blob: 89af4e498cd65760830ed46ef0dec7a6e499e16f [file] [log] [blame]
drha3152892007-05-05 11:48:52 +00001/*
2** 2004 April 6
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
danielk19771cc5ed82007-05-16 17:28:43 +000012** $Id: btreeInt.h,v 1.4 2007/05/16 17:28:43 danielk1977 Exp $
drha3152892007-05-05 11:48:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
15** For a detailed discussion of BTrees, refer to
16**
17** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
18** "Sorting And Searching", pages 473-480. Addison-Wesley
19** Publishing Company, Reading, Massachusetts.
20**
21** The basic idea is that each page of the file contains N database
22** entries and N+1 pointers to subpages.
23**
24** ----------------------------------------------------------------
25** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
26** ----------------------------------------------------------------
27**
28** All of the keys on the page that Ptr(0) points to have values less
29** than Key(0). All of the keys on page Ptr(1) and its subpages have
30** values greater than Key(0) and less than Key(1). All of the keys
31** on Ptr(N) and its subpages have values greater than Key(N-1). And
32** so forth.
33**
34** Finding a particular key requires reading O(log(M)) pages from the
35** disk where M is the number of entries in the tree.
36**
37** In this implementation, a single file can hold one or more separate
38** BTrees. Each BTree is identified by the index of its root page. The
39** key and data for any entry are combined to form the "payload". A
40** fixed amount of payload can be carried directly on the database
41** page. If the payload is larger than the preset amount then surplus
42** bytes are stored on overflow pages. The payload for an entry
43** and the preceding pointer are combined to form a "Cell". Each
44** page has a small header which contains the Ptr(N) pointer and other
45** information such as the size of key and data.
46**
47** FORMAT DETAILS
48**
49** The file is divided into pages. The first page is called page 1,
50** the second is page 2, and so forth. A page number of zero indicates
51** "no such page". The page size can be anything between 512 and 65536.
52** Each page can be either a btree page, a freelist page or an overflow
53** page.
54**
55** The first page is always a btree page. The first 100 bytes of the first
56** page contain a special header (the "file header") that describes the file.
57** The format of the file header is as follows:
58**
59** OFFSET SIZE DESCRIPTION
60** 0 16 Header string: "SQLite format 3\000"
61** 16 2 Page size in bytes.
62** 18 1 File format write version
63** 19 1 File format read version
64** 20 1 Bytes of unused space at the end of each page
65** 21 1 Max embedded payload fraction
66** 22 1 Min embedded payload fraction
67** 23 1 Min leaf payload fraction
68** 24 4 File change counter
69** 28 4 Reserved for future use
70** 32 4 First freelist page
71** 36 4 Number of freelist pages in the file
72** 40 60 15 4-byte meta values passed to higher layers
73**
74** All of the integer values are big-endian (most significant byte first).
75**
76** The file change counter is incremented when the database is changed more
77** than once within the same second. This counter, together with the
78** modification time of the file, allows other processes to know
79** when the file has changed and thus when they need to flush their
80** cache.
81**
82** The max embedded payload fraction is the amount of the total usable
83** space in a page that can be consumed by a single cell for standard
84** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
85** is to limit the maximum cell size so that at least 4 cells will fit
86** on one page. Thus the default max embedded payload fraction is 64.
87**
88** If the payload for a cell is larger than the max payload, then extra
89** payload is spilled to overflow pages. Once an overflow page is allocated,
90** as many bytes as possible are moved into the overflow pages without letting
91** the cell size drop below the min embedded payload fraction.
92**
93** The min leaf payload fraction is like the min embedded payload fraction
94** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
95** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
96** not specified in the header.
97**
98** Each btree pages is divided into three sections: The header, the
99** cell pointer array, and the cell area area. Page 1 also has a 100-byte
100** file header that occurs before the page header.
101**
102** |----------------|
103** | file header | 100 bytes. Page 1 only.
104** |----------------|
105** | page header | 8 bytes for leaves. 12 bytes for interior nodes
106** |----------------|
107** | cell pointer | | 2 bytes per cell. Sorted order.
108** | array | | Grows downward
109** | | v
110** |----------------|
111** | unallocated |
112** | space |
113** |----------------| ^ Grows upwards
114** | cell content | | Arbitrary order interspersed with freeblocks.
115** | area | | and free space fragments.
116** |----------------|
117**
118** The page headers looks like this:
119**
120** OFFSET SIZE DESCRIPTION
121** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
122** 1 2 byte offset to the first freeblock
123** 3 2 number of cells on this page
124** 5 2 first byte of the cell content area
125** 7 1 number of fragmented free bytes
126** 8 4 Right child (the Ptr(N) value). Omitted on leaves.
127**
128** The flags define the format of this btree page. The leaf flag means that
129** this page has no children. The zerodata flag means that this page carries
130** only keys and no data. The intkey flag means that the key is a integer
131** which is stored in the key size entry of the cell header rather than in
132** the payload area.
133**
134** The cell pointer array begins on the first byte after the page header.
135** The cell pointer array contains zero or more 2-byte numbers which are
136** offsets from the beginning of the page to the cell content in the cell
137** content area. The cell pointers occur in sorted order. The system strives
138** to keep free space after the last cell pointer so that new cells can
139** be easily added without having to defragment the page.
140**
141** Cell content is stored at the very end of the page and grows toward the
142** beginning of the page.
143**
144** Unused space within the cell content area is collected into a linked list of
145** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
146** to the first freeblock is given in the header. Freeblocks occur in
147** increasing order. Because a freeblock must be at least 4 bytes in size,
148** any group of 3 or fewer unused bytes in the cell content area cannot
149** exist on the freeblock chain. A group of 3 or fewer free bytes is called
150** a fragment. The total number of bytes in all fragments is recorded.
151** in the page header at offset 7.
152**
153** SIZE DESCRIPTION
154** 2 Byte offset of the next freeblock
155** 2 Bytes in this freeblock
156**
157** Cells are of variable length. Cells are stored in the cell content area at
158** the end of the page. Pointers to the cells are in the cell pointer array
159** that immediately follows the page header. Cells is not necessarily
160** contiguous or in order, but cell pointers are contiguous and in order.
161**
162** Cell content makes use of variable length integers. A variable
163** length integer is 1 to 9 bytes where the lower 7 bits of each
164** byte are used. The integer consists of all bytes that have bit 8 set and
165** the first byte with bit 8 clear. The most significant byte of the integer
166** appears first. A variable-length integer may not be more than 9 bytes long.
167** As a special case, all 8 bytes of the 9th byte are used as data. This
168** allows a 64-bit integer to be encoded in 9 bytes.
169**
170** 0x00 becomes 0x00000000
171** 0x7f becomes 0x0000007f
172** 0x81 0x00 becomes 0x00000080
173** 0x82 0x00 becomes 0x00000100
174** 0x80 0x7f becomes 0x0000007f
175** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
176** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
177**
178** Variable length integers are used for rowids and to hold the number of
179** bytes of key and data in a btree cell.
180**
181** The content of a cell looks like this:
182**
183** SIZE DESCRIPTION
184** 4 Page number of the left child. Omitted if leaf flag is set.
185** var Number of bytes of data. Omitted if the zerodata flag is set.
186** var Number of bytes of key. Or the key itself if intkey flag is set.
187** * Payload
188** 4 First page of the overflow chain. Omitted if no overflow
189**
190** Overflow pages form a linked list. Each page except the last is completely
191** filled with data (pagesize - 4 bytes). The last page can have as little
192** as 1 byte of data.
193**
194** SIZE DESCRIPTION
195** 4 Page number of next overflow page
196** * Data
197**
198** Freelist pages come in two subtypes: trunk pages and leaf pages. The
199** file header points to first in a linked list of trunk page. Each trunk
200** page points to multiple leaf pages. The content of a leaf page is
201** unspecified. A trunk page looks like this:
202**
203** SIZE DESCRIPTION
204** 4 Page number of next trunk page
205** 4 Number of leaf pointers on this page
206** * zero or more pages numbers of leaves
207*/
208#include "sqliteInt.h"
209#include "pager.h"
210#include "btree.h"
211#include "os.h"
212#include <assert.h>
213
214/* Round up a number to the next larger multiple of 8. This is used
215** to force 8-byte alignment on 64-bit architectures.
216*/
217#define ROUND8(x) ((x+7)&~7)
218
219
220/* The following value is the maximum cell size assuming a maximum page
221** size give above.
222*/
223#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)
224
225/* The maximum number of cells on a single page of the database. This
226** assumes a minimum cell size of 3 bytes. Such small cells will be
227** exceedingly rare, but they are possible.
228*/
229#define MX_CELL(pBt) ((pBt->pageSize-8)/3)
230
231/* Forward declarations */
232typedef struct MemPage MemPage;
233typedef struct BtLock BtLock;
234
235/*
236** This is a magic string that appears at the beginning of every
237** SQLite database in order to identify the file as a real database.
238**
239** You can change this value at compile-time by specifying a
240** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
241** header must be exactly 16 bytes including the zero-terminator so
242** the string itself should be 15 characters long. If you change
243** the header, then your custom library will not be able to read
244** databases generated by the standard tools and the standard tools
245** will not be able to read databases created by your custom library.
246*/
247#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
248# define SQLITE_FILE_HEADER "SQLite format 3"
249#endif
250
251/*
252** Page type flags. An ORed combination of these flags appear as the
253** first byte of every BTree page.
254*/
255#define PTF_INTKEY 0x01
256#define PTF_ZERODATA 0x02
257#define PTF_LEAFDATA 0x04
258#define PTF_LEAF 0x08
259
260/*
261** As each page of the file is loaded into memory, an instance of the following
262** structure is appended and initialized to zero. This structure stores
263** information about the page that is decoded from the raw file page.
264**
265** The pParent field points back to the parent page. This allows us to
266** walk up the BTree from any leaf to the root. Care must be taken to
267** unref() the parent page pointer when this page is no longer referenced.
268** The pageDestructor() routine handles that chore.
269*/
270struct MemPage {
271 u8 isInit; /* True if previously initialized. MUST BE FIRST! */
272 u8 idxShift; /* True if Cell indices have changed */
273 u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
274 u8 intKey; /* True if intkey flag is set */
275 u8 leaf; /* True if leaf flag is set */
276 u8 zeroData; /* True if table stores keys only */
277 u8 leafData; /* True if tables stores data on leaves only */
278 u8 hasData; /* True if this page stores data */
279 u8 hdrOffset; /* 100 for page 1. 0 otherwise */
280 u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
281 u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */
282 u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */
283 u16 cellOffset; /* Index in aData of first cell pointer */
284 u16 idxParent; /* Index in parent of this node */
285 u16 nFree; /* Number of free bytes on the page */
286 u16 nCell; /* Number of cells on this page, local and ovfl */
287 struct _OvflCell { /* Cells that will not fit on aData[] */
288 u8 *pCell; /* Pointers to the body of the overflow cell */
289 u16 idx; /* Insert this cell before idx-th non-overflow cell */
290 } aOvfl[5];
291 BtShared *pBt; /* Pointer back to BTree structure */
292 u8 *aData; /* Pointer back to the start of the page */
293 DbPage *pDbPage; /* Pager page handle */
294 Pgno pgno; /* Page number for this page */
295 MemPage *pParent; /* The parent of this page. NULL for root */
296};
297
298/*
299** The in-memory image of a disk page has the auxiliary information appended
300** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
301** that extra information.
302*/
303#define EXTRA_SIZE sizeof(MemPage)
304
305/* Btree handle */
306struct Btree {
307 sqlite3 *pSqlite;
308 BtShared *pBt;
309 u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
310};
311
312/*
313** Btree.inTrans may take one of the following values.
314**
315** If the shared-data extension is enabled, there may be multiple users
316** of the Btree structure. At most one of these may open a write transaction,
317** but any number may have active read transactions. Variable Btree.pDb
318** points to the handle that owns any current write-transaction.
319*/
320#define TRANS_NONE 0
321#define TRANS_READ 1
322#define TRANS_WRITE 2
323
324/*
325** Everything we need to know about an open database
326*/
327struct BtShared {
328 Pager *pPager; /* The page cache */
329 BtCursor *pCursor; /* A list of all open cursors */
330 MemPage *pPage1; /* First page of the database */
331 u8 inStmt; /* True if we are in a statement subtransaction */
332 u8 readOnly; /* True if the underlying file is readonly */
333 u8 maxEmbedFrac; /* Maximum payload as % of total page size */
334 u8 minEmbedFrac; /* Minimum payload as % of total page size */
335 u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
336 u8 pageSizeFixed; /* True if the page size can no longer be changed */
337#ifndef SQLITE_OMIT_AUTOVACUUM
338 u8 autoVacuum; /* True if auto-vacuum is enabled */
339 u8 incrVacuum; /* True if incr-vacuum is enabled */
340 Pgno nTrunc; /* Non-zero if the db will be truncated (incr vacuum) */
341#endif
342 u16 pageSize; /* Total number of bytes on a page */
343 u16 usableSize; /* Number of usable bytes on each page */
344 int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
345 int minLocal; /* Minimum local payload in non-LEAFDATA tables */
346 int maxLeaf; /* Maximum local payload in a LEAFDATA table */
347 int minLeaf; /* Minimum local payload in a LEAFDATA table */
348 BusyHandler *pBusyHandler; /* Callback for when there is lock contention */
349 u8 inTransaction; /* Transaction state */
350 int nRef; /* Number of references to this structure */
351 int nTransaction; /* Number of open transactions (read + write) */
352 void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
353 void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
354#ifndef SQLITE_OMIT_SHARED_CACHE
355 BtLock *pLock; /* List of locks held on this shared-btree struct */
356 BtShared *pNext; /* Next in ThreadData.pBtree linked list */
357#endif
358};
359
360/*
361** An instance of the following structure is used to hold information
362** about a cell. The parseCellPtr() function fills in this structure
363** based on information extract from the raw disk page.
364*/
365typedef struct CellInfo CellInfo;
366struct CellInfo {
367 u8 *pCell; /* Pointer to the start of cell content */
368 i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
369 u32 nData; /* Number of bytes of data */
370 u32 nPayload; /* Total amount of payload */
371 u16 nHeader; /* Size of the cell content header in bytes */
372 u16 nLocal; /* Amount of payload held locally */
373 u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
374 u16 nSize; /* Size of the cell content on the main b-tree page */
375};
376
377/*
378** A cursor is a pointer to a particular entry in the BTree.
379** The entry is identified by its MemPage and the index in
380** MemPage.aCell[] of the entry.
381*/
382struct BtCursor {
383 Btree *pBtree; /* The Btree to which this cursor belongs */
384 BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
385 int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
386 void *pArg; /* First arg to xCompare() */
387 Pgno pgnoRoot; /* The root page of this tree */
388 MemPage *pPage; /* Page that contains the entry */
389 int idx; /* Index of the entry in pPage->aCell[] */
390 CellInfo info; /* A parse of the cell we are pointing at */
391 u8 wrFlag; /* True if writable */
392 u8 eState; /* One of the CURSOR_XXX constants (see below) */
393 void *pKey; /* Saved key that was cursor's last known position */
394 i64 nKey; /* Size of pKey, or last integer key */
395 int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
396#ifndef SQLITE_OMIT_INCRBLOB
397 u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */
398 Pgno *aOverflow; /* Cache of overflow page locations */
399#endif
400};
401
402/*
403** Potential values for BtCursor.eState.
404**
405** CURSOR_VALID:
406** Cursor points to a valid entry. getPayload() etc. may be called.
407**
408** CURSOR_INVALID:
409** Cursor does not point to a valid entry. This can happen (for example)
410** because the table is empty or because BtreeCursorFirst() has not been
411** called.
412**
413** CURSOR_REQUIRESEEK:
414** The table that this cursor was opened on still exists, but has been
415** modified since the cursor was last used. The cursor position is saved
416** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
417** this state, restoreOrClearCursorPosition() can be called to attempt to
418** seek the cursor to the saved position.
419*/
420#define CURSOR_INVALID 0
421#define CURSOR_VALID 1
422#define CURSOR_REQUIRESEEK 2
423
424/*
425** The TRACE macro will print high-level status information about the
426** btree operation when the global variable sqlite3_btree_trace is
427** enabled.
428*/
429#if SQLITE_TEST
430# define TRACE(X) if( sqlite3_btree_trace ){ printf X; fflush(stdout); }
431#else
432# define TRACE(X)
433#endif
434
435/*
436** Routines to read and write variable-length integers. These used to
437** be defined locally, but now we use the varint routines in the util.c
438** file.
439*/
440#define getVarint sqlite3GetVarint
441#define getVarint32(A,B) ((*B=*(A))<=0x7f?1:sqlite3GetVarint32(A,B))
442#define putVarint sqlite3PutVarint
443
444/* The database page the PENDING_BYTE occupies. This page is never used.
445** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
446** should possibly be consolidated (presumably in pager.h).
447**
448** If disk I/O is omitted (meaning that the database is stored purely
449** in memory) then there is no pending byte.
450*/
451#ifdef SQLITE_OMIT_DISKIO
452# define PENDING_BYTE_PAGE(pBt) 0x7fffffff
453#else
454# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
455#endif
456
457/*
458** A linked list of the following structures is stored at BtShared.pLock.
459** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
460** is opened on the table with root page BtShared.iTable. Locks are removed
461** from this list when a transaction is committed or rolled back, or when
462** a btree handle is closed.
463*/
464struct BtLock {
465 Btree *pBtree; /* Btree handle holding this lock */
466 Pgno iTable; /* Root page of table */
467 u8 eLock; /* READ_LOCK or WRITE_LOCK */
468 BtLock *pNext; /* Next in BtShared.pLock list */
469};
470
471/* Candidate values for BtLock.eLock */
472#define READ_LOCK 1
473#define WRITE_LOCK 2
474
475/*
476** These macros define the location of the pointer-map entry for a
477** database page. The first argument to each is the number of usable
478** bytes on each page of the database (often 1024). The second is the
479** page number to look up in the pointer map.
480**
481** PTRMAP_PAGENO returns the database page number of the pointer-map
482** page that stores the required pointer. PTRMAP_PTROFFSET returns
483** the offset of the requested map entry.
484**
485** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
486** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
487** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
488** this test.
489*/
490#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
491#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
492#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
493
494/*
495** The pointer map is a lookup table that identifies the parent page for
496** each child page in the database file. The parent page is the page that
497** contains a pointer to the child. Every page in the database contains
498** 0 or 1 parent pages. (In this context 'database page' refers
499** to any page that is not part of the pointer map itself.) Each pointer map
500** entry consists of a single byte 'type' and a 4 byte parent page number.
501** The PTRMAP_XXX identifiers below are the valid types.
502**
503** The purpose of the pointer map is to facility moving pages from one
504** position in the file to another as part of autovacuum. When a page
505** is moved, the pointer in its parent must be updated to point to the
506** new location. The pointer map is used to locate the parent page quickly.
507**
508** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
509** used in this case.
510**
511** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
512** is not used in this case.
513**
514** PTRMAP_OVERFLOW1: The database page is the first page in a list of
515** overflow pages. The page number identifies the page that
516** contains the cell with a pointer to this overflow page.
517**
518** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
519** overflow pages. The page-number identifies the previous
520** page in the overflow page list.
521**
522** PTRMAP_BTREE: The database page is a non-root btree page. The page number
523** identifies the parent page in the btree.
524*/
525#define PTRMAP_ROOTPAGE 1
526#define PTRMAP_FREEPAGE 2
527#define PTRMAP_OVERFLOW1 3
528#define PTRMAP_OVERFLOW2 4
529#define PTRMAP_BTREE 5
530
531/* A bunch of assert() statements to check the transaction state variables
532** of handle p (type Btree*) are internally consistent.
533*/
534#define btreeIntegrity(p) \
535 assert( p->inTrans!=TRANS_NONE || p->pBt->nTransaction<p->pBt->nRef ); \
536 assert( p->pBt->nTransaction<=p->pBt->nRef ); \
537 assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
538 assert( p->pBt->inTransaction>=p->inTrans );
539
540
541/*
542** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
543** if the database supports auto-vacuum or not. Because it is used
544** within an expression that is an argument to another macro
545** (sqliteMallocRaw), it is not possible to use conditional compilation.
546** So, this macro is defined instead.
547*/
548#ifndef SQLITE_OMIT_AUTOVACUUM
549#define ISAUTOVACUUM (pBt->autoVacuum)
550#else
551#define ISAUTOVACUUM 0
552#endif
553
554
555/*
556** This structure is passed around through all the sanity checking routines
557** in order to keep track of some global state information.
558*/
559typedef struct IntegrityCk IntegrityCk;
560struct IntegrityCk {
561 BtShared *pBt; /* The tree being checked out */
562 Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
563 int nPage; /* Number of pages in the database */
564 int *anRef; /* Number of times each page is referenced */
565 int mxErr; /* Stop accumulating errors when this reaches zero */
566 char *zErrMsg; /* An error message. NULL if no errors seen. */
567 int nErr; /* Number of messages written to zErrMsg so far */
568};
569
570/*
571** Read or write a two- and four-byte big-endian integer values.
572*/
danielk19771cc5ed82007-05-16 17:28:43 +0000573#define get2byte(x) ((x)[0]<<8 | (x)[1])
574#define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v))
drha3152892007-05-05 11:48:52 +0000575#define get4byte sqlite3Get4byte
drha3152892007-05-05 11:48:52 +0000576#define put4byte sqlite3Put4byte
drh16a9b832007-05-05 18:39:25 +0000577
578/*
579** Internal routines that should be accessed by the btree layer only.
580*/
581int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int);
582int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent);
583void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);
584void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);
585u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell);
586int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur);
587void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);
588void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);
589int sqlite3BtreeIsRootPage(MemPage *pPage);
590void sqlite3BtreeMoveToParent(BtCursor *pCur);