry deleted was on an internal node page, then
6600 ** pCur is pointing to the leaf page from which a cell was removed to
6601 ** replace the cell deleted from the internal node. This is slightly
6602 ** tricky as the leaf node may be underfull, and the internal node may
6603 ** be either under or overfull. In this case run the balancing algorithm
6604 ** on the leaf node first. If the balance proceeds far enough up the
6605 ** tree that we can be sure that any problem in the internal node has
6606 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6607 ** walk the cursor up the tree to the internal node and balance it as
6608 ** well. */
6609 rc = balance(pCur);
6610 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6611 while( pCur->iPage>iCellDepth ){
6612 releasePage(pCur->apPage[pCur->iPage--]);
6613 }
6614 rc = balance(pCur);
6615 }
6616
danielk19776b456a22005-03-21 04:04:02 +00006617 if( rc==SQLITE_OK ){
6618 moveToRoot(pCur);
6619 }
drh5e2f8b92001-05-28 00:41:15 +00006620 return rc;
drh3b7511c2001-05-26 13:15:44 +00006621}
drh8b2f49b2001-06-08 00:21:52 +00006622
6623/*
drhc6b52df2002-01-04 03:09:29 +00006624** Create a new BTree table. Write into *piTable the page
6625** number for the root page of the new table.
6626**
drhab01f612004-05-22 02:55:23 +00006627** The type of type is determined by the flags parameter. Only the
6628** following values of flags are currently in use. Other values for
6629** flags might not work:
6630**
6631** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6632** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006633*/
drhd677b3d2007-08-20 22:48:41 +00006634static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006635 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006636 MemPage *pRoot;
6637 Pgno pgnoRoot;
6638 int rc;
drhd677b3d2007-08-20 22:48:41 +00006639
drh1fee73e2007-08-29 04:00:57 +00006640 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006641 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006642 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006643
danielk1977003ba062004-11-04 02:57:33 +00006644#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006645 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006646 if( rc ){
6647 return rc;
6648 }
danielk1977003ba062004-11-04 02:57:33 +00006649#else
danielk1977687566d2004-11-02 12:56:41 +00006650 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006651 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6652 MemPage *pPageMove; /* The page to move to. */
6653
danielk197720713f32007-05-03 11:43:33 +00006654 /* Creating a new table may probably require moving an existing database
6655 ** to make room for the new tables root page. In case this page turns
6656 ** out to be an overflow page, delete all overflow page-map caches
6657 ** held by open cursors.
6658 */
danielk197792d4d7a2007-05-04 12:05:56 +00006659 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006660
danielk1977003ba062004-11-04 02:57:33 +00006661 /* Read the value of meta[3] from the database to determine where the
6662 ** root page of the new table should go. meta[3] is the largest root-page
6663 ** created so far, so the new root-page is (meta[3]+1).
6664 */
danielk19770d19f7a2009-06-03 11:25:07 +00006665 rc = sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
drhd677b3d2007-08-20 22:48:41 +00006666 if( rc!=SQLITE_OK ){
6667 return rc;
6668 }
danielk1977003ba062004-11-04 02:57:33 +00006669 pgnoRoot++;
6670
danielk1977599fcba2004-11-08 07:13:13 +00006671 /* The new root-page may not be allocated on a pointer-map page, or the
6672 ** PENDING_BYTE page.
6673 */
drh72190432008-01-31 14:54:43 +00006674 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006675 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006676 pgnoRoot++;
6677 }
6678 assert( pgnoRoot>=3 );
6679
6680 /* Allocate a page. The page that currently resides at pgnoRoot will
6681 ** be moved to the allocated page (unless the allocated page happens
6682 ** to reside at pgnoRoot).
6683 */
drh4f0c5872007-03-26 22:05:01 +00006684 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006685 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006686 return rc;
6687 }
danielk1977003ba062004-11-04 02:57:33 +00006688
6689 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006690 /* pgnoRoot is the page that will be used for the root-page of
6691 ** the new table (assuming an error did not occur). But we were
6692 ** allocated pgnoMove. If required (i.e. if it was not allocated
6693 ** by extending the file), the current page at position pgnoMove
6694 ** is already journaled.
6695 */
danielk1977003ba062004-11-04 02:57:33 +00006696 u8 eType;
6697 Pgno iPtrPage;
6698
6699 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006700
6701 /* Move the page currently at pgnoRoot to pgnoMove. */
drh16a9b832007-05-05 18:39:25 +00006702 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006703 if( rc!=SQLITE_OK ){
6704 return rc;
6705 }
6706 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006707 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6708 rc = SQLITE_CORRUPT_BKPT;
6709 }
6710 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006711 releasePage(pRoot);
6712 return rc;
6713 }
drhccae6022005-02-26 17:31:26 +00006714 assert( eType!=PTRMAP_ROOTPAGE );
6715 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006716 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006717 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006718
6719 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006720 if( rc!=SQLITE_OK ){
6721 return rc;
6722 }
drh16a9b832007-05-05 18:39:25 +00006723 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006724 if( rc!=SQLITE_OK ){
6725 return rc;
6726 }
danielk19773b8a05f2007-03-19 17:44:26 +00006727 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006728 if( rc!=SQLITE_OK ){
6729 releasePage(pRoot);
6730 return rc;
6731 }
6732 }else{
6733 pRoot = pPageMove;
6734 }
6735
danielk197742741be2005-01-08 12:42:39 +00006736 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00006737 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
6738 if( rc ){
6739 releasePage(pRoot);
6740 return rc;
6741 }
danielk1977aef0bf62005-12-30 16:28:01 +00006742 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006743 if( rc ){
6744 releasePage(pRoot);
6745 return rc;
6746 }
danielk197742741be2005-01-08 12:42:39 +00006747
danielk1977003ba062004-11-04 02:57:33 +00006748 }else{
drh4f0c5872007-03-26 22:05:01 +00006749 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006750 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006751 }
6752#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006753 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006754 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006755 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006756 *piTable = (int)pgnoRoot;
6757 return SQLITE_OK;
6758}
drhd677b3d2007-08-20 22:48:41 +00006759int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6760 int rc;
6761 sqlite3BtreeEnter(p);
6762 rc = btreeCreateTable(p, piTable, flags);
6763 sqlite3BtreeLeave(p);
6764 return rc;
6765}
drh8b2f49b2001-06-08 00:21:52 +00006766
6767/*
6768** Erase the given database page and all its children. Return
6769** the page to the freelist.
6770*/
drh4b70f112004-05-02 21:12:19 +00006771static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006772 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00006773 Pgno pgno, /* Page number to clear */
danielk1977c7af4842008-10-27 13:59:33 +00006774 int freePageFlag, /* Deallocate page if true */
6775 int *pnChange
drh4b70f112004-05-02 21:12:19 +00006776){
danielk19776b456a22005-03-21 04:04:02 +00006777 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006778 int rc;
drh4b70f112004-05-02 21:12:19 +00006779 unsigned char *pCell;
6780 int i;
drh8b2f49b2001-06-08 00:21:52 +00006781
drh1fee73e2007-08-29 04:00:57 +00006782 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789d40042008-11-17 14:20:56 +00006783 if( pgno>pagerPagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006784 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006785 }
6786
danielk197771d5d2c2008-09-29 11:49:47 +00006787 rc = getAndInitPage(pBt, pgno, &pPage);
danielk19776b456a22005-03-21 04:04:02 +00006788 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00006789 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006790 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006791 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006792 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006793 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006794 }
drh4b70f112004-05-02 21:12:19 +00006795 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006796 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006797 }
drha34b6762004-05-07 13:30:42 +00006798 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006799 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006800 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006801 }else if( pnChange ){
6802 assert( pPage->intKey );
6803 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006804 }
6805 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00006806 rc = freePage(pPage);
danielk19773b8a05f2007-03-19 17:44:26 +00006807 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006808 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006809 }
danielk19776b456a22005-03-21 04:04:02 +00006810
6811cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006812 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006813 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006814}
6815
6816/*
drhab01f612004-05-22 02:55:23 +00006817** Delete all information from a single table in the database. iTable is
6818** the page number of the root of the table. After this routine returns,
6819** the root page is empty, but still exists.
6820**
6821** This routine will fail with SQLITE_LOCKED if there are any open
6822** read cursors on the table. Open write cursors are moved to the
6823** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006824**
6825** If pnChange is not NULL, then table iTable must be an intkey table. The
6826** integer value pointed to by pnChange is incremented by the number of
6827** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006828*/
danielk1977c7af4842008-10-27 13:59:33 +00006829int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006830 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006831 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006832 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006833 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00006834
6835 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
6836 ** is the root of a table b-tree - if it is not, the following call is
6837 ** a no-op). */
6838 invalidateIncrblobCursors(p, iTable, 0, 1);
6839
6840 if( SQLITE_OK==(rc = saveAllCursors(pBt, (Pgno)iTable, 0)) ){
danielk197762c14b32008-11-19 09:05:26 +00006841 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00006842 }
drhd677b3d2007-08-20 22:48:41 +00006843 sqlite3BtreeLeave(p);
6844 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006845}
6846
6847/*
6848** Erase all information in a table and add the root of the table to
6849** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006850** page 1) is never added to the freelist.
6851**
6852** This routine will fail with SQLITE_LOCKED if there are any open
6853** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006854**
6855** If AUTOVACUUM is enabled and the page at iTable is not the last
6856** root page in the database file, then the last root page
6857** in the database file is moved into the slot formerly occupied by
6858** iTable and that last slot formerly occupied by the last root page
6859** is added to the freelist instead of iTable. In this say, all
6860** root pages are kept at the beginning of the database file, which
6861** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6862** page number that used to be the last root page in the file before
6863** the move. If no page gets moved, *piMoved is set to 0.
6864** The last root page is recorded in meta[3] and the value of
6865** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006866*/
danielk197789d40042008-11-17 14:20:56 +00006867static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006868 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006869 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006870 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006871
drh1fee73e2007-08-29 04:00:57 +00006872 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006873 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00006874
danielk1977e6efa742004-11-10 11:55:10 +00006875 /* It is illegal to drop a table if any cursors are open on the
6876 ** database. This is because in auto-vacuum mode the backend may
6877 ** need to move another root-page to fill a gap left by the deleted
6878 ** root page. If an open cursor was using this page a problem would
6879 ** occur.
6880 */
6881 if( pBt->pCursor ){
danielk1977404ca072009-03-16 13:19:36 +00006882 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
6883 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00006884 }
danielk1977a0bf2652004-11-04 14:30:04 +00006885
drh16a9b832007-05-05 18:39:25 +00006886 rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006887 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00006888 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00006889 if( rc ){
6890 releasePage(pPage);
6891 return rc;
6892 }
danielk1977a0bf2652004-11-04 14:30:04 +00006893
drh205f48e2004-11-05 00:43:11 +00006894 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006895
drh4b70f112004-05-02 21:12:19 +00006896 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00006897#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00006898 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00006899 releasePage(pPage);
6900#else
6901 if( pBt->autoVacuum ){
6902 Pgno maxRootPgno;
danielk19770d19f7a2009-06-03 11:25:07 +00006903 rc = sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006904 if( rc!=SQLITE_OK ){
6905 releasePage(pPage);
6906 return rc;
6907 }
6908
6909 if( iTable==maxRootPgno ){
6910 /* If the table being dropped is the table with the largest root-page
6911 ** number in the database, put the root page on the free list.
6912 */
6913 rc = freePage(pPage);
6914 releasePage(pPage);
6915 if( rc!=SQLITE_OK ){
6916 return rc;
6917 }
6918 }else{
6919 /* The table being dropped does not have the largest root-page
6920 ** number in the database. So move the page that does into the
6921 ** gap left by the deleted root-page.
6922 */
6923 MemPage *pMove;
6924 releasePage(pPage);
drh16a9b832007-05-05 18:39:25 +00006925 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006926 if( rc!=SQLITE_OK ){
6927 return rc;
6928 }
danielk19774c999992008-07-16 18:17:55 +00006929 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006930 releasePage(pMove);
6931 if( rc!=SQLITE_OK ){
6932 return rc;
6933 }
drh16a9b832007-05-05 18:39:25 +00006934 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006935 if( rc!=SQLITE_OK ){
6936 return rc;
6937 }
6938 rc = freePage(pMove);
6939 releasePage(pMove);
6940 if( rc!=SQLITE_OK ){
6941 return rc;
6942 }
6943 *piMoved = maxRootPgno;
6944 }
6945
danielk1977599fcba2004-11-08 07:13:13 +00006946 /* Set the new 'max-root-page' value in the database header. This
6947 ** is the old value less one, less one more if that happens to
6948 ** be a root-page number, less one again if that is the
6949 ** PENDING_BYTE_PAGE.
6950 */
danielk197787a6e732004-11-05 12:58:25 +00006951 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00006952 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
6953 maxRootPgno--;
6954 }
danielk1977266664d2006-02-10 08:24:21 +00006955 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00006956 maxRootPgno--;
6957 }
danielk1977599fcba2004-11-08 07:13:13 +00006958 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
6959
danielk1977aef0bf62005-12-30 16:28:01 +00006960 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006961 }else{
6962 rc = freePage(pPage);
6963 releasePage(pPage);
6964 }
6965#endif
drh2aa679f2001-06-25 02:11:07 +00006966 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00006967 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00006968 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00006969 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00006970 }
drh8b2f49b2001-06-08 00:21:52 +00006971 return rc;
6972}
drhd677b3d2007-08-20 22:48:41 +00006973int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
6974 int rc;
6975 sqlite3BtreeEnter(p);
6976 rc = btreeDropTable(p, iTable, piMoved);
6977 sqlite3BtreeLeave(p);
6978 return rc;
6979}
drh8b2f49b2001-06-08 00:21:52 +00006980
drh001bbcb2003-03-19 03:14:00 +00006981
drh8b2f49b2001-06-08 00:21:52 +00006982/*
drh23e11ca2004-05-04 17:27:28 +00006983** Read the meta-information out of a database file. Meta[0]
6984** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00006985** through meta[15] are available for use by higher layers. Meta[0]
6986** is read-only, the others are read/write.
6987**
6988** The schema layer numbers meta values differently. At the schema
6989** layer (and the SetCookie and ReadCookie opcodes) the number of
6990** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00006991*/
danielk1977aef0bf62005-12-30 16:28:01 +00006992int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
drh1bd10f82008-12-10 21:19:56 +00006993 DbPage *pDbPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006994 int rc;
drh4b70f112004-05-02 21:12:19 +00006995 unsigned char *pP1;
danielk1977aef0bf62005-12-30 16:28:01 +00006996 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006997
drhd677b3d2007-08-20 22:48:41 +00006998 sqlite3BtreeEnter(p);
6999
danielk1977da184232006-01-05 11:34:32 +00007000 /* Reading a meta-data value requires a read-lock on page 1 (and hence
7001 ** the sqlite_master table. We grab this lock regardless of whether or
7002 ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
drhc25eabe2009-02-24 18:57:31 +00007003 ** 1 is treated as a special case by querySharedCacheTableLock()
7004 ** and setSharedCacheTableLock()).
danielk1977da184232006-01-05 11:34:32 +00007005 */
drhc25eabe2009-02-24 18:57:31 +00007006 rc = querySharedCacheTableLock(p, 1, READ_LOCK);
danielk1977da184232006-01-05 11:34:32 +00007007 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00007008 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007009 return rc;
7010 }
7011
drh23e11ca2004-05-04 17:27:28 +00007012 assert( idx>=0 && idx<=15 );
danielk1977d9f6c532008-09-19 16:39:38 +00007013 if( pBt->pPage1 ){
7014 /* The b-tree is already holding a reference to page 1 of the database
7015 ** file. In this case the required meta-data value can be read directly
7016 ** from the page data of this reference. This is slightly faster than
7017 ** requesting a new reference from the pager layer.
7018 */
7019 pP1 = (unsigned char *)pBt->pPage1->aData;
7020 }else{
7021 /* The b-tree does not have a reference to page 1 of the database file.
7022 ** Obtain one from the pager layer.
7023 */
danielk1977ea897302008-09-19 15:10:58 +00007024 rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
7025 if( rc ){
7026 sqlite3BtreeLeave(p);
7027 return rc;
7028 }
7029 pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
drhd677b3d2007-08-20 22:48:41 +00007030 }
drh23e11ca2004-05-04 17:27:28 +00007031 *pMeta = get4byte(&pP1[36 + idx*4]);
danielk1977ea897302008-09-19 15:10:58 +00007032
danielk1977d9f6c532008-09-19 16:39:38 +00007033 /* If the b-tree is not holding a reference to page 1, then one was
7034 ** requested from the pager layer in the above block. Release it now.
7035 */
danielk1977ea897302008-09-19 15:10:58 +00007036 if( !pBt->pPage1 ){
7037 sqlite3PagerUnref(pDbPage);
7038 }
drhae157872004-08-14 19:20:09 +00007039
danielk1977599fcba2004-11-08 07:13:13 +00007040 /* If autovacuumed is disabled in this build but we are trying to
7041 ** access an autovacuumed database, then make the database readonly.
7042 */
danielk1977003ba062004-11-04 02:57:33 +00007043#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007044 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007045#endif
drhae157872004-08-14 19:20:09 +00007046
danielk1977fa542f12009-04-02 18:28:08 +00007047 /* If there is currently an open transaction, grab a read-lock
7048 ** on page 1 of the database file. This is done to make sure that
7049 ** no other connection can modify the meta value just read from
7050 ** the database until the transaction is concluded.
7051 */
7052 if( p->inTrans>0 ){
7053 rc = setSharedCacheTableLock(p, 1, READ_LOCK);
7054 }
drhd677b3d2007-08-20 22:48:41 +00007055 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007056 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007057}
7058
7059/*
drh23e11ca2004-05-04 17:27:28 +00007060** Write meta-information back into the database. Meta[0] is
7061** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007062*/
danielk1977aef0bf62005-12-30 16:28:01 +00007063int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7064 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007065 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007066 int rc;
drh23e11ca2004-05-04 17:27:28 +00007067 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007068 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007069 assert( p->inTrans==TRANS_WRITE );
7070 assert( pBt->pPage1!=0 );
7071 pP1 = pBt->pPage1->aData;
7072 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7073 if( rc==SQLITE_OK ){
7074 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007075#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007076 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007077 assert( pBt->autoVacuum || iMeta==0 );
7078 assert( iMeta==0 || iMeta==1 );
7079 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007080 }
drh64022502009-01-09 14:11:04 +00007081#endif
drh5df72a52002-06-06 23:16:05 +00007082 }
drhd677b3d2007-08-20 22:48:41 +00007083 sqlite3BtreeLeave(p);
7084 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007085}
drh8c42ca92001-06-22 19:15:00 +00007086
drhf328bc82004-05-10 23:29:49 +00007087/*
7088** Return the flag byte at the beginning of the page that the cursor
7089** is currently pointing to.
7090*/
7091int sqlite3BtreeFlags(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00007092 /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
drha3460582008-07-11 21:02:53 +00007093 ** restoreCursorPosition() here.
danielk1977da184232006-01-05 11:34:32 +00007094 */
danielk1977e448dc42008-01-02 11:50:51 +00007095 MemPage *pPage;
drha3460582008-07-11 21:02:53 +00007096 restoreCursorPosition(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00007097 pPage = pCur->apPage[pCur->iPage];
drh1fee73e2007-08-29 04:00:57 +00007098 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007099 assert( pPage!=0 );
drhd0679ed2007-08-28 22:24:34 +00007100 assert( pPage->pBt==pCur->pBt );
drh64022502009-01-09 14:11:04 +00007101 return pPage->aData[pPage->hdrOffset];
drhf328bc82004-05-10 23:29:49 +00007102}
7103
danielk1977a5533162009-02-24 10:01:51 +00007104#ifndef SQLITE_OMIT_BTREECOUNT
7105/*
7106** The first argument, pCur, is a cursor opened on some b-tree. Count the
7107** number of entries in the b-tree and write the result to *pnEntry.
7108**
7109** SQLITE_OK is returned if the operation is successfully executed.
7110** Otherwise, if an error is encountered (i.e. an IO error or database
7111** corruption) an SQLite error code is returned.
7112*/
7113int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7114 i64 nEntry = 0; /* Value to return in *pnEntry */
7115 int rc; /* Return code */
7116 rc = moveToRoot(pCur);
7117
7118 /* Unless an error occurs, the following loop runs one iteration for each
7119 ** page in the B-Tree structure (not including overflow pages).
7120 */
7121 while( rc==SQLITE_OK ){
7122 int iIdx; /* Index of child node in parent */
7123 MemPage *pPage; /* Current page of the b-tree */
7124
7125 /* If this is a leaf page or the tree is not an int-key tree, then
7126 ** this page contains countable entries. Increment the entry counter
7127 ** accordingly.
7128 */
7129 pPage = pCur->apPage[pCur->iPage];
7130 if( pPage->leaf || !pPage->intKey ){
7131 nEntry += pPage->nCell;
7132 }
7133
7134 /* pPage is a leaf node. This loop navigates the cursor so that it
7135 ** points to the first interior cell that it points to the parent of
7136 ** the next page in the tree that has not yet been visited. The
7137 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7138 ** of the page, or to the number of cells in the page if the next page
7139 ** to visit is the right-child of its parent.
7140 **
7141 ** If all pages in the tree have been visited, return SQLITE_OK to the
7142 ** caller.
7143 */
7144 if( pPage->leaf ){
7145 do {
7146 if( pCur->iPage==0 ){
7147 /* All pages of the b-tree have been visited. Return successfully. */
7148 *pnEntry = nEntry;
7149 return SQLITE_OK;
7150 }
7151 sqlite3BtreeMoveToParent(pCur);
7152 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7153
7154 pCur->aiIdx[pCur->iPage]++;
7155 pPage = pCur->apPage[pCur->iPage];
7156 }
7157
7158 /* Descend to the child node of the cell that the cursor currently
7159 ** points at. This is the right-child if (iIdx==pPage->nCell).
7160 */
7161 iIdx = pCur->aiIdx[pCur->iPage];
7162 if( iIdx==pPage->nCell ){
7163 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7164 }else{
7165 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7166 }
7167 }
7168
shanebe217792009-03-05 04:20:31 +00007169 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007170 return rc;
7171}
7172#endif
drhdd793422001-06-28 01:54:48 +00007173
drhdd793422001-06-28 01:54:48 +00007174/*
drh5eddca62001-06-30 21:53:53 +00007175** Return the pager associated with a BTree. This routine is used for
7176** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007177*/
danielk1977aef0bf62005-12-30 16:28:01 +00007178Pager *sqlite3BtreePager(Btree *p){
7179 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007180}
drh5eddca62001-06-30 21:53:53 +00007181
drhb7f91642004-10-31 02:22:47 +00007182#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007183/*
7184** Append a message to the error message string.
7185*/
drh2e38c322004-09-03 18:38:44 +00007186static void checkAppendMsg(
7187 IntegrityCk *pCheck,
7188 char *zMsg1,
7189 const char *zFormat,
7190 ...
7191){
7192 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007193 if( !pCheck->mxErr ) return;
7194 pCheck->mxErr--;
7195 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007196 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007197 if( pCheck->errMsg.nChar ){
7198 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007199 }
drhf089aa42008-07-08 19:34:06 +00007200 if( zMsg1 ){
7201 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7202 }
7203 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7204 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007205 if( pCheck->errMsg.mallocFailed ){
7206 pCheck->mallocFailed = 1;
7207 }
drh5eddca62001-06-30 21:53:53 +00007208}
drhb7f91642004-10-31 02:22:47 +00007209#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007210
drhb7f91642004-10-31 02:22:47 +00007211#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007212/*
7213** Add 1 to the reference count for page iPage. If this is the second
7214** reference to the page, add an error message to pCheck->zErrMsg.
7215** Return 1 if there are 2 ore more references to the page and 0 if
7216** if this is the first reference to the page.
7217**
7218** Also check that the page number is in bounds.
7219*/
danielk197789d40042008-11-17 14:20:56 +00007220static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007221 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007222 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007223 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007224 return 1;
7225 }
7226 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007227 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007228 return 1;
7229 }
7230 return (pCheck->anRef[iPage]++)>1;
7231}
7232
danielk1977afcdd022004-10-31 16:25:42 +00007233#ifndef SQLITE_OMIT_AUTOVACUUM
7234/*
7235** Check that the entry in the pointer-map for page iChild maps to
7236** page iParent, pointer type ptrType. If not, append an error message
7237** to pCheck.
7238*/
7239static void checkPtrmap(
7240 IntegrityCk *pCheck, /* Integrity check context */
7241 Pgno iChild, /* Child page number */
7242 u8 eType, /* Expected pointer map type */
7243 Pgno iParent, /* Expected pointer map parent page number */
7244 char *zContext /* Context description (used for error msg) */
7245){
7246 int rc;
7247 u8 ePtrmapType;
7248 Pgno iPtrmapParent;
7249
7250 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7251 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007252 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007253 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7254 return;
7255 }
7256
7257 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7258 checkAppendMsg(pCheck, zContext,
7259 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7260 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7261 }
7262}
7263#endif
7264
drh5eddca62001-06-30 21:53:53 +00007265/*
7266** Check the integrity of the freelist or of an overflow page list.
7267** Verify that the number of pages on the list is N.
7268*/
drh30e58752002-03-02 20:41:57 +00007269static void checkList(
7270 IntegrityCk *pCheck, /* Integrity checking context */
7271 int isFreeList, /* True for a freelist. False for overflow page list */
7272 int iPage, /* Page number for first page in the list */
7273 int N, /* Expected number of pages in the list */
7274 char *zContext /* Context for error messages */
7275){
7276 int i;
drh3a4c1412004-05-09 20:40:11 +00007277 int expected = N;
7278 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007279 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007280 DbPage *pOvflPage;
7281 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007282 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007283 checkAppendMsg(pCheck, zContext,
7284 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007285 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007286 break;
7287 }
7288 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007289 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007290 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007291 break;
7292 }
danielk19773b8a05f2007-03-19 17:44:26 +00007293 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007294 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007295 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007296#ifndef SQLITE_OMIT_AUTOVACUUM
7297 if( pCheck->pBt->autoVacuum ){
7298 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7299 }
7300#endif
drh45b1fac2008-07-04 17:52:42 +00007301 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007302 checkAppendMsg(pCheck, zContext,
7303 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007304 N--;
7305 }else{
7306 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007307 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007308#ifndef SQLITE_OMIT_AUTOVACUUM
7309 if( pCheck->pBt->autoVacuum ){
7310 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7311 }
7312#endif
7313 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007314 }
7315 N -= n;
drh30e58752002-03-02 20:41:57 +00007316 }
drh30e58752002-03-02 20:41:57 +00007317 }
danielk1977afcdd022004-10-31 16:25:42 +00007318#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007319 else{
7320 /* If this database supports auto-vacuum and iPage is not the last
7321 ** page in this overflow list, check that the pointer-map entry for
7322 ** the following page matches iPage.
7323 */
7324 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007325 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007326 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7327 }
danielk1977afcdd022004-10-31 16:25:42 +00007328 }
7329#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007330 iPage = get4byte(pOvflData);
7331 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007332 }
7333}
drhb7f91642004-10-31 02:22:47 +00007334#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007335
drhb7f91642004-10-31 02:22:47 +00007336#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007337/*
7338** Do various sanity checks on a single page of a tree. Return
7339** the tree depth. Root pages return 0. Parents of root pages
7340** return 1, and so forth.
7341**
7342** These checks are done:
7343**
7344** 1. Make sure that cells and freeblocks do not overlap
7345** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007346** NO 2. Make sure cell keys are in order.
7347** NO 3. Make sure no key is less than or equal to zLowerBound.
7348** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007349** 5. Check the integrity of overflow pages.
7350** 6. Recursively call checkTreePage on all children.
7351** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007352** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007353** the root of the tree.
7354*/
7355static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007356 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007357 int iPage, /* Page number of the page to check */
drh74161702006-02-24 02:53:49 +00007358 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00007359){
7360 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007361 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007362 int hdr, cellStart;
7363 int nCell;
drhda200cc2004-05-09 11:51:38 +00007364 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007365 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007366 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007367 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007368 char *hit = 0;
drh5eddca62001-06-30 21:53:53 +00007369
drh5bb3eb92007-05-04 13:15:55 +00007370 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007371
drh5eddca62001-06-30 21:53:53 +00007372 /* Check that the page exists
7373 */
drhd9cb6ac2005-10-20 07:28:17 +00007374 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007375 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007376 if( iPage==0 ) return 0;
7377 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh16a9b832007-05-05 18:39:25 +00007378 if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drhb56cd552009-05-01 13:16:54 +00007379 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh2e38c322004-09-03 18:38:44 +00007380 checkAppendMsg(pCheck, zContext,
7381 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007382 return 0;
7383 }
danielk197771d5d2c2008-09-29 11:49:47 +00007384 if( (rc = sqlite3BtreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007385 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007386 checkAppendMsg(pCheck, zContext,
7387 "sqlite3BtreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007388 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007389 return 0;
7390 }
7391
7392 /* Check out all the cells.
7393 */
7394 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007395 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007396 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007397 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007398 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007399
7400 /* Check payload overflow pages
7401 */
drh5bb3eb92007-05-04 13:15:55 +00007402 sqlite3_snprintf(sizeof(zContext), zContext,
7403 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007404 pCell = findCell(pPage,i);
drh16a9b832007-05-05 18:39:25 +00007405 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007406 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007407 if( !pPage->intKey ) sz += (int)info.nKey;
drh72365832007-03-06 15:53:44 +00007408 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007409 if( (sz>info.nLocal)
7410 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7411 ){
drhb6f41482004-05-14 01:58:11 +00007412 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007413 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7414#ifndef SQLITE_OMIT_AUTOVACUUM
7415 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007416 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007417 }
7418#endif
7419 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007420 }
7421
7422 /* Check sanity of left child page.
7423 */
drhda200cc2004-05-09 11:51:38 +00007424 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007425 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007426#ifndef SQLITE_OMIT_AUTOVACUUM
7427 if( pBt->autoVacuum ){
7428 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7429 }
7430#endif
danielk197762c14b32008-11-19 09:05:26 +00007431 d2 = checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007432 if( i>0 && d2!=depth ){
7433 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7434 }
7435 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007436 }
drh5eddca62001-06-30 21:53:53 +00007437 }
drhda200cc2004-05-09 11:51:38 +00007438 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007439 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007440 sqlite3_snprintf(sizeof(zContext), zContext,
7441 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007442#ifndef SQLITE_OMIT_AUTOVACUUM
7443 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007444 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00007445 }
7446#endif
danielk197762c14b32008-11-19 09:05:26 +00007447 checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007448 }
drh5eddca62001-06-30 21:53:53 +00007449
7450 /* Check for complete coverage of the page
7451 */
drhda200cc2004-05-09 11:51:38 +00007452 data = pPage->aData;
7453 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007454 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007455 if( hit==0 ){
7456 pCheck->mallocFailed = 1;
7457 }else{
shane5780ebd2008-11-11 17:36:30 +00007458 u16 contentOffset = get2byte(&data[hdr+5]);
7459 if (contentOffset > usableSize) {
7460 checkAppendMsg(pCheck, 0,
7461 "Corruption detected in header on page %d",iPage,0);
shane0af3f892008-11-12 04:55:34 +00007462 goto check_page_abort;
shane5780ebd2008-11-11 17:36:30 +00007463 }
7464 memset(hit+contentOffset, 0, usableSize-contentOffset);
7465 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007466 nCell = get2byte(&data[hdr+3]);
7467 cellStart = hdr + 12 - 4*pPage->leaf;
7468 for(i=0; i<nCell; i++){
7469 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007470 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007471 int j;
danielk1977daca5432008-08-25 11:57:16 +00007472 if( pc<=usableSize ){
7473 size = cellSizePtr(pPage, &data[pc]);
7474 }
danielk19777701e812005-01-10 12:59:51 +00007475 if( (pc+size-1)>=usableSize || pc<0 ){
7476 checkAppendMsg(pCheck, 0,
7477 "Corruption detected in cell %d on page %d",i,iPage,0);
7478 }else{
7479 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7480 }
drh2e38c322004-09-03 18:38:44 +00007481 }
7482 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
7483 cnt++){
7484 int size = get2byte(&data[i+2]);
7485 int j;
danielk19777701e812005-01-10 12:59:51 +00007486 if( (i+size-1)>=usableSize || i<0 ){
7487 checkAppendMsg(pCheck, 0,
7488 "Corruption detected in cell %d on page %d",i,iPage,0);
7489 }else{
7490 for(j=i+size-1; j>=i; j--) hit[j]++;
7491 }
drh2e38c322004-09-03 18:38:44 +00007492 i = get2byte(&data[i]);
7493 }
7494 for(i=cnt=0; i<usableSize; i++){
7495 if( hit[i]==0 ){
7496 cnt++;
7497 }else if( hit[i]>1 ){
7498 checkAppendMsg(pCheck, 0,
7499 "Multiple uses for byte %d of page %d", i, iPage);
7500 break;
7501 }
7502 }
7503 if( cnt!=data[hdr+7] ){
7504 checkAppendMsg(pCheck, 0,
7505 "Fragmented space is %d byte reported as %d on page %d",
7506 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007507 }
7508 }
shane0af3f892008-11-12 04:55:34 +00007509check_page_abort:
7510 if (hit) sqlite3PageFree(hit);
drh6019e162001-07-02 17:51:45 +00007511
drh4b70f112004-05-02 21:12:19 +00007512 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007513 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007514}
drhb7f91642004-10-31 02:22:47 +00007515#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007516
drhb7f91642004-10-31 02:22:47 +00007517#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007518/*
7519** This routine does a complete check of the given BTree file. aRoot[] is
7520** an array of pages numbers were each page number is the root page of
7521** a table. nRoot is the number of entries in aRoot.
7522**
drhc890fec2008-08-01 20:10:08 +00007523** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007524** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007525** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007526** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007527*/
drh1dcdbc02007-01-27 02:24:54 +00007528char *sqlite3BtreeIntegrityCheck(
7529 Btree *p, /* The btree to be checked */
7530 int *aRoot, /* An array of root pages numbers for individual trees */
7531 int nRoot, /* Number of entries in aRoot[] */
7532 int mxErr, /* Stop reporting errors after this many */
7533 int *pnErr /* Write number of errors seen to this variable */
7534){
danielk197789d40042008-11-17 14:20:56 +00007535 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007536 int nRef;
drhaaab5722002-02-19 13:39:21 +00007537 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007538 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007539 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007540
drhd677b3d2007-08-20 22:48:41 +00007541 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00007542 nRef = sqlite3PagerRefcount(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00007543 if( lockBtreeWithRetry(p)!=SQLITE_OK ){
drhc890fec2008-08-01 20:10:08 +00007544 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007545 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007546 return sqlite3DbStrDup(0, "cannot acquire a read lock on the database");
drhefc251d2001-07-01 22:12:01 +00007547 }
drh5eddca62001-06-30 21:53:53 +00007548 sCheck.pBt = pBt;
7549 sCheck.pPager = pBt->pPager;
danielk197789d40042008-11-17 14:20:56 +00007550 sCheck.nPage = pagerPagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007551 sCheck.mxErr = mxErr;
7552 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007553 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007554 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007555 if( sCheck.nPage==0 ){
7556 unlockBtreeIfUnused(pBt);
drhd677b3d2007-08-20 22:48:41 +00007557 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007558 return 0;
7559 }
drhe5ae5732008-06-15 02:51:47 +00007560 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007561 if( !sCheck.anRef ){
7562 unlockBtreeIfUnused(pBt);
drh1dcdbc02007-01-27 02:24:54 +00007563 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007564 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007565 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007566 }
drhda200cc2004-05-09 11:51:38 +00007567 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007568 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007569 if( i<=sCheck.nPage ){
7570 sCheck.anRef[i] = 1;
7571 }
drhf089aa42008-07-08 19:34:06 +00007572 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007573
7574 /* Check the integrity of the freelist
7575 */
drha34b6762004-05-07 13:30:42 +00007576 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7577 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007578
7579 /* Check all the tables.
7580 */
danielk197789d40042008-11-17 14:20:56 +00007581 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007582 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007583#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007584 if( pBt->autoVacuum && aRoot[i]>1 ){
7585 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7586 }
7587#endif
danielk197762c14b32008-11-19 09:05:26 +00007588 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00007589 }
7590
7591 /* Make sure every page in the file is referenced
7592 */
drh1dcdbc02007-01-27 02:24:54 +00007593 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007594#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007595 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007596 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007597 }
danielk1977afcdd022004-10-31 16:25:42 +00007598#else
7599 /* If the database supports auto-vacuum, make sure no tables contain
7600 ** references to pointer-map pages.
7601 */
7602 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007603 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007604 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7605 }
7606 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007607 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007608 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7609 }
7610#endif
drh5eddca62001-06-30 21:53:53 +00007611 }
7612
drh64022502009-01-09 14:11:04 +00007613 /* Make sure this analysis did not leave any unref() pages.
7614 ** This is an internal consistency check; an integrity check
7615 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007616 */
drh5e00f6c2001-09-13 13:46:56 +00007617 unlockBtreeIfUnused(pBt);
drh64022502009-01-09 14:11:04 +00007618 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007619 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007620 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007621 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007622 );
drh5eddca62001-06-30 21:53:53 +00007623 }
7624
7625 /* Clean up and report errors.
7626 */
drhd677b3d2007-08-20 22:48:41 +00007627 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007628 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007629 if( sCheck.mallocFailed ){
7630 sqlite3StrAccumReset(&sCheck.errMsg);
7631 *pnErr = sCheck.nErr+1;
7632 return 0;
7633 }
drh1dcdbc02007-01-27 02:24:54 +00007634 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007635 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7636 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007637}
drhb7f91642004-10-31 02:22:47 +00007638#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007639
drh73509ee2003-04-06 20:44:45 +00007640/*
7641** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007642**
7643** The pager filename is invariant as long as the pager is
7644** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007645*/
danielk1977aef0bf62005-12-30 16:28:01 +00007646const char *sqlite3BtreeGetFilename(Btree *p){
7647 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007648 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007649}
7650
7651/*
danielk19775865e3d2004-06-14 06:03:57 +00007652** Return the pathname of the journal file for this database. The return
7653** value of this routine is the same regardless of whether the journal file
7654** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007655**
7656** The pager journal filename is invariant as long as the pager is
7657** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007658*/
danielk1977aef0bf62005-12-30 16:28:01 +00007659const char *sqlite3BtreeGetJournalname(Btree *p){
7660 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007661 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007662}
7663
danielk19771d850a72004-05-31 08:26:49 +00007664/*
7665** Return non-zero if a transaction is active.
7666*/
danielk1977aef0bf62005-12-30 16:28:01 +00007667int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007668 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007669 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007670}
7671
7672/*
danielk19772372c2b2006-06-27 16:34:56 +00007673** Return non-zero if a read (or write) transaction is active.
7674*/
7675int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007676 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007677 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007678 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007679}
7680
danielk197704103022009-02-03 16:51:24 +00007681int sqlite3BtreeIsInBackup(Btree *p){
7682 assert( p );
7683 assert( sqlite3_mutex_held(p->db->mutex) );
7684 return p->nBackup!=0;
7685}
7686
danielk19772372c2b2006-06-27 16:34:56 +00007687/*
danielk1977da184232006-01-05 11:34:32 +00007688** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007689** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007690** purposes (for example, to store a high-level schema associated with
7691** the shared-btree). The btree layer manages reference counting issues.
7692**
7693** The first time this is called on a shared-btree, nBytes bytes of memory
7694** are allocated, zeroed, and returned to the caller. For each subsequent
7695** call the nBytes parameter is ignored and a pointer to the same blob
7696** of memory returned.
7697**
danielk1977171bfed2008-06-23 09:50:50 +00007698** If the nBytes parameter is 0 and the blob of memory has not yet been
7699** allocated, a null pointer is returned. If the blob has already been
7700** allocated, it is returned as normal.
7701**
danielk1977da184232006-01-05 11:34:32 +00007702** Just before the shared-btree is closed, the function passed as the
7703** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007704** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007705** on the memory, the btree layer does that.
7706*/
7707void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7708 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007709 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007710 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007711 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007712 pBt->xFreeSchema = xFree;
7713 }
drh27641702007-08-22 02:56:42 +00007714 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007715 return pBt->pSchema;
7716}
7717
danielk1977c87d34d2006-01-06 13:00:28 +00007718/*
danielk1977404ca072009-03-16 13:19:36 +00007719** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7720** btree as the argument handle holds an exclusive lock on the
7721** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007722*/
7723int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007724 int rc;
drhe5fe6902007-12-07 18:55:28 +00007725 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007726 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007727 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7728 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007729 sqlite3BtreeLeave(p);
7730 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007731}
7732
drha154dcd2006-03-22 22:10:07 +00007733
7734#ifndef SQLITE_OMIT_SHARED_CACHE
7735/*
7736** Obtain a lock on the table whose root page is iTab. The
7737** lock is a write lock if isWritelock is true or a read lock
7738** if it is false.
7739*/
danielk1977c00da102006-01-07 13:21:04 +00007740int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007741 int rc = SQLITE_OK;
drh6a9ad3d2008-04-02 16:29:30 +00007742 if( p->sharable ){
7743 u8 lockType = READ_LOCK + isWriteLock;
7744 assert( READ_LOCK+1==WRITE_LOCK );
7745 assert( isWriteLock==0 || isWriteLock==1 );
7746 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007747 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007748 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007749 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007750 }
7751 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007752 }
7753 return rc;
7754}
drha154dcd2006-03-22 22:10:07 +00007755#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007756
danielk1977b4e9af92007-05-01 17:49:49 +00007757#ifndef SQLITE_OMIT_INCRBLOB
7758/*
7759** Argument pCsr must be a cursor opened for writing on an
7760** INTKEY table currently pointing at a valid table entry.
7761** This function modifies the data stored as part of that entry.
7762** Only the data content may only be modified, it is not possible
7763** to change the length of the data stored.
7764*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007765int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
drh1fee73e2007-08-29 04:00:57 +00007766 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007767 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00007768 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00007769
drha3460582008-07-11 21:02:53 +00007770 restoreCursorPosition(pCsr);
danielk19773588ceb2008-06-10 17:30:26 +00007771 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7772 if( pCsr->eState!=CURSOR_VALID ){
7773 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007774 }
7775
danielk1977d04417962007-05-02 13:16:30 +00007776 /* Check some preconditions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007777 ** (a) the cursor is open for writing,
7778 ** (b) there is no read-lock on the table being modified and
7779 ** (c) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007780 */
danielk1977d04417962007-05-02 13:16:30 +00007781 if( !pCsr->wrFlag ){
danielk1977dcbb5d32007-05-04 18:36:44 +00007782 return SQLITE_READONLY;
danielk1977d04417962007-05-02 13:16:30 +00007783 }
danielk197796d48e92009-06-29 06:00:37 +00007784 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
7785 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
7786 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
7787
danielk197771d5d2c2008-09-29 11:49:47 +00007788 if( pCsr->eState==CURSOR_INVALID || !pCsr->apPage[pCsr->iPage]->intKey ){
danielk1977d04417962007-05-02 13:16:30 +00007789 return SQLITE_ERROR;
danielk1977b4e9af92007-05-01 17:49:49 +00007790 }
7791
danielk19779f8d6402007-05-02 17:48:45 +00007792 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007793}
danielk19772dec9702007-05-02 16:48:37 +00007794
7795/*
7796** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007797** overflow list for the current row. This is used by cursors opened
7798** for incremental blob IO only.
7799**
7800** This function sets a flag only. The actual page location cache
7801** (stored in BtCursor.aOverflow[]) is allocated and used by function
7802** accessPayload() (the worker function for sqlite3BtreeData() and
7803** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007804*/
7805void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007806 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007807 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007808 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007809 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007810 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007811}
danielk1977b4e9af92007-05-01 17:49:49 +00007812#endif