drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** 2004 April 13 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** This file contains routines used to translate between UTF-8, |
| 13 | ** UTF-16, UTF-16BE, and UTF-16LE. |
| 14 | ** |
danielk1977 | 193c72f | 2004-06-02 00:29:24 +0000 | [diff] [blame^] | 15 | ** $Id: utf.c,v 1.16 2004/06/02 00:29:24 danielk1977 Exp $ |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 16 | ** |
| 17 | ** Notes on UTF-8: |
| 18 | ** |
| 19 | ** Byte-0 Byte-1 Byte-2 Byte-3 Value |
| 20 | ** 0xxxxxxx 00000000 00000000 0xxxxxxx |
| 21 | ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx |
| 22 | ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx |
| 23 | ** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
| 24 | ** |
| 25 | ** |
| 26 | ** Notes on UTF-16: (with wwww+1==uuuuu) |
| 27 | ** |
drh | 51846b5 | 2004-05-28 16:00:21 +0000 | [diff] [blame] | 28 | ** Word-0 Word-1 Value |
| 29 | ** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
| 30 | ** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 31 | ** |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 32 | ** |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 33 | ** BOM or Byte Order Mark: |
| 34 | ** 0xff 0xfe little-endian utf-16 follows |
| 35 | ** 0xfe 0xff big-endian utf-16 follows |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 36 | ** |
| 37 | ** |
| 38 | ** Handling of malformed strings: |
| 39 | ** |
| 40 | ** SQLite accepts and processes malformed strings without an error wherever |
| 41 | ** possible. However this is not possible when converting between UTF-8 and |
| 42 | ** UTF-16. |
| 43 | ** |
| 44 | ** When converting malformed UTF-8 strings to UTF-16, one instance of the |
| 45 | ** replacement character U+FFFD for each byte that cannot be interpeted as |
| 46 | ** part of a valid unicode character. |
| 47 | ** |
| 48 | ** When converting malformed UTF-16 strings to UTF-8, one instance of the |
| 49 | ** replacement character U+FFFD for each pair of bytes that cannot be |
| 50 | ** interpeted as part of a valid unicode character. |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 51 | */ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 52 | #include <assert.h> |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 53 | #include "sqliteInt.h" |
| 54 | |
| 55 | typedef struct UtfString UtfString; |
| 56 | struct UtfString { |
| 57 | unsigned char *pZ; /* Raw string data */ |
| 58 | int n; /* Allocated length of pZ in bytes */ |
| 59 | int c; /* Number of pZ bytes already read or written */ |
| 60 | }; |
| 61 | |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 62 | /* |
| 63 | ** These two macros are used to interpret the first two bytes of the |
| 64 | ** unsigned char array pZ as a 16-bit unsigned int. BE16() for a big-endian |
| 65 | ** interpretation, LE16() for little-endian. |
| 66 | */ |
| 67 | #define BE16(pZ) (((u16)((pZ)[0])<<8) + (u16)((pZ)[1])) |
| 68 | #define LE16(pZ) (((u16)((pZ)[1])<<8) + (u16)((pZ)[0])) |
| 69 | |
| 70 | /* |
| 71 | ** READ_16 interprets the first two bytes of the unsigned char array pZ |
| 72 | ** as a 16-bit unsigned int. If big_endian is non-zero the intepretation |
| 73 | ** is big-endian, otherwise little-endian. |
| 74 | */ |
| 75 | #define READ_16(pZ,big_endian) (big_endian?BE16(pZ):LE16(pZ)) |
| 76 | |
| 77 | /* |
| 78 | ** Read the BOM from the start of *pStr, if one is present. Return zero |
| 79 | ** for little-endian, non-zero for big-endian. If no BOM is present, return |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 80 | ** the value of the parameter "big_endian". |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 81 | ** |
| 82 | ** Return values: |
| 83 | ** 1 -> big-endian string |
| 84 | ** 0 -> little-endian string |
| 85 | */ |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 86 | static int readUtf16Bom(UtfString *pStr, int big_endian){ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 87 | /* The BOM must be the first thing read from the string */ |
| 88 | assert( pStr->c==0 ); |
| 89 | |
| 90 | /* If the string data consists of 1 byte or less, the BOM will make no |
| 91 | ** difference anyway. In this case just fall through to the default case |
| 92 | ** and return the native byte-order for this machine. |
| 93 | ** |
| 94 | ** Otherwise, check the first 2 bytes of the string to see if a BOM is |
| 95 | ** present. |
| 96 | */ |
| 97 | if( pStr->n>1 ){ |
danielk1977 | 193c72f | 2004-06-02 00:29:24 +0000 | [diff] [blame^] | 98 | u8 bom = sqlite3UtfReadBom(pStr->pZ, 2); |
| 99 | if( bom ){ |
| 100 | pStr->c += 2; |
| 101 | return (bom==TEXT_Utf16le)?0:1; |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 102 | } |
| 103 | } |
| 104 | |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 105 | return big_endian; |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 106 | } |
| 107 | |
danielk1977 | 93d4675 | 2004-05-23 13:30:58 +0000 | [diff] [blame] | 108 | /* |
| 109 | ** zData is a UTF-16 encoded string, nData bytes in length. This routine |
| 110 | ** checks if there is a byte-order mark at the start of zData. If no |
| 111 | ** byte order mark is found 0 is returned. Otherwise TEXT_Utf16be or |
| 112 | ** TEXT_Utf16le is returned, depending on whether The BOM indicates that |
| 113 | ** the text is big-endian or little-endian. |
| 114 | */ |
| 115 | u8 sqlite3UtfReadBom(const void *zData, int nData){ |
| 116 | if( nData<0 || nData>1 ){ |
| 117 | u8 b1 = *(u8 *)zData; |
| 118 | u8 b2 = *(((u8 *)zData) + 1); |
| 119 | if( b1==0xFE && b2==0xFF ){ |
| 120 | return TEXT_Utf16be; |
| 121 | } |
| 122 | if( b1==0xFF && b2==0xFE ){ |
| 123 | return TEXT_Utf16le; |
| 124 | } |
| 125 | } |
| 126 | return 0; |
| 127 | } |
| 128 | |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 129 | |
| 130 | /* |
| 131 | ** Read a single unicode character from the UTF-8 encoded string *pStr. The |
| 132 | ** value returned is a unicode scalar value. In the case of malformed |
| 133 | ** strings, the unicode replacement character U+FFFD may be returned. |
| 134 | */ |
| 135 | static u32 readUtf8(UtfString *pStr){ |
| 136 | struct Utf8TblRow { |
| 137 | u8 b1_mask; |
| 138 | u8 b1_masked_val; |
| 139 | u8 b1_value_mask; |
| 140 | int trailing_bytes; |
| 141 | }; |
| 142 | static const struct Utf8TblRow utf8tbl[] = { |
| 143 | { 0x80, 0x00, 0x7F, 0 }, |
| 144 | { 0xE0, 0xC0, 0x1F, 1 }, |
| 145 | { 0xF0, 0xE0, 0x0F, 2 }, |
| 146 | { 0xF8, 0xF0, 0x0E, 3 }, |
| 147 | { 0, 0, 0, 0} |
| 148 | }; |
| 149 | |
| 150 | u8 b1; /* First byte of the potentially multi-byte utf-8 character */ |
| 151 | u32 ret = 0; /* Return value */ |
| 152 | int ii; |
| 153 | struct Utf8TblRow const *pRow; |
| 154 | |
| 155 | pRow = &(utf8tbl[0]); |
| 156 | |
| 157 | b1 = pStr->pZ[pStr->c]; |
| 158 | pStr->c++; |
| 159 | while( pRow->b1_mask && (b1&pRow->b1_mask)!=pRow->b1_masked_val ){ |
| 160 | pRow++; |
| 161 | } |
| 162 | if( !pRow->b1_mask ){ |
| 163 | return 0xFFFD; |
| 164 | } |
| 165 | |
| 166 | ret = (u32)(b1&pRow->b1_value_mask); |
| 167 | for( ii=0; ii<pRow->trailing_bytes; ii++ ){ |
| 168 | u8 b = pStr->pZ[pStr->c+ii]; |
| 169 | if( (b&0xC0)!=0x80 ){ |
| 170 | return 0xFFFD; |
| 171 | } |
| 172 | ret = (ret<<6) + (u32)(b&0x3F); |
| 173 | } |
| 174 | |
| 175 | pStr->c += pRow->trailing_bytes; |
| 176 | return ret; |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | ** Write the unicode character 'code' to the string pStr using UTF-8 |
| 181 | ** encoding. SQLITE_NOMEM may be returned if sqlite3Malloc() fails. |
| 182 | */ |
| 183 | static int writeUtf8(UtfString *pStr, u32 code){ |
| 184 | struct Utf8WriteTblRow { |
| 185 | u32 max_code; |
| 186 | int trailing_bytes; |
| 187 | u8 b1_and_mask; |
| 188 | u8 b1_or_mask; |
| 189 | }; |
| 190 | static const struct Utf8WriteTblRow utf8tbl[] = { |
| 191 | {0x0000007F, 0, 0x7F, 0x00}, |
| 192 | {0x000007FF, 1, 0xDF, 0xC0}, |
| 193 | {0x0000FFFF, 2, 0xEF, 0xE0}, |
| 194 | {0x0010FFFF, 3, 0xF7, 0xF0}, |
| 195 | {0x00000000, 0, 0x00, 0x00} |
| 196 | }; |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 197 | const struct Utf8WriteTblRow *pRow = &utf8tbl[0]; |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 198 | |
danielk1977 | 295ba55 | 2004-05-19 10:34:51 +0000 | [diff] [blame] | 199 | while( code>pRow->max_code ){ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 200 | assert( pRow->max_code ); |
| 201 | pRow++; |
| 202 | } |
| 203 | |
| 204 | /* Ensure there is enough room left in the output buffer to write |
| 205 | ** this UTF-8 character. |
| 206 | */ |
| 207 | assert( (pStr->n-pStr->c)>=(pRow->trailing_bytes+1) ); |
| 208 | |
| 209 | /* Write the UTF-8 encoded character to pStr. All cases below are |
| 210 | ** intentionally fall-through. |
| 211 | */ |
| 212 | switch( pRow->trailing_bytes ){ |
| 213 | case 3: |
| 214 | pStr->pZ[pStr->c+3] = (((u8)code)&0x3F)|0x80; |
| 215 | code = code>>6; |
| 216 | case 2: |
| 217 | pStr->pZ[pStr->c+2] = (((u8)code)&0x3F)|0x80; |
| 218 | code = code>>6; |
| 219 | case 1: |
| 220 | pStr->pZ[pStr->c+1] = (((u8)code)&0x3F)|0x80; |
| 221 | code = code>>6; |
| 222 | case 0: |
| 223 | pStr->pZ[pStr->c] = (((u8)code)&(pRow->b1_and_mask))|(pRow->b1_or_mask); |
| 224 | } |
| 225 | pStr->c += (pRow->trailing_bytes + 1); |
| 226 | |
| 227 | return 0; |
| 228 | } |
| 229 | |
| 230 | /* |
| 231 | ** Read a single unicode character from the UTF-16 encoded string *pStr. The |
| 232 | ** value returned is a unicode scalar value. In the case of malformed |
| 233 | ** strings, the unicode replacement character U+FFFD may be returned. |
| 234 | ** |
| 235 | ** If big_endian is true, the string is assumed to be UTF-16BE encoded. |
| 236 | ** Otherwise, it is UTF-16LE encoded. |
| 237 | */ |
| 238 | static u32 readUtf16(UtfString *pStr, int big_endian){ |
| 239 | u32 code_point; /* the first code-point in the character */ |
| 240 | |
| 241 | /* If there is only one byte of data left in the string, return the |
| 242 | ** replacement character. |
| 243 | */ |
| 244 | if( (pStr->n-pStr->c)==1 ){ |
| 245 | pStr->c++; |
| 246 | return (int)0xFFFD; |
| 247 | } |
| 248 | |
| 249 | code_point = READ_16(&(pStr->pZ[pStr->c]), big_endian); |
| 250 | pStr->c += 2; |
| 251 | |
| 252 | /* If this is a non-surrogate code-point, just cast it to an int and |
| 253 | ** return the code-point value. |
| 254 | */ |
| 255 | if( code_point<0xD800 || code_point>0xE000 ){ |
| 256 | return code_point; |
| 257 | } |
| 258 | |
| 259 | /* If this is a trailing surrogate code-point, then the string is |
| 260 | ** malformed; return the replacement character. |
| 261 | */ |
| 262 | if( code_point>0xDBFF ){ |
| 263 | return 0xFFFD; |
| 264 | } |
| 265 | |
| 266 | /* The code-point just read is a leading surrogate code-point. If their |
| 267 | ** is not enough data left or the next code-point is not a trailing |
| 268 | ** surrogate, return the replacement character. |
| 269 | */ |
| 270 | if( (pStr->n-pStr->c)>1 ){ |
| 271 | u32 code_point2 = READ_16(&pStr->pZ[pStr->c], big_endian); |
| 272 | if( code_point2<0xDC00 || code_point>0xDFFF ){ |
| 273 | return 0xFFFD; |
| 274 | } |
| 275 | pStr->c += 2; |
| 276 | |
| 277 | return ( |
| 278 | (((code_point&0x03C0)+0x0040)<<16) + /* uuuuu */ |
| 279 | ((code_point&0x003F)<<10) + /* xxxxxx */ |
| 280 | (code_point2&0x03FF) /* yy yyyyyyyy */ |
| 281 | ); |
| 282 | |
| 283 | }else{ |
| 284 | return (int)0xFFFD; |
| 285 | } |
| 286 | |
| 287 | /* not reached */ |
| 288 | } |
| 289 | |
| 290 | static int writeUtf16(UtfString *pStr, int code, int big_endian){ |
| 291 | int bytes; |
| 292 | unsigned char *hi_byte; |
| 293 | unsigned char *lo_byte; |
| 294 | |
| 295 | bytes = (code>0x0000FFFF?4:2); |
| 296 | |
| 297 | /* Ensure there is enough room left in the output buffer to write |
| 298 | ** this UTF-8 character. |
| 299 | */ |
| 300 | assert( (pStr->n-pStr->c)>=bytes ); |
| 301 | |
| 302 | /* Initialise hi_byte and lo_byte to point at the locations into which |
| 303 | ** the MSB and LSB of the (first) 16-bit unicode code-point written for |
| 304 | ** this character. |
| 305 | */ |
| 306 | hi_byte = (big_endian?&pStr->pZ[pStr->c]:&pStr->pZ[pStr->c+1]); |
| 307 | lo_byte = (big_endian?&pStr->pZ[pStr->c+1]:&pStr->pZ[pStr->c]); |
| 308 | |
| 309 | if( bytes==2 ){ |
| 310 | *hi_byte = (u8)((code&0x0000FF00)>>8); |
| 311 | *lo_byte = (u8)(code&0x000000FF); |
| 312 | }else{ |
| 313 | u32 wrd; |
| 314 | wrd = ((((code&0x001F0000)-0x00010000)+(code&0x0000FC00))>>10)|0x0000D800; |
| 315 | *hi_byte = (u8)((wrd&0x0000FF00)>>8); |
| 316 | *lo_byte = (u8)(wrd&0x000000FF); |
| 317 | |
| 318 | wrd = (code&0x000003FF)|0x0000DC00; |
| 319 | *(hi_byte+2) = (u8)((wrd&0x0000FF00)>>8); |
| 320 | *(lo_byte+2) = (u8)(wrd&0x000000FF); |
| 321 | } |
| 322 | |
| 323 | pStr->c += bytes; |
| 324 | |
| 325 | return 0; |
| 326 | } |
| 327 | |
| 328 | /* |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 329 | ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, |
| 330 | ** return the number of unicode characters in pZ up to (but not including) |
| 331 | ** the first 0x00 byte. If nByte is not less than zero, return the |
| 332 | ** number of unicode characters in the first nByte of pZ (or up to |
| 333 | ** the first 0x00, whichever comes first). |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 334 | */ |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 335 | int sqlite3utf8CharLen(const char *pZ, int nByte){ |
| 336 | UtfString str; |
| 337 | int ret = 0; |
| 338 | u32 code = 1; |
| 339 | |
| 340 | str.pZ = (char *)pZ; |
| 341 | str.n = nByte; |
| 342 | str.c = 0; |
| 343 | |
| 344 | while( (nByte<0 || str.c<str.n) && code!=0 ){ |
| 345 | code = readUtf8(&str); |
| 346 | ret++; |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 347 | } |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 348 | if( code==0 ) ret--; |
| 349 | |
| 350 | return ret; |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | ** pZ is a UTF-16 encoded unicode string. If nChar is less than zero, |
| 355 | ** return the number of bytes up to (but not including), the first pair |
| 356 | ** of consecutive 0x00 bytes in pZ. If nChar is not less than zero, |
| 357 | ** then return the number of bytes in the first nChar unicode characters |
| 358 | ** in pZ (or up until the first pair of 0x00 bytes, whichever comes first). |
| 359 | */ |
| 360 | int sqlite3utf16ByteLen(const void *pZ, int nChar){ |
| 361 | if( nChar<0 ){ |
danielk1977 | e7d00f5 | 2004-05-29 02:44:02 +0000 | [diff] [blame] | 362 | const unsigned char *pC1 = (unsigned char *)pZ; |
| 363 | const unsigned char *pC2 = (unsigned char *)pZ+1; |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 364 | while( *pC1 || *pC2 ){ |
| 365 | pC1 += 2; |
| 366 | pC2 += 2; |
| 367 | } |
| 368 | return pC1-(unsigned char *)pZ; |
| 369 | }else{ |
| 370 | UtfString str; |
| 371 | u32 code = 1; |
| 372 | int big_endian; |
| 373 | int nRead = 0; |
| 374 | int ret; |
| 375 | |
| 376 | str.pZ = (char *)pZ; |
| 377 | str.c = 0; |
| 378 | str.n = -1; |
| 379 | |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 380 | /* Check for a BOM. We just ignore it if there is one, it's only read |
| 381 | ** so that it is not counted as a character. |
| 382 | */ |
| 383 | big_endian = readUtf16Bom(&str, 0); |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 384 | ret = 0-str.c; |
| 385 | |
| 386 | while( code!=0 && nRead<nChar ){ |
| 387 | code = readUtf16(&str, big_endian); |
| 388 | nRead++; |
| 389 | } |
| 390 | if( code==0 ){ |
| 391 | ret -= 2; |
| 392 | } |
| 393 | return str.c + ret; |
| 394 | } |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 395 | } |
| 396 | |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 397 | /* |
| 398 | ** Convert a string in UTF-16 native byte (or with a Byte-order-mark or |
| 399 | ** "BOM") into a UTF-8 string. The UTF-8 string is written into space |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 400 | ** obtained from sqlite3Malloc() and must be released by the calling function. |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 401 | ** |
| 402 | ** The parameter N is the number of bytes in the UTF-16 string. If N is |
| 403 | ** negative, the entire string up to the first \u0000 character is translated. |
| 404 | ** |
| 405 | ** The returned UTF-8 string is always \000 terminated. |
| 406 | */ |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 407 | unsigned char *sqlite3utf16to8(const void *pData, int N, int big_endian){ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 408 | UtfString in; |
| 409 | UtfString out; |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 410 | |
| 411 | out.pZ = 0; |
| 412 | |
| 413 | in.pZ = (unsigned char *)pData; |
| 414 | in.n = N; |
| 415 | in.c = 0; |
| 416 | |
| 417 | if( in.n<0 ){ |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 418 | in.n = sqlite3utf16ByteLen(in.pZ, -1); |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 419 | } |
| 420 | |
| 421 | /* A UTF-8 encoding of a unicode string can require at most 1.5 times as |
| 422 | ** much space to store as the same string encoded using UTF-16. Allocate |
| 423 | ** this now. |
| 424 | */ |
| 425 | out.n = (in.n*1.5) + 1; |
danielk1977 | 295ba55 | 2004-05-19 10:34:51 +0000 | [diff] [blame] | 426 | out.pZ = sqliteMalloc(out.n); |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 427 | if( !out.pZ ){ |
| 428 | return 0; |
| 429 | } |
| 430 | out.c = 0; |
| 431 | |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 432 | big_endian = readUtf16Bom(&in, big_endian); |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 433 | while( in.c<in.n ){ |
| 434 | writeUtf8(&out, readUtf16(&in, big_endian)); |
| 435 | } |
| 436 | |
| 437 | /* Add the NULL-terminator character */ |
| 438 | assert( out.c<out.n ); |
| 439 | out.pZ[out.c] = 0x00; |
| 440 | |
| 441 | return out.pZ; |
| 442 | } |
| 443 | |
| 444 | static void *utf8toUtf16(const unsigned char *pIn, int N, int big_endian){ |
| 445 | UtfString in; |
| 446 | UtfString out; |
| 447 | |
| 448 | in.pZ = (unsigned char *)pIn; |
| 449 | in.n = N; |
| 450 | in.c = 0; |
| 451 | |
| 452 | if( in.n<0 ){ |
| 453 | in.n = strlen(in.pZ); |
| 454 | } |
| 455 | |
| 456 | /* A UTF-16 encoding of a unicode string can require at most twice as |
| 457 | ** much space to store as the same string encoded using UTF-8. Allocate |
| 458 | ** this now. |
| 459 | */ |
| 460 | out.n = (in.n*2) + 2; |
danielk1977 | 295ba55 | 2004-05-19 10:34:51 +0000 | [diff] [blame] | 461 | out.pZ = sqliteMalloc(out.n); |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 462 | if( !out.pZ ){ |
| 463 | return 0; |
| 464 | } |
| 465 | out.c = 0; |
| 466 | |
| 467 | while( in.c<in.n ){ |
| 468 | writeUtf16(&out, readUtf8(&in), big_endian); |
| 469 | } |
| 470 | |
| 471 | /* Add the NULL-terminator character */ |
| 472 | assert( (out.c+1)<out.n ); |
| 473 | out.pZ[out.c] = 0x00; |
| 474 | out.pZ[out.c+1] = 0x00; |
| 475 | |
| 476 | return out.pZ; |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | ** Translate UTF-8 to UTF-16BE or UTF-16LE |
| 481 | */ |
| 482 | void *sqlite3utf8to16be(const unsigned char *pIn, int N){ |
| 483 | return utf8toUtf16(pIn, N, 1); |
| 484 | } |
| 485 | |
| 486 | void *sqlite3utf8to16le(const unsigned char *pIn, int N){ |
| 487 | return utf8toUtf16(pIn, N, 0); |
| 488 | } |
| 489 | |
| 490 | /* |
| 491 | ** This routine does the work for sqlite3utf16to16le() and |
| 492 | ** sqlite3utf16to16be(). If big_endian is 1 the input string is |
| 493 | ** transformed in place to UTF-16BE encoding. If big_endian is 0 then |
| 494 | ** the input is transformed to UTF-16LE. |
| 495 | ** |
| 496 | ** Unless the first two bytes of the input string is a BOM, the input is |
| 497 | ** assumed to be UTF-16 encoded using the machines native byte ordering. |
| 498 | */ |
| 499 | static void utf16to16(void *pData, int N, int big_endian){ |
| 500 | UtfString inout; |
| 501 | inout.pZ = (unsigned char *)pData; |
| 502 | inout.c = 0; |
| 503 | inout.n = N; |
| 504 | |
| 505 | if( inout.n<0 ){ |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 506 | inout.n = sqlite3utf16ByteLen(inout.pZ, -1); |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 507 | } |
| 508 | |
drh | 9c05483 | 2004-05-31 18:51:57 +0000 | [diff] [blame] | 509 | if( readUtf16Bom(&inout, SQLITE_BIGENDIAN)!=big_endian ){ |
danielk1977 | 295ba55 | 2004-05-19 10:34:51 +0000 | [diff] [blame] | 510 | /* swab(&inout.pZ[inout.c], inout.pZ, inout.n-inout.c); */ |
| 511 | int i; |
| 512 | for(i=0; i<(inout.n-inout.c); i += 2){ |
| 513 | char c1 = inout.pZ[i+inout.c]; |
| 514 | char c2 = inout.pZ[i+inout.c+1]; |
| 515 | inout.pZ[i] = c2; |
| 516 | inout.pZ[i+1] = c1; |
| 517 | } |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 518 | }else if( inout.c ){ |
| 519 | memmove(inout.pZ, &inout.pZ[inout.c], inout.n-inout.c); |
| 520 | } |
danielk1977 | 295ba55 | 2004-05-19 10:34:51 +0000 | [diff] [blame] | 521 | |
| 522 | inout.pZ[inout.n-inout.c] = 0x00; |
| 523 | inout.pZ[inout.n-inout.c+1] = 0x00; |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 524 | } |
| 525 | |
| 526 | /* |
| 527 | ** Convert a string in UTF-16 native byte or with a BOM into a UTF-16LE |
| 528 | ** string. The conversion occurs in-place. The output overwrites the |
| 529 | ** input. N bytes are converted. If N is negative everything is converted |
| 530 | ** up to the first \u0000 character. |
| 531 | ** |
| 532 | ** If the native byte order is little-endian and there is no BOM, then |
| 533 | ** this routine is a no-op. If there is a BOM at the start of the string, |
| 534 | ** it is removed. |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 535 | ** |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 536 | ** Translation from UTF-16LE to UTF-16BE and back again is accomplished |
| 537 | ** using the library function swab(). |
| 538 | */ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 539 | void sqlite3utf16to16le(void *pData, int N){ |
| 540 | utf16to16(pData, N, 0); |
| 541 | } |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 542 | |
| 543 | /* |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 544 | ** Convert a string in UTF-16 native byte or with a BOM into a UTF-16BE |
| 545 | ** string. The conversion occurs in-place. The output overwrites the |
| 546 | ** input. N bytes are converted. If N is negative everything is converted |
| 547 | ** up to the first \u0000 character. |
| 548 | ** |
| 549 | ** If the native byte order is little-endian and there is no BOM, then |
| 550 | ** this routine is a no-op. If there is a BOM at the start of the string, |
| 551 | ** it is removed. |
| 552 | ** |
| 553 | ** Translation from UTF-16LE to UTF-16BE and back again is accomplished |
| 554 | ** using the library function swab(). |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 555 | */ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 556 | void sqlite3utf16to16be(void *pData, int N){ |
| 557 | utf16to16(pData, N, 1); |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 558 | } |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 559 | |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 560 | /* |
| 561 | ** This function is used to translate between UTF-8 and UTF-16. The |
| 562 | ** result is returned in dynamically allocated memory. |
| 563 | */ |
| 564 | int sqlite3utfTranslate( |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 565 | const void *zData, int nData, /* Input string */ |
| 566 | u8 enc1, /* Encoding of zData */ |
| 567 | void **zOut, int *nOut, /* Output string */ |
| 568 | u8 enc2 /* Desired encoding of output */ |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 569 | ){ |
| 570 | assert( enc1==TEXT_Utf8 || enc1==TEXT_Utf16le || enc1==TEXT_Utf16be ); |
| 571 | assert( enc2==TEXT_Utf8 || enc2==TEXT_Utf16le || enc2==TEXT_Utf16be ); |
| 572 | assert( |
| 573 | (enc1==TEXT_Utf8 && (enc2==TEXT_Utf16le || enc2==TEXT_Utf16be)) || |
| 574 | (enc2==TEXT_Utf8 && (enc1==TEXT_Utf16le || enc1==TEXT_Utf16be)) |
| 575 | ); |
danielk1977 | 4adee20 | 2004-05-08 08:23:19 +0000 | [diff] [blame] | 576 | |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 577 | if( enc1==TEXT_Utf8 ){ |
| 578 | if( enc2==TEXT_Utf16le ){ |
| 579 | *zOut = sqlite3utf8to16le(zData, nData); |
| 580 | }else{ |
| 581 | *zOut = sqlite3utf8to16be(zData, nData); |
| 582 | } |
| 583 | if( !(*zOut) ) return SQLITE_NOMEM; |
danielk1977 | c572ef7 | 2004-05-27 09:28:41 +0000 | [diff] [blame] | 584 | *nOut = sqlite3utf16ByteLen(*zOut, -1); |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 585 | }else{ |
| 586 | *zOut = sqlite3utf16to8(zData, nData, enc1==TEXT_Utf16be); |
| 587 | if( !(*zOut) ) return SQLITE_NOMEM; |
danielk1977 | c572ef7 | 2004-05-27 09:28:41 +0000 | [diff] [blame] | 588 | *nOut = strlen(*zOut); |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 589 | } |
| 590 | return SQLITE_OK; |
| 591 | } |