dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** |
| 3 | ** The author disclaims copyright to this source code. In place of |
| 4 | ** a legal notice, here is a blessing: |
| 5 | ** |
| 6 | ** May you do good and not evil. |
| 7 | ** May you find forgiveness for yourself and forgive others. |
| 8 | ** May you share freely, never taking more than you give. |
| 9 | ** |
| 10 | ************************************************************************* |
| 11 | ** This file contains code used by the compiler to add foreign key |
| 12 | ** support to compiled SQL statements. |
| 13 | */ |
| 14 | #include "sqliteInt.h" |
| 15 | |
| 16 | #ifndef SQLITE_OMIT_FOREIGN_KEY |
dan | 75cbd98 | 2009-09-21 16:06:03 +0000 | [diff] [blame] | 17 | #ifndef SQLITE_OMIT_TRIGGER |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 18 | |
| 19 | /* |
| 20 | ** Deferred and Immediate FKs |
| 21 | ** -------------------------- |
| 22 | ** |
| 23 | ** Foreign keys in SQLite come in two flavours: deferred and immediate. |
dan | 8a2fff7 | 2009-09-23 18:07:22 +0000 | [diff] [blame] | 24 | ** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT |
| 25 | ** is returned and the current statement transaction rolled back. If a |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 26 | ** deferred foreign key constraint is violated, no action is taken |
| 27 | ** immediately. However if the application attempts to commit the |
| 28 | ** transaction before fixing the constraint violation, the attempt fails. |
| 29 | ** |
| 30 | ** Deferred constraints are implemented using a simple counter associated |
| 31 | ** with the database handle. The counter is set to zero each time a |
| 32 | ** database transaction is opened. Each time a statement is executed |
| 33 | ** that causes a foreign key violation, the counter is incremented. Each |
| 34 | ** time a statement is executed that removes an existing violation from |
| 35 | ** the database, the counter is decremented. When the transaction is |
| 36 | ** committed, the commit fails if the current value of the counter is |
| 37 | ** greater than zero. This scheme has two big drawbacks: |
| 38 | ** |
| 39 | ** * When a commit fails due to a deferred foreign key constraint, |
| 40 | ** there is no way to tell which foreign constraint is not satisfied, |
| 41 | ** or which row it is not satisfied for. |
| 42 | ** |
| 43 | ** * If the database contains foreign key violations when the |
| 44 | ** transaction is opened, this may cause the mechanism to malfunction. |
| 45 | ** |
| 46 | ** Despite these problems, this approach is adopted as it seems simpler |
| 47 | ** than the alternatives. |
| 48 | ** |
| 49 | ** INSERT operations: |
| 50 | ** |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 51 | ** I.1) For each FK for which the table is the child table, search |
dan | 8a2fff7 | 2009-09-23 18:07:22 +0000 | [diff] [blame] | 52 | ** the parent table for a match. If none is found increment the |
| 53 | ** constraint counter. |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 54 | ** |
dan | 8a2fff7 | 2009-09-23 18:07:22 +0000 | [diff] [blame] | 55 | ** I.2) For each FK for which the table is the parent table, |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 56 | ** search the child table for rows that correspond to the new |
| 57 | ** row in the parent table. Decrement the counter for each row |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 58 | ** found (as the constraint is now satisfied). |
| 59 | ** |
| 60 | ** DELETE operations: |
| 61 | ** |
dan | 8a2fff7 | 2009-09-23 18:07:22 +0000 | [diff] [blame] | 62 | ** D.1) For each FK for which the table is the child table, |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 63 | ** search the parent table for a row that corresponds to the |
| 64 | ** deleted row in the child table. If such a row is not found, |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 65 | ** decrement the counter. |
| 66 | ** |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 67 | ** D.2) For each FK for which the table is the parent table, search |
| 68 | ** the child table for rows that correspond to the deleted row |
dan | 8a2fff7 | 2009-09-23 18:07:22 +0000 | [diff] [blame] | 69 | ** in the parent table. For each found increment the counter. |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 70 | ** |
| 71 | ** UPDATE operations: |
| 72 | ** |
| 73 | ** An UPDATE command requires that all 4 steps above are taken, but only |
| 74 | ** for FK constraints for which the affected columns are actually |
| 75 | ** modified (values must be compared at runtime). |
| 76 | ** |
| 77 | ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. |
| 78 | ** This simplifies the implementation a bit. |
| 79 | ** |
| 80 | ** For the purposes of immediate FK constraints, the OR REPLACE conflict |
| 81 | ** resolution is considered to delete rows before the new row is inserted. |
| 82 | ** If a delete caused by OR REPLACE violates an FK constraint, an exception |
| 83 | ** is thrown, even if the FK constraint would be satisfied after the new |
| 84 | ** row is inserted. |
| 85 | ** |
dan | bd74783 | 2009-09-25 12:00:01 +0000 | [diff] [blame] | 86 | ** Immediate constraints are usually handled similarly. The only difference |
| 87 | ** is that the counter used is stored as part of each individual statement |
| 88 | ** object (struct Vdbe). If, after the statement has run, its immediate |
| 89 | ** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT |
| 90 | ** and the statement transaction is rolled back. An exception is an INSERT |
| 91 | ** statement that inserts a single row only (no triggers). In this case, |
| 92 | ** instead of using a counter, an exception is thrown immediately if the |
| 93 | ** INSERT violates a foreign key constraint. This is necessary as such |
| 94 | ** an INSERT does not open a statement transaction. |
| 95 | ** |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 96 | ** TODO: How should dropping a table be handled? How should renaming a |
| 97 | ** table be handled? |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 98 | ** |
| 99 | ** |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 100 | ** Query API Notes |
| 101 | ** --------------- |
| 102 | ** |
| 103 | ** Before coding an UPDATE or DELETE row operation, the code-generator |
| 104 | ** for those two operations needs to know whether or not the operation |
| 105 | ** requires any FK processing and, if so, which columns of the original |
| 106 | ** row are required by the FK processing VDBE code (i.e. if FKs were |
| 107 | ** implemented using triggers, which of the old.* columns would be |
| 108 | ** accessed). No information is required by the code-generator before |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 109 | ** coding an INSERT operation. The functions used by the UPDATE/DELETE |
| 110 | ** generation code to query for this information are: |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 111 | ** |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 112 | ** sqlite3FkRequired() - Test to see if FK processing is required. |
| 113 | ** sqlite3FkOldmask() - Query for the set of required old.* columns. |
| 114 | ** |
| 115 | ** |
| 116 | ** Externally accessible module functions |
| 117 | ** -------------------------------------- |
| 118 | ** |
| 119 | ** sqlite3FkCheck() - Check for foreign key violations. |
| 120 | ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. |
| 121 | ** sqlite3FkDelete() - Delete an FKey structure. |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 122 | */ |
| 123 | |
| 124 | /* |
| 125 | ** VDBE Calling Convention |
| 126 | ** ----------------------- |
| 127 | ** |
| 128 | ** Example: |
| 129 | ** |
| 130 | ** For the following INSERT statement: |
| 131 | ** |
| 132 | ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); |
| 133 | ** INSERT INTO t1 VALUES(1, 2, 3.1); |
| 134 | ** |
| 135 | ** Register (x): 2 (type integer) |
| 136 | ** Register (x+1): 1 (type integer) |
| 137 | ** Register (x+2): NULL (type NULL) |
| 138 | ** Register (x+3): 3.1 (type real) |
| 139 | */ |
| 140 | |
| 141 | /* |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 142 | ** A foreign key constraint requires that the key columns in the parent |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 143 | ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 144 | ** Given that pParent is the parent table for foreign key constraint pFKey, |
| 145 | ** search the schema a unique index on the parent key columns. |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 146 | ** |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 147 | ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY |
| 148 | ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx |
| 149 | ** is set to point to the unique index. |
| 150 | ** |
| 151 | ** If the parent key consists of a single column (the foreign key constraint |
| 152 | ** is not a composite foreign key), output variable *paiCol is set to NULL. |
| 153 | ** Otherwise, it is set to point to an allocated array of size N, where |
| 154 | ** N is the number of columns in the parent key. The first element of the |
| 155 | ** array is the index of the child table column that is mapped by the FK |
| 156 | ** constraint to the parent table column stored in the left-most column |
| 157 | ** of index *ppIdx. The second element of the array is the index of the |
| 158 | ** child table column that corresponds to the second left-most column of |
| 159 | ** *ppIdx, and so on. |
| 160 | ** |
| 161 | ** If the required index cannot be found, either because: |
| 162 | ** |
| 163 | ** 1) The named parent key columns do not exist, or |
| 164 | ** |
| 165 | ** 2) The named parent key columns do exist, but are not subject to a |
| 166 | ** UNIQUE or PRIMARY KEY constraint, or |
| 167 | ** |
| 168 | ** 3) No parent key columns were provided explicitly as part of the |
| 169 | ** foreign key definition, and the parent table does not have a |
| 170 | ** PRIMARY KEY, or |
| 171 | ** |
| 172 | ** 4) No parent key columns were provided explicitly as part of the |
| 173 | ** foreign key definition, and the PRIMARY KEY of the parent table |
| 174 | ** consists of a a different number of columns to the child key in |
| 175 | ** the child table. |
| 176 | ** |
| 177 | ** then non-zero is returned, and a "foreign key mismatch" error loaded |
| 178 | ** into pParse. If an OOM error occurs, non-zero is returned and the |
| 179 | ** pParse->db->mallocFailed flag is set. |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 180 | */ |
| 181 | static int locateFkeyIndex( |
| 182 | Parse *pParse, /* Parse context to store any error in */ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 183 | Table *pParent, /* Parent table of FK constraint pFKey */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 184 | FKey *pFKey, /* Foreign key to find index for */ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 185 | Index **ppIdx, /* OUT: Unique index on parent table */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 186 | int **paiCol /* OUT: Map of index columns in pFKey */ |
| 187 | ){ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 188 | Index *pIdx = 0; /* Value to return via *ppIdx */ |
| 189 | int *aiCol = 0; /* Value to return via *paiCol */ |
| 190 | int nCol = pFKey->nCol; /* Number of columns in parent key */ |
| 191 | char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 192 | |
| 193 | /* The caller is responsible for zeroing output parameters. */ |
| 194 | assert( ppIdx && *ppIdx==0 ); |
| 195 | assert( !paiCol || *paiCol==0 ); |
dan | f7a9454 | 2009-09-30 08:11:07 +0000 | [diff] [blame] | 196 | assert( pParse ); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 197 | |
| 198 | /* If this is a non-composite (single column) foreign key, check if it |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 199 | ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 200 | ** and *paiCol set to zero and return early. |
| 201 | ** |
| 202 | ** Otherwise, for a composite foreign key (more than one column), allocate |
| 203 | ** space for the aiCol array (returned via output parameter *paiCol). |
| 204 | ** Non-composite foreign keys do not require the aiCol array. |
| 205 | */ |
| 206 | if( nCol==1 ){ |
| 207 | /* The FK maps to the IPK if any of the following are true: |
| 208 | ** |
dan | d981d44 | 2009-09-23 13:59:17 +0000 | [diff] [blame] | 209 | ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly |
| 210 | ** mapped to the primary key of table pParent, or |
| 211 | ** 2) The FK is explicitly mapped to a column declared as INTEGER |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 212 | ** PRIMARY KEY. |
| 213 | */ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 214 | if( pParent->iPKey>=0 ){ |
| 215 | if( !zKey ) return 0; |
| 216 | if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 217 | } |
| 218 | }else if( paiCol ){ |
| 219 | assert( nCol>1 ); |
| 220 | aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int)); |
| 221 | if( !aiCol ) return 1; |
| 222 | *paiCol = aiCol; |
| 223 | } |
| 224 | |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 225 | for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 226 | if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){ |
| 227 | /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number |
| 228 | ** of columns. If each indexed column corresponds to a foreign key |
| 229 | ** column of pFKey, then this index is a winner. */ |
| 230 | |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 231 | if( zKey==0 ){ |
| 232 | /* If zKey is NULL, then this foreign key is implicitly mapped to |
| 233 | ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 234 | ** identified by the test (Index.autoIndex==2). */ |
| 235 | if( pIdx->autoIndex==2 ){ |
dan | 8a2fff7 | 2009-09-23 18:07:22 +0000 | [diff] [blame] | 236 | if( aiCol ){ |
| 237 | int i; |
| 238 | for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; |
| 239 | } |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 240 | break; |
| 241 | } |
| 242 | }else{ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 243 | /* If zKey is non-NULL, then this foreign key was declared to |
| 244 | ** map to an explicit list of columns in table pParent. Check if this |
dan | 9707c7b | 2009-09-29 15:41:57 +0000 | [diff] [blame] | 245 | ** index matches those columns. Also, check that the index uses |
| 246 | ** the default collation sequences for each column. */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 247 | int i, j; |
| 248 | for(i=0; i<nCol; i++){ |
dan | 9707c7b | 2009-09-29 15:41:57 +0000 | [diff] [blame] | 249 | int iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ |
| 250 | char *zDfltColl; /* Def. collation for column */ |
| 251 | char *zIdxCol; /* Name of indexed column */ |
| 252 | |
| 253 | /* If the index uses a collation sequence that is different from |
| 254 | ** the default collation sequence for the column, this index is |
| 255 | ** unusable. Bail out early in this case. */ |
| 256 | zDfltColl = pParent->aCol[iCol].zColl; |
| 257 | if( !zDfltColl ){ |
| 258 | zDfltColl = "BINARY"; |
| 259 | } |
| 260 | if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; |
| 261 | |
| 262 | zIdxCol = pParent->aCol[iCol].zName; |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 263 | for(j=0; j<nCol; j++){ |
| 264 | if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ |
| 265 | if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; |
| 266 | break; |
| 267 | } |
| 268 | } |
| 269 | if( j==nCol ) break; |
| 270 | } |
| 271 | if( i==nCol ) break; /* pIdx is usable */ |
| 272 | } |
| 273 | } |
| 274 | } |
| 275 | |
dan | f7a9454 | 2009-09-30 08:11:07 +0000 | [diff] [blame] | 276 | if( !pIdx ){ |
dan | f066256 | 2009-09-28 18:52:11 +0000 | [diff] [blame] | 277 | if( !pParse->disableTriggers ){ |
| 278 | sqlite3ErrorMsg(pParse, "foreign key mismatch"); |
| 279 | } |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 280 | sqlite3DbFree(pParse->db, aiCol); |
| 281 | return 1; |
| 282 | } |
| 283 | |
| 284 | *ppIdx = pIdx; |
| 285 | return 0; |
| 286 | } |
| 287 | |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 288 | /* |
dan | bd74783 | 2009-09-25 12:00:01 +0000 | [diff] [blame] | 289 | ** This function is called when a row is inserted into or deleted from the |
| 290 | ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed |
| 291 | ** on the child table of pFKey, this function is invoked twice for each row |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 292 | ** affected - once to "delete" the old row, and then again to "insert" the |
| 293 | ** new row. |
| 294 | ** |
| 295 | ** Each time it is called, this function generates VDBE code to locate the |
| 296 | ** row in the parent table that corresponds to the row being inserted into |
| 297 | ** or deleted from the child table. If the parent row can be found, no |
| 298 | ** special action is taken. Otherwise, if the parent row can *not* be |
| 299 | ** found in the parent table: |
| 300 | ** |
| 301 | ** Operation | FK type | Action taken |
| 302 | ** -------------------------------------------------------------------------- |
dan | bd74783 | 2009-09-25 12:00:01 +0000 | [diff] [blame] | 303 | ** INSERT immediate Increment the "immediate constraint counter". |
| 304 | ** |
| 305 | ** DELETE immediate Decrement the "immediate constraint counter". |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 306 | ** |
| 307 | ** INSERT deferred Increment the "deferred constraint counter". |
| 308 | ** |
| 309 | ** DELETE deferred Decrement the "deferred constraint counter". |
| 310 | ** |
dan | bd74783 | 2009-09-25 12:00:01 +0000 | [diff] [blame] | 311 | ** These operations are identified in the comment at the top of this file |
| 312 | ** (fkey.c) as "I.1" and "D.1". |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 313 | */ |
| 314 | static void fkLookupParent( |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 315 | Parse *pParse, /* Parse context */ |
| 316 | int iDb, /* Index of database housing pTab */ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 317 | Table *pTab, /* Parent table of FK pFKey */ |
| 318 | Index *pIdx, /* Unique index on parent key columns in pTab */ |
| 319 | FKey *pFKey, /* Foreign key constraint */ |
| 320 | int *aiCol, /* Map from parent key columns to child table columns */ |
| 321 | int regData, /* Address of array containing child table row */ |
dan | 02470b2 | 2009-10-03 07:04:11 +0000 | [diff] [blame] | 322 | int nIncr, /* Increment constraint counter by this */ |
| 323 | int isIgnore /* If true, pretend pTab contains all NULL values */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 324 | ){ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 325 | int i; /* Iterator variable */ |
| 326 | Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ |
| 327 | int iCur = pParse->nTab - 1; /* Cursor number to use */ |
| 328 | int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 329 | |
dan | 0ff297e | 2009-09-25 17:03:14 +0000 | [diff] [blame] | 330 | /* If nIncr is less than zero, then check at runtime if there are any |
| 331 | ** outstanding constraints to resolve. If there are not, there is no need |
| 332 | ** to check if deleting this row resolves any outstanding violations. |
| 333 | ** |
| 334 | ** Check if any of the key columns in the child table row are NULL. If |
| 335 | ** any are, then the constraint is considered satisfied. No need to |
| 336 | ** search for a matching row in the parent table. */ |
| 337 | if( nIncr<0 ){ |
| 338 | sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); |
| 339 | } |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 340 | for(i=0; i<pFKey->nCol; i++){ |
dan | 3606264 | 2009-09-21 18:56:23 +0000 | [diff] [blame] | 341 | int iReg = aiCol[i] + regData + 1; |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 342 | sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); |
| 343 | } |
| 344 | |
dan | 02470b2 | 2009-10-03 07:04:11 +0000 | [diff] [blame] | 345 | if( isIgnore==0 ){ |
| 346 | if( pIdx==0 ){ |
| 347 | /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY |
| 348 | ** column of the parent table (table pTab). */ |
| 349 | int iMustBeInt; /* Address of MustBeInt instruction */ |
| 350 | int regTemp = sqlite3GetTempReg(pParse); |
| 351 | |
| 352 | /* Invoke MustBeInt to coerce the child key value to an integer (i.e. |
| 353 | ** apply the affinity of the parent key). If this fails, then there |
| 354 | ** is no matching parent key. Before using MustBeInt, make a copy of |
| 355 | ** the value. Otherwise, the value inserted into the child key column |
| 356 | ** will have INTEGER affinity applied to it, which may not be correct. */ |
| 357 | sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); |
| 358 | iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); |
| 359 | |
| 360 | /* If the parent table is the same as the child table, and we are about |
| 361 | ** to increment the constraint-counter (i.e. this is an INSERT operation), |
| 362 | ** then check if the row being inserted matches itself. If so, do not |
| 363 | ** increment the constraint-counter. */ |
| 364 | if( pTab==pFKey->pFrom && nIncr==1 ){ |
| 365 | sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 366 | } |
dan | 02470b2 | 2009-10-03 07:04:11 +0000 | [diff] [blame] | 367 | |
| 368 | sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); |
| 369 | sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 370 | sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); |
dan | 02470b2 | 2009-10-03 07:04:11 +0000 | [diff] [blame] | 371 | sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); |
| 372 | sqlite3VdbeJumpHere(v, iMustBeInt); |
| 373 | sqlite3ReleaseTempReg(pParse, regTemp); |
| 374 | }else{ |
| 375 | int nCol = pFKey->nCol; |
| 376 | int regTemp = sqlite3GetTempRange(pParse, nCol); |
| 377 | int regRec = sqlite3GetTempReg(pParse); |
| 378 | KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); |
| 379 | |
| 380 | sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); |
| 381 | sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF); |
| 382 | for(i=0; i<nCol; i++){ |
| 383 | sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[i]+1+regData, regTemp+i); |
| 384 | } |
| 385 | |
| 386 | /* If the parent table is the same as the child table, and we are about |
| 387 | ** to increment the constraint-counter (i.e. this is an INSERT operation), |
| 388 | ** then check if the row being inserted matches itself. If so, do not |
| 389 | ** increment the constraint-counter. */ |
| 390 | if( pTab==pFKey->pFrom && nIncr==1 ){ |
| 391 | int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; |
| 392 | for(i=0; i<nCol; i++){ |
| 393 | int iChild = aiCol[i]+1+regData; |
| 394 | int iParent = pIdx->aiColumn[i]+1+regData; |
| 395 | sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); |
| 396 | } |
| 397 | sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); |
| 398 | } |
| 399 | |
| 400 | sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec); |
| 401 | sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0); |
drh | 8cff69d | 2009-11-12 19:59:44 +0000 | [diff] [blame] | 402 | sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); |
dan | 02470b2 | 2009-10-03 07:04:11 +0000 | [diff] [blame] | 403 | |
| 404 | sqlite3ReleaseTempReg(pParse, regRec); |
| 405 | sqlite3ReleaseTempRange(pParse, regTemp, nCol); |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 406 | } |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 407 | } |
| 408 | |
dan | 32b09f2 | 2009-09-23 17:29:59 +0000 | [diff] [blame] | 409 | if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ |
| 410 | /* Special case: If this is an INSERT statement that will insert exactly |
| 411 | ** one row into the table, raise a constraint immediately instead of |
| 412 | ** incrementing a counter. This is necessary as the VM code is being |
| 413 | ** generated for will not open a statement transaction. */ |
| 414 | assert( nIncr==1 ); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 415 | sqlite3HaltConstraint( |
| 416 | pParse, OE_Abort, "foreign key constraint failed", P4_STATIC |
| 417 | ); |
dan | 32b09f2 | 2009-09-23 17:29:59 +0000 | [diff] [blame] | 418 | }else{ |
| 419 | if( nIncr>0 && pFKey->isDeferred==0 ){ |
| 420 | sqlite3ParseToplevel(pParse)->mayAbort = 1; |
| 421 | } |
dan | 0ff297e | 2009-09-25 17:03:14 +0000 | [diff] [blame] | 422 | sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 423 | } |
| 424 | |
| 425 | sqlite3VdbeResolveLabel(v, iOk); |
dan | ed81bf6 | 2009-10-07 16:04:46 +0000 | [diff] [blame] | 426 | sqlite3VdbeAddOp1(v, OP_Close, iCur); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 427 | } |
| 428 | |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 429 | /* |
| 430 | ** This function is called to generate code executed when a row is deleted |
| 431 | ** from the parent table of foreign key constraint pFKey and, if pFKey is |
| 432 | ** deferred, when a row is inserted into the same table. When generating |
| 433 | ** code for an SQL UPDATE operation, this function may be called twice - |
| 434 | ** once to "delete" the old row and once to "insert" the new row. |
| 435 | ** |
| 436 | ** The code generated by this function scans through the rows in the child |
| 437 | ** table that correspond to the parent table row being deleted or inserted. |
| 438 | ** For each child row found, one of the following actions is taken: |
| 439 | ** |
| 440 | ** Operation | FK type | Action taken |
| 441 | ** -------------------------------------------------------------------------- |
dan | bd74783 | 2009-09-25 12:00:01 +0000 | [diff] [blame] | 442 | ** DELETE immediate Increment the "immediate constraint counter". |
| 443 | ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, |
| 444 | ** throw a "foreign key constraint failed" exception. |
| 445 | ** |
| 446 | ** INSERT immediate Decrement the "immediate constraint counter". |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 447 | ** |
| 448 | ** DELETE deferred Increment the "deferred constraint counter". |
| 449 | ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, |
| 450 | ** throw a "foreign key constraint failed" exception. |
| 451 | ** |
| 452 | ** INSERT deferred Decrement the "deferred constraint counter". |
| 453 | ** |
dan | bd74783 | 2009-09-25 12:00:01 +0000 | [diff] [blame] | 454 | ** These operations are identified in the comment at the top of this file |
| 455 | ** (fkey.c) as "I.2" and "D.2". |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 456 | */ |
| 457 | static void fkScanChildren( |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 458 | Parse *pParse, /* Parse context */ |
| 459 | SrcList *pSrc, /* SrcList containing the table to scan */ |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 460 | Table *pTab, |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 461 | Index *pIdx, /* Foreign key index */ |
| 462 | FKey *pFKey, /* Foreign key relationship */ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 463 | int *aiCol, /* Map from pIdx cols to child table cols */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 464 | int regData, /* Referenced table data starts here */ |
| 465 | int nIncr /* Amount to increment deferred counter by */ |
| 466 | ){ |
| 467 | sqlite3 *db = pParse->db; /* Database handle */ |
| 468 | int i; /* Iterator variable */ |
| 469 | Expr *pWhere = 0; /* WHERE clause to scan with */ |
| 470 | NameContext sNameContext; /* Context used to resolve WHERE clause */ |
| 471 | WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ |
dan | 0ff297e | 2009-09-25 17:03:14 +0000 | [diff] [blame] | 472 | int iFkIfZero = 0; /* Address of OP_FkIfZero */ |
| 473 | Vdbe *v = sqlite3GetVdbe(pParse); |
| 474 | |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 475 | assert( !pIdx || pIdx->pTable==pTab ); |
| 476 | |
dan | 0ff297e | 2009-09-25 17:03:14 +0000 | [diff] [blame] | 477 | if( nIncr<0 ){ |
| 478 | iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); |
| 479 | } |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 480 | |
dan | bd74783 | 2009-09-25 12:00:01 +0000 | [diff] [blame] | 481 | /* Create an Expr object representing an SQL expression like: |
| 482 | ** |
| 483 | ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... |
| 484 | ** |
| 485 | ** The collation sequence used for the comparison should be that of |
| 486 | ** the parent key columns. The affinity of the parent key column should |
| 487 | ** be applied to each child key value before the comparison takes place. |
| 488 | */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 489 | for(i=0; i<pFKey->nCol; i++){ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 490 | Expr *pLeft; /* Value from parent table row */ |
| 491 | Expr *pRight; /* Column ref to child table */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 492 | Expr *pEq; /* Expression (pLeft = pRight) */ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 493 | int iCol; /* Index of column in child table */ |
| 494 | const char *zCol; /* Name of column in child table */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 495 | |
| 496 | pLeft = sqlite3Expr(db, TK_REGISTER, 0); |
| 497 | if( pLeft ){ |
dan | bd74783 | 2009-09-25 12:00:01 +0000 | [diff] [blame] | 498 | /* Set the collation sequence and affinity of the LHS of each TK_EQ |
| 499 | ** expression to the parent key column defaults. */ |
dan | 140026b | 2009-09-24 18:19:41 +0000 | [diff] [blame] | 500 | if( pIdx ){ |
drh | d3ceeb5 | 2009-10-13 13:08:19 +0000 | [diff] [blame] | 501 | Column *pCol; |
| 502 | iCol = pIdx->aiColumn[i]; |
| 503 | pCol = &pIdx->pTable->aCol[iCol]; |
dan | 140026b | 2009-09-24 18:19:41 +0000 | [diff] [blame] | 504 | pLeft->iTable = regData+iCol+1; |
| 505 | pLeft->affinity = pCol->affinity; |
| 506 | pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl); |
| 507 | }else{ |
| 508 | pLeft->iTable = regData; |
| 509 | pLeft->affinity = SQLITE_AFF_INTEGER; |
| 510 | } |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 511 | } |
| 512 | iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; |
dan | a8f0bf6 | 2009-09-23 12:06:52 +0000 | [diff] [blame] | 513 | assert( iCol>=0 ); |
| 514 | zCol = pFKey->pFrom->aCol[iCol].zName; |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 515 | pRight = sqlite3Expr(db, TK_ID, zCol); |
| 516 | pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); |
| 517 | pWhere = sqlite3ExprAnd(db, pWhere, pEq); |
| 518 | } |
| 519 | |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 520 | /* If the child table is the same as the parent table, and this scan |
| 521 | ** is taking place as part of a DELETE operation (operation D.2), omit the |
| 522 | ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE |
| 523 | ** clause, where $rowid is the rowid of the row being deleted. */ |
| 524 | if( pTab==pFKey->pFrom && nIncr>0 ){ |
| 525 | Expr *pEq; /* Expression (pLeft = pRight) */ |
| 526 | Expr *pLeft; /* Value from parent table row */ |
| 527 | Expr *pRight; /* Column ref to child table */ |
| 528 | pLeft = sqlite3Expr(db, TK_REGISTER, 0); |
| 529 | pRight = sqlite3Expr(db, TK_COLUMN, 0); |
| 530 | if( pLeft && pRight ){ |
| 531 | pLeft->iTable = regData; |
| 532 | pLeft->affinity = SQLITE_AFF_INTEGER; |
| 533 | pRight->iTable = pSrc->a[0].iCursor; |
| 534 | pRight->iColumn = -1; |
| 535 | } |
| 536 | pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); |
| 537 | pWhere = sqlite3ExprAnd(db, pWhere, pEq); |
| 538 | } |
| 539 | |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 540 | /* Resolve the references in the WHERE clause. */ |
| 541 | memset(&sNameContext, 0, sizeof(NameContext)); |
| 542 | sNameContext.pSrcList = pSrc; |
| 543 | sNameContext.pParse = pParse; |
| 544 | sqlite3ResolveExprNames(&sNameContext, pWhere); |
| 545 | |
| 546 | /* Create VDBE to loop through the entries in pSrc that match the WHERE |
| 547 | ** clause. If the constraint is not deferred, throw an exception for |
| 548 | ** each row found. Otherwise, for deferred constraints, increment the |
| 549 | ** deferred constraint counter by nIncr for each row selected. */ |
| 550 | pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0); |
dan | f7a9454 | 2009-09-30 08:11:07 +0000 | [diff] [blame] | 551 | if( nIncr>0 && pFKey->isDeferred==0 ){ |
| 552 | sqlite3ParseToplevel(pParse)->mayAbort = 1; |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 553 | } |
dan | f7a9454 | 2009-09-30 08:11:07 +0000 | [diff] [blame] | 554 | sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); |
dan | f59c5ca | 2009-09-22 16:55:38 +0000 | [diff] [blame] | 555 | if( pWInfo ){ |
| 556 | sqlite3WhereEnd(pWInfo); |
| 557 | } |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 558 | |
| 559 | /* Clean up the WHERE clause constructed above. */ |
| 560 | sqlite3ExprDelete(db, pWhere); |
dan | 0ff297e | 2009-09-25 17:03:14 +0000 | [diff] [blame] | 561 | if( iFkIfZero ){ |
| 562 | sqlite3VdbeJumpHere(v, iFkIfZero); |
| 563 | } |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 564 | } |
| 565 | |
| 566 | /* |
| 567 | ** This function returns a pointer to the head of a linked list of FK |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 568 | ** constraints for which table pTab is the parent table. For example, |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 569 | ** given the following schema: |
| 570 | ** |
| 571 | ** CREATE TABLE t1(a PRIMARY KEY); |
| 572 | ** CREATE TABLE t2(b REFERENCES t1(a); |
| 573 | ** |
| 574 | ** Calling this function with table "t1" as an argument returns a pointer |
| 575 | ** to the FKey structure representing the foreign key constraint on table |
| 576 | ** "t2". Calling this function with "t2" as the argument would return a |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 577 | ** NULL pointer (as there are no FK constraints for which t2 is the parent |
| 578 | ** table). |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 579 | */ |
dan | 432cc5b | 2009-09-26 17:51:48 +0000 | [diff] [blame] | 580 | FKey *sqlite3FkReferences(Table *pTab){ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 581 | int nName = sqlite3Strlen30(pTab->zName); |
| 582 | return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName); |
| 583 | } |
| 584 | |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 585 | /* |
| 586 | ** The second argument is a Trigger structure allocated by the |
| 587 | ** fkActionTrigger() routine. This function deletes the Trigger structure |
| 588 | ** and all of its sub-components. |
| 589 | ** |
| 590 | ** The Trigger structure or any of its sub-components may be allocated from |
| 591 | ** the lookaside buffer belonging to database handle dbMem. |
| 592 | */ |
dan | 75cbd98 | 2009-09-21 16:06:03 +0000 | [diff] [blame] | 593 | static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ |
| 594 | if( p ){ |
| 595 | TriggerStep *pStep = p->step_list; |
| 596 | sqlite3ExprDelete(dbMem, pStep->pWhere); |
| 597 | sqlite3ExprListDelete(dbMem, pStep->pExprList); |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 598 | sqlite3SelectDelete(dbMem, pStep->pSelect); |
drh | 788536b | 2009-09-23 03:01:58 +0000 | [diff] [blame] | 599 | sqlite3ExprDelete(dbMem, p->pWhen); |
dan | 75cbd98 | 2009-09-21 16:06:03 +0000 | [diff] [blame] | 600 | sqlite3DbFree(dbMem, p); |
| 601 | } |
| 602 | } |
| 603 | |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 604 | /* |
dan | d66c830 | 2009-09-28 14:49:01 +0000 | [diff] [blame] | 605 | ** This function is called to generate code that runs when table pTab is |
| 606 | ** being dropped from the database. The SrcList passed as the second argument |
| 607 | ** to this function contains a single entry guaranteed to resolve to |
| 608 | ** table pTab. |
| 609 | ** |
| 610 | ** Normally, no code is required. However, if either |
| 611 | ** |
| 612 | ** (a) The table is the parent table of a FK constraint, or |
| 613 | ** (b) The table is the child table of a deferred FK constraint and it is |
| 614 | ** determined at runtime that there are outstanding deferred FK |
| 615 | ** constraint violations in the database, |
| 616 | ** |
| 617 | ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping |
| 618 | ** the table from the database. Triggers are disabled while running this |
| 619 | ** DELETE, but foreign key actions are not. |
| 620 | */ |
| 621 | void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ |
| 622 | sqlite3 *db = pParse->db; |
| 623 | if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ |
| 624 | int iSkip = 0; |
| 625 | Vdbe *v = sqlite3GetVdbe(pParse); |
| 626 | |
| 627 | assert( v ); /* VDBE has already been allocated */ |
| 628 | if( sqlite3FkReferences(pTab)==0 ){ |
| 629 | /* Search for a deferred foreign key constraint for which this table |
| 630 | ** is the child table. If one cannot be found, return without |
| 631 | ** generating any VDBE code. If one can be found, then jump over |
| 632 | ** the entire DELETE if there are no outstanding deferred constraints |
| 633 | ** when this statement is run. */ |
| 634 | FKey *p; |
| 635 | for(p=pTab->pFKey; p; p=p->pNextFrom){ |
| 636 | if( p->isDeferred ) break; |
| 637 | } |
| 638 | if( !p ) return; |
| 639 | iSkip = sqlite3VdbeMakeLabel(v); |
| 640 | sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); |
| 641 | } |
| 642 | |
| 643 | pParse->disableTriggers = 1; |
| 644 | sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); |
| 645 | pParse->disableTriggers = 0; |
| 646 | |
| 647 | /* If the DELETE has generated immediate foreign key constraint |
| 648 | ** violations, halt the VDBE and return an error at this point, before |
| 649 | ** any modifications to the schema are made. This is because statement |
| 650 | ** transactions are not able to rollback schema changes. */ |
| 651 | sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); |
| 652 | sqlite3HaltConstraint( |
| 653 | pParse, OE_Abort, "foreign key constraint failed", P4_STATIC |
| 654 | ); |
| 655 | |
| 656 | if( iSkip ){ |
| 657 | sqlite3VdbeResolveLabel(v, iSkip); |
| 658 | } |
| 659 | } |
| 660 | } |
| 661 | |
| 662 | /* |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 663 | ** This function is called when inserting, deleting or updating a row of |
| 664 | ** table pTab to generate VDBE code to perform foreign key constraint |
| 665 | ** processing for the operation. |
| 666 | ** |
| 667 | ** For a DELETE operation, parameter regOld is passed the index of the |
| 668 | ** first register in an array of (pTab->nCol+1) registers containing the |
| 669 | ** rowid of the row being deleted, followed by each of the column values |
| 670 | ** of the row being deleted, from left to right. Parameter regNew is passed |
| 671 | ** zero in this case. |
| 672 | ** |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 673 | ** For an INSERT operation, regOld is passed zero and regNew is passed the |
| 674 | ** first register of an array of (pTab->nCol+1) registers containing the new |
| 675 | ** row data. |
| 676 | ** |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 677 | ** For an UPDATE operation, this function is called twice. Once before |
| 678 | ** the original record is deleted from the table using the calling convention |
| 679 | ** described for DELETE. Then again after the original record is deleted |
dan | e7a94d8 | 2009-10-01 16:09:04 +0000 | [diff] [blame] | 680 | ** but before the new record is inserted using the INSERT convention. |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 681 | */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 682 | void sqlite3FkCheck( |
| 683 | Parse *pParse, /* Parse context */ |
| 684 | Table *pTab, /* Row is being deleted from this table */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 685 | int regOld, /* Previous row data is stored here */ |
| 686 | int regNew /* New row data is stored here */ |
| 687 | ){ |
| 688 | sqlite3 *db = pParse->db; /* Database handle */ |
| 689 | Vdbe *v; /* VM to write code to */ |
| 690 | FKey *pFKey; /* Used to iterate through FKs */ |
| 691 | int iDb; /* Index of database containing pTab */ |
| 692 | const char *zDb; /* Name of database containing pTab */ |
dan | f066256 | 2009-09-28 18:52:11 +0000 | [diff] [blame] | 693 | int isIgnoreErrors = pParse->disableTriggers; |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 694 | |
dan | 792e920 | 2009-09-29 11:28:51 +0000 | [diff] [blame] | 695 | /* Exactly one of regOld and regNew should be non-zero. */ |
| 696 | assert( (regOld==0)!=(regNew==0) ); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 697 | |
| 698 | /* If foreign-keys are disabled, this function is a no-op. */ |
| 699 | if( (db->flags&SQLITE_ForeignKeys)==0 ) return; |
| 700 | |
| 701 | v = sqlite3GetVdbe(pParse); |
| 702 | iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 703 | zDb = db->aDb[iDb].zName; |
| 704 | |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 705 | /* Loop through all the foreign key constraints for which pTab is the |
| 706 | ** child table (the table that the foreign key definition is part of). */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 707 | for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 708 | Table *pTo; /* Parent table of foreign key pFKey */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 709 | Index *pIdx = 0; /* Index on key columns in pTo */ |
dan | 3606264 | 2009-09-21 18:56:23 +0000 | [diff] [blame] | 710 | int *aiFree = 0; |
| 711 | int *aiCol; |
| 712 | int iCol; |
| 713 | int i; |
dan | 02470b2 | 2009-10-03 07:04:11 +0000 | [diff] [blame] | 714 | int isIgnore = 0; |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 715 | |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 716 | /* Find the parent table of this foreign key. Also find a unique index |
| 717 | ** on the parent key columns in the parent table. If either of these |
| 718 | ** schema items cannot be located, set an error in pParse and return |
| 719 | ** early. */ |
dan | f066256 | 2009-09-28 18:52:11 +0000 | [diff] [blame] | 720 | if( pParse->disableTriggers ){ |
| 721 | pTo = sqlite3FindTable(db, pFKey->zTo, zDb); |
| 722 | }else{ |
| 723 | pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); |
| 724 | } |
| 725 | if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ |
| 726 | if( !isIgnoreErrors || db->mallocFailed ) return; |
| 727 | continue; |
| 728 | } |
dan | 3606264 | 2009-09-21 18:56:23 +0000 | [diff] [blame] | 729 | assert( pFKey->nCol==1 || (aiFree && pIdx) ); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 730 | |
dan | 3606264 | 2009-09-21 18:56:23 +0000 | [diff] [blame] | 731 | if( aiFree ){ |
| 732 | aiCol = aiFree; |
| 733 | }else{ |
| 734 | iCol = pFKey->aCol[0].iFrom; |
| 735 | aiCol = &iCol; |
| 736 | } |
| 737 | for(i=0; i<pFKey->nCol; i++){ |
| 738 | if( aiCol[i]==pTab->iPKey ){ |
| 739 | aiCol[i] = -1; |
| 740 | } |
dan | 47a0634 | 2009-10-02 14:23:41 +0000 | [diff] [blame] | 741 | #ifndef SQLITE_OMIT_AUTHORIZATION |
dan | 02470b2 | 2009-10-03 07:04:11 +0000 | [diff] [blame] | 742 | /* Request permission to read the parent key columns. If the |
| 743 | ** authorization callback returns SQLITE_IGNORE, behave as if any |
| 744 | ** values read from the parent table are NULL. */ |
dan | 47a0634 | 2009-10-02 14:23:41 +0000 | [diff] [blame] | 745 | if( db->xAuth ){ |
dan | 02470b2 | 2009-10-03 07:04:11 +0000 | [diff] [blame] | 746 | int rcauth; |
dan | 47a0634 | 2009-10-02 14:23:41 +0000 | [diff] [blame] | 747 | char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; |
dan | 02470b2 | 2009-10-03 07:04:11 +0000 | [diff] [blame] | 748 | rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); |
| 749 | isIgnore = (rcauth==SQLITE_IGNORE); |
dan | 47a0634 | 2009-10-02 14:23:41 +0000 | [diff] [blame] | 750 | } |
| 751 | #endif |
dan | 3606264 | 2009-09-21 18:56:23 +0000 | [diff] [blame] | 752 | } |
| 753 | |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 754 | /* Take a shared-cache advisory read-lock on the parent table. Allocate |
| 755 | ** a cursor to use to search the unique index on the parent key columns |
| 756 | ** in the parent table. */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 757 | sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); |
| 758 | pParse->nTab++; |
| 759 | |
dan | 32b09f2 | 2009-09-23 17:29:59 +0000 | [diff] [blame] | 760 | if( regOld!=0 ){ |
| 761 | /* A row is being removed from the child table. Search for the parent. |
| 762 | ** If the parent does not exist, removing the child row resolves an |
| 763 | ** outstanding foreign key constraint violation. */ |
dan | 02470b2 | 2009-10-03 07:04:11 +0000 | [diff] [blame] | 764 | fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 765 | } |
| 766 | if( regNew!=0 ){ |
dan | 32b09f2 | 2009-09-23 17:29:59 +0000 | [diff] [blame] | 767 | /* A row is being added to the child table. If a parent row cannot |
| 768 | ** be found, adding the child row has violated the FK constraint. */ |
dan | 02470b2 | 2009-10-03 07:04:11 +0000 | [diff] [blame] | 769 | fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 770 | } |
| 771 | |
dan | 3606264 | 2009-09-21 18:56:23 +0000 | [diff] [blame] | 772 | sqlite3DbFree(db, aiFree); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 773 | } |
| 774 | |
| 775 | /* Loop through all the foreign key constraints that refer to this table */ |
dan | 432cc5b | 2009-09-26 17:51:48 +0000 | [diff] [blame] | 776 | for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 777 | Index *pIdx = 0; /* Foreign key index for pFKey */ |
| 778 | SrcList *pSrc; |
| 779 | int *aiCol = 0; |
| 780 | |
dan | 32b09f2 | 2009-09-23 17:29:59 +0000 | [diff] [blame] | 781 | if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ |
| 782 | assert( regOld==0 && regNew!=0 ); |
| 783 | /* Inserting a single row into a parent table cannot cause an immediate |
| 784 | ** foreign key violation. So do nothing in this case. */ |
dan | f066256 | 2009-09-28 18:52:11 +0000 | [diff] [blame] | 785 | continue; |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 786 | } |
| 787 | |
dan | f066256 | 2009-09-28 18:52:11 +0000 | [diff] [blame] | 788 | if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ |
| 789 | if( !isIgnoreErrors || db->mallocFailed ) return; |
| 790 | continue; |
| 791 | } |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 792 | assert( aiCol || pFKey->nCol==1 ); |
| 793 | |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 794 | /* Create a SrcList structure containing a single table (the table |
| 795 | ** the foreign key that refers to this table is attached to). This |
| 796 | ** is required for the sqlite3WhereXXX() interface. */ |
| 797 | pSrc = sqlite3SrcListAppend(db, 0, 0, 0); |
dan | f59c5ca | 2009-09-22 16:55:38 +0000 | [diff] [blame] | 798 | if( pSrc ){ |
drh | 9a616f5 | 2009-10-12 20:01:49 +0000 | [diff] [blame] | 799 | struct SrcList_item *pItem = pSrc->a; |
| 800 | pItem->pTab = pFKey->pFrom; |
| 801 | pItem->zName = pFKey->pFrom->zName; |
| 802 | pItem->pTab->nRef++; |
| 803 | pItem->iCursor = pParse->nTab++; |
dan | f59c5ca | 2009-09-22 16:55:38 +0000 | [diff] [blame] | 804 | |
dan | 32b09f2 | 2009-09-23 17:29:59 +0000 | [diff] [blame] | 805 | if( regNew!=0 ){ |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 806 | fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); |
dan | f59c5ca | 2009-09-22 16:55:38 +0000 | [diff] [blame] | 807 | } |
| 808 | if( regOld!=0 ){ |
| 809 | /* If there is a RESTRICT action configured for the current operation |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 810 | ** on the parent table of this FK, then throw an exception |
dan | f59c5ca | 2009-09-22 16:55:38 +0000 | [diff] [blame] | 811 | ** immediately if the FK constraint is violated, even if this is a |
| 812 | ** deferred trigger. That's what RESTRICT means. To defer checking |
| 813 | ** the constraint, the FK should specify NO ACTION (represented |
| 814 | ** using OE_None). NO ACTION is the default. */ |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 815 | fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); |
dan | f59c5ca | 2009-09-22 16:55:38 +0000 | [diff] [blame] | 816 | } |
drh | 9a616f5 | 2009-10-12 20:01:49 +0000 | [diff] [blame] | 817 | pItem->zName = 0; |
dan | f59c5ca | 2009-09-22 16:55:38 +0000 | [diff] [blame] | 818 | sqlite3SrcListDelete(db, pSrc); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 819 | } |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 820 | sqlite3DbFree(db, aiCol); |
| 821 | } |
| 822 | } |
| 823 | |
| 824 | #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) |
| 825 | |
| 826 | /* |
| 827 | ** This function is called before generating code to update or delete a |
dan | e7a94d8 | 2009-10-01 16:09:04 +0000 | [diff] [blame] | 828 | ** row contained in table pTab. |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 829 | */ |
| 830 | u32 sqlite3FkOldmask( |
| 831 | Parse *pParse, /* Parse context */ |
dan | e7a94d8 | 2009-10-01 16:09:04 +0000 | [diff] [blame] | 832 | Table *pTab /* Table being modified */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 833 | ){ |
| 834 | u32 mask = 0; |
| 835 | if( pParse->db->flags&SQLITE_ForeignKeys ){ |
| 836 | FKey *p; |
| 837 | int i; |
| 838 | for(p=pTab->pFKey; p; p=p->pNextFrom){ |
dan | 32b09f2 | 2009-09-23 17:29:59 +0000 | [diff] [blame] | 839 | for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 840 | } |
dan | 432cc5b | 2009-09-26 17:51:48 +0000 | [diff] [blame] | 841 | for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 842 | Index *pIdx = 0; |
dan | f066256 | 2009-09-28 18:52:11 +0000 | [diff] [blame] | 843 | locateFkeyIndex(pParse, pTab, p, &pIdx, 0); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 844 | if( pIdx ){ |
| 845 | for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]); |
| 846 | } |
| 847 | } |
| 848 | } |
| 849 | return mask; |
| 850 | } |
| 851 | |
| 852 | /* |
| 853 | ** This function is called before generating code to update or delete a |
dan | e7a94d8 | 2009-10-01 16:09:04 +0000 | [diff] [blame] | 854 | ** row contained in table pTab. If the operation is a DELETE, then |
| 855 | ** parameter aChange is passed a NULL value. For an UPDATE, aChange points |
| 856 | ** to an array of size N, where N is the number of columns in table pTab. |
| 857 | ** If the i'th column is not modified by the UPDATE, then the corresponding |
| 858 | ** entry in the aChange[] array is set to -1. If the column is modified, |
| 859 | ** the value is 0 or greater. Parameter chngRowid is set to true if the |
| 860 | ** UPDATE statement modifies the rowid fields of the table. |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 861 | ** |
| 862 | ** If any foreign key processing will be required, this function returns |
| 863 | ** true. If there is no foreign key related processing, this function |
| 864 | ** returns false. |
| 865 | */ |
| 866 | int sqlite3FkRequired( |
| 867 | Parse *pParse, /* Parse context */ |
| 868 | Table *pTab, /* Table being modified */ |
dan | e7a94d8 | 2009-10-01 16:09:04 +0000 | [diff] [blame] | 869 | int *aChange, /* Non-NULL for UPDATE operations */ |
| 870 | int chngRowid /* True for UPDATE that affects rowid */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 871 | ){ |
| 872 | if( pParse->db->flags&SQLITE_ForeignKeys ){ |
dan | e7a94d8 | 2009-10-01 16:09:04 +0000 | [diff] [blame] | 873 | if( !aChange ){ |
| 874 | /* A DELETE operation. Foreign key processing is required if the |
| 875 | ** table in question is either the child or parent table for any |
| 876 | ** foreign key constraint. */ |
| 877 | return (sqlite3FkReferences(pTab) || pTab->pFKey); |
| 878 | }else{ |
| 879 | /* This is an UPDATE. Foreign key processing is only required if the |
| 880 | ** operation modifies one or more child or parent key columns. */ |
| 881 | int i; |
| 882 | FKey *p; |
| 883 | |
| 884 | /* Check if any child key columns are being modified. */ |
| 885 | for(p=pTab->pFKey; p; p=p->pNextFrom){ |
| 886 | for(i=0; i<p->nCol; i++){ |
| 887 | int iChildKey = p->aCol[i].iFrom; |
| 888 | if( aChange[iChildKey]>=0 ) return 1; |
| 889 | if( iChildKey==pTab->iPKey && chngRowid ) return 1; |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | /* Check if any parent key columns are being modified. */ |
| 894 | for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ |
| 895 | for(i=0; i<p->nCol; i++){ |
| 896 | char *zKey = p->aCol[i].zCol; |
| 897 | int iKey; |
| 898 | for(iKey=0; iKey<pTab->nCol; iKey++){ |
| 899 | Column *pCol = &pTab->aCol[iKey]; |
| 900 | if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){ |
| 901 | if( aChange[iKey]>=0 ) return 1; |
| 902 | if( iKey==pTab->iPKey && chngRowid ) return 1; |
| 903 | } |
| 904 | } |
| 905 | } |
| 906 | } |
| 907 | } |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 908 | } |
| 909 | return 0; |
| 910 | } |
| 911 | |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 912 | /* |
| 913 | ** This function is called when an UPDATE or DELETE operation is being |
| 914 | ** compiled on table pTab, which is the parent table of foreign-key pFKey. |
| 915 | ** If the current operation is an UPDATE, then the pChanges parameter is |
| 916 | ** passed a pointer to the list of columns being modified. If it is a |
| 917 | ** DELETE, pChanges is passed a NULL pointer. |
| 918 | ** |
| 919 | ** It returns a pointer to a Trigger structure containing a trigger |
| 920 | ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. |
| 921 | ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is |
| 922 | ** returned (these actions require no special handling by the triggers |
| 923 | ** sub-system, code for them is created by fkScanChildren()). |
| 924 | ** |
| 925 | ** For example, if pFKey is the foreign key and pTab is table "p" in |
| 926 | ** the following schema: |
| 927 | ** |
| 928 | ** CREATE TABLE p(pk PRIMARY KEY); |
| 929 | ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); |
| 930 | ** |
| 931 | ** then the returned trigger structure is equivalent to: |
| 932 | ** |
| 933 | ** CREATE TRIGGER ... DELETE ON p BEGIN |
| 934 | ** DELETE FROM c WHERE ck = old.pk; |
| 935 | ** END; |
| 936 | ** |
| 937 | ** The returned pointer is cached as part of the foreign key object. It |
| 938 | ** is eventually freed along with the rest of the foreign key object by |
| 939 | ** sqlite3FkDelete(). |
| 940 | */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 941 | static Trigger *fkActionTrigger( |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 942 | Parse *pParse, /* Parse context */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 943 | Table *pTab, /* Table being updated or deleted from */ |
| 944 | FKey *pFKey, /* Foreign key to get action for */ |
| 945 | ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ |
| 946 | ){ |
| 947 | sqlite3 *db = pParse->db; /* Database handle */ |
dan | 29c7f9c | 2009-09-22 15:53:47 +0000 | [diff] [blame] | 948 | int action; /* One of OE_None, OE_Cascade etc. */ |
| 949 | Trigger *pTrigger; /* Trigger definition to return */ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 950 | int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 951 | |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 952 | action = pFKey->aAction[iAction]; |
| 953 | pTrigger = pFKey->apTrigger[iAction]; |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 954 | |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 955 | if( action!=OE_None && !pTrigger ){ |
dan | 29c7f9c | 2009-09-22 15:53:47 +0000 | [diff] [blame] | 956 | u8 enableLookaside; /* Copy of db->lookaside.bEnabled */ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 957 | char const *zFrom; /* Name of child table */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 958 | int nFrom; /* Length in bytes of zFrom */ |
dan | 29c7f9c | 2009-09-22 15:53:47 +0000 | [diff] [blame] | 959 | Index *pIdx = 0; /* Parent key index for this FK */ |
| 960 | int *aiCol = 0; /* child table cols -> parent key cols */ |
drh | d3ceeb5 | 2009-10-13 13:08:19 +0000 | [diff] [blame] | 961 | TriggerStep *pStep = 0; /* First (only) step of trigger program */ |
dan | 29c7f9c | 2009-09-22 15:53:47 +0000 | [diff] [blame] | 962 | Expr *pWhere = 0; /* WHERE clause of trigger step */ |
| 963 | ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 964 | Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ |
dan | 29c7f9c | 2009-09-22 15:53:47 +0000 | [diff] [blame] | 965 | int i; /* Iterator variable */ |
drh | 788536b | 2009-09-23 03:01:58 +0000 | [diff] [blame] | 966 | Expr *pWhen = 0; /* WHEN clause for the trigger */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 967 | |
| 968 | if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; |
| 969 | assert( aiCol || pFKey->nCol==1 ); |
| 970 | |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 971 | for(i=0; i<pFKey->nCol; i++){ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 972 | Token tOld = { "old", 3 }; /* Literal "old" token */ |
| 973 | Token tNew = { "new", 3 }; /* Literal "new" token */ |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 974 | Token tFromCol; /* Name of column in child table */ |
| 975 | Token tToCol; /* Name of column in parent table */ |
| 976 | int iFromCol; /* Idx of column in child table */ |
dan | 29c7f9c | 2009-09-22 15:53:47 +0000 | [diff] [blame] | 977 | Expr *pEq; /* tFromCol = OLD.tToCol */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 978 | |
| 979 | iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; |
dan | a8f0bf6 | 2009-09-23 12:06:52 +0000 | [diff] [blame] | 980 | assert( iFromCol>=0 ); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 981 | tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid"; |
dan | a8f0bf6 | 2009-09-23 12:06:52 +0000 | [diff] [blame] | 982 | tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName; |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 983 | |
| 984 | tToCol.n = sqlite3Strlen30(tToCol.z); |
| 985 | tFromCol.n = sqlite3Strlen30(tFromCol.z); |
| 986 | |
dan | 652ac1d | 2009-09-29 16:38:59 +0000 | [diff] [blame] | 987 | /* Create the expression "OLD.zToCol = zFromCol". It is important |
| 988 | ** that the "OLD.zToCol" term is on the LHS of the = operator, so |
| 989 | ** that the affinity and collation sequence associated with the |
| 990 | ** parent table are used for the comparison. */ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 991 | pEq = sqlite3PExpr(pParse, TK_EQ, |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 992 | sqlite3PExpr(pParse, TK_DOT, |
| 993 | sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), |
| 994 | sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) |
dan | 652ac1d | 2009-09-29 16:38:59 +0000 | [diff] [blame] | 995 | , 0), |
| 996 | sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol) |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 997 | , 0); |
dan | 29c7f9c | 2009-09-22 15:53:47 +0000 | [diff] [blame] | 998 | pWhere = sqlite3ExprAnd(db, pWhere, pEq); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 999 | |
drh | 788536b | 2009-09-23 03:01:58 +0000 | [diff] [blame] | 1000 | /* For ON UPDATE, construct the next term of the WHEN clause. |
| 1001 | ** The final WHEN clause will be like this: |
| 1002 | ** |
| 1003 | ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) |
| 1004 | */ |
| 1005 | if( pChanges ){ |
| 1006 | pEq = sqlite3PExpr(pParse, TK_IS, |
| 1007 | sqlite3PExpr(pParse, TK_DOT, |
| 1008 | sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), |
| 1009 | sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), |
| 1010 | 0), |
| 1011 | sqlite3PExpr(pParse, TK_DOT, |
| 1012 | sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), |
| 1013 | sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), |
| 1014 | 0), |
| 1015 | 0); |
| 1016 | pWhen = sqlite3ExprAnd(db, pWhen, pEq); |
| 1017 | } |
| 1018 | |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 1019 | if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 1020 | Expr *pNew; |
| 1021 | if( action==OE_Cascade ){ |
| 1022 | pNew = sqlite3PExpr(pParse, TK_DOT, |
| 1023 | sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), |
| 1024 | sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) |
| 1025 | , 0); |
| 1026 | }else if( action==OE_SetDflt ){ |
dan | 934ce30 | 2009-09-22 16:08:58 +0000 | [diff] [blame] | 1027 | Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 1028 | if( pDflt ){ |
| 1029 | pNew = sqlite3ExprDup(db, pDflt, 0); |
| 1030 | }else{ |
| 1031 | pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); |
| 1032 | } |
| 1033 | }else{ |
| 1034 | pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); |
| 1035 | } |
| 1036 | pList = sqlite3ExprListAppend(pParse, pList, pNew); |
| 1037 | sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); |
| 1038 | } |
| 1039 | } |
dan | 29c7f9c | 2009-09-22 15:53:47 +0000 | [diff] [blame] | 1040 | sqlite3DbFree(db, aiCol); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 1041 | |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 1042 | zFrom = pFKey->pFrom->zName; |
| 1043 | nFrom = sqlite3Strlen30(zFrom); |
| 1044 | |
| 1045 | if( action==OE_Restrict ){ |
| 1046 | Token tFrom; |
| 1047 | Expr *pRaise; |
| 1048 | |
| 1049 | tFrom.z = zFrom; |
| 1050 | tFrom.n = nFrom; |
| 1051 | pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed"); |
| 1052 | if( pRaise ){ |
| 1053 | pRaise->affinity = OE_Abort; |
| 1054 | } |
| 1055 | pSelect = sqlite3SelectNew(pParse, |
| 1056 | sqlite3ExprListAppend(pParse, 0, pRaise), |
| 1057 | sqlite3SrcListAppend(db, 0, &tFrom, 0), |
| 1058 | pWhere, |
| 1059 | 0, 0, 0, 0, 0, 0 |
| 1060 | ); |
| 1061 | pWhere = 0; |
| 1062 | } |
| 1063 | |
drh | 1f638ce | 2009-09-24 13:48:10 +0000 | [diff] [blame] | 1064 | /* In the current implementation, pTab->dbMem==0 for all tables except |
| 1065 | ** for temporary tables used to describe subqueries. And temporary |
| 1066 | ** tables do not have foreign key constraints. Hence, pTab->dbMem |
| 1067 | ** should always be 0 there. |
| 1068 | */ |
dan | 29c7f9c | 2009-09-22 15:53:47 +0000 | [diff] [blame] | 1069 | enableLookaside = db->lookaside.bEnabled; |
drh | 46803c3 | 2009-09-24 14:27:33 +0000 | [diff] [blame] | 1070 | db->lookaside.bEnabled = 0; |
dan | 29c7f9c | 2009-09-22 15:53:47 +0000 | [diff] [blame] | 1071 | |
dan | 29c7f9c | 2009-09-22 15:53:47 +0000 | [diff] [blame] | 1072 | pTrigger = (Trigger *)sqlite3DbMallocZero(db, |
| 1073 | sizeof(Trigger) + /* struct Trigger */ |
| 1074 | sizeof(TriggerStep) + /* Single step in trigger program */ |
| 1075 | nFrom + 1 /* Space for pStep->target.z */ |
| 1076 | ); |
| 1077 | if( pTrigger ){ |
| 1078 | pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; |
| 1079 | pStep->target.z = (char *)&pStep[1]; |
| 1080 | pStep->target.n = nFrom; |
| 1081 | memcpy((char *)pStep->target.z, zFrom, nFrom); |
| 1082 | |
| 1083 | pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); |
| 1084 | pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 1085 | pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); |
drh | 788536b | 2009-09-23 03:01:58 +0000 | [diff] [blame] | 1086 | if( pWhen ){ |
| 1087 | pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0); |
| 1088 | pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); |
| 1089 | } |
dan | 29c7f9c | 2009-09-22 15:53:47 +0000 | [diff] [blame] | 1090 | } |
| 1091 | |
| 1092 | /* Re-enable the lookaside buffer, if it was disabled earlier. */ |
| 1093 | db->lookaside.bEnabled = enableLookaside; |
| 1094 | |
drh | 788536b | 2009-09-23 03:01:58 +0000 | [diff] [blame] | 1095 | sqlite3ExprDelete(db, pWhere); |
| 1096 | sqlite3ExprDelete(db, pWhen); |
| 1097 | sqlite3ExprListDelete(db, pList); |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 1098 | sqlite3SelectDelete(db, pSelect); |
dan | 29c7f9c | 2009-09-22 15:53:47 +0000 | [diff] [blame] | 1099 | if( db->mallocFailed==1 ){ |
| 1100 | fkTriggerDelete(db, pTrigger); |
| 1101 | return 0; |
| 1102 | } |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 1103 | |
dan | 9277efa | 2009-09-28 11:54:21 +0000 | [diff] [blame] | 1104 | switch( action ){ |
| 1105 | case OE_Restrict: |
| 1106 | pStep->op = TK_SELECT; |
| 1107 | break; |
| 1108 | case OE_Cascade: |
| 1109 | if( !pChanges ){ |
| 1110 | pStep->op = TK_DELETE; |
| 1111 | break; |
| 1112 | } |
| 1113 | default: |
| 1114 | pStep->op = TK_UPDATE; |
| 1115 | } |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 1116 | pStep->pTrig = pTrigger; |
| 1117 | pTrigger->pSchema = pTab->pSchema; |
| 1118 | pTrigger->pTabSchema = pTab->pSchema; |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 1119 | pFKey->apTrigger[iAction] = pTrigger; |
| 1120 | pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 1121 | } |
| 1122 | |
| 1123 | return pTrigger; |
| 1124 | } |
| 1125 | |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 1126 | /* |
| 1127 | ** This function is called when deleting or updating a row to implement |
| 1128 | ** any required CASCADE, SET NULL or SET DEFAULT actions. |
| 1129 | */ |
| 1130 | void sqlite3FkActions( |
| 1131 | Parse *pParse, /* Parse context */ |
| 1132 | Table *pTab, /* Table being updated or deleted from */ |
| 1133 | ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ |
| 1134 | int regOld /* Address of array containing old row */ |
| 1135 | ){ |
| 1136 | /* If foreign-key support is enabled, iterate through all FKs that |
| 1137 | ** refer to table pTab. If there is an action associated with the FK |
| 1138 | ** for this operation (either update or delete), invoke the associated |
| 1139 | ** trigger sub-program. */ |
| 1140 | if( pParse->db->flags&SQLITE_ForeignKeys ){ |
| 1141 | FKey *pFKey; /* Iterator variable */ |
dan | 432cc5b | 2009-09-26 17:51:48 +0000 | [diff] [blame] | 1142 | for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 1143 | Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges); |
| 1144 | if( pAction ){ |
| 1145 | sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0); |
| 1146 | } |
| 1147 | } |
| 1148 | } |
| 1149 | } |
| 1150 | |
dan | 75cbd98 | 2009-09-21 16:06:03 +0000 | [diff] [blame] | 1151 | #endif /* ifndef SQLITE_OMIT_TRIGGER */ |
| 1152 | |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 1153 | /* |
| 1154 | ** Free all memory associated with foreign key definitions attached to |
| 1155 | ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash |
| 1156 | ** hash table. |
| 1157 | */ |
| 1158 | void sqlite3FkDelete(Table *pTab){ |
| 1159 | FKey *pFKey; /* Iterator variable */ |
| 1160 | FKey *pNext; /* Copy of pFKey->pNextFrom */ |
| 1161 | |
| 1162 | for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ |
| 1163 | |
| 1164 | /* Remove the FK from the fkeyHash hash table. */ |
| 1165 | if( pFKey->pPrevTo ){ |
| 1166 | pFKey->pPrevTo->pNextTo = pFKey->pNextTo; |
| 1167 | }else{ |
| 1168 | void *data = (void *)pFKey->pNextTo; |
| 1169 | const char *z = (data ? pFKey->pNextTo->zTo : pFKey->zTo); |
| 1170 | sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), data); |
| 1171 | } |
| 1172 | if( pFKey->pNextTo ){ |
| 1173 | pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; |
| 1174 | } |
| 1175 | |
| 1176 | /* Delete any triggers created to implement actions for this FK. */ |
dan | 75cbd98 | 2009-09-21 16:06:03 +0000 | [diff] [blame] | 1177 | #ifndef SQLITE_OMIT_TRIGGER |
dan | 8099ce6 | 2009-09-23 08:43:35 +0000 | [diff] [blame] | 1178 | fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[0]); |
| 1179 | fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[1]); |
dan | 75cbd98 | 2009-09-21 16:06:03 +0000 | [diff] [blame] | 1180 | #endif |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 1181 | |
drh | 4c42983 | 2009-10-12 22:30:49 +0000 | [diff] [blame] | 1182 | /* EV: R-30323-21917 Each foreign key constraint in SQLite is |
| 1183 | ** classified as either immediate or deferred. |
| 1184 | */ |
| 1185 | assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); |
| 1186 | |
dan | 1da40a3 | 2009-09-19 17:00:31 +0000 | [diff] [blame] | 1187 | pNext = pFKey->pNextFrom; |
| 1188 | sqlite3DbFree(pTab->dbMem, pFKey); |
| 1189 | } |
| 1190 | } |
dan | 75cbd98 | 2009-09-21 16:06:03 +0000 | [diff] [blame] | 1191 | #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ |