blob: 5de43f42ce8ad8f0cb71d4b4c6b862e354da0c14 [file] [log] [blame]
drh9a324642003-09-06 20:12:01 +00001/*
2** 2003 September 6
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains code used for creating, destroying, and populating
drh7abda852014-09-19 16:02:06 +000013** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
drh9a324642003-09-06 20:12:01 +000014*/
15#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000016#include "vdbeInt.h"
17
drh9a324642003-09-06 20:12:01 +000018/*
19** Create a new virtual database engine.
20*/
drh9ac79622013-12-18 15:11:47 +000021Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
drh9a324642003-09-06 20:12:01 +000023 Vdbe *p;
drhd8e4b132016-10-01 19:21:56 +000024 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
drh9a324642003-09-06 20:12:01 +000025 if( p==0 ) return 0;
drhab3182f2016-10-01 00:37:50 +000026 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
drh9a324642003-09-06 20:12:01 +000027 p->db = db;
28 if( db->pVdbe ){
29 db->pVdbe->pPrev = p;
30 }
31 p->pNext = db->pVdbe;
32 p->pPrev = 0;
33 db->pVdbe = p;
34 p->magic = VDBE_MAGIC_INIT;
drh9ac79622013-12-18 15:11:47 +000035 p->pParse = pParse;
drh73d5b8f2013-12-23 19:09:07 +000036 assert( pParse->aLabel==0 );
37 assert( pParse->nLabel==0 );
38 assert( pParse->nOpAlloc==0 );
drhbd573082016-01-01 16:42:09 +000039 assert( pParse->szOpAlloc==0 );
drh9a324642003-09-06 20:12:01 +000040 return p;
41}
42
43/*
drh22c17b82015-05-15 04:13:15 +000044** Change the error string stored in Vdbe.zErrMsg
45*/
46void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
47 va_list ap;
48 sqlite3DbFree(p->db, p->zErrMsg);
49 va_start(ap, zFormat);
50 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
51 va_end(ap);
52}
53
54/*
drhb900aaf2006-11-09 00:24:53 +000055** Remember the SQL string for a prepared statement.
56*/
danielk19776ab3a2e2009-02-19 14:39:25 +000057void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
dan1d2ce4f2009-10-19 18:11:09 +000058 assert( isPrepareV2==1 || isPrepareV2==0 );
drhb900aaf2006-11-09 00:24:53 +000059 if( p==0 ) return;
danbda4cb82017-02-23 16:30:16 +000060 if( !isPrepareV2 ) p->expmask = 0;
danac455932012-11-26 19:50:41 +000061#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
danielk19776ab3a2e2009-02-19 14:39:25 +000062 if( !isPrepareV2 ) return;
63#endif
drhb900aaf2006-11-09 00:24:53 +000064 assert( p->zSql==0 );
drh17435752007-08-16 04:30:38 +000065 p->zSql = sqlite3DbStrNDup(p->db, z, n);
shanef639c402009-11-03 19:42:30 +000066 p->isPrepareV2 = (u8)isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000067}
68
69/*
drhc5155252007-01-08 21:07:17 +000070** Swap all content between two VDBE structures.
drhb900aaf2006-11-09 00:24:53 +000071*/
drhc5155252007-01-08 21:07:17 +000072void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
73 Vdbe tmp, *pTmp;
74 char *zTmp;
drh0639c342011-03-18 12:35:36 +000075 assert( pA->db==pB->db );
drhc5155252007-01-08 21:07:17 +000076 tmp = *pA;
77 *pA = *pB;
78 *pB = tmp;
79 pTmp = pA->pNext;
80 pA->pNext = pB->pNext;
81 pB->pNext = pTmp;
82 pTmp = pA->pPrev;
83 pA->pPrev = pB->pPrev;
84 pB->pPrev = pTmp;
85 zTmp = pA->zSql;
86 pA->zSql = pB->zSql;
87 pB->zSql = zTmp;
danielk19776ab3a2e2009-02-19 14:39:25 +000088 pB->isPrepareV2 = pA->isPrepareV2;
drh76adb232017-03-02 13:13:30 +000089 pB->expmask = pA->expmask;
drhb900aaf2006-11-09 00:24:53 +000090}
91
drh9a324642003-09-06 20:12:01 +000092/*
dan76ccd892014-08-12 13:38:52 +000093** Resize the Vdbe.aOp array so that it is at least nOp elements larger
drh81e069e2014-08-12 14:29:20 +000094** than its current size. nOp is guaranteed to be less than or equal
95** to 1024/sizeof(Op).
danielk1977ace3eb22006-01-26 10:35:04 +000096**
danielk197700e13612008-11-17 19:18:54 +000097** If an out-of-memory error occurs while resizing the array, return
dan76ccd892014-08-12 13:38:52 +000098** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
danielk197700e13612008-11-17 19:18:54 +000099** unchanged (this is so that any opcodes already allocated can be
100** correctly deallocated along with the rest of the Vdbe).
drh76ff3a02004-09-24 22:32:30 +0000101*/
dan76ccd892014-08-12 13:38:52 +0000102static int growOpArray(Vdbe *v, int nOp){
drha4e5d582007-10-20 15:41:57 +0000103 VdbeOp *pNew;
drh73d5b8f2013-12-23 19:09:07 +0000104 Parse *p = v->pParse;
dan76ccd892014-08-12 13:38:52 +0000105
drh81e069e2014-08-12 14:29:20 +0000106 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
107 ** more frequent reallocs and hence provide more opportunities for
108 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
109 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
110 ** by the minimum* amount required until the size reaches 512. Normal
111 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
112 ** size of the op array or add 1KB of space, whichever is smaller. */
dan76ccd892014-08-12 13:38:52 +0000113#ifdef SQLITE_TEST_REALLOC_STRESS
114 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
115#else
danielk197700e13612008-11-17 19:18:54 +0000116 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
dan76ccd892014-08-12 13:38:52 +0000117 UNUSED_PARAMETER(nOp);
118#endif
119
drh1cb02662017-03-17 22:50:16 +0000120 /* Ensure that the size of a VDBE does not grow too large */
121 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
122 sqlite3OomFault(p->db);
123 return SQLITE_NOMEM;
124 }
125
drh81e069e2014-08-12 14:29:20 +0000126 assert( nOp<=(1024/sizeof(Op)) );
dan76ccd892014-08-12 13:38:52 +0000127 assert( nNew>=(p->nOpAlloc+nOp) );
drh73d5b8f2013-12-23 19:09:07 +0000128 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
drha4e5d582007-10-20 15:41:57 +0000129 if( pNew ){
drhbd573082016-01-01 16:42:09 +0000130 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
131 p->nOpAlloc = p->szOpAlloc/sizeof(Op);
drh73d5b8f2013-12-23 19:09:07 +0000132 v->aOp = pNew;
drh76ff3a02004-09-24 22:32:30 +0000133 }
mistachkinfad30392016-02-13 23:43:46 +0000134 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
drh76ff3a02004-09-24 22:32:30 +0000135}
136
drh313619f2013-10-31 20:34:06 +0000137#ifdef SQLITE_DEBUG
138/* This routine is just a convenient place to set a breakpoint that will
139** fire after each opcode is inserted and displayed using
140** "PRAGMA vdbe_addoptrace=on".
141*/
142static void test_addop_breakpoint(void){
143 static int n = 0;
144 n++;
145}
146#endif
147
drh76ff3a02004-09-24 22:32:30 +0000148/*
drh9a324642003-09-06 20:12:01 +0000149** Add a new instruction to the list of instructions current in the
150** VDBE. Return the address of the new instruction.
151**
152** Parameters:
153**
154** p Pointer to the VDBE
155**
156** op The opcode for this instruction
157**
drh66a51672008-01-03 00:01:23 +0000158** p1, p2, p3 Operands
drh9a324642003-09-06 20:12:01 +0000159**
danielk19774adee202004-05-08 08:23:19 +0000160** Use the sqlite3VdbeResolveLabel() function to fix an address and
drh66a51672008-01-03 00:01:23 +0000161** the sqlite3VdbeChangeP4() function to change the value of the P4
drh9a324642003-09-06 20:12:01 +0000162** operand.
163*/
drhd7970352015-11-09 12:33:39 +0000164static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
165 assert( p->pParse->nOpAlloc<=p->nOp );
166 if( growOpArray(p, 1) ) return 1;
167 assert( p->pParse->nOpAlloc>p->nOp );
168 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
169}
drh66a51672008-01-03 00:01:23 +0000170int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
drh9a324642003-09-06 20:12:01 +0000171 int i;
drh701a0ae2004-02-22 20:05:00 +0000172 VdbeOp *pOp;
drh9a324642003-09-06 20:12:01 +0000173
174 i = p->nOp;
drh9a324642003-09-06 20:12:01 +0000175 assert( p->magic==VDBE_MAGIC_INIT );
drhed94af52016-02-01 17:20:08 +0000176 assert( op>=0 && op<0xff );
drh73d5b8f2013-12-23 19:09:07 +0000177 if( p->pParse->nOpAlloc<=i ){
drhd7970352015-11-09 12:33:39 +0000178 return growOp3(p, op, p1, p2, p3);
drh9a324642003-09-06 20:12:01 +0000179 }
danielk197701256832007-04-18 14:24:32 +0000180 p->nOp++;
drh701a0ae2004-02-22 20:05:00 +0000181 pOp = &p->aOp[i];
drh8df32842008-12-09 02:51:23 +0000182 pOp->opcode = (u8)op;
drh26c9b5e2008-04-11 14:56:53 +0000183 pOp->p5 = 0;
drh701a0ae2004-02-22 20:05:00 +0000184 pOp->p1 = p1;
drh701a0ae2004-02-22 20:05:00 +0000185 pOp->p2 = p2;
drh66a51672008-01-03 00:01:23 +0000186 pOp->p3 = p3;
187 pOp->p4.p = 0;
188 pOp->p4type = P4_NOTUSED;
drhc7379ce2013-10-30 02:28:23 +0000189#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh26c9b5e2008-04-11 14:56:53 +0000190 pOp->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000191#endif
192#ifdef SQLITE_DEBUG
drhe0962052013-01-29 19:14:31 +0000193 if( p->db->flags & SQLITE_VdbeAddopTrace ){
drh9ac79622013-12-18 15:11:47 +0000194 int jj, kk;
195 Parse *pParse = p->pParse;
drh9b40d132016-09-30 20:22:27 +0000196 for(jj=kk=0; jj<pParse->nColCache; jj++){
drh9ac79622013-12-18 15:11:47 +0000197 struct yColCache *x = pParse->aColCache + jj;
drh9ac79622013-12-18 15:11:47 +0000198 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
199 kk++;
200 }
201 if( kk ) printf("\n");
drhe0962052013-01-29 19:14:31 +0000202 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
drh313619f2013-10-31 20:34:06 +0000203 test_addop_breakpoint();
drhe0962052013-01-29 19:14:31 +0000204 }
drh9a324642003-09-06 20:12:01 +0000205#endif
drh26c9b5e2008-04-11 14:56:53 +0000206#ifdef VDBE_PROFILE
207 pOp->cycles = 0;
208 pOp->cnt = 0;
209#endif
drh688852a2014-02-17 22:40:43 +0000210#ifdef SQLITE_VDBE_COVERAGE
211 pOp->iSrcLine = 0;
212#endif
drh9a324642003-09-06 20:12:01 +0000213 return i;
214}
drh66a51672008-01-03 00:01:23 +0000215int sqlite3VdbeAddOp0(Vdbe *p, int op){
216 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
217}
218int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
219 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
220}
221int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
222 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
drh701a0ae2004-02-22 20:05:00 +0000223}
224
drh076e85f2015-09-03 13:46:12 +0000225/* Generate code for an unconditional jump to instruction iDest
226*/
227int sqlite3VdbeGoto(Vdbe *p, int iDest){
drh2991ba02015-09-02 18:19:00 +0000228 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
229}
drh701a0ae2004-02-22 20:05:00 +0000230
drh076e85f2015-09-03 13:46:12 +0000231/* Generate code to cause the string zStr to be loaded into
232** register iDest
233*/
234int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
235 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
236}
237
238/*
239** Generate code that initializes multiple registers to string or integer
240** constants. The registers begin with iDest and increase consecutively.
241** One register is initialized for each characgter in zTypes[]. For each
242** "s" character in zTypes[], the register is a string if the argument is
243** not NULL, or OP_Null if the value is a null pointer. For each "i" character
244** in zTypes[], the register is initialized to an integer.
245*/
246void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
247 va_list ap;
248 int i;
249 char c;
250 va_start(ap, zTypes);
251 for(i=0; (c = zTypes[i])!=0; i++){
252 if( c=='s' ){
253 const char *z = va_arg(ap, const char*);
drh2ce18652016-01-16 20:50:21 +0000254 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0);
drh076e85f2015-09-03 13:46:12 +0000255 }else{
256 assert( c=='i' );
257 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
258 }
259 }
260 va_end(ap);
261}
drh66a51672008-01-03 00:01:23 +0000262
drh701a0ae2004-02-22 20:05:00 +0000263/*
drh66a51672008-01-03 00:01:23 +0000264** Add an opcode that includes the p4 value as a pointer.
drhd4e70eb2008-01-02 00:34:36 +0000265*/
drh66a51672008-01-03 00:01:23 +0000266int sqlite3VdbeAddOp4(
drhd4e70eb2008-01-02 00:34:36 +0000267 Vdbe *p, /* Add the opcode to this VM */
268 int op, /* The new opcode */
drh66a51672008-01-03 00:01:23 +0000269 int p1, /* The P1 operand */
270 int p2, /* The P2 operand */
271 int p3, /* The P3 operand */
272 const char *zP4, /* The P4 operand */
273 int p4type /* P4 operand type */
drhd4e70eb2008-01-02 00:34:36 +0000274){
drh66a51672008-01-03 00:01:23 +0000275 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
276 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
drhd4e70eb2008-01-02 00:34:36 +0000277 return addr;
278}
279
280/*
drh7cc023c2015-09-03 04:28:25 +0000281** Add an opcode that includes the p4 value with a P4_INT64 or
282** P4_REAL type.
drh97bae792015-06-05 15:59:57 +0000283*/
284int sqlite3VdbeAddOp4Dup8(
285 Vdbe *p, /* Add the opcode to this VM */
286 int op, /* The new opcode */
287 int p1, /* The P1 operand */
288 int p2, /* The P2 operand */
289 int p3, /* The P3 operand */
290 const u8 *zP4, /* The P4 operand */
291 int p4type /* P4 operand type */
292){
drh575fad62016-02-05 13:38:36 +0000293 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
drh97bae792015-06-05 15:59:57 +0000294 if( p4copy ) memcpy(p4copy, zP4, 8);
295 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
296}
297
298/*
drh5d9c9da2011-06-03 20:11:17 +0000299** Add an OP_ParseSchema opcode. This routine is broken out from
drhe4c88c02012-01-04 12:57:45 +0000300** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
301** as having been used.
drh5d9c9da2011-06-03 20:11:17 +0000302**
303** The zWhere string must have been obtained from sqlite3_malloc().
304** This routine will take ownership of the allocated memory.
305*/
306void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
307 int j;
drh00dceca2016-01-11 22:58:50 +0000308 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
drh5d9c9da2011-06-03 20:11:17 +0000309 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
310}
311
312/*
drh8cff69d2009-11-12 19:59:44 +0000313** Add an opcode that includes the p4 value as an integer.
314*/
315int sqlite3VdbeAddOp4Int(
316 Vdbe *p, /* Add the opcode to this VM */
317 int op, /* The new opcode */
318 int p1, /* The P1 operand */
319 int p2, /* The P2 operand */
320 int p3, /* The P3 operand */
321 int p4 /* The P4 operand as an integer */
322){
323 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
drhbdaa1ee2016-12-07 20:09:51 +0000324 if( p->db->mallocFailed==0 ){
325 VdbeOp *pOp = &p->aOp[addr];
326 pOp->p4type = P4_INT32;
327 pOp->p4.i = p4;
328 }
drh8cff69d2009-11-12 19:59:44 +0000329 return addr;
330}
331
drh2fade2f2016-02-09 02:12:20 +0000332/* Insert the end of a co-routine
333*/
334void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
335 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
336
337 /* Clear the temporary register cache, thereby ensuring that each
338 ** co-routine has its own independent set of registers, because co-routines
339 ** might expect their registers to be preserved across an OP_Yield, and
340 ** that could cause problems if two or more co-routines are using the same
341 ** temporary register.
342 */
343 v->pParse->nTempReg = 0;
344 v->pParse->nRangeReg = 0;
345}
346
drh8cff69d2009-11-12 19:59:44 +0000347/*
drh9a324642003-09-06 20:12:01 +0000348** Create a new symbolic label for an instruction that has yet to be
349** coded. The symbolic label is really just a negative number. The
350** label can be used as the P2 value of an operation. Later, when
351** the label is resolved to a specific address, the VDBE will scan
352** through its operation list and change all values of P2 which match
353** the label into the resolved address.
354**
355** The VDBE knows that a P2 value is a label because labels are
356** always negative and P2 values are suppose to be non-negative.
357** Hence, a negative P2 value is a label that has yet to be resolved.
danielk1977b5548a82004-06-26 13:51:33 +0000358**
359** Zero is returned if a malloc() fails.
drh9a324642003-09-06 20:12:01 +0000360*/
drh73d5b8f2013-12-23 19:09:07 +0000361int sqlite3VdbeMakeLabel(Vdbe *v){
362 Parse *p = v->pParse;
drhc35f3d52012-02-01 19:03:38 +0000363 int i = p->nLabel++;
drh73d5b8f2013-12-23 19:09:07 +0000364 assert( v->magic==VDBE_MAGIC_INIT );
drhc35f3d52012-02-01 19:03:38 +0000365 if( (i & (i-1))==0 ){
366 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
367 (i*2+1)*sizeof(p->aLabel[0]));
drh9a324642003-09-06 20:12:01 +0000368 }
drh76ff3a02004-09-24 22:32:30 +0000369 if( p->aLabel ){
370 p->aLabel[i] = -1;
drh9a324642003-09-06 20:12:01 +0000371 }
drh5ef09bf2015-12-09 17:23:12 +0000372 return ADDR(i);
drh9a324642003-09-06 20:12:01 +0000373}
374
375/*
376** Resolve label "x" to be the address of the next instruction to
377** be inserted. The parameter "x" must have been obtained from
danielk19774adee202004-05-08 08:23:19 +0000378** a prior call to sqlite3VdbeMakeLabel().
drh9a324642003-09-06 20:12:01 +0000379*/
drh73d5b8f2013-12-23 19:09:07 +0000380void sqlite3VdbeResolveLabel(Vdbe *v, int x){
381 Parse *p = v->pParse;
drh5ef09bf2015-12-09 17:23:12 +0000382 int j = ADDR(x);
drh73d5b8f2013-12-23 19:09:07 +0000383 assert( v->magic==VDBE_MAGIC_INIT );
drhb2b9d3d2013-08-01 01:14:43 +0000384 assert( j<p->nLabel );
drhef41dfe2015-09-02 17:55:12 +0000385 assert( j>=0 );
386 if( p->aLabel ){
drh73d5b8f2013-12-23 19:09:07 +0000387 p->aLabel[j] = v->nOp;
drh9a324642003-09-06 20:12:01 +0000388 }
389}
390
drh4611d922010-02-25 14:47:01 +0000391/*
392** Mark the VDBE as one that can only be run one time.
393*/
394void sqlite3VdbeRunOnlyOnce(Vdbe *p){
395 p->runOnlyOnce = 1;
396}
397
drhf71a3662016-03-16 20:44:45 +0000398/*
399** Mark the VDBE as one that can only be run multiple times.
400*/
401void sqlite3VdbeReusable(Vdbe *p){
402 p->runOnlyOnce = 0;
403}
404
drhff738bc2009-09-24 00:09:58 +0000405#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
dan144926d2009-09-09 11:37:20 +0000406
407/*
408** The following type and function are used to iterate through all opcodes
409** in a Vdbe main program and each of the sub-programs (triggers) it may
410** invoke directly or indirectly. It should be used as follows:
411**
412** Op *pOp;
413** VdbeOpIter sIter;
414**
415** memset(&sIter, 0, sizeof(sIter));
416** sIter.v = v; // v is of type Vdbe*
417** while( (pOp = opIterNext(&sIter)) ){
418** // Do something with pOp
419** }
420** sqlite3DbFree(v->db, sIter.apSub);
421**
422*/
423typedef struct VdbeOpIter VdbeOpIter;
424struct VdbeOpIter {
425 Vdbe *v; /* Vdbe to iterate through the opcodes of */
426 SubProgram **apSub; /* Array of subprograms */
427 int nSub; /* Number of entries in apSub */
428 int iAddr; /* Address of next instruction to return */
429 int iSub; /* 0 = main program, 1 = first sub-program etc. */
430};
431static Op *opIterNext(VdbeOpIter *p){
432 Vdbe *v = p->v;
433 Op *pRet = 0;
434 Op *aOp;
435 int nOp;
436
437 if( p->iSub<=p->nSub ){
438
439 if( p->iSub==0 ){
440 aOp = v->aOp;
441 nOp = v->nOp;
442 }else{
443 aOp = p->apSub[p->iSub-1]->aOp;
444 nOp = p->apSub[p->iSub-1]->nOp;
445 }
446 assert( p->iAddr<nOp );
447
448 pRet = &aOp[p->iAddr];
449 p->iAddr++;
450 if( p->iAddr==nOp ){
451 p->iSub++;
452 p->iAddr = 0;
453 }
454
455 if( pRet->p4type==P4_SUBPROGRAM ){
456 int nByte = (p->nSub+1)*sizeof(SubProgram*);
457 int j;
458 for(j=0; j<p->nSub; j++){
459 if( p->apSub[j]==pRet->p4.pProgram ) break;
460 }
461 if( j==p->nSub ){
462 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
463 if( !p->apSub ){
464 pRet = 0;
465 }else{
466 p->apSub[p->nSub++] = pRet->p4.pProgram;
467 }
468 }
469 }
470 }
471
472 return pRet;
473}
474
475/*
danf3677212009-09-10 16:14:50 +0000476** Check if the program stored in the VM associated with pParse may
drhff738bc2009-09-24 00:09:58 +0000477** throw an ABORT exception (causing the statement, but not entire transaction
dan144926d2009-09-09 11:37:20 +0000478** to be rolled back). This condition is true if the main program or any
479** sub-programs contains any of the following:
480**
481** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
482** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
483** * OP_Destroy
484** * OP_VUpdate
485** * OP_VRename
dan32b09f22009-09-23 17:29:59 +0000486** * OP_FkCounter with P2==0 (immediate foreign key constraint)
drh0dd5cda2015-06-16 16:39:01 +0000487** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
dan144926d2009-09-09 11:37:20 +0000488**
danf3677212009-09-10 16:14:50 +0000489** Then check that the value of Parse.mayAbort is true if an
490** ABORT may be thrown, or false otherwise. Return true if it does
491** match, or false otherwise. This function is intended to be used as
492** part of an assert statement in the compiler. Similar to:
493**
494** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
dan144926d2009-09-09 11:37:20 +0000495*/
danf3677212009-09-10 16:14:50 +0000496int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
497 int hasAbort = 0;
dan04668832014-12-16 20:13:30 +0000498 int hasFkCounter = 0;
drh0dd5cda2015-06-16 16:39:01 +0000499 int hasCreateTable = 0;
500 int hasInitCoroutine = 0;
dan144926d2009-09-09 11:37:20 +0000501 Op *pOp;
502 VdbeOpIter sIter;
503 memset(&sIter, 0, sizeof(sIter));
504 sIter.v = v;
505
506 while( (pOp = opIterNext(&sIter))!=0 ){
507 int opcode = pOp->opcode;
508 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
509 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
drhd91c1a12013-02-09 13:58:25 +0000510 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
dan144926d2009-09-09 11:37:20 +0000511 ){
danf3677212009-09-10 16:14:50 +0000512 hasAbort = 1;
dan144926d2009-09-09 11:37:20 +0000513 break;
514 }
drh0dd5cda2015-06-16 16:39:01 +0000515 if( opcode==OP_CreateTable ) hasCreateTable = 1;
516 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
dan04668832014-12-16 20:13:30 +0000517#ifndef SQLITE_OMIT_FOREIGN_KEY
518 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
519 hasFkCounter = 1;
520 }
521#endif
dan144926d2009-09-09 11:37:20 +0000522 }
dan144926d2009-09-09 11:37:20 +0000523 sqlite3DbFree(v->db, sIter.apSub);
danf3677212009-09-10 16:14:50 +0000524
mistachkin48864df2013-03-21 21:20:32 +0000525 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
danf3677212009-09-10 16:14:50 +0000526 ** If malloc failed, then the while() loop above may not have iterated
527 ** through all opcodes and hasAbort may be set incorrectly. Return
528 ** true for this case to prevent the assert() in the callers frame
529 ** from failing. */
drh0dd5cda2015-06-16 16:39:01 +0000530 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
531 || (hasCreateTable && hasInitCoroutine) );
dan144926d2009-09-09 11:37:20 +0000532}
drhff738bc2009-09-24 00:09:58 +0000533#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
dan144926d2009-09-09 11:37:20 +0000534
drh9a324642003-09-06 20:12:01 +0000535/*
drhef41dfe2015-09-02 17:55:12 +0000536** This routine is called after all opcodes have been inserted. It loops
537** through all the opcodes and fixes up some details.
drh76ff3a02004-09-24 22:32:30 +0000538**
drhef41dfe2015-09-02 17:55:12 +0000539** (1) For each jump instruction with a negative P2 value (a label)
540** resolve the P2 value to an actual address.
danielk1977634f2982005-03-28 08:44:07 +0000541**
drhef41dfe2015-09-02 17:55:12 +0000542** (2) Compute the maximum number of arguments used by any SQL function
543** and store that value in *pMaxFuncArgs.
drha6c2ed92009-11-14 23:22:23 +0000544**
drhef41dfe2015-09-02 17:55:12 +0000545** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
546** indicate what the prepared statement actually does.
547**
548** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
549**
550** (5) Reclaim the memory allocated for storing labels.
drh7cc84c22016-04-11 13:36:42 +0000551**
552** This routine will only function correctly if the mkopcodeh.tcl generator
553** script numbers the opcodes correctly. Changes to this routine must be
554** coordinated with changes to mkopcodeh.tcl.
drh76ff3a02004-09-24 22:32:30 +0000555*/
drh9cbf3422008-01-17 16:22:13 +0000556static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
dan165921a2009-08-28 18:53:45 +0000557 int nMaxArgs = *pMaxFuncArgs;
drh76ff3a02004-09-24 22:32:30 +0000558 Op *pOp;
drh73d5b8f2013-12-23 19:09:07 +0000559 Parse *pParse = p->pParse;
560 int *aLabel = pParse->aLabel;
drhad4a4b82008-11-05 16:37:34 +0000561 p->readOnly = 1;
drh1713afb2013-06-28 01:24:57 +0000562 p->bIsReader = 0;
drh7cc84c22016-04-11 13:36:42 +0000563 pOp = &p->aOp[p->nOp-1];
564 while(1){
danielk1977634f2982005-03-28 08:44:07 +0000565
drh7cc84c22016-04-11 13:36:42 +0000566 /* Only JUMP opcodes and the short list of special opcodes in the switch
567 ** below need to be considered. The mkopcodeh.tcl generator script groups
568 ** all these opcodes together near the front of the opcode list. Skip
569 ** any opcode that does not need processing by virtual of the fact that
drhc310db32016-04-11 16:35:05 +0000570 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
drh7cc84c22016-04-11 13:36:42 +0000571 */
drhc310db32016-04-11 16:35:05 +0000572 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
drh7cc84c22016-04-11 13:36:42 +0000573 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
574 ** cases from this switch! */
575 switch( pOp->opcode ){
576 case OP_Transaction: {
577 if( pOp->p2!=0 ) p->readOnly = 0;
578 /* fall thru */
579 }
580 case OP_AutoCommit:
581 case OP_Savepoint: {
582 p->bIsReader = 1;
583 break;
584 }
dand9031542013-07-05 16:54:30 +0000585#ifndef SQLITE_OMIT_WAL
drh7cc84c22016-04-11 13:36:42 +0000586 case OP_Checkpoint:
drh9e92a472013-06-27 17:40:30 +0000587#endif
drh7cc84c22016-04-11 13:36:42 +0000588 case OP_Vacuum:
589 case OP_JournalMode: {
590 p->readOnly = 0;
591 p->bIsReader = 1;
592 break;
593 }
danielk1977182c4ba2007-06-27 15:53:34 +0000594#ifndef SQLITE_OMIT_VIRTUALTABLE
drh7cc84c22016-04-11 13:36:42 +0000595 case OP_VUpdate: {
596 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
597 break;
598 }
599 case OP_VFilter: {
600 int n;
601 assert( (pOp - p->aOp) >= 3 );
602 assert( pOp[-1].opcode==OP_Integer );
603 n = pOp[-1].p1;
604 if( n>nMaxArgs ) nMaxArgs = n;
605 break;
606 }
danielk1977182c4ba2007-06-27 15:53:34 +0000607#endif
drh7cc84c22016-04-11 13:36:42 +0000608 case OP_Next:
609 case OP_NextIfOpen:
610 case OP_SorterNext: {
611 pOp->p4.xAdvance = sqlite3BtreeNext;
612 pOp->p4type = P4_ADVANCE;
613 break;
614 }
615 case OP_Prev:
616 case OP_PrevIfOpen: {
617 pOp->p4.xAdvance = sqlite3BtreePrevious;
618 pOp->p4type = P4_ADVANCE;
619 break;
620 }
drh8c8a8c42013-08-06 07:45:08 +0000621 }
drh7cc84c22016-04-11 13:36:42 +0000622 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 && pOp->p2<0 ){
623 assert( ADDR(pOp->p2)<pParse->nLabel );
624 pOp->p2 = aLabel[ADDR(pOp->p2)];
drh8c8a8c42013-08-06 07:45:08 +0000625 }
danielk1977bc04f852005-03-29 08:26:13 +0000626 }
drh7cc84c22016-04-11 13:36:42 +0000627 if( pOp==p->aOp ) break;
628 pOp--;
drh76ff3a02004-09-24 22:32:30 +0000629 }
drh73d5b8f2013-12-23 19:09:07 +0000630 sqlite3DbFree(p->db, pParse->aLabel);
631 pParse->aLabel = 0;
632 pParse->nLabel = 0;
danielk1977bc04f852005-03-29 08:26:13 +0000633 *pMaxFuncArgs = nMaxArgs;
drha7ab6d82014-07-21 15:44:39 +0000634 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
drh76ff3a02004-09-24 22:32:30 +0000635}
636
637/*
drh9a324642003-09-06 20:12:01 +0000638** Return the address of the next instruction to be inserted.
639*/
danielk19774adee202004-05-08 08:23:19 +0000640int sqlite3VdbeCurrentAddr(Vdbe *p){
drh9a324642003-09-06 20:12:01 +0000641 assert( p->magic==VDBE_MAGIC_INIT );
642 return p->nOp;
643}
644
dan65a7cd12009-09-01 12:16:01 +0000645/*
drh2ce18652016-01-16 20:50:21 +0000646** Verify that at least N opcode slots are available in p without
drhdad300d2016-01-18 00:20:26 +0000647** having to malloc for more space (except when compiled using
648** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
649** to verify that certain calls to sqlite3VdbeAddOpList() can never
650** fail due to a OOM fault and hence that the return value from
651** sqlite3VdbeAddOpList() will always be non-NULL.
drh2ce18652016-01-16 20:50:21 +0000652*/
drhdad300d2016-01-18 00:20:26 +0000653#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
654void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
drh2ce18652016-01-16 20:50:21 +0000655 assert( p->nOp + N <= p->pParse->nOpAlloc );
656}
657#endif
658
659/*
dan9e1ab1a2017-01-05 19:32:48 +0000660** Verify that the VM passed as the only argument does not contain
661** an OP_ResultRow opcode. Fail an assert() if it does. This is used
662** by code in pragma.c to ensure that the implementation of certain
663** pragmas comports with the flags specified in the mkpragmatab.tcl
664** script.
665*/
666#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
667void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
668 int i;
669 for(i=0; i<p->nOp; i++){
670 assert( p->aOp[i].opcode!=OP_ResultRow );
671 }
672}
673#endif
674
675/*
dan65a7cd12009-09-01 12:16:01 +0000676** This function returns a pointer to the array of opcodes associated with
677** the Vdbe passed as the first argument. It is the callers responsibility
678** to arrange for the returned array to be eventually freed using the
679** vdbeFreeOpArray() function.
680**
681** Before returning, *pnOp is set to the number of entries in the returned
682** array. Also, *pnMaxArg is set to the larger of its current value and
683** the number of entries in the Vdbe.apArg[] array required to execute the
684** returned program.
685*/
dan165921a2009-08-28 18:53:45 +0000686VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
687 VdbeOp *aOp = p->aOp;
dan523a0872009-08-31 05:23:32 +0000688 assert( aOp && !p->db->mallocFailed );
dan65a7cd12009-09-01 12:16:01 +0000689
690 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
drha7ab6d82014-07-21 15:44:39 +0000691 assert( DbMaskAllZero(p->btreeMask) );
dan65a7cd12009-09-01 12:16:01 +0000692
dan165921a2009-08-28 18:53:45 +0000693 resolveP2Values(p, pnMaxArg);
694 *pnOp = p->nOp;
695 p->aOp = 0;
696 return aOp;
697}
698
drh9a324642003-09-06 20:12:01 +0000699/*
drh2ce18652016-01-16 20:50:21 +0000700** Add a whole list of operations to the operation stack. Return a
701** pointer to the first operation inserted.
drh1b325542016-02-03 01:55:44 +0000702**
703** Non-zero P2 arguments to jump instructions are automatically adjusted
704** so that the jump target is relative to the first operation inserted.
drh9a324642003-09-06 20:12:01 +0000705*/
drh2ce18652016-01-16 20:50:21 +0000706VdbeOp *sqlite3VdbeAddOpList(
707 Vdbe *p, /* Add opcodes to the prepared statement */
708 int nOp, /* Number of opcodes to add */
709 VdbeOpList const *aOp, /* The opcodes to be added */
710 int iLineno /* Source-file line number of first opcode */
711){
712 int i;
713 VdbeOp *pOut, *pFirst;
drhef41dfe2015-09-02 17:55:12 +0000714 assert( nOp>0 );
drh9a324642003-09-06 20:12:01 +0000715 assert( p->magic==VDBE_MAGIC_INIT );
dan76ccd892014-08-12 13:38:52 +0000716 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
drh76ff3a02004-09-24 22:32:30 +0000717 return 0;
drh9a324642003-09-06 20:12:01 +0000718 }
drh2ce18652016-01-16 20:50:21 +0000719 pFirst = pOut = &p->aOp[p->nOp];
drhef41dfe2015-09-02 17:55:12 +0000720 for(i=0; i<nOp; i++, aOp++, pOut++){
drhef41dfe2015-09-02 17:55:12 +0000721 pOut->opcode = aOp->opcode;
722 pOut->p1 = aOp->p1;
drh5ef09bf2015-12-09 17:23:12 +0000723 pOut->p2 = aOp->p2;
724 assert( aOp->p2>=0 );
drh1b325542016-02-03 01:55:44 +0000725 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
726 pOut->p2 += p->nOp;
727 }
drhef41dfe2015-09-02 17:55:12 +0000728 pOut->p3 = aOp->p3;
729 pOut->p4type = P4_NOTUSED;
730 pOut->p4.p = 0;
731 pOut->p5 = 0;
drhc7379ce2013-10-30 02:28:23 +0000732#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhef41dfe2015-09-02 17:55:12 +0000733 pOut->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000734#endif
drh688852a2014-02-17 22:40:43 +0000735#ifdef SQLITE_VDBE_COVERAGE
drhef41dfe2015-09-02 17:55:12 +0000736 pOut->iSrcLine = iLineno+i;
drh688852a2014-02-17 22:40:43 +0000737#else
drhef41dfe2015-09-02 17:55:12 +0000738 (void)iLineno;
drh688852a2014-02-17 22:40:43 +0000739#endif
drhc7379ce2013-10-30 02:28:23 +0000740#ifdef SQLITE_DEBUG
drhef41dfe2015-09-02 17:55:12 +0000741 if( p->db->flags & SQLITE_VdbeAddopTrace ){
drh2ce18652016-01-16 20:50:21 +0000742 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
drh9a324642003-09-06 20:12:01 +0000743 }
drhef41dfe2015-09-02 17:55:12 +0000744#endif
drh9a324642003-09-06 20:12:01 +0000745 }
drhef41dfe2015-09-02 17:55:12 +0000746 p->nOp += nOp;
drh2ce18652016-01-16 20:50:21 +0000747 return pFirst;
drh9a324642003-09-06 20:12:01 +0000748}
749
dan6f9702e2014-11-01 20:38:06 +0000750#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
751/*
752** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
753*/
dan037b5322014-11-03 11:25:32 +0000754void sqlite3VdbeScanStatus(
dan6f9702e2014-11-01 20:38:06 +0000755 Vdbe *p, /* VM to add scanstatus() to */
756 int addrExplain, /* Address of OP_Explain (or 0) */
757 int addrLoop, /* Address of loop counter */
758 int addrVisit, /* Address of rows visited counter */
drh518140e2014-11-06 03:55:10 +0000759 LogEst nEst, /* Estimated number of output rows */
dan6f9702e2014-11-01 20:38:06 +0000760 const char *zName /* Name of table or index being scanned */
761){
dan037b5322014-11-03 11:25:32 +0000762 int nByte = (p->nScan+1) * sizeof(ScanStatus);
763 ScanStatus *aNew;
764 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
dan6f9702e2014-11-01 20:38:06 +0000765 if( aNew ){
dan037b5322014-11-03 11:25:32 +0000766 ScanStatus *pNew = &aNew[p->nScan++];
dan6f9702e2014-11-01 20:38:06 +0000767 pNew->addrExplain = addrExplain;
768 pNew->addrLoop = addrLoop;
769 pNew->addrVisit = addrVisit;
770 pNew->nEst = nEst;
771 pNew->zName = sqlite3DbStrDup(p->db, zName);
772 p->aScan = aNew;
773 }
774}
775#endif
776
777
drh9a324642003-09-06 20:12:01 +0000778/*
drh0ff287f2015-09-02 18:40:33 +0000779** Change the value of the opcode, or P1, P2, P3, or P5 operands
780** for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000781*/
drh0ff287f2015-09-02 18:40:33 +0000782void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
783 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
784}
drh88caeac2011-08-24 15:12:08 +0000785void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000786 sqlite3VdbeGetOp(p,addr)->p1 = val;
drh9a324642003-09-06 20:12:01 +0000787}
drh88caeac2011-08-24 15:12:08 +0000788void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000789 sqlite3VdbeGetOp(p,addr)->p2 = val;
drh9a324642003-09-06 20:12:01 +0000790}
drh88caeac2011-08-24 15:12:08 +0000791void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000792 sqlite3VdbeGetOp(p,addr)->p3 = val;
danielk1977207872a2008-01-03 07:54:23 +0000793}
drh585ce192017-01-25 14:58:27 +0000794void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
drhdd3bfe82016-09-29 20:28:34 +0000795 assert( p->nOp>0 || p->db->mallocFailed );
796 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
danielk19771f4aa332008-01-03 09:51:55 +0000797}
798
799/*
drhf8875402006-03-17 13:56:34 +0000800** Change the P2 operand of instruction addr so that it points to
drhd654be82005-09-20 17:42:23 +0000801** the address of the next instruction to be coded.
802*/
803void sqlite3VdbeJumpHere(Vdbe *p, int addr){
drh0ff287f2015-09-02 18:40:33 +0000804 sqlite3VdbeChangeP2(p, addr, p->nOp);
drhd654be82005-09-20 17:42:23 +0000805}
drhb38ad992005-09-16 00:27:01 +0000806
drhb7f6f682006-07-08 17:06:43 +0000807
808/*
809** If the input FuncDef structure is ephemeral, then free it. If
810** the FuncDef is not ephermal, then do nothing.
811*/
drh633e6d52008-07-28 19:34:53 +0000812static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
drhf431a872016-05-20 15:53:47 +0000813 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
drhdbd6a7d2017-04-05 12:39:49 +0000814 sqlite3DbFreeNN(db, pDef);
drhb7f6f682006-07-08 17:06:43 +0000815 }
816}
817
dand46def72010-07-24 11:28:28 +0000818static void vdbeFreeOpArray(sqlite3 *, Op *, int);
819
drhb38ad992005-09-16 00:27:01 +0000820/*
drh66a51672008-01-03 00:01:23 +0000821** Delete a P4 value if necessary.
drhb38ad992005-09-16 00:27:01 +0000822*/
drhf431a872016-05-20 15:53:47 +0000823static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
824 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drhdbd6a7d2017-04-05 12:39:49 +0000825 sqlite3DbFreeNN(db, p);
drhf431a872016-05-20 15:53:47 +0000826}
827static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
828 freeEphemeralFunction(db, p->pFunc);
drhdbd6a7d2017-04-05 12:39:49 +0000829 sqlite3DbFreeNN(db, p);
drhf431a872016-05-20 15:53:47 +0000830}
drh633e6d52008-07-28 19:34:53 +0000831static void freeP4(sqlite3 *db, int p4type, void *p4){
drhbe5000d2016-04-07 14:05:20 +0000832 assert( db );
833 switch( p4type ){
834 case P4_FUNCCTX: {
drhf431a872016-05-20 15:53:47 +0000835 freeP4FuncCtx(db, (sqlite3_context*)p4);
836 break;
drhbe5000d2016-04-07 14:05:20 +0000837 }
838 case P4_REAL:
839 case P4_INT64:
840 case P4_DYNAMIC:
841 case P4_INTARRAY: {
842 sqlite3DbFree(db, p4);
843 break;
844 }
845 case P4_KEYINFO: {
846 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
847 break;
848 }
drh28935362013-12-07 20:39:19 +0000849#ifdef SQLITE_ENABLE_CURSOR_HINTS
drhbe5000d2016-04-07 14:05:20 +0000850 case P4_EXPR: {
851 sqlite3ExprDelete(db, (Expr*)p4);
852 break;
853 }
drh28935362013-12-07 20:39:19 +0000854#endif
drhbe5000d2016-04-07 14:05:20 +0000855 case P4_FUNCDEF: {
856 freeEphemeralFunction(db, (FuncDef*)p4);
857 break;
858 }
859 case P4_MEM: {
860 if( db->pnBytesFreed==0 ){
861 sqlite3ValueFree((sqlite3_value*)p4);
862 }else{
drhf431a872016-05-20 15:53:47 +0000863 freeP4Mem(db, (Mem*)p4);
drhb9755982010-07-24 16:34:37 +0000864 }
drhbe5000d2016-04-07 14:05:20 +0000865 break;
866 }
867 case P4_VTAB : {
868 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
869 break;
drhb38ad992005-09-16 00:27:01 +0000870 }
871 }
872}
873
dan65a7cd12009-09-01 12:16:01 +0000874/*
875** Free the space allocated for aOp and any p4 values allocated for the
876** opcodes contained within. If aOp is not NULL it is assumed to contain
877** nOp entries.
878*/
dan165921a2009-08-28 18:53:45 +0000879static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
880 if( aOp ){
881 Op *pOp;
drh0415d822017-04-10 20:51:21 +0000882 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
drh00dceca2016-01-11 22:58:50 +0000883 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
drhc7379ce2013-10-30 02:28:23 +0000884#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
dan165921a2009-08-28 18:53:45 +0000885 sqlite3DbFree(db, pOp->zComment);
886#endif
887 }
drhdbd6a7d2017-04-05 12:39:49 +0000888 sqlite3DbFreeNN(db, aOp);
dan165921a2009-08-28 18:53:45 +0000889 }
dan165921a2009-08-28 18:53:45 +0000890}
891
dan65a7cd12009-09-01 12:16:01 +0000892/*
dand19c9332010-07-26 12:05:17 +0000893** Link the SubProgram object passed as the second argument into the linked
894** list at Vdbe.pSubProgram. This list is used to delete all sub-program
895** objects when the VM is no longer required.
dan65a7cd12009-09-01 12:16:01 +0000896*/
dand19c9332010-07-26 12:05:17 +0000897void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
898 p->pNext = pVdbe->pProgram;
899 pVdbe->pProgram = p;
dan165921a2009-08-28 18:53:45 +0000900}
901
drh9a324642003-09-06 20:12:01 +0000902/*
drh48f2d3b2011-09-16 01:34:43 +0000903** Change the opcode at addr into OP_Noop
drhf8875402006-03-17 13:56:34 +0000904*/
drh2ce18652016-01-16 20:50:21 +0000905int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
906 VdbeOp *pOp;
907 if( p->db->mallocFailed ) return 0;
908 assert( addr>=0 && addr<p->nOp );
909 pOp = &p->aOp[addr];
910 freeP4(p->db, pOp->p4type, pOp->p4.p);
drh4b31bda2016-01-20 02:01:02 +0000911 pOp->p4type = P4_NOTUSED;
drh939e7782016-01-20 02:36:12 +0000912 pOp->p4.z = 0;
drh2ce18652016-01-16 20:50:21 +0000913 pOp->opcode = OP_Noop;
914 return 1;
drhf8875402006-03-17 13:56:34 +0000915}
916
917/*
drh39c4b822014-09-29 15:42:01 +0000918** If the last opcode is "op" and it is not a jump destination,
919** then remove it. Return true if and only if an opcode was removed.
drh762c1c42014-01-02 19:35:30 +0000920*/
drh61019c72014-01-04 16:49:02 +0000921int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
drh2831c4d2016-09-29 19:50:02 +0000922 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
drh2ce18652016-01-16 20:50:21 +0000923 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
drh61019c72014-01-04 16:49:02 +0000924 }else{
925 return 0;
926 }
drh762c1c42014-01-02 19:35:30 +0000927}
928
929/*
drh66a51672008-01-03 00:01:23 +0000930** Change the value of the P4 operand for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000931** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000932** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000933** few minor changes to the program.
934**
drh66a51672008-01-03 00:01:23 +0000935** If n>=0 then the P4 operand is dynamic, meaning that a copy of
drh17435752007-08-16 04:30:38 +0000936** the string is made into memory obtained from sqlite3_malloc().
drh66a51672008-01-03 00:01:23 +0000937** A value of n==0 means copy bytes of zP4 up to and including the
938** first null byte. If n>0 then copy n+1 bytes of zP4.
danielk19771f55c052005-05-19 08:42:59 +0000939**
drh66a51672008-01-03 00:01:23 +0000940** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
danielk19771f55c052005-05-19 08:42:59 +0000941** to a string or structure that is guaranteed to exist for the lifetime of
942** the Vdbe. In these cases we can just copy the pointer.
drh9a324642003-09-06 20:12:01 +0000943**
drh66a51672008-01-03 00:01:23 +0000944** If addr<0 then change P4 on the most recently inserted instruction.
drh9a324642003-09-06 20:12:01 +0000945*/
drh00dceca2016-01-11 22:58:50 +0000946static void SQLITE_NOINLINE vdbeChangeP4Full(
947 Vdbe *p,
948 Op *pOp,
949 const char *zP4,
950 int n
951){
952 if( pOp->p4type ){
953 freeP4(p->db, pOp->p4type, pOp->p4.p);
954 pOp->p4type = 0;
955 pOp->p4.p = 0;
956 }
957 if( n<0 ){
958 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
959 }else{
960 if( n==0 ) n = sqlite3Strlen30(zP4);
961 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
962 pOp->p4type = P4_DYNAMIC;
963 }
964}
drh66a51672008-01-03 00:01:23 +0000965void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
drh9a324642003-09-06 20:12:01 +0000966 Op *pOp;
drh633e6d52008-07-28 19:34:53 +0000967 sqlite3 *db;
drh91fd4d42008-01-19 20:11:25 +0000968 assert( p!=0 );
drh633e6d52008-07-28 19:34:53 +0000969 db = p->db;
drh91fd4d42008-01-19 20:11:25 +0000970 assert( p->magic==VDBE_MAGIC_INIT );
drh00dceca2016-01-11 22:58:50 +0000971 assert( p->aOp!=0 || db->mallocFailed );
972 if( db->mallocFailed ){
973 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
danielk1977d5d56522005-03-16 12:15:20 +0000974 return;
975 }
drh7b746032009-06-26 12:15:22 +0000976 assert( p->nOp>0 );
drh91fd4d42008-01-19 20:11:25 +0000977 assert( addr<p->nOp );
978 if( addr<0 ){
drh9a324642003-09-06 20:12:01 +0000979 addr = p->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000980 }
981 pOp = &p->aOp[addr];
drh00dceca2016-01-11 22:58:50 +0000982 if( n>=0 || pOp->p4type ){
983 vdbeChangeP4Full(p, pOp, zP4, n);
984 return;
985 }
drh98757152008-01-09 23:04:12 +0000986 if( n==P4_INT32 ){
mlcreech12d40822008-03-06 07:35:21 +0000987 /* Note: this cast is safe, because the origin data point was an int
988 ** that was cast to a (const char *). */
shane1fc41292008-07-08 22:28:48 +0000989 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
drh8df32842008-12-09 02:51:23 +0000990 pOp->p4type = P4_INT32;
drh00dceca2016-01-11 22:58:50 +0000991 }else if( zP4!=0 ){
992 assert( n<0 );
danielk19772dca4ac2008-01-03 11:50:29 +0000993 pOp->p4.p = (void*)zP4;
drh8df32842008-12-09 02:51:23 +0000994 pOp->p4type = (signed char)n;
drh00dceca2016-01-11 22:58:50 +0000995 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
drh9a324642003-09-06 20:12:01 +0000996 }
997}
998
drh2ec2fb22013-11-06 19:59:23 +0000999/*
drhf14b7fb2016-12-07 21:35:55 +00001000** Change the P4 operand of the most recently coded instruction
1001** to the value defined by the arguments. This is a high-speed
1002** version of sqlite3VdbeChangeP4().
1003**
1004** The P4 operand must not have been previously defined. And the new
1005** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1006** those cases.
1007*/
1008void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1009 VdbeOp *pOp;
1010 assert( n!=P4_INT32 && n!=P4_VTAB );
1011 assert( n<=0 );
1012 if( p->db->mallocFailed ){
1013 freeP4(p->db, n, pP4);
1014 }else{
1015 assert( pP4!=0 );
1016 assert( p->nOp>0 );
1017 pOp = &p->aOp[p->nOp-1];
1018 assert( pOp->p4type==P4_NOTUSED );
1019 pOp->p4type = n;
1020 pOp->p4.p = pP4;
1021 }
1022}
1023
1024/*
drh2ec2fb22013-11-06 19:59:23 +00001025** Set the P4 on the most recently added opcode to the KeyInfo for the
1026** index given.
1027*/
1028void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1029 Vdbe *v = pParse->pVdbe;
drhf14b7fb2016-12-07 21:35:55 +00001030 KeyInfo *pKeyInfo;
drh2ec2fb22013-11-06 19:59:23 +00001031 assert( v!=0 );
1032 assert( pIdx!=0 );
drhf14b7fb2016-12-07 21:35:55 +00001033 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1034 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
drh2ec2fb22013-11-06 19:59:23 +00001035}
1036
drhc7379ce2013-10-30 02:28:23 +00001037#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhad6d9462004-09-19 02:15:24 +00001038/*
mistachkind5578432012-08-25 10:01:29 +00001039** Change the comment on the most recently coded instruction. Or
drh16ee60f2008-06-20 18:13:25 +00001040** insert a No-op and add the comment to that new instruction. This
1041** makes the code easier to read during debugging. None of this happens
1042** in a production build.
drhad6d9462004-09-19 02:15:24 +00001043*/
drhb07028f2011-10-14 21:49:18 +00001044static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
danielk197701256832007-04-18 14:24:32 +00001045 assert( p->nOp>0 || p->aOp==0 );
drhd4e70eb2008-01-02 00:34:36 +00001046 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
danielk1977dba01372008-01-05 18:44:29 +00001047 if( p->nOp ){
drhb07028f2011-10-14 21:49:18 +00001048 assert( p->aOp );
1049 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1050 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1051 }
1052}
1053void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1054 va_list ap;
1055 if( p ){
danielk1977dba01372008-01-05 18:44:29 +00001056 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +00001057 vdbeVComment(p, zFormat, ap);
danielk1977dba01372008-01-05 18:44:29 +00001058 va_end(ap);
1059 }
drhad6d9462004-09-19 02:15:24 +00001060}
drh16ee60f2008-06-20 18:13:25 +00001061void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1062 va_list ap;
drhb07028f2011-10-14 21:49:18 +00001063 if( p ){
1064 sqlite3VdbeAddOp0(p, OP_Noop);
drh16ee60f2008-06-20 18:13:25 +00001065 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +00001066 vdbeVComment(p, zFormat, ap);
drh16ee60f2008-06-20 18:13:25 +00001067 va_end(ap);
1068 }
1069}
1070#endif /* NDEBUG */
drhad6d9462004-09-19 02:15:24 +00001071
drh688852a2014-02-17 22:40:43 +00001072#ifdef SQLITE_VDBE_COVERAGE
1073/*
1074** Set the value if the iSrcLine field for the previously coded instruction.
1075*/
1076void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1077 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1078}
1079#endif /* SQLITE_VDBE_COVERAGE */
1080
drh9a324642003-09-06 20:12:01 +00001081/*
drh20411ea2009-05-29 19:00:12 +00001082** Return the opcode for a given address. If the address is -1, then
1083** return the most recently inserted opcode.
1084**
1085** If a memory allocation error has occurred prior to the calling of this
1086** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
drhf83dc1e2010-06-03 12:09:52 +00001087** is readable but not writable, though it is cast to a writable value.
1088** The return of a dummy opcode allows the call to continue functioning
peter.d.reid60ec9142014-09-06 16:39:46 +00001089** after an OOM fault without having to check to see if the return from
drhf83dc1e2010-06-03 12:09:52 +00001090** this routine is a valid pointer. But because the dummy.opcode is 0,
1091** dummy will never be written to. This is verified by code inspection and
1092** by running with Valgrind.
drh9a324642003-09-06 20:12:01 +00001093*/
danielk19774adee202004-05-08 08:23:19 +00001094VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
drha0b75da2010-07-02 18:44:37 +00001095 /* C89 specifies that the constant "dummy" will be initialized to all
1096 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
mistachkin0fe5f952011-09-14 18:19:08 +00001097 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
drh9a324642003-09-06 20:12:01 +00001098 assert( p->magic==VDBE_MAGIC_INIT );
drh37b89a02009-06-19 00:33:31 +00001099 if( addr<0 ){
drh37b89a02009-06-19 00:33:31 +00001100 addr = p->nOp - 1;
1101 }
drh17435752007-08-16 04:30:38 +00001102 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
drh20411ea2009-05-29 19:00:12 +00001103 if( p->db->mallocFailed ){
drhf83dc1e2010-06-03 12:09:52 +00001104 return (VdbeOp*)&dummy;
drh20411ea2009-05-29 19:00:12 +00001105 }else{
1106 return &p->aOp[addr];
1107 }
drh9a324642003-09-06 20:12:01 +00001108}
1109
drhc7379ce2013-10-30 02:28:23 +00001110#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
drh81316f82013-10-29 20:40:47 +00001111/*
drhf63552b2013-10-30 00:25:03 +00001112** Return an integer value for one of the parameters to the opcode pOp
1113** determined by character c.
1114*/
1115static int translateP(char c, const Op *pOp){
1116 if( c=='1' ) return pOp->p1;
1117 if( c=='2' ) return pOp->p2;
1118 if( c=='3' ) return pOp->p3;
1119 if( c=='4' ) return pOp->p4.i;
1120 return pOp->p5;
1121}
1122
drh81316f82013-10-29 20:40:47 +00001123/*
drh4eded602013-12-20 15:59:20 +00001124** Compute a string for the "comment" field of a VDBE opcode listing.
1125**
1126** The Synopsis: field in comments in the vdbe.c source file gets converted
1127** to an extra string that is appended to the sqlite3OpcodeName(). In the
1128** absence of other comments, this synopsis becomes the comment on the opcode.
1129** Some translation occurs:
1130**
1131** "PX" -> "r[X]"
1132** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1133** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1134** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
drh81316f82013-10-29 20:40:47 +00001135*/
drhf63552b2013-10-30 00:25:03 +00001136static int displayComment(
1137 const Op *pOp, /* The opcode to be commented */
1138 const char *zP4, /* Previously obtained value for P4 */
1139 char *zTemp, /* Write result here */
1140 int nTemp /* Space available in zTemp[] */
1141){
drh81316f82013-10-29 20:40:47 +00001142 const char *zOpName;
1143 const char *zSynopsis;
1144 int nOpName;
1145 int ii, jj;
drh1ad78c52016-08-27 14:05:12 +00001146 char zAlt[50];
drh81316f82013-10-29 20:40:47 +00001147 zOpName = sqlite3OpcodeName(pOp->opcode);
1148 nOpName = sqlite3Strlen30(zOpName);
1149 if( zOpName[nOpName+1] ){
1150 int seenCom = 0;
drhf63552b2013-10-30 00:25:03 +00001151 char c;
drh81316f82013-10-29 20:40:47 +00001152 zSynopsis = zOpName += nOpName + 1;
drh1ad78c52016-08-27 14:05:12 +00001153 if( strncmp(zSynopsis,"IF ",3)==0 ){
1154 if( pOp->p5 & SQLITE_STOREP2 ){
1155 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1156 }else{
1157 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1158 }
1159 zSynopsis = zAlt;
1160 }
drhf63552b2013-10-30 00:25:03 +00001161 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1162 if( c=='P' ){
1163 c = zSynopsis[++ii];
1164 if( c=='4' ){
1165 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1166 }else if( c=='X' ){
1167 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1168 seenCom = 1;
drh81316f82013-10-29 20:40:47 +00001169 }else{
drhf63552b2013-10-30 00:25:03 +00001170 int v1 = translateP(c, pOp);
1171 int v2;
1172 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1173 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1174 ii += 3;
1175 jj += sqlite3Strlen30(zTemp+jj);
1176 v2 = translateP(zSynopsis[ii], pOp);
drh4eded602013-12-20 15:59:20 +00001177 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1178 ii += 2;
1179 v2++;
1180 }
1181 if( v2>1 ){
1182 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1183 }
drhf63552b2013-10-30 00:25:03 +00001184 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1185 ii += 4;
1186 }
drh81316f82013-10-29 20:40:47 +00001187 }
1188 jj += sqlite3Strlen30(zTemp+jj);
1189 }else{
drhf63552b2013-10-30 00:25:03 +00001190 zTemp[jj++] = c;
drh81316f82013-10-29 20:40:47 +00001191 }
1192 }
1193 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1194 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1195 jj += sqlite3Strlen30(zTemp+jj);
1196 }
1197 if( jj<nTemp ) zTemp[jj] = 0;
1198 }else if( pOp->zComment ){
1199 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1200 jj = sqlite3Strlen30(zTemp);
1201 }else{
1202 zTemp[0] = 0;
1203 jj = 0;
1204 }
1205 return jj;
1206}
1207#endif /* SQLITE_DEBUG */
1208
drhf7e36902015-08-13 21:32:41 +00001209#if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1210/*
1211** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1212** that can be displayed in the P4 column of EXPLAIN output.
1213*/
drh5f4a6862016-01-30 12:50:25 +00001214static void displayP4Expr(StrAccum *p, Expr *pExpr){
drha67a3162015-08-15 00:51:23 +00001215 const char *zOp = 0;
drhf7e36902015-08-13 21:32:41 +00001216 switch( pExpr->op ){
1217 case TK_STRING:
drh5f4a6862016-01-30 12:50:25 +00001218 sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
drhf7e36902015-08-13 21:32:41 +00001219 break;
drhf7e36902015-08-13 21:32:41 +00001220 case TK_INTEGER:
drh5f4a6862016-01-30 12:50:25 +00001221 sqlite3XPrintf(p, "%d", pExpr->u.iValue);
drhf7e36902015-08-13 21:32:41 +00001222 break;
drhf7e36902015-08-13 21:32:41 +00001223 case TK_NULL:
drh5f4a6862016-01-30 12:50:25 +00001224 sqlite3XPrintf(p, "NULL");
drhf7e36902015-08-13 21:32:41 +00001225 break;
drhf7e36902015-08-13 21:32:41 +00001226 case TK_REGISTER: {
drh5f4a6862016-01-30 12:50:25 +00001227 sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
drhf7e36902015-08-13 21:32:41 +00001228 break;
1229 }
drhf7e36902015-08-13 21:32:41 +00001230 case TK_COLUMN: {
drhfe663522015-08-14 01:03:21 +00001231 if( pExpr->iColumn<0 ){
drh5f4a6862016-01-30 12:50:25 +00001232 sqlite3XPrintf(p, "rowid");
drhfe663522015-08-14 01:03:21 +00001233 }else{
drh5f4a6862016-01-30 12:50:25 +00001234 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
drhfe663522015-08-14 01:03:21 +00001235 }
drhf7e36902015-08-13 21:32:41 +00001236 break;
1237 }
drha67a3162015-08-15 00:51:23 +00001238 case TK_LT: zOp = "LT"; break;
1239 case TK_LE: zOp = "LE"; break;
1240 case TK_GT: zOp = "GT"; break;
1241 case TK_GE: zOp = "GE"; break;
1242 case TK_NE: zOp = "NE"; break;
1243 case TK_EQ: zOp = "EQ"; break;
1244 case TK_IS: zOp = "IS"; break;
1245 case TK_ISNOT: zOp = "ISNOT"; break;
1246 case TK_AND: zOp = "AND"; break;
1247 case TK_OR: zOp = "OR"; break;
1248 case TK_PLUS: zOp = "ADD"; break;
1249 case TK_STAR: zOp = "MUL"; break;
1250 case TK_MINUS: zOp = "SUB"; break;
1251 case TK_REM: zOp = "REM"; break;
1252 case TK_BITAND: zOp = "BITAND"; break;
1253 case TK_BITOR: zOp = "BITOR"; break;
1254 case TK_SLASH: zOp = "DIV"; break;
1255 case TK_LSHIFT: zOp = "LSHIFT"; break;
1256 case TK_RSHIFT: zOp = "RSHIFT"; break;
1257 case TK_CONCAT: zOp = "CONCAT"; break;
1258 case TK_UMINUS: zOp = "MINUS"; break;
1259 case TK_UPLUS: zOp = "PLUS"; break;
1260 case TK_BITNOT: zOp = "BITNOT"; break;
1261 case TK_NOT: zOp = "NOT"; break;
1262 case TK_ISNULL: zOp = "ISNULL"; break;
1263 case TK_NOTNULL: zOp = "NOTNULL"; break;
drh81316f82013-10-29 20:40:47 +00001264
drhf7e36902015-08-13 21:32:41 +00001265 default:
drh5f4a6862016-01-30 12:50:25 +00001266 sqlite3XPrintf(p, "%s", "expr");
drhf7e36902015-08-13 21:32:41 +00001267 break;
1268 }
1269
drha67a3162015-08-15 00:51:23 +00001270 if( zOp ){
drh5f4a6862016-01-30 12:50:25 +00001271 sqlite3XPrintf(p, "%s(", zOp);
1272 displayP4Expr(p, pExpr->pLeft);
1273 if( pExpr->pRight ){
1274 sqlite3StrAccumAppend(p, ",", 1);
1275 displayP4Expr(p, pExpr->pRight);
drha67a3162015-08-15 00:51:23 +00001276 }
drh5f4a6862016-01-30 12:50:25 +00001277 sqlite3StrAccumAppend(p, ")", 1);
drhf7e36902015-08-13 21:32:41 +00001278 }
drhf7e36902015-08-13 21:32:41 +00001279}
1280#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1281
1282
1283#if VDBE_DISPLAY_P4
drh9a324642003-09-06 20:12:01 +00001284/*
drh66a51672008-01-03 00:01:23 +00001285** Compute a string that describes the P4 parameter for an opcode.
drhd3d39e92004-05-20 22:16:29 +00001286** Use zTemp for any required temporary buffer space.
1287*/
drh66a51672008-01-03 00:01:23 +00001288static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1289 char *zP4 = zTemp;
drh5f4a6862016-01-30 12:50:25 +00001290 StrAccum x;
drhd3d39e92004-05-20 22:16:29 +00001291 assert( nTemp>=20 );
drh5f4a6862016-01-30 12:50:25 +00001292 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
drh66a51672008-01-03 00:01:23 +00001293 switch( pOp->p4type ){
1294 case P4_KEYINFO: {
drh5f4a6862016-01-30 12:50:25 +00001295 int j;
danielk19772dca4ac2008-01-03 11:50:29 +00001296 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
drhe1a022e2012-09-17 17:16:53 +00001297 assert( pKeyInfo->aSortOrder!=0 );
drh5f4a6862016-01-30 12:50:25 +00001298 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField);
drhd3d39e92004-05-20 22:16:29 +00001299 for(j=0; j<pKeyInfo->nField; j++){
1300 CollSeq *pColl = pKeyInfo->aColl[j];
drh5f4a6862016-01-30 12:50:25 +00001301 const char *zColl = pColl ? pColl->zName : "";
1302 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1303 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
drhd3d39e92004-05-20 22:16:29 +00001304 }
drh5f4a6862016-01-30 12:50:25 +00001305 sqlite3StrAccumAppend(&x, ")", 1);
drhd3d39e92004-05-20 22:16:29 +00001306 break;
1307 }
drh28935362013-12-07 20:39:19 +00001308#ifdef SQLITE_ENABLE_CURSOR_HINTS
1309 case P4_EXPR: {
drh5f4a6862016-01-30 12:50:25 +00001310 displayP4Expr(&x, pOp->p4.pExpr);
drh28935362013-12-07 20:39:19 +00001311 break;
1312 }
1313#endif
drh66a51672008-01-03 00:01:23 +00001314 case P4_COLLSEQ: {
danielk19772dca4ac2008-01-03 11:50:29 +00001315 CollSeq *pColl = pOp->p4.pColl;
drh5f4a6862016-01-30 12:50:25 +00001316 sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
drhd3d39e92004-05-20 22:16:29 +00001317 break;
1318 }
drh66a51672008-01-03 00:01:23 +00001319 case P4_FUNCDEF: {
danielk19772dca4ac2008-01-03 11:50:29 +00001320 FuncDef *pDef = pOp->p4.pFunc;
drh5f4a6862016-01-30 12:50:25 +00001321 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
drhf9b596e2004-05-26 16:54:42 +00001322 break;
1323 }
drh30642cf2016-11-23 14:19:11 +00001324#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
drh9c7c9132015-06-26 18:16:52 +00001325 case P4_FUNCCTX: {
1326 FuncDef *pDef = pOp->p4.pCtx->pFunc;
drh5f4a6862016-01-30 12:50:25 +00001327 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
drh9c7c9132015-06-26 18:16:52 +00001328 break;
1329 }
drhe2d9e7c2015-06-26 18:47:53 +00001330#endif
drh66a51672008-01-03 00:01:23 +00001331 case P4_INT64: {
drh5f4a6862016-01-30 12:50:25 +00001332 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
drhd4e70eb2008-01-02 00:34:36 +00001333 break;
1334 }
drh66a51672008-01-03 00:01:23 +00001335 case P4_INT32: {
drh5f4a6862016-01-30 12:50:25 +00001336 sqlite3XPrintf(&x, "%d", pOp->p4.i);
drh598f1342007-10-23 15:39:45 +00001337 break;
1338 }
drh66a51672008-01-03 00:01:23 +00001339 case P4_REAL: {
drh5f4a6862016-01-30 12:50:25 +00001340 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
drhd4e70eb2008-01-02 00:34:36 +00001341 break;
1342 }
drh66a51672008-01-03 00:01:23 +00001343 case P4_MEM: {
danielk19772dca4ac2008-01-03 11:50:29 +00001344 Mem *pMem = pOp->p4.pMem;
drhd4e70eb2008-01-02 00:34:36 +00001345 if( pMem->flags & MEM_Str ){
drh66a51672008-01-03 00:01:23 +00001346 zP4 = pMem->z;
drhd4e70eb2008-01-02 00:34:36 +00001347 }else if( pMem->flags & MEM_Int ){
drh5f4a6862016-01-30 12:50:25 +00001348 sqlite3XPrintf(&x, "%lld", pMem->u.i);
drhd4e70eb2008-01-02 00:34:36 +00001349 }else if( pMem->flags & MEM_Real ){
drh5f4a6862016-01-30 12:50:25 +00001350 sqlite3XPrintf(&x, "%.16g", pMem->u.r);
drhb8475df2011-12-09 16:21:19 +00001351 }else if( pMem->flags & MEM_Null ){
drh5f4a6862016-01-30 12:50:25 +00001352 zP4 = "NULL";
drh56016892009-08-25 14:24:04 +00001353 }else{
1354 assert( pMem->flags & MEM_Blob );
1355 zP4 = "(blob)";
drhd4e70eb2008-01-02 00:34:36 +00001356 }
drh598f1342007-10-23 15:39:45 +00001357 break;
1358 }
drha967e882006-06-13 01:04:52 +00001359#ifndef SQLITE_OMIT_VIRTUALTABLE
drh66a51672008-01-03 00:01:23 +00001360 case P4_VTAB: {
danielk1977595a5232009-07-24 17:58:53 +00001361 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
drh5f4a6862016-01-30 12:50:25 +00001362 sqlite3XPrintf(&x, "vtab:%p", pVtab);
drha967e882006-06-13 01:04:52 +00001363 break;
1364 }
1365#endif
drh0acb7e42008-06-25 00:12:41 +00001366 case P4_INTARRAY: {
drh5f4a6862016-01-30 12:50:25 +00001367 int i;
drhb1702022016-01-30 00:45:18 +00001368 int *ai = pOp->p4.ai;
1369 int n = ai[0]; /* The first element of an INTARRAY is always the
1370 ** count of the number of elements to follow */
drh5f4a6862016-01-30 12:50:25 +00001371 for(i=1; i<n; i++){
1372 sqlite3XPrintf(&x, ",%d", ai[i]);
1373 }
drhb1702022016-01-30 00:45:18 +00001374 zTemp[0] = '[';
drh5f4a6862016-01-30 12:50:25 +00001375 sqlite3StrAccumAppend(&x, "]", 1);
drh0acb7e42008-06-25 00:12:41 +00001376 break;
1377 }
dan165921a2009-08-28 18:53:45 +00001378 case P4_SUBPROGRAM: {
drh5f4a6862016-01-30 12:50:25 +00001379 sqlite3XPrintf(&x, "program");
dan165921a2009-08-28 18:53:45 +00001380 break;
1381 }
drh4a6f3aa2011-08-28 00:19:26 +00001382 case P4_ADVANCE: {
1383 zTemp[0] = 0;
1384 break;
1385 }
drh74c33022016-03-30 12:56:55 +00001386 case P4_TABLE: {
1387 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName);
1388 break;
1389 }
drhd3d39e92004-05-20 22:16:29 +00001390 default: {
danielk19772dca4ac2008-01-03 11:50:29 +00001391 zP4 = pOp->p4.z;
drh949f9cd2008-01-12 21:35:57 +00001392 if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +00001393 zP4 = zTemp;
drhd4e70eb2008-01-02 00:34:36 +00001394 zTemp[0] = 0;
drhd3d39e92004-05-20 22:16:29 +00001395 }
1396 }
1397 }
drh5f4a6862016-01-30 12:50:25 +00001398 sqlite3StrAccumFinish(&x);
drh66a51672008-01-03 00:01:23 +00001399 assert( zP4!=0 );
drh66a51672008-01-03 00:01:23 +00001400 return zP4;
drhd3d39e92004-05-20 22:16:29 +00001401}
drhf7e36902015-08-13 21:32:41 +00001402#endif /* VDBE_DISPLAY_P4 */
drhd3d39e92004-05-20 22:16:29 +00001403
drh900b31e2007-08-28 02:27:51 +00001404/*
drhd0679ed2007-08-28 22:24:34 +00001405** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
drh3ebaee92010-05-06 21:37:22 +00001406**
drhbdaec522011-04-04 00:14:43 +00001407** The prepared statements need to know in advance the complete set of
drhe4c88c02012-01-04 12:57:45 +00001408** attached databases that will be use. A mask of these databases
1409** is maintained in p->btreeMask. The p->lockMask value is the subset of
1410** p->btreeMask of databases that will require a lock.
drh900b31e2007-08-28 02:27:51 +00001411*/
drhfb982642007-08-30 01:19:59 +00001412void sqlite3VdbeUsesBtree(Vdbe *p, int i){
drhfcd71b62011-04-05 22:08:24 +00001413 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
danielk197700e13612008-11-17 19:18:54 +00001414 assert( i<(int)sizeof(p->btreeMask)*8 );
drha7ab6d82014-07-21 15:44:39 +00001415 DbMaskSet(p->btreeMask, i);
drhdc5b0472011-04-06 22:05:53 +00001416 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
drha7ab6d82014-07-21 15:44:39 +00001417 DbMaskSet(p->lockMask, i);
drhdc5b0472011-04-06 22:05:53 +00001418 }
drh900b31e2007-08-28 02:27:51 +00001419}
1420
dan20d876f2016-01-07 16:06:22 +00001421#if !defined(SQLITE_OMIT_SHARED_CACHE)
drhbdaec522011-04-04 00:14:43 +00001422/*
1423** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1424** this routine obtains the mutex associated with each BtShared structure
1425** that may be accessed by the VM passed as an argument. In doing so it also
1426** sets the BtShared.db member of each of the BtShared structures, ensuring
1427** that the correct busy-handler callback is invoked if required.
1428**
1429** If SQLite is not threadsafe but does support shared-cache mode, then
1430** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1431** of all of BtShared structures accessible via the database handle
1432** associated with the VM.
1433**
1434** If SQLite is not threadsafe and does not support shared-cache mode, this
1435** function is a no-op.
1436**
1437** The p->btreeMask field is a bitmask of all btrees that the prepared
1438** statement p will ever use. Let N be the number of bits in p->btreeMask
1439** corresponding to btrees that use shared cache. Then the runtime of
1440** this routine is N*N. But as N is rarely more than 1, this should not
1441** be a problem.
1442*/
1443void sqlite3VdbeEnter(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001444 int i;
drhdc5b0472011-04-06 22:05:53 +00001445 sqlite3 *db;
1446 Db *aDb;
1447 int nDb;
drha7ab6d82014-07-21 15:44:39 +00001448 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
drhdc5b0472011-04-06 22:05:53 +00001449 db = p->db;
1450 aDb = db->aDb;
1451 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001452 for(i=0; i<nDb; i++){
1453 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001454 sqlite3BtreeEnter(aDb[i].pBt);
1455 }
1456 }
drhbdaec522011-04-04 00:14:43 +00001457}
drhe54e0512011-04-05 17:31:56 +00001458#endif
drhbdaec522011-04-04 00:14:43 +00001459
drhe54e0512011-04-05 17:31:56 +00001460#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001461/*
1462** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1463*/
drhf1aabd62015-06-17 01:31:28 +00001464static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001465 int i;
drhdc5b0472011-04-06 22:05:53 +00001466 sqlite3 *db;
1467 Db *aDb;
1468 int nDb;
drhdc5b0472011-04-06 22:05:53 +00001469 db = p->db;
1470 aDb = db->aDb;
1471 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001472 for(i=0; i<nDb; i++){
1473 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001474 sqlite3BtreeLeave(aDb[i].pBt);
1475 }
1476 }
drhbdaec522011-04-04 00:14:43 +00001477}
drhf1aabd62015-06-17 01:31:28 +00001478void sqlite3VdbeLeave(Vdbe *p){
1479 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1480 vdbeLeave(p);
1481}
drhbdaec522011-04-04 00:14:43 +00001482#endif
drhd3d39e92004-05-20 22:16:29 +00001483
danielk19778b60e0f2005-01-12 09:10:39 +00001484#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +00001485/*
1486** Print a single opcode. This routine is used for debugging only.
1487*/
danielk19774adee202004-05-08 08:23:19 +00001488void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
drh66a51672008-01-03 00:01:23 +00001489 char *zP4;
drhd3d39e92004-05-20 22:16:29 +00001490 char zPtr[50];
drh81316f82013-10-29 20:40:47 +00001491 char zCom[100];
drh26198bb2013-10-31 11:15:09 +00001492 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
drh9a324642003-09-06 20:12:01 +00001493 if( pOut==0 ) pOut = stdout;
drh66a51672008-01-03 00:01:23 +00001494 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
drhc7379ce2013-10-30 02:28:23 +00001495#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh81316f82013-10-29 20:40:47 +00001496 displayComment(pOp, zP4, zCom, sizeof(zCom));
1497#else
drh2926f962014-02-17 01:13:28 +00001498 zCom[0] = 0;
drh81316f82013-10-29 20:40:47 +00001499#endif
drh4eded602013-12-20 15:59:20 +00001500 /* NB: The sqlite3OpcodeName() function is implemented by code created
1501 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1502 ** information from the vdbe.c source text */
danielk197711641c12008-01-03 08:18:30 +00001503 fprintf(pOut, zFormat1, pc,
drh1db639c2008-01-17 02:36:28 +00001504 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
drh81316f82013-10-29 20:40:47 +00001505 zCom
drh1db639c2008-01-17 02:36:28 +00001506 );
drh9a324642003-09-06 20:12:01 +00001507 fflush(pOut);
1508}
1509#endif
1510
1511/*
drh2a1df932016-09-30 17:46:44 +00001512** Initialize an array of N Mem element.
1513*/
1514static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1515 while( (N--)>0 ){
1516 p->db = db;
1517 p->flags = flags;
1518 p->szMalloc = 0;
1519#ifdef SQLITE_DEBUG
1520 p->pScopyFrom = 0;
1521#endif
1522 p++;
1523 }
1524}
1525
1526/*
drh76ff3a02004-09-24 22:32:30 +00001527** Release an array of N Mem elements
1528*/
drhc890fec2008-08-01 20:10:08 +00001529static void releaseMemArray(Mem *p, int N){
danielk1977a7a8e142008-02-13 18:25:27 +00001530 if( p && N ){
drh069c23c2014-09-19 16:13:12 +00001531 Mem *pEnd = &p[N];
danielk1977a7a8e142008-02-13 18:25:27 +00001532 sqlite3 *db = p->db;
dand46def72010-07-24 11:28:28 +00001533 if( db->pnBytesFreed ){
drh069c23c2014-09-19 16:13:12 +00001534 do{
drh17bcb102014-09-18 21:25:33 +00001535 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drh069c23c2014-09-19 16:13:12 +00001536 }while( (++p)<pEnd );
drhc176c272010-07-26 13:57:59 +00001537 return;
1538 }
drh069c23c2014-09-19 16:13:12 +00001539 do{
danielk1977e972e032008-09-19 18:32:26 +00001540 assert( (&p[1])==pEnd || p[0].db==p[1].db );
drh75fd0542014-03-01 16:24:44 +00001541 assert( sqlite3VdbeCheckMemInvariants(p) );
danielk1977e972e032008-09-19 18:32:26 +00001542
1543 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1544 ** that takes advantage of the fact that the memory cell value is
1545 ** being set to NULL after releasing any dynamic resources.
1546 **
1547 ** The justification for duplicating code is that according to
1548 ** callgrind, this causes a certain test case to hit the CPU 4.7
1549 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1550 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1551 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1552 ** with no indexes using a single prepared INSERT statement, bind()
1553 ** and reset(). Inserts are grouped into a transaction.
1554 */
drhb6e8fd12014-03-06 01:56:33 +00001555 testcase( p->flags & MEM_Agg );
1556 testcase( p->flags & MEM_Dyn );
1557 testcase( p->flags & MEM_Frame );
1558 testcase( p->flags & MEM_RowSet );
dan165921a2009-08-28 18:53:45 +00001559 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
danielk1977e972e032008-09-19 18:32:26 +00001560 sqlite3VdbeMemRelease(p);
drh17bcb102014-09-18 21:25:33 +00001561 }else if( p->szMalloc ){
drhdbd6a7d2017-04-05 12:39:49 +00001562 sqlite3DbFreeNN(db, p->zMalloc);
drh17bcb102014-09-18 21:25:33 +00001563 p->szMalloc = 0;
danielk1977e972e032008-09-19 18:32:26 +00001564 }
1565
drha5750cf2014-02-07 13:20:31 +00001566 p->flags = MEM_Undefined;
drh069c23c2014-09-19 16:13:12 +00001567 }while( (++p)<pEnd );
drh76ff3a02004-09-24 22:32:30 +00001568 }
1569}
1570
dan65a7cd12009-09-01 12:16:01 +00001571/*
1572** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1573** allocated by the OP_Program opcode in sqlite3VdbeExec().
1574*/
dan165921a2009-08-28 18:53:45 +00001575void sqlite3VdbeFrameDelete(VdbeFrame *p){
1576 int i;
1577 Mem *aMem = VdbeFrameMem(p);
1578 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1579 for(i=0; i<p->nChildCsr; i++){
1580 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1581 }
1582 releaseMemArray(aMem, p->nChildMem);
drhb9626cf2016-02-22 16:04:31 +00001583 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
dan165921a2009-08-28 18:53:45 +00001584 sqlite3DbFree(p->v->db, p);
1585}
1586
drhb7f91642004-10-31 02:22:47 +00001587#ifndef SQLITE_OMIT_EXPLAIN
drh76ff3a02004-09-24 22:32:30 +00001588/*
drh9a324642003-09-06 20:12:01 +00001589** Give a listing of the program in the virtual machine.
1590**
danielk19774adee202004-05-08 08:23:19 +00001591** The interface is the same as sqlite3VdbeExec(). But instead of
drh9a324642003-09-06 20:12:01 +00001592** running the code, it invokes the callback once for each instruction.
1593** This feature is used to implement "EXPLAIN".
drh9cbf3422008-01-17 16:22:13 +00001594**
1595** When p->explain==1, each instruction is listed. When
1596** p->explain==2, only OP_Explain instructions are listed and these
1597** are shown in a different format. p->explain==2 is used to implement
1598** EXPLAIN QUERY PLAN.
drh5cfa5842009-12-31 20:35:08 +00001599**
1600** When p->explain==1, first the main program is listed, then each of
1601** the trigger subprograms are listed one by one.
drh9a324642003-09-06 20:12:01 +00001602*/
danielk19774adee202004-05-08 08:23:19 +00001603int sqlite3VdbeList(
drh9a324642003-09-06 20:12:01 +00001604 Vdbe *p /* The VDBE */
1605){
drh5cfa5842009-12-31 20:35:08 +00001606 int nRow; /* Stop when row count reaches this */
dan165921a2009-08-28 18:53:45 +00001607 int nSub = 0; /* Number of sub-vdbes seen so far */
1608 SubProgram **apSub = 0; /* Array of sub-vdbes */
drh5cfa5842009-12-31 20:35:08 +00001609 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1610 sqlite3 *db = p->db; /* The database connection */
1611 int i; /* Loop counter */
1612 int rc = SQLITE_OK; /* Return code */
drh9734e6e2011-10-07 18:24:25 +00001613 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
dan280db652017-04-17 17:03:08 +00001614 int bFull = (p->explain==1 || (db->flags & SQLITE_FullEQP));
1615 Op *pOp;
drh9a324642003-09-06 20:12:01 +00001616
drh9a324642003-09-06 20:12:01 +00001617 assert( p->explain );
drh5f82e3c2009-07-06 00:44:08 +00001618 assert( p->magic==VDBE_MAGIC_RUN );
danielk19776c359f02008-11-21 16:58:03 +00001619 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
danielk197718f41892004-05-22 07:27:46 +00001620
drh9cbf3422008-01-17 16:22:13 +00001621 /* Even though this opcode does not use dynamic strings for
1622 ** the result, result columns may become dynamic if the user calls
drh4f26d6c2004-05-26 23:25:30 +00001623 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
danielk197718f41892004-05-22 07:27:46 +00001624 */
dan165921a2009-08-28 18:53:45 +00001625 releaseMemArray(pMem, 8);
drh9734e6e2011-10-07 18:24:25 +00001626 p->pResultSet = 0;
danielk197718f41892004-05-22 07:27:46 +00001627
mistachkinfad30392016-02-13 23:43:46 +00001628 if( p->rc==SQLITE_NOMEM_BKPT ){
danielk19776c359f02008-11-21 16:58:03 +00001629 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1630 ** sqlite3_column_text16() failed. */
drh4a642b62016-02-05 01:55:27 +00001631 sqlite3OomFault(db);
danielk19776c359f02008-11-21 16:58:03 +00001632 return SQLITE_ERROR;
1633 }
1634
drh5cfa5842009-12-31 20:35:08 +00001635 /* When the number of output rows reaches nRow, that means the
1636 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1637 ** nRow is the sum of the number of rows in the main program, plus
1638 ** the sum of the number of rows in all trigger subprograms encountered
1639 ** so far. The nRow value will increase as new trigger subprograms are
1640 ** encountered, but p->pc will eventually catch up to nRow.
1641 */
dan165921a2009-08-28 18:53:45 +00001642 nRow = p->nOp;
dan280db652017-04-17 17:03:08 +00001643 if( bFull ){
drh5cfa5842009-12-31 20:35:08 +00001644 /* The first 8 memory cells are used for the result set. So we will
1645 ** commandeer the 9th cell to use as storage for an array of pointers
1646 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1647 ** cells. */
1648 assert( p->nMem>9 );
dan165921a2009-08-28 18:53:45 +00001649 pSub = &p->aMem[9];
1650 if( pSub->flags&MEM_Blob ){
drh5cfa5842009-12-31 20:35:08 +00001651 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1652 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
dan165921a2009-08-28 18:53:45 +00001653 nSub = pSub->n/sizeof(Vdbe*);
1654 apSub = (SubProgram **)pSub->z;
1655 }
1656 for(i=0; i<nSub; i++){
1657 nRow += apSub[i]->nOp;
1658 }
1659 }
1660
drhecc92422005-09-10 16:46:12 +00001661 do{
1662 i = p->pc++;
dan280db652017-04-17 17:03:08 +00001663 if( i>=nRow ){
1664 p->rc = SQLITE_OK;
1665 rc = SQLITE_DONE;
1666 break;
1667 }
dan165921a2009-08-28 18:53:45 +00001668 if( i<p->nOp ){
drh5cfa5842009-12-31 20:35:08 +00001669 /* The output line number is small enough that we are still in the
1670 ** main program. */
dan165921a2009-08-28 18:53:45 +00001671 pOp = &p->aOp[i];
1672 }else{
drh5cfa5842009-12-31 20:35:08 +00001673 /* We are currently listing subprograms. Figure out which one and
1674 ** pick up the appropriate opcode. */
dan165921a2009-08-28 18:53:45 +00001675 int j;
1676 i -= p->nOp;
1677 for(j=0; i>=apSub[j]->nOp; j++){
1678 i -= apSub[j]->nOp;
1679 }
1680 pOp = &apSub[j]->aOp[i];
1681 }
dan165921a2009-08-28 18:53:45 +00001682
dan280db652017-04-17 17:03:08 +00001683 /* When an OP_Program opcode is encounter (the only opcode that has
1684 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1685 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1686 ** has not already been seen.
1687 */
1688 if( bFull && pOp->p4type==P4_SUBPROGRAM ){
1689 int nByte = (nSub+1)*sizeof(SubProgram*);
1690 int j;
1691 for(j=0; j<nSub; j++){
1692 if( apSub[j]==pOp->p4.pProgram ) break;
1693 }
1694 if( j==nSub ){
1695 rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
1696 if( rc!=SQLITE_OK ) break;
1697 apSub = (SubProgram **)pSub->z;
1698 apSub[nSub++] = pOp->p4.pProgram;
1699 pSub->flags |= MEM_Blob;
1700 pSub->n = nSub*sizeof(SubProgram*);
1701 nRow += pOp->p4.pProgram->nOp;
dan165921a2009-08-28 18:53:45 +00001702 }
danielk19770d78bae2008-01-03 07:09:48 +00001703 }
dan280db652017-04-17 17:03:08 +00001704 }while( p->explain==2 && pOp->opcode!=OP_Explain );
drheb2e1762004-05-27 01:53:56 +00001705
dan280db652017-04-17 17:03:08 +00001706 if( rc==SQLITE_OK ){
1707 if( db->u1.isInterrupted ){
1708 p->rc = SQLITE_INTERRUPT;
1709 rc = SQLITE_ERROR;
1710 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
danielk1977a7a8e142008-02-13 18:25:27 +00001711 }else{
dan280db652017-04-17 17:03:08 +00001712 char *zP4;
1713 if( p->explain==1 ){
1714 pMem->flags = MEM_Int;
1715 pMem->u.i = i; /* Program counter */
1716 pMem++;
1717
1718 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1719 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1720 assert( pMem->z!=0 );
1721 pMem->n = sqlite3Strlen30(pMem->z);
1722 pMem->enc = SQLITE_UTF8;
1723 pMem++;
danielk1977a7a8e142008-02-13 18:25:27 +00001724 }
dan280db652017-04-17 17:03:08 +00001725
1726 pMem->flags = MEM_Int;
1727 pMem->u.i = pOp->p1; /* P1 */
danielk19770d78bae2008-01-03 07:09:48 +00001728 pMem++;
dan280db652017-04-17 17:03:08 +00001729
1730 pMem->flags = MEM_Int;
1731 pMem->u.i = pOp->p2; /* P2 */
1732 pMem++;
1733
1734 pMem->flags = MEM_Int;
1735 pMem->u.i = pOp->p3; /* P3 */
1736 pMem++;
1737
1738 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
drh81316f82013-10-29 20:40:47 +00001739 assert( p->db->mallocFailed );
1740 return SQLITE_ERROR;
drh52391cb2008-02-14 23:44:13 +00001741 }
drhc91b2fd2014-03-01 18:13:23 +00001742 pMem->flags = MEM_Str|MEM_Term;
dan280db652017-04-17 17:03:08 +00001743 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
1744 if( zP4!=pMem->z ){
1745 pMem->n = 0;
1746 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1747 }else{
1748 assert( pMem->z!=0 );
1749 pMem->n = sqlite3Strlen30(pMem->z);
1750 pMem->enc = SQLITE_UTF8;
1751 }
1752 pMem++;
danielk19770d78bae2008-01-03 07:09:48 +00001753
dan280db652017-04-17 17:03:08 +00001754 if( p->explain==1 ){
1755 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1756 assert( p->db->mallocFailed );
1757 return SQLITE_ERROR;
1758 }
1759 pMem->flags = MEM_Str|MEM_Term;
1760 pMem->n = 2;
1761 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1762 pMem->enc = SQLITE_UTF8;
1763 pMem++;
1764
1765#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1766 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1767 assert( p->db->mallocFailed );
1768 return SQLITE_ERROR;
1769 }
1770 pMem->flags = MEM_Str|MEM_Term;
1771 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1772 pMem->enc = SQLITE_UTF8;
1773#else
1774 pMem->flags = MEM_Null; /* Comment */
1775#endif
1776 }
1777
1778 p->nResColumn = 8 - 4*(p->explain-1);
1779 p->pResultSet = &p->aMem[1];
1780 p->rc = SQLITE_OK;
1781 rc = SQLITE_ROW;
1782 }
drh9a324642003-09-06 20:12:01 +00001783 }
drh826fb5a2004-02-14 23:59:57 +00001784 return rc;
drh9a324642003-09-06 20:12:01 +00001785}
drhb7f91642004-10-31 02:22:47 +00001786#endif /* SQLITE_OMIT_EXPLAIN */
drh9a324642003-09-06 20:12:01 +00001787
drh7c4ac0c2007-04-05 11:25:58 +00001788#ifdef SQLITE_DEBUG
drh9a324642003-09-06 20:12:01 +00001789/*
drh3f7d4e42004-07-24 14:35:58 +00001790** Print the SQL that was used to generate a VDBE program.
1791*/
1792void sqlite3VdbePrintSql(Vdbe *p){
drh84e55a82013-11-13 17:58:23 +00001793 const char *z = 0;
1794 if( p->zSql ){
1795 z = p->zSql;
1796 }else if( p->nOp>=1 ){
1797 const VdbeOp *pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001798 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh84e55a82013-11-13 17:58:23 +00001799 z = pOp->p4.z;
1800 while( sqlite3Isspace(*z) ) z++;
1801 }
drh3f7d4e42004-07-24 14:35:58 +00001802 }
drh84e55a82013-11-13 17:58:23 +00001803 if( z ) printf("SQL: [%s]\n", z);
drh3f7d4e42004-07-24 14:35:58 +00001804}
drh7c4ac0c2007-04-05 11:25:58 +00001805#endif
drh3f7d4e42004-07-24 14:35:58 +00001806
drh602c2372007-03-01 00:29:13 +00001807#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1808/*
1809** Print an IOTRACE message showing SQL content.
1810*/
1811void sqlite3VdbeIOTraceSql(Vdbe *p){
1812 int nOp = p->nOp;
1813 VdbeOp *pOp;
mlcreech3a00f902008-03-04 17:45:01 +00001814 if( sqlite3IoTrace==0 ) return;
drh602c2372007-03-01 00:29:13 +00001815 if( nOp<1 ) return;
drh949f9cd2008-01-12 21:35:57 +00001816 pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001817 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh602c2372007-03-01 00:29:13 +00001818 int i, j;
drh00a18e42007-08-13 11:10:34 +00001819 char z[1000];
drh949f9cd2008-01-12 21:35:57 +00001820 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
danielk197778ca0e72009-01-20 16:53:39 +00001821 for(i=0; sqlite3Isspace(z[i]); i++){}
drh602c2372007-03-01 00:29:13 +00001822 for(j=0; z[i]; i++){
danielk197778ca0e72009-01-20 16:53:39 +00001823 if( sqlite3Isspace(z[i]) ){
drh602c2372007-03-01 00:29:13 +00001824 if( z[i-1]!=' ' ){
1825 z[j++] = ' ';
1826 }
1827 }else{
1828 z[j++] = z[i];
1829 }
1830 }
1831 z[j] = 0;
mlcreech3a00f902008-03-04 17:45:01 +00001832 sqlite3IoTrace("SQL %s\n", z);
drh602c2372007-03-01 00:29:13 +00001833 }
1834}
1835#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1836
drha7dc4a32016-01-25 02:15:02 +00001837/* An instance of this object describes bulk memory available for use
1838** by subcomponents of a prepared statement. Space is allocated out
1839** of a ReusableSpace object by the allocSpace() routine below.
1840*/
1841struct ReusableSpace {
1842 u8 *pSpace; /* Available memory */
1843 int nFree; /* Bytes of available memory */
1844 int nNeeded; /* Total bytes that could not be allocated */
1845};
1846
1847/* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1848** from the ReusableSpace object. Return a pointer to the allocated
1849** memory on success. If insufficient memory is available in the
1850** ReusableSpace object, increase the ReusableSpace.nNeeded
1851** value by the amount needed and return NULL.
drh4800b2e2009-12-08 15:35:22 +00001852**
drha7dc4a32016-01-25 02:15:02 +00001853** If pBuf is not initially NULL, that means that the memory has already
1854** been allocated by a prior call to this routine, so just return a copy
1855** of pBuf and leave ReusableSpace unchanged.
drhb2771ce2009-02-20 01:28:59 +00001856**
drha7dc4a32016-01-25 02:15:02 +00001857** This allocator is employed to repurpose unused slots at the end of the
1858** opcode array of prepared state for other memory needs of the prepared
1859** statement.
drhb2771ce2009-02-20 01:28:59 +00001860*/
drh4800b2e2009-12-08 15:35:22 +00001861static void *allocSpace(
drha7dc4a32016-01-25 02:15:02 +00001862 struct ReusableSpace *p, /* Bulk memory available for allocation */
1863 void *pBuf, /* Pointer to a prior allocation */
1864 int nByte /* Bytes of memory needed */
drhb2771ce2009-02-20 01:28:59 +00001865){
drha7dc4a32016-01-25 02:15:02 +00001866 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
drhd797a9b2015-12-07 16:43:44 +00001867 if( pBuf==0 ){
1868 nByte = ROUND8(nByte);
drha7dc4a32016-01-25 02:15:02 +00001869 if( nByte <= p->nFree ){
1870 p->nFree -= nByte;
1871 pBuf = &p->pSpace[p->nFree];
drhd797a9b2015-12-07 16:43:44 +00001872 }else{
drha7dc4a32016-01-25 02:15:02 +00001873 p->nNeeded += nByte;
drhd797a9b2015-12-07 16:43:44 +00001874 }
drhb2771ce2009-02-20 01:28:59 +00001875 }
drhd797a9b2015-12-07 16:43:44 +00001876 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
drh4800b2e2009-12-08 15:35:22 +00001877 return pBuf;
drhb2771ce2009-02-20 01:28:59 +00001878}
drh602c2372007-03-01 00:29:13 +00001879
drh3f7d4e42004-07-24 14:35:58 +00001880/*
drh124c0b42011-06-01 18:15:55 +00001881** Rewind the VDBE back to the beginning in preparation for
1882** running it.
drh9a324642003-09-06 20:12:01 +00001883*/
drh124c0b42011-06-01 18:15:55 +00001884void sqlite3VdbeRewind(Vdbe *p){
1885#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1886 int i;
1887#endif
drh9a324642003-09-06 20:12:01 +00001888 assert( p!=0 );
drhab3182f2016-10-01 00:37:50 +00001889 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
drh9a324642003-09-06 20:12:01 +00001890
drhc16a03b2004-09-15 13:38:10 +00001891 /* There should be at least one opcode.
drh9a324642003-09-06 20:12:01 +00001892 */
drhc16a03b2004-09-15 13:38:10 +00001893 assert( p->nOp>0 );
drh9a324642003-09-06 20:12:01 +00001894
danielk197700e13612008-11-17 19:18:54 +00001895 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
danielk1977634f2982005-03-28 08:44:07 +00001896 p->magic = VDBE_MAGIC_RUN;
1897
drh124c0b42011-06-01 18:15:55 +00001898#ifdef SQLITE_DEBUG
drh9f6168b2016-03-19 23:32:58 +00001899 for(i=0; i<p->nMem; i++){
drh124c0b42011-06-01 18:15:55 +00001900 assert( p->aMem[i].db==p->db );
1901 }
1902#endif
1903 p->pc = -1;
1904 p->rc = SQLITE_OK;
1905 p->errorAction = OE_Abort;
drh124c0b42011-06-01 18:15:55 +00001906 p->nChange = 0;
1907 p->cacheCtr = 1;
1908 p->minWriteFileFormat = 255;
1909 p->iStatement = 0;
1910 p->nFkConstraint = 0;
1911#ifdef VDBE_PROFILE
1912 for(i=0; i<p->nOp; i++){
1913 p->aOp[i].cnt = 0;
1914 p->aOp[i].cycles = 0;
1915 }
1916#endif
1917}
1918
1919/*
1920** Prepare a virtual machine for execution for the first time after
1921** creating the virtual machine. This involves things such
drh7abda852014-09-19 16:02:06 +00001922** as allocating registers and initializing the program counter.
drh124c0b42011-06-01 18:15:55 +00001923** After the VDBE has be prepped, it can be executed by one or more
1924** calls to sqlite3VdbeExec().
1925**
peter.d.reid60ec9142014-09-06 16:39:46 +00001926** This function may be called exactly once on each virtual machine.
drh124c0b42011-06-01 18:15:55 +00001927** After this routine is called the VM has been "packaged" and is ready
peter.d.reid60ec9142014-09-06 16:39:46 +00001928** to run. After this routine is called, further calls to
drh124c0b42011-06-01 18:15:55 +00001929** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1930** the Vdbe from the Parse object that helped generate it so that the
1931** the Vdbe becomes an independent entity and the Parse object can be
1932** destroyed.
1933**
1934** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1935** to its initial state after it has been run.
1936*/
1937void sqlite3VdbeMakeReady(
1938 Vdbe *p, /* The VDBE */
1939 Parse *pParse /* Parsing context */
1940){
1941 sqlite3 *db; /* The database connection */
1942 int nVar; /* Number of parameters */
1943 int nMem; /* Number of VM memory registers */
1944 int nCursor; /* Number of cursors required */
1945 int nArg; /* Number of arguments in subprograms */
1946 int n; /* Loop counter */
drha7dc4a32016-01-25 02:15:02 +00001947 struct ReusableSpace x; /* Reusable bulk memory */
drh124c0b42011-06-01 18:15:55 +00001948
1949 assert( p!=0 );
1950 assert( p->nOp>0 );
1951 assert( pParse!=0 );
1952 assert( p->magic==VDBE_MAGIC_INIT );
drh73d5b8f2013-12-23 19:09:07 +00001953 assert( pParse==p->pParse );
drh124c0b42011-06-01 18:15:55 +00001954 db = p->db;
1955 assert( db->mallocFailed==0 );
1956 nVar = pParse->nVar;
1957 nMem = pParse->nMem;
1958 nCursor = pParse->nTab;
1959 nArg = pParse->nMaxArg;
1960
drh3cdce922016-03-21 00:30:40 +00001961 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
1962 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
1963 ** space at the end of aMem[] for cursors 1 and greater.
danielk1977cd3e8f72008-03-25 09:47:35 +00001964 ** See also: allocateCursor().
1965 */
1966 nMem += nCursor;
drh9f6168b2016-03-19 23:32:58 +00001967 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
danielk1977cd3e8f72008-03-25 09:47:35 +00001968
drha7dc4a32016-01-25 02:15:02 +00001969 /* Figure out how much reusable memory is available at the end of the
1970 ** opcode array. This extra memory will be reallocated for other elements
1971 ** of the prepared statement.
drh9a324642003-09-06 20:12:01 +00001972 */
drha7dc4a32016-01-25 02:15:02 +00001973 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
1974 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
1975 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
1976 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
1977 assert( x.nFree>=0 );
drh2a1df932016-09-30 17:46:44 +00001978 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
drh19875c82009-12-08 19:58:19 +00001979
drh124c0b42011-06-01 18:15:55 +00001980 resolveP2Values(p, &nArg);
1981 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1982 if( pParse->explain && nMem<10 ){
1983 nMem = 10;
1984 }
drhaab910c2011-06-27 00:01:22 +00001985 p->expired = 0;
drh124c0b42011-06-01 18:15:55 +00001986
drha7dc4a32016-01-25 02:15:02 +00001987 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
1988 ** passes. On the first pass, we try to reuse unused memory at the
drh124c0b42011-06-01 18:15:55 +00001989 ** end of the opcode array. If we are unable to satisfy all memory
1990 ** requirements by reusing the opcode array tail, then the second
drha7dc4a32016-01-25 02:15:02 +00001991 ** pass will fill in the remainder using a fresh memory allocation.
drh124c0b42011-06-01 18:15:55 +00001992 **
1993 ** This two-pass approach that reuses as much memory as possible from
drha7dc4a32016-01-25 02:15:02 +00001994 ** the leftover memory at the end of the opcode array. This can significantly
drh124c0b42011-06-01 18:15:55 +00001995 ** reduce the amount of memory held by a prepared statement.
1996 */
1997 do {
drha7dc4a32016-01-25 02:15:02 +00001998 x.nNeeded = 0;
1999 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2000 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2001 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2002 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
dane2f771b2014-11-03 15:33:17 +00002003#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drha7dc4a32016-01-25 02:15:02 +00002004 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
dane2f771b2014-11-03 15:33:17 +00002005#endif
drha7dc4a32016-01-25 02:15:02 +00002006 if( x.nNeeded==0 ) break;
drh2a1df932016-09-30 17:46:44 +00002007 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
drha7dc4a32016-01-25 02:15:02 +00002008 x.nFree = x.nNeeded;
2009 }while( !db->mallocFailed );
drhb2771ce2009-02-20 01:28:59 +00002010
drh9bf755c2016-12-23 03:59:31 +00002011 p->pVList = pParse->pVList;
2012 pParse->pVList = 0;
drh124c0b42011-06-01 18:15:55 +00002013 p->explain = pParse->explain;
drhab3182f2016-10-01 00:37:50 +00002014 if( db->mallocFailed ){
2015 p->nVar = 0;
2016 p->nCursor = 0;
2017 p->nMem = 0;
2018 }else{
drh2a1df932016-09-30 17:46:44 +00002019 p->nCursor = nCursor;
2020 p->nVar = (ynVar)nVar;
2021 initMemArray(p->aVar, nVar, db, MEM_Null);
2022 p->nMem = nMem;
2023 initMemArray(p->aMem, nMem, db, MEM_Undefined);
drh2a1df932016-09-30 17:46:44 +00002024 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2025#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2026 memset(p->anExec, 0, p->nOp*sizeof(i64));
2027#endif
2028 }
drh124c0b42011-06-01 18:15:55 +00002029 sqlite3VdbeRewind(p);
drh9a324642003-09-06 20:12:01 +00002030}
2031
drh9a324642003-09-06 20:12:01 +00002032/*
danielk1977cd3e8f72008-03-25 09:47:35 +00002033** Close a VDBE cursor and release all the resources that cursor
2034** happens to hold.
drh9a324642003-09-06 20:12:01 +00002035*/
drhdfe88ec2008-11-03 20:55:06 +00002036void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
drh4774b132004-06-12 20:12:51 +00002037 if( pCx==0 ){
2038 return;
2039 }
drhfbd8cbd2016-12-10 12:58:15 +00002040 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
drhc960dcb2015-11-20 19:22:01 +00002041 switch( pCx->eCurType ){
2042 case CURTYPE_SORTER: {
2043 sqlite3VdbeSorterClose(p->db, pCx);
2044 break;
2045 }
2046 case CURTYPE_BTREE: {
drhfbd8cbd2016-12-10 12:58:15 +00002047 if( pCx->pBtx ){
2048 sqlite3BtreeClose(pCx->pBtx);
drhc960dcb2015-11-20 19:22:01 +00002049 /* The pCx->pCursor will be close automatically, if it exists, by
2050 ** the call above. */
2051 }else{
2052 assert( pCx->uc.pCursor!=0 );
2053 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2054 }
2055 break;
2056 }
drh9eff6162006-06-12 21:59:13 +00002057#ifndef SQLITE_OMIT_VIRTUALTABLE
drhc960dcb2015-11-20 19:22:01 +00002058 case CURTYPE_VTAB: {
2059 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2060 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2061 assert( pVCur->pVtab->nRef>0 );
2062 pVCur->pVtab->nRef--;
2063 pModule->xClose(pVCur);
2064 break;
2065 }
drh9eff6162006-06-12 21:59:13 +00002066#endif
drhc960dcb2015-11-20 19:22:01 +00002067 }
drh9a324642003-09-06 20:12:01 +00002068}
2069
dan65a7cd12009-09-01 12:16:01 +00002070/*
drhab4e7f32015-04-16 18:11:50 +00002071** Close all cursors in the current frame.
2072*/
2073static void closeCursorsInFrame(Vdbe *p){
2074 if( p->apCsr ){
2075 int i;
2076 for(i=0; i<p->nCursor; i++){
2077 VdbeCursor *pC = p->apCsr[i];
2078 if( pC ){
2079 sqlite3VdbeFreeCursor(p, pC);
2080 p->apCsr[i] = 0;
2081 }
2082 }
2083 }
2084}
2085
2086/*
dan65a7cd12009-09-01 12:16:01 +00002087** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2088** is used, for example, when a trigger sub-program is halted to restore
2089** control to the main program.
2090*/
dan165921a2009-08-28 18:53:45 +00002091int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2092 Vdbe *v = pFrame->v;
drhab4e7f32015-04-16 18:11:50 +00002093 closeCursorsInFrame(v);
dane2f771b2014-11-03 15:33:17 +00002094#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00002095 v->anExec = pFrame->anExec;
dane2f771b2014-11-03 15:33:17 +00002096#endif
dan165921a2009-08-28 18:53:45 +00002097 v->aOp = pFrame->aOp;
2098 v->nOp = pFrame->nOp;
2099 v->aMem = pFrame->aMem;
2100 v->nMem = pFrame->nMem;
2101 v->apCsr = pFrame->apCsr;
2102 v->nCursor = pFrame->nCursor;
dan76d462e2009-08-30 11:42:51 +00002103 v->db->lastRowid = pFrame->lastRowid;
2104 v->nChange = pFrame->nChange;
danc3da6672014-10-28 18:24:16 +00002105 v->db->nChange = pFrame->nDbChange;
drhb9626cf2016-02-22 16:04:31 +00002106 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
dan32001322016-02-19 18:54:29 +00002107 v->pAuxData = pFrame->pAuxData;
2108 pFrame->pAuxData = 0;
dan165921a2009-08-28 18:53:45 +00002109 return pFrame->pc;
2110}
2111
drh9a324642003-09-06 20:12:01 +00002112/*
drh5f82e3c2009-07-06 00:44:08 +00002113** Close all cursors.
dan165921a2009-08-28 18:53:45 +00002114**
2115** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2116** cell array. This is necessary as the memory cell array may contain
2117** pointers to VdbeFrame objects, which may in turn contain pointers to
2118** open cursors.
drh9a324642003-09-06 20:12:01 +00002119*/
drh5f82e3c2009-07-06 00:44:08 +00002120static void closeAllCursors(Vdbe *p){
dan165921a2009-08-28 18:53:45 +00002121 if( p->pFrame ){
drh23272752011-03-06 21:54:33 +00002122 VdbeFrame *pFrame;
dan165921a2009-08-28 18:53:45 +00002123 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2124 sqlite3VdbeFrameRestore(pFrame);
drhf526dca2014-10-13 17:42:05 +00002125 p->pFrame = 0;
2126 p->nFrame = 0;
dan165921a2009-08-28 18:53:45 +00002127 }
drhf526dca2014-10-13 17:42:05 +00002128 assert( p->nFrame==0 );
drhab4e7f32015-04-16 18:11:50 +00002129 closeCursorsInFrame(p);
dan523a0872009-08-31 05:23:32 +00002130 if( p->aMem ){
drh9f6168b2016-03-19 23:32:58 +00002131 releaseMemArray(p->aMem, p->nMem);
dan523a0872009-08-31 05:23:32 +00002132 }
dan27106572010-12-01 08:04:47 +00002133 while( p->pDelFrame ){
2134 VdbeFrame *pDel = p->pDelFrame;
2135 p->pDelFrame = pDel->pParent;
2136 sqlite3VdbeFrameDelete(pDel);
2137 }
dan0c547792013-07-18 17:12:08 +00002138
2139 /* Delete any auxdata allocations made by the VM */
drhb9626cf2016-02-22 16:04:31 +00002140 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
dan0c547792013-07-18 17:12:08 +00002141 assert( p->pAuxData==0 );
drh9a324642003-09-06 20:12:01 +00002142}
2143
2144/*
drh7abda852014-09-19 16:02:06 +00002145** Clean up the VM after a single run.
drh9a324642003-09-06 20:12:01 +00002146*/
drhc890fec2008-08-01 20:10:08 +00002147static void Cleanup(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00002148 sqlite3 *db = p->db;
dan165921a2009-08-28 18:53:45 +00002149
2150#ifdef SQLITE_DEBUG
2151 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2152 ** Vdbe.aMem[] arrays have already been cleaned up. */
2153 int i;
drhb8475df2011-12-09 16:21:19 +00002154 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2155 if( p->aMem ){
drh9f6168b2016-03-19 23:32:58 +00002156 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
drhb8475df2011-12-09 16:21:19 +00002157 }
dan165921a2009-08-28 18:53:45 +00002158#endif
2159
drh633e6d52008-07-28 19:34:53 +00002160 sqlite3DbFree(db, p->zErrMsg);
drh9a324642003-09-06 20:12:01 +00002161 p->zErrMsg = 0;
drhd4e70eb2008-01-02 00:34:36 +00002162 p->pResultSet = 0;
drh9a324642003-09-06 20:12:01 +00002163}
2164
2165/*
danielk197722322fd2004-05-25 23:35:17 +00002166** Set the number of result columns that will be returned by this SQL
2167** statement. This is now set at compile time, rather than during
2168** execution of the vdbe program so that sqlite3_column_count() can
2169** be called on an SQL statement before sqlite3_step().
2170*/
2171void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
drh76ff3a02004-09-24 22:32:30 +00002172 Mem *pColName;
2173 int n;
drh633e6d52008-07-28 19:34:53 +00002174 sqlite3 *db = p->db;
drh4a50aac2007-08-23 02:47:53 +00002175
drhc890fec2008-08-01 20:10:08 +00002176 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
drh633e6d52008-07-28 19:34:53 +00002177 sqlite3DbFree(db, p->aColName);
danielk1977955de522006-02-10 02:27:42 +00002178 n = nResColumn*COLNAME_N;
shane36840fd2009-06-26 16:32:13 +00002179 p->nResColumn = (u16)nResColumn;
drh2a1df932016-09-30 17:46:44 +00002180 p->aColName = pColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
drh76ff3a02004-09-24 22:32:30 +00002181 if( p->aColName==0 ) return;
drh2a1df932016-09-30 17:46:44 +00002182 initMemArray(p->aColName, n, p->db, MEM_Null);
danielk197722322fd2004-05-25 23:35:17 +00002183}
2184
2185/*
danielk19773cf86062004-05-26 10:11:05 +00002186** Set the name of the idx'th column to be returned by the SQL statement.
2187** zName must be a pointer to a nul terminated string.
2188**
2189** This call must be made after a call to sqlite3VdbeSetNumCols().
2190**
danielk197710fb7492008-10-31 10:53:22 +00002191** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2192** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2193** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
danielk19773cf86062004-05-26 10:11:05 +00002194*/
danielk197710fb7492008-10-31 10:53:22 +00002195int sqlite3VdbeSetColName(
2196 Vdbe *p, /* Vdbe being configured */
2197 int idx, /* Index of column zName applies to */
2198 int var, /* One of the COLNAME_* constants */
2199 const char *zName, /* Pointer to buffer containing name */
2200 void (*xDel)(void*) /* Memory management strategy for zName */
2201){
danielk19773cf86062004-05-26 10:11:05 +00002202 int rc;
2203 Mem *pColName;
danielk1977955de522006-02-10 02:27:42 +00002204 assert( idx<p->nResColumn );
2205 assert( var<COLNAME_N );
danielk197710fb7492008-10-31 10:53:22 +00002206 if( p->db->mallocFailed ){
2207 assert( !zName || xDel!=SQLITE_DYNAMIC );
mistachkinfad30392016-02-13 23:43:46 +00002208 return SQLITE_NOMEM_BKPT;
danielk197710fb7492008-10-31 10:53:22 +00002209 }
drh76ff3a02004-09-24 22:32:30 +00002210 assert( p->aColName!=0 );
danielk1977955de522006-02-10 02:27:42 +00002211 pColName = &(p->aColName[idx+var*p->nResColumn]);
danielk197710fb7492008-10-31 10:53:22 +00002212 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
drh0793f1b2008-11-05 17:41:19 +00002213 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
danielk19773cf86062004-05-26 10:11:05 +00002214 return rc;
2215}
2216
danielk197713adf8a2004-06-03 16:08:41 +00002217/*
2218** A read or write transaction may or may not be active on database handle
2219** db. If a transaction is active, commit it. If there is a
2220** write-transaction spanning more than one database file, this routine
2221** takes care of the master journal trickery.
2222*/
danielk19773e3a84d2008-08-01 17:37:40 +00002223static int vdbeCommit(sqlite3 *db, Vdbe *p){
danielk197713adf8a2004-06-03 16:08:41 +00002224 int i;
drh8e6cf0a2016-02-22 14:57:38 +00002225 int nTrans = 0; /* Number of databases with an active write-transaction
2226 ** that are candidates for a two-phase commit using a
2227 ** master-journal */
danielk197713adf8a2004-06-03 16:08:41 +00002228 int rc = SQLITE_OK;
2229 int needXcommit = 0;
2230
shane36840fd2009-06-26 16:32:13 +00002231#ifdef SQLITE_OMIT_VIRTUALTABLE
2232 /* With this option, sqlite3VtabSync() is defined to be simply
2233 ** SQLITE_OK so p is not used.
2234 */
2235 UNUSED_PARAMETER(p);
2236#endif
2237
danielk19775bd270b2006-07-25 15:14:52 +00002238 /* Before doing anything else, call the xSync() callback for any
2239 ** virtual module tables written in this transaction. This has to
2240 ** be done before determining whether a master journal file is
2241 ** required, as an xSync() callback may add an attached database
2242 ** to the transaction.
2243 */
dan016f7812013-08-21 17:35:48 +00002244 rc = sqlite3VtabSync(db, p);
danielk19775bd270b2006-07-25 15:14:52 +00002245
2246 /* This loop determines (a) if the commit hook should be invoked and
2247 ** (b) how many database files have open write transactions, not
2248 ** including the temp database. (b) is important because if more than
2249 ** one database file has an open write transaction, a master journal
2250 ** file is required for an atomic commit.
2251 */
drhabfb62f2010-07-30 11:20:35 +00002252 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002253 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002254 if( sqlite3BtreeIsInTrans(pBt) ){
drh8e6cf0a2016-02-22 14:57:38 +00002255 /* Whether or not a database might need a master journal depends upon
2256 ** its journal mode (among other things). This matrix determines which
2257 ** journal modes use a master journal and which do not */
2258 static const u8 aMJNeeded[] = {
2259 /* DELETE */ 1,
2260 /* PERSIST */ 1,
2261 /* OFF */ 0,
2262 /* TRUNCATE */ 1,
2263 /* MEMORY */ 0,
2264 /* WAL */ 0
2265 };
2266 Pager *pPager; /* Pager associated with pBt */
danielk197713adf8a2004-06-03 16:08:41 +00002267 needXcommit = 1;
dan6b9bb592012-10-05 19:43:02 +00002268 sqlite3BtreeEnter(pBt);
drh8e6cf0a2016-02-22 14:57:38 +00002269 pPager = sqlite3BtreePager(pBt);
2270 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2271 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2272 ){
2273 assert( i!=1 );
2274 nTrans++;
2275 }
2276 rc = sqlite3PagerExclusiveLock(pPager);
dan6b9bb592012-10-05 19:43:02 +00002277 sqlite3BtreeLeave(pBt);
danielk197713adf8a2004-06-03 16:08:41 +00002278 }
2279 }
drhabfb62f2010-07-30 11:20:35 +00002280 if( rc!=SQLITE_OK ){
2281 return rc;
2282 }
danielk197713adf8a2004-06-03 16:08:41 +00002283
2284 /* If there are any write-transactions at all, invoke the commit hook */
2285 if( needXcommit && db->xCommitCallback ){
drh92f02c32004-09-02 14:57:08 +00002286 rc = db->xCommitCallback(db->pCommitArg);
drh92f02c32004-09-02 14:57:08 +00002287 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002288 return SQLITE_CONSTRAINT_COMMITHOOK;
danielk197713adf8a2004-06-03 16:08:41 +00002289 }
2290 }
2291
danielk197740b38dc2004-06-26 08:38:24 +00002292 /* The simple case - no more than one database file (not counting the
2293 ** TEMP database) has a transaction active. There is no need for the
drh2ac3ee92004-06-07 16:27:46 +00002294 ** master-journal.
drhc9e06862004-06-09 20:03:08 +00002295 **
danielk197740b38dc2004-06-26 08:38:24 +00002296 ** If the return value of sqlite3BtreeGetFilename() is a zero length
danielk197717b90b52008-06-06 11:11:25 +00002297 ** string, it means the main database is :memory: or a temp file. In
2298 ** that case we do not support atomic multi-file commits, so use the
2299 ** simple case then too.
danielk197713adf8a2004-06-03 16:08:41 +00002300 */
drhea678832008-12-10 19:26:22 +00002301 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2302 || nTrans<=1
2303 ){
danielk197704103022009-02-03 16:51:24 +00002304 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002305 Btree *pBt = db->aDb[i].pBt;
2306 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002307 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
drh2ac3ee92004-06-07 16:27:46 +00002308 }
2309 }
2310
drh80e35f42007-03-30 14:06:34 +00002311 /* Do the commit only if all databases successfully complete phase 1.
2312 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2313 ** IO error while deleting or truncating a journal file. It is unlikely,
2314 ** but could happen. In this case abandon processing and return the error.
danielk1977979f38e2007-03-27 16:19:51 +00002315 */
2316 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2317 Btree *pBt = db->aDb[i].pBt;
2318 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002319 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
danielk197713adf8a2004-06-03 16:08:41 +00002320 }
danielk1977979f38e2007-03-27 16:19:51 +00002321 }
2322 if( rc==SQLITE_OK ){
danielk1977f9e7dda2006-06-16 16:08:53 +00002323 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002324 }
2325 }
2326
2327 /* The complex case - There is a multi-file write-transaction active.
2328 ** This requires a master journal file to ensure the transaction is
peter.d.reid60ec9142014-09-06 16:39:46 +00002329 ** committed atomically.
danielk197713adf8a2004-06-03 16:08:41 +00002330 */
danielk197744ee5bf2005-05-27 09:41:12 +00002331#ifndef SQLITE_OMIT_DISKIO
danielk197713adf8a2004-06-03 16:08:41 +00002332 else{
danielk1977b4b47412007-08-17 15:53:36 +00002333 sqlite3_vfs *pVfs = db->pVfs;
danielk197713adf8a2004-06-03 16:08:41 +00002334 char *zMaster = 0; /* File-name for the master journal */
2335 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
danielk1977b4b47412007-08-17 15:53:36 +00002336 sqlite3_file *pMaster = 0;
danielk197762079062007-08-15 17:08:46 +00002337 i64 offset = 0;
danielk1977861f7452008-06-05 11:39:11 +00002338 int res;
drhf5808602011-12-16 00:33:04 +00002339 int retryCount = 0;
drh5c531a42011-12-16 01:21:31 +00002340 int nMainFile;
danielk197713adf8a2004-06-03 16:08:41 +00002341
2342 /* Select a master journal file name */
drh5c531a42011-12-16 01:21:31 +00002343 nMainFile = sqlite3Strlen30(zMainFile);
drh52bcde02012-01-03 14:50:45 +00002344 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
mistachkinfad30392016-02-13 23:43:46 +00002345 if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
danielk197713adf8a2004-06-03 16:08:41 +00002346 do {
drhdc5ea5c2008-12-10 17:19:59 +00002347 u32 iRandom;
drh84968c02011-12-16 15:11:39 +00002348 if( retryCount ){
2349 if( retryCount>100 ){
2350 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2351 sqlite3OsDelete(pVfs, zMaster, 0);
2352 break;
2353 }else if( retryCount==1 ){
2354 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2355 }
danielk197713adf8a2004-06-03 16:08:41 +00002356 }
drh84968c02011-12-16 15:11:39 +00002357 retryCount++;
danielk197713adf8a2004-06-03 16:08:41 +00002358 sqlite3_randomness(sizeof(iRandom), &iRandom);
drh5c531a42011-12-16 01:21:31 +00002359 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
drhf5808602011-12-16 00:33:04 +00002360 (iRandom>>8)&0xffffff, iRandom&0xff);
drhf5808602011-12-16 00:33:04 +00002361 /* The antipenultimate character of the master journal name must
2362 ** be "9" to avoid name collisions when using 8+3 filenames. */
drh5c531a42011-12-16 01:21:31 +00002363 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
drh81cc5162011-05-17 20:36:21 +00002364 sqlite3FileSuffix3(zMainFile, zMaster);
danielk1977861f7452008-06-05 11:39:11 +00002365 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2366 }while( rc==SQLITE_OK && res );
2367 if( rc==SQLITE_OK ){
drh19db9352008-03-27 22:42:51 +00002368 /* Open the master journal. */
2369 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2370 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2371 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2372 );
2373 }
danielk197713adf8a2004-06-03 16:08:41 +00002374 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002375 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002376 return rc;
2377 }
2378
2379 /* Write the name of each database file in the transaction into the new
2380 ** master journal file. If an error occurs at this point close
2381 ** and delete the master journal file. All the individual journal files
2382 ** still have 'null' as the master journal pointer, so they will roll
danielk1977aca790a2005-01-13 11:07:52 +00002383 ** back independently if a failure occurs.
danielk197713adf8a2004-06-03 16:08:41 +00002384 */
danielk19771e536952007-08-16 10:09:01 +00002385 for(i=0; i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002386 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002387 if( sqlite3BtreeIsInTrans(pBt) ){
danielk19775865e3d2004-06-14 06:03:57 +00002388 char const *zFile = sqlite3BtreeGetJournalname(pBt);
drh8c96a6e2010-08-31 01:09:15 +00002389 if( zFile==0 ){
drhb290e1c2009-12-08 13:36:55 +00002390 continue; /* Ignore TEMP and :memory: databases */
2391 }
drh8c96a6e2010-08-31 01:09:15 +00002392 assert( zFile[0]!=0 );
drhea678832008-12-10 19:26:22 +00002393 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2394 offset += sqlite3Strlen30(zFile)+1;
danielk197713adf8a2004-06-03 16:08:41 +00002395 if( rc!=SQLITE_OK ){
danielk1977fee2d252007-08-18 10:59:19 +00002396 sqlite3OsCloseFree(pMaster);
2397 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002398 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002399 return rc;
2400 }
2401 }
2402 }
2403
danielk19779663b8f2007-08-24 11:52:28 +00002404 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2405 ** flag is set this is not required.
2406 */
drhb0529582016-02-22 23:44:42 +00002407 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
danielk1977bea2a942009-01-20 17:06:27 +00002408 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2409 ){
danielk1977fee2d252007-08-18 10:59:19 +00002410 sqlite3OsCloseFree(pMaster);
2411 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002412 sqlite3DbFree(db, zMaster);
danielk19775865e3d2004-06-14 06:03:57 +00002413 return rc;
2414 }
drhc9e06862004-06-09 20:03:08 +00002415
danielk197713adf8a2004-06-03 16:08:41 +00002416 /* Sync all the db files involved in the transaction. The same call
2417 ** sets the master journal pointer in each individual journal. If
2418 ** an error occurs here, do not delete the master journal file.
2419 **
drh80e35f42007-03-30 14:06:34 +00002420 ** If the error occurs during the first call to
2421 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2422 ** master journal file will be orphaned. But we cannot delete it,
2423 ** in case the master journal file name was written into the journal
shanebe217792009-03-05 04:20:31 +00002424 ** file before the failure occurred.
danielk197713adf8a2004-06-03 16:08:41 +00002425 */
danielk19775bd270b2006-07-25 15:14:52 +00002426 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002427 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002428 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002429 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002430 }
2431 }
danielk1977fee2d252007-08-18 10:59:19 +00002432 sqlite3OsCloseFree(pMaster);
drhabfb62f2010-07-30 11:20:35 +00002433 assert( rc!=SQLITE_BUSY );
danielk19775bd270b2006-07-25 15:14:52 +00002434 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002435 sqlite3DbFree(db, zMaster);
danielk19775bd270b2006-07-25 15:14:52 +00002436 return rc;
2437 }
danielk197713adf8a2004-06-03 16:08:41 +00002438
danielk1977962398d2004-06-14 09:35:16 +00002439 /* Delete the master journal file. This commits the transaction. After
2440 ** doing this the directory is synced again before any individual
2441 ** transaction files are deleted.
2442 */
drhb0529582016-02-22 23:44:42 +00002443 rc = sqlite3OsDelete(pVfs, zMaster, 1);
drh633e6d52008-07-28 19:34:53 +00002444 sqlite3DbFree(db, zMaster);
drhc416ba92007-03-30 18:42:55 +00002445 zMaster = 0;
drh29a01382006-08-13 19:04:18 +00002446 if( rc ){
2447 return rc;
2448 }
danielk197713adf8a2004-06-03 16:08:41 +00002449
2450 /* All files and directories have already been synced, so the following
drh80e35f42007-03-30 14:06:34 +00002451 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2452 ** deleting or truncating journals. If something goes wrong while
2453 ** this is happening we don't really care. The integrity of the
2454 ** transaction is already guaranteed, but some stray 'cold' journals
2455 ** may be lying around. Returning an error code won't help matters.
danielk197713adf8a2004-06-03 16:08:41 +00002456 */
danielk1977979f38e2007-03-27 16:19:51 +00002457 disable_simulated_io_errors();
danielk19772d1d86f2008-06-20 14:59:51 +00002458 sqlite3BeginBenignMalloc();
danielk197713adf8a2004-06-03 16:08:41 +00002459 for(i=0; i<db->nDb; i++){
2460 Btree *pBt = db->aDb[i].pBt;
2461 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002462 sqlite3BtreeCommitPhaseTwo(pBt, 1);
danielk197713adf8a2004-06-03 16:08:41 +00002463 }
2464 }
danielk19772d1d86f2008-06-20 14:59:51 +00002465 sqlite3EndBenignMalloc();
danielk1977979f38e2007-03-27 16:19:51 +00002466 enable_simulated_io_errors();
2467
danielk1977f9e7dda2006-06-16 16:08:53 +00002468 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002469 }
danielk197744ee5bf2005-05-27 09:41:12 +00002470#endif
danielk1977026d2702004-06-14 13:14:59 +00002471
drh2ac3ee92004-06-07 16:27:46 +00002472 return rc;
danielk197713adf8a2004-06-03 16:08:41 +00002473}
2474
danielk19771d850a72004-05-31 08:26:49 +00002475/*
drh4f7d3a52013-06-27 23:54:02 +00002476** This routine checks that the sqlite3.nVdbeActive count variable
danielk19771d850a72004-05-31 08:26:49 +00002477** matches the number of vdbe's in the list sqlite3.pVdbe that are
2478** currently active. An assertion fails if the two counts do not match.
drh92f02c32004-09-02 14:57:08 +00002479** This is an internal self-check only - it is not an essential processing
2480** step.
danielk19771d850a72004-05-31 08:26:49 +00002481**
2482** This is a no-op if NDEBUG is defined.
2483*/
2484#ifndef NDEBUG
drh9bb575f2004-09-06 17:24:11 +00002485static void checkActiveVdbeCnt(sqlite3 *db){
danielk19771d850a72004-05-31 08:26:49 +00002486 Vdbe *p;
2487 int cnt = 0;
drhad4a4b82008-11-05 16:37:34 +00002488 int nWrite = 0;
drh4f7d3a52013-06-27 23:54:02 +00002489 int nRead = 0;
danielk19771d850a72004-05-31 08:26:49 +00002490 p = db->pVdbe;
2491 while( p ){
dan857745c2014-07-19 17:57:10 +00002492 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
danielk19771d850a72004-05-31 08:26:49 +00002493 cnt++;
drhad4a4b82008-11-05 16:37:34 +00002494 if( p->readOnly==0 ) nWrite++;
drh1713afb2013-06-28 01:24:57 +00002495 if( p->bIsReader ) nRead++;
danielk19771d850a72004-05-31 08:26:49 +00002496 }
2497 p = p->pNext;
2498 }
drh4f7d3a52013-06-27 23:54:02 +00002499 assert( cnt==db->nVdbeActive );
2500 assert( nWrite==db->nVdbeWrite );
2501 assert( nRead==db->nVdbeRead );
danielk19771d850a72004-05-31 08:26:49 +00002502}
2503#else
2504#define checkActiveVdbeCnt(x)
2505#endif
2506
danielk19773cf86062004-05-26 10:11:05 +00002507/*
danielk1977bd434552009-03-18 10:33:00 +00002508** If the Vdbe passed as the first argument opened a statement-transaction,
2509** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2510** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2511** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
drhf7b54962013-05-28 12:11:54 +00002512** statement transaction is committed.
danielk1977bd434552009-03-18 10:33:00 +00002513**
2514** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2515** Otherwise SQLITE_OK.
2516*/
drhd0840642017-01-26 17:11:18 +00002517static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
danielk1977c926b6a2009-03-20 14:42:11 +00002518 sqlite3 *const db = p->db;
danielk1977bd434552009-03-18 10:33:00 +00002519 int rc = SQLITE_OK;
drhd0840642017-01-26 17:11:18 +00002520 int i;
2521 const int iSavepoint = p->iStatement-1;
danielk1977ecaecf92009-07-08 08:05:35 +00002522
drhd0840642017-01-26 17:11:18 +00002523 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2524 assert( db->nStatement>0 );
2525 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
danielk1977bd434552009-03-18 10:33:00 +00002526
drhd0840642017-01-26 17:11:18 +00002527 for(i=0; i<db->nDb; i++){
2528 int rc2 = SQLITE_OK;
2529 Btree *pBt = db->aDb[i].pBt;
2530 if( pBt ){
dana311b802011-04-26 19:21:34 +00002531 if( eOp==SAVEPOINT_ROLLBACK ){
drhd0840642017-01-26 17:11:18 +00002532 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2533 }
2534 if( rc2==SQLITE_OK ){
2535 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
dana311b802011-04-26 19:21:34 +00002536 }
2537 if( rc==SQLITE_OK ){
drhd0840642017-01-26 17:11:18 +00002538 rc = rc2;
dana311b802011-04-26 19:21:34 +00002539 }
2540 }
drhd0840642017-01-26 17:11:18 +00002541 }
2542 db->nStatement--;
2543 p->iStatement = 0;
dana311b802011-04-26 19:21:34 +00002544
drhd0840642017-01-26 17:11:18 +00002545 if( rc==SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002546 if( eOp==SAVEPOINT_ROLLBACK ){
drhd0840642017-01-26 17:11:18 +00002547 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
dan1da40a32009-09-19 17:00:31 +00002548 }
drhd0840642017-01-26 17:11:18 +00002549 if( rc==SQLITE_OK ){
2550 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2551 }
2552 }
2553
2554 /* If the statement transaction is being rolled back, also restore the
2555 ** database handles deferred constraint counter to the value it had when
2556 ** the statement transaction was opened. */
2557 if( eOp==SAVEPOINT_ROLLBACK ){
2558 db->nDeferredCons = p->nStmtDefCons;
2559 db->nDeferredImmCons = p->nStmtDefImmCons;
danielk1977bd434552009-03-18 10:33:00 +00002560 }
2561 return rc;
2562}
drhd0840642017-01-26 17:11:18 +00002563int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2564 if( p->db->nStatement && p->iStatement ){
2565 return vdbeCloseStatement(p, eOp);
2566 }
2567 return SQLITE_OK;
2568}
2569
danielk1977bd434552009-03-18 10:33:00 +00002570
2571/*
dan1da40a32009-09-19 17:00:31 +00002572** This function is called when a transaction opened by the database
2573** handle associated with the VM passed as an argument is about to be
2574** committed. If there are outstanding deferred foreign key constraint
2575** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2576**
2577** If there are outstanding FK violations and this function returns
drhd91c1a12013-02-09 13:58:25 +00002578** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2579** and write an error message to it. Then return SQLITE_ERROR.
dan1da40a32009-09-19 17:00:31 +00002580*/
2581#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00002582int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
dan1da40a32009-09-19 17:00:31 +00002583 sqlite3 *db = p->db;
dancb3e4b72013-07-03 19:53:05 +00002584 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2585 || (!deferred && p->nFkConstraint>0)
2586 ){
drhd91c1a12013-02-09 13:58:25 +00002587 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan32b09f22009-09-23 17:29:59 +00002588 p->errorAction = OE_Abort;
drh22c17b82015-05-15 04:13:15 +00002589 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
dan1da40a32009-09-19 17:00:31 +00002590 return SQLITE_ERROR;
2591 }
2592 return SQLITE_OK;
2593}
2594#endif
2595
2596/*
drh92f02c32004-09-02 14:57:08 +00002597** This routine is called the when a VDBE tries to halt. If the VDBE
2598** has made changes and is in autocommit mode, then commit those
2599** changes. If a rollback is needed, then do the rollback.
drh9a324642003-09-06 20:12:01 +00002600**
drh92f02c32004-09-02 14:57:08 +00002601** This routine is the only way to move the state of a VM from
drhff0587c2007-08-29 17:43:19 +00002602** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2603** call this on a VM that is in the SQLITE_MAGIC_HALT state.
drh92f02c32004-09-02 14:57:08 +00002604**
2605** Return an error code. If the commit could not complete because of
2606** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2607** means the close did not happen and needs to be repeated.
drh9a324642003-09-06 20:12:01 +00002608*/
drhff0587c2007-08-29 17:43:19 +00002609int sqlite3VdbeHalt(Vdbe *p){
danielk1977bd434552009-03-18 10:33:00 +00002610 int rc; /* Used to store transient return codes */
drh9bb575f2004-09-06 17:24:11 +00002611 sqlite3 *db = p->db;
danielk197707cb5602006-01-20 10:55:05 +00002612
2613 /* This function contains the logic that determines if a statement or
2614 ** transaction will be committed or rolled back as a result of the
2615 ** execution of this virtual machine.
2616 **
drh71b890a2007-10-03 15:30:52 +00002617 ** If any of the following errors occur:
danielk197707cb5602006-01-20 10:55:05 +00002618 **
drh71b890a2007-10-03 15:30:52 +00002619 ** SQLITE_NOMEM
2620 ** SQLITE_IOERR
2621 ** SQLITE_FULL
2622 ** SQLITE_INTERRUPT
danielk197707cb5602006-01-20 10:55:05 +00002623 **
drh71b890a2007-10-03 15:30:52 +00002624 ** Then the internal cache might have been left in an inconsistent
2625 ** state. We need to rollback the statement transaction, if there is
2626 ** one, or the complete transaction if there is no statement transaction.
danielk197707cb5602006-01-20 10:55:05 +00002627 */
drh9a324642003-09-06 20:12:01 +00002628
dan1325adf2017-02-21 21:24:05 +00002629 if( p->magic!=VDBE_MAGIC_RUN ){
2630 return SQLITE_OK;
2631 }
drhb84e5742016-02-05 02:42:54 +00002632 if( db->mallocFailed ){
mistachkinfad30392016-02-13 23:43:46 +00002633 p->rc = SQLITE_NOMEM_BKPT;
danielk1977261919c2005-12-06 12:52:59 +00002634 }
drh5f82e3c2009-07-06 00:44:08 +00002635 closeAllCursors(p);
danielk19771d850a72004-05-31 08:26:49 +00002636 checkActiveVdbeCnt(db);
danielk1977261919c2005-12-06 12:52:59 +00002637
danc0537fe2013-06-28 19:41:43 +00002638 /* No commit or rollback needed if the program never started or if the
2639 ** SQL statement does not read or write a database file. */
2640 if( p->pc>=0 && p->bIsReader ){
drhaac2f552006-09-23 21:44:23 +00002641 int mrc; /* Primary error code from p->rc */
danielk1977bd434552009-03-18 10:33:00 +00002642 int eStatementOp = 0;
2643 int isSpecialError; /* Set to true if a 'special' error */
drhff0587c2007-08-29 17:43:19 +00002644
2645 /* Lock all btrees used by the statement */
drhbdaec522011-04-04 00:14:43 +00002646 sqlite3VdbeEnter(p);
drhff0587c2007-08-29 17:43:19 +00002647
drh71b890a2007-10-03 15:30:52 +00002648 /* Check for one of the special errors */
drhaac2f552006-09-23 21:44:23 +00002649 mrc = p->rc & 0xff;
drh71b890a2007-10-03 15:30:52 +00002650 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
drh77658e22007-12-04 16:54:52 +00002651 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
danielk197707cb5602006-01-20 10:55:05 +00002652 if( isSpecialError ){
dan5653e4d2010-08-12 11:25:47 +00002653 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2654 ** no rollback is necessary. Otherwise, at least a savepoint
2655 ** transaction must be rolled back to restore the database to a
2656 ** consistent state.
2657 **
2658 ** Even if the statement is read-only, it is important to perform
2659 ** a statement or transaction rollback operation. If the error
mistachkin48864df2013-03-21 21:20:32 +00002660 ** occurred while writing to the journal, sub-journal or database
dan5653e4d2010-08-12 11:25:47 +00002661 ** file as part of an effort to free up cache space (see function
2662 ** pagerStress() in pager.c), the rollback is required to restore
2663 ** the pager to a consistent state.
danielk197707cb5602006-01-20 10:55:05 +00002664 */
drhad4a4b82008-11-05 16:37:34 +00002665 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
drhfa3be902009-07-07 02:44:07 +00002666 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
danielk1977bd434552009-03-18 10:33:00 +00002667 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002668 }else{
2669 /* We are forced to roll back the active transaction. Before doing
2670 ** so, abort any other statements this handle currently has active.
2671 */
drh21021a52012-02-13 17:01:51 +00002672 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002673 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002674 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002675 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002676 }
danielk1977261919c2005-12-06 12:52:59 +00002677 }
2678 }
dan32b09f22009-09-23 17:29:59 +00002679
2680 /* Check for immediate foreign key violations. */
2681 if( p->rc==SQLITE_OK ){
2682 sqlite3VdbeCheckFk(p, 0);
2683 }
danielk197707cb5602006-01-20 10:55:05 +00002684
danielk1977bd434552009-03-18 10:33:00 +00002685 /* If the auto-commit flag is set and this is the only active writer
2686 ** VM, then we do either a commit or rollback of the current transaction.
danielk197707cb5602006-01-20 10:55:05 +00002687 **
2688 ** Note: This block also runs if one of the special errors handled
drhad4a4b82008-11-05 16:37:34 +00002689 ** above has occurred.
danielk197707cb5602006-01-20 10:55:05 +00002690 */
danielk1977093e0f62008-11-13 18:00:14 +00002691 if( !sqlite3VtabInSync(db)
2692 && db->autoCommit
drh4f7d3a52013-06-27 23:54:02 +00002693 && db->nVdbeWrite==(p->readOnly==0)
danielk1977093e0f62008-11-13 18:00:14 +00002694 ){
danielk197707cb5602006-01-20 10:55:05 +00002695 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
dan19611b12011-01-24 16:00:58 +00002696 rc = sqlite3VdbeCheckFk(p, 1);
2697 if( rc!=SQLITE_OK ){
drhe9ce5852011-02-11 22:54:28 +00002698 if( NEVER(p->readOnly) ){
drhbdaec522011-04-04 00:14:43 +00002699 sqlite3VdbeLeave(p);
dan19611b12011-01-24 16:00:58 +00002700 return SQLITE_ERROR;
2701 }
drhd91c1a12013-02-09 13:58:25 +00002702 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan19611b12011-01-24 16:00:58 +00002703 }else{
2704 /* The auto-commit flag is true, the vdbe program was successful
2705 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2706 ** key constraints to hold up the transaction. This means a commit
2707 ** is required. */
2708 rc = vdbeCommit(db, p);
dan1da40a32009-09-19 17:00:31 +00002709 }
dan19611b12011-01-24 16:00:58 +00002710 if( rc==SQLITE_BUSY && p->readOnly ){
drhbdaec522011-04-04 00:14:43 +00002711 sqlite3VdbeLeave(p);
danielk197707cb5602006-01-20 10:55:05 +00002712 return SQLITE_BUSY;
2713 }else if( rc!=SQLITE_OK ){
2714 p->rc = rc;
drh0f198a72012-02-13 16:43:16 +00002715 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002716 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002717 }else{
dan1da40a32009-09-19 17:00:31 +00002718 db->nDeferredCons = 0;
dancb3e4b72013-07-03 19:53:05 +00002719 db->nDeferredImmCons = 0;
drh963c74d2013-07-11 12:19:12 +00002720 db->flags &= ~SQLITE_DeferFKs;
danielk197707cb5602006-01-20 10:55:05 +00002721 sqlite3CommitInternalChanges(db);
2722 }
2723 }else{
drh0f198a72012-02-13 16:43:16 +00002724 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002725 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002726 }
danielk1977bd434552009-03-18 10:33:00 +00002727 db->nStatement = 0;
2728 }else if( eStatementOp==0 ){
danielk197707cb5602006-01-20 10:55:05 +00002729 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
danielk1977bd434552009-03-18 10:33:00 +00002730 eStatementOp = SAVEPOINT_RELEASE;
danielk197707cb5602006-01-20 10:55:05 +00002731 }else if( p->errorAction==OE_Abort ){
danielk1977bd434552009-03-18 10:33:00 +00002732 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002733 }else{
drh21021a52012-02-13 17:01:51 +00002734 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002735 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002736 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002737 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002738 }
danielk19771d850a72004-05-31 08:26:49 +00002739 }
danielk197707cb5602006-01-20 10:55:05 +00002740
danielk1977bd434552009-03-18 10:33:00 +00002741 /* If eStatementOp is non-zero, then a statement transaction needs to
2742 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2743 ** do so. If this operation returns an error, and the current statement
drh35173242010-03-08 21:40:13 +00002744 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2745 ** current statement error code.
danielk197707cb5602006-01-20 10:55:05 +00002746 */
danielk1977bd434552009-03-18 10:33:00 +00002747 if( eStatementOp ){
2748 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
dan40ad9d22010-06-03 09:17:38 +00002749 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002750 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
dan40ad9d22010-06-03 09:17:38 +00002751 p->rc = rc;
2752 sqlite3DbFree(db, p->zErrMsg);
2753 p->zErrMsg = 0;
2754 }
drh21021a52012-02-13 17:01:51 +00002755 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
dan40ad9d22010-06-03 09:17:38 +00002756 sqlite3CloseSavepoints(db);
2757 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002758 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002759 }
danielk197777d83ba2004-05-31 10:08:14 +00002760 }
danielk197707cb5602006-01-20 10:55:05 +00002761
danielk1977bd434552009-03-18 10:33:00 +00002762 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2763 ** has been rolled back, update the database connection change-counter.
danielk197707cb5602006-01-20 10:55:05 +00002764 */
drh6be240e2009-07-14 02:33:02 +00002765 if( p->changeCntOn ){
danielk1977bd434552009-03-18 10:33:00 +00002766 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
danielk197707cb5602006-01-20 10:55:05 +00002767 sqlite3VdbeSetChanges(db, p->nChange);
2768 }else{
2769 sqlite3VdbeSetChanges(db, 0);
2770 }
2771 p->nChange = 0;
danielk1977b28af712004-06-21 06:50:26 +00002772 }
drhff0587c2007-08-29 17:43:19 +00002773
2774 /* Release the locks */
drhbdaec522011-04-04 00:14:43 +00002775 sqlite3VdbeLeave(p);
drh9a324642003-09-06 20:12:01 +00002776 }
danielk19771d850a72004-05-31 08:26:49 +00002777
danielk197765fd59f2006-06-24 11:51:33 +00002778 /* We have successfully halted and closed the VM. Record this fact. */
2779 if( p->pc>=0 ){
drh4f7d3a52013-06-27 23:54:02 +00002780 db->nVdbeActive--;
2781 if( !p->readOnly ) db->nVdbeWrite--;
drh1713afb2013-06-28 01:24:57 +00002782 if( p->bIsReader ) db->nVdbeRead--;
drh4f7d3a52013-06-27 23:54:02 +00002783 assert( db->nVdbeActive>=db->nVdbeRead );
2784 assert( db->nVdbeRead>=db->nVdbeWrite );
2785 assert( db->nVdbeWrite>=0 );
drh9a324642003-09-06 20:12:01 +00002786 }
drh92f02c32004-09-02 14:57:08 +00002787 p->magic = VDBE_MAGIC_HALT;
2788 checkActiveVdbeCnt(db);
drhb84e5742016-02-05 02:42:54 +00002789 if( db->mallocFailed ){
mistachkinfad30392016-02-13 23:43:46 +00002790 p->rc = SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002791 }
danielk19771d850a72004-05-31 08:26:49 +00002792
danielk1977404ca072009-03-16 13:19:36 +00002793 /* If the auto-commit flag is set to true, then any locks that were held
2794 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2795 ** to invoke any required unlock-notify callbacks.
2796 */
2797 if( db->autoCommit ){
2798 sqlite3ConnectionUnlocked(db);
2799 }
2800
drh4f7d3a52013-06-27 23:54:02 +00002801 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
dan19611b12011-01-24 16:00:58 +00002802 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
drh92f02c32004-09-02 14:57:08 +00002803}
drh4cf7c7f2007-08-28 23:28:07 +00002804
drh92f02c32004-09-02 14:57:08 +00002805
2806/*
drh3c23a882007-01-09 14:01:13 +00002807** Each VDBE holds the result of the most recent sqlite3_step() call
2808** in p->rc. This routine sets that result back to SQLITE_OK.
2809*/
2810void sqlite3VdbeResetStepResult(Vdbe *p){
2811 p->rc = SQLITE_OK;
2812}
2813
2814/*
dan029ead62011-10-27 15:19:58 +00002815** Copy the error code and error message belonging to the VDBE passed
2816** as the first argument to its database handle (so that they will be
2817** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2818**
2819** This function does not clear the VDBE error code or message, just
2820** copies them to the database handle.
2821*/
2822int sqlite3VdbeTransferError(Vdbe *p){
2823 sqlite3 *db = p->db;
2824 int rc = p->rc;
2825 if( p->zErrMsg ){
drh4a642b62016-02-05 01:55:27 +00002826 db->bBenignMalloc++;
dan029ead62011-10-27 15:19:58 +00002827 sqlite3BeginBenignMalloc();
drha3cc0072013-12-13 16:23:55 +00002828 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
dan029ead62011-10-27 15:19:58 +00002829 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2830 sqlite3EndBenignMalloc();
drh4a642b62016-02-05 01:55:27 +00002831 db->bBenignMalloc--;
dan029ead62011-10-27 15:19:58 +00002832 db->errCode = rc;
2833 }else{
drh13f40da2014-08-22 18:00:11 +00002834 sqlite3Error(db, rc);
dan029ead62011-10-27 15:19:58 +00002835 }
2836 return rc;
2837}
2838
danac455932012-11-26 19:50:41 +00002839#ifdef SQLITE_ENABLE_SQLLOG
2840/*
2841** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2842** invoke it.
2843*/
2844static void vdbeInvokeSqllog(Vdbe *v){
2845 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2846 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2847 assert( v->db->init.busy==0 );
2848 if( zExpanded ){
2849 sqlite3GlobalConfig.xSqllog(
2850 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2851 );
2852 sqlite3DbFree(v->db, zExpanded);
2853 }
2854 }
2855}
2856#else
2857# define vdbeInvokeSqllog(x)
2858#endif
2859
dan029ead62011-10-27 15:19:58 +00002860/*
drh92f02c32004-09-02 14:57:08 +00002861** Clean up a VDBE after execution but do not delete the VDBE just yet.
2862** Write any error messages into *pzErrMsg. Return the result code.
2863**
2864** After this routine is run, the VDBE should be ready to be executed
2865** again.
2866**
2867** To look at it another way, this routine resets the state of the
2868** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2869** VDBE_MAGIC_INIT.
2870*/
drhc890fec2008-08-01 20:10:08 +00002871int sqlite3VdbeReset(Vdbe *p){
drh4ac285a2006-09-15 07:28:50 +00002872 sqlite3 *db;
drh4ac285a2006-09-15 07:28:50 +00002873 db = p->db;
drh92f02c32004-09-02 14:57:08 +00002874
2875 /* If the VM did not run to completion or if it encountered an
2876 ** error, then it might not have been halted properly. So halt
2877 ** it now.
2878 */
2879 sqlite3VdbeHalt(p);
2880
drhfb7e7652005-01-24 00:28:42 +00002881 /* If the VDBE has be run even partially, then transfer the error code
2882 ** and error message from the VDBE into the main database structure. But
2883 ** if the VDBE has just been set to run but has not actually executed any
2884 ** instructions yet, leave the main database error information unchanged.
drh92f02c32004-09-02 14:57:08 +00002885 */
drhfb7e7652005-01-24 00:28:42 +00002886 if( p->pc>=0 ){
danac455932012-11-26 19:50:41 +00002887 vdbeInvokeSqllog(p);
dan029ead62011-10-27 15:19:58 +00002888 sqlite3VdbeTransferError(p);
2889 sqlite3DbFree(db, p->zErrMsg);
2890 p->zErrMsg = 0;
drh4611d922010-02-25 14:47:01 +00002891 if( p->runOnlyOnce ) p->expired = 1;
danielk1977a21c6b62005-01-24 10:25:59 +00002892 }else if( p->rc && p->expired ){
2893 /* The expired flag was set on the VDBE before the first call
2894 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2895 ** called), set the database error in this case as well.
2896 */
drh13f40da2014-08-22 18:00:11 +00002897 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
drh633e6d52008-07-28 19:34:53 +00002898 sqlite3DbFree(db, p->zErrMsg);
danielk19778e556522007-11-13 10:30:24 +00002899 p->zErrMsg = 0;
drh92f02c32004-09-02 14:57:08 +00002900 }
2901
2902 /* Reclaim all memory used by the VDBE
2903 */
drhc890fec2008-08-01 20:10:08 +00002904 Cleanup(p);
drh92f02c32004-09-02 14:57:08 +00002905
2906 /* Save profiling information from this VDBE run.
2907 */
drh9a324642003-09-06 20:12:01 +00002908#ifdef VDBE_PROFILE
2909 {
2910 FILE *out = fopen("vdbe_profile.out", "a");
2911 if( out ){
2912 int i;
2913 fprintf(out, "---- ");
2914 for(i=0; i<p->nOp; i++){
2915 fprintf(out, "%02x", p->aOp[i].opcode);
2916 }
2917 fprintf(out, "\n");
drh2926f962014-02-17 01:13:28 +00002918 if( p->zSql ){
2919 char c, pc = 0;
2920 fprintf(out, "-- ");
2921 for(i=0; (c = p->zSql[i])!=0; i++){
2922 if( pc=='\n' ) fprintf(out, "-- ");
2923 putc(c, out);
2924 pc = c;
2925 }
2926 if( pc!='\n' ) fprintf(out, "\n");
2927 }
drh9a324642003-09-06 20:12:01 +00002928 for(i=0; i<p->nOp; i++){
drh15ab9412014-02-24 14:24:01 +00002929 char zHdr[100];
2930 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
drh9a324642003-09-06 20:12:01 +00002931 p->aOp[i].cnt,
2932 p->aOp[i].cycles,
2933 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2934 );
drh15ab9412014-02-24 14:24:01 +00002935 fprintf(out, "%s", zHdr);
danielk19774adee202004-05-08 08:23:19 +00002936 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
drh9a324642003-09-06 20:12:01 +00002937 }
2938 fclose(out);
2939 }
2940 }
2941#endif
drhab3182f2016-10-01 00:37:50 +00002942 p->magic = VDBE_MAGIC_RESET;
drh4ac285a2006-09-15 07:28:50 +00002943 return p->rc & db->errMask;
drh9a324642003-09-06 20:12:01 +00002944}
drh92f02c32004-09-02 14:57:08 +00002945
drh9a324642003-09-06 20:12:01 +00002946/*
2947** Clean up and delete a VDBE after execution. Return an integer which is
2948** the result code. Write any error message text into *pzErrMsg.
2949*/
danielk19779e6db7d2004-06-21 08:18:51 +00002950int sqlite3VdbeFinalize(Vdbe *p){
danielk1977b5548a82004-06-26 13:51:33 +00002951 int rc = SQLITE_OK;
danielk1977b5548a82004-06-26 13:51:33 +00002952 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
drhc890fec2008-08-01 20:10:08 +00002953 rc = sqlite3VdbeReset(p);
drh4ac285a2006-09-15 07:28:50 +00002954 assert( (rc & p->db->errMask)==rc );
drh9a324642003-09-06 20:12:01 +00002955 }
danielk19774adee202004-05-08 08:23:19 +00002956 sqlite3VdbeDelete(p);
drh9a324642003-09-06 20:12:01 +00002957 return rc;
2958}
2959
2960/*
dan0c547792013-07-18 17:12:08 +00002961** If parameter iOp is less than zero, then invoke the destructor for
2962** all auxiliary data pointers currently cached by the VM passed as
2963** the first argument.
2964**
2965** Or, if iOp is greater than or equal to zero, then the destructor is
2966** only invoked for those auxiliary data pointers created by the user
2967** function invoked by the OP_Function opcode at instruction iOp of
2968** VM pVdbe, and only then if:
2969**
2970** * the associated function parameter is the 32nd or later (counting
2971** from left to right), or
2972**
2973** * the corresponding bit in argument mask is clear (where the first
peter.d.reid60ec9142014-09-06 16:39:46 +00002974** function parameter corresponds to bit 0 etc.).
drhf92c7ff2004-06-19 15:40:23 +00002975*/
drhb9626cf2016-02-22 16:04:31 +00002976void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
dan0c547792013-07-18 17:12:08 +00002977 while( *pp ){
2978 AuxData *pAux = *pp;
2979 if( (iOp<0)
drh693e6712014-01-24 22:58:00 +00002980 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
dan0c547792013-07-18 17:12:08 +00002981 ){
drh693e6712014-01-24 22:58:00 +00002982 testcase( pAux->iArg==31 );
drhf92c7ff2004-06-19 15:40:23 +00002983 if( pAux->xDelete ){
2984 pAux->xDelete(pAux->pAux);
2985 }
dan0c547792013-07-18 17:12:08 +00002986 *pp = pAux->pNext;
drhb9626cf2016-02-22 16:04:31 +00002987 sqlite3DbFree(db, pAux);
dan0c547792013-07-18 17:12:08 +00002988 }else{
2989 pp= &pAux->pNext;
drhf92c7ff2004-06-19 15:40:23 +00002990 }
2991 }
2992}
2993
2994/*
drhcb103b92012-10-26 00:11:23 +00002995** Free all memory associated with the Vdbe passed as the second argument,
2996** except for object itself, which is preserved.
2997**
dand46def72010-07-24 11:28:28 +00002998** The difference between this function and sqlite3VdbeDelete() is that
2999** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
drhcb103b92012-10-26 00:11:23 +00003000** the database connection and frees the object itself.
dand46def72010-07-24 11:28:28 +00003001*/
drhcb103b92012-10-26 00:11:23 +00003002void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
dand19c9332010-07-26 12:05:17 +00003003 SubProgram *pSub, *pNext;
dand46def72010-07-24 11:28:28 +00003004 assert( p->db==0 || p->db==db );
dand46def72010-07-24 11:28:28 +00003005 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
dand19c9332010-07-26 12:05:17 +00003006 for(pSub=p->pProgram; pSub; pSub=pNext){
3007 pNext = pSub->pNext;
3008 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3009 sqlite3DbFree(db, pSub);
3010 }
drhab3182f2016-10-01 00:37:50 +00003011 if( p->magic!=VDBE_MAGIC_INIT ){
drh8dfef112016-10-01 16:53:45 +00003012 releaseMemArray(p->aVar, p->nVar);
drh9bf755c2016-12-23 03:59:31 +00003013 sqlite3DbFree(db, p->pVList);
drh8dfef112016-10-01 16:53:45 +00003014 sqlite3DbFree(db, p->pFree);
drhab3182f2016-10-01 00:37:50 +00003015 }
dand46def72010-07-24 11:28:28 +00003016 vdbeFreeOpArray(db, p->aOp, p->nOp);
dand46def72010-07-24 11:28:28 +00003017 sqlite3DbFree(db, p->aColName);
3018 sqlite3DbFree(db, p->zSql);
dan6f9702e2014-11-01 20:38:06 +00003019#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drhf326d662016-12-23 13:30:53 +00003020 {
3021 int i;
3022 for(i=0; i<p->nScan; i++){
3023 sqlite3DbFree(db, p->aScan[i].zName);
3024 }
3025 sqlite3DbFree(db, p->aScan);
dan6f9702e2014-11-01 20:38:06 +00003026 }
dan6f9702e2014-11-01 20:38:06 +00003027#endif
dand46def72010-07-24 11:28:28 +00003028}
3029
3030/*
drh9a324642003-09-06 20:12:01 +00003031** Delete an entire VDBE.
3032*/
danielk19774adee202004-05-08 08:23:19 +00003033void sqlite3VdbeDelete(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00003034 sqlite3 *db;
3035
drhfa3be902009-07-07 02:44:07 +00003036 if( NEVER(p==0) ) return;
drh633e6d52008-07-28 19:34:53 +00003037 db = p->db;
drh4245c402012-06-02 14:32:21 +00003038 assert( sqlite3_mutex_held(db->mutex) );
drhcb103b92012-10-26 00:11:23 +00003039 sqlite3VdbeClearObject(db, p);
drh9a324642003-09-06 20:12:01 +00003040 if( p->pPrev ){
3041 p->pPrev->pNext = p->pNext;
3042 }else{
drh633e6d52008-07-28 19:34:53 +00003043 assert( db->pVdbe==p );
3044 db->pVdbe = p->pNext;
drh9a324642003-09-06 20:12:01 +00003045 }
3046 if( p->pNext ){
3047 p->pNext->pPrev = p->pPrev;
3048 }
drh9a324642003-09-06 20:12:01 +00003049 p->magic = VDBE_MAGIC_DEAD;
drh87f5c5f2010-01-20 01:20:56 +00003050 p->db = 0;
drhdbd6a7d2017-04-05 12:39:49 +00003051 sqlite3DbFreeNN(db, p);
drh9a324642003-09-06 20:12:01 +00003052}
drha11846b2004-01-07 18:52:56 +00003053
3054/*
drh6848dad2014-08-22 23:33:03 +00003055** The cursor "p" has a pending seek operation that has not yet been
3056** carried out. Seek the cursor now. If an error occurs, return
3057** the appropriate error code.
3058*/
3059static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
3060 int res, rc;
3061#ifdef SQLITE_TEST
3062 extern int sqlite3_search_count;
3063#endif
3064 assert( p->deferredMoveto );
3065 assert( p->isTable );
drhc960dcb2015-11-20 19:22:01 +00003066 assert( p->eCurType==CURTYPE_BTREE );
3067 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
drh6848dad2014-08-22 23:33:03 +00003068 if( rc ) return rc;
drh6848dad2014-08-22 23:33:03 +00003069 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
drh6848dad2014-08-22 23:33:03 +00003070#ifdef SQLITE_TEST
3071 sqlite3_search_count++;
3072#endif
3073 p->deferredMoveto = 0;
3074 p->cacheStatus = CACHE_STALE;
3075 return SQLITE_OK;
3076}
3077
3078/*
3079** Something has moved cursor "p" out of place. Maybe the row it was
3080** pointed to was deleted out from under it. Or maybe the btree was
3081** rebalanced. Whatever the cause, try to restore "p" to the place it
peter.d.reid60ec9142014-09-06 16:39:46 +00003082** is supposed to be pointing. If the row was deleted out from under the
drh6848dad2014-08-22 23:33:03 +00003083** cursor, set the cursor to point to a NULL row.
3084*/
3085static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3086 int isDifferentRow, rc;
drhc960dcb2015-11-20 19:22:01 +00003087 assert( p->eCurType==CURTYPE_BTREE );
3088 assert( p->uc.pCursor!=0 );
3089 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3090 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
drh6848dad2014-08-22 23:33:03 +00003091 p->cacheStatus = CACHE_STALE;
3092 if( isDifferentRow ) p->nullRow = 1;
3093 return rc;
3094}
3095
3096/*
drhc22284f2014-10-13 16:02:20 +00003097** Check to ensure that the cursor is valid. Restore the cursor
3098** if need be. Return any I/O error from the restore operation.
3099*/
3100int sqlite3VdbeCursorRestore(VdbeCursor *p){
drhc960dcb2015-11-20 19:22:01 +00003101 assert( p->eCurType==CURTYPE_BTREE );
3102 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
drhc22284f2014-10-13 16:02:20 +00003103 return handleMovedCursor(p);
3104 }
3105 return SQLITE_OK;
3106}
3107
3108/*
drh9a65f2c2009-06-22 19:05:40 +00003109** Make sure the cursor p is ready to read or write the row to which it
3110** was last positioned. Return an error code if an OOM fault or I/O error
3111** prevents us from positioning the cursor to its correct position.
3112**
drha11846b2004-01-07 18:52:56 +00003113** If a MoveTo operation is pending on the given cursor, then do that
drh9a65f2c2009-06-22 19:05:40 +00003114** MoveTo now. If no move is pending, check to see if the row has been
3115** deleted out from under the cursor and if it has, mark the row as
3116** a NULL row.
3117**
3118** If the cursor is already pointing to the correct row and that row has
3119** not been deleted out from under the cursor, then this routine is a no-op.
drha11846b2004-01-07 18:52:56 +00003120*/
dande892d92016-01-29 19:29:45 +00003121int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3122 VdbeCursor *p = *pp;
drhc960dcb2015-11-20 19:22:01 +00003123 if( p->eCurType==CURTYPE_BTREE ){
3124 if( p->deferredMoveto ){
drhb1702022016-01-30 00:45:18 +00003125 int iMap;
3126 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
dande892d92016-01-29 19:29:45 +00003127 *pp = p->pAltCursor;
drhb1702022016-01-30 00:45:18 +00003128 *piCol = iMap - 1;
dande892d92016-01-29 19:29:45 +00003129 return SQLITE_OK;
3130 }
drhc960dcb2015-11-20 19:22:01 +00003131 return handleDeferredMoveto(p);
3132 }
3133 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3134 return handleMovedCursor(p);
3135 }
drha11846b2004-01-07 18:52:56 +00003136 }
3137 return SQLITE_OK;
3138}
danielk19774adee202004-05-08 08:23:19 +00003139
drhab9f7f12004-05-08 10:56:11 +00003140/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003141** The following functions:
danielk197790e4d952004-05-10 10:05:53 +00003142**
danielk1977cfcdaef2004-05-12 07:33:33 +00003143** sqlite3VdbeSerialType()
3144** sqlite3VdbeSerialTypeLen()
danielk197790e4d952004-05-10 10:05:53 +00003145** sqlite3VdbeSerialLen()
shane92003092008-07-31 01:43:13 +00003146** sqlite3VdbeSerialPut()
3147** sqlite3VdbeSerialGet()
danielk197790e4d952004-05-10 10:05:53 +00003148**
3149** encapsulate the code that serializes values for storage in SQLite
danielk1977cfcdaef2004-05-12 07:33:33 +00003150** data and index records. Each serialized value consists of a
3151** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3152** integer, stored as a varint.
danielk197790e4d952004-05-10 10:05:53 +00003153**
danielk1977cfcdaef2004-05-12 07:33:33 +00003154** In an SQLite index record, the serial type is stored directly before
3155** the blob of data that it corresponds to. In a table record, all serial
3156** types are stored at the start of the record, and the blobs of data at
3157** the end. Hence these functions allow the caller to handle the
mistachkin48864df2013-03-21 21:20:32 +00003158** serial-type and data blob separately.
danielk1977cfcdaef2004-05-12 07:33:33 +00003159**
3160** The following table describes the various storage classes for data:
3161**
3162** serial type bytes of data type
danielk197790e4d952004-05-10 10:05:53 +00003163** -------------- --------------- ---------------
drha19b7752004-05-30 21:14:58 +00003164** 0 0 NULL
danielk197790e4d952004-05-10 10:05:53 +00003165** 1 1 signed integer
3166** 2 2 signed integer
drha19b7752004-05-30 21:14:58 +00003167** 3 3 signed integer
3168** 4 4 signed integer
3169** 5 6 signed integer
3170** 6 8 signed integer
3171** 7 8 IEEE float
drhd946db02005-12-29 19:23:06 +00003172** 8 0 Integer constant 0
3173** 9 0 Integer constant 1
3174** 10,11 reserved for expansion
danielk197790e4d952004-05-10 10:05:53 +00003175** N>=12 and even (N-12)/2 BLOB
3176** N>=13 and odd (N-13)/2 text
3177**
drh35a59652006-01-02 18:24:40 +00003178** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3179** of SQLite will not understand those serial types.
danielk197790e4d952004-05-10 10:05:53 +00003180*/
3181
3182/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003183** Return the serial-type for the value stored in pMem.
danielk1977192ac1d2004-05-10 07:17:30 +00003184*/
drhbe37c122015-10-16 14:54:17 +00003185u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
danielk1977cfcdaef2004-05-12 07:33:33 +00003186 int flags = pMem->flags;
drheac5bd72014-07-25 21:35:39 +00003187 u32 n;
danielk1977cfcdaef2004-05-12 07:33:33 +00003188
drhbe37c122015-10-16 14:54:17 +00003189 assert( pLen!=0 );
danielk1977cfcdaef2004-05-12 07:33:33 +00003190 if( flags&MEM_Null ){
drhbe37c122015-10-16 14:54:17 +00003191 *pLen = 0;
drha19b7752004-05-30 21:14:58 +00003192 return 0;
danielk197790e4d952004-05-10 10:05:53 +00003193 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003194 if( flags&MEM_Int ){
drhfe2093d2005-01-20 22:48:47 +00003195 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
drh5284a052008-05-08 15:18:10 +00003196# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
drh3c024d62007-03-30 11:23:45 +00003197 i64 i = pMem->u.i;
drhd946db02005-12-29 19:23:06 +00003198 u64 u;
drhcfd654b2011-03-05 13:54:15 +00003199 if( i<0 ){
drh1b40e632014-11-20 02:58:10 +00003200 u = ~i;
drhcfd654b2011-03-05 13:54:15 +00003201 }else{
3202 u = i;
3203 }
drh56690b32012-09-17 15:36:31 +00003204 if( u<=127 ){
drhbe37c122015-10-16 14:54:17 +00003205 if( (i&1)==i && file_format>=4 ){
3206 *pLen = 0;
3207 return 8+(u32)u;
3208 }else{
3209 *pLen = 1;
3210 return 1;
3211 }
drh56690b32012-09-17 15:36:31 +00003212 }
drhbe37c122015-10-16 14:54:17 +00003213 if( u<=32767 ){ *pLen = 2; return 2; }
3214 if( u<=8388607 ){ *pLen = 3; return 3; }
3215 if( u<=2147483647 ){ *pLen = 4; return 4; }
3216 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3217 *pLen = 8;
drha19b7752004-05-30 21:14:58 +00003218 return 6;
danielk197790e4d952004-05-10 10:05:53 +00003219 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003220 if( flags&MEM_Real ){
drhbe37c122015-10-16 14:54:17 +00003221 *pLen = 8;
drha19b7752004-05-30 21:14:58 +00003222 return 7;
danielk197790e4d952004-05-10 10:05:53 +00003223 }
danielk1977e4359752008-11-03 09:39:45 +00003224 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
drheac5bd72014-07-25 21:35:39 +00003225 assert( pMem->n>=0 );
3226 n = (u32)pMem->n;
drhfdf972a2007-05-02 13:30:27 +00003227 if( flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00003228 n += pMem->u.nZero;
danielk197790e4d952004-05-10 10:05:53 +00003229 }
drhbe37c122015-10-16 14:54:17 +00003230 *pLen = n;
drhfdf972a2007-05-02 13:30:27 +00003231 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
danielk1977192ac1d2004-05-10 07:17:30 +00003232}
3233
3234/*
drhfaf37272015-10-16 14:23:42 +00003235** The sizes for serial types less than 128
drhc5ef7152015-06-28 02:58:51 +00003236*/
3237static const u8 sqlite3SmallTypeSizes[] = {
drhfaf37272015-10-16 14:23:42 +00003238 /* 0 1 2 3 4 5 6 7 8 9 */
3239/* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3240/* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3241/* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3242/* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3243/* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3244/* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3245/* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3246/* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3247/* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3248/* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3249/* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3250/* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3251/* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
drhc5ef7152015-06-28 02:58:51 +00003252};
3253
3254/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003255** Return the length of the data corresponding to the supplied serial-type.
danielk1977192ac1d2004-05-10 07:17:30 +00003256*/
drh35cd6432009-06-05 14:17:21 +00003257u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
drhfaf37272015-10-16 14:23:42 +00003258 if( serial_type>=128 ){
drh51846b52004-05-28 16:00:21 +00003259 return (serial_type-12)/2;
3260 }else{
drhfaf37272015-10-16 14:23:42 +00003261 assert( serial_type<12
3262 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
drhc5ef7152015-06-28 02:58:51 +00003263 return sqlite3SmallTypeSizes[serial_type];
drh51846b52004-05-28 16:00:21 +00003264 }
danielk1977192ac1d2004-05-10 07:17:30 +00003265}
drhfaf37272015-10-16 14:23:42 +00003266u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3267 assert( serial_type<128 );
3268 return sqlite3SmallTypeSizes[serial_type];
3269}
danielk1977192ac1d2004-05-10 07:17:30 +00003270
3271/*
drh110daac2007-05-04 11:59:31 +00003272** If we are on an architecture with mixed-endian floating
drh7a4f5022007-05-23 07:20:08 +00003273** points (ex: ARM7) then swap the lower 4 bytes with the
drh110daac2007-05-04 11:59:31 +00003274** upper 4 bytes. Return the result.
3275**
drh7a4f5022007-05-23 07:20:08 +00003276** For most architectures, this is a no-op.
3277**
3278** (later): It is reported to me that the mixed-endian problem
3279** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3280** that early versions of GCC stored the two words of a 64-bit
3281** float in the wrong order. And that error has been propagated
3282** ever since. The blame is not necessarily with GCC, though.
3283** GCC might have just copying the problem from a prior compiler.
3284** I am also told that newer versions of GCC that follow a different
3285** ABI get the byte order right.
3286**
3287** Developers using SQLite on an ARM7 should compile and run their
3288** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3289** enabled, some asserts below will ensure that the byte order of
3290** floating point values is correct.
drh60d09a72007-08-30 15:05:08 +00003291**
3292** (2007-08-30) Frank van Vugt has studied this problem closely
3293** and has send his findings to the SQLite developers. Frank
3294** writes that some Linux kernels offer floating point hardware
3295** emulation that uses only 32-bit mantissas instead of a full
3296** 48-bits as required by the IEEE standard. (This is the
3297** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3298** byte swapping becomes very complicated. To avoid problems,
3299** the necessary byte swapping is carried out using a 64-bit integer
3300** rather than a 64-bit float. Frank assures us that the code here
3301** works for him. We, the developers, have no way to independently
3302** verify this, but Frank seems to know what he is talking about
3303** so we trust him.
drh110daac2007-05-04 11:59:31 +00003304*/
3305#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
drh60d09a72007-08-30 15:05:08 +00003306static u64 floatSwap(u64 in){
drh110daac2007-05-04 11:59:31 +00003307 union {
drh60d09a72007-08-30 15:05:08 +00003308 u64 r;
drh110daac2007-05-04 11:59:31 +00003309 u32 i[2];
3310 } u;
3311 u32 t;
3312
3313 u.r = in;
3314 t = u.i[0];
3315 u.i[0] = u.i[1];
3316 u.i[1] = t;
3317 return u.r;
3318}
3319# define swapMixedEndianFloat(X) X = floatSwap(X)
3320#else
3321# define swapMixedEndianFloat(X)
3322#endif
3323
3324/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003325** Write the serialized data blob for the value stored in pMem into
3326** buf. It is assumed that the caller has allocated sufficient space.
3327** Return the number of bytes written.
drhfdf972a2007-05-02 13:30:27 +00003328**
drh038b7bc2013-12-09 23:17:22 +00003329** nBuf is the amount of space left in buf[]. The caller is responsible
3330** for allocating enough space to buf[] to hold the entire field, exclusive
3331** of the pMem->u.nZero bytes for a MEM_Zero value.
drhfdf972a2007-05-02 13:30:27 +00003332**
3333** Return the number of bytes actually written into buf[]. The number
3334** of bytes in the zero-filled tail is included in the return value only
3335** if those bytes were zeroed in buf[].
danielk1977cfcdaef2004-05-12 07:33:33 +00003336*/
drha9ab4812013-12-11 11:00:44 +00003337u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
drh35cd6432009-06-05 14:17:21 +00003338 u32 len;
danielk1977183f9f72004-05-13 05:20:26 +00003339
drh1483e142004-05-21 21:12:42 +00003340 /* Integer and Real */
drhd946db02005-12-29 19:23:06 +00003341 if( serial_type<=7 && serial_type>0 ){
drh1483e142004-05-21 21:12:42 +00003342 u64 v;
drh35cd6432009-06-05 14:17:21 +00003343 u32 i;
drha19b7752004-05-30 21:14:58 +00003344 if( serial_type==7 ){
drh74eaba42014-09-18 17:52:15 +00003345 assert( sizeof(v)==sizeof(pMem->u.r) );
3346 memcpy(&v, &pMem->u.r, sizeof(v));
drh60d09a72007-08-30 15:05:08 +00003347 swapMixedEndianFloat(v);
drh1483e142004-05-21 21:12:42 +00003348 }else{
drh3c024d62007-03-30 11:23:45 +00003349 v = pMem->u.i;
danielk1977cfcdaef2004-05-12 07:33:33 +00003350 }
drhc5ef7152015-06-28 02:58:51 +00003351 len = i = sqlite3SmallTypeSizes[serial_type];
drh3f5b1992014-08-22 13:22:32 +00003352 assert( i>0 );
3353 do{
3354 buf[--i] = (u8)(v&0xFF);
drh1483e142004-05-21 21:12:42 +00003355 v >>= 8;
drh3f5b1992014-08-22 13:22:32 +00003356 }while( i );
drh1483e142004-05-21 21:12:42 +00003357 return len;
danielk1977cfcdaef2004-05-12 07:33:33 +00003358 }
drhd946db02005-12-29 19:23:06 +00003359
danielk1977cfcdaef2004-05-12 07:33:33 +00003360 /* String or blob */
drhd946db02005-12-29 19:23:06 +00003361 if( serial_type>=12 ){
drh8df32842008-12-09 02:51:23 +00003362 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
shane75ac1de2009-06-09 18:58:52 +00003363 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
drhfdf972a2007-05-02 13:30:27 +00003364 len = pMem->n;
drh72ea29d2015-12-08 16:58:45 +00003365 if( len>0 ) memcpy(buf, pMem->z, len);
drhd946db02005-12-29 19:23:06 +00003366 return len;
3367 }
3368
3369 /* NULL or constants 0 or 1 */
3370 return 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00003371}
3372
drhf926d1e2014-03-04 04:04:33 +00003373/* Input "x" is a sequence of unsigned characters that represent a
3374** big-endian integer. Return the equivalent native integer
3375*/
3376#define ONE_BYTE_INT(x) ((i8)(x)[0])
3377#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3378#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3379#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drh8932bec2014-08-22 14:56:13 +00003380#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drhf926d1e2014-03-04 04:04:33 +00003381
danielk1977cfcdaef2004-05-12 07:33:33 +00003382/*
3383** Deserialize the data blob pointed to by buf as serial type serial_type
3384** and store the result in pMem. Return the number of bytes read.
drh14a924a2014-08-22 14:34:05 +00003385**
3386** This function is implemented as two separate routines for performance.
3387** The few cases that require local variables are broken out into a separate
3388** routine so that in most cases the overhead of moving the stack pointer
3389** is avoided.
danielk1977cfcdaef2004-05-12 07:33:33 +00003390*/
drh14a924a2014-08-22 14:34:05 +00003391static u32 SQLITE_NOINLINE serialGet(
danielk197793d46752004-05-23 13:30:58 +00003392 const unsigned char *buf, /* Buffer to deserialize from */
drh25aa1b42004-05-28 01:39:01 +00003393 u32 serial_type, /* Serial type to deserialize */
3394 Mem *pMem /* Memory cell to write value into */
danielk1977b1bc9532004-05-22 03:05:33 +00003395){
drh8932bec2014-08-22 14:56:13 +00003396 u64 x = FOUR_BYTE_UINT(buf);
3397 u32 y = FOUR_BYTE_UINT(buf+4);
3398 x = (x<<32) + y;
drh14a924a2014-08-22 14:34:05 +00003399 if( serial_type==6 ){
drh654858d2014-11-20 02:18:14 +00003400 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3401 ** twos-complement integer. */
drh14a924a2014-08-22 14:34:05 +00003402 pMem->u.i = *(i64*)&x;
3403 pMem->flags = MEM_Int;
3404 testcase( pMem->u.i<0 );
3405 }else{
drh654858d2014-11-20 02:18:14 +00003406 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3407 ** floating point number. */
drh14a924a2014-08-22 14:34:05 +00003408#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3409 /* Verify that integers and floating point values use the same
3410 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3411 ** defined that 64-bit floating point values really are mixed
3412 ** endian.
3413 */
3414 static const u64 t1 = ((u64)0x3ff00000)<<32;
3415 static const double r1 = 1.0;
3416 u64 t2 = t1;
3417 swapMixedEndianFloat(t2);
3418 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3419#endif
drh74eaba42014-09-18 17:52:15 +00003420 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
drh14a924a2014-08-22 14:34:05 +00003421 swapMixedEndianFloat(x);
drh74eaba42014-09-18 17:52:15 +00003422 memcpy(&pMem->u.r, &x, sizeof(x));
3423 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
drh14a924a2014-08-22 14:34:05 +00003424 }
3425 return 8;
3426}
danielk1977b1bc9532004-05-22 03:05:33 +00003427u32 sqlite3VdbeSerialGet(
3428 const unsigned char *buf, /* Buffer to deserialize from */
3429 u32 serial_type, /* Serial type to deserialize */
3430 Mem *pMem /* Memory cell to write value into */
3431){
drh3c685822005-05-21 18:32:18 +00003432 switch( serial_type ){
drh3c685822005-05-21 18:32:18 +00003433 case 10: /* Reserved for future use */
3434 case 11: /* Reserved for future use */
drh654858d2014-11-20 02:18:14 +00003435 case 0: { /* Null */
3436 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
drh3c685822005-05-21 18:32:18 +00003437 pMem->flags = MEM_Null;
3438 break;
3439 }
drh654858d2014-11-20 02:18:14 +00003440 case 1: {
3441 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3442 ** integer. */
drhf926d1e2014-03-04 04:04:33 +00003443 pMem->u.i = ONE_BYTE_INT(buf);
drh1483e142004-05-21 21:12:42 +00003444 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003445 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003446 return 1;
drh1483e142004-05-21 21:12:42 +00003447 }
drh3c685822005-05-21 18:32:18 +00003448 case 2: { /* 2-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003449 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3450 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003451 pMem->u.i = TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003452 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003453 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003454 return 2;
3455 }
3456 case 3: { /* 3-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003457 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3458 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003459 pMem->u.i = THREE_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003460 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003461 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003462 return 3;
3463 }
3464 case 4: { /* 4-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003465 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3466 ** twos-complement integer. */
drh8932bec2014-08-22 14:56:13 +00003467 pMem->u.i = FOUR_BYTE_INT(buf);
drhc8bb4302015-11-06 17:28:00 +00003468#ifdef __HP_cc
3469 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3470 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3471#endif
drh3c685822005-05-21 18:32:18 +00003472 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003473 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003474 return 4;
3475 }
3476 case 5: { /* 6-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003477 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3478 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003479 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003480 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003481 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003482 return 6;
3483 }
drh91124b32005-08-18 18:15:05 +00003484 case 6: /* 8-byte signed integer */
drh3c685822005-05-21 18:32:18 +00003485 case 7: { /* IEEE floating point */
drh8932bec2014-08-22 14:56:13 +00003486 /* These use local variables, so do them in a separate routine
3487 ** to avoid having to move the frame pointer in the common case */
drh14a924a2014-08-22 14:34:05 +00003488 return serialGet(buf,serial_type,pMem);
drh3c685822005-05-21 18:32:18 +00003489 }
drhd946db02005-12-29 19:23:06 +00003490 case 8: /* Integer 0 */
3491 case 9: { /* Integer 1 */
drh654858d2014-11-20 02:18:14 +00003492 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3493 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
drh3c024d62007-03-30 11:23:45 +00003494 pMem->u.i = serial_type-8;
drhd946db02005-12-29 19:23:06 +00003495 pMem->flags = MEM_Int;
3496 return 0;
3497 }
drh3c685822005-05-21 18:32:18 +00003498 default: {
drh654858d2014-11-20 02:18:14 +00003499 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3500 ** length.
3501 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3502 ** (N-13)/2 bytes in length. */
drhc138daf2013-11-19 13:55:34 +00003503 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
drh3c685822005-05-21 18:32:18 +00003504 pMem->z = (char *)buf;
drh14a924a2014-08-22 14:34:05 +00003505 pMem->n = (serial_type-12)/2;
drhc138daf2013-11-19 13:55:34 +00003506 pMem->flags = aFlag[serial_type&1];
drh14a924a2014-08-22 14:34:05 +00003507 return pMem->n;
drh696b32f2004-05-30 01:51:52 +00003508 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003509 }
drh3c685822005-05-21 18:32:18 +00003510 return 0;
danielk1977192ac1d2004-05-10 07:17:30 +00003511}
drh1e968a02008-03-25 00:22:21 +00003512/*
dan03e9cfc2011-09-05 14:20:27 +00003513** This routine is used to allocate sufficient space for an UnpackedRecord
3514** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3515** the first argument is a pointer to KeyInfo structure pKeyInfo.
drh1e968a02008-03-25 00:22:21 +00003516**
dan03e9cfc2011-09-05 14:20:27 +00003517** The space is either allocated using sqlite3DbMallocRaw() or from within
3518** the unaligned buffer passed via the second and third arguments (presumably
3519** stack space). If the former, then *ppFree is set to a pointer that should
3520** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3521** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3522** before returning.
drh1e968a02008-03-25 00:22:21 +00003523**
dan03e9cfc2011-09-05 14:20:27 +00003524** If an OOM error occurs, NULL is returned.
3525*/
3526UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
drha582b012016-12-21 19:45:54 +00003527 KeyInfo *pKeyInfo /* Description of the record */
drh1e968a02008-03-25 00:22:21 +00003528){
dan03e9cfc2011-09-05 14:20:27 +00003529 UnpackedRecord *p; /* Unpacked record to return */
dan03e9cfc2011-09-05 14:20:27 +00003530 int nByte; /* Number of bytes required for *p */
drh8c5d1522009-04-10 00:56:28 +00003531 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
drha582b012016-12-21 19:45:54 +00003532 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3533 if( !p ) return 0;
dan42acb3e2011-09-05 20:16:38 +00003534 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
drhe1a022e2012-09-17 17:16:53 +00003535 assert( pKeyInfo->aSortOrder!=0 );
drh1e968a02008-03-25 00:22:21 +00003536 p->pKeyInfo = pKeyInfo;
3537 p->nField = pKeyInfo->nField + 1;
dan03e9cfc2011-09-05 14:20:27 +00003538 return p;
3539}
3540
3541/*
3542** Given the nKey-byte encoding of a record in pKey[], populate the
3543** UnpackedRecord structure indicated by the fourth argument with the
3544** contents of the decoded record.
3545*/
3546void sqlite3VdbeRecordUnpack(
3547 KeyInfo *pKeyInfo, /* Information about the record format */
3548 int nKey, /* Size of the binary record */
3549 const void *pKey, /* The binary record */
3550 UnpackedRecord *p /* Populate this structure before returning. */
3551){
3552 const unsigned char *aKey = (const unsigned char *)pKey;
3553 int d;
3554 u32 idx; /* Offset in aKey[] to read from */
3555 u16 u; /* Unsigned loop counter */
3556 u32 szHdr;
dan42acb3e2011-09-05 20:16:38 +00003557 Mem *pMem = p->aMem;
dan03e9cfc2011-09-05 14:20:27 +00003558
dan1fed5da2014-02-25 21:01:25 +00003559 p->default_rc = 0;
drh8c5d1522009-04-10 00:56:28 +00003560 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
shane3f8d5cf2008-04-24 19:15:09 +00003561 idx = getVarint32(aKey, szHdr);
drh1e968a02008-03-25 00:22:21 +00003562 d = szHdr;
shane0b8d2762008-07-22 05:18:00 +00003563 u = 0;
drh7f4b19f2014-09-16 13:30:05 +00003564 while( idx<szHdr && d<=nKey ){
drh1e968a02008-03-25 00:22:21 +00003565 u32 serial_type;
3566
danielk197700e13612008-11-17 19:18:54 +00003567 idx += getVarint32(&aKey[idx], serial_type);
drh1e968a02008-03-25 00:22:21 +00003568 pMem->enc = pKeyInfo->enc;
3569 pMem->db = pKeyInfo->db;
drhc3f1d5f2011-05-30 23:42:16 +00003570 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
drh17bcb102014-09-18 21:25:33 +00003571 pMem->szMalloc = 0;
drh304637c2011-03-18 16:47:27 +00003572 pMem->z = 0;
drh1e968a02008-03-25 00:22:21 +00003573 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
drhe14006d2008-03-25 17:23:32 +00003574 pMem++;
drh7f4b19f2014-09-16 13:30:05 +00003575 if( (++u)>=p->nField ) break;
drh1e968a02008-03-25 00:22:21 +00003576 }
drh7d10d5a2008-08-20 16:35:10 +00003577 assert( u<=pKeyInfo->nField + 1 );
shane0b8d2762008-07-22 05:18:00 +00003578 p->nField = u;
drh1e968a02008-03-25 00:22:21 +00003579}
3580
drhd879e3e2017-02-13 13:35:55 +00003581#ifdef SQLITE_DEBUG
drh1e968a02008-03-25 00:22:21 +00003582/*
dan3833e932014-03-01 19:44:56 +00003583** This function compares two index or table record keys in the same way
3584** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3585** this function deserializes and compares values using the
3586** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3587** in assert() statements to ensure that the optimized code in
3588** sqlite3VdbeRecordCompare() returns results with these two primitives.
drh79211e12014-05-02 17:33:16 +00003589**
3590** Return true if the result of comparison is equivalent to desiredResult.
3591** Return false if there is a disagreement.
drh1e968a02008-03-25 00:22:21 +00003592*/
dan3833e932014-03-01 19:44:56 +00003593static int vdbeRecordCompareDebug(
drhec1fc802008-08-13 14:07:40 +00003594 int nKey1, const void *pKey1, /* Left key */
drh79211e12014-05-02 17:33:16 +00003595 const UnpackedRecord *pPKey2, /* Right key */
3596 int desiredResult /* Correct answer */
drh1e968a02008-03-25 00:22:21 +00003597){
drhdf003d62013-08-01 19:17:39 +00003598 u32 d1; /* Offset into aKey[] of next data element */
drh1e968a02008-03-25 00:22:21 +00003599 u32 idx1; /* Offset into aKey[] of next header element */
3600 u32 szHdr1; /* Number of bytes in header */
3601 int i = 0;
drh1e968a02008-03-25 00:22:21 +00003602 int rc = 0;
3603 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3604 KeyInfo *pKeyInfo;
3605 Mem mem1;
3606
3607 pKeyInfo = pPKey2->pKeyInfo;
drh84de6902014-05-02 18:46:52 +00003608 if( pKeyInfo->db==0 ) return 1;
drh1e968a02008-03-25 00:22:21 +00003609 mem1.enc = pKeyInfo->enc;
drh37272632009-11-16 21:28:45 +00003610 mem1.db = pKeyInfo->db;
drhd93a8b22009-11-16 03:13:40 +00003611 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
drh17bcb102014-09-18 21:25:33 +00003612 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
drh8b249a82009-11-16 02:14:00 +00003613
3614 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3615 ** We could initialize it, as shown here, to silence those complaints.
drh5275d2e2011-04-27 01:00:17 +00003616 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
drh8b249a82009-11-16 02:14:00 +00003617 ** the unnecessary initialization has a measurable negative performance
3618 ** impact, since this routine is a very high runner. And so, we choose
3619 ** to ignore the compiler warnings and leave this variable uninitialized.
3620 */
3621 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
drh1e968a02008-03-25 00:22:21 +00003622
shane3f8d5cf2008-04-24 19:15:09 +00003623 idx1 = getVarint32(aKey1, szHdr1);
drh46981362015-07-08 12:25:38 +00003624 if( szHdr1>98307 ) return SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00003625 d1 = szHdr1;
drhb2023662013-11-29 15:39:36 +00003626 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
drhe1a022e2012-09-17 17:16:53 +00003627 assert( pKeyInfo->aSortOrder!=0 );
dan89bc0212013-12-03 09:49:52 +00003628 assert( pKeyInfo->nField>0 );
3629 assert( idx1<=szHdr1 || CORRUPT_DB );
drh0b9dada2013-11-25 22:24:36 +00003630 do{
drh1e968a02008-03-25 00:22:21 +00003631 u32 serial_type1;
3632
3633 /* Read the serial types for the next element in each key. */
shane3f8d5cf2008-04-24 19:15:09 +00003634 idx1 += getVarint32( aKey1+idx1, serial_type1 );
drhaf5b2af2013-08-05 15:32:09 +00003635
3636 /* Verify that there is enough key space remaining to avoid
3637 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3638 ** always be greater than or equal to the amount of required key space.
3639 ** Use that approximation to avoid the more expensive call to
3640 ** sqlite3VdbeSerialTypeLen() in the common case.
3641 */
3642 if( d1+serial_type1+2>(u32)nKey1
3643 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3644 ){
3645 break;
3646 }
drh1e968a02008-03-25 00:22:21 +00003647
3648 /* Extract the values to be compared.
3649 */
3650 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3651
3652 /* Do the comparison
3653 */
drh323df792013-08-05 19:11:29 +00003654 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
drh1e968a02008-03-25 00:22:21 +00003655 if( rc!=0 ){
drh17bcb102014-09-18 21:25:33 +00003656 assert( mem1.szMalloc==0 ); /* See comment below */
drh323df792013-08-05 19:11:29 +00003657 if( pKeyInfo->aSortOrder[i] ){
drh6f225d02013-10-26 13:36:51 +00003658 rc = -rc; /* Invert the result for DESC sort order. */
drh8b249a82009-11-16 02:14:00 +00003659 }
drh79211e12014-05-02 17:33:16 +00003660 goto debugCompareEnd;
drh1e968a02008-03-25 00:22:21 +00003661 }
3662 i++;
drh0b9dada2013-11-25 22:24:36 +00003663 }while( idx1<szHdr1 && i<pPKey2->nField );
drh407414c2009-07-14 14:15:27 +00003664
drh8b249a82009-11-16 02:14:00 +00003665 /* No memory allocation is ever used on mem1. Prove this using
3666 ** the following assert(). If the assert() fails, it indicates a
3667 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
danielk1977de630352009-05-04 11:42:29 +00003668 */
drh17bcb102014-09-18 21:25:33 +00003669 assert( mem1.szMalloc==0 );
danielk1977de630352009-05-04 11:42:29 +00003670
drh8b249a82009-11-16 02:14:00 +00003671 /* rc==0 here means that one of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00003672 ** all the fields up to that point were equal. Return the default_rc
dan3b9330f2014-02-27 20:44:18 +00003673 ** value. */
drh79211e12014-05-02 17:33:16 +00003674 rc = pPKey2->default_rc;
3675
3676debugCompareEnd:
3677 if( desiredResult==0 && rc==0 ) return 1;
3678 if( desiredResult<0 && rc<0 ) return 1;
3679 if( desiredResult>0 && rc>0 ) return 1;
3680 if( CORRUPT_DB ) return 1;
3681 if( pKeyInfo->db->mallocFailed ) return 1;
3682 return 0;
dan1fed5da2014-02-25 21:01:25 +00003683}
dan3833e932014-03-01 19:44:56 +00003684#endif
dan1fed5da2014-02-25 21:01:25 +00003685
drhd879e3e2017-02-13 13:35:55 +00003686#ifdef SQLITE_DEBUG
drhe1bb8022015-01-19 19:48:52 +00003687/*
3688** Count the number of fields (a.k.a. columns) in the record given by
3689** pKey,nKey. The verify that this count is less than or equal to the
3690** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3691**
3692** If this constraint is not satisfied, it means that the high-speed
3693** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3694** not work correctly. If this assert() ever fires, it probably means
3695** that the KeyInfo.nField or KeyInfo.nXField values were computed
3696** incorrectly.
3697*/
3698static void vdbeAssertFieldCountWithinLimits(
3699 int nKey, const void *pKey, /* The record to verify */
3700 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3701){
3702 int nField = 0;
3703 u32 szHdr;
3704 u32 idx;
3705 u32 notUsed;
3706 const unsigned char *aKey = (const unsigned char*)pKey;
3707
3708 if( CORRUPT_DB ) return;
3709 idx = getVarint32(aKey, szHdr);
mistachkin1b3ee492015-01-21 00:51:08 +00003710 assert( nKey>=0 );
3711 assert( szHdr<=(u32)nKey );
drhe1bb8022015-01-19 19:48:52 +00003712 while( idx<szHdr ){
3713 idx += getVarint32(aKey+idx, notUsed);
3714 nField++;
3715 }
3716 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3717}
drh1af3c642015-01-19 20:57:19 +00003718#else
3719# define vdbeAssertFieldCountWithinLimits(A,B,C)
drhe1bb8022015-01-19 19:48:52 +00003720#endif
3721
dan3833e932014-03-01 19:44:56 +00003722/*
3723** Both *pMem1 and *pMem2 contain string values. Compare the two values
3724** using the collation sequence pColl. As usual, return a negative , zero
3725** or positive value if *pMem1 is less than, equal to or greater than
3726** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3727*/
dan1fed5da2014-02-25 21:01:25 +00003728static int vdbeCompareMemString(
dan3833e932014-03-01 19:44:56 +00003729 const Mem *pMem1,
3730 const Mem *pMem2,
dan38fdead2014-04-01 10:19:02 +00003731 const CollSeq *pColl,
3732 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
dan1fed5da2014-02-25 21:01:25 +00003733){
3734 if( pMem1->enc==pColl->enc ){
3735 /* The strings are already in the correct encoding. Call the
3736 ** comparison function directly */
3737 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3738 }else{
3739 int rc;
3740 const void *v1, *v2;
3741 int n1, n2;
3742 Mem c1;
3743 Mem c2;
drh17bcb102014-09-18 21:25:33 +00003744 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3745 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
dan1fed5da2014-02-25 21:01:25 +00003746 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3747 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3748 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3749 n1 = v1==0 ? 0 : c1.n;
3750 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3751 n2 = v2==0 ? 0 : c2.n;
3752 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
mistachkinfad30392016-02-13 23:43:46 +00003753 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
dan1fed5da2014-02-25 21:01:25 +00003754 sqlite3VdbeMemRelease(&c1);
3755 sqlite3VdbeMemRelease(&c2);
3756 return rc;
3757 }
3758}
3759
3760/*
drh64caee42016-09-09 19:33:00 +00003761** The input pBlob is guaranteed to be a Blob that is not marked
3762** with MEM_Zero. Return true if it could be a zero-blob.
3763*/
drh8aaf7bc2016-09-20 01:19:18 +00003764static int isAllZero(const char *z, int n){
drh64caee42016-09-09 19:33:00 +00003765 int i;
drh8aaf7bc2016-09-20 01:19:18 +00003766 for(i=0; i<n; i++){
3767 if( z[i] ) return 0;
3768 }
3769 return 1;
drh64caee42016-09-09 19:33:00 +00003770}
3771
3772/*
drh982ff722014-09-16 03:24:43 +00003773** Compare two blobs. Return negative, zero, or positive if the first
3774** is less than, equal to, or greater than the second, respectively.
3775** If one blob is a prefix of the other, then the shorter is the lessor.
3776*/
3777static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
drh64caee42016-09-09 19:33:00 +00003778 int c;
3779 int n1 = pB1->n;
3780 int n2 = pB2->n;
3781
3782 /* It is possible to have a Blob value that has some non-zero content
3783 ** followed by zero content. But that only comes up for Blobs formed
3784 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
3785 ** sqlite3MemCompare(). */
3786 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
3787 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
3788
3789 if( (pB1->flags|pB2->flags) & MEM_Zero ){
3790 if( pB1->flags & pB2->flags & MEM_Zero ){
3791 return pB1->u.nZero - pB2->u.nZero;
3792 }else if( pB1->flags & MEM_Zero ){
drh8aaf7bc2016-09-20 01:19:18 +00003793 if( !isAllZero(pB2->z, pB2->n) ) return -1;
drh64caee42016-09-09 19:33:00 +00003794 return pB1->u.nZero - n2;
3795 }else{
drh8aaf7bc2016-09-20 01:19:18 +00003796 if( !isAllZero(pB1->z, pB1->n) ) return +1;
drh64caee42016-09-09 19:33:00 +00003797 return n1 - pB2->u.nZero;
3798 }
3799 }
3800 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
drh982ff722014-09-16 03:24:43 +00003801 if( c ) return c;
drh64caee42016-09-09 19:33:00 +00003802 return n1 - n2;
drh982ff722014-09-16 03:24:43 +00003803}
3804
drh2ab410a2015-11-06 14:59:07 +00003805/*
3806** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3807** number. Return negative, zero, or positive if the first (i64) is less than,
3808** equal to, or greater than the second (double).
3809*/
3810static int sqlite3IntFloatCompare(i64 i, double r){
3811 if( sizeof(LONGDOUBLE_TYPE)>8 ){
3812 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3813 if( x<r ) return -1;
3814 if( x>r ) return +1;
3815 return 0;
3816 }else{
3817 i64 y;
3818 double s;
3819 if( r<-9223372036854775808.0 ) return +1;
3820 if( r>9223372036854775807.0 ) return -1;
3821 y = (i64)r;
3822 if( i<y ) return -1;
3823 if( i>y ){
3824 if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3825 return +1;
3826 }
3827 s = (double)i;
3828 if( s<r ) return -1;
3829 if( s>r ) return +1;
3830 return 0;
3831 }
3832}
drh982ff722014-09-16 03:24:43 +00003833
3834/*
dan1fed5da2014-02-25 21:01:25 +00003835** Compare the values contained by the two memory cells, returning
3836** negative, zero or positive if pMem1 is less than, equal to, or greater
3837** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3838** and reals) sorted numerically, followed by text ordered by the collating
3839** sequence pColl and finally blob's ordered by memcmp().
3840**
3841** Two NULL values are considered equal by this function.
3842*/
3843int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
dan1fed5da2014-02-25 21:01:25 +00003844 int f1, f2;
3845 int combined_flags;
3846
3847 f1 = pMem1->flags;
3848 f2 = pMem2->flags;
3849 combined_flags = f1|f2;
3850 assert( (combined_flags & MEM_RowSet)==0 );
3851
3852 /* If one value is NULL, it is less than the other. If both values
3853 ** are NULL, return 0.
drh8b249a82009-11-16 02:14:00 +00003854 */
dan1fed5da2014-02-25 21:01:25 +00003855 if( combined_flags&MEM_Null ){
3856 return (f2&MEM_Null) - (f1&MEM_Null);
3857 }
3858
drh2ab410a2015-11-06 14:59:07 +00003859 /* At least one of the two values is a number
dan1fed5da2014-02-25 21:01:25 +00003860 */
3861 if( combined_flags&(MEM_Int|MEM_Real) ){
dan1fed5da2014-02-25 21:01:25 +00003862 if( (f1 & f2 & MEM_Int)!=0 ){
3863 if( pMem1->u.i < pMem2->u.i ) return -1;
drh2ab410a2015-11-06 14:59:07 +00003864 if( pMem1->u.i > pMem2->u.i ) return +1;
dan1fed5da2014-02-25 21:01:25 +00003865 return 0;
3866 }
drh2ab410a2015-11-06 14:59:07 +00003867 if( (f1 & f2 & MEM_Real)!=0 ){
3868 if( pMem1->u.r < pMem2->u.r ) return -1;
3869 if( pMem1->u.r > pMem2->u.r ) return +1;
3870 return 0;
3871 }
3872 if( (f1&MEM_Int)!=0 ){
3873 if( (f2&MEM_Real)!=0 ){
3874 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3875 }else{
3876 return -1;
3877 }
3878 }
dan1fed5da2014-02-25 21:01:25 +00003879 if( (f1&MEM_Real)!=0 ){
drh2ab410a2015-11-06 14:59:07 +00003880 if( (f2&MEM_Int)!=0 ){
3881 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3882 }else{
3883 return -1;
3884 }
dan1fed5da2014-02-25 21:01:25 +00003885 }
drh2ab410a2015-11-06 14:59:07 +00003886 return +1;
dan1fed5da2014-02-25 21:01:25 +00003887 }
3888
3889 /* If one value is a string and the other is a blob, the string is less.
3890 ** If both are strings, compare using the collating functions.
3891 */
3892 if( combined_flags&MEM_Str ){
3893 if( (f1 & MEM_Str)==0 ){
3894 return 1;
3895 }
3896 if( (f2 & MEM_Str)==0 ){
3897 return -1;
3898 }
3899
drhe5520e22015-12-31 04:34:26 +00003900 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
dan1fed5da2014-02-25 21:01:25 +00003901 assert( pMem1->enc==SQLITE_UTF8 ||
3902 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3903
3904 /* The collation sequence must be defined at this point, even if
3905 ** the user deletes the collation sequence after the vdbe program is
3906 ** compiled (this was not always the case).
3907 */
3908 assert( !pColl || pColl->xCmp );
3909
3910 if( pColl ){
dan38fdead2014-04-01 10:19:02 +00003911 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
dan1fed5da2014-02-25 21:01:25 +00003912 }
3913 /* If a NULL pointer was passed as the collate function, fall through
3914 ** to the blob case and use memcmp(). */
3915 }
3916
3917 /* Both values must be blobs. Compare using memcmp(). */
drh982ff722014-09-16 03:24:43 +00003918 return sqlite3BlobCompare(pMem1, pMem2);
drh1e968a02008-03-25 00:22:21 +00003919}
dan1fed5da2014-02-25 21:01:25 +00003920
3921
dan3833e932014-03-01 19:44:56 +00003922/*
3923** The first argument passed to this function is a serial-type that
3924** corresponds to an integer - all values between 1 and 9 inclusive
3925** except 7. The second points to a buffer containing an integer value
3926** serialized according to serial_type. This function deserializes
3927** and returns the value.
3928*/
dan3b9330f2014-02-27 20:44:18 +00003929static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
drhf926d1e2014-03-04 04:04:33 +00003930 u32 y;
dan3833e932014-03-01 19:44:56 +00003931 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
dan3b9330f2014-02-27 20:44:18 +00003932 switch( serial_type ){
dan3833e932014-03-01 19:44:56 +00003933 case 0:
dan3b9330f2014-02-27 20:44:18 +00003934 case 1:
drhb6e8fd12014-03-06 01:56:33 +00003935 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003936 return ONE_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003937 case 2:
drhb6e8fd12014-03-06 01:56:33 +00003938 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003939 return TWO_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003940 case 3:
drhb6e8fd12014-03-06 01:56:33 +00003941 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003942 return THREE_BYTE_INT(aKey);
3943 case 4: {
drhb6e8fd12014-03-06 01:56:33 +00003944 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003945 y = FOUR_BYTE_UINT(aKey);
3946 return (i64)*(int*)&y;
3947 }
dan3b9330f2014-02-27 20:44:18 +00003948 case 5: {
drhb6e8fd12014-03-06 01:56:33 +00003949 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003950 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
danielk1977a7a8e142008-02-13 18:25:27 +00003951 }
dan3b9330f2014-02-27 20:44:18 +00003952 case 6: {
drhf926d1e2014-03-04 04:04:33 +00003953 u64 x = FOUR_BYTE_UINT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003954 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003955 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3956 return (i64)*(i64*)&x;
danielk19779a96b662007-11-29 17:05:18 +00003957 }
dan3b9330f2014-02-27 20:44:18 +00003958 }
danielk19779a96b662007-11-29 17:05:18 +00003959
dan3b9330f2014-02-27 20:44:18 +00003960 return (serial_type - 8);
danielk1977eb015e02004-05-18 01:31:14 +00003961}
danielk1977eb015e02004-05-18 01:31:14 +00003962
dan3833e932014-03-01 19:44:56 +00003963/*
3964** This function compares the two table rows or index records
3965** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3966** or positive integer if key1 is less than, equal to or
3967** greater than key2. The {nKey1, pKey1} key must be a blob
peter.d.reid60ec9142014-09-06 16:39:46 +00003968** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
dan3833e932014-03-01 19:44:56 +00003969** key must be a parsed key such as obtained from
3970** sqlite3VdbeParseRecord.
3971**
3972** If argument bSkip is non-zero, it is assumed that the caller has already
3973** determined that the first fields of the keys are equal.
3974**
3975** Key1 and Key2 do not have to contain the same number of fields. If all
3976** fields that appear in both keys are equal, then pPKey2->default_rc is
3977** returned.
drha1f7c0a2014-03-28 03:12:48 +00003978**
dan38fdead2014-04-01 10:19:02 +00003979** If database corruption is discovered, set pPKey2->errCode to
3980** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3981** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3982** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
dan3833e932014-03-01 19:44:56 +00003983*/
dan7004f3f2015-03-30 12:06:26 +00003984int sqlite3VdbeRecordCompareWithSkip(
dan3833e932014-03-01 19:44:56 +00003985 int nKey1, const void *pKey1, /* Left key */
drha1f7c0a2014-03-28 03:12:48 +00003986 UnpackedRecord *pPKey2, /* Right key */
dan3833e932014-03-01 19:44:56 +00003987 int bSkip /* If true, skip the first field */
dan1fed5da2014-02-25 21:01:25 +00003988){
dan3833e932014-03-01 19:44:56 +00003989 u32 d1; /* Offset into aKey[] of next data element */
3990 int i; /* Index of next field to compare */
mistachkinffe6bc22014-03-04 11:16:20 +00003991 u32 szHdr1; /* Size of record header in bytes */
dan3833e932014-03-01 19:44:56 +00003992 u32 idx1; /* Offset of first type in header */
3993 int rc = 0; /* Return value */
3994 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
dan1fed5da2014-02-25 21:01:25 +00003995 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3996 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3997 Mem mem1;
3998
dan3833e932014-03-01 19:44:56 +00003999 /* If bSkip is true, then the caller has already determined that the first
4000 ** two elements in the keys are equal. Fix the various stack variables so
dan3b9330f2014-02-27 20:44:18 +00004001 ** that this routine begins comparing at the second field. */
dan3833e932014-03-01 19:44:56 +00004002 if( bSkip ){
dan3b9330f2014-02-27 20:44:18 +00004003 u32 s1;
dan3b9330f2014-02-27 20:44:18 +00004004 idx1 = 1 + getVarint32(&aKey1[1], s1);
dan3833e932014-03-01 19:44:56 +00004005 szHdr1 = aKey1[0];
4006 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
dan3b9330f2014-02-27 20:44:18 +00004007 i = 1;
4008 pRhs++;
dan3833e932014-03-01 19:44:56 +00004009 }else{
4010 idx1 = getVarint32(aKey1, szHdr1);
4011 d1 = szHdr1;
drha1f7c0a2014-03-28 03:12:48 +00004012 if( d1>(unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00004013 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00004014 return 0; /* Corruption */
4015 }
dan3833e932014-03-01 19:44:56 +00004016 i = 0;
dan3b9330f2014-02-27 20:44:18 +00004017 }
4018
drh17bcb102014-09-18 21:25:33 +00004019 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
dan1fed5da2014-02-25 21:01:25 +00004020 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
4021 || CORRUPT_DB );
4022 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
4023 assert( pPKey2->pKeyInfo->nField>0 );
4024 assert( idx1<=szHdr1 || CORRUPT_DB );
4025 do{
dan1fed5da2014-02-25 21:01:25 +00004026 u32 serial_type;
4027
4028 /* RHS is an integer */
4029 if( pRhs->flags & MEM_Int ){
4030 serial_type = aKey1[idx1];
drhb6e8fd12014-03-06 01:56:33 +00004031 testcase( serial_type==12 );
danb95e1192015-05-26 20:31:20 +00004032 if( serial_type>=10 ){
dan1fed5da2014-02-25 21:01:25 +00004033 rc = +1;
4034 }else if( serial_type==0 ){
4035 rc = -1;
dan3b9330f2014-02-27 20:44:18 +00004036 }else if( serial_type==7 ){
dan1fed5da2014-02-25 21:01:25 +00004037 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
drh2ab410a2015-11-06 14:59:07 +00004038 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
dan3b9330f2014-02-27 20:44:18 +00004039 }else{
4040 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4041 i64 rhs = pRhs->u.i;
4042 if( lhs<rhs ){
4043 rc = -1;
4044 }else if( lhs>rhs ){
4045 rc = +1;
dan1fed5da2014-02-25 21:01:25 +00004046 }
4047 }
4048 }
4049
4050 /* RHS is real */
4051 else if( pRhs->flags & MEM_Real ){
4052 serial_type = aKey1[idx1];
dancc7aa1f2015-05-26 20:07:32 +00004053 if( serial_type>=10 ){
4054 /* Serial types 12 or greater are strings and blobs (greater than
4055 ** numbers). Types 10 and 11 are currently "reserved for future
4056 ** use", so it doesn't really matter what the results of comparing
4057 ** them to numberic values are. */
dan1fed5da2014-02-25 21:01:25 +00004058 rc = +1;
4059 }else if( serial_type==0 ){
4060 rc = -1;
4061 }else{
dan1fed5da2014-02-25 21:01:25 +00004062 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4063 if( serial_type==7 ){
drh2ab410a2015-11-06 14:59:07 +00004064 if( mem1.u.r<pRhs->u.r ){
4065 rc = -1;
4066 }else if( mem1.u.r>pRhs->u.r ){
4067 rc = +1;
4068 }
dan1fed5da2014-02-25 21:01:25 +00004069 }else{
drh2ab410a2015-11-06 14:59:07 +00004070 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
dan1fed5da2014-02-25 21:01:25 +00004071 }
4072 }
4073 }
4074
4075 /* RHS is a string */
4076 else if( pRhs->flags & MEM_Str ){
4077 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00004078 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00004079 if( serial_type<12 ){
4080 rc = -1;
4081 }else if( !(serial_type & 0x01) ){
4082 rc = +1;
4083 }else{
4084 mem1.n = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00004085 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4086 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00004087 if( (d1+mem1.n) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00004088 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00004089 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00004090 }else if( pKeyInfo->aColl[i] ){
4091 mem1.enc = pKeyInfo->enc;
4092 mem1.db = pKeyInfo->db;
4093 mem1.flags = MEM_Str;
drhfcb44a82014-03-03 15:13:27 +00004094 mem1.z = (char*)&aKey1[d1];
dan38fdead2014-04-01 10:19:02 +00004095 rc = vdbeCompareMemString(
4096 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4097 );
dan1fed5da2014-02-25 21:01:25 +00004098 }else{
4099 int nCmp = MIN(mem1.n, pRhs->n);
4100 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4101 if( rc==0 ) rc = mem1.n - pRhs->n;
4102 }
4103 }
4104 }
4105
4106 /* RHS is a blob */
4107 else if( pRhs->flags & MEM_Blob ){
drh8aaf7bc2016-09-20 01:19:18 +00004108 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
dan1fed5da2014-02-25 21:01:25 +00004109 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00004110 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00004111 if( serial_type<12 || (serial_type & 0x01) ){
4112 rc = -1;
4113 }else{
4114 int nStr = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00004115 testcase( (d1+nStr)==(unsigned)nKey1 );
4116 testcase( (d1+nStr+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00004117 if( (d1+nStr) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00004118 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00004119 return 0; /* Corruption */
drh8aaf7bc2016-09-20 01:19:18 +00004120 }else if( pRhs->flags & MEM_Zero ){
4121 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4122 rc = 1;
4123 }else{
4124 rc = nStr - pRhs->u.nZero;
4125 }
dan1fed5da2014-02-25 21:01:25 +00004126 }else{
4127 int nCmp = MIN(nStr, pRhs->n);
4128 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4129 if( rc==0 ) rc = nStr - pRhs->n;
4130 }
4131 }
4132 }
4133
4134 /* RHS is null */
4135 else{
4136 serial_type = aKey1[idx1];
4137 rc = (serial_type!=0);
4138 }
4139
4140 if( rc!=0 ){
dan1fed5da2014-02-25 21:01:25 +00004141 if( pKeyInfo->aSortOrder[i] ){
4142 rc = -rc;
dan1fed5da2014-02-25 21:01:25 +00004143 }
drh79211e12014-05-02 17:33:16 +00004144 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
drh17bcb102014-09-18 21:25:33 +00004145 assert( mem1.szMalloc==0 ); /* See comment below */
dan1fed5da2014-02-25 21:01:25 +00004146 return rc;
4147 }
4148
4149 i++;
dan3b9330f2014-02-27 20:44:18 +00004150 pRhs++;
dan1fed5da2014-02-25 21:01:25 +00004151 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4152 idx1 += sqlite3VarintLen(serial_type);
drh295aedf2014-03-03 18:25:24 +00004153 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
dan1fed5da2014-02-25 21:01:25 +00004154
4155 /* No memory allocation is ever used on mem1. Prove this using
4156 ** the following assert(). If the assert() fails, it indicates a
dan3833e932014-03-01 19:44:56 +00004157 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
drh17bcb102014-09-18 21:25:33 +00004158 assert( mem1.szMalloc==0 );
dan1fed5da2014-02-25 21:01:25 +00004159
4160 /* rc==0 here means that one or both of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00004161 ** all the fields up to that point were equal. Return the default_rc
dan1fed5da2014-02-25 21:01:25 +00004162 ** value. */
dan3833e932014-03-01 19:44:56 +00004163 assert( CORRUPT_DB
drh66141812014-06-30 20:25:03 +00004164 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
dan6696ba32014-06-28 19:06:49 +00004165 || pKeyInfo->db->mallocFailed
dan3833e932014-03-01 19:44:56 +00004166 );
drh70528d72015-11-05 20:25:09 +00004167 pPKey2->eqSeen = 1;
dan1fed5da2014-02-25 21:01:25 +00004168 return pPKey2->default_rc;
4169}
drh75179de2014-09-16 14:37:35 +00004170int sqlite3VdbeRecordCompare(
4171 int nKey1, const void *pKey1, /* Left key */
4172 UnpackedRecord *pPKey2 /* Right key */
4173){
dan7004f3f2015-03-30 12:06:26 +00004174 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
drh75179de2014-09-16 14:37:35 +00004175}
4176
dan1fed5da2014-02-25 21:01:25 +00004177
dan3833e932014-03-01 19:44:56 +00004178/*
4179** This function is an optimized version of sqlite3VdbeRecordCompare()
4180** that (a) the first field of pPKey2 is an integer, and (b) the
4181** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4182** byte (i.e. is less than 128).
drhe2ac5062014-03-26 12:02:38 +00004183**
4184** To avoid concerns about buffer overreads, this routine is only used
4185** on schemas where the maximum valid header size is 63 bytes or less.
dan3833e932014-03-01 19:44:56 +00004186*/
dan3b9330f2014-02-27 20:44:18 +00004187static int vdbeRecordCompareInt(
4188 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00004189 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00004190){
dan9b8afef2014-03-03 20:48:50 +00004191 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
dan3b9330f2014-02-27 20:44:18 +00004192 int serial_type = ((const u8*)pKey1)[1];
4193 int res;
drhf926d1e2014-03-04 04:04:33 +00004194 u32 y;
4195 u64 x;
drh5f6eb1a2016-09-15 00:04:46 +00004196 i64 v;
dan3b9330f2014-02-27 20:44:18 +00004197 i64 lhs;
4198
drhe1bb8022015-01-19 19:48:52 +00004199 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
drhe2ac5062014-03-26 12:02:38 +00004200 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
dan3833e932014-03-01 19:44:56 +00004201 switch( serial_type ){
drhf926d1e2014-03-04 04:04:33 +00004202 case 1: { /* 1-byte signed integer */
4203 lhs = ONE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004204 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00004205 break;
4206 }
drhf926d1e2014-03-04 04:04:33 +00004207 case 2: { /* 2-byte signed integer */
4208 lhs = TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004209 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004210 break;
4211 }
4212 case 3: { /* 3-byte signed integer */
4213 lhs = THREE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004214 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004215 break;
4216 }
4217 case 4: { /* 4-byte signed integer */
4218 y = FOUR_BYTE_UINT(aKey);
4219 lhs = (i64)*(int*)&y;
drhb6e8fd12014-03-06 01:56:33 +00004220 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004221 break;
4222 }
4223 case 5: { /* 6-byte signed integer */
4224 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004225 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004226 break;
4227 }
4228 case 6: { /* 8-byte signed integer */
4229 x = FOUR_BYTE_UINT(aKey);
4230 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4231 lhs = *(i64*)&x;
drhb6e8fd12014-03-06 01:56:33 +00004232 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00004233 break;
4234 }
dan3b9330f2014-02-27 20:44:18 +00004235 case 8:
4236 lhs = 0;
4237 break;
dan3b9330f2014-02-27 20:44:18 +00004238 case 9:
4239 lhs = 1;
4240 break;
4241
dan063d4a02014-02-28 09:48:30 +00004242 /* This case could be removed without changing the results of running
4243 ** this code. Including it causes gcc to generate a faster switch
4244 ** statement (since the range of switch targets now starts at zero and
dan597515d2014-02-28 18:39:51 +00004245 ** is contiguous) but does not cause any duplicate code to be generated
dan063d4a02014-02-28 09:48:30 +00004246 ** (as gcc is clever enough to combine the two like cases). Other
4247 ** compilers might be similar. */
4248 case 0: case 7:
drh75179de2014-09-16 14:37:35 +00004249 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan063d4a02014-02-28 09:48:30 +00004250
dan3b9330f2014-02-27 20:44:18 +00004251 default:
drh75179de2014-09-16 14:37:35 +00004252 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan3b9330f2014-02-27 20:44:18 +00004253 }
4254
drh5f6eb1a2016-09-15 00:04:46 +00004255 v = pPKey2->aMem[0].u.i;
dan3b9330f2014-02-27 20:44:18 +00004256 if( v>lhs ){
4257 res = pPKey2->r1;
4258 }else if( v<lhs ){
4259 res = pPKey2->r2;
4260 }else if( pPKey2->nField>1 ){
dan063d4a02014-02-28 09:48:30 +00004261 /* The first fields of the two keys are equal. Compare the trailing
4262 ** fields. */
dan7004f3f2015-03-30 12:06:26 +00004263 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00004264 }else{
dan063d4a02014-02-28 09:48:30 +00004265 /* The first fields of the two keys are equal and there are no trailing
4266 ** fields. Return pPKey2->default_rc in this case. */
dan3b9330f2014-02-27 20:44:18 +00004267 res = pPKey2->default_rc;
drh70528d72015-11-05 20:25:09 +00004268 pPKey2->eqSeen = 1;
dan3b9330f2014-02-27 20:44:18 +00004269 }
4270
drh79211e12014-05-02 17:33:16 +00004271 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
dan3b9330f2014-02-27 20:44:18 +00004272 return res;
4273}
4274
dan3833e932014-03-01 19:44:56 +00004275/*
4276** This function is an optimized version of sqlite3VdbeRecordCompare()
4277** that (a) the first field of pPKey2 is a string, that (b) the first field
4278** uses the collation sequence BINARY and (c) that the size-of-header varint
4279** at the start of (pKey1/nKey1) fits in a single byte.
4280*/
dan3b9330f2014-02-27 20:44:18 +00004281static int vdbeRecordCompareString(
4282 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00004283 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00004284){
4285 const u8 *aKey1 = (const u8*)pKey1;
4286 int serial_type;
4287 int res;
4288
drh2ab410a2015-11-06 14:59:07 +00004289 assert( pPKey2->aMem[0].flags & MEM_Str );
drhe1bb8022015-01-19 19:48:52 +00004290 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
dan3b9330f2014-02-27 20:44:18 +00004291 getVarint32(&aKey1[1], serial_type);
dan3b9330f2014-02-27 20:44:18 +00004292 if( serial_type<12 ){
4293 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4294 }else if( !(serial_type & 0x01) ){
4295 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4296 }else{
4297 int nCmp;
4298 int nStr;
dan3833e932014-03-01 19:44:56 +00004299 int szHdr = aKey1[0];
dan3b9330f2014-02-27 20:44:18 +00004300
4301 nStr = (serial_type-12) / 2;
drha1f7c0a2014-03-28 03:12:48 +00004302 if( (szHdr + nStr) > nKey1 ){
dan38fdead2014-04-01 10:19:02 +00004303 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00004304 return 0; /* Corruption */
4305 }
dan3b9330f2014-02-27 20:44:18 +00004306 nCmp = MIN( pPKey2->aMem[0].n, nStr );
dan3833e932014-03-01 19:44:56 +00004307 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
dan3b9330f2014-02-27 20:44:18 +00004308
4309 if( res==0 ){
4310 res = nStr - pPKey2->aMem[0].n;
4311 if( res==0 ){
4312 if( pPKey2->nField>1 ){
dan7004f3f2015-03-30 12:06:26 +00004313 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00004314 }else{
4315 res = pPKey2->default_rc;
drh70528d72015-11-05 20:25:09 +00004316 pPKey2->eqSeen = 1;
dan3b9330f2014-02-27 20:44:18 +00004317 }
4318 }else if( res>0 ){
4319 res = pPKey2->r2;
4320 }else{
4321 res = pPKey2->r1;
4322 }
4323 }else if( res>0 ){
4324 res = pPKey2->r2;
4325 }else{
4326 res = pPKey2->r1;
4327 }
4328 }
4329
drh66141812014-06-30 20:25:03 +00004330 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
dan3b9330f2014-02-27 20:44:18 +00004331 || CORRUPT_DB
dan6696ba32014-06-28 19:06:49 +00004332 || pPKey2->pKeyInfo->db->mallocFailed
dan3b9330f2014-02-27 20:44:18 +00004333 );
4334 return res;
4335}
4336
dan3833e932014-03-01 19:44:56 +00004337/*
4338** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4339** suitable for comparing serialized records to the unpacked record passed
4340** as the only argument.
4341*/
dan1fed5da2014-02-25 21:01:25 +00004342RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
dan9b8afef2014-03-03 20:48:50 +00004343 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4344 ** that the size-of-header varint that occurs at the start of each record
4345 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4346 ** also assumes that it is safe to overread a buffer by at least the
4347 ** maximum possible legal header size plus 8 bytes. Because there is
4348 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4349 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4350 ** limit the size of the header to 64 bytes in cases where the first field
4351 ** is an integer.
4352 **
4353 ** The easiest way to enforce this limit is to consider only records with
4354 ** 13 fields or less. If the first field is an integer, the maximum legal
4355 ** header size is (12*5 + 1 + 1) bytes. */
4356 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
dan1fed5da2014-02-25 21:01:25 +00004357 int flags = p->aMem[0].flags;
dan3b9330f2014-02-27 20:44:18 +00004358 if( p->pKeyInfo->aSortOrder[0] ){
4359 p->r1 = 1;
4360 p->r2 = -1;
4361 }else{
4362 p->r1 = -1;
4363 p->r2 = 1;
4364 }
dan1fed5da2014-02-25 21:01:25 +00004365 if( (flags & MEM_Int) ){
4366 return vdbeRecordCompareInt;
dan3b9330f2014-02-27 20:44:18 +00004367 }
drhb6e8fd12014-03-06 01:56:33 +00004368 testcase( flags & MEM_Real );
4369 testcase( flags & MEM_Null );
4370 testcase( flags & MEM_Blob );
4371 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4372 assert( flags & MEM_Str );
dan1fed5da2014-02-25 21:01:25 +00004373 return vdbeRecordCompareString;
4374 }
4375 }
dan3b9330f2014-02-27 20:44:18 +00004376
dan3833e932014-03-01 19:44:56 +00004377 return sqlite3VdbeRecordCompare;
dan3b9330f2014-02-27 20:44:18 +00004378}
danielk1977eb015e02004-05-18 01:31:14 +00004379
4380/*
drh7a224de2004-06-02 01:22:02 +00004381** pCur points at an index entry created using the OP_MakeRecord opcode.
4382** Read the rowid (the last field in the record) and store it in *rowid.
4383** Return SQLITE_OK if everything works, or an error code otherwise.
drh88a003e2008-12-11 16:17:03 +00004384**
4385** pCur might be pointing to text obtained from a corrupt database file.
4386** So the content cannot be trusted. Do appropriate checks on the content.
danielk1977183f9f72004-05-13 05:20:26 +00004387*/
drh35f6b932009-06-23 14:15:04 +00004388int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
drh61fc5952007-04-01 23:49:51 +00004389 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004390 int rc;
drhd5788202004-05-28 08:21:05 +00004391 u32 szHdr; /* Size of the header */
4392 u32 typeRowid; /* Serial type of the rowid */
4393 u32 lenRowid; /* Size of the rowid */
4394 Mem m, v;
danielk1977183f9f72004-05-13 05:20:26 +00004395
drh88a003e2008-12-11 16:17:03 +00004396 /* Get the size of the index entry. Only indices entries of less
drh7b746032009-06-26 12:15:22 +00004397 ** than 2GiB are support - anything large must be database corruption.
4398 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
drhc27ae612009-07-14 18:35:44 +00004399 ** this code can safely assume that nCellKey is 32-bits
4400 */
drhea8ffdf2009-07-22 00:35:23 +00004401 assert( sqlite3BtreeCursorIsValid(pCur) );
drha7c90c42016-06-04 20:37:10 +00004402 nCellKey = sqlite3BtreePayloadSize(pCur);
drh7b746032009-06-26 12:15:22 +00004403 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
drh88a003e2008-12-11 16:17:03 +00004404
4405 /* Read in the complete content of the index entry */
drhd3b74202014-09-17 16:41:15 +00004406 sqlite3VdbeMemInit(&m, db, 0);
drhcb3cabd2016-11-25 19:18:28 +00004407 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
drhd5788202004-05-28 08:21:05 +00004408 if( rc ){
danielk1977183f9f72004-05-13 05:20:26 +00004409 return rc;
4410 }
drh88a003e2008-12-11 16:17:03 +00004411
4412 /* The index entry must begin with a header size */
shane3f8d5cf2008-04-24 19:15:09 +00004413 (void)getVarint32((u8*)m.z, szHdr);
drh7b746032009-06-26 12:15:22 +00004414 testcase( szHdr==3 );
drh88a003e2008-12-11 16:17:03 +00004415 testcase( szHdr==m.n );
drh7b746032009-06-26 12:15:22 +00004416 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
drh88a003e2008-12-11 16:17:03 +00004417 goto idx_rowid_corruption;
4418 }
4419
4420 /* The last field of the index should be an integer - the ROWID.
4421 ** Verify that the last entry really is an integer. */
shane3f8d5cf2008-04-24 19:15:09 +00004422 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
drh88a003e2008-12-11 16:17:03 +00004423 testcase( typeRowid==1 );
4424 testcase( typeRowid==2 );
4425 testcase( typeRowid==3 );
4426 testcase( typeRowid==4 );
4427 testcase( typeRowid==5 );
4428 testcase( typeRowid==6 );
4429 testcase( typeRowid==8 );
4430 testcase( typeRowid==9 );
4431 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4432 goto idx_rowid_corruption;
4433 }
drhc5ef7152015-06-28 02:58:51 +00004434 lenRowid = sqlite3SmallTypeSizes[typeRowid];
drheeb844a2009-08-08 18:01:07 +00004435 testcase( (u32)m.n==szHdr+lenRowid );
4436 if( unlikely((u32)m.n<szHdr+lenRowid) ){
drh88a003e2008-12-11 16:17:03 +00004437 goto idx_rowid_corruption;
4438 }
4439
4440 /* Fetch the integer off the end of the index record */
drh2646da72005-12-09 20:02:05 +00004441 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
drh3c024d62007-03-30 11:23:45 +00004442 *rowid = v.u.i;
danielk1977d8123362004-06-12 09:25:12 +00004443 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004444 return SQLITE_OK;
drh88a003e2008-12-11 16:17:03 +00004445
4446 /* Jump here if database corruption is detected after m has been
4447 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4448idx_rowid_corruption:
drh17bcb102014-09-18 21:25:33 +00004449 testcase( m.szMalloc!=0 );
drh88a003e2008-12-11 16:17:03 +00004450 sqlite3VdbeMemRelease(&m);
4451 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004452}
4453
drh7cf6e4d2004-05-19 14:56:55 +00004454/*
drh5f82e3c2009-07-06 00:44:08 +00004455** Compare the key of the index entry that cursor pC is pointing to against
4456** the key string in pUnpacked. Write into *pRes a number
drh7cf6e4d2004-05-19 14:56:55 +00004457** that is negative, zero, or positive if pC is less than, equal to,
drh5f82e3c2009-07-06 00:44:08 +00004458** or greater than pUnpacked. Return SQLITE_OK on success.
drhd3d39e92004-05-20 22:16:29 +00004459**
drh5f82e3c2009-07-06 00:44:08 +00004460** pUnpacked is either created without a rowid or is truncated so that it
drhd5788202004-05-28 08:21:05 +00004461** omits the rowid at the end. The rowid at the end of the index entry
drhec1fc802008-08-13 14:07:40 +00004462** is ignored as well. Hence, this routine only compares the prefixes
4463** of the keys prior to the final rowid, not the entire key.
drh7cf6e4d2004-05-19 14:56:55 +00004464*/
danielk1977183f9f72004-05-13 05:20:26 +00004465int sqlite3VdbeIdxKeyCompare(
drhd3b74202014-09-17 16:41:15 +00004466 sqlite3 *db, /* Database connection */
drh295aedf2014-03-03 18:25:24 +00004467 VdbeCursor *pC, /* The cursor to compare against */
drha1f7c0a2014-03-28 03:12:48 +00004468 UnpackedRecord *pUnpacked, /* Unpacked version of key */
drh295aedf2014-03-03 18:25:24 +00004469 int *res /* Write the comparison result here */
danielk1977183f9f72004-05-13 05:20:26 +00004470){
drh61fc5952007-04-01 23:49:51 +00004471 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004472 int rc;
drhc960dcb2015-11-20 19:22:01 +00004473 BtCursor *pCur;
drhd5788202004-05-28 08:21:05 +00004474 Mem m;
danielk1977183f9f72004-05-13 05:20:26 +00004475
drhc960dcb2015-11-20 19:22:01 +00004476 assert( pC->eCurType==CURTYPE_BTREE );
4477 pCur = pC->uc.pCursor;
drhea8ffdf2009-07-22 00:35:23 +00004478 assert( sqlite3BtreeCursorIsValid(pCur) );
drha7c90c42016-06-04 20:37:10 +00004479 nCellKey = sqlite3BtreePayloadSize(pCur);
drh56689692014-03-03 19:29:28 +00004480 /* nCellKey will always be between 0 and 0xffffffff because of the way
drh407414c2009-07-14 14:15:27 +00004481 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
drhc27ae612009-07-14 18:35:44 +00004482 if( nCellKey<=0 || nCellKey>0x7fffffff ){
danielk1977183f9f72004-05-13 05:20:26 +00004483 *res = 0;
drh9978c972010-02-23 17:36:32 +00004484 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004485 }
drhd3b74202014-09-17 16:41:15 +00004486 sqlite3VdbeMemInit(&m, db, 0);
drhcb3cabd2016-11-25 19:18:28 +00004487 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
drhec1fc802008-08-13 14:07:40 +00004488 if( rc ){
drhd5788202004-05-28 08:21:05 +00004489 return rc;
danielk1977183f9f72004-05-13 05:20:26 +00004490 }
drh75179de2014-09-16 14:37:35 +00004491 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
danielk1977d8123362004-06-12 09:25:12 +00004492 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004493 return SQLITE_OK;
4494}
danielk1977b28af712004-06-21 06:50:26 +00004495
4496/*
4497** This routine sets the value to be returned by subsequent calls to
4498** sqlite3_changes() on the database handle 'db'.
4499*/
4500void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
drhb21c8cd2007-08-21 19:33:56 +00004501 assert( sqlite3_mutex_held(db->mutex) );
danielk1977b28af712004-06-21 06:50:26 +00004502 db->nChange = nChange;
4503 db->nTotalChange += nChange;
4504}
4505
4506/*
4507** Set a flag in the vdbe to update the change counter when it is finalised
4508** or reset.
4509*/
drh4794f732004-11-05 17:17:50 +00004510void sqlite3VdbeCountChanges(Vdbe *v){
4511 v->changeCntOn = 1;
danielk1977b28af712004-06-21 06:50:26 +00004512}
drhd89bd002005-01-22 03:03:54 +00004513
4514/*
4515** Mark every prepared statement associated with a database connection
4516** as expired.
4517**
4518** An expired statement means that recompilation of the statement is
4519** recommend. Statements expire when things happen that make their
4520** programs obsolete. Removing user-defined functions or collating
4521** sequences, or changing an authorization function are the types of
4522** things that make prepared statements obsolete.
4523*/
4524void sqlite3ExpirePreparedStatements(sqlite3 *db){
4525 Vdbe *p;
4526 for(p = db->pVdbe; p; p=p->pNext){
4527 p->expired = 1;
4528 }
4529}
danielk1977aee18ef2005-03-09 12:26:50 +00004530
4531/*
4532** Return the database associated with the Vdbe.
4533*/
4534sqlite3 *sqlite3VdbeDb(Vdbe *v){
4535 return v->db;
4536}
dan937d0de2009-10-15 18:35:38 +00004537
4538/*
4539** Return a pointer to an sqlite3_value structure containing the value bound
4540** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4541** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4542** constants) to the value before returning it.
4543**
4544** The returned value must be freed by the caller using sqlite3ValueFree().
4545*/
drhcf0fd4a2013-08-01 12:21:58 +00004546sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
dan937d0de2009-10-15 18:35:38 +00004547 assert( iVar>0 );
4548 if( v ){
4549 Mem *pMem = &v->aVar[iVar-1];
4550 if( 0==(pMem->flags & MEM_Null) ){
4551 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4552 if( pRet ){
4553 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4554 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
dan937d0de2009-10-15 18:35:38 +00004555 }
4556 return pRet;
4557 }
4558 }
4559 return 0;
4560}
4561
4562/*
4563** Configure SQL variable iVar so that binding a new value to it signals
4564** to sqlite3_reoptimize() that re-preparing the statement may result
4565** in a better query plan.
4566*/
dan1d2ce4f2009-10-19 18:11:09 +00004567void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
dan937d0de2009-10-15 18:35:38 +00004568 assert( iVar>0 );
drh29967962017-03-03 21:51:40 +00004569 if( iVar>=32 ){
4570 v->expmask |= 0x80000000;
dan937d0de2009-10-15 18:35:38 +00004571 }else{
dan1d2ce4f2009-10-19 18:11:09 +00004572 v->expmask |= ((u32)1 << (iVar-1));
dan937d0de2009-10-15 18:35:38 +00004573 }
4574}
dan46c47d42011-03-01 18:42:07 +00004575
dan016f7812013-08-21 17:35:48 +00004576#ifndef SQLITE_OMIT_VIRTUALTABLE
4577/*
4578** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4579** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4580** in memory obtained from sqlite3DbMalloc).
4581*/
4582void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
dan5c3aa052016-01-20 08:47:55 +00004583 if( pVtab->zErrMsg ){
4584 sqlite3 *db = p->db;
4585 sqlite3DbFree(db, p->zErrMsg);
4586 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4587 sqlite3_free(pVtab->zErrMsg);
4588 pVtab->zErrMsg = 0;
4589 }
dan016f7812013-08-21 17:35:48 +00004590}
4591#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh32683532013-08-22 15:07:08 +00004592
drh9b1c62d2011-03-30 21:04:43 +00004593#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan93bca692011-09-14 19:41:44 +00004594
4595/*
4596** If the second argument is not NULL, release any allocations associated
4597** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
4598** structure itself, using sqlite3DbFree().
4599**
4600** This function is used to free UnpackedRecord structures allocated by
4601** the vdbeUnpackRecord() function found in vdbeapi.c.
4602*/
dan2a86c192017-01-25 17:44:13 +00004603static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
dan93bca692011-09-14 19:41:44 +00004604 if( p ){
4605 int i;
dan2a86c192017-01-25 17:44:13 +00004606 for(i=0; i<nField; i++){
dan93bca692011-09-14 19:41:44 +00004607 Mem *pMem = &p->aMem[i];
4608 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
4609 }
drhdbd6a7d2017-04-05 12:39:49 +00004610 sqlite3DbFreeNN(db, p);
dan93bca692011-09-14 19:41:44 +00004611 }
4612}
drh74c33022016-03-30 12:56:55 +00004613#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
dan93bca692011-09-14 19:41:44 +00004614
drh74c33022016-03-30 12:56:55 +00004615#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004616/*
4617** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
4618** then cursor passed as the second argument should point to the row about
4619** to be update or deleted. If the application calls sqlite3_preupdate_old(),
4620** the required value will be read from the row the cursor points to.
4621*/
4622void sqlite3VdbePreUpdateHook(
4623 Vdbe *v, /* Vdbe pre-update hook is invoked by */
4624 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
4625 int op, /* SQLITE_INSERT, UPDATE or DELETE */
4626 const char *zDb, /* Database name */
dan319eeb72011-03-19 08:38:50 +00004627 Table *pTab, /* Modified table */
dan46c47d42011-03-01 18:42:07 +00004628 i64 iKey1, /* Initial key value */
dan37db03b2011-03-16 19:59:18 +00004629 int iReg /* Register for new.* record */
dan46c47d42011-03-01 18:42:07 +00004630){
4631 sqlite3 *db = v->db;
dan37db03b2011-03-16 19:59:18 +00004632 i64 iKey2;
dan46c47d42011-03-01 18:42:07 +00004633 PreUpdate preupdate;
dan319eeb72011-03-19 08:38:50 +00004634 const char *zTbl = pTab->zName;
drhc4645da2012-09-28 13:05:48 +00004635 static const u8 fakeSortOrder = 0;
dan46c47d42011-03-01 18:42:07 +00004636
drh304637c2011-03-18 16:47:27 +00004637 assert( db->pPreUpdate==0 );
4638 memset(&preupdate, 0, sizeof(PreUpdate));
dancb9a3642017-01-30 19:44:53 +00004639 if( HasRowid(pTab)==0 ){
4640 iKey1 = iKey2 = 0;
4641 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
dan37db03b2011-03-16 19:59:18 +00004642 }else{
dancb9a3642017-01-30 19:44:53 +00004643 if( op==SQLITE_UPDATE ){
4644 iKey2 = v->aMem[iReg].u.i;
4645 }else{
4646 iKey2 = iKey1;
4647 }
dan37db03b2011-03-16 19:59:18 +00004648 }
4649
dane437ca52011-07-11 19:45:38 +00004650 assert( pCsr->nField==pTab->nCol
4651 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
4652 );
4653
dan37db03b2011-03-16 19:59:18 +00004654 preupdate.v = v;
dan46c47d42011-03-01 18:42:07 +00004655 preupdate.pCsr = pCsr;
4656 preupdate.op = op;
dan37db03b2011-03-16 19:59:18 +00004657 preupdate.iNewReg = iReg;
dan4fccf432011-03-08 19:22:50 +00004658 preupdate.keyinfo.db = db;
4659 preupdate.keyinfo.enc = ENC(db);
dane437ca52011-07-11 19:45:38 +00004660 preupdate.keyinfo.nField = pTab->nCol;
drh498dcae2013-03-13 11:42:00 +00004661 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder;
dan319eeb72011-03-19 08:38:50 +00004662 preupdate.iKey1 = iKey1;
4663 preupdate.iKey2 = iKey2;
dane43635a2016-10-21 21:21:45 +00004664 preupdate.pTab = pTab;
dan319eeb72011-03-19 08:38:50 +00004665
dan46c47d42011-03-01 18:42:07 +00004666 db->pPreUpdate = &preupdate;
4667 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
4668 db->pPreUpdate = 0;
4669 sqlite3DbFree(db, preupdate.aRecord);
dan2a86c192017-01-25 17:44:13 +00004670 vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pUnpacked);
4671 vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pNewUnpacked);
dan37db03b2011-03-16 19:59:18 +00004672 if( preupdate.aNew ){
4673 int i;
4674 for(i=0; i<pCsr->nField; i++){
4675 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
4676 }
drhdbd6a7d2017-04-05 12:39:49 +00004677 sqlite3DbFreeNN(db, preupdate.aNew);
dan37db03b2011-03-16 19:59:18 +00004678 }
dan46c47d42011-03-01 18:42:07 +00004679}
drh9b1c62d2011-03-30 21:04:43 +00004680#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */