drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** 2008 February 16 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** This file implements an object that represents a fixed-length |
| 13 | ** bitmap. Bits are numbered starting with 1. |
| 14 | ** |
| 15 | ** A bitmap is used to record what pages a database file have been |
| 16 | ** journalled during a transaction. Usually only a few pages are |
| 17 | ** journalled. So the bitmap is usually sparse and has low cardinality. |
| 18 | ** But sometimes (for example when during a DROP of a large table) most |
| 19 | ** or all of the pages get journalled. In those cases, the bitmap becomes |
| 20 | ** dense. The algorithm needs to handle both cases well. |
| 21 | ** |
| 22 | ** The size of the bitmap is fixed when the object is created. |
| 23 | ** |
| 24 | ** All bits are clear when the bitmap is created. Individual bits |
| 25 | ** may be set or cleared one at a time. |
| 26 | ** |
| 27 | ** Test operations are about 100 times more common that set operations. |
| 28 | ** Clear operations are exceedingly rare. There are usually between |
| 29 | ** 5 and 500 set operations per Bitvec object, though the number of sets can |
| 30 | ** sometimes grow into tens of thousands or larger. The size of the |
| 31 | ** Bitvec object is the number of pages in the database file at the |
| 32 | ** start of a transaction, and is thus usually less than a few thousand, |
| 33 | ** but can be as large as 2 billion for a really big database. |
| 34 | ** |
danielk1977 | 2d1d86f | 2008-06-20 14:59:51 +0000 | [diff] [blame^] | 35 | ** @(#) $Id: bitvec.c,v 1.6 2008/06/20 14:59:51 danielk1977 Exp $ |
drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 36 | */ |
| 37 | #include "sqliteInt.h" |
| 38 | |
| 39 | #define BITVEC_SZ 512 |
mlcreech | dda5b68 | 2008-03-14 13:02:08 +0000 | [diff] [blame] | 40 | /* Round the union size down to the nearest pointer boundary, since that's how |
| 41 | ** it will be aligned within the Bitvec struct. */ |
drh | 3088d59 | 2008-03-21 16:45:47 +0000 | [diff] [blame] | 42 | #define BITVEC_USIZE (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*)) |
mlcreech | dda5b68 | 2008-03-14 13:02:08 +0000 | [diff] [blame] | 43 | #define BITVEC_NCHAR BITVEC_USIZE |
drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 44 | #define BITVEC_NBIT (BITVEC_NCHAR*8) |
mlcreech | dda5b68 | 2008-03-14 13:02:08 +0000 | [diff] [blame] | 45 | #define BITVEC_NINT (BITVEC_USIZE/4) |
drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 46 | #define BITVEC_MXHASH (BITVEC_NINT/2) |
mlcreech | dda5b68 | 2008-03-14 13:02:08 +0000 | [diff] [blame] | 47 | #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) |
drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 48 | |
| 49 | #define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT) |
| 50 | |
| 51 | /* |
| 52 | ** A bitmap is an instance of the following structure. |
| 53 | ** |
| 54 | ** This bitmap records the existance of zero or more bits |
| 55 | ** with values between 1 and iSize, inclusive. |
| 56 | ** |
| 57 | ** There are three possible representations of the bitmap. |
| 58 | ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight |
| 59 | ** bitmap. The least significant bit is bit 1. |
| 60 | ** |
| 61 | ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is |
| 62 | ** a hash table that will hold up to BITVEC_MXHASH distinct values. |
| 63 | ** |
| 64 | ** Otherwise, the value i is redirected into one of BITVEC_NPTR |
| 65 | ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap |
| 66 | ** handles up to iDivisor separate values of i. apSub[0] holds |
| 67 | ** values between 1 and iDivisor. apSub[1] holds values between |
| 68 | ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between |
| 69 | ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized |
| 70 | ** to hold deal with values between 1 and iDivisor. |
| 71 | */ |
| 72 | struct Bitvec { |
| 73 | u32 iSize; /* Maximum bit index */ |
| 74 | u32 nSet; /* Number of bits that are set */ |
| 75 | u32 iDivisor; /* Number of bits handled by each apSub[] entry */ |
| 76 | union { |
| 77 | u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */ |
| 78 | u32 aHash[BITVEC_NINT]; /* Hash table representation */ |
| 79 | Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ |
| 80 | } u; |
| 81 | }; |
| 82 | |
| 83 | /* |
| 84 | ** Create a new bitmap object able to handle bits between 0 and iSize, |
| 85 | ** inclusive. Return a pointer to the new object. Return NULL if |
| 86 | ** malloc fails. |
| 87 | */ |
| 88 | Bitvec *sqlite3BitvecCreate(u32 iSize){ |
| 89 | Bitvec *p; |
| 90 | assert( sizeof(*p)==BITVEC_SZ ); |
| 91 | p = sqlite3MallocZero( sizeof(*p) ); |
| 92 | if( p ){ |
| 93 | p->iSize = iSize; |
| 94 | } |
| 95 | return p; |
| 96 | } |
| 97 | |
| 98 | /* |
| 99 | ** Check to see if the i-th bit is set. Return true or false. |
| 100 | ** If p is NULL (if the bitmap has not been created) or if |
| 101 | ** i is out of range, then return false. |
| 102 | */ |
| 103 | int sqlite3BitvecTest(Bitvec *p, u32 i){ |
drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 104 | if( p==0 ) return 0; |
drh | 3088d59 | 2008-03-21 16:45:47 +0000 | [diff] [blame] | 105 | if( i>p->iSize || i==0 ) return 0; |
drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 106 | if( p->iSize<=BITVEC_NBIT ){ |
| 107 | i--; |
| 108 | return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0; |
| 109 | } |
| 110 | if( p->iDivisor>0 ){ |
| 111 | u32 bin = (i-1)/p->iDivisor; |
| 112 | i = (i-1)%p->iDivisor + 1; |
| 113 | return sqlite3BitvecTest(p->u.apSub[bin], i); |
| 114 | }else{ |
| 115 | u32 h = BITVEC_HASH(i); |
| 116 | while( p->u.aHash[h] ){ |
| 117 | if( p->u.aHash[h]==i ) return 1; |
| 118 | h++; |
| 119 | if( h>=BITVEC_NINT ) h = 0; |
| 120 | } |
| 121 | return 0; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | /* |
| 126 | ** Set the i-th bit. Return 0 on success and an error code if |
| 127 | ** anything goes wrong. |
| 128 | */ |
| 129 | int sqlite3BitvecSet(Bitvec *p, u32 i){ |
| 130 | u32 h; |
| 131 | assert( p!=0 ); |
drh | 3088d59 | 2008-03-21 16:45:47 +0000 | [diff] [blame] | 132 | assert( i>0 ); |
drh | c5d0bd9 | 2008-04-14 01:00:57 +0000 | [diff] [blame] | 133 | assert( i<=p->iSize ); |
drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 134 | if( p->iSize<=BITVEC_NBIT ){ |
| 135 | i--; |
| 136 | p->u.aBitmap[i/8] |= 1 << (i&7); |
| 137 | return SQLITE_OK; |
| 138 | } |
| 139 | if( p->iDivisor ){ |
| 140 | u32 bin = (i-1)/p->iDivisor; |
| 141 | i = (i-1)%p->iDivisor + 1; |
| 142 | if( p->u.apSub[bin]==0 ){ |
danielk1977 | 2d1d86f | 2008-06-20 14:59:51 +0000 | [diff] [blame^] | 143 | sqlite3BeginBenignMalloc(); |
drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 144 | p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); |
danielk1977 | 2d1d86f | 2008-06-20 14:59:51 +0000 | [diff] [blame^] | 145 | sqlite3EndBenignMalloc(); |
drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 146 | if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; |
| 147 | } |
| 148 | return sqlite3BitvecSet(p->u.apSub[bin], i); |
| 149 | } |
| 150 | h = BITVEC_HASH(i); |
| 151 | while( p->u.aHash[h] ){ |
| 152 | if( p->u.aHash[h]==i ) return SQLITE_OK; |
| 153 | h++; |
| 154 | if( h==BITVEC_NINT ) h = 0; |
| 155 | } |
| 156 | p->nSet++; |
| 157 | if( p->nSet>=BITVEC_MXHASH ){ |
| 158 | int j, rc; |
| 159 | u32 aiValues[BITVEC_NINT]; |
| 160 | memcpy(aiValues, p->u.aHash, sizeof(aiValues)); |
| 161 | memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR); |
| 162 | p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; |
drh | 3088d59 | 2008-03-21 16:45:47 +0000 | [diff] [blame] | 163 | rc = sqlite3BitvecSet(p, i); |
| 164 | for(j=0; j<BITVEC_NINT; j++){ |
drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 165 | if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); |
| 166 | } |
| 167 | return rc; |
| 168 | } |
| 169 | p->u.aHash[h] = i; |
| 170 | return SQLITE_OK; |
| 171 | } |
| 172 | |
| 173 | /* |
| 174 | ** Clear the i-th bit. Return 0 on success and an error code if |
| 175 | ** anything goes wrong. |
| 176 | */ |
| 177 | void sqlite3BitvecClear(Bitvec *p, u32 i){ |
| 178 | assert( p!=0 ); |
drh | 3088d59 | 2008-03-21 16:45:47 +0000 | [diff] [blame] | 179 | assert( i>0 ); |
drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 180 | if( p->iSize<=BITVEC_NBIT ){ |
| 181 | i--; |
| 182 | p->u.aBitmap[i/8] &= ~(1 << (i&7)); |
| 183 | }else if( p->iDivisor ){ |
| 184 | u32 bin = (i-1)/p->iDivisor; |
| 185 | i = (i-1)%p->iDivisor + 1; |
| 186 | if( p->u.apSub[bin] ){ |
| 187 | sqlite3BitvecClear(p->u.apSub[bin], i); |
| 188 | } |
| 189 | }else{ |
| 190 | int j; |
| 191 | u32 aiValues[BITVEC_NINT]; |
| 192 | memcpy(aiValues, p->u.aHash, sizeof(aiValues)); |
| 193 | memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT); |
| 194 | p->nSet = 0; |
| 195 | for(j=0; j<BITVEC_NINT; j++){ |
drh | 3088d59 | 2008-03-21 16:45:47 +0000 | [diff] [blame] | 196 | if( aiValues[j] && aiValues[j]!=i ){ |
| 197 | sqlite3BitvecSet(p, aiValues[j]); |
| 198 | } |
drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 199 | } |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | /* |
| 204 | ** Destroy a bitmap object. Reclaim all memory used. |
| 205 | */ |
| 206 | void sqlite3BitvecDestroy(Bitvec *p){ |
| 207 | if( p==0 ) return; |
| 208 | if( p->iDivisor ){ |
| 209 | int i; |
| 210 | for(i=0; i<BITVEC_NPTR; i++){ |
| 211 | sqlite3BitvecDestroy(p->u.apSub[i]); |
| 212 | } |
| 213 | } |
| 214 | sqlite3_free(p); |
| 215 | } |
drh | 3088d59 | 2008-03-21 16:45:47 +0000 | [diff] [blame] | 216 | |
| 217 | #ifndef SQLITE_OMIT_BUILTIN_TEST |
| 218 | /* |
| 219 | ** Let V[] be an array of unsigned characters sufficient to hold |
| 220 | ** up to N bits. Let I be an integer between 0 and N. 0<=I<N. |
| 221 | ** Then the following macros can be used to set, clear, or test |
| 222 | ** individual bits within V. |
| 223 | */ |
| 224 | #define SETBIT(V,I) V[I>>3] |= (1<<(I&7)) |
| 225 | #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) |
| 226 | #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 |
| 227 | |
| 228 | /* |
| 229 | ** This routine runs an extensive test of the Bitvec code. |
| 230 | ** |
| 231 | ** The input is an array of integers that acts as a program |
| 232 | ** to test the Bitvec. The integers are opcodes followed |
| 233 | ** by 0, 1, or 3 operands, depending on the opcode. Another |
| 234 | ** opcode follows immediately after the last operand. |
| 235 | ** |
| 236 | ** There are 6 opcodes numbered from 0 through 5. 0 is the |
| 237 | ** "halt" opcode and causes the test to end. |
| 238 | ** |
| 239 | ** 0 Halt and return the number of errors |
| 240 | ** 1 N S X Set N bits beginning with S and incrementing by X |
| 241 | ** 2 N S X Clear N bits beginning with S and incrementing by X |
| 242 | ** 3 N Set N randomly chosen bits |
| 243 | ** 4 N Clear N randomly chosen bits |
| 244 | ** 5 N S X Set N bits from S increment X in array only, not in bitvec |
| 245 | ** |
| 246 | ** The opcodes 1 through 4 perform set and clear operations are performed |
| 247 | ** on both a Bitvec object and on a linear array of bits obtained from malloc. |
| 248 | ** Opcode 5 works on the linear array only, not on the Bitvec. |
| 249 | ** Opcode 5 is used to deliberately induce a fault in order to |
| 250 | ** confirm that error detection works. |
| 251 | ** |
| 252 | ** At the conclusion of the test the linear array is compared |
| 253 | ** against the Bitvec object. If there are any differences, |
| 254 | ** an error is returned. If they are the same, zero is returned. |
| 255 | ** |
| 256 | ** If a memory allocation error occurs, return -1. |
| 257 | */ |
| 258 | int sqlite3BitvecBuiltinTest(int sz, int *aOp){ |
| 259 | Bitvec *pBitvec = 0; |
| 260 | unsigned char *pV = 0; |
| 261 | int rc = -1; |
| 262 | int i, nx, pc, op; |
| 263 | |
| 264 | /* Allocate the Bitvec to be tested and a linear array of |
| 265 | ** bits to act as the reference */ |
| 266 | pBitvec = sqlite3BitvecCreate( sz ); |
| 267 | pV = sqlite3_malloc( (sz+7)/8 + 1 ); |
| 268 | if( pBitvec==0 || pV==0 ) goto bitvec_end; |
| 269 | memset(pV, 0, (sz+7)/8 + 1); |
| 270 | |
| 271 | /* Run the program */ |
| 272 | pc = 0; |
| 273 | while( (op = aOp[pc])!=0 ){ |
| 274 | switch( op ){ |
| 275 | case 1: |
| 276 | case 2: |
| 277 | case 5: { |
| 278 | nx = 4; |
| 279 | i = aOp[pc+2] - 1; |
| 280 | aOp[pc+2] += aOp[pc+3]; |
| 281 | break; |
| 282 | } |
| 283 | case 3: |
| 284 | case 4: |
| 285 | default: { |
| 286 | nx = 2; |
| 287 | sqlite3_randomness(sizeof(i), &i); |
| 288 | break; |
| 289 | } |
| 290 | } |
| 291 | if( (--aOp[pc+1]) > 0 ) nx = 0; |
| 292 | pc += nx; |
| 293 | i = (i & 0x7fffffff)%sz; |
| 294 | if( (op & 1)!=0 ){ |
| 295 | SETBIT(pV, (i+1)); |
| 296 | if( op!=5 ){ |
| 297 | if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; |
| 298 | } |
| 299 | }else{ |
| 300 | CLEARBIT(pV, (i+1)); |
| 301 | sqlite3BitvecClear(pBitvec, i+1); |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | /* Test to make sure the linear array exactly matches the |
| 306 | ** Bitvec object. Start with the assumption that they do |
| 307 | ** match (rc==0). Change rc to non-zero if a discrepancy |
| 308 | ** is found. |
| 309 | */ |
| 310 | rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) |
| 311 | + sqlite3BitvecTest(pBitvec, 0); |
| 312 | for(i=1; i<=sz; i++){ |
| 313 | if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ |
| 314 | rc = i; |
| 315 | break; |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | /* Free allocated structure */ |
| 320 | bitvec_end: |
| 321 | sqlite3_free(pV); |
| 322 | sqlite3BitvecDestroy(pBitvec); |
| 323 | return rc; |
| 324 | } |
| 325 | #endif /* SQLITE_OMIT_BUILTIN_TEST */ |