blob: c25c594046dd5bef590f8389209b6079fe9a6f3e [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000353 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
drh5e08d0f2016-06-04 21:05:54 +0000453
454/* Verify that the cursor and the BtShared agree about what is the current
455** database connetion. This is important in shared-cache mode. If the database
456** connection pointers get out-of-sync, it is possible for routines like
457** btreeInitPage() to reference an stale connection pointer that references a
458** a connection that has already closed. This routine is used inside assert()
459** statements only and for the purpose of double-checking that the btree code
460** does keep the database connection pointers up-to-date.
461*/
dan7a2347e2016-01-07 16:43:54 +0000462static int cursorOwnsBtShared(BtCursor *p){
463 assert( cursorHoldsMutex(p) );
464 return (p->pBtree->db==p->pBt->db);
465}
drh1fee73e2007-08-29 04:00:57 +0000466#endif
467
danielk197792d4d7a2007-05-04 12:05:56 +0000468/*
dan5a500af2014-03-11 20:33:04 +0000469** Invalidate the overflow cache of the cursor passed as the first argument.
470** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000471*/
drh036dbec2014-03-11 23:40:44 +0000472#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000473
474/*
475** Invalidate the overflow page-list cache for all cursors opened
476** on the shared btree structure pBt.
477*/
478static void invalidateAllOverflowCache(BtShared *pBt){
479 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000480 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000481 for(p=pBt->pCursor; p; p=p->pNext){
482 invalidateOverflowCache(p);
483 }
484}
danielk197796d48e92009-06-29 06:00:37 +0000485
dan5a500af2014-03-11 20:33:04 +0000486#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000487/*
488** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000489** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000490** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000491**
492** If argument isClearTable is true, then the entire contents of the
493** table is about to be deleted. In this case invalidate all incrblob
494** cursors open on any row within the table with root-page pgnoRoot.
495**
496** Otherwise, if argument isClearTable is false, then the row with
497** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000498** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000499*/
500static void invalidateIncrblobCursors(
501 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000502 i64 iRow, /* The rowid that might be changing */
503 int isClearTable /* True if all rows are being deleted */
504){
505 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000506 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000507 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000508 pBtree->hasIncrblobCur = 0;
509 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
510 if( (p->curFlags & BTCF_Incrblob)!=0 ){
511 pBtree->hasIncrblobCur = 1;
512 if( isClearTable || p->info.nKey==iRow ){
513 p->eState = CURSOR_INVALID;
514 }
danielk197796d48e92009-06-29 06:00:37 +0000515 }
516 }
517}
518
danielk197792d4d7a2007-05-04 12:05:56 +0000519#else
dan5a500af2014-03-11 20:33:04 +0000520 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000521 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000522#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000523
drh980b1a72006-08-16 16:42:48 +0000524/*
danielk1977bea2a942009-01-20 17:06:27 +0000525** Set bit pgno of the BtShared.pHasContent bitvec. This is called
526** when a page that previously contained data becomes a free-list leaf
527** page.
528**
529** The BtShared.pHasContent bitvec exists to work around an obscure
530** bug caused by the interaction of two useful IO optimizations surrounding
531** free-list leaf pages:
532**
533** 1) When all data is deleted from a page and the page becomes
534** a free-list leaf page, the page is not written to the database
535** (as free-list leaf pages contain no meaningful data). Sometimes
536** such a page is not even journalled (as it will not be modified,
537** why bother journalling it?).
538**
539** 2) When a free-list leaf page is reused, its content is not read
540** from the database or written to the journal file (why should it
541** be, if it is not at all meaningful?).
542**
543** By themselves, these optimizations work fine and provide a handy
544** performance boost to bulk delete or insert operations. However, if
545** a page is moved to the free-list and then reused within the same
546** transaction, a problem comes up. If the page is not journalled when
547** it is moved to the free-list and it is also not journalled when it
548** is extracted from the free-list and reused, then the original data
549** may be lost. In the event of a rollback, it may not be possible
550** to restore the database to its original configuration.
551**
552** The solution is the BtShared.pHasContent bitvec. Whenever a page is
553** moved to become a free-list leaf page, the corresponding bit is
554** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000555** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000556** set in BtShared.pHasContent. The contents of the bitvec are cleared
557** at the end of every transaction.
558*/
559static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
560 int rc = SQLITE_OK;
561 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000562 assert( pgno<=pBt->nPage );
563 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000564 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000565 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000566 }
567 }
568 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
569 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
570 }
571 return rc;
572}
573
574/*
575** Query the BtShared.pHasContent vector.
576**
577** This function is called when a free-list leaf page is removed from the
578** free-list for reuse. It returns false if it is safe to retrieve the
579** page from the pager layer with the 'no-content' flag set. True otherwise.
580*/
581static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
582 Bitvec *p = pBt->pHasContent;
583 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
584}
585
586/*
587** Clear (destroy) the BtShared.pHasContent bitvec. This should be
588** invoked at the conclusion of each write-transaction.
589*/
590static void btreeClearHasContent(BtShared *pBt){
591 sqlite3BitvecDestroy(pBt->pHasContent);
592 pBt->pHasContent = 0;
593}
594
595/*
drh138eeeb2013-03-27 03:15:23 +0000596** Release all of the apPage[] pages for a cursor.
597*/
598static void btreeReleaseAllCursorPages(BtCursor *pCur){
599 int i;
600 for(i=0; i<=pCur->iPage; i++){
601 releasePage(pCur->apPage[i]);
602 pCur->apPage[i] = 0;
603 }
604 pCur->iPage = -1;
605}
606
danf0ee1d32015-09-12 19:26:11 +0000607/*
608** The cursor passed as the only argument must point to a valid entry
609** when this function is called (i.e. have eState==CURSOR_VALID). This
610** function saves the current cursor key in variables pCur->nKey and
611** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
612** code otherwise.
613**
614** If the cursor is open on an intkey table, then the integer key
615** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
616** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
617** set to point to a malloced buffer pCur->nKey bytes in size containing
618** the key.
619*/
620static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000621 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000622 assert( CURSOR_VALID==pCur->eState );
623 assert( 0==pCur->pKey );
624 assert( cursorHoldsMutex(pCur) );
625
drha7c90c42016-06-04 20:37:10 +0000626 if( pCur->curIntKey ){
627 /* Only the rowid is required for a table btree */
628 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
629 }else{
630 /* For an index btree, save the complete key content */
drhd66c4f82016-06-04 20:58:35 +0000631 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000632 pCur->nKey = sqlite3BtreePayloadSize(pCur);
drhd66c4f82016-06-04 20:58:35 +0000633 pKey = sqlite3Malloc( pCur->nKey );
danf0ee1d32015-09-12 19:26:11 +0000634 if( pKey ){
635 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
636 if( rc==SQLITE_OK ){
637 pCur->pKey = pKey;
638 }else{
639 sqlite3_free(pKey);
640 }
641 }else{
mistachkinfad30392016-02-13 23:43:46 +0000642 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000643 }
644 }
645 assert( !pCur->curIntKey || !pCur->pKey );
646 return rc;
647}
drh138eeeb2013-03-27 03:15:23 +0000648
649/*
drh980b1a72006-08-16 16:42:48 +0000650** Save the current cursor position in the variables BtCursor.nKey
651** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000652**
653** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
654** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000655*/
656static int saveCursorPosition(BtCursor *pCur){
657 int rc;
658
drhd2f83132015-03-25 17:35:01 +0000659 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000660 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000661 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000662
drhd2f83132015-03-25 17:35:01 +0000663 if( pCur->eState==CURSOR_SKIPNEXT ){
664 pCur->eState = CURSOR_VALID;
665 }else{
666 pCur->skipNext = 0;
667 }
drh980b1a72006-08-16 16:42:48 +0000668
danf0ee1d32015-09-12 19:26:11 +0000669 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000670 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000671 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000672 pCur->eState = CURSOR_REQUIRESEEK;
673 }
674
dane755e102015-09-30 12:59:12 +0000675 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000676 return rc;
677}
678
drh637f3d82014-08-22 22:26:07 +0000679/* Forward reference */
680static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
681
drh980b1a72006-08-16 16:42:48 +0000682/*
drh0ee3dbe2009-10-16 15:05:18 +0000683** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000684** the table with root-page iRoot. "Saving the cursor position" means that
685** the location in the btree is remembered in such a way that it can be
686** moved back to the same spot after the btree has been modified. This
687** routine is called just before cursor pExcept is used to modify the
688** table, for example in BtreeDelete() or BtreeInsert().
689**
drh27fb7462015-06-30 02:47:36 +0000690** If there are two or more cursors on the same btree, then all such
691** cursors should have their BTCF_Multiple flag set. The btreeCursor()
692** routine enforces that rule. This routine only needs to be called in
693** the uncommon case when pExpect has the BTCF_Multiple flag set.
694**
695** If pExpect!=NULL and if no other cursors are found on the same root-page,
696** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
697** pointless call to this routine.
698**
drh637f3d82014-08-22 22:26:07 +0000699** Implementation note: This routine merely checks to see if any cursors
700** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
701** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000702*/
703static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
704 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000705 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000706 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000707 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000708 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
709 }
drh27fb7462015-06-30 02:47:36 +0000710 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
711 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
712 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000713}
714
715/* This helper routine to saveAllCursors does the actual work of saving
716** the cursors if and when a cursor is found that actually requires saving.
717** The common case is that no cursors need to be saved, so this routine is
718** broken out from its caller to avoid unnecessary stack pointer movement.
719*/
720static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000721 BtCursor *p, /* The first cursor that needs saving */
722 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
723 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000724){
725 do{
drh138eeeb2013-03-27 03:15:23 +0000726 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000727 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000728 int rc = saveCursorPosition(p);
729 if( SQLITE_OK!=rc ){
730 return rc;
731 }
732 }else{
733 testcase( p->iPage>0 );
734 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000735 }
736 }
drh637f3d82014-08-22 22:26:07 +0000737 p = p->pNext;
738 }while( p );
drh980b1a72006-08-16 16:42:48 +0000739 return SQLITE_OK;
740}
741
742/*
drhbf700f32007-03-31 02:36:44 +0000743** Clear the current cursor position.
744*/
danielk1977be51a652008-10-08 17:58:48 +0000745void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000746 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000747 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000748 pCur->pKey = 0;
749 pCur->eState = CURSOR_INVALID;
750}
751
752/*
danielk19773509a652009-07-06 18:56:13 +0000753** In this version of BtreeMoveto, pKey is a packed index record
754** such as is generated by the OP_MakeRecord opcode. Unpack the
755** record and then call BtreeMovetoUnpacked() to do the work.
756*/
757static int btreeMoveto(
758 BtCursor *pCur, /* Cursor open on the btree to be searched */
759 const void *pKey, /* Packed key if the btree is an index */
760 i64 nKey, /* Integer key for tables. Size of pKey for indices */
761 int bias, /* Bias search to the high end */
762 int *pRes /* Write search results here */
763){
764 int rc; /* Status code */
765 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000766 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000767 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000768
769 if( pKey ){
770 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000771 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
772 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
773 );
mistachkinfad30392016-02-13 23:43:46 +0000774 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
mistachkin0fe5f952011-09-14 18:19:08 +0000775 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000776 if( pIdxKey->nField==0 ){
777 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
778 return SQLITE_CORRUPT_BKPT;
779 }
danielk19773509a652009-07-06 18:56:13 +0000780 }else{
781 pIdxKey = 0;
782 }
783 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000784 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000785 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000786 }
787 return rc;
788}
789
790/*
drh980b1a72006-08-16 16:42:48 +0000791** Restore the cursor to the position it was in (or as close to as possible)
792** when saveCursorPosition() was called. Note that this call deletes the
793** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000794** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000795** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000796*/
danielk197730548662009-07-09 05:07:37 +0000797static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000798 int rc;
drhd2f83132015-03-25 17:35:01 +0000799 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000800 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000801 assert( pCur->eState>=CURSOR_REQUIRESEEK );
802 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000803 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000804 }
drh980b1a72006-08-16 16:42:48 +0000805 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000806 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000807 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000808 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000809 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000810 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000811 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000812 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
813 pCur->eState = CURSOR_SKIPNEXT;
814 }
drh980b1a72006-08-16 16:42:48 +0000815 }
816 return rc;
817}
818
drha3460582008-07-11 21:02:53 +0000819#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000820 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000821 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000822 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000823
drha3460582008-07-11 21:02:53 +0000824/*
drh6848dad2014-08-22 23:33:03 +0000825** Determine whether or not a cursor has moved from the position where
826** it was last placed, or has been invalidated for any other reason.
827** Cursors can move when the row they are pointing at is deleted out
828** from under them, for example. Cursor might also move if a btree
829** is rebalanced.
drha3460582008-07-11 21:02:53 +0000830**
drh6848dad2014-08-22 23:33:03 +0000831** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000832**
drh6848dad2014-08-22 23:33:03 +0000833** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
834** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000835*/
drh6848dad2014-08-22 23:33:03 +0000836int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000837 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000838}
839
840/*
841** This routine restores a cursor back to its original position after it
842** has been moved by some outside activity (such as a btree rebalance or
843** a row having been deleted out from under the cursor).
844**
845** On success, the *pDifferentRow parameter is false if the cursor is left
846** pointing at exactly the same row. *pDifferntRow is the row the cursor
847** was pointing to has been deleted, forcing the cursor to point to some
848** nearby row.
849**
850** This routine should only be called for a cursor that just returned
851** TRUE from sqlite3BtreeCursorHasMoved().
852*/
853int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000854 int rc;
855
drh6848dad2014-08-22 23:33:03 +0000856 assert( pCur!=0 );
857 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000858 rc = restoreCursorPosition(pCur);
859 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000860 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000861 return rc;
862 }
drh606a3572015-03-25 18:29:10 +0000863 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000864 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000865 }else{
drh606a3572015-03-25 18:29:10 +0000866 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000867 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000868 }
869 return SQLITE_OK;
870}
871
drhf7854c72015-10-27 13:24:37 +0000872#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000873/*
drh0df57012015-08-14 15:05:55 +0000874** Provide hints to the cursor. The particular hint given (and the type
875** and number of the varargs parameters) is determined by the eHintType
876** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000877*/
drh0df57012015-08-14 15:05:55 +0000878void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000879 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000880}
drhf7854c72015-10-27 13:24:37 +0000881#endif
882
883/*
884** Provide flag hints to the cursor.
885*/
886void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
887 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
888 pCur->hints = x;
889}
890
drh28935362013-12-07 20:39:19 +0000891
danielk1977599fcba2004-11-08 07:13:13 +0000892#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000893/*
drha3152892007-05-05 11:48:52 +0000894** Given a page number of a regular database page, return the page
895** number for the pointer-map page that contains the entry for the
896** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000897**
898** Return 0 (not a valid page) for pgno==1 since there is
899** no pointer map associated with page 1. The integrity_check logic
900** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000901*/
danielk1977266664d2006-02-10 08:24:21 +0000902static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000903 int nPagesPerMapPage;
904 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000905 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000906 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000907 nPagesPerMapPage = (pBt->usableSize/5)+1;
908 iPtrMap = (pgno-2)/nPagesPerMapPage;
909 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000910 if( ret==PENDING_BYTE_PAGE(pBt) ){
911 ret++;
912 }
913 return ret;
914}
danielk1977a19df672004-11-03 11:37:07 +0000915
danielk1977afcdd022004-10-31 16:25:42 +0000916/*
danielk1977afcdd022004-10-31 16:25:42 +0000917** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000918**
919** This routine updates the pointer map entry for page number 'key'
920** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000921**
922** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
923** a no-op. If an error occurs, the appropriate error code is written
924** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000925*/
drh98add2e2009-07-20 17:11:49 +0000926static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000927 DbPage *pDbPage; /* The pointer map page */
928 u8 *pPtrmap; /* The pointer map data */
929 Pgno iPtrmap; /* The pointer map page number */
930 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000931 int rc; /* Return code from subfunctions */
932
933 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000934
drh1fee73e2007-08-29 04:00:57 +0000935 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000936 /* The master-journal page number must never be used as a pointer map page */
937 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
938
danielk1977ac11ee62005-01-15 12:45:51 +0000939 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000940 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000941 *pRC = SQLITE_CORRUPT_BKPT;
942 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000943 }
danielk1977266664d2006-02-10 08:24:21 +0000944 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000945 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000946 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000947 *pRC = rc;
948 return;
danielk1977afcdd022004-10-31 16:25:42 +0000949 }
danielk19778c666b12008-07-18 09:34:57 +0000950 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000951 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000952 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000953 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000954 }
drhfc243732011-05-17 15:21:56 +0000955 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000956 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000957
drh615ae552005-01-16 23:21:00 +0000958 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
959 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000960 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000961 if( rc==SQLITE_OK ){
962 pPtrmap[offset] = eType;
963 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000964 }
danielk1977afcdd022004-10-31 16:25:42 +0000965 }
966
drh4925a552009-07-07 11:39:58 +0000967ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000968 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000969}
970
971/*
972** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000973**
974** This routine retrieves the pointer map entry for page 'key', writing
975** the type and parent page number to *pEType and *pPgno respectively.
976** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000977*/
danielk1977aef0bf62005-12-30 16:28:01 +0000978static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000979 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000980 int iPtrmap; /* Pointer map page index */
981 u8 *pPtrmap; /* Pointer map page data */
982 int offset; /* Offset of entry in pointer map */
983 int rc;
984
drh1fee73e2007-08-29 04:00:57 +0000985 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000986
danielk1977266664d2006-02-10 08:24:21 +0000987 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000988 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +0000989 if( rc!=0 ){
990 return rc;
991 }
danielk19773b8a05f2007-03-19 17:44:26 +0000992 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000993
danielk19778c666b12008-07-18 09:34:57 +0000994 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000995 if( offset<0 ){
996 sqlite3PagerUnref(pDbPage);
997 return SQLITE_CORRUPT_BKPT;
998 }
999 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001000 assert( pEType!=0 );
1001 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001002 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001003
danielk19773b8a05f2007-03-19 17:44:26 +00001004 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +00001005 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +00001006 return SQLITE_OK;
1007}
1008
danielk197785d90ca2008-07-19 14:25:15 +00001009#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001010 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001011 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001012 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001013#endif
danielk1977afcdd022004-10-31 16:25:42 +00001014
drh0d316a42002-08-11 20:10:47 +00001015/*
drh271efa52004-05-30 19:19:05 +00001016** Given a btree page and a cell index (0 means the first cell on
1017** the page, 1 means the second cell, and so forth) return a pointer
1018** to the cell content.
1019**
drhf44890a2015-06-27 03:58:15 +00001020** findCellPastPtr() does the same except it skips past the initial
1021** 4-byte child pointer found on interior pages, if there is one.
1022**
drh271efa52004-05-30 19:19:05 +00001023** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001024*/
drh1688c862008-07-18 02:44:17 +00001025#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001026 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001027#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001028 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001029
drh43605152004-05-29 21:46:49 +00001030
1031/*
drh5fa60512015-06-19 17:19:34 +00001032** This is common tail processing for btreeParseCellPtr() and
1033** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1034** on a single B-tree page. Make necessary adjustments to the CellInfo
1035** structure.
drh43605152004-05-29 21:46:49 +00001036*/
drh5fa60512015-06-19 17:19:34 +00001037static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1038 MemPage *pPage, /* Page containing the cell */
1039 u8 *pCell, /* Pointer to the cell text. */
1040 CellInfo *pInfo /* Fill in this structure */
1041){
1042 /* If the payload will not fit completely on the local page, we have
1043 ** to decide how much to store locally and how much to spill onto
1044 ** overflow pages. The strategy is to minimize the amount of unused
1045 ** space on overflow pages while keeping the amount of local storage
1046 ** in between minLocal and maxLocal.
1047 **
1048 ** Warning: changing the way overflow payload is distributed in any
1049 ** way will result in an incompatible file format.
1050 */
1051 int minLocal; /* Minimum amount of payload held locally */
1052 int maxLocal; /* Maximum amount of payload held locally */
1053 int surplus; /* Overflow payload available for local storage */
1054
1055 minLocal = pPage->minLocal;
1056 maxLocal = pPage->maxLocal;
1057 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1058 testcase( surplus==maxLocal );
1059 testcase( surplus==maxLocal+1 );
1060 if( surplus <= maxLocal ){
1061 pInfo->nLocal = (u16)surplus;
1062 }else{
1063 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001064 }
drh45ac1c72015-12-18 03:59:16 +00001065 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001066}
1067
1068/*
drh5fa60512015-06-19 17:19:34 +00001069** The following routines are implementations of the MemPage.xParseCell()
1070** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001071**
drh5fa60512015-06-19 17:19:34 +00001072** Parse a cell content block and fill in the CellInfo structure.
1073**
1074** btreeParseCellPtr() => table btree leaf nodes
1075** btreeParseCellNoPayload() => table btree internal nodes
1076** btreeParseCellPtrIndex() => index btree nodes
1077**
1078** There is also a wrapper function btreeParseCell() that works for
1079** all MemPage types and that references the cell by index rather than
1080** by pointer.
drh43605152004-05-29 21:46:49 +00001081*/
drh5fa60512015-06-19 17:19:34 +00001082static void btreeParseCellPtrNoPayload(
1083 MemPage *pPage, /* Page containing the cell */
1084 u8 *pCell, /* Pointer to the cell text. */
1085 CellInfo *pInfo /* Fill in this structure */
1086){
1087 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1088 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001089 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001090#ifndef SQLITE_DEBUG
1091 UNUSED_PARAMETER(pPage);
1092#endif
drh5fa60512015-06-19 17:19:34 +00001093 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1094 pInfo->nPayload = 0;
1095 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001096 pInfo->pPayload = 0;
1097 return;
1098}
danielk197730548662009-07-09 05:07:37 +00001099static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001100 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001101 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001102 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001103){
drh3e28ff52014-09-24 00:59:08 +00001104 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001105 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001106 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001107
drh1fee73e2007-08-29 04:00:57 +00001108 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001109 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001110 assert( pPage->intKeyLeaf );
1111 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001112 pIter = pCell;
1113
1114 /* The next block of code is equivalent to:
1115 **
1116 ** pIter += getVarint32(pIter, nPayload);
1117 **
1118 ** The code is inlined to avoid a function call.
1119 */
1120 nPayload = *pIter;
1121 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001122 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001123 nPayload &= 0x7f;
1124 do{
1125 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1126 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001127 }
drh56cb04e2015-06-19 18:24:37 +00001128 pIter++;
1129
1130 /* The next block of code is equivalent to:
1131 **
1132 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1133 **
1134 ** The code is inlined to avoid a function call.
1135 */
1136 iKey = *pIter;
1137 if( iKey>=0x80 ){
1138 u8 *pEnd = &pIter[7];
1139 iKey &= 0x7f;
1140 while(1){
1141 iKey = (iKey<<7) | (*++pIter & 0x7f);
1142 if( (*pIter)<0x80 ) break;
1143 if( pIter>=pEnd ){
1144 iKey = (iKey<<8) | *++pIter;
1145 break;
1146 }
1147 }
1148 }
1149 pIter++;
1150
1151 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001152 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001153 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001154 testcase( nPayload==pPage->maxLocal );
1155 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001156 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001157 /* This is the (easy) common case where the entire payload fits
1158 ** on the local page. No overflow is required.
1159 */
drhab1cc582014-09-23 21:25:19 +00001160 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1161 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001162 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001163 }else{
drh5fa60512015-06-19 17:19:34 +00001164 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001165 }
drh3aac2dd2004-04-26 14:10:20 +00001166}
drh5fa60512015-06-19 17:19:34 +00001167static void btreeParseCellPtrIndex(
1168 MemPage *pPage, /* Page containing the cell */
1169 u8 *pCell, /* Pointer to the cell text. */
1170 CellInfo *pInfo /* Fill in this structure */
1171){
1172 u8 *pIter; /* For scanning through pCell */
1173 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001174
drh5fa60512015-06-19 17:19:34 +00001175 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1176 assert( pPage->leaf==0 || pPage->leaf==1 );
1177 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001178 pIter = pCell + pPage->childPtrSize;
1179 nPayload = *pIter;
1180 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001181 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001182 nPayload &= 0x7f;
1183 do{
1184 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1185 }while( *(pIter)>=0x80 && pIter<pEnd );
1186 }
1187 pIter++;
1188 pInfo->nKey = nPayload;
1189 pInfo->nPayload = nPayload;
1190 pInfo->pPayload = pIter;
1191 testcase( nPayload==pPage->maxLocal );
1192 testcase( nPayload==pPage->maxLocal+1 );
1193 if( nPayload<=pPage->maxLocal ){
1194 /* This is the (easy) common case where the entire payload fits
1195 ** on the local page. No overflow is required.
1196 */
1197 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1198 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1199 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001200 }else{
1201 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001202 }
1203}
danielk197730548662009-07-09 05:07:37 +00001204static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001205 MemPage *pPage, /* Page containing the cell */
1206 int iCell, /* The cell index. First cell is 0 */
1207 CellInfo *pInfo /* Fill in this structure */
1208){
drh5fa60512015-06-19 17:19:34 +00001209 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001210}
drh3aac2dd2004-04-26 14:10:20 +00001211
1212/*
drh5fa60512015-06-19 17:19:34 +00001213** The following routines are implementations of the MemPage.xCellSize
1214** method.
1215**
drh43605152004-05-29 21:46:49 +00001216** Compute the total number of bytes that a Cell needs in the cell
1217** data area of the btree-page. The return number includes the cell
1218** data header and the local payload, but not any overflow page or
1219** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001220**
drh5fa60512015-06-19 17:19:34 +00001221** cellSizePtrNoPayload() => table internal nodes
1222** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001223*/
danielk1977ae5558b2009-04-29 11:31:47 +00001224static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001225 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1226 u8 *pEnd; /* End mark for a varint */
1227 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001228
1229#ifdef SQLITE_DEBUG
1230 /* The value returned by this function should always be the same as
1231 ** the (CellInfo.nSize) value found by doing a full parse of the
1232 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1233 ** this function verifies that this invariant is not violated. */
1234 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001235 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001236#endif
1237
drh3e28ff52014-09-24 00:59:08 +00001238 nSize = *pIter;
1239 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001240 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001241 nSize &= 0x7f;
1242 do{
1243 nSize = (nSize<<7) | (*++pIter & 0x7f);
1244 }while( *(pIter)>=0x80 && pIter<pEnd );
1245 }
1246 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001247 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001248 /* pIter now points at the 64-bit integer key value, a variable length
1249 ** integer. The following block moves pIter to point at the first byte
1250 ** past the end of the key value. */
1251 pEnd = &pIter[9];
1252 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001253 }
drh0a45c272009-07-08 01:49:11 +00001254 testcase( nSize==pPage->maxLocal );
1255 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001256 if( nSize<=pPage->maxLocal ){
1257 nSize += (u32)(pIter - pCell);
1258 if( nSize<4 ) nSize = 4;
1259 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001260 int minLocal = pPage->minLocal;
1261 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001262 testcase( nSize==pPage->maxLocal );
1263 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001264 if( nSize>pPage->maxLocal ){
1265 nSize = minLocal;
1266 }
drh3e28ff52014-09-24 00:59:08 +00001267 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001268 }
drhdc41d602014-09-22 19:51:35 +00001269 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001270 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001271}
drh25ada072015-06-19 15:07:14 +00001272static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1273 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1274 u8 *pEnd; /* End mark for a varint */
1275
1276#ifdef SQLITE_DEBUG
1277 /* The value returned by this function should always be the same as
1278 ** the (CellInfo.nSize) value found by doing a full parse of the
1279 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1280 ** this function verifies that this invariant is not violated. */
1281 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001282 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001283#else
1284 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001285#endif
1286
1287 assert( pPage->childPtrSize==4 );
1288 pEnd = pIter + 9;
1289 while( (*pIter++)&0x80 && pIter<pEnd );
1290 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1291 return (u16)(pIter - pCell);
1292}
1293
drh0ee3dbe2009-10-16 15:05:18 +00001294
1295#ifdef SQLITE_DEBUG
1296/* This variation on cellSizePtr() is used inside of assert() statements
1297** only. */
drha9121e42008-02-19 14:59:35 +00001298static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001299 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001300}
danielk1977bc6ada42004-06-30 08:20:16 +00001301#endif
drh3b7511c2001-05-26 13:15:44 +00001302
danielk197779a40da2005-01-16 08:00:01 +00001303#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001304/*
danielk197726836652005-01-17 01:33:13 +00001305** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001306** to an overflow page, insert an entry into the pointer-map
1307** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001308*/
drh98add2e2009-07-20 17:11:49 +00001309static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001310 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001311 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001312 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001313 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001314 if( info.nLocal<info.nPayload ){
1315 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001316 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001317 }
danielk1977ac11ee62005-01-15 12:45:51 +00001318}
danielk197779a40da2005-01-16 08:00:01 +00001319#endif
1320
danielk1977ac11ee62005-01-15 12:45:51 +00001321
drhda200cc2004-05-09 11:51:38 +00001322/*
drh72f82862001-05-24 21:06:34 +00001323** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001324** end of the page and all free space is collected into one
1325** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001326** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001327**
1328** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1329** b-tree page so that there are no freeblocks or fragment bytes, all
1330** unused bytes are contained in the unallocated space region, and all
1331** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001332*/
shane0af3f892008-11-12 04:55:34 +00001333static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001334 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001335 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001336 int hdr; /* Offset to the page header */
1337 int size; /* Size of a cell */
1338 int usableSize; /* Number of usable bytes on a page */
1339 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001340 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001341 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001342 unsigned char *data; /* The page data */
1343 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001344 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001345 int iCellFirst; /* First allowable cell index */
1346 int iCellLast; /* Last possible cell index */
1347
drh2af926b2001-05-15 00:39:25 +00001348
danielk19773b8a05f2007-03-19 17:44:26 +00001349 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001350 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001351 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001352 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001353 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001354 temp = 0;
1355 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001356 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001357 cellOffset = pPage->cellOffset;
1358 nCell = pPage->nCell;
1359 assert( nCell==get2byte(&data[hdr+3]) );
1360 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001361 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001362 iCellFirst = cellOffset + 2*nCell;
1363 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001364 for(i=0; i<nCell; i++){
1365 u8 *pAddr; /* The i-th cell pointer */
1366 pAddr = &data[cellOffset + i*2];
1367 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001368 testcase( pc==iCellFirst );
1369 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001370 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001371 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001372 */
1373 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001374 return SQLITE_CORRUPT_BKPT;
1375 }
drh17146622009-07-07 17:38:38 +00001376 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001377 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001378 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001379 if( cbrk<iCellFirst || pc+size>usableSize ){
1380 return SQLITE_CORRUPT_BKPT;
1381 }
drh7157e1d2009-07-09 13:25:32 +00001382 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001383 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001384 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001385 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001386 if( temp==0 ){
1387 int x;
1388 if( cbrk==pc ) continue;
1389 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1390 x = get2byte(&data[hdr+5]);
1391 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1392 src = temp;
1393 }
1394 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001395 }
drh17146622009-07-07 17:38:38 +00001396 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001397 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001398 data[hdr+1] = 0;
1399 data[hdr+2] = 0;
1400 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001401 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001402 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001403 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001404 return SQLITE_CORRUPT_BKPT;
1405 }
shane0af3f892008-11-12 04:55:34 +00001406 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001407}
1408
drha059ad02001-04-17 20:09:11 +00001409/*
dan8e9ba0c2014-10-14 17:27:04 +00001410** Search the free-list on page pPg for space to store a cell nByte bytes in
1411** size. If one can be found, return a pointer to the space and remove it
1412** from the free-list.
1413**
1414** If no suitable space can be found on the free-list, return NULL.
1415**
drhba0f9992014-10-30 20:48:44 +00001416** This function may detect corruption within pPg. If corruption is
1417** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001418**
drhb7580e82015-06-25 18:36:13 +00001419** Slots on the free list that are between 1 and 3 bytes larger than nByte
1420** will be ignored if adding the extra space to the fragmentation count
1421** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001422*/
drhb7580e82015-06-25 18:36:13 +00001423static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001424 const int hdr = pPg->hdrOffset;
1425 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001426 int iAddr = hdr + 1;
1427 int pc = get2byte(&aData[iAddr]);
1428 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001429 int usableSize = pPg->pBt->usableSize;
1430
drhb7580e82015-06-25 18:36:13 +00001431 assert( pc>0 );
1432 do{
dan8e9ba0c2014-10-14 17:27:04 +00001433 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001434 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1435 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001436 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001437 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001438 return 0;
1439 }
drh113762a2014-11-19 16:36:25 +00001440 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1441 ** freeblock form a big-endian integer which is the size of the freeblock
1442 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001443 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001444 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001445 testcase( x==4 );
1446 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001447 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1448 *pRc = SQLITE_CORRUPT_BKPT;
1449 return 0;
1450 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001451 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1452 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001453 if( aData[hdr+7]>57 ) return 0;
1454
dan8e9ba0c2014-10-14 17:27:04 +00001455 /* Remove the slot from the free-list. Update the number of
1456 ** fragmented bytes within the page. */
1457 memcpy(&aData[iAddr], &aData[pc], 2);
1458 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001459 }else{
1460 /* The slot remains on the free-list. Reduce its size to account
1461 ** for the portion used by the new allocation. */
1462 put2byte(&aData[pc+2], x);
1463 }
1464 return &aData[pc + x];
1465 }
drhb7580e82015-06-25 18:36:13 +00001466 iAddr = pc;
1467 pc = get2byte(&aData[pc]);
1468 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001469
1470 return 0;
1471}
1472
1473/*
danielk19776011a752009-04-01 16:25:32 +00001474** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001475** as the first argument. Write into *pIdx the index into pPage->aData[]
1476** of the first byte of allocated space. Return either SQLITE_OK or
1477** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001478**
drh0a45c272009-07-08 01:49:11 +00001479** The caller guarantees that there is sufficient space to make the
1480** allocation. This routine might need to defragment in order to bring
1481** all the space together, however. This routine will avoid using
1482** the first two bytes past the cell pointer area since presumably this
1483** allocation is being made in order to insert a new cell, so we will
1484** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001485*/
drh0a45c272009-07-08 01:49:11 +00001486static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001487 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1488 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001489 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001490 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001491 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001492
danielk19773b8a05f2007-03-19 17:44:26 +00001493 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001494 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001495 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001496 assert( nByte>=0 ); /* Minimum cell size is 4 */
1497 assert( pPage->nFree>=nByte );
1498 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001499 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001500
drh0a45c272009-07-08 01:49:11 +00001501 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1502 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001503 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001504 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1505 ** and the reserved space is zero (the usual value for reserved space)
1506 ** then the cell content offset of an empty page wants to be 65536.
1507 ** However, that integer is too large to be stored in a 2-byte unsigned
1508 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001509 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001510 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001511 if( gap>top ){
1512 if( top==0 && pPage->pBt->usableSize==65536 ){
1513 top = 65536;
1514 }else{
1515 return SQLITE_CORRUPT_BKPT;
drh9e572e62004-04-23 23:43:10 +00001516 }
1517 }
drh43605152004-05-29 21:46:49 +00001518
drh4c04f3c2014-08-20 11:56:14 +00001519 /* If there is enough space between gap and top for one more cell pointer
1520 ** array entry offset, and if the freelist is not empty, then search the
1521 ** freelist looking for a free slot big enough to satisfy the request.
1522 */
drh5e2f8b92001-05-28 00:41:15 +00001523 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001524 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001525 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001526 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001527 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001528 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001529 assert( pSpace>=data && (pSpace - data)<65536 );
1530 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001531 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001532 }else if( rc ){
1533 return rc;
drh9e572e62004-04-23 23:43:10 +00001534 }
1535 }
drh43605152004-05-29 21:46:49 +00001536
drh4c04f3c2014-08-20 11:56:14 +00001537 /* The request could not be fulfilled using a freelist slot. Check
1538 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001539 */
1540 testcase( gap+2+nByte==top );
1541 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001542 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001543 rc = defragmentPage(pPage);
1544 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001545 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001546 assert( gap+nByte<=top );
1547 }
1548
1549
drh43605152004-05-29 21:46:49 +00001550 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001551 ** and the cell content area. The btreeInitPage() call has already
1552 ** validated the freelist. Given that the freelist is valid, there
1553 ** is no way that the allocation can extend off the end of the page.
1554 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001555 */
drh0a45c272009-07-08 01:49:11 +00001556 top -= nByte;
drh43605152004-05-29 21:46:49 +00001557 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001558 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001559 *pIdx = top;
1560 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001561}
1562
1563/*
drh9e572e62004-04-23 23:43:10 +00001564** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001565** The first byte of the new free block is pPage->aData[iStart]
1566** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001567**
drh5f5c7532014-08-20 17:56:27 +00001568** Adjacent freeblocks are coalesced.
1569**
1570** Note that even though the freeblock list was checked by btreeInitPage(),
1571** that routine will not detect overlap between cells or freeblocks. Nor
1572** does it detect cells or freeblocks that encrouch into the reserved bytes
1573** at the end of the page. So do additional corruption checks inside this
1574** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001575*/
drh5f5c7532014-08-20 17:56:27 +00001576static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001577 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001578 u16 iFreeBlk; /* Address of the next freeblock */
1579 u8 hdr; /* Page header size. 0 or 100 */
1580 u8 nFrag = 0; /* Reduction in fragmentation */
1581 u16 iOrigSize = iSize; /* Original value of iSize */
1582 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1583 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001584 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001585
drh9e572e62004-04-23 23:43:10 +00001586 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001587 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001588 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001589 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001590 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001591 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001592 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001593
drh5f5c7532014-08-20 17:56:27 +00001594 /* Overwrite deleted information with zeros when the secure_delete
1595 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001596 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001597 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001598 }
drhfcce93f2006-02-22 03:08:32 +00001599
drh5f5c7532014-08-20 17:56:27 +00001600 /* The list of freeblocks must be in ascending order. Find the
1601 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001602 */
drh43605152004-05-29 21:46:49 +00001603 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001604 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001605 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1606 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1607 }else{
1608 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1609 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1610 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001611 }
drh7bc4c452014-08-20 18:43:44 +00001612 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1613 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1614
1615 /* At this point:
1616 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001617 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001618 **
1619 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1620 */
1621 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1622 nFrag = iFreeBlk - iEnd;
1623 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1624 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001625 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001626 iSize = iEnd - iStart;
1627 iFreeBlk = get2byte(&data[iFreeBlk]);
1628 }
1629
drh3f387402014-09-24 01:23:00 +00001630 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1631 ** pointer in the page header) then check to see if iStart should be
1632 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001633 */
1634 if( iPtr>hdr+1 ){
1635 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1636 if( iPtrEnd+3>=iStart ){
1637 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1638 nFrag += iStart - iPtrEnd;
1639 iSize = iEnd - iPtr;
1640 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001641 }
drh9e572e62004-04-23 23:43:10 +00001642 }
drh7bc4c452014-08-20 18:43:44 +00001643 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1644 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001645 }
drh7bc4c452014-08-20 18:43:44 +00001646 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001647 /* The new freeblock is at the beginning of the cell content area,
1648 ** so just extend the cell content area rather than create another
1649 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001650 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001651 put2byte(&data[hdr+1], iFreeBlk);
1652 put2byte(&data[hdr+5], iEnd);
1653 }else{
1654 /* Insert the new freeblock into the freelist */
1655 put2byte(&data[iPtr], iStart);
1656 put2byte(&data[iStart], iFreeBlk);
1657 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001658 }
drh5f5c7532014-08-20 17:56:27 +00001659 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001660 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001661}
1662
1663/*
drh271efa52004-05-30 19:19:05 +00001664** Decode the flags byte (the first byte of the header) for a page
1665** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001666**
1667** Only the following combinations are supported. Anything different
1668** indicates a corrupt database files:
1669**
1670** PTF_ZERODATA
1671** PTF_ZERODATA | PTF_LEAF
1672** PTF_LEAFDATA | PTF_INTKEY
1673** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001674*/
drh44845222008-07-17 18:39:57 +00001675static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001676 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001677
1678 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001679 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001680 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001681 flagByte &= ~PTF_LEAF;
1682 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001683 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001684 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001685 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001686 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1687 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001688 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001689 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1690 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001691 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001692 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001693 if( pPage->leaf ){
1694 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001695 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001696 }else{
1697 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001698 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001699 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001700 }
drh271efa52004-05-30 19:19:05 +00001701 pPage->maxLocal = pBt->maxLeaf;
1702 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001703 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001704 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1705 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001706 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001707 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1708 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001709 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001710 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001711 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001712 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001713 pPage->maxLocal = pBt->maxLocal;
1714 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001715 }else{
drhfdab0262014-11-20 15:30:50 +00001716 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1717 ** an error. */
drh44845222008-07-17 18:39:57 +00001718 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001719 }
drhc9166342012-01-05 23:32:06 +00001720 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001721 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001722}
1723
1724/*
drh7e3b0a02001-04-28 16:52:40 +00001725** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001726**
1727** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001728** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001729** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1730** guarantee that the page is well-formed. It only shows that
1731** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001732*/
danielk197730548662009-07-09 05:07:37 +00001733static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001734
danielk197771d5d2c2008-09-29 11:49:47 +00001735 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001736 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001737 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001738 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001739 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1740 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001741
1742 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001743 u16 pc; /* Address of a freeblock within pPage->aData[] */
1744 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001745 u8 *data; /* Equal to pPage->aData */
1746 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001747 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001748 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001749 int nFree; /* Number of unused bytes on the page */
1750 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001751 int iCellFirst; /* First allowable cell or freeblock offset */
1752 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001753
1754 pBt = pPage->pBt;
1755
danielk1977eaa06f62008-09-18 17:34:44 +00001756 hdr = pPage->hdrOffset;
1757 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001758 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1759 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001760 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001761 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1762 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001763 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001764 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001765 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001766 pPage->aDataEnd = &data[usableSize];
1767 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001768 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001769 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1770 ** the start of the cell content area. A zero value for this integer is
1771 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001772 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001773 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1774 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001775 pPage->nCell = get2byte(&data[hdr+3]);
1776 if( pPage->nCell>MX_CELL(pBt) ){
1777 /* To many cells for a single page. The page must be corrupt */
1778 return SQLITE_CORRUPT_BKPT;
1779 }
drhb908d762009-07-08 16:54:40 +00001780 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001781 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1782 ** possible for a root page of a table that contains no rows) then the
1783 ** offset to the cell content area will equal the page size minus the
1784 ** bytes of reserved space. */
1785 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001786
shane5eff7cf2009-08-10 03:57:58 +00001787 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001788 ** of page when parsing a cell.
1789 **
1790 ** The following block of code checks early to see if a cell extends
1791 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1792 ** returned if it does.
1793 */
drh0a45c272009-07-08 01:49:11 +00001794 iCellFirst = cellOffset + 2*pPage->nCell;
1795 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001796 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001797 int i; /* Index into the cell pointer array */
1798 int sz; /* Size of a cell */
1799
drh69e931e2009-06-03 21:04:35 +00001800 if( !pPage->leaf ) iCellLast--;
1801 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001802 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001803 testcase( pc==iCellFirst );
1804 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001805 if( pc<iCellFirst || pc>iCellLast ){
1806 return SQLITE_CORRUPT_BKPT;
1807 }
drh25ada072015-06-19 15:07:14 +00001808 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001809 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001810 if( pc+sz>usableSize ){
1811 return SQLITE_CORRUPT_BKPT;
1812 }
1813 }
drh0a45c272009-07-08 01:49:11 +00001814 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001815 }
drh69e931e2009-06-03 21:04:35 +00001816
drhfdab0262014-11-20 15:30:50 +00001817 /* Compute the total free space on the page
1818 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1819 ** start of the first freeblock on the page, or is zero if there are no
1820 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001821 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001822 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001823 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001824 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001825 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001826 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1827 ** always be at least one cell before the first freeblock.
1828 **
1829 ** Or, the freeblock is off the end of the page
1830 */
danielk1977eaa06f62008-09-18 17:34:44 +00001831 return SQLITE_CORRUPT_BKPT;
1832 }
1833 next = get2byte(&data[pc]);
1834 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001835 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1836 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001837 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001838 return SQLITE_CORRUPT_BKPT;
1839 }
shane85095702009-06-15 16:27:08 +00001840 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001841 pc = next;
1842 }
danielk197793c829c2009-06-03 17:26:17 +00001843
1844 /* At this point, nFree contains the sum of the offset to the start
1845 ** of the cell-content area plus the number of free bytes within
1846 ** the cell-content area. If this is greater than the usable-size
1847 ** of the page, then the page must be corrupted. This check also
1848 ** serves to verify that the offset to the start of the cell-content
1849 ** area, according to the page header, lies within the page.
1850 */
1851 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001852 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001853 }
shane5eff7cf2009-08-10 03:57:58 +00001854 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001855 pPage->isInit = 1;
1856 }
drh9e572e62004-04-23 23:43:10 +00001857 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001858}
1859
1860/*
drh8b2f49b2001-06-08 00:21:52 +00001861** Set up a raw page so that it looks like a database page holding
1862** no entries.
drhbd03cae2001-06-02 02:40:57 +00001863*/
drh9e572e62004-04-23 23:43:10 +00001864static void zeroPage(MemPage *pPage, int flags){
1865 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001866 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001867 u8 hdr = pPage->hdrOffset;
1868 u16 first;
drh9e572e62004-04-23 23:43:10 +00001869
danielk19773b8a05f2007-03-19 17:44:26 +00001870 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001871 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1872 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001873 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001874 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001875 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001876 memset(&data[hdr], 0, pBt->usableSize - hdr);
1877 }
drh1bd10f82008-12-10 21:19:56 +00001878 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001879 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001880 memset(&data[hdr+1], 0, 4);
1881 data[hdr+7] = 0;
1882 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001883 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001884 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001885 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001886 pPage->aDataEnd = &data[pBt->usableSize];
1887 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001888 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001889 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001890 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1891 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001892 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001893 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001894}
1895
drh897a8202008-09-18 01:08:15 +00001896
1897/*
1898** Convert a DbPage obtained from the pager into a MemPage used by
1899** the btree layer.
1900*/
1901static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1902 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00001903 if( pgno!=pPage->pgno ){
1904 pPage->aData = sqlite3PagerGetData(pDbPage);
1905 pPage->pDbPage = pDbPage;
1906 pPage->pBt = pBt;
1907 pPage->pgno = pgno;
1908 pPage->hdrOffset = pgno==1 ? 100 : 0;
1909 }
1910 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00001911 return pPage;
1912}
1913
drhbd03cae2001-06-02 02:40:57 +00001914/*
drh3aac2dd2004-04-26 14:10:20 +00001915** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001916** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001917**
drh7e8c6f12015-05-28 03:28:27 +00001918** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1919** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001920** to fetch the content. Just fill in the content with zeros for now.
1921** If in the future we call sqlite3PagerWrite() on this page, that
1922** means we have started to be concerned about content and the disk
1923** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001924*/
danielk197730548662009-07-09 05:07:37 +00001925static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001926 BtShared *pBt, /* The btree */
1927 Pgno pgno, /* Number of the page to fetch */
1928 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001929 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001930){
drh3aac2dd2004-04-26 14:10:20 +00001931 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001932 DbPage *pDbPage;
1933
drhb00fc3b2013-08-21 23:42:32 +00001934 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001935 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00001936 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001937 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001938 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001939 return SQLITE_OK;
1940}
1941
1942/*
danielk1977bea2a942009-01-20 17:06:27 +00001943** Retrieve a page from the pager cache. If the requested page is not
1944** already in the pager cache return NULL. Initialize the MemPage.pBt and
1945** MemPage.aData elements if needed.
1946*/
1947static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1948 DbPage *pDbPage;
1949 assert( sqlite3_mutex_held(pBt->mutex) );
1950 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1951 if( pDbPage ){
1952 return btreePageFromDbPage(pDbPage, pgno, pBt);
1953 }
1954 return 0;
1955}
1956
1957/*
danielk197789d40042008-11-17 14:20:56 +00001958** Return the size of the database file in pages. If there is any kind of
1959** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001960*/
drhb1299152010-03-30 22:58:33 +00001961static Pgno btreePagecount(BtShared *pBt){
1962 return pBt->nPage;
1963}
1964u32 sqlite3BtreeLastPage(Btree *p){
1965 assert( sqlite3BtreeHoldsMutex(p) );
1966 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001967 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001968}
1969
1970/*
drh28f58dd2015-06-27 19:45:03 +00001971** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00001972**
drh15a00212015-06-27 20:55:00 +00001973** If pCur!=0 then the page is being fetched as part of a moveToChild()
1974** call. Do additional sanity checking on the page in this case.
1975** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00001976**
1977** The page is fetched as read-write unless pCur is not NULL and is
1978** a read-only cursor.
1979**
1980** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00001981** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001982*/
1983static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001984 BtShared *pBt, /* The database file */
1985 Pgno pgno, /* Number of the page to get */
1986 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00001987 BtCursor *pCur, /* Cursor to receive the page, or NULL */
1988 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00001989){
1990 int rc;
drh28f58dd2015-06-27 19:45:03 +00001991 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00001992 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00001993 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
1994 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00001995 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001996
danba3cbf32010-06-30 04:29:03 +00001997 if( pgno>btreePagecount(pBt) ){
1998 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00001999 goto getAndInitPage_error;
2000 }
drh9584f582015-11-04 20:22:37 +00002001 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002002 if( rc ){
2003 goto getAndInitPage_error;
2004 }
drh8dd1c252015-11-04 22:31:02 +00002005 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002006 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002007 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002008 rc = btreeInitPage(*ppPage);
2009 if( rc!=SQLITE_OK ){
2010 releasePage(*ppPage);
2011 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002012 }
drhee696e22004-08-30 16:52:17 +00002013 }
drh8dd1c252015-11-04 22:31:02 +00002014 assert( (*ppPage)->pgno==pgno );
2015 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002016
drh15a00212015-06-27 20:55:00 +00002017 /* If obtaining a child page for a cursor, we must verify that the page is
2018 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002019 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drh28f58dd2015-06-27 19:45:03 +00002020 rc = SQLITE_CORRUPT_BKPT;
2021 releasePage(*ppPage);
2022 goto getAndInitPage_error;
2023 }
drh28f58dd2015-06-27 19:45:03 +00002024 return SQLITE_OK;
2025
2026getAndInitPage_error:
2027 if( pCur ) pCur->iPage--;
danba3cbf32010-06-30 04:29:03 +00002028 testcase( pgno==0 );
2029 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002030 return rc;
2031}
2032
2033/*
drh3aac2dd2004-04-26 14:10:20 +00002034** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002035** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002036*/
drhbbf0f862015-06-27 14:59:26 +00002037static void releasePageNotNull(MemPage *pPage){
2038 assert( pPage->aData );
2039 assert( pPage->pBt );
2040 assert( pPage->pDbPage!=0 );
2041 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2042 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2043 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2044 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002045}
drh3aac2dd2004-04-26 14:10:20 +00002046static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002047 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002048}
2049
2050/*
drh7e8c6f12015-05-28 03:28:27 +00002051** Get an unused page.
2052**
2053** This works just like btreeGetPage() with the addition:
2054**
2055** * If the page is already in use for some other purpose, immediately
2056** release it and return an SQLITE_CURRUPT error.
2057** * Make sure the isInit flag is clear
2058*/
2059static int btreeGetUnusedPage(
2060 BtShared *pBt, /* The btree */
2061 Pgno pgno, /* Number of the page to fetch */
2062 MemPage **ppPage, /* Return the page in this parameter */
2063 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2064){
2065 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2066 if( rc==SQLITE_OK ){
2067 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2068 releasePage(*ppPage);
2069 *ppPage = 0;
2070 return SQLITE_CORRUPT_BKPT;
2071 }
2072 (*ppPage)->isInit = 0;
2073 }else{
2074 *ppPage = 0;
2075 }
2076 return rc;
2077}
2078
drha059ad02001-04-17 20:09:11 +00002079
2080/*
drha6abd042004-06-09 17:37:22 +00002081** During a rollback, when the pager reloads information into the cache
2082** so that the cache is restored to its original state at the start of
2083** the transaction, for each page restored this routine is called.
2084**
2085** This routine needs to reset the extra data section at the end of the
2086** page to agree with the restored data.
2087*/
danielk1977eaa06f62008-09-18 17:34:44 +00002088static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002089 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002090 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002091 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002092 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002093 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002094 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002095 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002096 /* pPage might not be a btree page; it might be an overflow page
2097 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002098 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002099 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002100 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002101 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002102 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002103 }
drha6abd042004-06-09 17:37:22 +00002104 }
2105}
2106
2107/*
drhe5fe6902007-12-07 18:55:28 +00002108** Invoke the busy handler for a btree.
2109*/
danielk19771ceedd32008-11-19 10:22:33 +00002110static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002111 BtShared *pBt = (BtShared*)pArg;
2112 assert( pBt->db );
2113 assert( sqlite3_mutex_held(pBt->db->mutex) );
2114 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2115}
2116
2117/*
drhad3e0102004-09-03 23:32:18 +00002118** Open a database file.
2119**
drh382c0242001-10-06 16:33:02 +00002120** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002121** then an ephemeral database is created. The ephemeral database might
2122** be exclusively in memory, or it might use a disk-based memory cache.
2123** Either way, the ephemeral database will be automatically deleted
2124** when sqlite3BtreeClose() is called.
2125**
drhe53831d2007-08-17 01:14:38 +00002126** If zFilename is ":memory:" then an in-memory database is created
2127** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002128**
drh33f111d2012-01-17 15:29:14 +00002129** The "flags" parameter is a bitmask that might contain bits like
2130** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002131**
drhc47fd8e2009-04-30 13:30:32 +00002132** If the database is already opened in the same database connection
2133** and we are in shared cache mode, then the open will fail with an
2134** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2135** objects in the same database connection since doing so will lead
2136** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002137*/
drh23e11ca2004-05-04 17:27:28 +00002138int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002139 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002140 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002141 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002142 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002143 int flags, /* Options */
2144 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002145){
drh7555d8e2009-03-20 13:15:30 +00002146 BtShared *pBt = 0; /* Shared part of btree structure */
2147 Btree *p; /* Handle to return */
2148 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2149 int rc = SQLITE_OK; /* Result code from this function */
2150 u8 nReserve; /* Byte of unused space on each page */
2151 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002152
drh75c014c2010-08-30 15:02:28 +00002153 /* True if opening an ephemeral, temporary database */
2154 const int isTempDb = zFilename==0 || zFilename[0]==0;
2155
danielk1977aef0bf62005-12-30 16:28:01 +00002156 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002157 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002158 */
drhb0a7c9c2010-12-06 21:09:59 +00002159#ifdef SQLITE_OMIT_MEMORYDB
2160 const int isMemdb = 0;
2161#else
2162 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002163 || (isTempDb && sqlite3TempInMemory(db))
2164 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002165#endif
2166
drhe5fe6902007-12-07 18:55:28 +00002167 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002168 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002169 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002170 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2171
2172 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2173 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2174
2175 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2176 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002177
drh75c014c2010-08-30 15:02:28 +00002178 if( isMemdb ){
2179 flags |= BTREE_MEMORY;
2180 }
2181 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2182 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2183 }
drh17435752007-08-16 04:30:38 +00002184 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002185 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002186 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002187 }
2188 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002189 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002190#ifndef SQLITE_OMIT_SHARED_CACHE
2191 p->lock.pBtree = p;
2192 p->lock.iTable = 1;
2193#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002194
drh198bf392006-01-06 21:52:49 +00002195#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002196 /*
2197 ** If this Btree is a candidate for shared cache, try to find an
2198 ** existing BtShared object that we can share with
2199 */
drh4ab9d252012-05-26 20:08:49 +00002200 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002201 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002202 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002203 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002204 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002205 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002206
drhff0587c2007-08-29 17:43:19 +00002207 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002208 if( !zFullPathname ){
2209 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002210 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002211 }
drhafc8b7f2012-05-26 18:06:38 +00002212 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002213 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002214 }else{
2215 rc = sqlite3OsFullPathname(pVfs, zFilename,
2216 nFullPathname, zFullPathname);
2217 if( rc ){
2218 sqlite3_free(zFullPathname);
2219 sqlite3_free(p);
2220 return rc;
2221 }
drh070ad6b2011-11-17 11:43:19 +00002222 }
drh30ddce62011-10-15 00:16:30 +00002223#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002224 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2225 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002226 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002227 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002228#endif
drh78f82d12008-09-02 00:52:52 +00002229 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002230 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002231 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002232 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002233 int iDb;
2234 for(iDb=db->nDb-1; iDb>=0; iDb--){
2235 Btree *pExisting = db->aDb[iDb].pBt;
2236 if( pExisting && pExisting->pBt==pBt ){
2237 sqlite3_mutex_leave(mutexShared);
2238 sqlite3_mutex_leave(mutexOpen);
2239 sqlite3_free(zFullPathname);
2240 sqlite3_free(p);
2241 return SQLITE_CONSTRAINT;
2242 }
2243 }
drhff0587c2007-08-29 17:43:19 +00002244 p->pBt = pBt;
2245 pBt->nRef++;
2246 break;
2247 }
2248 }
2249 sqlite3_mutex_leave(mutexShared);
2250 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002251 }
drhff0587c2007-08-29 17:43:19 +00002252#ifdef SQLITE_DEBUG
2253 else{
2254 /* In debug mode, we mark all persistent databases as sharable
2255 ** even when they are not. This exercises the locking code and
2256 ** gives more opportunity for asserts(sqlite3_mutex_held())
2257 ** statements to find locking problems.
2258 */
2259 p->sharable = 1;
2260 }
2261#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002262 }
2263#endif
drha059ad02001-04-17 20:09:11 +00002264 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002265 /*
2266 ** The following asserts make sure that structures used by the btree are
2267 ** the right size. This is to guard against size changes that result
2268 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002269 */
drh062cf272015-03-23 19:03:51 +00002270 assert( sizeof(i64)==8 );
2271 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002272 assert( sizeof(u32)==4 );
2273 assert( sizeof(u16)==2 );
2274 assert( sizeof(Pgno)==4 );
2275
2276 pBt = sqlite3MallocZero( sizeof(*pBt) );
2277 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002278 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002279 goto btree_open_out;
2280 }
danielk197771d5d2c2008-09-29 11:49:47 +00002281 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002282 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002283 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002284 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002285 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2286 }
2287 if( rc!=SQLITE_OK ){
2288 goto btree_open_out;
2289 }
shanehbd2aaf92010-09-01 02:38:21 +00002290 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002291 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002292 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002293 p->pBt = pBt;
2294
drhe53831d2007-08-17 01:14:38 +00002295 pBt->pCursor = 0;
2296 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002297 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002298#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002299 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002300#endif
drh113762a2014-11-19 16:36:25 +00002301 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2302 ** determined by the 2-byte integer located at an offset of 16 bytes from
2303 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002304 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002305 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2306 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002307 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002308#ifndef SQLITE_OMIT_AUTOVACUUM
2309 /* If the magic name ":memory:" will create an in-memory database, then
2310 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2311 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2312 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2313 ** regular file-name. In this case the auto-vacuum applies as per normal.
2314 */
2315 if( zFilename && !isMemdb ){
2316 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2317 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2318 }
2319#endif
2320 nReserve = 0;
2321 }else{
drh113762a2014-11-19 16:36:25 +00002322 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2323 ** determined by the one-byte unsigned integer found at an offset of 20
2324 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002325 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002326 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002327#ifndef SQLITE_OMIT_AUTOVACUUM
2328 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2329 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2330#endif
2331 }
drhfa9601a2009-06-18 17:22:39 +00002332 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002333 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002334 pBt->usableSize = pBt->pageSize - nReserve;
2335 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002336
2337#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2338 /* Add the new BtShared object to the linked list sharable BtShareds.
2339 */
dan272989b2016-07-06 10:12:02 +00002340 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002341 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002342 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002343 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002344 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002345 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002346 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002347 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002348 goto btree_open_out;
2349 }
drhff0587c2007-08-29 17:43:19 +00002350 }
drhe53831d2007-08-17 01:14:38 +00002351 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002352 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2353 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002354 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002355 }
drheee46cf2004-11-06 00:02:48 +00002356#endif
drh90f5ecb2004-07-22 01:19:35 +00002357 }
danielk1977aef0bf62005-12-30 16:28:01 +00002358
drhcfed7bc2006-03-13 14:28:05 +00002359#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002360 /* If the new Btree uses a sharable pBtShared, then link the new
2361 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002362 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002363 */
drhe53831d2007-08-17 01:14:38 +00002364 if( p->sharable ){
2365 int i;
2366 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002367 for(i=0; i<db->nDb; i++){
2368 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002369 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002370 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002371 p->pNext = pSib;
2372 p->pPrev = 0;
2373 pSib->pPrev = p;
2374 }else{
drh3bfa7e82016-03-22 14:37:59 +00002375 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002376 pSib = pSib->pNext;
2377 }
2378 p->pNext = pSib->pNext;
2379 p->pPrev = pSib;
2380 if( p->pNext ){
2381 p->pNext->pPrev = p;
2382 }
2383 pSib->pNext = p;
2384 }
2385 break;
2386 }
2387 }
danielk1977aef0bf62005-12-30 16:28:01 +00002388 }
danielk1977aef0bf62005-12-30 16:28:01 +00002389#endif
2390 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002391
2392btree_open_out:
2393 if( rc!=SQLITE_OK ){
2394 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002395 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002396 }
drh17435752007-08-16 04:30:38 +00002397 sqlite3_free(pBt);
2398 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002399 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002400 }else{
2401 /* If the B-Tree was successfully opened, set the pager-cache size to the
2402 ** default value. Except, when opening on an existing shared pager-cache,
2403 ** do not change the pager-cache size.
2404 */
2405 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2406 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2407 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002408 }
drh7555d8e2009-03-20 13:15:30 +00002409 if( mutexOpen ){
2410 assert( sqlite3_mutex_held(mutexOpen) );
2411 sqlite3_mutex_leave(mutexOpen);
2412 }
dan272989b2016-07-06 10:12:02 +00002413 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002414 return rc;
drha059ad02001-04-17 20:09:11 +00002415}
2416
2417/*
drhe53831d2007-08-17 01:14:38 +00002418** Decrement the BtShared.nRef counter. When it reaches zero,
2419** remove the BtShared structure from the sharing list. Return
2420** true if the BtShared.nRef counter reaches zero and return
2421** false if it is still positive.
2422*/
2423static int removeFromSharingList(BtShared *pBt){
2424#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002425 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002426 BtShared *pList;
2427 int removed = 0;
2428
drhd677b3d2007-08-20 22:48:41 +00002429 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002430 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002431 sqlite3_mutex_enter(pMaster);
2432 pBt->nRef--;
2433 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002434 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2435 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002436 }else{
drh78f82d12008-09-02 00:52:52 +00002437 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002438 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002439 pList=pList->pNext;
2440 }
drh34004ce2008-07-11 16:15:17 +00002441 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002442 pList->pNext = pBt->pNext;
2443 }
2444 }
drh3285db22007-09-03 22:00:39 +00002445 if( SQLITE_THREADSAFE ){
2446 sqlite3_mutex_free(pBt->mutex);
2447 }
drhe53831d2007-08-17 01:14:38 +00002448 removed = 1;
2449 }
2450 sqlite3_mutex_leave(pMaster);
2451 return removed;
2452#else
2453 return 1;
2454#endif
2455}
2456
2457/*
drhf7141992008-06-19 00:16:08 +00002458** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002459** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2460** pointer.
drhf7141992008-06-19 00:16:08 +00002461*/
2462static void allocateTempSpace(BtShared *pBt){
2463 if( !pBt->pTmpSpace ){
2464 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002465
2466 /* One of the uses of pBt->pTmpSpace is to format cells before
2467 ** inserting them into a leaf page (function fillInCell()). If
2468 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2469 ** by the various routines that manipulate binary cells. Which
2470 ** can mean that fillInCell() only initializes the first 2 or 3
2471 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2472 ** it into a database page. This is not actually a problem, but it
2473 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2474 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002475 ** zero the first 4 bytes of temp space here.
2476 **
2477 ** Also: Provide four bytes of initialized space before the
2478 ** beginning of pTmpSpace as an area available to prepend the
2479 ** left-child pointer to the beginning of a cell.
2480 */
2481 if( pBt->pTmpSpace ){
2482 memset(pBt->pTmpSpace, 0, 8);
2483 pBt->pTmpSpace += 4;
2484 }
drhf7141992008-06-19 00:16:08 +00002485 }
2486}
2487
2488/*
2489** Free the pBt->pTmpSpace allocation
2490*/
2491static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002492 if( pBt->pTmpSpace ){
2493 pBt->pTmpSpace -= 4;
2494 sqlite3PageFree(pBt->pTmpSpace);
2495 pBt->pTmpSpace = 0;
2496 }
drhf7141992008-06-19 00:16:08 +00002497}
2498
2499/*
drha059ad02001-04-17 20:09:11 +00002500** Close an open database and invalidate all cursors.
2501*/
danielk1977aef0bf62005-12-30 16:28:01 +00002502int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002503 BtShared *pBt = p->pBt;
2504 BtCursor *pCur;
2505
danielk1977aef0bf62005-12-30 16:28:01 +00002506 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002507 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002508 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002509 pCur = pBt->pCursor;
2510 while( pCur ){
2511 BtCursor *pTmp = pCur;
2512 pCur = pCur->pNext;
2513 if( pTmp->pBtree==p ){
2514 sqlite3BtreeCloseCursor(pTmp);
2515 }
drha059ad02001-04-17 20:09:11 +00002516 }
danielk1977aef0bf62005-12-30 16:28:01 +00002517
danielk19778d34dfd2006-01-24 16:37:57 +00002518 /* Rollback any active transaction and free the handle structure.
2519 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2520 ** this handle.
2521 */
drh47b7fc72014-11-11 01:33:57 +00002522 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002523 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002524
danielk1977aef0bf62005-12-30 16:28:01 +00002525 /* If there are still other outstanding references to the shared-btree
2526 ** structure, return now. The remainder of this procedure cleans
2527 ** up the shared-btree.
2528 */
drhe53831d2007-08-17 01:14:38 +00002529 assert( p->wantToLock==0 && p->locked==0 );
2530 if( !p->sharable || removeFromSharingList(pBt) ){
2531 /* The pBt is no longer on the sharing list, so we can access
2532 ** it without having to hold the mutex.
2533 **
2534 ** Clean out and delete the BtShared object.
2535 */
2536 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002537 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002538 if( pBt->xFreeSchema && pBt->pSchema ){
2539 pBt->xFreeSchema(pBt->pSchema);
2540 }
drhb9755982010-07-24 16:34:37 +00002541 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002542 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002543 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002544 }
2545
drhe53831d2007-08-17 01:14:38 +00002546#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002547 assert( p->wantToLock==0 );
2548 assert( p->locked==0 );
2549 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2550 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002551#endif
2552
drhe53831d2007-08-17 01:14:38 +00002553 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002554 return SQLITE_OK;
2555}
2556
2557/*
drh9b0cf342015-11-12 14:57:19 +00002558** Change the "soft" limit on the number of pages in the cache.
2559** Unused and unmodified pages will be recycled when the number of
2560** pages in the cache exceeds this soft limit. But the size of the
2561** cache is allowed to grow larger than this limit if it contains
2562** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002563*/
danielk1977aef0bf62005-12-30 16:28:01 +00002564int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2565 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002566 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002567 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002568 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002569 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002570 return SQLITE_OK;
2571}
2572
drh9b0cf342015-11-12 14:57:19 +00002573/*
2574** Change the "spill" limit on the number of pages in the cache.
2575** If the number of pages exceeds this limit during a write transaction,
2576** the pager might attempt to "spill" pages to the journal early in
2577** order to free up memory.
2578**
2579** The value returned is the current spill size. If zero is passed
2580** as an argument, no changes are made to the spill size setting, so
2581** using mxPage of 0 is a way to query the current spill size.
2582*/
2583int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2584 BtShared *pBt = p->pBt;
2585 int res;
2586 assert( sqlite3_mutex_held(p->db->mutex) );
2587 sqlite3BtreeEnter(p);
2588 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2589 sqlite3BtreeLeave(p);
2590 return res;
2591}
2592
drh18c7e402014-03-14 11:46:10 +00002593#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002594/*
dan5d8a1372013-03-19 19:28:06 +00002595** Change the limit on the amount of the database file that may be
2596** memory mapped.
2597*/
drh9b4c59f2013-04-15 17:03:42 +00002598int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002599 BtShared *pBt = p->pBt;
2600 assert( sqlite3_mutex_held(p->db->mutex) );
2601 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002602 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002603 sqlite3BtreeLeave(p);
2604 return SQLITE_OK;
2605}
drh18c7e402014-03-14 11:46:10 +00002606#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002607
2608/*
drh973b6e32003-02-12 14:09:42 +00002609** Change the way data is synced to disk in order to increase or decrease
2610** how well the database resists damage due to OS crashes and power
2611** failures. Level 1 is the same as asynchronous (no syncs() occur and
2612** there is a high probability of damage) Level 2 is the default. There
2613** is a very low but non-zero probability of damage. Level 3 reduces the
2614** probability of damage to near zero but with a write performance reduction.
2615*/
danielk197793758c82005-01-21 08:13:14 +00002616#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002617int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002618 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002619 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002620){
danielk1977aef0bf62005-12-30 16:28:01 +00002621 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002622 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002623 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002624 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002625 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002626 return SQLITE_OK;
2627}
danielk197793758c82005-01-21 08:13:14 +00002628#endif
drh973b6e32003-02-12 14:09:42 +00002629
drh2c8997b2005-08-27 16:36:48 +00002630/*
drh90f5ecb2004-07-22 01:19:35 +00002631** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002632** Or, if the page size has already been fixed, return SQLITE_READONLY
2633** without changing anything.
drh06f50212004-11-02 14:24:33 +00002634**
2635** The page size must be a power of 2 between 512 and 65536. If the page
2636** size supplied does not meet this constraint then the page size is not
2637** changed.
2638**
2639** Page sizes are constrained to be a power of two so that the region
2640** of the database file used for locking (beginning at PENDING_BYTE,
2641** the first byte past the 1GB boundary, 0x40000000) needs to occur
2642** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002643**
2644** If parameter nReserve is less than zero, then the number of reserved
2645** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002646**
drhc9166342012-01-05 23:32:06 +00002647** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002648** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002649*/
drhce4869f2009-04-02 20:16:58 +00002650int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002651 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002652 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002653 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002654 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002655#if SQLITE_HAS_CODEC
2656 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2657#endif
drhc9166342012-01-05 23:32:06 +00002658 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002659 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002660 return SQLITE_READONLY;
2661 }
2662 if( nReserve<0 ){
2663 nReserve = pBt->pageSize - pBt->usableSize;
2664 }
drhf49661a2008-12-10 16:45:50 +00002665 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002666 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2667 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002668 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002669 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002670 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002671 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002672 }
drhfa9601a2009-06-18 17:22:39 +00002673 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002674 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002675 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002676 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002677 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002678}
2679
2680/*
2681** Return the currently defined page size
2682*/
danielk1977aef0bf62005-12-30 16:28:01 +00002683int sqlite3BtreeGetPageSize(Btree *p){
2684 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002685}
drh7f751222009-03-17 22:33:00 +00002686
dan0094f372012-09-28 20:23:42 +00002687/*
2688** This function is similar to sqlite3BtreeGetReserve(), except that it
2689** may only be called if it is guaranteed that the b-tree mutex is already
2690** held.
2691**
2692** This is useful in one special case in the backup API code where it is
2693** known that the shared b-tree mutex is held, but the mutex on the
2694** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2695** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002696** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002697*/
2698int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002699 int n;
dan0094f372012-09-28 20:23:42 +00002700 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002701 n = p->pBt->pageSize - p->pBt->usableSize;
2702 return n;
dan0094f372012-09-28 20:23:42 +00002703}
2704
drh7f751222009-03-17 22:33:00 +00002705/*
2706** Return the number of bytes of space at the end of every page that
2707** are intentually left unused. This is the "reserved" space that is
2708** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002709**
2710** If SQLITE_HAS_MUTEX is defined then the number returned is the
2711** greater of the current reserved space and the maximum requested
2712** reserve space.
drh7f751222009-03-17 22:33:00 +00002713*/
drhad0961b2015-02-21 00:19:25 +00002714int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002715 int n;
2716 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002717 n = sqlite3BtreeGetReserveNoMutex(p);
2718#ifdef SQLITE_HAS_CODEC
2719 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2720#endif
drhd677b3d2007-08-20 22:48:41 +00002721 sqlite3BtreeLeave(p);
2722 return n;
drh2011d5f2004-07-22 02:40:37 +00002723}
drhf8e632b2007-05-08 14:51:36 +00002724
drhad0961b2015-02-21 00:19:25 +00002725
drhf8e632b2007-05-08 14:51:36 +00002726/*
2727** Set the maximum page count for a database if mxPage is positive.
2728** No changes are made if mxPage is 0 or negative.
2729** Regardless of the value of mxPage, return the maximum page count.
2730*/
2731int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002732 int n;
2733 sqlite3BtreeEnter(p);
2734 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2735 sqlite3BtreeLeave(p);
2736 return n;
drhf8e632b2007-05-08 14:51:36 +00002737}
drh5b47efa2010-02-12 18:18:39 +00002738
2739/*
drhc9166342012-01-05 23:32:06 +00002740** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2741** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002742** setting after the change.
2743*/
2744int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2745 int b;
drhaf034ed2010-02-12 19:46:26 +00002746 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002747 sqlite3BtreeEnter(p);
2748 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002749 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2750 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002751 }
drhc9166342012-01-05 23:32:06 +00002752 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002753 sqlite3BtreeLeave(p);
2754 return b;
2755}
drh90f5ecb2004-07-22 01:19:35 +00002756
2757/*
danielk1977951af802004-11-05 15:45:09 +00002758** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2759** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2760** is disabled. The default value for the auto-vacuum property is
2761** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2762*/
danielk1977aef0bf62005-12-30 16:28:01 +00002763int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002764#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002765 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002766#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002767 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002768 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002769 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002770
2771 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002772 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002773 rc = SQLITE_READONLY;
2774 }else{
drh076d4662009-02-18 20:31:18 +00002775 pBt->autoVacuum = av ?1:0;
2776 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002777 }
drhd677b3d2007-08-20 22:48:41 +00002778 sqlite3BtreeLeave(p);
2779 return rc;
danielk1977951af802004-11-05 15:45:09 +00002780#endif
2781}
2782
2783/*
2784** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2785** enabled 1 is returned. Otherwise 0.
2786*/
danielk1977aef0bf62005-12-30 16:28:01 +00002787int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002788#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002789 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002790#else
drhd677b3d2007-08-20 22:48:41 +00002791 int rc;
2792 sqlite3BtreeEnter(p);
2793 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002794 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2795 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2796 BTREE_AUTOVACUUM_INCR
2797 );
drhd677b3d2007-08-20 22:48:41 +00002798 sqlite3BtreeLeave(p);
2799 return rc;
danielk1977951af802004-11-05 15:45:09 +00002800#endif
2801}
2802
2803
2804/*
drha34b6762004-05-07 13:30:42 +00002805** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002806** also acquire a readlock on that file.
2807**
2808** SQLITE_OK is returned on success. If the file is not a
2809** well-formed database file, then SQLITE_CORRUPT is returned.
2810** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002811** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002812*/
danielk1977aef0bf62005-12-30 16:28:01 +00002813static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002814 int rc; /* Result code from subfunctions */
2815 MemPage *pPage1; /* Page 1 of the database file */
2816 int nPage; /* Number of pages in the database */
2817 int nPageFile = 0; /* Number of pages in the database file */
2818 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002819
drh1fee73e2007-08-29 04:00:57 +00002820 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002821 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002822 rc = sqlite3PagerSharedLock(pBt->pPager);
2823 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002824 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002825 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002826
2827 /* Do some checking to help insure the file we opened really is
2828 ** a valid database file.
2829 */
drhc2a4bab2010-04-02 12:46:45 +00002830 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002831 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002832 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002833 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002834 }
2835 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002836 u32 pageSize;
2837 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002838 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002839 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002840 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2841 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2842 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002843 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002844 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002845 }
dan5cf53532010-05-01 16:40:20 +00002846
2847#ifdef SQLITE_OMIT_WAL
2848 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002849 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002850 }
2851 if( page1[19]>1 ){
2852 goto page1_init_failed;
2853 }
2854#else
dane04dc882010-04-20 18:53:15 +00002855 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002856 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002857 }
dane04dc882010-04-20 18:53:15 +00002858 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002859 goto page1_init_failed;
2860 }
drhe5ae5732008-06-15 02:51:47 +00002861
dana470aeb2010-04-21 11:43:38 +00002862 /* If the write version is set to 2, this database should be accessed
2863 ** in WAL mode. If the log is not already open, open it now. Then
2864 ** return SQLITE_OK and return without populating BtShared.pPage1.
2865 ** The caller detects this and calls this function again. This is
2866 ** required as the version of page 1 currently in the page1 buffer
2867 ** may not be the latest version - there may be a newer one in the log
2868 ** file.
2869 */
drhc9166342012-01-05 23:32:06 +00002870 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002871 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002872 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002873 if( rc!=SQLITE_OK ){
2874 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00002875 }else{
2876#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS
2877 sqlite3 *db;
2878 Db *pDb;
2879 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2880 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2881 if( pDb->bSyncSet==0
drhc2ae2072016-03-08 15:30:01 +00002882 && pDb->safety_level==SQLITE_DEFAULT_SYNCHRONOUS+1
drhe243de52016-03-08 15:14:26 +00002883 ){
drhc2ae2072016-03-08 15:30:01 +00002884 pDb->safety_level = SQLITE_DEFAULT_WAL_SYNCHRONOUS+1;
drhe243de52016-03-08 15:14:26 +00002885 sqlite3PagerSetFlags(pBt->pPager,
2886 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2887 }
2888 }
2889#endif
2890 if( isOpen==0 ){
2891 releasePage(pPage1);
2892 return SQLITE_OK;
2893 }
dane04dc882010-04-20 18:53:15 +00002894 }
dan8b5444b2010-04-27 14:37:47 +00002895 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002896 }
dan5cf53532010-05-01 16:40:20 +00002897#endif
dane04dc882010-04-20 18:53:15 +00002898
drh113762a2014-11-19 16:36:25 +00002899 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2900 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2901 **
drhe5ae5732008-06-15 02:51:47 +00002902 ** The original design allowed these amounts to vary, but as of
2903 ** version 3.6.0, we require them to be fixed.
2904 */
2905 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2906 goto page1_init_failed;
2907 }
drh113762a2014-11-19 16:36:25 +00002908 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2909 ** determined by the 2-byte integer located at an offset of 16 bytes from
2910 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002911 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002912 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2913 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002914 if( ((pageSize-1)&pageSize)!=0
2915 || pageSize>SQLITE_MAX_PAGE_SIZE
2916 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002917 ){
drh07d183d2005-05-01 22:52:42 +00002918 goto page1_init_failed;
2919 }
2920 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002921 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2922 ** integer at offset 20 is the number of bytes of space at the end of
2923 ** each page to reserve for extensions.
2924 **
2925 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2926 ** determined by the one-byte unsigned integer found at an offset of 20
2927 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002928 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002929 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002930 /* After reading the first page of the database assuming a page size
2931 ** of BtShared.pageSize, we have discovered that the page-size is
2932 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2933 ** zero and return SQLITE_OK. The caller will call this function
2934 ** again with the correct page-size.
2935 */
2936 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002937 pBt->usableSize = usableSize;
2938 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002939 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002940 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2941 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002942 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002943 }
danecac6702011-02-09 18:19:20 +00002944 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002945 rc = SQLITE_CORRUPT_BKPT;
2946 goto page1_init_failed;
2947 }
drh113762a2014-11-19 16:36:25 +00002948 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2949 ** be less than 480. In other words, if the page size is 512, then the
2950 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002951 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002952 goto page1_init_failed;
2953 }
drh43b18e12010-08-17 19:40:08 +00002954 pBt->pageSize = pageSize;
2955 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002956#ifndef SQLITE_OMIT_AUTOVACUUM
2957 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002958 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002959#endif
drh306dc212001-05-21 13:45:10 +00002960 }
drhb6f41482004-05-14 01:58:11 +00002961
2962 /* maxLocal is the maximum amount of payload to store locally for
2963 ** a cell. Make sure it is small enough so that at least minFanout
2964 ** cells can will fit on one page. We assume a 10-byte page header.
2965 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002966 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002967 ** 4-byte child pointer
2968 ** 9-byte nKey value
2969 ** 4-byte nData value
2970 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002971 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002972 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2973 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002974 */
shaneh1df2db72010-08-18 02:28:48 +00002975 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2976 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2977 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2978 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002979 if( pBt->maxLocal>127 ){
2980 pBt->max1bytePayload = 127;
2981 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002982 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002983 }
drh2e38c322004-09-03 18:38:44 +00002984 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002985 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002986 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002987 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002988
drh72f82862001-05-24 21:06:34 +00002989page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002990 releasePage(pPage1);
2991 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002992 return rc;
drh306dc212001-05-21 13:45:10 +00002993}
2994
drh85ec3b62013-05-14 23:12:06 +00002995#ifndef NDEBUG
2996/*
2997** Return the number of cursors open on pBt. This is for use
2998** in assert() expressions, so it is only compiled if NDEBUG is not
2999** defined.
3000**
3001** Only write cursors are counted if wrOnly is true. If wrOnly is
3002** false then all cursors are counted.
3003**
3004** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003005** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003006** have been tripped into the CURSOR_FAULT state are not counted.
3007*/
3008static int countValidCursors(BtShared *pBt, int wrOnly){
3009 BtCursor *pCur;
3010 int r = 0;
3011 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003012 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3013 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003014 }
3015 return r;
3016}
3017#endif
3018
drh306dc212001-05-21 13:45:10 +00003019/*
drhb8ca3072001-12-05 00:21:20 +00003020** If there are no outstanding cursors and we are not in the middle
3021** of a transaction but there is a read lock on the database, then
3022** this routine unrefs the first page of the database file which
3023** has the effect of releasing the read lock.
3024**
drhb8ca3072001-12-05 00:21:20 +00003025** If there is a transaction in progress, this routine is a no-op.
3026*/
danielk1977aef0bf62005-12-30 16:28:01 +00003027static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003028 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003029 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003030 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003031 MemPage *pPage1 = pBt->pPage1;
3032 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003033 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003034 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003035 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003036 }
3037}
3038
3039/*
drhe39f2f92009-07-23 01:43:59 +00003040** If pBt points to an empty file then convert that empty file
3041** into a new empty database by initializing the first page of
3042** the database.
drh8b2f49b2001-06-08 00:21:52 +00003043*/
danielk1977aef0bf62005-12-30 16:28:01 +00003044static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003045 MemPage *pP1;
3046 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003047 int rc;
drhd677b3d2007-08-20 22:48:41 +00003048
drh1fee73e2007-08-29 04:00:57 +00003049 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003050 if( pBt->nPage>0 ){
3051 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003052 }
drh3aac2dd2004-04-26 14:10:20 +00003053 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003054 assert( pP1!=0 );
3055 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003056 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003057 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003058 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3059 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003060 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3061 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003062 data[18] = 1;
3063 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003064 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3065 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003066 data[21] = 64;
3067 data[22] = 32;
3068 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003069 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003070 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003071 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003072#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003073 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003074 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003075 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003076 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003077#endif
drhdd3cd972010-03-27 17:12:36 +00003078 pBt->nPage = 1;
3079 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003080 return SQLITE_OK;
3081}
3082
3083/*
danb483eba2012-10-13 19:58:11 +00003084** Initialize the first page of the database file (creating a database
3085** consisting of a single page and no schema objects). Return SQLITE_OK
3086** if successful, or an SQLite error code otherwise.
3087*/
3088int sqlite3BtreeNewDb(Btree *p){
3089 int rc;
3090 sqlite3BtreeEnter(p);
3091 p->pBt->nPage = 0;
3092 rc = newDatabase(p->pBt);
3093 sqlite3BtreeLeave(p);
3094 return rc;
3095}
3096
3097/*
danielk1977ee5741e2004-05-31 10:01:34 +00003098** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003099** is started if the second argument is nonzero, otherwise a read-
3100** transaction. If the second argument is 2 or more and exclusive
3101** transaction is started, meaning that no other process is allowed
3102** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003103** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003104** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003105**
danielk1977ee5741e2004-05-31 10:01:34 +00003106** A write-transaction must be started before attempting any
3107** changes to the database. None of the following routines
3108** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003109**
drh23e11ca2004-05-04 17:27:28 +00003110** sqlite3BtreeCreateTable()
3111** sqlite3BtreeCreateIndex()
3112** sqlite3BtreeClearTable()
3113** sqlite3BtreeDropTable()
3114** sqlite3BtreeInsert()
3115** sqlite3BtreeDelete()
3116** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003117**
drhb8ef32c2005-03-14 02:01:49 +00003118** If an initial attempt to acquire the lock fails because of lock contention
3119** and the database was previously unlocked, then invoke the busy handler
3120** if there is one. But if there was previously a read-lock, do not
3121** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3122** returned when there is already a read-lock in order to avoid a deadlock.
3123**
3124** Suppose there are two processes A and B. A has a read lock and B has
3125** a reserved lock. B tries to promote to exclusive but is blocked because
3126** of A's read lock. A tries to promote to reserved but is blocked by B.
3127** One or the other of the two processes must give way or there can be
3128** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3129** when A already has a read lock, we encourage A to give up and let B
3130** proceed.
drha059ad02001-04-17 20:09:11 +00003131*/
danielk1977aef0bf62005-12-30 16:28:01 +00003132int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3133 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003134 int rc = SQLITE_OK;
3135
drhd677b3d2007-08-20 22:48:41 +00003136 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003137 btreeIntegrity(p);
3138
danielk1977ee5741e2004-05-31 10:01:34 +00003139 /* If the btree is already in a write-transaction, or it
3140 ** is already in a read-transaction and a read-transaction
3141 ** is requested, this is a no-op.
3142 */
danielk1977aef0bf62005-12-30 16:28:01 +00003143 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003144 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003145 }
dan56c517a2013-09-26 11:04:33 +00003146 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003147
3148 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003149 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003150 rc = SQLITE_READONLY;
3151 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003152 }
3153
danielk1977404ca072009-03-16 13:19:36 +00003154#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003155 {
3156 sqlite3 *pBlock = 0;
3157 /* If another database handle has already opened a write transaction
3158 ** on this shared-btree structure and a second write transaction is
3159 ** requested, return SQLITE_LOCKED.
3160 */
3161 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3162 || (pBt->btsFlags & BTS_PENDING)!=0
3163 ){
3164 pBlock = pBt->pWriter->db;
3165 }else if( wrflag>1 ){
3166 BtLock *pIter;
3167 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3168 if( pIter->pBtree!=p ){
3169 pBlock = pIter->pBtree->db;
3170 break;
3171 }
danielk1977641b0f42007-12-21 04:47:25 +00003172 }
3173 }
drh5a1fb182016-01-08 19:34:39 +00003174 if( pBlock ){
3175 sqlite3ConnectionBlocked(p->db, pBlock);
3176 rc = SQLITE_LOCKED_SHAREDCACHE;
3177 goto trans_begun;
3178 }
danielk1977404ca072009-03-16 13:19:36 +00003179 }
danielk1977641b0f42007-12-21 04:47:25 +00003180#endif
3181
danielk1977602b4662009-07-02 07:47:33 +00003182 /* Any read-only or read-write transaction implies a read-lock on
3183 ** page 1. So if some other shared-cache client already has a write-lock
3184 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003185 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3186 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003187
drhc9166342012-01-05 23:32:06 +00003188 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3189 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003190 do {
danielk1977295dc102009-04-01 19:07:03 +00003191 /* Call lockBtree() until either pBt->pPage1 is populated or
3192 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3193 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3194 ** reading page 1 it discovers that the page-size of the database
3195 ** file is not pBt->pageSize. In this case lockBtree() will update
3196 ** pBt->pageSize to the page-size of the file on disk.
3197 */
3198 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003199
drhb8ef32c2005-03-14 02:01:49 +00003200 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003201 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003202 rc = SQLITE_READONLY;
3203 }else{
danielk1977d8293352009-04-30 09:10:37 +00003204 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003205 if( rc==SQLITE_OK ){
3206 rc = newDatabase(pBt);
3207 }
drhb8ef32c2005-03-14 02:01:49 +00003208 }
3209 }
3210
danielk1977bd434552009-03-18 10:33:00 +00003211 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003212 unlockBtreeIfUnused(pBt);
3213 }
danf9b76712010-06-01 14:12:45 +00003214 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003215 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003216
3217 if( rc==SQLITE_OK ){
3218 if( p->inTrans==TRANS_NONE ){
3219 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003220#ifndef SQLITE_OMIT_SHARED_CACHE
3221 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003222 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003223 p->lock.eLock = READ_LOCK;
3224 p->lock.pNext = pBt->pLock;
3225 pBt->pLock = &p->lock;
3226 }
3227#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003228 }
3229 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3230 if( p->inTrans>pBt->inTransaction ){
3231 pBt->inTransaction = p->inTrans;
3232 }
danielk1977404ca072009-03-16 13:19:36 +00003233 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003234 MemPage *pPage1 = pBt->pPage1;
3235#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003236 assert( !pBt->pWriter );
3237 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003238 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3239 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003240#endif
dan59257dc2010-08-04 11:34:31 +00003241
3242 /* If the db-size header field is incorrect (as it may be if an old
3243 ** client has been writing the database file), update it now. Doing
3244 ** this sooner rather than later means the database size can safely
3245 ** re-read the database size from page 1 if a savepoint or transaction
3246 ** rollback occurs within the transaction.
3247 */
3248 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3249 rc = sqlite3PagerWrite(pPage1->pDbPage);
3250 if( rc==SQLITE_OK ){
3251 put4byte(&pPage1->aData[28], pBt->nPage);
3252 }
3253 }
3254 }
danielk1977aef0bf62005-12-30 16:28:01 +00003255 }
3256
drhd677b3d2007-08-20 22:48:41 +00003257
3258trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003259 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003260 /* This call makes sure that the pager has the correct number of
3261 ** open savepoints. If the second parameter is greater than 0 and
3262 ** the sub-journal is not already open, then it will be opened here.
3263 */
danielk1977fd7f0452008-12-17 17:30:26 +00003264 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3265 }
danielk197712dd5492008-12-18 15:45:07 +00003266
danielk1977aef0bf62005-12-30 16:28:01 +00003267 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003268 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003269 return rc;
drha059ad02001-04-17 20:09:11 +00003270}
3271
danielk1977687566d2004-11-02 12:56:41 +00003272#ifndef SQLITE_OMIT_AUTOVACUUM
3273
3274/*
3275** Set the pointer-map entries for all children of page pPage. Also, if
3276** pPage contains cells that point to overflow pages, set the pointer
3277** map entries for the overflow pages as well.
3278*/
3279static int setChildPtrmaps(MemPage *pPage){
3280 int i; /* Counter variable */
3281 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003282 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003283 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003284 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003285 Pgno pgno = pPage->pgno;
3286
drh1fee73e2007-08-29 04:00:57 +00003287 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003288 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003289 if( rc!=SQLITE_OK ){
3290 goto set_child_ptrmaps_out;
3291 }
danielk1977687566d2004-11-02 12:56:41 +00003292 nCell = pPage->nCell;
3293
3294 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003295 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003296
drh98add2e2009-07-20 17:11:49 +00003297 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003298
danielk1977687566d2004-11-02 12:56:41 +00003299 if( !pPage->leaf ){
3300 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003301 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003302 }
3303 }
3304
3305 if( !pPage->leaf ){
3306 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003307 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003308 }
3309
3310set_child_ptrmaps_out:
3311 pPage->isInit = isInitOrig;
3312 return rc;
3313}
3314
3315/*
drhf3aed592009-07-08 18:12:49 +00003316** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3317** that it points to iTo. Parameter eType describes the type of pointer to
3318** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003319**
3320** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3321** page of pPage.
3322**
3323** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3324** page pointed to by one of the cells on pPage.
3325**
3326** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3327** overflow page in the list.
3328*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003329static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003330 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003331 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003332 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003333 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003334 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003335 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003336 }
danielk1977f78fc082004-11-02 14:40:32 +00003337 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003338 }else{
drhf49661a2008-12-10 16:45:50 +00003339 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003340 int i;
3341 int nCell;
drha1f75d92015-05-24 10:18:12 +00003342 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003343
drha1f75d92015-05-24 10:18:12 +00003344 rc = btreeInitPage(pPage);
3345 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003346 nCell = pPage->nCell;
3347
danielk1977687566d2004-11-02 12:56:41 +00003348 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003349 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003350 if( eType==PTRMAP_OVERFLOW1 ){
3351 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003352 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00003353 if( info.nLocal<info.nPayload
3354 && pCell+info.nSize-1<=pPage->aData+pPage->maskPage
3355 && iFrom==get4byte(pCell+info.nSize-4)
drhe42a9b42011-08-31 13:27:19 +00003356 ){
drh45ac1c72015-12-18 03:59:16 +00003357 put4byte(pCell+info.nSize-4, iTo);
drhe42a9b42011-08-31 13:27:19 +00003358 break;
danielk1977687566d2004-11-02 12:56:41 +00003359 }
3360 }else{
3361 if( get4byte(pCell)==iFrom ){
3362 put4byte(pCell, iTo);
3363 break;
3364 }
3365 }
3366 }
3367
3368 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003369 if( eType!=PTRMAP_BTREE ||
3370 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003371 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003372 }
danielk1977687566d2004-11-02 12:56:41 +00003373 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3374 }
3375
3376 pPage->isInit = isInitOrig;
3377 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003378 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003379}
3380
danielk1977003ba062004-11-04 02:57:33 +00003381
danielk19777701e812005-01-10 12:59:51 +00003382/*
3383** Move the open database page pDbPage to location iFreePage in the
3384** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003385**
3386** The isCommit flag indicates that there is no need to remember that
3387** the journal needs to be sync()ed before database page pDbPage->pgno
3388** can be written to. The caller has already promised not to write to that
3389** page.
danielk19777701e812005-01-10 12:59:51 +00003390*/
danielk1977003ba062004-11-04 02:57:33 +00003391static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003392 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003393 MemPage *pDbPage, /* Open page to move */
3394 u8 eType, /* Pointer map 'type' entry for pDbPage */
3395 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003396 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003397 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003398){
3399 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3400 Pgno iDbPage = pDbPage->pgno;
3401 Pager *pPager = pBt->pPager;
3402 int rc;
3403
danielk1977a0bf2652004-11-04 14:30:04 +00003404 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3405 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003406 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003407 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003408
drh85b623f2007-12-13 21:54:09 +00003409 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003410 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3411 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003412 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003413 if( rc!=SQLITE_OK ){
3414 return rc;
3415 }
3416 pDbPage->pgno = iFreePage;
3417
3418 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3419 ** that point to overflow pages. The pointer map entries for all these
3420 ** pages need to be changed.
3421 **
3422 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3423 ** pointer to a subsequent overflow page. If this is the case, then
3424 ** the pointer map needs to be updated for the subsequent overflow page.
3425 */
danielk1977a0bf2652004-11-04 14:30:04 +00003426 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003427 rc = setChildPtrmaps(pDbPage);
3428 if( rc!=SQLITE_OK ){
3429 return rc;
3430 }
3431 }else{
3432 Pgno nextOvfl = get4byte(pDbPage->aData);
3433 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003434 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003435 if( rc!=SQLITE_OK ){
3436 return rc;
3437 }
3438 }
3439 }
3440
3441 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3442 ** that it points at iFreePage. Also fix the pointer map entry for
3443 ** iPtrPage.
3444 */
danielk1977a0bf2652004-11-04 14:30:04 +00003445 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003446 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003447 if( rc!=SQLITE_OK ){
3448 return rc;
3449 }
danielk19773b8a05f2007-03-19 17:44:26 +00003450 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003451 if( rc!=SQLITE_OK ){
3452 releasePage(pPtrPage);
3453 return rc;
3454 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003455 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003456 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003457 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003458 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003459 }
danielk1977003ba062004-11-04 02:57:33 +00003460 }
danielk1977003ba062004-11-04 02:57:33 +00003461 return rc;
3462}
3463
danielk1977dddbcdc2007-04-26 14:42:34 +00003464/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003465static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003466
3467/*
dan51f0b6d2013-02-22 20:16:34 +00003468** Perform a single step of an incremental-vacuum. If successful, return
3469** SQLITE_OK. If there is no work to do (and therefore no point in
3470** calling this function again), return SQLITE_DONE. Or, if an error
3471** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003472**
peter.d.reid60ec9142014-09-06 16:39:46 +00003473** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003474** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003475**
dan51f0b6d2013-02-22 20:16:34 +00003476** Parameter nFin is the number of pages that this database would contain
3477** were this function called until it returns SQLITE_DONE.
3478**
3479** If the bCommit parameter is non-zero, this function assumes that the
3480** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003481** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003482** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003483*/
dan51f0b6d2013-02-22 20:16:34 +00003484static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003485 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003486 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003487
drh1fee73e2007-08-29 04:00:57 +00003488 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003489 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003490
3491 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003492 u8 eType;
3493 Pgno iPtrPage;
3494
3495 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003496 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003497 return SQLITE_DONE;
3498 }
3499
3500 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3501 if( rc!=SQLITE_OK ){
3502 return rc;
3503 }
3504 if( eType==PTRMAP_ROOTPAGE ){
3505 return SQLITE_CORRUPT_BKPT;
3506 }
3507
3508 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003509 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003510 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003511 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003512 ** truncated to zero after this function returns, so it doesn't
3513 ** matter if it still contains some garbage entries.
3514 */
3515 Pgno iFreePg;
3516 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003517 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003518 if( rc!=SQLITE_OK ){
3519 return rc;
3520 }
3521 assert( iFreePg==iLastPg );
3522 releasePage(pFreePg);
3523 }
3524 } else {
3525 Pgno iFreePg; /* Index of free page to move pLastPg to */
3526 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003527 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3528 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003529
drhb00fc3b2013-08-21 23:42:32 +00003530 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003531 if( rc!=SQLITE_OK ){
3532 return rc;
3533 }
3534
dan51f0b6d2013-02-22 20:16:34 +00003535 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003536 ** is swapped with the first free page pulled off the free list.
3537 **
dan51f0b6d2013-02-22 20:16:34 +00003538 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003539 ** looping until a free-page located within the first nFin pages
3540 ** of the file is found.
3541 */
dan51f0b6d2013-02-22 20:16:34 +00003542 if( bCommit==0 ){
3543 eMode = BTALLOC_LE;
3544 iNear = nFin;
3545 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003546 do {
3547 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003548 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003549 if( rc!=SQLITE_OK ){
3550 releasePage(pLastPg);
3551 return rc;
3552 }
3553 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003554 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003555 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003556
dane1df4e32013-03-05 11:27:04 +00003557 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003558 releasePage(pLastPg);
3559 if( rc!=SQLITE_OK ){
3560 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003561 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003562 }
3563 }
3564
dan51f0b6d2013-02-22 20:16:34 +00003565 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003566 do {
danielk19773460d192008-12-27 15:23:13 +00003567 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003568 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3569 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003570 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003571 }
3572 return SQLITE_OK;
3573}
3574
3575/*
dan51f0b6d2013-02-22 20:16:34 +00003576** The database opened by the first argument is an auto-vacuum database
3577** nOrig pages in size containing nFree free pages. Return the expected
3578** size of the database in pages following an auto-vacuum operation.
3579*/
3580static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3581 int nEntry; /* Number of entries on one ptrmap page */
3582 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3583 Pgno nFin; /* Return value */
3584
3585 nEntry = pBt->usableSize/5;
3586 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3587 nFin = nOrig - nFree - nPtrmap;
3588 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3589 nFin--;
3590 }
3591 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3592 nFin--;
3593 }
dan51f0b6d2013-02-22 20:16:34 +00003594
3595 return nFin;
3596}
3597
3598/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003599** A write-transaction must be opened before calling this function.
3600** It performs a single unit of work towards an incremental vacuum.
3601**
3602** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003603** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003604** SQLITE_OK is returned. Otherwise an SQLite error code.
3605*/
3606int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003607 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003608 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003609
3610 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003611 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3612 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003613 rc = SQLITE_DONE;
3614 }else{
dan51f0b6d2013-02-22 20:16:34 +00003615 Pgno nOrig = btreePagecount(pBt);
3616 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3617 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3618
dan91384712013-02-24 11:50:43 +00003619 if( nOrig<nFin ){
3620 rc = SQLITE_CORRUPT_BKPT;
3621 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003622 rc = saveAllCursors(pBt, 0, 0);
3623 if( rc==SQLITE_OK ){
3624 invalidateAllOverflowCache(pBt);
3625 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3626 }
dan51f0b6d2013-02-22 20:16:34 +00003627 if( rc==SQLITE_OK ){
3628 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3629 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3630 }
3631 }else{
3632 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003633 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003634 }
drhd677b3d2007-08-20 22:48:41 +00003635 sqlite3BtreeLeave(p);
3636 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003637}
3638
3639/*
danielk19773b8a05f2007-03-19 17:44:26 +00003640** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003641** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003642**
3643** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3644** the database file should be truncated to during the commit process.
3645** i.e. the database has been reorganized so that only the first *pnTrunc
3646** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003647*/
danielk19773460d192008-12-27 15:23:13 +00003648static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003649 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003650 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003651 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003652
drh1fee73e2007-08-29 04:00:57 +00003653 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003654 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003655 assert(pBt->autoVacuum);
3656 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003657 Pgno nFin; /* Number of pages in database after autovacuuming */
3658 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003659 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003660 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003661
drhb1299152010-03-30 22:58:33 +00003662 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003663 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3664 /* It is not possible to create a database for which the final page
3665 ** is either a pointer-map page or the pending-byte page. If one
3666 ** is encountered, this indicates corruption.
3667 */
danielk19773460d192008-12-27 15:23:13 +00003668 return SQLITE_CORRUPT_BKPT;
3669 }
danielk1977ef165ce2009-04-06 17:50:03 +00003670
danielk19773460d192008-12-27 15:23:13 +00003671 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003672 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003673 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003674 if( nFin<nOrig ){
3675 rc = saveAllCursors(pBt, 0, 0);
3676 }
danielk19773460d192008-12-27 15:23:13 +00003677 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003678 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003679 }
danielk19773460d192008-12-27 15:23:13 +00003680 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003681 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3682 put4byte(&pBt->pPage1->aData[32], 0);
3683 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003684 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003685 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003686 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003687 }
3688 if( rc!=SQLITE_OK ){
3689 sqlite3PagerRollback(pPager);
3690 }
danielk1977687566d2004-11-02 12:56:41 +00003691 }
3692
dan0aed84d2013-03-26 14:16:20 +00003693 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003694 return rc;
3695}
danielk1977dddbcdc2007-04-26 14:42:34 +00003696
danielk1977a50d9aa2009-06-08 14:49:45 +00003697#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3698# define setChildPtrmaps(x) SQLITE_OK
3699#endif
danielk1977687566d2004-11-02 12:56:41 +00003700
3701/*
drh80e35f42007-03-30 14:06:34 +00003702** This routine does the first phase of a two-phase commit. This routine
3703** causes a rollback journal to be created (if it does not already exist)
3704** and populated with enough information so that if a power loss occurs
3705** the database can be restored to its original state by playing back
3706** the journal. Then the contents of the journal are flushed out to
3707** the disk. After the journal is safely on oxide, the changes to the
3708** database are written into the database file and flushed to oxide.
3709** At the end of this call, the rollback journal still exists on the
3710** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003711** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003712** commit process.
3713**
3714** This call is a no-op if no write-transaction is currently active on pBt.
3715**
3716** Otherwise, sync the database file for the btree pBt. zMaster points to
3717** the name of a master journal file that should be written into the
3718** individual journal file, or is NULL, indicating no master journal file
3719** (single database transaction).
3720**
3721** When this is called, the master journal should already have been
3722** created, populated with this journal pointer and synced to disk.
3723**
3724** Once this is routine has returned, the only thing required to commit
3725** the write-transaction for this database file is to delete the journal.
3726*/
3727int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3728 int rc = SQLITE_OK;
3729 if( p->inTrans==TRANS_WRITE ){
3730 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003731 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003732#ifndef SQLITE_OMIT_AUTOVACUUM
3733 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003734 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003735 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003736 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003737 return rc;
3738 }
3739 }
danbc1a3c62013-02-23 16:40:46 +00003740 if( pBt->bDoTruncate ){
3741 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3742 }
drh80e35f42007-03-30 14:06:34 +00003743#endif
drh49b9d332009-01-02 18:10:42 +00003744 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003745 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003746 }
3747 return rc;
3748}
3749
3750/*
danielk197794b30732009-07-02 17:21:57 +00003751** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3752** at the conclusion of a transaction.
3753*/
3754static void btreeEndTransaction(Btree *p){
3755 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003756 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003757 assert( sqlite3BtreeHoldsMutex(p) );
3758
danbc1a3c62013-02-23 16:40:46 +00003759#ifndef SQLITE_OMIT_AUTOVACUUM
3760 pBt->bDoTruncate = 0;
3761#endif
danc0537fe2013-06-28 19:41:43 +00003762 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003763 /* If there are other active statements that belong to this database
3764 ** handle, downgrade to a read-only transaction. The other statements
3765 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003766 downgradeAllSharedCacheTableLocks(p);
3767 p->inTrans = TRANS_READ;
3768 }else{
3769 /* If the handle had any kind of transaction open, decrement the
3770 ** transaction count of the shared btree. If the transaction count
3771 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3772 ** call below will unlock the pager. */
3773 if( p->inTrans!=TRANS_NONE ){
3774 clearAllSharedCacheTableLocks(p);
3775 pBt->nTransaction--;
3776 if( 0==pBt->nTransaction ){
3777 pBt->inTransaction = TRANS_NONE;
3778 }
3779 }
3780
3781 /* Set the current transaction state to TRANS_NONE and unlock the
3782 ** pager if this call closed the only read or write transaction. */
3783 p->inTrans = TRANS_NONE;
3784 unlockBtreeIfUnused(pBt);
3785 }
3786
3787 btreeIntegrity(p);
3788}
3789
3790/*
drh2aa679f2001-06-25 02:11:07 +00003791** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003792**
drh6e345992007-03-30 11:12:08 +00003793** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003794** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3795** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3796** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003797** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003798** routine has to do is delete or truncate or zero the header in the
3799** the rollback journal (which causes the transaction to commit) and
3800** drop locks.
drh6e345992007-03-30 11:12:08 +00003801**
dan60939d02011-03-29 15:40:55 +00003802** Normally, if an error occurs while the pager layer is attempting to
3803** finalize the underlying journal file, this function returns an error and
3804** the upper layer will attempt a rollback. However, if the second argument
3805** is non-zero then this b-tree transaction is part of a multi-file
3806** transaction. In this case, the transaction has already been committed
3807** (by deleting a master journal file) and the caller will ignore this
3808** functions return code. So, even if an error occurs in the pager layer,
3809** reset the b-tree objects internal state to indicate that the write
3810** transaction has been closed. This is quite safe, as the pager will have
3811** transitioned to the error state.
3812**
drh5e00f6c2001-09-13 13:46:56 +00003813** This will release the write lock on the database file. If there
3814** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003815*/
dan60939d02011-03-29 15:40:55 +00003816int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003817
drh075ed302010-10-14 01:17:30 +00003818 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003819 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003820 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003821
3822 /* If the handle has a write-transaction open, commit the shared-btrees
3823 ** transaction and set the shared state to TRANS_READ.
3824 */
3825 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003826 int rc;
drh075ed302010-10-14 01:17:30 +00003827 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003828 assert( pBt->inTransaction==TRANS_WRITE );
3829 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003830 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003831 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003832 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003833 return rc;
3834 }
drh3da9c042014-12-22 18:41:21 +00003835 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003836 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003837 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003838 }
danielk1977aef0bf62005-12-30 16:28:01 +00003839
danielk197794b30732009-07-02 17:21:57 +00003840 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003841 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003842 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003843}
3844
drh80e35f42007-03-30 14:06:34 +00003845/*
3846** Do both phases of a commit.
3847*/
3848int sqlite3BtreeCommit(Btree *p){
3849 int rc;
drhd677b3d2007-08-20 22:48:41 +00003850 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003851 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3852 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003853 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003854 }
drhd677b3d2007-08-20 22:48:41 +00003855 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003856 return rc;
3857}
3858
drhc39e0002004-05-07 23:50:57 +00003859/*
drhfb982642007-08-30 01:19:59 +00003860** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003861** code to errCode for every cursor on any BtShared that pBtree
3862** references. Or if the writeOnly flag is set to 1, then only
3863** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003864**
drh47b7fc72014-11-11 01:33:57 +00003865** Every cursor is a candidate to be tripped, including cursors
3866** that belong to other database connections that happen to be
3867** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003868**
dan80231042014-11-12 14:56:02 +00003869** This routine gets called when a rollback occurs. If the writeOnly
3870** flag is true, then only write-cursors need be tripped - read-only
3871** cursors save their current positions so that they may continue
3872** following the rollback. Or, if writeOnly is false, all cursors are
3873** tripped. In general, writeOnly is false if the transaction being
3874** rolled back modified the database schema. In this case b-tree root
3875** pages may be moved or deleted from the database altogether, making
3876** it unsafe for read cursors to continue.
3877**
3878** If the writeOnly flag is true and an error is encountered while
3879** saving the current position of a read-only cursor, all cursors,
3880** including all read-cursors are tripped.
3881**
3882** SQLITE_OK is returned if successful, or if an error occurs while
3883** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003884*/
dan80231042014-11-12 14:56:02 +00003885int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003886 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003887 int rc = SQLITE_OK;
3888
drh47b7fc72014-11-11 01:33:57 +00003889 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003890 if( pBtree ){
3891 sqlite3BtreeEnter(pBtree);
3892 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3893 int i;
3894 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003895 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003896 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003897 if( rc!=SQLITE_OK ){
3898 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3899 break;
3900 }
3901 }
3902 }else{
3903 sqlite3BtreeClearCursor(p);
3904 p->eState = CURSOR_FAULT;
3905 p->skipNext = errCode;
3906 }
3907 for(i=0; i<=p->iPage; i++){
3908 releasePage(p->apPage[i]);
3909 p->apPage[i] = 0;
3910 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003911 }
dan80231042014-11-12 14:56:02 +00003912 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003913 }
dan80231042014-11-12 14:56:02 +00003914 return rc;
drhfb982642007-08-30 01:19:59 +00003915}
3916
3917/*
drh47b7fc72014-11-11 01:33:57 +00003918** Rollback the transaction in progress.
3919**
3920** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3921** Only write cursors are tripped if writeOnly is true but all cursors are
3922** tripped if writeOnly is false. Any attempt to use
3923** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003924**
3925** This will release the write lock on the database file. If there
3926** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003927*/
drh47b7fc72014-11-11 01:33:57 +00003928int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003929 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003930 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003931 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003932
drh47b7fc72014-11-11 01:33:57 +00003933 assert( writeOnly==1 || writeOnly==0 );
3934 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003935 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003936 if( tripCode==SQLITE_OK ){
3937 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003938 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003939 }else{
3940 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003941 }
drh0f198a72012-02-13 16:43:16 +00003942 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003943 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3944 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3945 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003946 }
danielk1977aef0bf62005-12-30 16:28:01 +00003947 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003948
3949 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003950 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003951
danielk19778d34dfd2006-01-24 16:37:57 +00003952 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003953 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003954 if( rc2!=SQLITE_OK ){
3955 rc = rc2;
3956 }
3957
drh24cd67e2004-05-10 16:18:47 +00003958 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003959 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003960 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003961 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003962 int nPage = get4byte(28+(u8*)pPage1->aData);
3963 testcase( nPage==0 );
3964 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3965 testcase( pBt->nPage!=nPage );
3966 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003967 releasePage(pPage1);
3968 }
drh85ec3b62013-05-14 23:12:06 +00003969 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003970 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003971 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003972 }
danielk1977aef0bf62005-12-30 16:28:01 +00003973
danielk197794b30732009-07-02 17:21:57 +00003974 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003975 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003976 return rc;
3977}
3978
3979/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003980** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003981** back independently of the main transaction. You must start a transaction
3982** before starting a subtransaction. The subtransaction is ended automatically
3983** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003984**
3985** Statement subtransactions are used around individual SQL statements
3986** that are contained within a BEGIN...COMMIT block. If a constraint
3987** error occurs within the statement, the effect of that one statement
3988** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003989**
3990** A statement sub-transaction is implemented as an anonymous savepoint. The
3991** value passed as the second parameter is the total number of savepoints,
3992** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3993** are no active savepoints and no other statement-transactions open,
3994** iStatement is 1. This anonymous savepoint can be released or rolled back
3995** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003996*/
danielk1977bd434552009-03-18 10:33:00 +00003997int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003998 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003999 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004000 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004001 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004002 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004003 assert( iStatement>0 );
4004 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004005 assert( pBt->inTransaction==TRANS_WRITE );
4006 /* At the pager level, a statement transaction is a savepoint with
4007 ** an index greater than all savepoints created explicitly using
4008 ** SQL statements. It is illegal to open, release or rollback any
4009 ** such savepoints while the statement transaction savepoint is active.
4010 */
4011 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004012 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004013 return rc;
4014}
4015
4016/*
danielk1977fd7f0452008-12-17 17:30:26 +00004017** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4018** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004019** savepoint identified by parameter iSavepoint, depending on the value
4020** of op.
4021**
4022** Normally, iSavepoint is greater than or equal to zero. However, if op is
4023** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4024** contents of the entire transaction are rolled back. This is different
4025** from a normal transaction rollback, as no locks are released and the
4026** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004027*/
4028int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4029 int rc = SQLITE_OK;
4030 if( p && p->inTrans==TRANS_WRITE ){
4031 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004032 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4033 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4034 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00004035 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00004036 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004037 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4038 pBt->nPage = 0;
4039 }
drh9f0bbf92009-01-02 21:08:09 +00004040 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004041 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004042
4043 /* The database size was written into the offset 28 of the header
4044 ** when the transaction started, so we know that the value at offset
4045 ** 28 is nonzero. */
4046 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004047 }
danielk1977fd7f0452008-12-17 17:30:26 +00004048 sqlite3BtreeLeave(p);
4049 }
4050 return rc;
4051}
4052
4053/*
drh8b2f49b2001-06-08 00:21:52 +00004054** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004055** iTable. If a read-only cursor is requested, it is assumed that
4056** the caller already has at least a read-only transaction open
4057** on the database already. If a write-cursor is requested, then
4058** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004059**
drhe807bdb2016-01-21 17:06:33 +00004060** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4061** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4062** can be used for reading or for writing if other conditions for writing
4063** are also met. These are the conditions that must be met in order
4064** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004065**
drhe807bdb2016-01-21 17:06:33 +00004066** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004067**
drhfe5d71d2007-03-19 11:54:10 +00004068** 2: Other database connections that share the same pager cache
4069** but which are not in the READ_UNCOMMITTED state may not have
4070** cursors open with wrFlag==0 on the same table. Otherwise
4071** the changes made by this write cursor would be visible to
4072** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004073**
4074** 3: The database must be writable (not on read-only media)
4075**
4076** 4: There must be an active transaction.
4077**
drhe807bdb2016-01-21 17:06:33 +00004078** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4079** is set. If FORDELETE is set, that is a hint to the implementation that
4080** this cursor will only be used to seek to and delete entries of an index
4081** as part of a larger DELETE statement. The FORDELETE hint is not used by
4082** this implementation. But in a hypothetical alternative storage engine
4083** in which index entries are automatically deleted when corresponding table
4084** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4085** operations on this cursor can be no-ops and all READ operations can
4086** return a null row (2-bytes: 0x01 0x00).
4087**
drh6446c4d2001-12-15 14:22:18 +00004088** No checking is done to make sure that page iTable really is the
4089** root page of a b-tree. If it is not, then the cursor acquired
4090** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004091**
drhf25a5072009-11-18 23:01:25 +00004092** It is assumed that the sqlite3BtreeCursorZero() has been called
4093** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004094*/
drhd677b3d2007-08-20 22:48:41 +00004095static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004096 Btree *p, /* The btree */
4097 int iTable, /* Root page of table to open */
4098 int wrFlag, /* 1 to write. 0 read-only */
4099 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4100 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004101){
danielk19773e8add92009-07-04 17:16:00 +00004102 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004103 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004104
drh1fee73e2007-08-29 04:00:57 +00004105 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004106 assert( wrFlag==0
4107 || wrFlag==BTREE_WRCSR
4108 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4109 );
danielk197796d48e92009-06-29 06:00:37 +00004110
danielk1977602b4662009-07-02 07:47:33 +00004111 /* The following assert statements verify that if this is a sharable
4112 ** b-tree database, the connection is holding the required table locks,
4113 ** and that no other connection has any open cursor that conflicts with
4114 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004115 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004116 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4117
danielk19773e8add92009-07-04 17:16:00 +00004118 /* Assert that the caller has opened the required transaction. */
4119 assert( p->inTrans>TRANS_NONE );
4120 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4121 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004122 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004123
drh3fbb0222014-09-24 19:47:27 +00004124 if( wrFlag ){
4125 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004126 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004127 }
drhb1299152010-03-30 22:58:33 +00004128 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004129 assert( wrFlag==0 );
4130 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004131 }
danielk1977aef0bf62005-12-30 16:28:01 +00004132
danielk1977aef0bf62005-12-30 16:28:01 +00004133 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004134 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004135 pCur->pgnoRoot = (Pgno)iTable;
4136 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004137 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004138 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004139 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004140 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004141 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004142 /* If there are two or more cursors on the same btree, then all such
4143 ** cursors *must* have the BTCF_Multiple flag set. */
4144 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4145 if( pX->pgnoRoot==(Pgno)iTable ){
4146 pX->curFlags |= BTCF_Multiple;
4147 pCur->curFlags |= BTCF_Multiple;
4148 }
drha059ad02001-04-17 20:09:11 +00004149 }
drh27fb7462015-06-30 02:47:36 +00004150 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004151 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004152 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004153 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004154}
drhd677b3d2007-08-20 22:48:41 +00004155int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004156 Btree *p, /* The btree */
4157 int iTable, /* Root page of table to open */
4158 int wrFlag, /* 1 to write. 0 read-only */
4159 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4160 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004161){
4162 int rc;
dan08f901b2015-05-25 19:24:36 +00004163 if( iTable<1 ){
4164 rc = SQLITE_CORRUPT_BKPT;
4165 }else{
4166 sqlite3BtreeEnter(p);
4167 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4168 sqlite3BtreeLeave(p);
4169 }
drhd677b3d2007-08-20 22:48:41 +00004170 return rc;
4171}
drh7f751222009-03-17 22:33:00 +00004172
4173/*
4174** Return the size of a BtCursor object in bytes.
4175**
4176** This interfaces is needed so that users of cursors can preallocate
4177** sufficient storage to hold a cursor. The BtCursor object is opaque
4178** to users so they cannot do the sizeof() themselves - they must call
4179** this routine.
4180*/
4181int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004182 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004183}
4184
drh7f751222009-03-17 22:33:00 +00004185/*
drhf25a5072009-11-18 23:01:25 +00004186** Initialize memory that will be converted into a BtCursor object.
4187**
4188** The simple approach here would be to memset() the entire object
4189** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4190** do not need to be zeroed and they are large, so we can save a lot
4191** of run-time by skipping the initialization of those elements.
4192*/
4193void sqlite3BtreeCursorZero(BtCursor *p){
4194 memset(p, 0, offsetof(BtCursor, iPage));
4195}
4196
4197/*
drh5e00f6c2001-09-13 13:46:56 +00004198** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004199** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004200*/
drh3aac2dd2004-04-26 14:10:20 +00004201int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004202 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004203 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004204 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004205 BtShared *pBt = pCur->pBt;
4206 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004207 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004208 assert( pBt->pCursor!=0 );
4209 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004210 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004211 }else{
4212 BtCursor *pPrev = pBt->pCursor;
4213 do{
4214 if( pPrev->pNext==pCur ){
4215 pPrev->pNext = pCur->pNext;
4216 break;
4217 }
4218 pPrev = pPrev->pNext;
4219 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004220 }
danielk197771d5d2c2008-09-29 11:49:47 +00004221 for(i=0; i<=pCur->iPage; i++){
4222 releasePage(pCur->apPage[i]);
4223 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004224 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004225 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004226 /* sqlite3_free(pCur); */
4227 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004228 }
drh8c42ca92001-06-22 19:15:00 +00004229 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004230}
4231
drh5e2f8b92001-05-28 00:41:15 +00004232/*
drh86057612007-06-26 01:04:48 +00004233** Make sure the BtCursor* given in the argument has a valid
4234** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004235** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004236**
4237** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004238** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004239*/
drh9188b382004-05-14 21:12:22 +00004240#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004241 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004242 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004243 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004244 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004245 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004246 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004247 }
danielk19771cc5ed82007-05-16 17:28:43 +00004248#else
4249 #define assertCellInfo(x)
4250#endif
drhc5b41ac2015-06-17 02:11:46 +00004251static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4252 if( pCur->info.nSize==0 ){
4253 int iPage = pCur->iPage;
4254 pCur->curFlags |= BTCF_ValidNKey;
4255 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4256 }else{
4257 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004258 }
drhc5b41ac2015-06-17 02:11:46 +00004259}
drh9188b382004-05-14 21:12:22 +00004260
drhea8ffdf2009-07-22 00:35:23 +00004261#ifndef NDEBUG /* The next routine used only within assert() statements */
4262/*
4263** Return true if the given BtCursor is valid. A valid cursor is one
4264** that is currently pointing to a row in a (non-empty) table.
4265** This is a verification routine is used only within assert() statements.
4266*/
4267int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4268 return pCur && pCur->eState==CURSOR_VALID;
4269}
4270#endif /* NDEBUG */
4271
drh9188b382004-05-14 21:12:22 +00004272/*
drha7c90c42016-06-04 20:37:10 +00004273** Return the value of the integer key or "rowid" for a table btree.
4274** This routine is only valid for a cursor that is pointing into a
4275** ordinary table btree. If the cursor points to an index btree or
4276** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004277*/
drha7c90c42016-06-04 20:37:10 +00004278i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004279 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004280 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004281 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004282 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004283 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004284}
drh2af926b2001-05-15 00:39:25 +00004285
drh72f82862001-05-24 21:06:34 +00004286/*
drha7c90c42016-06-04 20:37:10 +00004287** Return the number of bytes of payload for the entry that pCur is
4288** currently pointing to. For table btrees, this will be the amount
4289** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004290**
4291** The caller must guarantee that the cursor is pointing to a non-NULL
4292** valid entry. In other words, the calling procedure must guarantee
4293** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004294*/
drha7c90c42016-06-04 20:37:10 +00004295u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4296 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004297 assert( pCur->eState==CURSOR_VALID );
4298 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004299 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004300}
4301
4302/*
danielk1977d04417962007-05-02 13:16:30 +00004303** Given the page number of an overflow page in the database (parameter
4304** ovfl), this function finds the page number of the next page in the
4305** linked list of overflow pages. If possible, it uses the auto-vacuum
4306** pointer-map data instead of reading the content of page ovfl to do so.
4307**
4308** If an error occurs an SQLite error code is returned. Otherwise:
4309**
danielk1977bea2a942009-01-20 17:06:27 +00004310** The page number of the next overflow page in the linked list is
4311** written to *pPgnoNext. If page ovfl is the last page in its linked
4312** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004313**
danielk1977bea2a942009-01-20 17:06:27 +00004314** If ppPage is not NULL, and a reference to the MemPage object corresponding
4315** to page number pOvfl was obtained, then *ppPage is set to point to that
4316** reference. It is the responsibility of the caller to call releasePage()
4317** on *ppPage to free the reference. In no reference was obtained (because
4318** the pointer-map was used to obtain the value for *pPgnoNext), then
4319** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004320*/
4321static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004322 BtShared *pBt, /* The database file */
4323 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004324 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004325 Pgno *pPgnoNext /* OUT: Next overflow page number */
4326){
4327 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004328 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004329 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004330
drh1fee73e2007-08-29 04:00:57 +00004331 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004332 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004333
4334#ifndef SQLITE_OMIT_AUTOVACUUM
4335 /* Try to find the next page in the overflow list using the
4336 ** autovacuum pointer-map pages. Guess that the next page in
4337 ** the overflow list is page number (ovfl+1). If that guess turns
4338 ** out to be wrong, fall back to loading the data of page
4339 ** number ovfl to determine the next page number.
4340 */
4341 if( pBt->autoVacuum ){
4342 Pgno pgno;
4343 Pgno iGuess = ovfl+1;
4344 u8 eType;
4345
4346 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4347 iGuess++;
4348 }
4349
drhb1299152010-03-30 22:58:33 +00004350 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004351 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004352 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004353 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004354 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004355 }
4356 }
4357 }
4358#endif
4359
danielk1977d8a3f3d2009-07-11 11:45:23 +00004360 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004361 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004362 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004363 assert( rc==SQLITE_OK || pPage==0 );
4364 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004365 next = get4byte(pPage->aData);
4366 }
danielk1977443c0592009-01-16 15:21:05 +00004367 }
danielk197745d68822009-01-16 16:23:38 +00004368
danielk1977bea2a942009-01-20 17:06:27 +00004369 *pPgnoNext = next;
4370 if( ppPage ){
4371 *ppPage = pPage;
4372 }else{
4373 releasePage(pPage);
4374 }
4375 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004376}
4377
danielk1977da107192007-05-04 08:32:13 +00004378/*
4379** Copy data from a buffer to a page, or from a page to a buffer.
4380**
4381** pPayload is a pointer to data stored on database page pDbPage.
4382** If argument eOp is false, then nByte bytes of data are copied
4383** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4384** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4385** of data are copied from the buffer pBuf to pPayload.
4386**
4387** SQLITE_OK is returned on success, otherwise an error code.
4388*/
4389static int copyPayload(
4390 void *pPayload, /* Pointer to page data */
4391 void *pBuf, /* Pointer to buffer */
4392 int nByte, /* Number of bytes to copy */
4393 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4394 DbPage *pDbPage /* Page containing pPayload */
4395){
4396 if( eOp ){
4397 /* Copy data from buffer to page (a write operation) */
4398 int rc = sqlite3PagerWrite(pDbPage);
4399 if( rc!=SQLITE_OK ){
4400 return rc;
4401 }
4402 memcpy(pPayload, pBuf, nByte);
4403 }else{
4404 /* Copy data from page to buffer (a read operation) */
4405 memcpy(pBuf, pPayload, nByte);
4406 }
4407 return SQLITE_OK;
4408}
danielk1977d04417962007-05-02 13:16:30 +00004409
4410/*
danielk19779f8d6402007-05-02 17:48:45 +00004411** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004412** for the entry that the pCur cursor is pointing to. The eOp
4413** argument is interpreted as follows:
4414**
4415** 0: The operation is a read. Populate the overflow cache.
4416** 1: The operation is a write. Populate the overflow cache.
4417** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004418**
4419** A total of "amt" bytes are read or written beginning at "offset".
4420** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004421**
drh3bcdfd22009-07-12 02:32:21 +00004422** The content being read or written might appear on the main page
4423** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004424**
dan5a500af2014-03-11 20:33:04 +00004425** If the current cursor entry uses one or more overflow pages and the
4426** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004427** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004428** Subsequent calls use this cache to make seeking to the supplied offset
4429** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004430**
4431** Once an overflow page-list cache has been allocated, it may be
4432** invalidated if some other cursor writes to the same table, or if
4433** the cursor is moved to a different row. Additionally, in auto-vacuum
4434** mode, the following events may invalidate an overflow page-list cache.
4435**
4436** * An incremental vacuum,
4437** * A commit in auto_vacuum="full" mode,
4438** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004439*/
danielk19779f8d6402007-05-02 17:48:45 +00004440static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004441 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004442 u32 offset, /* Begin reading this far into payload */
4443 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004444 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004445 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004446){
4447 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004448 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004449 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004450 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004451 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004452#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004453 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004454 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004455#endif
drh3aac2dd2004-04-26 14:10:20 +00004456
danielk1977da107192007-05-04 08:32:13 +00004457 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004458 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004459 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004460 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004461 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004462
drh86057612007-06-26 01:04:48 +00004463 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004464 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004465#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004466 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004467#endif
drhab1cc582014-09-23 21:25:19 +00004468 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004469
drh0b982072016-03-22 14:10:45 +00004470 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004471 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004472 /* Trying to read or write past the end of the data is an error. The
4473 ** conditional above is really:
4474 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4475 ** but is recast into its current form to avoid integer overflow problems
4476 */
danielk197767fd7a92008-09-10 17:53:35 +00004477 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004478 }
danielk1977da107192007-05-04 08:32:13 +00004479
4480 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004481 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004482 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004483 if( a+offset>pCur->info.nLocal ){
4484 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004485 }
dan5a500af2014-03-11 20:33:04 +00004486 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004487 offset = 0;
drha34b6762004-05-07 13:30:42 +00004488 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004489 amt -= a;
drhdd793422001-06-28 01:54:48 +00004490 }else{
drhfa1a98a2004-05-14 19:08:17 +00004491 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004492 }
danielk1977da107192007-05-04 08:32:13 +00004493
dan85753662014-12-11 16:38:18 +00004494
danielk1977da107192007-05-04 08:32:13 +00004495 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004496 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004497 Pgno nextPage;
4498
drhfa1a98a2004-05-14 19:08:17 +00004499 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004500
drha38c9512014-04-01 01:24:34 +00004501 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4502 ** Except, do not allocate aOverflow[] for eOp==2.
4503 **
4504 ** The aOverflow[] array is sized at one entry for each overflow page
4505 ** in the overflow chain. The page number of the first overflow page is
4506 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4507 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004508 */
drh036dbec2014-03-11 23:40:44 +00004509 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004510 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004511 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004512 Pgno *aNew = (Pgno*)sqlite3Realloc(
4513 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004514 );
4515 if( aNew==0 ){
mistachkinfad30392016-02-13 23:43:46 +00004516 rc = SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004517 }else{
4518 pCur->nOvflAlloc = nOvfl*2;
4519 pCur->aOverflow = aNew;
4520 }
4521 }
4522 if( rc==SQLITE_OK ){
4523 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004524 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004525 }
4526 }
danielk1977da107192007-05-04 08:32:13 +00004527
4528 /* If the overflow page-list cache has been allocated and the
4529 ** entry for the first required overflow page is valid, skip
4530 ** directly to it.
4531 */
drh3f387402014-09-24 01:23:00 +00004532 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4533 && pCur->aOverflow[offset/ovflSize]
4534 ){
danielk19772dec9702007-05-02 16:48:37 +00004535 iIdx = (offset/ovflSize);
4536 nextPage = pCur->aOverflow[iIdx];
4537 offset = (offset%ovflSize);
4538 }
danielk1977da107192007-05-04 08:32:13 +00004539
4540 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4541
danielk1977da107192007-05-04 08:32:13 +00004542 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004543 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
drhb0df9632015-10-16 23:55:08 +00004544 assert( pCur->aOverflow[iIdx]==0
4545 || pCur->aOverflow[iIdx]==nextPage
4546 || CORRUPT_DB );
danielk1977da107192007-05-04 08:32:13 +00004547 pCur->aOverflow[iIdx] = nextPage;
4548 }
danielk1977da107192007-05-04 08:32:13 +00004549
danielk1977d04417962007-05-02 13:16:30 +00004550 if( offset>=ovflSize ){
4551 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004552 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004553 ** data is not required. So first try to lookup the overflow
4554 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004555 ** function.
drha38c9512014-04-01 01:24:34 +00004556 **
4557 ** Note that the aOverflow[] array must be allocated because eOp!=2
4558 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004559 */
drha38c9512014-04-01 01:24:34 +00004560 assert( eOp!=2 );
4561 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004562 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004563 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004564 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004565 }else{
danielk1977da107192007-05-04 08:32:13 +00004566 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004567 }
danielk1977da107192007-05-04 08:32:13 +00004568 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004569 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004570 /* Need to read this page properly. It contains some of the
4571 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004572 */
danf4ba1092011-10-08 14:57:07 +00004573#ifdef SQLITE_DIRECT_OVERFLOW_READ
4574 sqlite3_file *fd;
4575#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004576 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004577 if( a + offset > ovflSize ){
4578 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004579 }
danf4ba1092011-10-08 14:57:07 +00004580
4581#ifdef SQLITE_DIRECT_OVERFLOW_READ
4582 /* If all the following are true:
4583 **
4584 ** 1) this is a read operation, and
4585 ** 2) data is required from the start of this overflow page, and
4586 ** 3) the database is file-backed, and
4587 ** 4) there is no open write-transaction, and
4588 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004589 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004590 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004591 **
4592 ** then data can be read directly from the database file into the
4593 ** output buffer, bypassing the page-cache altogether. This speeds
4594 ** up loading large records that span many overflow pages.
4595 */
dan5a500af2014-03-11 20:33:04 +00004596 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004597 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004598 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004599 && pBt->inTransaction==TRANS_READ /* (4) */
4600 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4601 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004602 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004603 ){
4604 u8 aSave[4];
4605 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004606 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004607 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004608 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004609 nextPage = get4byte(aWrite);
4610 memcpy(aWrite, aSave, 4);
4611 }else
4612#endif
4613
4614 {
4615 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004616 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004617 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004618 );
danf4ba1092011-10-08 14:57:07 +00004619 if( rc==SQLITE_OK ){
4620 aPayload = sqlite3PagerGetData(pDbPage);
4621 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004622 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004623 sqlite3PagerUnref(pDbPage);
4624 offset = 0;
4625 }
4626 }
4627 amt -= a;
4628 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004629 }
drh2af926b2001-05-15 00:39:25 +00004630 }
drh2af926b2001-05-15 00:39:25 +00004631 }
danielk1977cfe9a692004-06-16 12:00:29 +00004632
danielk1977da107192007-05-04 08:32:13 +00004633 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004634 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004635 }
danielk1977da107192007-05-04 08:32:13 +00004636 return rc;
drh2af926b2001-05-15 00:39:25 +00004637}
4638
drh72f82862001-05-24 21:06:34 +00004639/*
drh3aac2dd2004-04-26 14:10:20 +00004640** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004641** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004642** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004643**
drh5d1a8722009-07-22 18:07:40 +00004644** The caller must ensure that pCur is pointing to a valid row
4645** in the table.
4646**
drh3aac2dd2004-04-26 14:10:20 +00004647** Return SQLITE_OK on success or an error code if anything goes
4648** wrong. An error is returned if "offset+amt" is larger than
4649** the available payload.
drh72f82862001-05-24 21:06:34 +00004650*/
drha34b6762004-05-07 13:30:42 +00004651int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004652 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004653 assert( pCur->eState==CURSOR_VALID );
4654 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4655 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4656 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004657}
4658
4659/*
drh3aac2dd2004-04-26 14:10:20 +00004660** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004661** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004662** begins at "offset".
4663**
4664** Return SQLITE_OK on success or an error code if anything goes
4665** wrong. An error is returned if "offset+amt" is larger than
4666** the available payload.
drh72f82862001-05-24 21:06:34 +00004667*/
drh3aac2dd2004-04-26 14:10:20 +00004668int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004669 int rc;
4670
danielk19773588ceb2008-06-10 17:30:26 +00004671#ifndef SQLITE_OMIT_INCRBLOB
4672 if ( pCur->eState==CURSOR_INVALID ){
4673 return SQLITE_ABORT;
4674 }
4675#endif
4676
dan7a2347e2016-01-07 16:43:54 +00004677 assert( cursorOwnsBtShared(pCur) );
drha3460582008-07-11 21:02:53 +00004678 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004679 if( rc==SQLITE_OK ){
4680 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004681 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4682 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004683 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004684 }
4685 return rc;
drh2af926b2001-05-15 00:39:25 +00004686}
4687
drh72f82862001-05-24 21:06:34 +00004688/*
drh0e1c19e2004-05-11 00:58:56 +00004689** Return a pointer to payload information from the entry that the
4690** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004691** the key if index btrees (pPage->intKey==0) and is the data for
4692** table btrees (pPage->intKey==1). The number of bytes of available
4693** key/data is written into *pAmt. If *pAmt==0, then the value
4694** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004695**
4696** This routine is an optimization. It is common for the entire key
4697** and data to fit on the local page and for there to be no overflow
4698** pages. When that is so, this routine can be used to access the
4699** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004700** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004701** the key/data and copy it into a preallocated buffer.
4702**
4703** The pointer returned by this routine looks directly into the cached
4704** page of the database. The data might change or move the next time
4705** any btree routine is called.
4706*/
drh2a8d2262013-12-09 20:43:22 +00004707static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004708 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004709 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004710){
drhf3392e32015-04-15 17:26:55 +00004711 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004712 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004713 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004714 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004715 assert( cursorOwnsBtShared(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004716 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004717 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004718 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4719 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4720 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4721 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4722 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004723 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004724}
4725
4726
4727/*
drhe51c44f2004-05-30 20:46:09 +00004728** For the entry that cursor pCur is point to, return as
4729** many bytes of the key or data as are available on the local
4730** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004731**
4732** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004733** or be destroyed on the next call to any Btree routine,
4734** including calls from other threads against the same cache.
4735** Hence, a mutex on the BtShared should be held prior to calling
4736** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004737**
4738** These routines is used to get quick access to key and data
4739** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004740*/
drha7c90c42016-06-04 20:37:10 +00004741const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004742 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004743}
4744
4745
4746/*
drh8178a752003-01-05 21:41:40 +00004747** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004748** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004749**
4750** This function returns SQLITE_CORRUPT if the page-header flags field of
4751** the new child page does not match the flags field of the parent (i.e.
4752** if an intkey page appears to be the parent of a non-intkey page, or
4753** vice-versa).
drh72f82862001-05-24 21:06:34 +00004754*/
drh3aac2dd2004-04-26 14:10:20 +00004755static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004756 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004757
dan7a2347e2016-01-07 16:43:54 +00004758 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004759 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004760 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004761 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004762 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4763 return SQLITE_CORRUPT_BKPT;
4764 }
drh271efa52004-05-30 19:19:05 +00004765 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004766 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh28f58dd2015-06-27 19:45:03 +00004767 pCur->iPage++;
4768 pCur->aiIdx[pCur->iPage] = 0;
4769 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4770 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004771}
4772
drhcbd33492015-03-25 13:06:54 +00004773#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004774/*
4775** Page pParent is an internal (non-leaf) tree page. This function
4776** asserts that page number iChild is the left-child if the iIdx'th
4777** cell in page pParent. Or, if iIdx is equal to the total number of
4778** cells in pParent, that page number iChild is the right-child of
4779** the page.
4780*/
4781static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004782 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4783 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004784 assert( iIdx<=pParent->nCell );
4785 if( iIdx==pParent->nCell ){
4786 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4787 }else{
4788 assert( get4byte(findCell(pParent, iIdx))==iChild );
4789 }
4790}
4791#else
4792# define assertParentIndex(x,y,z)
4793#endif
4794
drh72f82862001-05-24 21:06:34 +00004795/*
drh5e2f8b92001-05-28 00:41:15 +00004796** Move the cursor up to the parent page.
4797**
4798** pCur->idx is set to the cell index that contains the pointer
4799** to the page we are coming from. If we are coming from the
4800** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004801** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004802*/
danielk197730548662009-07-09 05:07:37 +00004803static void moveToParent(BtCursor *pCur){
dan7a2347e2016-01-07 16:43:54 +00004804 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004805 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004806 assert( pCur->iPage>0 );
4807 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004808 assertParentIndex(
4809 pCur->apPage[pCur->iPage-1],
4810 pCur->aiIdx[pCur->iPage-1],
4811 pCur->apPage[pCur->iPage]->pgno
4812 );
dan6c2688c2012-01-12 15:05:03 +00004813 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004814 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004815 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhbbf0f862015-06-27 14:59:26 +00004816 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004817}
4818
4819/*
danielk19778f880a82009-07-13 09:41:45 +00004820** Move the cursor to point to the root page of its b-tree structure.
4821**
4822** If the table has a virtual root page, then the cursor is moved to point
4823** to the virtual root page instead of the actual root page. A table has a
4824** virtual root page when the actual root page contains no cells and a
4825** single child page. This can only happen with the table rooted at page 1.
4826**
4827** If the b-tree structure is empty, the cursor state is set to
4828** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4829** cell located on the root (or virtual root) page and the cursor state
4830** is set to CURSOR_VALID.
4831**
4832** If this function returns successfully, it may be assumed that the
4833** page-header flags indicate that the [virtual] root-page is the expected
4834** kind of b-tree page (i.e. if when opening the cursor the caller did not
4835** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4836** indicating a table b-tree, or if the caller did specify a KeyInfo
4837** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4838** b-tree).
drh72f82862001-05-24 21:06:34 +00004839*/
drh5e2f8b92001-05-28 00:41:15 +00004840static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004841 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004842 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004843
dan7a2347e2016-01-07 16:43:54 +00004844 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00004845 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4846 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4847 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4848 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4849 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004850 assert( pCur->skipNext!=SQLITE_OK );
4851 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004852 }
danielk1977be51a652008-10-08 17:58:48 +00004853 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004854 }
danielk197771d5d2c2008-09-29 11:49:47 +00004855
4856 if( pCur->iPage>=0 ){
drhbbf0f862015-06-27 14:59:26 +00004857 while( pCur->iPage ){
4858 assert( pCur->apPage[pCur->iPage]!=0 );
4859 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4860 }
dana205a482011-08-27 18:48:57 +00004861 }else if( pCur->pgnoRoot==0 ){
4862 pCur->eState = CURSOR_INVALID;
4863 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004864 }else{
drh28f58dd2015-06-27 19:45:03 +00004865 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004866 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004867 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004868 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004869 pCur->eState = CURSOR_INVALID;
4870 return rc;
4871 }
danielk1977172114a2009-07-07 15:47:12 +00004872 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004873 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004874 }
danielk197771d5d2c2008-09-29 11:49:47 +00004875 pRoot = pCur->apPage[0];
4876 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004877
4878 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4879 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4880 ** NULL, the caller expects a table b-tree. If this is not the case,
4881 ** return an SQLITE_CORRUPT error.
4882 **
4883 ** Earlier versions of SQLite assumed that this test could not fail
4884 ** if the root page was already loaded when this function was called (i.e.
4885 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4886 ** in such a way that page pRoot is linked into a second b-tree table
4887 ** (or the freelist). */
4888 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4889 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4890 return SQLITE_CORRUPT_BKPT;
4891 }
danielk19778f880a82009-07-13 09:41:45 +00004892
danielk197771d5d2c2008-09-29 11:49:47 +00004893 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004894 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004895 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004896
drh4e8fe3f2013-12-06 23:25:27 +00004897 if( pRoot->nCell>0 ){
4898 pCur->eState = CURSOR_VALID;
4899 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004900 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004901 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004902 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004903 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004904 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004905 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004906 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004907 }
4908 return rc;
drh72f82862001-05-24 21:06:34 +00004909}
drh2af926b2001-05-15 00:39:25 +00004910
drh5e2f8b92001-05-28 00:41:15 +00004911/*
4912** Move the cursor down to the left-most leaf entry beneath the
4913** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004914**
4915** The left-most leaf is the one with the smallest key - the first
4916** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004917*/
4918static int moveToLeftmost(BtCursor *pCur){
4919 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004920 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004921 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004922
dan7a2347e2016-01-07 16:43:54 +00004923 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004924 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004925 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4926 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4927 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004928 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004929 }
drhd677b3d2007-08-20 22:48:41 +00004930 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004931}
4932
drh2dcc9aa2002-12-04 13:40:25 +00004933/*
4934** Move the cursor down to the right-most leaf entry beneath the
4935** page to which it is currently pointing. Notice the difference
4936** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4937** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4938** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004939**
4940** The right-most entry is the one with the largest key - the last
4941** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004942*/
4943static int moveToRightmost(BtCursor *pCur){
4944 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004945 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004946 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004947
dan7a2347e2016-01-07 16:43:54 +00004948 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004949 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004950 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004951 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004952 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004953 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004954 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004955 }
drhee6438d2014-09-01 13:29:32 +00004956 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4957 assert( pCur->info.nSize==0 );
4958 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4959 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004960}
4961
drh5e00f6c2001-09-13 13:46:56 +00004962/* Move the cursor to the first entry in the table. Return SQLITE_OK
4963** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004964** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004965*/
drh3aac2dd2004-04-26 14:10:20 +00004966int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004967 int rc;
drhd677b3d2007-08-20 22:48:41 +00004968
dan7a2347e2016-01-07 16:43:54 +00004969 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004970 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004971 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004972 if( rc==SQLITE_OK ){
4973 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004974 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004975 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004976 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004977 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004978 *pRes = 0;
4979 rc = moveToLeftmost(pCur);
4980 }
drh5e00f6c2001-09-13 13:46:56 +00004981 }
drh5e00f6c2001-09-13 13:46:56 +00004982 return rc;
4983}
drh5e2f8b92001-05-28 00:41:15 +00004984
drh9562b552002-02-19 15:00:07 +00004985/* Move the cursor to the last entry in the table. Return SQLITE_OK
4986** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004987** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004988*/
drh3aac2dd2004-04-26 14:10:20 +00004989int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004990 int rc;
drhd677b3d2007-08-20 22:48:41 +00004991
dan7a2347e2016-01-07 16:43:54 +00004992 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004993 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004994
4995 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004996 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004997#ifdef SQLITE_DEBUG
4998 /* This block serves to assert() that the cursor really does point
4999 ** to the last entry in the b-tree. */
5000 int ii;
5001 for(ii=0; ii<pCur->iPage; ii++){
5002 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5003 }
5004 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
5005 assert( pCur->apPage[pCur->iPage]->leaf );
5006#endif
5007 return SQLITE_OK;
5008 }
5009
drh9562b552002-02-19 15:00:07 +00005010 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005011 if( rc==SQLITE_OK ){
5012 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005013 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005014 *pRes = 1;
5015 }else{
5016 assert( pCur->eState==CURSOR_VALID );
5017 *pRes = 0;
5018 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005019 if( rc==SQLITE_OK ){
5020 pCur->curFlags |= BTCF_AtLast;
5021 }else{
5022 pCur->curFlags &= ~BTCF_AtLast;
5023 }
5024
drhd677b3d2007-08-20 22:48:41 +00005025 }
drh9562b552002-02-19 15:00:07 +00005026 }
drh9562b552002-02-19 15:00:07 +00005027 return rc;
5028}
5029
drhe14006d2008-03-25 17:23:32 +00005030/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005031** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005032**
drhe63d9992008-08-13 19:11:48 +00005033** For INTKEY tables, the intKey parameter is used. pIdxKey
5034** must be NULL. For index tables, pIdxKey is used and intKey
5035** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005036**
drh5e2f8b92001-05-28 00:41:15 +00005037** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005038** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005039** were present. The cursor might point to an entry that comes
5040** before or after the key.
5041**
drh64022502009-01-09 14:11:04 +00005042** An integer is written into *pRes which is the result of
5043** comparing the key with the entry to which the cursor is
5044** pointing. The meaning of the integer written into
5045** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005046**
5047** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005048** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005049** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005050**
5051** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005052** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005053**
5054** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005055** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005056**
drhb1d607d2015-11-05 22:30:54 +00005057** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5058** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005059*/
drhe63d9992008-08-13 19:11:48 +00005060int sqlite3BtreeMovetoUnpacked(
5061 BtCursor *pCur, /* The cursor to be moved */
5062 UnpackedRecord *pIdxKey, /* Unpacked index key */
5063 i64 intKey, /* The table key */
5064 int biasRight, /* If true, bias the search to the high end */
5065 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005066){
drh72f82862001-05-24 21:06:34 +00005067 int rc;
dan3b9330f2014-02-27 20:44:18 +00005068 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005069
dan7a2347e2016-01-07 16:43:54 +00005070 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005071 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005072 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005073 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005074 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005075
5076 /* If the cursor is already positioned at the point we are trying
5077 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005078 if( pIdxKey==0
5079 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005080 ){
drhe63d9992008-08-13 19:11:48 +00005081 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005082 *pRes = 0;
5083 return SQLITE_OK;
5084 }
drh036dbec2014-03-11 23:40:44 +00005085 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00005086 *pRes = -1;
5087 return SQLITE_OK;
5088 }
5089 }
5090
dan1fed5da2014-02-25 21:01:25 +00005091 if( pIdxKey ){
5092 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005093 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005094 assert( pIdxKey->default_rc==1
5095 || pIdxKey->default_rc==0
5096 || pIdxKey->default_rc==-1
5097 );
drh13a747e2014-03-03 21:46:55 +00005098 }else{
drhb6e8fd12014-03-06 01:56:33 +00005099 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005100 }
5101
drh5e2f8b92001-05-28 00:41:15 +00005102 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005103 if( rc ){
5104 return rc;
5105 }
dana205a482011-08-27 18:48:57 +00005106 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5107 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5108 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005109 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005110 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005111 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005112 return SQLITE_OK;
5113 }
drhc75d8862015-06-27 23:55:20 +00005114 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5115 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005116 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005117 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005118 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005119 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005120 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005121
5122 /* pPage->nCell must be greater than zero. If this is the root-page
5123 ** the cursor would have been INVALID above and this for(;;) loop
5124 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005125 ** would have already detected db corruption. Similarly, pPage must
5126 ** be the right kind (index or table) of b-tree page. Otherwise
5127 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005128 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005129 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005130 lwr = 0;
5131 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005132 assert( biasRight==0 || biasRight==1 );
5133 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005134 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005135 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005136 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005137 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005138 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005139 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005140 while( 0x80 <= *(pCell++) ){
5141 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5142 }
drhd172f862006-01-12 15:01:15 +00005143 }
drha2c20e42008-03-29 16:01:04 +00005144 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005145 if( nCellKey<intKey ){
5146 lwr = idx+1;
5147 if( lwr>upr ){ c = -1; break; }
5148 }else if( nCellKey>intKey ){
5149 upr = idx-1;
5150 if( lwr>upr ){ c = +1; break; }
5151 }else{
5152 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005153 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005154 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005155 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005156 if( !pPage->leaf ){
5157 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005158 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005159 }else{
5160 *pRes = 0;
5161 rc = SQLITE_OK;
5162 goto moveto_finish;
5163 }
drhd793f442013-11-25 14:10:15 +00005164 }
drhebf10b12013-11-25 17:38:26 +00005165 assert( lwr+upr>=0 );
5166 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005167 }
5168 }else{
5169 for(;;){
drhc6827502015-05-28 15:14:32 +00005170 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005171 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005172
drhb2eced52010-08-12 02:41:12 +00005173 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005174 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005175 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005176 ** varint. This information is used to attempt to avoid parsing
5177 ** the entire cell by checking for the cases where the record is
5178 ** stored entirely within the b-tree page by inspecting the first
5179 ** 2 bytes of the cell.
5180 */
drhec3e6b12013-11-25 02:38:55 +00005181 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005182 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005183 /* This branch runs if the record-size field of the cell is a
5184 ** single byte varint and the record fits entirely on the main
5185 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005186 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005187 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005188 }else if( !(pCell[1] & 0x80)
5189 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5190 ){
5191 /* The record-size field is a 2 byte varint and the record
5192 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005193 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005194 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005195 }else{
danielk197711c327a2009-05-04 19:01:26 +00005196 /* The record flows over onto one or more overflow pages. In
5197 ** this case the whole cell needs to be parsed, a buffer allocated
5198 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005199 ** buffer before VdbeRecordCompare() can be called.
5200 **
5201 ** If the record is corrupt, the xRecordCompare routine may read
5202 ** up to two varints past the end of the buffer. An extra 18
5203 ** bytes of padding is allocated at the end of the buffer in
5204 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005205 void *pCellKey;
5206 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005207 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005208 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005209 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5210 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5211 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5212 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005213 if( nCell<2 ){
5214 rc = SQLITE_CORRUPT_BKPT;
5215 goto moveto_finish;
5216 }
5217 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005218 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005219 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005220 goto moveto_finish;
5221 }
drhd793f442013-11-25 14:10:15 +00005222 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005223 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005224 if( rc ){
5225 sqlite3_free(pCellKey);
5226 goto moveto_finish;
5227 }
drh75179de2014-09-16 14:37:35 +00005228 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005229 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005230 }
dan38fdead2014-04-01 10:19:02 +00005231 assert(
5232 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005233 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005234 );
drhbb933ef2013-11-25 15:01:38 +00005235 if( c<0 ){
5236 lwr = idx+1;
5237 }else if( c>0 ){
5238 upr = idx-1;
5239 }else{
5240 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005241 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005242 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005243 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005244 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005245 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005246 }
drhebf10b12013-11-25 17:38:26 +00005247 if( lwr>upr ) break;
5248 assert( lwr+upr>=0 );
5249 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005250 }
drh72f82862001-05-24 21:06:34 +00005251 }
drhb07028f2011-10-14 21:49:18 +00005252 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005253 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005254 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005255 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005256 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005257 *pRes = c;
5258 rc = SQLITE_OK;
5259 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005260 }
5261moveto_next_layer:
5262 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005263 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005264 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005265 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005266 }
drhf49661a2008-12-10 16:45:50 +00005267 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005268 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005269 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005270 }
drh1e968a02008-03-25 00:22:21 +00005271moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005272 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005273 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005274 return rc;
5275}
5276
drhd677b3d2007-08-20 22:48:41 +00005277
drh72f82862001-05-24 21:06:34 +00005278/*
drhc39e0002004-05-07 23:50:57 +00005279** Return TRUE if the cursor is not pointing at an entry of the table.
5280**
5281** TRUE will be returned after a call to sqlite3BtreeNext() moves
5282** past the last entry in the table or sqlite3BtreePrev() moves past
5283** the first entry. TRUE is also returned if the table is empty.
5284*/
5285int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005286 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5287 ** have been deleted? This API will need to change to return an error code
5288 ** as well as the boolean result value.
5289 */
5290 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005291}
5292
5293/*
drhbd03cae2001-06-02 02:40:57 +00005294** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005295** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005296** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005297** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005298**
drhee6438d2014-09-01 13:29:32 +00005299** The main entry point is sqlite3BtreeNext(). That routine is optimized
5300** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5301** to the next cell on the current page. The (slower) btreeNext() helper
5302** routine is called when it is necessary to move to a different page or
5303** to restore the cursor.
5304**
drhe39a7322014-02-03 14:04:11 +00005305** The calling function will set *pRes to 0 or 1. The initial *pRes value
5306** will be 1 if the cursor being stepped corresponds to an SQL index and
5307** if this routine could have been skipped if that SQL index had been
5308** a unique index. Otherwise the caller will have set *pRes to zero.
5309** Zero is the common case. The btree implementation is free to use the
5310** initial *pRes value as a hint to improve performance, but the current
5311** SQLite btree implementation does not. (Note that the comdb2 btree
5312** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005313*/
drhee6438d2014-09-01 13:29:32 +00005314static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005315 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005316 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005317 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005318
dan7a2347e2016-01-07 16:43:54 +00005319 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005320 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005321 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005322 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005323 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005324 rc = restoreCursorPosition(pCur);
5325 if( rc!=SQLITE_OK ){
5326 return rc;
5327 }
5328 if( CURSOR_INVALID==pCur->eState ){
5329 *pRes = 1;
5330 return SQLITE_OK;
5331 }
drh9b47ee32013-08-20 03:13:51 +00005332 if( pCur->skipNext ){
5333 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5334 pCur->eState = CURSOR_VALID;
5335 if( pCur->skipNext>0 ){
5336 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005337 return SQLITE_OK;
5338 }
drhf66f26a2013-08-19 20:04:10 +00005339 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005340 }
danielk1977da184232006-01-05 11:34:32 +00005341 }
danielk1977da184232006-01-05 11:34:32 +00005342
danielk197771d5d2c2008-09-29 11:49:47 +00005343 pPage = pCur->apPage[pCur->iPage];
5344 idx = ++pCur->aiIdx[pCur->iPage];
5345 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005346
5347 /* If the database file is corrupt, it is possible for the value of idx
5348 ** to be invalid here. This can only occur if a second cursor modifies
5349 ** the page while cursor pCur is holding a reference to it. Which can
5350 ** only happen if the database is corrupt in such a way as to link the
5351 ** page into more than one b-tree structure. */
5352 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005353
danielk197771d5d2c2008-09-29 11:49:47 +00005354 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005355 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005356 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005357 if( rc ) return rc;
5358 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005359 }
drh5e2f8b92001-05-28 00:41:15 +00005360 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005361 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005362 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005363 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005364 return SQLITE_OK;
5365 }
danielk197730548662009-07-09 05:07:37 +00005366 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005367 pPage = pCur->apPage[pCur->iPage];
5368 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005369 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005370 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005371 }else{
drhee6438d2014-09-01 13:29:32 +00005372 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005373 }
drh8178a752003-01-05 21:41:40 +00005374 }
drh3aac2dd2004-04-26 14:10:20 +00005375 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005376 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005377 }else{
5378 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005379 }
drh72f82862001-05-24 21:06:34 +00005380}
drhee6438d2014-09-01 13:29:32 +00005381int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5382 MemPage *pPage;
dan7a2347e2016-01-07 16:43:54 +00005383 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005384 assert( pRes!=0 );
5385 assert( *pRes==0 || *pRes==1 );
5386 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5387 pCur->info.nSize = 0;
5388 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5389 *pRes = 0;
5390 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5391 pPage = pCur->apPage[pCur->iPage];
5392 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5393 pCur->aiIdx[pCur->iPage]--;
5394 return btreeNext(pCur, pRes);
5395 }
5396 if( pPage->leaf ){
5397 return SQLITE_OK;
5398 }else{
5399 return moveToLeftmost(pCur);
5400 }
5401}
drh72f82862001-05-24 21:06:34 +00005402
drh3b7511c2001-05-26 13:15:44 +00005403/*
drh2dcc9aa2002-12-04 13:40:25 +00005404** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005405** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005406** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005407** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005408**
drhee6438d2014-09-01 13:29:32 +00005409** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5410** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005411** to the previous cell on the current page. The (slower) btreePrevious()
5412** helper routine is called when it is necessary to move to a different page
5413** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005414**
drhe39a7322014-02-03 14:04:11 +00005415** The calling function will set *pRes to 0 or 1. The initial *pRes value
5416** will be 1 if the cursor being stepped corresponds to an SQL index and
5417** if this routine could have been skipped if that SQL index had been
5418** a unique index. Otherwise the caller will have set *pRes to zero.
5419** Zero is the common case. The btree implementation is free to use the
5420** initial *pRes value as a hint to improve performance, but the current
5421** SQLite btree implementation does not. (Note that the comdb2 btree
5422** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005423*/
drhee6438d2014-09-01 13:29:32 +00005424static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005425 int rc;
drh8178a752003-01-05 21:41:40 +00005426 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005427
dan7a2347e2016-01-07 16:43:54 +00005428 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005429 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005430 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005431 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005432 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5433 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005434 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005435 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005436 if( rc!=SQLITE_OK ){
5437 return rc;
drhf66f26a2013-08-19 20:04:10 +00005438 }
5439 if( CURSOR_INVALID==pCur->eState ){
5440 *pRes = 1;
5441 return SQLITE_OK;
5442 }
drh9b47ee32013-08-20 03:13:51 +00005443 if( pCur->skipNext ){
5444 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5445 pCur->eState = CURSOR_VALID;
5446 if( pCur->skipNext<0 ){
5447 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005448 return SQLITE_OK;
5449 }
drhf66f26a2013-08-19 20:04:10 +00005450 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005451 }
danielk1977da184232006-01-05 11:34:32 +00005452 }
danielk1977da184232006-01-05 11:34:32 +00005453
danielk197771d5d2c2008-09-29 11:49:47 +00005454 pPage = pCur->apPage[pCur->iPage];
5455 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005456 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005457 int idx = pCur->aiIdx[pCur->iPage];
5458 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005459 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005460 rc = moveToRightmost(pCur);
5461 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005462 while( pCur->aiIdx[pCur->iPage]==0 ){
5463 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005464 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005465 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005466 return SQLITE_OK;
5467 }
danielk197730548662009-07-09 05:07:37 +00005468 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005469 }
drhee6438d2014-09-01 13:29:32 +00005470 assert( pCur->info.nSize==0 );
5471 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005472
5473 pCur->aiIdx[pCur->iPage]--;
5474 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005475 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005476 rc = sqlite3BtreePrevious(pCur, pRes);
5477 }else{
5478 rc = SQLITE_OK;
5479 }
drh2dcc9aa2002-12-04 13:40:25 +00005480 }
drh2dcc9aa2002-12-04 13:40:25 +00005481 return rc;
5482}
drhee6438d2014-09-01 13:29:32 +00005483int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
dan7a2347e2016-01-07 16:43:54 +00005484 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005485 assert( pRes!=0 );
5486 assert( *pRes==0 || *pRes==1 );
5487 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5488 *pRes = 0;
5489 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5490 pCur->info.nSize = 0;
5491 if( pCur->eState!=CURSOR_VALID
5492 || pCur->aiIdx[pCur->iPage]==0
5493 || pCur->apPage[pCur->iPage]->leaf==0
5494 ){
5495 return btreePrevious(pCur, pRes);
5496 }
5497 pCur->aiIdx[pCur->iPage]--;
5498 return SQLITE_OK;
5499}
drh2dcc9aa2002-12-04 13:40:25 +00005500
5501/*
drh3b7511c2001-05-26 13:15:44 +00005502** Allocate a new page from the database file.
5503**
danielk19773b8a05f2007-03-19 17:44:26 +00005504** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005505** has already been called on the new page.) The new page has also
5506** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005507** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005508**
5509** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005510** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005511**
drh82e647d2013-03-02 03:25:55 +00005512** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005513** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005514** attempt to keep related pages close to each other in the database file,
5515** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005516**
drh82e647d2013-03-02 03:25:55 +00005517** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5518** anywhere on the free-list, then it is guaranteed to be returned. If
5519** eMode is BTALLOC_LT then the page returned will be less than or equal
5520** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5521** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005522*/
drh4f0c5872007-03-26 22:05:01 +00005523static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005524 BtShared *pBt, /* The btree */
5525 MemPage **ppPage, /* Store pointer to the allocated page here */
5526 Pgno *pPgno, /* Store the page number here */
5527 Pgno nearby, /* Search for a page near this one */
5528 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005529){
drh3aac2dd2004-04-26 14:10:20 +00005530 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005531 int rc;
drh35cd6432009-06-05 14:17:21 +00005532 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005533 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005534 MemPage *pTrunk = 0;
5535 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005536 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005537
drh1fee73e2007-08-29 04:00:57 +00005538 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005539 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005540 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005541 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005542 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5543 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005544 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005545 testcase( n==mxPage-1 );
5546 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005547 return SQLITE_CORRUPT_BKPT;
5548 }
drh3aac2dd2004-04-26 14:10:20 +00005549 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005550 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005551 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005552 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005553 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005554
drh82e647d2013-03-02 03:25:55 +00005555 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005556 ** shows that the page 'nearby' is somewhere on the free-list, then
5557 ** the entire-list will be searched for that page.
5558 */
5559#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005560 if( eMode==BTALLOC_EXACT ){
5561 if( nearby<=mxPage ){
5562 u8 eType;
5563 assert( nearby>0 );
5564 assert( pBt->autoVacuum );
5565 rc = ptrmapGet(pBt, nearby, &eType, 0);
5566 if( rc ) return rc;
5567 if( eType==PTRMAP_FREEPAGE ){
5568 searchList = 1;
5569 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005570 }
dan51f0b6d2013-02-22 20:16:34 +00005571 }else if( eMode==BTALLOC_LE ){
5572 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005573 }
5574#endif
5575
5576 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5577 ** first free-list trunk page. iPrevTrunk is initially 1.
5578 */
danielk19773b8a05f2007-03-19 17:44:26 +00005579 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005580 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005581 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005582
5583 /* The code within this loop is run only once if the 'searchList' variable
5584 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005585 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5586 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005587 */
5588 do {
5589 pPrevTrunk = pTrunk;
5590 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005591 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5592 ** is the page number of the next freelist trunk page in the list or
5593 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005594 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005595 }else{
drh113762a2014-11-19 16:36:25 +00005596 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5597 ** stores the page number of the first page of the freelist, or zero if
5598 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005599 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005600 }
drhdf35a082009-07-09 02:24:35 +00005601 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005602 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005603 rc = SQLITE_CORRUPT_BKPT;
5604 }else{
drh7e8c6f12015-05-28 03:28:27 +00005605 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005606 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005607 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005608 pTrunk = 0;
5609 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005610 }
drhb07028f2011-10-14 21:49:18 +00005611 assert( pTrunk!=0 );
5612 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005613 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5614 ** is the number of leaf page pointers to follow. */
5615 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005616 if( k==0 && !searchList ){
5617 /* The trunk has no leaves and the list is not being searched.
5618 ** So extract the trunk page itself and use it as the newly
5619 ** allocated page */
5620 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005621 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005622 if( rc ){
5623 goto end_allocate_page;
5624 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005625 *pPgno = iTrunk;
5626 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5627 *ppPage = pTrunk;
5628 pTrunk = 0;
5629 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005630 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005631 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005632 rc = SQLITE_CORRUPT_BKPT;
5633 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005634#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005635 }else if( searchList
5636 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5637 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005638 /* The list is being searched and this trunk page is the page
5639 ** to allocate, regardless of whether it has leaves.
5640 */
dan51f0b6d2013-02-22 20:16:34 +00005641 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005642 *ppPage = pTrunk;
5643 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005644 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005645 if( rc ){
5646 goto end_allocate_page;
5647 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005648 if( k==0 ){
5649 if( !pPrevTrunk ){
5650 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5651 }else{
danf48c3552010-08-23 15:41:24 +00005652 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5653 if( rc!=SQLITE_OK ){
5654 goto end_allocate_page;
5655 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005656 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5657 }
5658 }else{
5659 /* The trunk page is required by the caller but it contains
5660 ** pointers to free-list leaves. The first leaf becomes a trunk
5661 ** page in this case.
5662 */
5663 MemPage *pNewTrunk;
5664 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005665 if( iNewTrunk>mxPage ){
5666 rc = SQLITE_CORRUPT_BKPT;
5667 goto end_allocate_page;
5668 }
drhdf35a082009-07-09 02:24:35 +00005669 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005670 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005671 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005672 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005673 }
danielk19773b8a05f2007-03-19 17:44:26 +00005674 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005675 if( rc!=SQLITE_OK ){
5676 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005677 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005678 }
5679 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5680 put4byte(&pNewTrunk->aData[4], k-1);
5681 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005682 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005683 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005684 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005685 put4byte(&pPage1->aData[32], iNewTrunk);
5686 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005687 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005688 if( rc ){
5689 goto end_allocate_page;
5690 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005691 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5692 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005693 }
5694 pTrunk = 0;
5695 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5696#endif
danielk1977e5765212009-06-17 11:13:28 +00005697 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005698 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005699 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005700 Pgno iPage;
5701 unsigned char *aData = pTrunk->aData;
5702 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005703 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005704 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005705 if( eMode==BTALLOC_LE ){
5706 for(i=0; i<k; i++){
5707 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005708 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005709 closest = i;
5710 break;
5711 }
5712 }
5713 }else{
5714 int dist;
5715 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5716 for(i=1; i<k; i++){
5717 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5718 if( d2<dist ){
5719 closest = i;
5720 dist = d2;
5721 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005722 }
5723 }
5724 }else{
5725 closest = 0;
5726 }
5727
5728 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005729 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005730 if( iPage>mxPage ){
5731 rc = SQLITE_CORRUPT_BKPT;
5732 goto end_allocate_page;
5733 }
drhdf35a082009-07-09 02:24:35 +00005734 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005735 if( !searchList
5736 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5737 ){
danielk1977bea2a942009-01-20 17:06:27 +00005738 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005739 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005740 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5741 ": %d more free pages\n",
5742 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005743 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5744 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005745 if( closest<k-1 ){
5746 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5747 }
5748 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005749 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005750 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005751 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005752 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005753 if( rc!=SQLITE_OK ){
5754 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005755 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005756 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005757 }
5758 searchList = 0;
5759 }
drhee696e22004-08-30 16:52:17 +00005760 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005761 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005762 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005763 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005764 }else{
danbc1a3c62013-02-23 16:40:46 +00005765 /* There are no pages on the freelist, so append a new page to the
5766 ** database image.
5767 **
5768 ** Normally, new pages allocated by this block can be requested from the
5769 ** pager layer with the 'no-content' flag set. This prevents the pager
5770 ** from trying to read the pages content from disk. However, if the
5771 ** current transaction has already run one or more incremental-vacuum
5772 ** steps, then the page we are about to allocate may contain content
5773 ** that is required in the event of a rollback. In this case, do
5774 ** not set the no-content flag. This causes the pager to load and journal
5775 ** the current page content before overwriting it.
5776 **
5777 ** Note that the pager will not actually attempt to load or journal
5778 ** content for any page that really does lie past the end of the database
5779 ** file on disk. So the effects of disabling the no-content optimization
5780 ** here are confined to those pages that lie between the end of the
5781 ** database image and the end of the database file.
5782 */
drh3f387402014-09-24 01:23:00 +00005783 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005784
drhdd3cd972010-03-27 17:12:36 +00005785 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5786 if( rc ) return rc;
5787 pBt->nPage++;
5788 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005789
danielk1977afcdd022004-10-31 16:25:42 +00005790#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005791 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005792 /* If *pPgno refers to a pointer-map page, allocate two new pages
5793 ** at the end of the file instead of one. The first allocated page
5794 ** becomes a new pointer-map page, the second is used by the caller.
5795 */
danielk1977ac861692009-03-28 10:54:22 +00005796 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005797 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5798 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005799 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005800 if( rc==SQLITE_OK ){
5801 rc = sqlite3PagerWrite(pPg->pDbPage);
5802 releasePage(pPg);
5803 }
5804 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005805 pBt->nPage++;
5806 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005807 }
5808#endif
drhdd3cd972010-03-27 17:12:36 +00005809 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5810 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005811
danielk1977599fcba2004-11-08 07:13:13 +00005812 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005813 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005814 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005815 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005816 if( rc!=SQLITE_OK ){
5817 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005818 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005819 }
drh3a4c1412004-05-09 20:40:11 +00005820 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005821 }
danielk1977599fcba2004-11-08 07:13:13 +00005822
5823 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005824
5825end_allocate_page:
5826 releasePage(pTrunk);
5827 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005828 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5829 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005830 return rc;
5831}
5832
5833/*
danielk1977bea2a942009-01-20 17:06:27 +00005834** This function is used to add page iPage to the database file free-list.
5835** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005836**
danielk1977bea2a942009-01-20 17:06:27 +00005837** The value passed as the second argument to this function is optional.
5838** If the caller happens to have a pointer to the MemPage object
5839** corresponding to page iPage handy, it may pass it as the second value.
5840** Otherwise, it may pass NULL.
5841**
5842** If a pointer to a MemPage object is passed as the second argument,
5843** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005844*/
danielk1977bea2a942009-01-20 17:06:27 +00005845static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5846 MemPage *pTrunk = 0; /* Free-list trunk page */
5847 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5848 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5849 MemPage *pPage; /* Page being freed. May be NULL. */
5850 int rc; /* Return Code */
5851 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005852
danielk1977bea2a942009-01-20 17:06:27 +00005853 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005854 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005855 assert( !pMemPage || pMemPage->pgno==iPage );
5856
danfb0246b2015-05-26 12:18:17 +00005857 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005858 if( pMemPage ){
5859 pPage = pMemPage;
5860 sqlite3PagerRef(pPage->pDbPage);
5861 }else{
5862 pPage = btreePageLookup(pBt, iPage);
5863 }
drh3aac2dd2004-04-26 14:10:20 +00005864
drha34b6762004-05-07 13:30:42 +00005865 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005866 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005867 if( rc ) goto freepage_out;
5868 nFree = get4byte(&pPage1->aData[36]);
5869 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005870
drhc9166342012-01-05 23:32:06 +00005871 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005872 /* If the secure_delete option is enabled, then
5873 ** always fully overwrite deleted information with zeros.
5874 */
drhb00fc3b2013-08-21 23:42:32 +00005875 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005876 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005877 ){
5878 goto freepage_out;
5879 }
5880 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005881 }
drhfcce93f2006-02-22 03:08:32 +00005882
danielk1977687566d2004-11-02 12:56:41 +00005883 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005884 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005885 */
danielk197785d90ca2008-07-19 14:25:15 +00005886 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005887 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005888 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005889 }
danielk1977687566d2004-11-02 12:56:41 +00005890
danielk1977bea2a942009-01-20 17:06:27 +00005891 /* Now manipulate the actual database free-list structure. There are two
5892 ** possibilities. If the free-list is currently empty, or if the first
5893 ** trunk page in the free-list is full, then this page will become a
5894 ** new free-list trunk page. Otherwise, it will become a leaf of the
5895 ** first trunk page in the current free-list. This block tests if it
5896 ** is possible to add the page as a new free-list leaf.
5897 */
5898 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005899 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005900
5901 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005902 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005903 if( rc!=SQLITE_OK ){
5904 goto freepage_out;
5905 }
5906
5907 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005908 assert( pBt->usableSize>32 );
5909 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005910 rc = SQLITE_CORRUPT_BKPT;
5911 goto freepage_out;
5912 }
drheeb844a2009-08-08 18:01:07 +00005913 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005914 /* In this case there is room on the trunk page to insert the page
5915 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005916 **
5917 ** Note that the trunk page is not really full until it contains
5918 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5919 ** coded. But due to a coding error in versions of SQLite prior to
5920 ** 3.6.0, databases with freelist trunk pages holding more than
5921 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5922 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005923 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005924 ** for now. At some point in the future (once everyone has upgraded
5925 ** to 3.6.0 or later) we should consider fixing the conditional above
5926 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005927 **
5928 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5929 ** avoid using the last six entries in the freelist trunk page array in
5930 ** order that database files created by newer versions of SQLite can be
5931 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005932 */
danielk19773b8a05f2007-03-19 17:44:26 +00005933 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005934 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005935 put4byte(&pTrunk->aData[4], nLeaf+1);
5936 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005937 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005938 sqlite3PagerDontWrite(pPage->pDbPage);
5939 }
danielk1977bea2a942009-01-20 17:06:27 +00005940 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005941 }
drh3a4c1412004-05-09 20:40:11 +00005942 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005943 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005944 }
drh3b7511c2001-05-26 13:15:44 +00005945 }
danielk1977bea2a942009-01-20 17:06:27 +00005946
5947 /* If control flows to this point, then it was not possible to add the
5948 ** the page being freed as a leaf page of the first trunk in the free-list.
5949 ** Possibly because the free-list is empty, or possibly because the
5950 ** first trunk in the free-list is full. Either way, the page being freed
5951 ** will become the new first trunk page in the free-list.
5952 */
drhb00fc3b2013-08-21 23:42:32 +00005953 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005954 goto freepage_out;
5955 }
5956 rc = sqlite3PagerWrite(pPage->pDbPage);
5957 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005958 goto freepage_out;
5959 }
5960 put4byte(pPage->aData, iTrunk);
5961 put4byte(&pPage->aData[4], 0);
5962 put4byte(&pPage1->aData[32], iPage);
5963 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5964
5965freepage_out:
5966 if( pPage ){
5967 pPage->isInit = 0;
5968 }
5969 releasePage(pPage);
5970 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005971 return rc;
5972}
drhc314dc72009-07-21 11:52:34 +00005973static void freePage(MemPage *pPage, int *pRC){
5974 if( (*pRC)==SQLITE_OK ){
5975 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5976 }
danielk1977bea2a942009-01-20 17:06:27 +00005977}
drh3b7511c2001-05-26 13:15:44 +00005978
5979/*
drh9bfdc252014-09-24 02:05:41 +00005980** Free any overflow pages associated with the given Cell. Write the
5981** local Cell size (the number of bytes on the original page, omitting
5982** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005983*/
drh9bfdc252014-09-24 02:05:41 +00005984static int clearCell(
5985 MemPage *pPage, /* The page that contains the Cell */
5986 unsigned char *pCell, /* First byte of the Cell */
5987 u16 *pnSize /* Write the size of the Cell here */
5988){
danielk1977aef0bf62005-12-30 16:28:01 +00005989 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005990 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005991 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005992 int rc;
drh94440812007-03-06 11:42:19 +00005993 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005994 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005995
drh1fee73e2007-08-29 04:00:57 +00005996 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00005997 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005998 *pnSize = info.nSize;
drh45ac1c72015-12-18 03:59:16 +00005999 if( info.nLocal==info.nPayload ){
drha34b6762004-05-07 13:30:42 +00006000 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006001 }
drh45ac1c72015-12-18 03:59:16 +00006002 if( pCell+info.nSize-1 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00006003 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00006004 }
drh45ac1c72015-12-18 03:59:16 +00006005 ovflPgno = get4byte(pCell + info.nSize - 4);
shane63207ab2009-02-04 01:49:30 +00006006 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006007 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00006008 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006009 assert( nOvfl>0 ||
6010 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
6011 );
drh72365832007-03-06 15:53:44 +00006012 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006013 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006014 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006015 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006016 /* 0 is not a legal page number and page 1 cannot be an
6017 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6018 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006019 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006020 }
danielk1977bea2a942009-01-20 17:06:27 +00006021 if( nOvfl ){
6022 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6023 if( rc ) return rc;
6024 }
dan887d4b22010-02-25 12:09:16 +00006025
shaneh1da207e2010-03-09 14:41:12 +00006026 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006027 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6028 ){
6029 /* There is no reason any cursor should have an outstanding reference
6030 ** to an overflow page belonging to a cell that is being deleted/updated.
6031 ** So if there exists more than one reference to this page, then it
6032 ** must not really be an overflow page and the database must be corrupt.
6033 ** It is helpful to detect this before calling freePage2(), as
6034 ** freePage2() may zero the page contents if secure-delete mode is
6035 ** enabled. If this 'overflow' page happens to be a page that the
6036 ** caller is iterating through or using in some other way, this
6037 ** can be problematic.
6038 */
6039 rc = SQLITE_CORRUPT_BKPT;
6040 }else{
6041 rc = freePage2(pBt, pOvfl, ovflPgno);
6042 }
6043
danielk1977bea2a942009-01-20 17:06:27 +00006044 if( pOvfl ){
6045 sqlite3PagerUnref(pOvfl->pDbPage);
6046 }
drh3b7511c2001-05-26 13:15:44 +00006047 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006048 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006049 }
drh5e2f8b92001-05-28 00:41:15 +00006050 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006051}
6052
6053/*
drh91025292004-05-03 19:49:32 +00006054** Create the byte sequence used to represent a cell on page pPage
6055** and write that byte sequence into pCell[]. Overflow pages are
6056** allocated and filled in as necessary. The calling procedure
6057** is responsible for making sure sufficient space has been allocated
6058** for pCell[].
6059**
6060** Note that pCell does not necessary need to point to the pPage->aData
6061** area. pCell might point to some temporary storage. The cell will
6062** be constructed in this temporary area then copied into pPage->aData
6063** later.
drh3b7511c2001-05-26 13:15:44 +00006064*/
6065static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006066 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006067 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006068 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006069 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006070){
drh3b7511c2001-05-26 13:15:44 +00006071 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006072 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006073 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006074 int spaceLeft;
6075 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006076 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006077 unsigned char *pPrior;
6078 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006079 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006080 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006081 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006082
drh1fee73e2007-08-29 04:00:57 +00006083 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006084
drhc5053fb2008-11-27 02:22:10 +00006085 /* pPage is not necessarily writeable since pCell might be auxiliary
6086 ** buffer space that is separate from the pPage buffer area */
6087 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6088 || sqlite3PagerIswriteable(pPage->pDbPage) );
6089
drh91025292004-05-03 19:49:32 +00006090 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006091 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006092 if( pPage->intKey ){
6093 nPayload = pX->nData + pX->nZero;
6094 pSrc = pX->pData;
6095 nSrc = pX->nData;
6096 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006097 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006098 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006099 }else{
drh8eeb4462016-05-21 20:03:42 +00006100 assert( pX->nData==0 );
6101 assert( pX->nZero==0 );
drh8eeb4462016-05-21 20:03:42 +00006102 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6103 nSrc = nPayload = (int)pX->nKey;
6104 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006105 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006106 }
drhdfc2daa2016-05-21 23:25:29 +00006107
6108 /* Fill in the payload */
drh6200c882014-09-23 22:36:25 +00006109 if( nPayload<=pPage->maxLocal ){
6110 n = nHeader + nPayload;
6111 testcase( n==3 );
6112 testcase( n==4 );
6113 if( n<4 ) n = 4;
6114 *pnSize = n;
6115 spaceLeft = nPayload;
6116 pPrior = pCell;
6117 }else{
6118 int mn = pPage->minLocal;
6119 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6120 testcase( n==pPage->maxLocal );
6121 testcase( n==pPage->maxLocal+1 );
6122 if( n > pPage->maxLocal ) n = mn;
6123 spaceLeft = n;
6124 *pnSize = n + nHeader + 4;
6125 pPrior = &pCell[nHeader+n];
6126 }
drh3aac2dd2004-04-26 14:10:20 +00006127 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006128
drh6200c882014-09-23 22:36:25 +00006129 /* At this point variables should be set as follows:
6130 **
6131 ** nPayload Total payload size in bytes
6132 ** pPayload Begin writing payload here
6133 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6134 ** that means content must spill into overflow pages.
6135 ** *pnSize Size of the local cell (not counting overflow pages)
6136 ** pPrior Where to write the pgno of the first overflow page
6137 **
6138 ** Use a call to btreeParseCellPtr() to verify that the values above
6139 ** were computed correctly.
6140 */
6141#if SQLITE_DEBUG
6142 {
6143 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006144 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006145 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006146 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006147 assert( *pnSize == info.nSize );
6148 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006149 }
6150#endif
6151
6152 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006153 while( nPayload>0 ){
6154 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006155#ifndef SQLITE_OMIT_AUTOVACUUM
6156 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006157 if( pBt->autoVacuum ){
6158 do{
6159 pgnoOvfl++;
6160 } while(
6161 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6162 );
danielk1977b39f70b2007-05-17 18:28:11 +00006163 }
danielk1977afcdd022004-10-31 16:25:42 +00006164#endif
drhf49661a2008-12-10 16:45:50 +00006165 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006166#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006167 /* If the database supports auto-vacuum, and the second or subsequent
6168 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006169 ** for that page now.
6170 **
6171 ** If this is the first overflow page, then write a partial entry
6172 ** to the pointer-map. If we write nothing to this pointer-map slot,
6173 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006174 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006175 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006176 */
danielk19774ef24492007-05-23 09:52:41 +00006177 if( pBt->autoVacuum && rc==SQLITE_OK ){
6178 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006179 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006180 if( rc ){
6181 releasePage(pOvfl);
6182 }
danielk1977afcdd022004-10-31 16:25:42 +00006183 }
6184#endif
drh3b7511c2001-05-26 13:15:44 +00006185 if( rc ){
drh9b171272004-05-08 02:03:22 +00006186 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006187 return rc;
6188 }
drhc5053fb2008-11-27 02:22:10 +00006189
6190 /* If pToRelease is not zero than pPrior points into the data area
6191 ** of pToRelease. Make sure pToRelease is still writeable. */
6192 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6193
6194 /* If pPrior is part of the data area of pPage, then make sure pPage
6195 ** is still writeable */
6196 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6197 || sqlite3PagerIswriteable(pPage->pDbPage) );
6198
drh3aac2dd2004-04-26 14:10:20 +00006199 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006200 releasePage(pToRelease);
6201 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006202 pPrior = pOvfl->aData;
6203 put4byte(pPrior, 0);
6204 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006205 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006206 }
6207 n = nPayload;
6208 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006209
6210 /* If pToRelease is not zero than pPayload points into the data area
6211 ** of pToRelease. Make sure pToRelease is still writeable. */
6212 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6213
6214 /* If pPayload is part of the data area of pPage, then make sure pPage
6215 ** is still writeable */
6216 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6217 || sqlite3PagerIswriteable(pPage->pDbPage) );
6218
drhb026e052007-05-02 01:34:31 +00006219 if( nSrc>0 ){
6220 if( n>nSrc ) n = nSrc;
6221 assert( pSrc );
6222 memcpy(pPayload, pSrc, n);
6223 }else{
6224 memset(pPayload, 0, n);
6225 }
drh3b7511c2001-05-26 13:15:44 +00006226 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006227 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006228 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006229 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006230 spaceLeft -= n;
drhdd793422001-06-28 01:54:48 +00006231 }
drh9b171272004-05-08 02:03:22 +00006232 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006233 return SQLITE_OK;
6234}
6235
drh14acc042001-06-10 19:56:58 +00006236/*
6237** Remove the i-th cell from pPage. This routine effects pPage only.
6238** The cell content is not freed or deallocated. It is assumed that
6239** the cell content has been copied someplace else. This routine just
6240** removes the reference to the cell from pPage.
6241**
6242** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006243*/
drh98add2e2009-07-20 17:11:49 +00006244static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006245 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006246 u8 *data; /* pPage->aData */
6247 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006248 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006249 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006250
drh98add2e2009-07-20 17:11:49 +00006251 if( *pRC ) return;
6252
drh8c42ca92001-06-22 19:15:00 +00006253 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006254 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006255 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006256 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006257 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006258 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006259 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006260 hdr = pPage->hdrOffset;
6261 testcase( pc==get2byte(&data[hdr+5]) );
6262 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006263 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006264 *pRC = SQLITE_CORRUPT_BKPT;
6265 return;
shane0af3f892008-11-12 04:55:34 +00006266 }
shanedcc50b72008-11-13 18:29:50 +00006267 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006268 if( rc ){
6269 *pRC = rc;
6270 return;
shanedcc50b72008-11-13 18:29:50 +00006271 }
drh14acc042001-06-10 19:56:58 +00006272 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006273 if( pPage->nCell==0 ){
6274 memset(&data[hdr+1], 0, 4);
6275 data[hdr+7] = 0;
6276 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6277 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6278 - pPage->childPtrSize - 8;
6279 }else{
6280 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6281 put2byte(&data[hdr+3], pPage->nCell);
6282 pPage->nFree += 2;
6283 }
drh14acc042001-06-10 19:56:58 +00006284}
6285
6286/*
6287** Insert a new cell on pPage at cell index "i". pCell points to the
6288** content of the cell.
6289**
6290** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006291** will not fit, then make a copy of the cell content into pTemp if
6292** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006293** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006294** in pTemp or the original pCell) and also record its index.
6295** Allocating a new entry in pPage->aCell[] implies that
6296** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006297**
6298** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006299*/
drh98add2e2009-07-20 17:11:49 +00006300static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006301 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006302 int i, /* New cell becomes the i-th cell of the page */
6303 u8 *pCell, /* Content of the new cell */
6304 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006305 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006306 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6307 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006308){
drh383d30f2010-02-26 13:07:37 +00006309 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006310 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006311 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006312 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006313
drhcb89f4a2016-05-21 11:23:26 +00006314 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006315 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006316 assert( MX_CELL(pPage->pBt)<=10921 );
6317 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006318 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6319 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006320 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006321 /* The cell should normally be sized correctly. However, when moving a
6322 ** malformed cell from a leaf page to an interior page, if the cell size
6323 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6324 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6325 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006326 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006327 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006328 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006329 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006330 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006331 }
danielk19774dbaa892009-06-16 16:50:22 +00006332 if( iChild ){
6333 put4byte(pCell, iChild);
6334 }
drh43605152004-05-29 21:46:49 +00006335 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006336 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6337 pPage->apOvfl[j] = pCell;
6338 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006339
6340 /* When multiple overflows occur, they are always sequential and in
6341 ** sorted order. This invariants arise because multiple overflows can
6342 ** only occur when inserting divider cells into the parent page during
6343 ** balancing, and the dividers are adjacent and sorted.
6344 */
6345 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6346 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006347 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006348 int rc = sqlite3PagerWrite(pPage->pDbPage);
6349 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006350 *pRC = rc;
6351 return;
danielk19776e465eb2007-08-21 13:11:00 +00006352 }
6353 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006354 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006355 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006356 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006357 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006358 /* The allocateSpace() routine guarantees the following properties
6359 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006360 assert( idx >= 0 );
6361 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006362 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006363 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006364 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006365 if( iChild ){
6366 put4byte(&data[idx], iChild);
6367 }
drh2c8fb922015-06-25 19:53:48 +00006368 pIns = pPage->aCellIdx + i*2;
6369 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6370 put2byte(pIns, idx);
6371 pPage->nCell++;
6372 /* increment the cell count */
6373 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6374 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006375#ifndef SQLITE_OMIT_AUTOVACUUM
6376 if( pPage->pBt->autoVacuum ){
6377 /* The cell may contain a pointer to an overflow page. If so, write
6378 ** the entry for the overflow page into the pointer map.
6379 */
drh98add2e2009-07-20 17:11:49 +00006380 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006381 }
6382#endif
drh14acc042001-06-10 19:56:58 +00006383 }
6384}
6385
6386/*
drh1ffd2472015-06-23 02:37:30 +00006387** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006388** consecutive sequence of cells that might be held on multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006389*/
drh1ffd2472015-06-23 02:37:30 +00006390typedef struct CellArray CellArray;
6391struct CellArray {
6392 int nCell; /* Number of cells in apCell[] */
6393 MemPage *pRef; /* Reference page */
6394 u8 **apCell; /* All cells begin balanced */
6395 u16 *szCell; /* Local size of all cells in apCell[] */
6396};
drhfa1a98a2004-05-14 19:08:17 +00006397
drh1ffd2472015-06-23 02:37:30 +00006398/*
6399** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6400** computed.
6401*/
6402static void populateCellCache(CellArray *p, int idx, int N){
6403 assert( idx>=0 && idx+N<=p->nCell );
6404 while( N>0 ){
6405 assert( p->apCell[idx]!=0 );
6406 if( p->szCell[idx]==0 ){
6407 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6408 }else{
6409 assert( CORRUPT_DB ||
6410 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6411 }
6412 idx++;
6413 N--;
drhfa1a98a2004-05-14 19:08:17 +00006414 }
drh1ffd2472015-06-23 02:37:30 +00006415}
6416
6417/*
6418** Return the size of the Nth element of the cell array
6419*/
6420static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6421 assert( N>=0 && N<p->nCell );
6422 assert( p->szCell[N]==0 );
6423 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6424 return p->szCell[N];
6425}
6426static u16 cachedCellSize(CellArray *p, int N){
6427 assert( N>=0 && N<p->nCell );
6428 if( p->szCell[N] ) return p->szCell[N];
6429 return computeCellSize(p, N);
6430}
6431
6432/*
dan8e9ba0c2014-10-14 17:27:04 +00006433** Array apCell[] contains pointers to nCell b-tree page cells. The
6434** szCell[] array contains the size in bytes of each cell. This function
6435** replaces the current contents of page pPg with the contents of the cell
6436** array.
6437**
6438** Some of the cells in apCell[] may currently be stored in pPg. This
6439** function works around problems caused by this by making a copy of any
6440** such cells before overwriting the page data.
6441**
6442** The MemPage.nFree field is invalidated by this function. It is the
6443** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006444*/
drh658873b2015-06-22 20:02:04 +00006445static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006446 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006447 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006448 u8 **apCell, /* Array of cells */
6449 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006450){
6451 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6452 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6453 const int usableSize = pPg->pBt->usableSize;
6454 u8 * const pEnd = &aData[usableSize];
6455 int i;
6456 u8 *pCellptr = pPg->aCellIdx;
6457 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6458 u8 *pData;
6459
6460 i = get2byte(&aData[hdr+5]);
6461 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006462
dan8e9ba0c2014-10-14 17:27:04 +00006463 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006464 for(i=0; i<nCell; i++){
6465 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006466 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006467 pCell = &pTmp[pCell - aData];
6468 }
6469 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006470 put2byte(pCellptr, (pData - aData));
6471 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006472 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6473 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006474 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006475 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006476 }
6477
dand7b545b2014-10-13 18:03:27 +00006478 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006479 pPg->nCell = nCell;
6480 pPg->nOverflow = 0;
6481
6482 put2byte(&aData[hdr+1], 0);
6483 put2byte(&aData[hdr+3], pPg->nCell);
6484 put2byte(&aData[hdr+5], pData - aData);
6485 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006486 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006487}
6488
dan8e9ba0c2014-10-14 17:27:04 +00006489/*
6490** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6491** contains the size in bytes of each such cell. This function attempts to
6492** add the cells stored in the array to page pPg. If it cannot (because
6493** the page needs to be defragmented before the cells will fit), non-zero
6494** is returned. Otherwise, if the cells are added successfully, zero is
6495** returned.
6496**
6497** Argument pCellptr points to the first entry in the cell-pointer array
6498** (part of page pPg) to populate. After cell apCell[0] is written to the
6499** page body, a 16-bit offset is written to pCellptr. And so on, for each
6500** cell in the array. It is the responsibility of the caller to ensure
6501** that it is safe to overwrite this part of the cell-pointer array.
6502**
6503** When this function is called, *ppData points to the start of the
6504** content area on page pPg. If the size of the content area is extended,
6505** *ppData is updated to point to the new start of the content area
6506** before returning.
6507**
6508** Finally, argument pBegin points to the byte immediately following the
6509** end of the space required by this page for the cell-pointer area (for
6510** all cells - not just those inserted by the current call). If the content
6511** area must be extended to before this point in order to accomodate all
6512** cells in apCell[], then the cells do not fit and non-zero is returned.
6513*/
dand7b545b2014-10-13 18:03:27 +00006514static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006515 MemPage *pPg, /* Page to add cells to */
6516 u8 *pBegin, /* End of cell-pointer array */
6517 u8 **ppData, /* IN/OUT: Page content -area pointer */
6518 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006519 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006520 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006521 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006522){
6523 int i;
6524 u8 *aData = pPg->aData;
6525 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006526 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006527 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006528 for(i=iFirst; i<iEnd; i++){
6529 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006530 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006531 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006532 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006533 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006534 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006535 pSlot = pData;
6536 }
drh48310f82015-10-10 16:41:28 +00006537 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6538 ** database. But they might for a corrupt database. Hence use memmove()
6539 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6540 assert( (pSlot+sz)<=pCArray->apCell[i]
6541 || pSlot>=(pCArray->apCell[i]+sz)
6542 || CORRUPT_DB );
6543 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006544 put2byte(pCellptr, (pSlot - aData));
6545 pCellptr += 2;
6546 }
6547 *ppData = pData;
6548 return 0;
6549}
6550
dan8e9ba0c2014-10-14 17:27:04 +00006551/*
6552** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6553** contains the size in bytes of each such cell. This function adds the
6554** space associated with each cell in the array that is currently stored
6555** within the body of pPg to the pPg free-list. The cell-pointers and other
6556** fields of the page are not updated.
6557**
6558** This function returns the total number of cells added to the free-list.
6559*/
dand7b545b2014-10-13 18:03:27 +00006560static int pageFreeArray(
6561 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006562 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006563 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006564 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006565){
6566 u8 * const aData = pPg->aData;
6567 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006568 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006569 int nRet = 0;
6570 int i;
drhf7838932015-06-23 15:36:34 +00006571 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006572 u8 *pFree = 0;
6573 int szFree = 0;
6574
drhf7838932015-06-23 15:36:34 +00006575 for(i=iFirst; i<iEnd; i++){
6576 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006577 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006578 int sz;
6579 /* No need to use cachedCellSize() here. The sizes of all cells that
6580 ** are to be freed have already been computing while deciding which
6581 ** cells need freeing */
6582 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006583 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006584 if( pFree ){
6585 assert( pFree>aData && (pFree - aData)<65536 );
6586 freeSpace(pPg, (u16)(pFree - aData), szFree);
6587 }
dand7b545b2014-10-13 18:03:27 +00006588 pFree = pCell;
6589 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006590 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006591 }else{
6592 pFree = pCell;
6593 szFree += sz;
6594 }
6595 nRet++;
6596 }
6597 }
drhfefa0942014-11-05 21:21:08 +00006598 if( pFree ){
6599 assert( pFree>aData && (pFree - aData)<65536 );
6600 freeSpace(pPg, (u16)(pFree - aData), szFree);
6601 }
dand7b545b2014-10-13 18:03:27 +00006602 return nRet;
6603}
6604
dand7b545b2014-10-13 18:03:27 +00006605/*
drh5ab63772014-11-27 03:46:04 +00006606** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6607** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6608** with apCell[iOld]. After balancing, this page should hold nNew cells
6609** starting at apCell[iNew].
6610**
6611** This routine makes the necessary adjustments to pPg so that it contains
6612** the correct cells after being balanced.
6613**
dand7b545b2014-10-13 18:03:27 +00006614** The pPg->nFree field is invalid when this function returns. It is the
6615** responsibility of the caller to set it correctly.
6616*/
drh658873b2015-06-22 20:02:04 +00006617static int editPage(
dan09c68402014-10-11 20:00:24 +00006618 MemPage *pPg, /* Edit this page */
6619 int iOld, /* Index of first cell currently on page */
6620 int iNew, /* Index of new first cell on page */
6621 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006622 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006623){
dand7b545b2014-10-13 18:03:27 +00006624 u8 * const aData = pPg->aData;
6625 const int hdr = pPg->hdrOffset;
6626 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6627 int nCell = pPg->nCell; /* Cells stored on pPg */
6628 u8 *pData;
6629 u8 *pCellptr;
6630 int i;
6631 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6632 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006633
6634#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006635 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6636 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006637#endif
6638
dand7b545b2014-10-13 18:03:27 +00006639 /* Remove cells from the start and end of the page */
6640 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006641 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006642 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6643 nCell -= nShift;
6644 }
6645 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006646 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006647 }
dan09c68402014-10-11 20:00:24 +00006648
drh5ab63772014-11-27 03:46:04 +00006649 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006650 if( pData<pBegin ) goto editpage_fail;
6651
6652 /* Add cells to the start of the page */
6653 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006654 int nAdd = MIN(nNew,iOld-iNew);
6655 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006656 pCellptr = pPg->aCellIdx;
6657 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6658 if( pageInsertArray(
6659 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006660 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006661 ) ) goto editpage_fail;
6662 nCell += nAdd;
6663 }
6664
6665 /* Add any overflow cells */
6666 for(i=0; i<pPg->nOverflow; i++){
6667 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6668 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006669 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006670 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6671 nCell++;
6672 if( pageInsertArray(
6673 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006674 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006675 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006676 }
dand7b545b2014-10-13 18:03:27 +00006677 }
dan09c68402014-10-11 20:00:24 +00006678
dand7b545b2014-10-13 18:03:27 +00006679 /* Append cells to the end of the page */
6680 pCellptr = &pPg->aCellIdx[nCell*2];
6681 if( pageInsertArray(
6682 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006683 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006684 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006685
dand7b545b2014-10-13 18:03:27 +00006686 pPg->nCell = nNew;
6687 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006688
dand7b545b2014-10-13 18:03:27 +00006689 put2byte(&aData[hdr+3], pPg->nCell);
6690 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006691
6692#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006693 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006694 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006695 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00006696 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00006697 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006698 }
drh1ffd2472015-06-23 02:37:30 +00006699 assert( 0==memcmp(pCell, &aData[iOff],
6700 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006701 }
dan09c68402014-10-11 20:00:24 +00006702#endif
6703
drh658873b2015-06-22 20:02:04 +00006704 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006705 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006706 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006707 populateCellCache(pCArray, iNew, nNew);
6708 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006709}
6710
drh14acc042001-06-10 19:56:58 +00006711/*
drhc3b70572003-01-04 19:44:07 +00006712** The following parameters determine how many adjacent pages get involved
6713** in a balancing operation. NN is the number of neighbors on either side
6714** of the page that participate in the balancing operation. NB is the
6715** total number of pages that participate, including the target page and
6716** NN neighbors on either side.
6717**
6718** The minimum value of NN is 1 (of course). Increasing NN above 1
6719** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6720** in exchange for a larger degradation in INSERT and UPDATE performance.
6721** The value of NN appears to give the best results overall.
6722*/
6723#define NN 1 /* Number of neighbors on either side of pPage */
6724#define NB (NN*2+1) /* Total pages involved in the balance */
6725
danielk1977ac245ec2005-01-14 13:50:11 +00006726
drh615ae552005-01-16 23:21:00 +00006727#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006728/*
6729** This version of balance() handles the common special case where
6730** a new entry is being inserted on the extreme right-end of the
6731** tree, in other words, when the new entry will become the largest
6732** entry in the tree.
6733**
drhc314dc72009-07-21 11:52:34 +00006734** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006735** a new page to the right-hand side and put the one new entry in
6736** that page. This leaves the right side of the tree somewhat
6737** unbalanced. But odds are that we will be inserting new entries
6738** at the end soon afterwards so the nearly empty page will quickly
6739** fill up. On average.
6740**
6741** pPage is the leaf page which is the right-most page in the tree.
6742** pParent is its parent. pPage must have a single overflow entry
6743** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006744**
6745** The pSpace buffer is used to store a temporary copy of the divider
6746** cell that will be inserted into pParent. Such a cell consists of a 4
6747** byte page number followed by a variable length integer. In other
6748** words, at most 13 bytes. Hence the pSpace buffer must be at
6749** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006750*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006751static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6752 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006753 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006754 int rc; /* Return Code */
6755 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006756
drh1fee73e2007-08-29 04:00:57 +00006757 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006758 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006759 assert( pPage->nOverflow==1 );
6760
drh5d433ce2010-08-14 16:02:52 +00006761 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006762 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006763
danielk1977a50d9aa2009-06-08 14:49:45 +00006764 /* Allocate a new page. This page will become the right-sibling of
6765 ** pPage. Make the parent page writable, so that the new divider cell
6766 ** may be inserted. If both these operations are successful, proceed.
6767 */
drh4f0c5872007-03-26 22:05:01 +00006768 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006769
danielk1977eaa06f62008-09-18 17:34:44 +00006770 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006771
6772 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006773 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006774 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006775 u8 *pStop;
6776
drhc5053fb2008-11-27 02:22:10 +00006777 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006778 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6779 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006780 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006781 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006782 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006783
6784 /* If this is an auto-vacuum database, update the pointer map
6785 ** with entries for the new page, and any pointer from the
6786 ** cell on the page to an overflow page. If either of these
6787 ** operations fails, the return code is set, but the contents
6788 ** of the parent page are still manipulated by thh code below.
6789 ** That is Ok, at this point the parent page is guaranteed to
6790 ** be marked as dirty. Returning an error code will cause a
6791 ** rollback, undoing any changes made to the parent page.
6792 */
6793 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006794 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6795 if( szCell>pNew->minLocal ){
6796 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006797 }
6798 }
danielk1977eaa06f62008-09-18 17:34:44 +00006799
danielk19776f235cc2009-06-04 14:46:08 +00006800 /* Create a divider cell to insert into pParent. The divider cell
6801 ** consists of a 4-byte page number (the page number of pPage) and
6802 ** a variable length key value (which must be the same value as the
6803 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006804 **
danielk19776f235cc2009-06-04 14:46:08 +00006805 ** To find the largest key value on pPage, first find the right-most
6806 ** cell on pPage. The first two fields of this cell are the
6807 ** record-length (a variable length integer at most 32-bits in size)
6808 ** and the key value (a variable length integer, may have any value).
6809 ** The first of the while(...) loops below skips over the record-length
6810 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006811 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006812 */
danielk1977eaa06f62008-09-18 17:34:44 +00006813 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006814 pStop = &pCell[9];
6815 while( (*(pCell++)&0x80) && pCell<pStop );
6816 pStop = &pCell[9];
6817 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6818
danielk19774dbaa892009-06-16 16:50:22 +00006819 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00006820 if( rc==SQLITE_OK ){
6821 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6822 0, pPage->pgno, &rc);
6823 }
danielk19776f235cc2009-06-04 14:46:08 +00006824
6825 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006826 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6827
danielk1977e08a3c42008-09-18 18:17:03 +00006828 /* Release the reference to the new page. */
6829 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006830 }
6831
danielk1977eaa06f62008-09-18 17:34:44 +00006832 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006833}
drh615ae552005-01-16 23:21:00 +00006834#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006835
danielk19774dbaa892009-06-16 16:50:22 +00006836#if 0
drhc3b70572003-01-04 19:44:07 +00006837/*
danielk19774dbaa892009-06-16 16:50:22 +00006838** This function does not contribute anything to the operation of SQLite.
6839** it is sometimes activated temporarily while debugging code responsible
6840** for setting pointer-map entries.
6841*/
6842static int ptrmapCheckPages(MemPage **apPage, int nPage){
6843 int i, j;
6844 for(i=0; i<nPage; i++){
6845 Pgno n;
6846 u8 e;
6847 MemPage *pPage = apPage[i];
6848 BtShared *pBt = pPage->pBt;
6849 assert( pPage->isInit );
6850
6851 for(j=0; j<pPage->nCell; j++){
6852 CellInfo info;
6853 u8 *z;
6854
6855 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006856 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00006857 if( info.nLocal<info.nPayload ){
6858 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00006859 ptrmapGet(pBt, ovfl, &e, &n);
6860 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6861 }
6862 if( !pPage->leaf ){
6863 Pgno child = get4byte(z);
6864 ptrmapGet(pBt, child, &e, &n);
6865 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6866 }
6867 }
6868 if( !pPage->leaf ){
6869 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6870 ptrmapGet(pBt, child, &e, &n);
6871 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6872 }
6873 }
6874 return 1;
6875}
6876#endif
6877
danielk1977cd581a72009-06-23 15:43:39 +00006878/*
6879** This function is used to copy the contents of the b-tree node stored
6880** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6881** the pointer-map entries for each child page are updated so that the
6882** parent page stored in the pointer map is page pTo. If pFrom contained
6883** any cells with overflow page pointers, then the corresponding pointer
6884** map entries are also updated so that the parent page is page pTo.
6885**
6886** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006887** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006888**
danielk197730548662009-07-09 05:07:37 +00006889** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006890**
6891** The performance of this function is not critical. It is only used by
6892** the balance_shallower() and balance_deeper() procedures, neither of
6893** which are called often under normal circumstances.
6894*/
drhc314dc72009-07-21 11:52:34 +00006895static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6896 if( (*pRC)==SQLITE_OK ){
6897 BtShared * const pBt = pFrom->pBt;
6898 u8 * const aFrom = pFrom->aData;
6899 u8 * const aTo = pTo->aData;
6900 int const iFromHdr = pFrom->hdrOffset;
6901 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006902 int rc;
drhc314dc72009-07-21 11:52:34 +00006903 int iData;
6904
6905
6906 assert( pFrom->isInit );
6907 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006908 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006909
6910 /* Copy the b-tree node content from page pFrom to page pTo. */
6911 iData = get2byte(&aFrom[iFromHdr+5]);
6912 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6913 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6914
6915 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006916 ** match the new data. The initialization of pTo can actually fail under
6917 ** fairly obscure circumstances, even though it is a copy of initialized
6918 ** page pFrom.
6919 */
drhc314dc72009-07-21 11:52:34 +00006920 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006921 rc = btreeInitPage(pTo);
6922 if( rc!=SQLITE_OK ){
6923 *pRC = rc;
6924 return;
6925 }
drhc314dc72009-07-21 11:52:34 +00006926
6927 /* If this is an auto-vacuum database, update the pointer-map entries
6928 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6929 */
6930 if( ISAUTOVACUUM ){
6931 *pRC = setChildPtrmaps(pTo);
6932 }
danielk1977cd581a72009-06-23 15:43:39 +00006933 }
danielk1977cd581a72009-06-23 15:43:39 +00006934}
6935
6936/*
danielk19774dbaa892009-06-16 16:50:22 +00006937** This routine redistributes cells on the iParentIdx'th child of pParent
6938** (hereafter "the page") and up to 2 siblings so that all pages have about the
6939** same amount of free space. Usually a single sibling on either side of the
6940** page are used in the balancing, though both siblings might come from one
6941** side if the page is the first or last child of its parent. If the page
6942** has fewer than 2 siblings (something which can only happen if the page
6943** is a root page or a child of a root page) then all available siblings
6944** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006945**
danielk19774dbaa892009-06-16 16:50:22 +00006946** The number of siblings of the page might be increased or decreased by
6947** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006948**
danielk19774dbaa892009-06-16 16:50:22 +00006949** Note that when this routine is called, some of the cells on the page
6950** might not actually be stored in MemPage.aData[]. This can happen
6951** if the page is overfull. This routine ensures that all cells allocated
6952** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006953**
danielk19774dbaa892009-06-16 16:50:22 +00006954** In the course of balancing the page and its siblings, cells may be
6955** inserted into or removed from the parent page (pParent). Doing so
6956** may cause the parent page to become overfull or underfull. If this
6957** happens, it is the responsibility of the caller to invoke the correct
6958** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006959**
drh5e00f6c2001-09-13 13:46:56 +00006960** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006961** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006962** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006963**
6964** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006965** buffer big enough to hold one page. If while inserting cells into the parent
6966** page (pParent) the parent page becomes overfull, this buffer is
6967** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006968** a maximum of four divider cells into the parent page, and the maximum
6969** size of a cell stored within an internal node is always less than 1/4
6970** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6971** enough for all overflow cells.
6972**
6973** If aOvflSpace is set to a null pointer, this function returns
6974** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006975*/
danielk19774dbaa892009-06-16 16:50:22 +00006976static int balance_nonroot(
6977 MemPage *pParent, /* Parent page of siblings being balanced */
6978 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006979 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006980 int isRoot, /* True if pParent is a root-page */
6981 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006982){
drh16a9b832007-05-05 18:39:25 +00006983 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006984 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006985 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006986 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006987 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006988 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006989 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006990 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006991 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006992 int usableSpace; /* Bytes in pPage beyond the header */
6993 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00006994 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006995 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006996 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006997 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00006998 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006999 u8 *pRight; /* Location in parent of right-sibling pointer */
7000 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007001 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7002 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007003 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007004 u8 *aSpace1; /* Space for copies of dividers cells */
7005 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007006 u8 abDone[NB+2]; /* True after i'th new page is populated */
7007 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007008 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007009 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007010 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007011
dan33ea4862014-10-09 19:35:37 +00007012 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007013 b.nCell = 0;
7014 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007015 pBt = pParent->pBt;
7016 assert( sqlite3_mutex_held(pBt->mutex) );
7017 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007018
danielk1977e5765212009-06-17 11:13:28 +00007019#if 0
drh43605152004-05-29 21:46:49 +00007020 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007021#endif
drh2e38c322004-09-03 18:38:44 +00007022
danielk19774dbaa892009-06-16 16:50:22 +00007023 /* At this point pParent may have at most one overflow cell. And if
7024 ** this overflow cell is present, it must be the cell with
7025 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007026 ** is called (indirectly) from sqlite3BtreeDelete().
7027 */
danielk19774dbaa892009-06-16 16:50:22 +00007028 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007029 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007030
danielk197711a8a862009-06-17 11:49:52 +00007031 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007032 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007033 }
7034
danielk1977a50d9aa2009-06-08 14:49:45 +00007035 /* Find the sibling pages to balance. Also locate the cells in pParent
7036 ** that divide the siblings. An attempt is made to find NN siblings on
7037 ** either side of pPage. More siblings are taken from one side, however,
7038 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007039 ** has NB or fewer children then all children of pParent are taken.
7040 **
7041 ** This loop also drops the divider cells from the parent page. This
7042 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007043 ** overflow cells in the parent page, since if any existed they will
7044 ** have already been removed.
7045 */
danielk19774dbaa892009-06-16 16:50:22 +00007046 i = pParent->nOverflow + pParent->nCell;
7047 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007048 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007049 }else{
dan7d6885a2012-08-08 14:04:56 +00007050 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007051 if( iParentIdx==0 ){
7052 nxDiv = 0;
7053 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007054 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007055 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007056 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007057 }
dan7d6885a2012-08-08 14:04:56 +00007058 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007059 }
dan7d6885a2012-08-08 14:04:56 +00007060 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007061 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7062 pRight = &pParent->aData[pParent->hdrOffset+8];
7063 }else{
7064 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7065 }
7066 pgno = get4byte(pRight);
7067 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007068 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007069 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007070 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007071 goto balance_cleanup;
7072 }
danielk1977634f2982005-03-28 08:44:07 +00007073 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007074 if( (i--)==0 ) break;
7075
drh2cbd78b2012-02-02 19:37:18 +00007076 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7077 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007078 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007079 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007080 pParent->nOverflow = 0;
7081 }else{
7082 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7083 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007084 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007085
7086 /* Drop the cell from the parent page. apDiv[i] still points to
7087 ** the cell within the parent, even though it has been dropped.
7088 ** This is safe because dropping a cell only overwrites the first
7089 ** four bytes of it, and this function does not need the first
7090 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007091 ** later on.
7092 **
drh8a575d92011-10-12 17:00:28 +00007093 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007094 ** the dropCell() routine will overwrite the entire cell with zeroes.
7095 ** In this case, temporarily copy the cell into the aOvflSpace[]
7096 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7097 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007098 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007099 int iOff;
7100
7101 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007102 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007103 rc = SQLITE_CORRUPT_BKPT;
7104 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7105 goto balance_cleanup;
7106 }else{
7107 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7108 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7109 }
drh5b47efa2010-02-12 18:18:39 +00007110 }
drh98add2e2009-07-20 17:11:49 +00007111 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007112 }
drh8b2f49b2001-06-08 00:21:52 +00007113 }
7114
drha9121e42008-02-19 14:59:35 +00007115 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007116 ** alignment */
drha9121e42008-02-19 14:59:35 +00007117 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007118
drh8b2f49b2001-06-08 00:21:52 +00007119 /*
danielk1977634f2982005-03-28 08:44:07 +00007120 ** Allocate space for memory structures
7121 */
drhfacf0302008-06-17 15:12:00 +00007122 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007123 nMaxCells*sizeof(u8*) /* b.apCell */
7124 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007125 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007126
drhcbd55b02014-11-04 14:22:27 +00007127 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7128 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007129 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007130 b.apCell = sqlite3ScratchMalloc( szScratch );
7131 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007132 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007133 goto balance_cleanup;
7134 }
drh1ffd2472015-06-23 02:37:30 +00007135 b.szCell = (u16*)&b.apCell[nMaxCells];
7136 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007137 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007138
7139 /*
7140 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007141 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007142 ** into space obtained from aSpace1[]. The divider cells have already
7143 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007144 **
7145 ** If the siblings are on leaf pages, then the child pointers of the
7146 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007147 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007148 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007149 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007150 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007151 **
7152 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7153 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007154 */
drh1ffd2472015-06-23 02:37:30 +00007155 b.pRef = apOld[0];
7156 leafCorrection = b.pRef->leaf*4;
7157 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007158 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007159 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007160 int limit = pOld->nCell;
7161 u8 *aData = pOld->aData;
7162 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007163 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007164 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007165
drh73d340a2015-05-28 11:23:11 +00007166 /* Verify that all sibling pages are of the same "type" (table-leaf,
7167 ** table-interior, index-leaf, or index-interior).
7168 */
7169 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7170 rc = SQLITE_CORRUPT_BKPT;
7171 goto balance_cleanup;
7172 }
7173
drhfe647dc2015-06-23 18:24:25 +00007174 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7175 ** constains overflow cells, include them in the b.apCell[] array
7176 ** in the correct spot.
7177 **
7178 ** Note that when there are multiple overflow cells, it is always the
7179 ** case that they are sequential and adjacent. This invariant arises
7180 ** because multiple overflows can only occurs when inserting divider
7181 ** cells into a parent on a prior balance, and divider cells are always
7182 ** adjacent and are inserted in order. There is an assert() tagged
7183 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7184 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007185 **
7186 ** This must be done in advance. Once the balance starts, the cell
7187 ** offset section of the btree page will be overwritten and we will no
7188 ** long be able to find the cells if a pointer to each cell is not saved
7189 ** first.
7190 */
drh36b78ee2016-01-20 01:32:00 +00007191 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007192 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007193 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007194 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007195 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007196 piCell += 2;
7197 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007198 }
drhfe647dc2015-06-23 18:24:25 +00007199 for(k=0; k<pOld->nOverflow; k++){
7200 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007201 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007202 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007203 }
drh1ffd2472015-06-23 02:37:30 +00007204 }
drhfe647dc2015-06-23 18:24:25 +00007205 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7206 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007207 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007208 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007209 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007210 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007211 }
7212
drh1ffd2472015-06-23 02:37:30 +00007213 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007214 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007215 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007216 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007217 assert( b.nCell<nMaxCells );
7218 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007219 pTemp = &aSpace1[iSpace1];
7220 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007221 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007222 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007223 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007224 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007225 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007226 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007227 if( !pOld->leaf ){
7228 assert( leafCorrection==0 );
7229 assert( pOld->hdrOffset==0 );
7230 /* The right pointer of the child page pOld becomes the left
7231 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007232 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007233 }else{
7234 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007235 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007236 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7237 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007238 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7239 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007240 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007241 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007242 }
7243 }
drh1ffd2472015-06-23 02:37:30 +00007244 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007245 }
drh8b2f49b2001-06-08 00:21:52 +00007246 }
7247
7248 /*
drh1ffd2472015-06-23 02:37:30 +00007249 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007250 ** Store this number in "k". Also compute szNew[] which is the total
7251 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007252 ** in b.apCell[] of the cell that divides page i from page i+1.
7253 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007254 **
drh96f5b762004-05-16 16:24:36 +00007255 ** Values computed by this block:
7256 **
7257 ** k: The total number of sibling pages
7258 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007259 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007260 ** the right of the i-th sibling page.
7261 ** usableSpace: Number of bytes of space available on each sibling.
7262 **
drh8b2f49b2001-06-08 00:21:52 +00007263 */
drh43605152004-05-29 21:46:49 +00007264 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007265 for(i=0; i<nOld; i++){
7266 MemPage *p = apOld[i];
7267 szNew[i] = usableSpace - p->nFree;
7268 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7269 for(j=0; j<p->nOverflow; j++){
7270 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7271 }
7272 cntNew[i] = cntOld[i];
7273 }
7274 k = nOld;
7275 for(i=0; i<k; i++){
7276 int sz;
7277 while( szNew[i]>usableSpace ){
7278 if( i+1>=k ){
7279 k = i+2;
7280 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7281 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007282 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007283 }
drh1ffd2472015-06-23 02:37:30 +00007284 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007285 szNew[i] -= sz;
7286 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007287 if( cntNew[i]<b.nCell ){
7288 sz = 2 + cachedCellSize(&b, cntNew[i]);
7289 }else{
7290 sz = 0;
7291 }
drh658873b2015-06-22 20:02:04 +00007292 }
7293 szNew[i+1] += sz;
7294 cntNew[i]--;
7295 }
drh1ffd2472015-06-23 02:37:30 +00007296 while( cntNew[i]<b.nCell ){
7297 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007298 if( szNew[i]+sz>usableSpace ) break;
7299 szNew[i] += sz;
7300 cntNew[i]++;
7301 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007302 if( cntNew[i]<b.nCell ){
7303 sz = 2 + cachedCellSize(&b, cntNew[i]);
7304 }else{
7305 sz = 0;
7306 }
drh658873b2015-06-22 20:02:04 +00007307 }
7308 szNew[i+1] -= sz;
7309 }
drh1ffd2472015-06-23 02:37:30 +00007310 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007311 k = i+1;
drh672073a2015-06-24 12:07:40 +00007312 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007313 rc = SQLITE_CORRUPT_BKPT;
7314 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007315 }
7316 }
drh96f5b762004-05-16 16:24:36 +00007317
7318 /*
7319 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007320 ** on the left side (siblings with smaller keys). The left siblings are
7321 ** always nearly full, while the right-most sibling might be nearly empty.
7322 ** The next block of code attempts to adjust the packing of siblings to
7323 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007324 **
7325 ** This adjustment is more than an optimization. The packing above might
7326 ** be so out of balance as to be illegal. For example, the right-most
7327 ** sibling might be completely empty. This adjustment is not optional.
7328 */
drh6019e162001-07-02 17:51:45 +00007329 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007330 int szRight = szNew[i]; /* Size of sibling on the right */
7331 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7332 int r; /* Index of right-most cell in left sibling */
7333 int d; /* Index of first cell to the left of right sibling */
7334
7335 r = cntNew[i-1] - 1;
7336 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007337 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007338 do{
drh1ffd2472015-06-23 02:37:30 +00007339 assert( d<nMaxCells );
7340 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007341 (void)cachedCellSize(&b, r);
7342 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007343 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007344 break;
7345 }
7346 szRight += b.szCell[d] + 2;
7347 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007348 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007349 r--;
7350 d--;
drh672073a2015-06-24 12:07:40 +00007351 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007352 szNew[i] = szRight;
7353 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007354 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7355 rc = SQLITE_CORRUPT_BKPT;
7356 goto balance_cleanup;
7357 }
drh6019e162001-07-02 17:51:45 +00007358 }
drh09d0deb2005-08-02 17:13:09 +00007359
drh2a0df922014-10-30 23:14:56 +00007360 /* Sanity check: For a non-corrupt database file one of the follwing
7361 ** must be true:
7362 ** (1) We found one or more cells (cntNew[0])>0), or
7363 ** (2) pPage is a virtual root page. A virtual root page is when
7364 ** the real root page is page 1 and we are the only child of
7365 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007366 */
drh2a0df922014-10-30 23:14:56 +00007367 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007368 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7369 apOld[0]->pgno, apOld[0]->nCell,
7370 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7371 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007372 ));
7373
drh8b2f49b2001-06-08 00:21:52 +00007374 /*
drh6b308672002-07-08 02:16:37 +00007375 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007376 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007377 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007378 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007379 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007380 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007381 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007382 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007383 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007384 nNew++;
danielk197728129562005-01-11 10:25:06 +00007385 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007386 }else{
drh7aa8f852006-03-28 00:24:44 +00007387 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007388 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007389 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007390 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007391 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007392 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007393 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007394
7395 /* Set the pointer-map entry for the new sibling page. */
7396 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007397 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007398 if( rc!=SQLITE_OK ){
7399 goto balance_cleanup;
7400 }
7401 }
drh6b308672002-07-08 02:16:37 +00007402 }
drh8b2f49b2001-06-08 00:21:52 +00007403 }
7404
7405 /*
dan33ea4862014-10-09 19:35:37 +00007406 ** Reassign page numbers so that the new pages are in ascending order.
7407 ** This helps to keep entries in the disk file in order so that a scan
7408 ** of the table is closer to a linear scan through the file. That in turn
7409 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007410 **
dan33ea4862014-10-09 19:35:37 +00007411 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7412 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007413 **
dan33ea4862014-10-09 19:35:37 +00007414 ** When NB==3, this one optimization makes the database about 25% faster
7415 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007416 */
dan33ea4862014-10-09 19:35:37 +00007417 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007418 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007419 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007420 for(j=0; j<i; j++){
7421 if( aPgno[j]==aPgno[i] ){
7422 /* This branch is taken if the set of sibling pages somehow contains
7423 ** duplicate entries. This can happen if the database is corrupt.
7424 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007425 ** we do the detection here in order to avoid populating the pager
7426 ** cache with two separate objects associated with the same
7427 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007428 assert( CORRUPT_DB );
7429 rc = SQLITE_CORRUPT_BKPT;
7430 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007431 }
7432 }
dan33ea4862014-10-09 19:35:37 +00007433 }
7434 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007435 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007436 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007437 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007438 }
drh00fe08a2014-10-31 00:05:23 +00007439 pgno = aPgOrder[iBest];
7440 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007441 if( iBest!=i ){
7442 if( iBest>i ){
7443 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7444 }
7445 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7446 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007447 }
7448 }
dan33ea4862014-10-09 19:35:37 +00007449
7450 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7451 "%d(%d nc=%d) %d(%d nc=%d)\n",
7452 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007453 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007454 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007455 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007456 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007457 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007458 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7459 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7460 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7461 ));
danielk19774dbaa892009-06-16 16:50:22 +00007462
7463 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7464 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007465
dan33ea4862014-10-09 19:35:37 +00007466 /* If the sibling pages are not leaves, ensure that the right-child pointer
7467 ** of the right-most new sibling page is set to the value that was
7468 ** originally in the same field of the right-most old sibling page. */
7469 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7470 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7471 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7472 }
danielk1977ac11ee62005-01-15 12:45:51 +00007473
dan33ea4862014-10-09 19:35:37 +00007474 /* Make any required updates to pointer map entries associated with
7475 ** cells stored on sibling pages following the balance operation. Pointer
7476 ** map entries associated with divider cells are set by the insertCell()
7477 ** routine. The associated pointer map entries are:
7478 **
7479 ** a) if the cell contains a reference to an overflow chain, the
7480 ** entry associated with the first page in the overflow chain, and
7481 **
7482 ** b) if the sibling pages are not leaves, the child page associated
7483 ** with the cell.
7484 **
7485 ** If the sibling pages are not leaves, then the pointer map entry
7486 ** associated with the right-child of each sibling may also need to be
7487 ** updated. This happens below, after the sibling pages have been
7488 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007489 */
dan33ea4862014-10-09 19:35:37 +00007490 if( ISAUTOVACUUM ){
7491 MemPage *pNew = apNew[0];
7492 u8 *aOld = pNew->aData;
7493 int cntOldNext = pNew->nCell + pNew->nOverflow;
7494 int usableSize = pBt->usableSize;
7495 int iNew = 0;
7496 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007497
drh1ffd2472015-06-23 02:37:30 +00007498 for(i=0; i<b.nCell; i++){
7499 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007500 if( i==cntOldNext ){
7501 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7502 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7503 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007504 }
dan33ea4862014-10-09 19:35:37 +00007505 if( i==cntNew[iNew] ){
7506 pNew = apNew[++iNew];
7507 if( !leafData ) continue;
7508 }
danielk197785d90ca2008-07-19 14:25:15 +00007509
dan33ea4862014-10-09 19:35:37 +00007510 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007511 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007512 ** or else the divider cell to the left of sibling page iOld. So,
7513 ** if sibling page iOld had the same page number as pNew, and if
7514 ** pCell really was a part of sibling page iOld (not a divider or
7515 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007516 if( iOld>=nNew
7517 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007518 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007519 ){
dan33ea4862014-10-09 19:35:37 +00007520 if( !leafCorrection ){
7521 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7522 }
drh1ffd2472015-06-23 02:37:30 +00007523 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007524 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007525 }
drhea82b372015-06-23 21:35:28 +00007526 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007527 }
drh14acc042001-06-10 19:56:58 +00007528 }
7529 }
dan33ea4862014-10-09 19:35:37 +00007530
7531 /* Insert new divider cells into pParent. */
7532 for(i=0; i<nNew-1; i++){
7533 u8 *pCell;
7534 u8 *pTemp;
7535 int sz;
7536 MemPage *pNew = apNew[i];
7537 j = cntNew[i];
7538
7539 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007540 assert( b.apCell[j]!=0 );
7541 pCell = b.apCell[j];
7542 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007543 pTemp = &aOvflSpace[iOvflSpace];
7544 if( !pNew->leaf ){
7545 memcpy(&pNew->aData[8], pCell, 4);
7546 }else if( leafData ){
7547 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007548 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007549 ** cell consists of the integer key for the right-most cell of
7550 ** the sibling-page assembled above only.
7551 */
7552 CellInfo info;
7553 j--;
drh1ffd2472015-06-23 02:37:30 +00007554 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007555 pCell = pTemp;
7556 sz = 4 + putVarint(&pCell[4], info.nKey);
7557 pTemp = 0;
7558 }else{
7559 pCell -= 4;
7560 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7561 ** previously stored on a leaf node, and its reported size was 4
7562 ** bytes, then it may actually be smaller than this
7563 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7564 ** any cell). But it is important to pass the correct size to
7565 ** insertCell(), so reparse the cell now.
7566 **
drhc1fb2b82016-03-09 03:29:27 +00007567 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7568 ** and WITHOUT ROWID tables with exactly one column which is the
7569 ** primary key.
dan33ea4862014-10-09 19:35:37 +00007570 */
drh1ffd2472015-06-23 02:37:30 +00007571 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007572 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007573 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007574 }
7575 }
7576 iOvflSpace += sz;
7577 assert( sz<=pBt->maxLocal+23 );
7578 assert( iOvflSpace <= (int)pBt->pageSize );
7579 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7580 if( rc!=SQLITE_OK ) goto balance_cleanup;
7581 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7582 }
7583
7584 /* Now update the actual sibling pages. The order in which they are updated
7585 ** is important, as this code needs to avoid disrupting any page from which
7586 ** cells may still to be read. In practice, this means:
7587 **
drhd836d422014-10-31 14:26:36 +00007588 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7589 ** then it is not safe to update page apNew[iPg] until after
7590 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007591 **
drhd836d422014-10-31 14:26:36 +00007592 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7593 ** then it is not safe to update page apNew[iPg] until after
7594 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007595 **
7596 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007597 **
7598 ** The iPg value in the following loop starts at nNew-1 goes down
7599 ** to 0, then back up to nNew-1 again, thus making two passes over
7600 ** the pages. On the initial downward pass, only condition (1) above
7601 ** needs to be tested because (2) will always be true from the previous
7602 ** step. On the upward pass, both conditions are always true, so the
7603 ** upwards pass simply processes pages that were missed on the downward
7604 ** pass.
dan33ea4862014-10-09 19:35:37 +00007605 */
drhbec021b2014-10-31 12:22:00 +00007606 for(i=1-nNew; i<nNew; i++){
7607 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007608 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007609 if( abDone[iPg] ) continue; /* Skip pages already processed */
7610 if( i>=0 /* On the upwards pass, or... */
7611 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007612 ){
dan09c68402014-10-11 20:00:24 +00007613 int iNew;
7614 int iOld;
7615 int nNewCell;
7616
drhd836d422014-10-31 14:26:36 +00007617 /* Verify condition (1): If cells are moving left, update iPg
7618 ** only after iPg-1 has already been updated. */
7619 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7620
7621 /* Verify condition (2): If cells are moving right, update iPg
7622 ** only after iPg+1 has already been updated. */
7623 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7624
dan09c68402014-10-11 20:00:24 +00007625 if( iPg==0 ){
7626 iNew = iOld = 0;
7627 nNewCell = cntNew[0];
7628 }else{
drh1ffd2472015-06-23 02:37:30 +00007629 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007630 iNew = cntNew[iPg-1] + !leafData;
7631 nNewCell = cntNew[iPg] - iNew;
7632 }
7633
drh1ffd2472015-06-23 02:37:30 +00007634 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007635 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007636 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007637 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007638 assert( apNew[iPg]->nOverflow==0 );
7639 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007640 }
7641 }
drhd836d422014-10-31 14:26:36 +00007642
7643 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007644 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7645
drh7aa8f852006-03-28 00:24:44 +00007646 assert( nOld>0 );
7647 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007648
danielk197713bd99f2009-06-24 05:40:34 +00007649 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7650 /* The root page of the b-tree now contains no cells. The only sibling
7651 ** page is the right-child of the parent. Copy the contents of the
7652 ** child page into the parent, decreasing the overall height of the
7653 ** b-tree structure by one. This is described as the "balance-shallower"
7654 ** sub-algorithm in some documentation.
7655 **
7656 ** If this is an auto-vacuum database, the call to copyNodeContent()
7657 ** sets all pointer-map entries corresponding to database image pages
7658 ** for which the pointer is stored within the content being copied.
7659 **
drh768f2902014-10-31 02:51:41 +00007660 ** It is critical that the child page be defragmented before being
7661 ** copied into the parent, because if the parent is page 1 then it will
7662 ** by smaller than the child due to the database header, and so all the
7663 ** free space needs to be up front.
7664 */
drh9b5351d2015-09-30 14:19:08 +00007665 assert( nNew==1 || CORRUPT_DB );
dan89ca0b32014-10-25 20:36:28 +00007666 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007667 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007668 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007669 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7670 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007671 );
drhc314dc72009-07-21 11:52:34 +00007672 copyNodeContent(apNew[0], pParent, &rc);
7673 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007674 }else if( ISAUTOVACUUM && !leafCorrection ){
7675 /* Fix the pointer map entries associated with the right-child of each
7676 ** sibling page. All other pointer map entries have already been taken
7677 ** care of. */
7678 for(i=0; i<nNew; i++){
7679 u32 key = get4byte(&apNew[i]->aData[8]);
7680 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007681 }
dan33ea4862014-10-09 19:35:37 +00007682 }
danielk19774dbaa892009-06-16 16:50:22 +00007683
dan33ea4862014-10-09 19:35:37 +00007684 assert( pParent->isInit );
7685 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007686 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007687
dan33ea4862014-10-09 19:35:37 +00007688 /* Free any old pages that were not reused as new pages.
7689 */
7690 for(i=nNew; i<nOld; i++){
7691 freePage(apOld[i], &rc);
7692 }
danielk19774dbaa892009-06-16 16:50:22 +00007693
7694#if 0
dan33ea4862014-10-09 19:35:37 +00007695 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007696 /* The ptrmapCheckPages() contains assert() statements that verify that
7697 ** all pointer map pages are set correctly. This is helpful while
7698 ** debugging. This is usually disabled because a corrupt database may
7699 ** cause an assert() statement to fail. */
7700 ptrmapCheckPages(apNew, nNew);
7701 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007702 }
dan33ea4862014-10-09 19:35:37 +00007703#endif
danielk1977cd581a72009-06-23 15:43:39 +00007704
drh8b2f49b2001-06-08 00:21:52 +00007705 /*
drh14acc042001-06-10 19:56:58 +00007706 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007707 */
drh14acc042001-06-10 19:56:58 +00007708balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007709 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007710 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007711 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007712 }
drh14acc042001-06-10 19:56:58 +00007713 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007714 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007715 }
danielk1977eaa06f62008-09-18 17:34:44 +00007716
drh8b2f49b2001-06-08 00:21:52 +00007717 return rc;
7718}
7719
drh43605152004-05-29 21:46:49 +00007720
7721/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007722** This function is called when the root page of a b-tree structure is
7723** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007724**
danielk1977a50d9aa2009-06-08 14:49:45 +00007725** A new child page is allocated and the contents of the current root
7726** page, including overflow cells, are copied into the child. The root
7727** page is then overwritten to make it an empty page with the right-child
7728** pointer pointing to the new page.
7729**
7730** Before returning, all pointer-map entries corresponding to pages
7731** that the new child-page now contains pointers to are updated. The
7732** entry corresponding to the new right-child pointer of the root
7733** page is also updated.
7734**
7735** If successful, *ppChild is set to contain a reference to the child
7736** page and SQLITE_OK is returned. In this case the caller is required
7737** to call releasePage() on *ppChild exactly once. If an error occurs,
7738** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007739*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007740static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7741 int rc; /* Return value from subprocedures */
7742 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007743 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007744 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007745
danielk1977a50d9aa2009-06-08 14:49:45 +00007746 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007747 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007748
danielk1977a50d9aa2009-06-08 14:49:45 +00007749 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7750 ** page that will become the new right-child of pPage. Copy the contents
7751 ** of the node stored on pRoot into the new child page.
7752 */
drh98add2e2009-07-20 17:11:49 +00007753 rc = sqlite3PagerWrite(pRoot->pDbPage);
7754 if( rc==SQLITE_OK ){
7755 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007756 copyNodeContent(pRoot, pChild, &rc);
7757 if( ISAUTOVACUUM ){
7758 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007759 }
7760 }
7761 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007762 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007763 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007764 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007765 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007766 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7767 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7768 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007769
danielk1977a50d9aa2009-06-08 14:49:45 +00007770 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7771
7772 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007773 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7774 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7775 memcpy(pChild->apOvfl, pRoot->apOvfl,
7776 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007777 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007778
7779 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7780 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7781 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7782
7783 *ppChild = pChild;
7784 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007785}
7786
7787/*
danielk197771d5d2c2008-09-29 11:49:47 +00007788** The page that pCur currently points to has just been modified in
7789** some way. This function figures out if this modification means the
7790** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007791** routine. Balancing routines are:
7792**
7793** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007794** balance_deeper()
7795** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007796*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007797static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007798 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007799 const int nMin = pCur->pBt->usableSize * 2 / 3;
7800 u8 aBalanceQuickSpace[13];
7801 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007802
drhcc5f8a42016-02-06 22:32:06 +00007803 VVA_ONLY( int balance_quick_called = 0 );
7804 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007805
7806 do {
7807 int iPage = pCur->iPage;
7808 MemPage *pPage = pCur->apPage[iPage];
7809
7810 if( iPage==0 ){
7811 if( pPage->nOverflow ){
7812 /* The root page of the b-tree is overfull. In this case call the
7813 ** balance_deeper() function to create a new child for the root-page
7814 ** and copy the current contents of the root-page to it. The
7815 ** next iteration of the do-loop will balance the child page.
7816 */
drhcc5f8a42016-02-06 22:32:06 +00007817 assert( balance_deeper_called==0 );
7818 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007819 rc = balance_deeper(pPage, &pCur->apPage[1]);
7820 if( rc==SQLITE_OK ){
7821 pCur->iPage = 1;
7822 pCur->aiIdx[0] = 0;
7823 pCur->aiIdx[1] = 0;
7824 assert( pCur->apPage[1]->nOverflow );
7825 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007826 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007827 break;
7828 }
7829 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7830 break;
7831 }else{
7832 MemPage * const pParent = pCur->apPage[iPage-1];
7833 int const iIdx = pCur->aiIdx[iPage-1];
7834
7835 rc = sqlite3PagerWrite(pParent->pDbPage);
7836 if( rc==SQLITE_OK ){
7837#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007838 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007839 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007840 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007841 && pParent->pgno!=1
7842 && pParent->nCell==iIdx
7843 ){
7844 /* Call balance_quick() to create a new sibling of pPage on which
7845 ** to store the overflow cell. balance_quick() inserts a new cell
7846 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007847 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007848 ** use either balance_nonroot() or balance_deeper(). Until this
7849 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7850 ** buffer.
7851 **
7852 ** The purpose of the following assert() is to check that only a
7853 ** single call to balance_quick() is made for each call to this
7854 ** function. If this were not verified, a subtle bug involving reuse
7855 ** of the aBalanceQuickSpace[] might sneak in.
7856 */
drhcc5f8a42016-02-06 22:32:06 +00007857 assert( balance_quick_called==0 );
7858 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007859 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7860 }else
7861#endif
7862 {
7863 /* In this case, call balance_nonroot() to redistribute cells
7864 ** between pPage and up to 2 of its sibling pages. This involves
7865 ** modifying the contents of pParent, which may cause pParent to
7866 ** become overfull or underfull. The next iteration of the do-loop
7867 ** will balance the parent page to correct this.
7868 **
7869 ** If the parent page becomes overfull, the overflow cell or cells
7870 ** are stored in the pSpace buffer allocated immediately below.
7871 ** A subsequent iteration of the do-loop will deal with this by
7872 ** calling balance_nonroot() (balance_deeper() may be called first,
7873 ** but it doesn't deal with overflow cells - just moves them to a
7874 ** different page). Once this subsequent call to balance_nonroot()
7875 ** has completed, it is safe to release the pSpace buffer used by
7876 ** the previous call, as the overflow cell data will have been
7877 ** copied either into the body of a database page or into the new
7878 ** pSpace buffer passed to the latter call to balance_nonroot().
7879 */
7880 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007881 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7882 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007883 if( pFree ){
7884 /* If pFree is not NULL, it points to the pSpace buffer used
7885 ** by a previous call to balance_nonroot(). Its contents are
7886 ** now stored either on real database pages or within the
7887 ** new pSpace buffer, so it may be safely freed here. */
7888 sqlite3PageFree(pFree);
7889 }
7890
danielk19774dbaa892009-06-16 16:50:22 +00007891 /* The pSpace buffer will be freed after the next call to
7892 ** balance_nonroot(), or just before this function returns, whichever
7893 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007894 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007895 }
7896 }
7897
7898 pPage->nOverflow = 0;
7899
7900 /* The next iteration of the do-loop balances the parent page. */
7901 releasePage(pPage);
7902 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007903 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007904 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007905 }while( rc==SQLITE_OK );
7906
7907 if( pFree ){
7908 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007909 }
7910 return rc;
7911}
7912
drhf74b8d92002-09-01 23:20:45 +00007913
7914/*
drh8eeb4462016-05-21 20:03:42 +00007915** Insert a new record into the BTree. The content of the new record
7916** is described by the pX object. The pCur cursor is used only to
7917** define what table the record should be inserted into, and is left
7918** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00007919**
drh8eeb4462016-05-21 20:03:42 +00007920** For a table btree (used for rowid tables), only the pX.nKey value of
7921** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
7922** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
7923** hold the content of the row.
7924**
7925** For an index btree (used for indexes and WITHOUT ROWID tables), the
7926** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
7927** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00007928**
7929** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007930** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007931** been performed. seekResult is the search result returned (a negative
7932** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007933** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007934** (pKey, nKey)).
7935**
drh3e9ca092009-09-08 01:14:48 +00007936** If the seekResult parameter is non-zero, then the caller guarantees that
7937** cursor pCur is pointing at the existing copy of a row that is to be
7938** overwritten. If the seekResult parameter is 0, then cursor pCur may
7939** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007940** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007941*/
drh3aac2dd2004-04-26 14:10:20 +00007942int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007943 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00007944 const BtreePayload *pX, /* Content of the row to be inserted */
danielk1977de630352009-05-04 11:42:29 +00007945 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007946 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007947){
drh3b7511c2001-05-26 13:15:44 +00007948 int rc;
drh3e9ca092009-09-08 01:14:48 +00007949 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007950 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007951 int idx;
drh3b7511c2001-05-26 13:15:44 +00007952 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007953 Btree *p = pCur->pBtree;
7954 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007955 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007956 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007957
drh98add2e2009-07-20 17:11:49 +00007958 if( pCur->eState==CURSOR_FAULT ){
7959 assert( pCur->skipNext!=SQLITE_OK );
7960 return pCur->skipNext;
7961 }
7962
dan7a2347e2016-01-07 16:43:54 +00007963 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00007964 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7965 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007966 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007967 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7968
danielk197731d31b82009-07-13 13:18:07 +00007969 /* Assert that the caller has been consistent. If this cursor was opened
7970 ** expecting an index b-tree, then the caller should be inserting blob
7971 ** keys with no associated data. If the cursor was opened expecting an
7972 ** intkey table, the caller should be inserting integer keys with a
7973 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00007974 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00007975
danielk19779c3acf32009-05-02 07:36:49 +00007976 /* Save the positions of any other cursors open on this table.
7977 **
danielk19773509a652009-07-06 18:56:13 +00007978 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007979 ** example, when inserting data into a table with auto-generated integer
7980 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7981 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007982 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007983 ** that the cursor is already where it needs to be and returns without
7984 ** doing any work. To avoid thwarting these optimizations, it is important
7985 ** not to clear the cursor here.
7986 */
drh27fb7462015-06-30 02:47:36 +00007987 if( pCur->curFlags & BTCF_Multiple ){
7988 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7989 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007990 }
7991
danielk197771d5d2c2008-09-29 11:49:47 +00007992 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00007993 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00007994 /* If this is an insert into a table b-tree, invalidate any incrblob
7995 ** cursors open on the row being replaced */
drh8eeb4462016-05-21 20:03:42 +00007996 invalidateIncrblobCursors(p, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007997
7998 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00007999 ** new row onto the end, set the "loc" to avoid an unnecessary
8000 ** btreeMoveto() call */
drh8eeb4462016-05-21 20:03:42 +00008001 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0
8002 && pCur->info.nKey==pX->nKey-1 ){
drh207c8172015-06-29 23:01:32 +00008003 loc = -1;
8004 }else if( loc==0 ){
drh8eeb4462016-05-21 20:03:42 +00008005 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, appendBias, &loc);
drh207c8172015-06-29 23:01:32 +00008006 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008007 }
drh207c8172015-06-29 23:01:32 +00008008 }else if( loc==0 ){
drh8eeb4462016-05-21 20:03:42 +00008009 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, appendBias, &loc);
drh4c301aa2009-07-15 17:25:45 +00008010 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00008011 }
danielk1977b980d2212009-06-22 18:03:51 +00008012 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008013
drh14acc042001-06-10 19:56:58 +00008014 pPage = pCur->apPage[pCur->iPage];
drh8eeb4462016-05-21 20:03:42 +00008015 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008016 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008017
drh3a4c1412004-05-09 20:40:11 +00008018 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008019 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008020 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008021 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008022 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008023 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008024 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008025 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008026 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008027 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00008028 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00008029 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00008030 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00008031 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008032 rc = sqlite3PagerWrite(pPage->pDbPage);
8033 if( rc ){
8034 goto end_insert;
8035 }
danielk197771d5d2c2008-09-29 11:49:47 +00008036 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008037 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008038 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008039 }
drh9bfdc252014-09-24 02:05:41 +00008040 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00008041 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00008042 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008043 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008044 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00008045 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008046 }else{
drh4b70f112004-05-02 21:12:19 +00008047 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008048 }
drh98add2e2009-07-20 17:11:49 +00008049 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008050 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008051 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008052
mistachkin48864df2013-03-21 21:20:32 +00008053 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008054 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008055 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008056 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008057 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008058 ** Previous versions of SQLite called moveToRoot() to move the cursor
8059 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008060 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8061 ** set the cursor state to "invalid". This makes common insert operations
8062 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008063 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008064 ** There is a subtle but important optimization here too. When inserting
8065 ** multiple records into an intkey b-tree using a single cursor (as can
8066 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8067 ** is advantageous to leave the cursor pointing to the last entry in
8068 ** the b-tree if possible. If the cursor is left pointing to the last
8069 ** entry in the table, and the next row inserted has an integer key
8070 ** larger than the largest existing key, it is possible to insert the
8071 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008072 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008073 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008074 if( pPage->nOverflow ){
8075 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008076 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008077 rc = balance(pCur);
8078
8079 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008080 ** fails. Internal data structure corruption will result otherwise.
8081 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8082 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008083 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008084 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00008085 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008086 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008087
drh2e38c322004-09-03 18:38:44 +00008088end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008089 return rc;
8090}
8091
8092/*
danf0ee1d32015-09-12 19:26:11 +00008093** Delete the entry that the cursor is pointing to.
8094**
drhe807bdb2016-01-21 17:06:33 +00008095** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8096** the cursor is left pointing at an arbitrary location after the delete.
8097** But if that bit is set, then the cursor is left in a state such that
8098** the next call to BtreeNext() or BtreePrev() moves it to the same row
8099** as it would have been on if the call to BtreeDelete() had been omitted.
8100**
drhdef19e32016-01-27 16:26:25 +00008101** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8102** associated with a single table entry and its indexes. Only one of those
8103** deletes is considered the "primary" delete. The primary delete occurs
8104** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8105** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8106** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008107** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008108*/
drhe807bdb2016-01-21 17:06:33 +00008109int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008110 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008111 BtShared *pBt = p->pBt;
8112 int rc; /* Return code */
8113 MemPage *pPage; /* Page to delete cell from */
8114 unsigned char *pCell; /* Pointer to cell to delete */
8115 int iCellIdx; /* Index of cell to delete */
8116 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00008117 u16 szCell; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008118 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008119 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008120
dan7a2347e2016-01-07 16:43:54 +00008121 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008122 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008123 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008124 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008125 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8126 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh98ef0f62015-06-30 01:25:52 +00008127 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8128 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008129 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008130
danielk19774dbaa892009-06-16 16:50:22 +00008131 iCellDepth = pCur->iPage;
8132 iCellIdx = pCur->aiIdx[iCellDepth];
8133 pPage = pCur->apPage[iCellDepth];
8134 pCell = findCell(pPage, iCellIdx);
8135
drhbfc7a8b2016-04-09 17:04:05 +00008136 /* If the bPreserve flag is set to true, then the cursor position must
8137 ** be preserved following this delete operation. If the current delete
8138 ** will cause a b-tree rebalance, then this is done by saving the cursor
8139 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8140 ** returning.
8141 **
8142 ** Or, if the current delete will not cause a rebalance, then the cursor
8143 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8144 ** before or after the deleted entry. In this case set bSkipnext to true. */
8145 if( bPreserve ){
8146 if( !pPage->leaf
8147 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8148 ){
8149 /* A b-tree rebalance will be required after deleting this entry.
8150 ** Save the cursor key. */
8151 rc = saveCursorKey(pCur);
8152 if( rc ) return rc;
8153 }else{
8154 bSkipnext = 1;
8155 }
8156 }
8157
danielk19774dbaa892009-06-16 16:50:22 +00008158 /* If the page containing the entry to delete is not a leaf page, move
8159 ** the cursor to the largest entry in the tree that is smaller than
8160 ** the entry being deleted. This cell will replace the cell being deleted
8161 ** from the internal node. The 'previous' entry is used for this instead
8162 ** of the 'next' entry, as the previous entry is always a part of the
8163 ** sub-tree headed by the child page of the cell being deleted. This makes
8164 ** balancing the tree following the delete operation easier. */
8165 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008166 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008167 rc = sqlite3BtreePrevious(pCur, &notUsed);
8168 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008169 }
8170
8171 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008172 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008173 if( pCur->curFlags & BTCF_Multiple ){
8174 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8175 if( rc ) return rc;
8176 }
drhd60f4f42012-03-23 14:23:52 +00008177
8178 /* If this is a delete operation to remove a row from a table b-tree,
8179 ** invalidate any incrblob cursors open on the row being deleted. */
8180 if( pCur->pKeyInfo==0 ){
8181 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8182 }
8183
danf0ee1d32015-09-12 19:26:11 +00008184 /* Make the page containing the entry to be deleted writable. Then free any
8185 ** overflow pages associated with the entry and finally remove the cell
8186 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008187 rc = sqlite3PagerWrite(pPage->pDbPage);
8188 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008189 rc = clearCell(pPage, pCell, &szCell);
8190 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008191 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008192
danielk19774dbaa892009-06-16 16:50:22 +00008193 /* If the cell deleted was not located on a leaf page, then the cursor
8194 ** is currently pointing to the largest entry in the sub-tree headed
8195 ** by the child-page of the cell that was just deleted from an internal
8196 ** node. The cell from the leaf node needs to be moved to the internal
8197 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008198 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008199 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8200 int nCell;
8201 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8202 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008203
danielk19774dbaa892009-06-16 16:50:22 +00008204 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008205 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008206 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008207 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008208 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008209 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008210 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008211 if( rc==SQLITE_OK ){
8212 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8213 }
drh98add2e2009-07-20 17:11:49 +00008214 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008215 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008216 }
danielk19774dbaa892009-06-16 16:50:22 +00008217
8218 /* Balance the tree. If the entry deleted was located on a leaf page,
8219 ** then the cursor still points to that page. In this case the first
8220 ** call to balance() repairs the tree, and the if(...) condition is
8221 ** never true.
8222 **
8223 ** Otherwise, if the entry deleted was on an internal node page, then
8224 ** pCur is pointing to the leaf page from which a cell was removed to
8225 ** replace the cell deleted from the internal node. This is slightly
8226 ** tricky as the leaf node may be underfull, and the internal node may
8227 ** be either under or overfull. In this case run the balancing algorithm
8228 ** on the leaf node first. If the balance proceeds far enough up the
8229 ** tree that we can be sure that any problem in the internal node has
8230 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8231 ** walk the cursor up the tree to the internal node and balance it as
8232 ** well. */
8233 rc = balance(pCur);
8234 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8235 while( pCur->iPage>iCellDepth ){
8236 releasePage(pCur->apPage[pCur->iPage--]);
8237 }
8238 rc = balance(pCur);
8239 }
8240
danielk19776b456a22005-03-21 04:04:02 +00008241 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008242 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008243 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh38bace82016-02-01 00:21:08 +00008244 assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008245 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008246 pCur->eState = CURSOR_SKIPNEXT;
8247 if( iCellIdx>=pPage->nCell ){
8248 pCur->skipNext = -1;
8249 pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8250 }else{
8251 pCur->skipNext = 1;
8252 }
8253 }else{
8254 rc = moveToRoot(pCur);
8255 if( bPreserve ){
8256 pCur->eState = CURSOR_REQUIRESEEK;
8257 }
8258 }
danielk19776b456a22005-03-21 04:04:02 +00008259 }
drh5e2f8b92001-05-28 00:41:15 +00008260 return rc;
drh3b7511c2001-05-26 13:15:44 +00008261}
drh8b2f49b2001-06-08 00:21:52 +00008262
8263/*
drhc6b52df2002-01-04 03:09:29 +00008264** Create a new BTree table. Write into *piTable the page
8265** number for the root page of the new table.
8266**
drhab01f612004-05-22 02:55:23 +00008267** The type of type is determined by the flags parameter. Only the
8268** following values of flags are currently in use. Other values for
8269** flags might not work:
8270**
8271** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8272** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008273*/
drhd4187c72010-08-30 22:15:45 +00008274static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008275 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008276 MemPage *pRoot;
8277 Pgno pgnoRoot;
8278 int rc;
drhd4187c72010-08-30 22:15:45 +00008279 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008280
drh1fee73e2007-08-29 04:00:57 +00008281 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008282 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008283 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008284
danielk1977003ba062004-11-04 02:57:33 +00008285#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008286 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008287 if( rc ){
8288 return rc;
8289 }
danielk1977003ba062004-11-04 02:57:33 +00008290#else
danielk1977687566d2004-11-02 12:56:41 +00008291 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008292 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8293 MemPage *pPageMove; /* The page to move to. */
8294
danielk197720713f32007-05-03 11:43:33 +00008295 /* Creating a new table may probably require moving an existing database
8296 ** to make room for the new tables root page. In case this page turns
8297 ** out to be an overflow page, delete all overflow page-map caches
8298 ** held by open cursors.
8299 */
danielk197792d4d7a2007-05-04 12:05:56 +00008300 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008301
danielk1977003ba062004-11-04 02:57:33 +00008302 /* Read the value of meta[3] from the database to determine where the
8303 ** root page of the new table should go. meta[3] is the largest root-page
8304 ** created so far, so the new root-page is (meta[3]+1).
8305 */
danielk1977602b4662009-07-02 07:47:33 +00008306 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008307 pgnoRoot++;
8308
danielk1977599fcba2004-11-08 07:13:13 +00008309 /* The new root-page may not be allocated on a pointer-map page, or the
8310 ** PENDING_BYTE page.
8311 */
drh72190432008-01-31 14:54:43 +00008312 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008313 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008314 pgnoRoot++;
8315 }
drh499e15b2015-05-22 12:37:37 +00008316 assert( pgnoRoot>=3 || CORRUPT_DB );
8317 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008318
8319 /* Allocate a page. The page that currently resides at pgnoRoot will
8320 ** be moved to the allocated page (unless the allocated page happens
8321 ** to reside at pgnoRoot).
8322 */
dan51f0b6d2013-02-22 20:16:34 +00008323 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008324 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008325 return rc;
8326 }
danielk1977003ba062004-11-04 02:57:33 +00008327
8328 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008329 /* pgnoRoot is the page that will be used for the root-page of
8330 ** the new table (assuming an error did not occur). But we were
8331 ** allocated pgnoMove. If required (i.e. if it was not allocated
8332 ** by extending the file), the current page at position pgnoMove
8333 ** is already journaled.
8334 */
drheeb844a2009-08-08 18:01:07 +00008335 u8 eType = 0;
8336 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008337
danf7679ad2013-04-03 11:38:36 +00008338 /* Save the positions of any open cursors. This is required in
8339 ** case they are holding a reference to an xFetch reference
8340 ** corresponding to page pgnoRoot. */
8341 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008342 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008343 if( rc!=SQLITE_OK ){
8344 return rc;
8345 }
danielk1977f35843b2007-04-07 15:03:17 +00008346
8347 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008348 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008349 if( rc!=SQLITE_OK ){
8350 return rc;
8351 }
8352 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008353 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8354 rc = SQLITE_CORRUPT_BKPT;
8355 }
8356 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008357 releasePage(pRoot);
8358 return rc;
8359 }
drhccae6022005-02-26 17:31:26 +00008360 assert( eType!=PTRMAP_ROOTPAGE );
8361 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008362 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008363 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008364
8365 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008366 if( rc!=SQLITE_OK ){
8367 return rc;
8368 }
drhb00fc3b2013-08-21 23:42:32 +00008369 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008370 if( rc!=SQLITE_OK ){
8371 return rc;
8372 }
danielk19773b8a05f2007-03-19 17:44:26 +00008373 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008374 if( rc!=SQLITE_OK ){
8375 releasePage(pRoot);
8376 return rc;
8377 }
8378 }else{
8379 pRoot = pPageMove;
8380 }
8381
danielk197742741be2005-01-08 12:42:39 +00008382 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008383 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008384 if( rc ){
8385 releasePage(pRoot);
8386 return rc;
8387 }
drhbf592832010-03-30 15:51:12 +00008388
8389 /* When the new root page was allocated, page 1 was made writable in
8390 ** order either to increase the database filesize, or to decrement the
8391 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8392 */
8393 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008394 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008395 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008396 releasePage(pRoot);
8397 return rc;
8398 }
danielk197742741be2005-01-08 12:42:39 +00008399
danielk1977003ba062004-11-04 02:57:33 +00008400 }else{
drh4f0c5872007-03-26 22:05:01 +00008401 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008402 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008403 }
8404#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008405 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008406 if( createTabFlags & BTREE_INTKEY ){
8407 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8408 }else{
8409 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8410 }
8411 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008412 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008413 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008414 *piTable = (int)pgnoRoot;
8415 return SQLITE_OK;
8416}
drhd677b3d2007-08-20 22:48:41 +00008417int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8418 int rc;
8419 sqlite3BtreeEnter(p);
8420 rc = btreeCreateTable(p, piTable, flags);
8421 sqlite3BtreeLeave(p);
8422 return rc;
8423}
drh8b2f49b2001-06-08 00:21:52 +00008424
8425/*
8426** Erase the given database page and all its children. Return
8427** the page to the freelist.
8428*/
drh4b70f112004-05-02 21:12:19 +00008429static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008430 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008431 Pgno pgno, /* Page number to clear */
8432 int freePageFlag, /* Deallocate page if true */
8433 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008434){
danielk1977146ba992009-07-22 14:08:13 +00008435 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008436 int rc;
drh4b70f112004-05-02 21:12:19 +00008437 unsigned char *pCell;
8438 int i;
dan8ce71842014-01-14 20:14:09 +00008439 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008440 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008441
drh1fee73e2007-08-29 04:00:57 +00008442 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008443 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008444 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008445 }
drh28f58dd2015-06-27 19:45:03 +00008446 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008447 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008448 if( pPage->bBusy ){
8449 rc = SQLITE_CORRUPT_BKPT;
8450 goto cleardatabasepage_out;
8451 }
8452 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008453 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008454 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008455 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008456 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008457 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008458 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008459 }
drh9bfdc252014-09-24 02:05:41 +00008460 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008461 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008462 }
drha34b6762004-05-07 13:30:42 +00008463 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008464 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008465 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008466 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008467 assert( pPage->intKey || CORRUPT_DB );
8468 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008469 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008470 }
8471 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008472 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008473 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008474 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008475 }
danielk19776b456a22005-03-21 04:04:02 +00008476
8477cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008478 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008479 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008480 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008481}
8482
8483/*
drhab01f612004-05-22 02:55:23 +00008484** Delete all information from a single table in the database. iTable is
8485** the page number of the root of the table. After this routine returns,
8486** the root page is empty, but still exists.
8487**
8488** This routine will fail with SQLITE_LOCKED if there are any open
8489** read cursors on the table. Open write cursors are moved to the
8490** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008491**
8492** If pnChange is not NULL, then table iTable must be an intkey table. The
8493** integer value pointed to by pnChange is incremented by the number of
8494** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008495*/
danielk1977c7af4842008-10-27 13:59:33 +00008496int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008497 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008498 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008499 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008500 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008501
drhc046e3e2009-07-15 11:26:44 +00008502 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008503
drhc046e3e2009-07-15 11:26:44 +00008504 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008505 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8506 ** is the root of a table b-tree - if it is not, the following call is
8507 ** a no-op). */
8508 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008509 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008510 }
drhd677b3d2007-08-20 22:48:41 +00008511 sqlite3BtreeLeave(p);
8512 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008513}
8514
8515/*
drh079a3072014-03-19 14:10:55 +00008516** Delete all information from the single table that pCur is open on.
8517**
8518** This routine only work for pCur on an ephemeral table.
8519*/
8520int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8521 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8522}
8523
8524/*
drh8b2f49b2001-06-08 00:21:52 +00008525** Erase all information in a table and add the root of the table to
8526** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008527** page 1) is never added to the freelist.
8528**
8529** This routine will fail with SQLITE_LOCKED if there are any open
8530** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008531**
8532** If AUTOVACUUM is enabled and the page at iTable is not the last
8533** root page in the database file, then the last root page
8534** in the database file is moved into the slot formerly occupied by
8535** iTable and that last slot formerly occupied by the last root page
8536** is added to the freelist instead of iTable. In this say, all
8537** root pages are kept at the beginning of the database file, which
8538** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8539** page number that used to be the last root page in the file before
8540** the move. If no page gets moved, *piMoved is set to 0.
8541** The last root page is recorded in meta[3] and the value of
8542** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008543*/
danielk197789d40042008-11-17 14:20:56 +00008544static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008545 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008546 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008547 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008548
drh1fee73e2007-08-29 04:00:57 +00008549 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008550 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008551
danielk1977e6efa742004-11-10 11:55:10 +00008552 /* It is illegal to drop a table if any cursors are open on the
8553 ** database. This is because in auto-vacuum mode the backend may
8554 ** need to move another root-page to fill a gap left by the deleted
8555 ** root page. If an open cursor was using this page a problem would
8556 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008557 **
8558 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008559 */
drhc046e3e2009-07-15 11:26:44 +00008560 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008561 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8562 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008563 }
danielk1977a0bf2652004-11-04 14:30:04 +00008564
drh055f2982016-01-15 15:06:41 +00008565 /*
8566 ** It is illegal to drop the sqlite_master table on page 1. But again,
8567 ** this error is caught long before reaching this point.
8568 */
8569 if( NEVER(iTable<2) ){
8570 return SQLITE_CORRUPT_BKPT;
8571 }
8572
drhb00fc3b2013-08-21 23:42:32 +00008573 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008574 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008575 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008576 if( rc ){
8577 releasePage(pPage);
8578 return rc;
8579 }
danielk1977a0bf2652004-11-04 14:30:04 +00008580
drh205f48e2004-11-05 00:43:11 +00008581 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008582
danielk1977a0bf2652004-11-04 14:30:04 +00008583#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00008584 freePage(pPage, &rc);
8585 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00008586#else
drh055f2982016-01-15 15:06:41 +00008587 if( pBt->autoVacuum ){
8588 Pgno maxRootPgno;
8589 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008590
drh055f2982016-01-15 15:06:41 +00008591 if( iTable==maxRootPgno ){
8592 /* If the table being dropped is the table with the largest root-page
8593 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00008594 */
drhc314dc72009-07-21 11:52:34 +00008595 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008596 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00008597 if( rc!=SQLITE_OK ){
8598 return rc;
8599 }
8600 }else{
8601 /* The table being dropped does not have the largest root-page
8602 ** number in the database. So move the page that does into the
8603 ** gap left by the deleted root-page.
8604 */
8605 MemPage *pMove;
8606 releasePage(pPage);
8607 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8608 if( rc!=SQLITE_OK ){
8609 return rc;
8610 }
8611 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8612 releasePage(pMove);
8613 if( rc!=SQLITE_OK ){
8614 return rc;
8615 }
8616 pMove = 0;
8617 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8618 freePage(pMove, &rc);
8619 releasePage(pMove);
8620 if( rc!=SQLITE_OK ){
8621 return rc;
8622 }
8623 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00008624 }
drh055f2982016-01-15 15:06:41 +00008625
8626 /* Set the new 'max-root-page' value in the database header. This
8627 ** is the old value less one, less one more if that happens to
8628 ** be a root-page number, less one again if that is the
8629 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00008630 */
drh055f2982016-01-15 15:06:41 +00008631 maxRootPgno--;
8632 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8633 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8634 maxRootPgno--;
8635 }
8636 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8637
8638 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8639 }else{
8640 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008641 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008642 }
drh055f2982016-01-15 15:06:41 +00008643#endif
drh8b2f49b2001-06-08 00:21:52 +00008644 return rc;
8645}
drhd677b3d2007-08-20 22:48:41 +00008646int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8647 int rc;
8648 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008649 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008650 sqlite3BtreeLeave(p);
8651 return rc;
8652}
drh8b2f49b2001-06-08 00:21:52 +00008653
drh001bbcb2003-03-19 03:14:00 +00008654
drh8b2f49b2001-06-08 00:21:52 +00008655/*
danielk1977602b4662009-07-02 07:47:33 +00008656** This function may only be called if the b-tree connection already
8657** has a read or write transaction open on the database.
8658**
drh23e11ca2004-05-04 17:27:28 +00008659** Read the meta-information out of a database file. Meta[0]
8660** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008661** through meta[15] are available for use by higher layers. Meta[0]
8662** is read-only, the others are read/write.
8663**
8664** The schema layer numbers meta values differently. At the schema
8665** layer (and the SetCookie and ReadCookie opcodes) the number of
8666** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008667**
8668** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8669** of reading the value out of the header, it instead loads the "DataVersion"
8670** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8671** database file. It is a number computed by the pager. But its access
8672** pattern is the same as header meta values, and so it is convenient to
8673** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008674*/
danielk1977602b4662009-07-02 07:47:33 +00008675void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008676 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008677
drhd677b3d2007-08-20 22:48:41 +00008678 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008679 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008680 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008681 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008682 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008683
drh91618562014-12-19 19:28:02 +00008684 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008685 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008686 }else{
8687 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8688 }
drhae157872004-08-14 19:20:09 +00008689
danielk1977602b4662009-07-02 07:47:33 +00008690 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8691 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008692#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008693 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8694 pBt->btsFlags |= BTS_READ_ONLY;
8695 }
danielk1977003ba062004-11-04 02:57:33 +00008696#endif
drhae157872004-08-14 19:20:09 +00008697
drhd677b3d2007-08-20 22:48:41 +00008698 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008699}
8700
8701/*
drh23e11ca2004-05-04 17:27:28 +00008702** Write meta-information back into the database. Meta[0] is
8703** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008704*/
danielk1977aef0bf62005-12-30 16:28:01 +00008705int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8706 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008707 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008708 int rc;
drh23e11ca2004-05-04 17:27:28 +00008709 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008710 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008711 assert( p->inTrans==TRANS_WRITE );
8712 assert( pBt->pPage1!=0 );
8713 pP1 = pBt->pPage1->aData;
8714 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8715 if( rc==SQLITE_OK ){
8716 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008717#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008718 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008719 assert( pBt->autoVacuum || iMeta==0 );
8720 assert( iMeta==0 || iMeta==1 );
8721 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008722 }
drh64022502009-01-09 14:11:04 +00008723#endif
drh5df72a52002-06-06 23:16:05 +00008724 }
drhd677b3d2007-08-20 22:48:41 +00008725 sqlite3BtreeLeave(p);
8726 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008727}
drh8c42ca92001-06-22 19:15:00 +00008728
danielk1977a5533162009-02-24 10:01:51 +00008729#ifndef SQLITE_OMIT_BTREECOUNT
8730/*
8731** The first argument, pCur, is a cursor opened on some b-tree. Count the
8732** number of entries in the b-tree and write the result to *pnEntry.
8733**
8734** SQLITE_OK is returned if the operation is successfully executed.
8735** Otherwise, if an error is encountered (i.e. an IO error or database
8736** corruption) an SQLite error code is returned.
8737*/
8738int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8739 i64 nEntry = 0; /* Value to return in *pnEntry */
8740 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008741
8742 if( pCur->pgnoRoot==0 ){
8743 *pnEntry = 0;
8744 return SQLITE_OK;
8745 }
danielk1977a5533162009-02-24 10:01:51 +00008746 rc = moveToRoot(pCur);
8747
8748 /* Unless an error occurs, the following loop runs one iteration for each
8749 ** page in the B-Tree structure (not including overflow pages).
8750 */
8751 while( rc==SQLITE_OK ){
8752 int iIdx; /* Index of child node in parent */
8753 MemPage *pPage; /* Current page of the b-tree */
8754
8755 /* If this is a leaf page or the tree is not an int-key tree, then
8756 ** this page contains countable entries. Increment the entry counter
8757 ** accordingly.
8758 */
8759 pPage = pCur->apPage[pCur->iPage];
8760 if( pPage->leaf || !pPage->intKey ){
8761 nEntry += pPage->nCell;
8762 }
8763
8764 /* pPage is a leaf node. This loop navigates the cursor so that it
8765 ** points to the first interior cell that it points to the parent of
8766 ** the next page in the tree that has not yet been visited. The
8767 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8768 ** of the page, or to the number of cells in the page if the next page
8769 ** to visit is the right-child of its parent.
8770 **
8771 ** If all pages in the tree have been visited, return SQLITE_OK to the
8772 ** caller.
8773 */
8774 if( pPage->leaf ){
8775 do {
8776 if( pCur->iPage==0 ){
8777 /* All pages of the b-tree have been visited. Return successfully. */
8778 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008779 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008780 }
danielk197730548662009-07-09 05:07:37 +00008781 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008782 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8783
8784 pCur->aiIdx[pCur->iPage]++;
8785 pPage = pCur->apPage[pCur->iPage];
8786 }
8787
8788 /* Descend to the child node of the cell that the cursor currently
8789 ** points at. This is the right-child if (iIdx==pPage->nCell).
8790 */
8791 iIdx = pCur->aiIdx[pCur->iPage];
8792 if( iIdx==pPage->nCell ){
8793 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8794 }else{
8795 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8796 }
8797 }
8798
shanebe217792009-03-05 04:20:31 +00008799 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008800 return rc;
8801}
8802#endif
drhdd793422001-06-28 01:54:48 +00008803
drhdd793422001-06-28 01:54:48 +00008804/*
drh5eddca62001-06-30 21:53:53 +00008805** Return the pager associated with a BTree. This routine is used for
8806** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008807*/
danielk1977aef0bf62005-12-30 16:28:01 +00008808Pager *sqlite3BtreePager(Btree *p){
8809 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008810}
drh5eddca62001-06-30 21:53:53 +00008811
drhb7f91642004-10-31 02:22:47 +00008812#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008813/*
8814** Append a message to the error message string.
8815*/
drh2e38c322004-09-03 18:38:44 +00008816static void checkAppendMsg(
8817 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008818 const char *zFormat,
8819 ...
8820){
8821 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008822 if( !pCheck->mxErr ) return;
8823 pCheck->mxErr--;
8824 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008825 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008826 if( pCheck->errMsg.nChar ){
8827 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008828 }
drh867db832014-09-26 02:41:05 +00008829 if( pCheck->zPfx ){
drh5f4a6862016-01-30 12:50:25 +00008830 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008831 }
drh5f4a6862016-01-30 12:50:25 +00008832 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00008833 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008834 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008835 pCheck->mallocFailed = 1;
8836 }
drh5eddca62001-06-30 21:53:53 +00008837}
drhb7f91642004-10-31 02:22:47 +00008838#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008839
drhb7f91642004-10-31 02:22:47 +00008840#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008841
8842/*
8843** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8844** corresponds to page iPg is already set.
8845*/
8846static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8847 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8848 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8849}
8850
8851/*
8852** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8853*/
8854static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8855 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8856 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8857}
8858
8859
drh5eddca62001-06-30 21:53:53 +00008860/*
8861** Add 1 to the reference count for page iPage. If this is the second
8862** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008863** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008864** if this is the first reference to the page.
8865**
8866** Also check that the page number is in bounds.
8867*/
drh867db832014-09-26 02:41:05 +00008868static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008869 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008870 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008871 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008872 return 1;
8873 }
dan1235bb12012-04-03 17:43:28 +00008874 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008875 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008876 return 1;
8877 }
dan1235bb12012-04-03 17:43:28 +00008878 setPageReferenced(pCheck, iPage);
8879 return 0;
drh5eddca62001-06-30 21:53:53 +00008880}
8881
danielk1977afcdd022004-10-31 16:25:42 +00008882#ifndef SQLITE_OMIT_AUTOVACUUM
8883/*
8884** Check that the entry in the pointer-map for page iChild maps to
8885** page iParent, pointer type ptrType. If not, append an error message
8886** to pCheck.
8887*/
8888static void checkPtrmap(
8889 IntegrityCk *pCheck, /* Integrity check context */
8890 Pgno iChild, /* Child page number */
8891 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008892 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008893){
8894 int rc;
8895 u8 ePtrmapType;
8896 Pgno iPtrmapParent;
8897
8898 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8899 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008900 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008901 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008902 return;
8903 }
8904
8905 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008906 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008907 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8908 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8909 }
8910}
8911#endif
8912
drh5eddca62001-06-30 21:53:53 +00008913/*
8914** Check the integrity of the freelist or of an overflow page list.
8915** Verify that the number of pages on the list is N.
8916*/
drh30e58752002-03-02 20:41:57 +00008917static void checkList(
8918 IntegrityCk *pCheck, /* Integrity checking context */
8919 int isFreeList, /* True for a freelist. False for overflow page list */
8920 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008921 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008922){
8923 int i;
drh3a4c1412004-05-09 20:40:11 +00008924 int expected = N;
8925 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008926 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008927 DbPage *pOvflPage;
8928 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008929 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008930 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008931 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008932 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008933 break;
8934 }
drh867db832014-09-26 02:41:05 +00008935 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00008936 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00008937 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008938 break;
8939 }
danielk19773b8a05f2007-03-19 17:44:26 +00008940 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008941 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008942 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008943#ifndef SQLITE_OMIT_AUTOVACUUM
8944 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008945 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008946 }
8947#endif
drh43b18e12010-08-17 19:40:08 +00008948 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008949 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008950 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008951 N--;
8952 }else{
8953 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008954 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008955#ifndef SQLITE_OMIT_AUTOVACUUM
8956 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008957 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008958 }
8959#endif
drh867db832014-09-26 02:41:05 +00008960 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008961 }
8962 N -= n;
drh30e58752002-03-02 20:41:57 +00008963 }
drh30e58752002-03-02 20:41:57 +00008964 }
danielk1977afcdd022004-10-31 16:25:42 +00008965#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008966 else{
8967 /* If this database supports auto-vacuum and iPage is not the last
8968 ** page in this overflow list, check that the pointer-map entry for
8969 ** the following page matches iPage.
8970 */
8971 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008972 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008973 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008974 }
danielk1977afcdd022004-10-31 16:25:42 +00008975 }
8976#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008977 iPage = get4byte(pOvflData);
8978 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00008979
8980 if( isFreeList && N<(iPage!=0) ){
8981 checkAppendMsg(pCheck, "free-page count in header is too small");
8982 }
drh5eddca62001-06-30 21:53:53 +00008983 }
8984}
drhb7f91642004-10-31 02:22:47 +00008985#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008986
drh67731a92015-04-16 11:56:03 +00008987/*
8988** An implementation of a min-heap.
8989**
8990** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008991** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008992** and aHeap[N*2+1].
8993**
8994** The heap property is this: Every node is less than or equal to both
8995** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00008996** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00008997**
8998** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8999** the heap, preserving the heap property. The btreeHeapPull() routine
9000** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009001** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009002** property.
9003**
9004** This heap is used for cell overlap and coverage testing. Each u32
9005** entry represents the span of a cell or freeblock on a btree page.
9006** The upper 16 bits are the index of the first byte of a range and the
9007** lower 16 bits are the index of the last byte of that range.
9008*/
9009static void btreeHeapInsert(u32 *aHeap, u32 x){
9010 u32 j, i = ++aHeap[0];
9011 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009012 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009013 x = aHeap[j];
9014 aHeap[j] = aHeap[i];
9015 aHeap[i] = x;
9016 i = j;
9017 }
9018}
9019static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9020 u32 j, i, x;
9021 if( (x = aHeap[0])==0 ) return 0;
9022 *pOut = aHeap[1];
9023 aHeap[1] = aHeap[x];
9024 aHeap[x] = 0xffffffff;
9025 aHeap[0]--;
9026 i = 1;
9027 while( (j = i*2)<=aHeap[0] ){
9028 if( aHeap[j]>aHeap[j+1] ) j++;
9029 if( aHeap[i]<aHeap[j] ) break;
9030 x = aHeap[i];
9031 aHeap[i] = aHeap[j];
9032 aHeap[j] = x;
9033 i = j;
9034 }
9035 return 1;
9036}
9037
drhb7f91642004-10-31 02:22:47 +00009038#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009039/*
9040** Do various sanity checks on a single page of a tree. Return
9041** the tree depth. Root pages return 0. Parents of root pages
9042** return 1, and so forth.
9043**
9044** These checks are done:
9045**
9046** 1. Make sure that cells and freeblocks do not overlap
9047** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009048** 2. Make sure integer cell keys are in order.
9049** 3. Check the integrity of overflow pages.
9050** 4. Recursively call checkTreePage on all children.
9051** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009052*/
9053static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009054 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009055 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009056 i64 *piMinKey, /* Write minimum integer primary key here */
9057 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009058){
drhcbc6b712015-07-02 16:17:30 +00009059 MemPage *pPage = 0; /* The page being analyzed */
9060 int i; /* Loop counter */
9061 int rc; /* Result code from subroutine call */
9062 int depth = -1, d2; /* Depth of a subtree */
9063 int pgno; /* Page number */
9064 int nFrag; /* Number of fragmented bytes on the page */
9065 int hdr; /* Offset to the page header */
9066 int cellStart; /* Offset to the start of the cell pointer array */
9067 int nCell; /* Number of cells */
9068 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9069 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9070 ** False if IPK must be strictly less than maxKey */
9071 u8 *data; /* Page content */
9072 u8 *pCell; /* Cell content */
9073 u8 *pCellIdx; /* Next element of the cell pointer array */
9074 BtShared *pBt; /* The BtShared object that owns pPage */
9075 u32 pc; /* Address of a cell */
9076 u32 usableSize; /* Usable size of the page */
9077 u32 contentOffset; /* Offset to the start of the cell content area */
9078 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009079 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009080 const char *saved_zPfx = pCheck->zPfx;
9081 int saved_v1 = pCheck->v1;
9082 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009083 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009084
drh5eddca62001-06-30 21:53:53 +00009085 /* Check that the page exists
9086 */
drhd9cb6ac2005-10-20 07:28:17 +00009087 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009088 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009089 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009090 if( checkRef(pCheck, iPage) ) return 0;
9091 pCheck->zPfx = "Page %d: ";
9092 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009093 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009094 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009095 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009096 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009097 }
danielk197793caf5a2009-07-11 06:55:33 +00009098
9099 /* Clear MemPage.isInit to make sure the corruption detection code in
9100 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009101 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009102 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009103 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009104 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009105 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009106 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009107 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009108 }
drhcbc6b712015-07-02 16:17:30 +00009109 data = pPage->aData;
9110 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009111
drhcbc6b712015-07-02 16:17:30 +00009112 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009113 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009114 contentOffset = get2byteNotZero(&data[hdr+5]);
9115 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9116
9117 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9118 ** number of cells on the page. */
9119 nCell = get2byte(&data[hdr+3]);
9120 assert( pPage->nCell==nCell );
9121
9122 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9123 ** immediately follows the b-tree page header. */
9124 cellStart = hdr + 12 - 4*pPage->leaf;
9125 assert( pPage->aCellIdx==&data[cellStart] );
9126 pCellIdx = &data[cellStart + 2*(nCell-1)];
9127
9128 if( !pPage->leaf ){
9129 /* Analyze the right-child page of internal pages */
9130 pgno = get4byte(&data[hdr+8]);
9131#ifndef SQLITE_OMIT_AUTOVACUUM
9132 if( pBt->autoVacuum ){
9133 pCheck->zPfx = "On page %d at right child: ";
9134 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9135 }
9136#endif
9137 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9138 keyCanBeEqual = 0;
9139 }else{
9140 /* For leaf pages, the coverage check will occur in the same loop
9141 ** as the other cell checks, so initialize the heap. */
9142 heap = pCheck->heap;
9143 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009144 }
9145
drhcbc6b712015-07-02 16:17:30 +00009146 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9147 ** integer offsets to the cell contents. */
9148 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009149 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009150
drhcbc6b712015-07-02 16:17:30 +00009151 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009152 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009153 assert( pCellIdx==&data[cellStart + i*2] );
9154 pc = get2byteAligned(pCellIdx);
9155 pCellIdx -= 2;
9156 if( pc<contentOffset || pc>usableSize-4 ){
9157 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9158 pc, contentOffset, usableSize-4);
9159 doCoverageCheck = 0;
9160 continue;
shaneh195475d2010-02-19 04:28:08 +00009161 }
drhcbc6b712015-07-02 16:17:30 +00009162 pCell = &data[pc];
9163 pPage->xParseCell(pPage, pCell, &info);
9164 if( pc+info.nSize>usableSize ){
9165 checkAppendMsg(pCheck, "Extends off end of page");
9166 doCoverageCheck = 0;
9167 continue;
drh5eddca62001-06-30 21:53:53 +00009168 }
9169
drhcbc6b712015-07-02 16:17:30 +00009170 /* Check for integer primary key out of range */
9171 if( pPage->intKey ){
9172 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9173 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9174 }
9175 maxKey = info.nKey;
9176 }
9177
9178 /* Check the content overflow list */
9179 if( info.nPayload>info.nLocal ){
9180 int nPage; /* Number of pages on the overflow chain */
9181 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009182 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009183 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009184 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009185#ifndef SQLITE_OMIT_AUTOVACUUM
9186 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009187 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009188 }
9189#endif
drh867db832014-09-26 02:41:05 +00009190 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009191 }
9192
drh5eddca62001-06-30 21:53:53 +00009193 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009194 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009195 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009196#ifndef SQLITE_OMIT_AUTOVACUUM
9197 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009198 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009199 }
9200#endif
drhcbc6b712015-07-02 16:17:30 +00009201 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9202 keyCanBeEqual = 0;
9203 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009204 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009205 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009206 }
drhcbc6b712015-07-02 16:17:30 +00009207 }else{
9208 /* Populate the coverage-checking heap for leaf pages */
9209 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009210 }
9211 }
drhcbc6b712015-07-02 16:17:30 +00009212 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009213
drh5eddca62001-06-30 21:53:53 +00009214 /* Check for complete coverage of the page
9215 */
drh867db832014-09-26 02:41:05 +00009216 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009217 if( doCoverageCheck && pCheck->mxErr>0 ){
9218 /* For leaf pages, the min-heap has already been initialized and the
9219 ** cells have already been inserted. But for internal pages, that has
9220 ** not yet been done, so do it now */
9221 if( !pPage->leaf ){
9222 heap = pCheck->heap;
9223 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009224 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009225 u32 size;
9226 pc = get2byteAligned(&data[cellStart+i*2]);
9227 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009228 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009229 }
drh2e38c322004-09-03 18:38:44 +00009230 }
drhcbc6b712015-07-02 16:17:30 +00009231 /* Add the freeblocks to the min-heap
9232 **
9233 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009234 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009235 ** freeblocks on the page.
9236 */
drh8c2bbb62009-07-10 02:52:20 +00009237 i = get2byte(&data[hdr+1]);
9238 while( i>0 ){
9239 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009240 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009241 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009242 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009243 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009244 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9245 ** big-endian integer which is the offset in the b-tree page of the next
9246 ** freeblock in the chain, or zero if the freeblock is the last on the
9247 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009248 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009249 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9250 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009251 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009252 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009253 i = j;
drh2e38c322004-09-03 18:38:44 +00009254 }
drhcbc6b712015-07-02 16:17:30 +00009255 /* Analyze the min-heap looking for overlap between cells and/or
9256 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009257 **
9258 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9259 ** There is an implied first entry the covers the page header, the cell
9260 ** pointer index, and the gap between the cell pointer index and the start
9261 ** of cell content.
9262 **
9263 ** The loop below pulls entries from the min-heap in order and compares
9264 ** the start_address against the previous end_address. If there is an
9265 ** overlap, that means bytes are used multiple times. If there is a gap,
9266 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009267 */
9268 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009269 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009270 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009271 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009272 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009273 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009274 break;
drh67731a92015-04-16 11:56:03 +00009275 }else{
drhcbc6b712015-07-02 16:17:30 +00009276 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009277 prev = x;
drh2e38c322004-09-03 18:38:44 +00009278 }
9279 }
drhcbc6b712015-07-02 16:17:30 +00009280 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009281 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9282 ** is stored in the fifth field of the b-tree page header.
9283 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9284 ** number of fragmented free bytes within the cell content area.
9285 */
drhcbc6b712015-07-02 16:17:30 +00009286 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009287 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009288 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009289 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009290 }
9291 }
drh867db832014-09-26 02:41:05 +00009292
9293end_of_check:
drh72e191e2015-07-04 11:14:20 +00009294 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009295 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009296 pCheck->zPfx = saved_zPfx;
9297 pCheck->v1 = saved_v1;
9298 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009299 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009300}
drhb7f91642004-10-31 02:22:47 +00009301#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009302
drhb7f91642004-10-31 02:22:47 +00009303#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009304/*
9305** This routine does a complete check of the given BTree file. aRoot[] is
9306** an array of pages numbers were each page number is the root page of
9307** a table. nRoot is the number of entries in aRoot.
9308**
danielk19773509a652009-07-06 18:56:13 +00009309** A read-only or read-write transaction must be opened before calling
9310** this function.
9311**
drhc890fec2008-08-01 20:10:08 +00009312** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009313** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009314** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009315** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009316*/
drh1dcdbc02007-01-27 02:24:54 +00009317char *sqlite3BtreeIntegrityCheck(
9318 Btree *p, /* The btree to be checked */
9319 int *aRoot, /* An array of root pages numbers for individual trees */
9320 int nRoot, /* Number of entries in aRoot[] */
9321 int mxErr, /* Stop reporting errors after this many */
9322 int *pnErr /* Write number of errors seen to this variable */
9323){
danielk197789d40042008-11-17 14:20:56 +00009324 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009325 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009326 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009327 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009328 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009329 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009330
drhd677b3d2007-08-20 22:48:41 +00009331 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009332 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009333 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9334 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009335 sCheck.pBt = pBt;
9336 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009337 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009338 sCheck.mxErr = mxErr;
9339 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009340 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009341 sCheck.zPfx = 0;
9342 sCheck.v1 = 0;
9343 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009344 sCheck.aPgRef = 0;
9345 sCheck.heap = 0;
9346 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009347 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009348 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009349 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009350 }
dan1235bb12012-04-03 17:43:28 +00009351
9352 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9353 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009354 sCheck.mallocFailed = 1;
9355 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009356 }
drhe05b3f82015-07-01 17:53:49 +00009357 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9358 if( sCheck.heap==0 ){
9359 sCheck.mallocFailed = 1;
9360 goto integrity_ck_cleanup;
9361 }
9362
drh42cac6d2004-11-20 20:31:11 +00009363 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009364 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009365
9366 /* Check the integrity of the freelist
9367 */
drh867db832014-09-26 02:41:05 +00009368 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009369 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009370 get4byte(&pBt->pPage1->aData[36]));
9371 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009372
9373 /* Check all the tables.
9374 */
drhcbc6b712015-07-02 16:17:30 +00009375 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9376 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009377 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009378 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009379 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009380#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009381 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009382 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009383 }
9384#endif
drhcbc6b712015-07-02 16:17:30 +00009385 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009386 }
drhcbc6b712015-07-02 16:17:30 +00009387 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009388
9389 /* Make sure every page in the file is referenced
9390 */
drh1dcdbc02007-01-27 02:24:54 +00009391 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009392#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009393 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009394 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009395 }
danielk1977afcdd022004-10-31 16:25:42 +00009396#else
9397 /* If the database supports auto-vacuum, make sure no tables contain
9398 ** references to pointer-map pages.
9399 */
dan1235bb12012-04-03 17:43:28 +00009400 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009401 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009402 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009403 }
dan1235bb12012-04-03 17:43:28 +00009404 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009405 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009406 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009407 }
9408#endif
drh5eddca62001-06-30 21:53:53 +00009409 }
9410
drh5eddca62001-06-30 21:53:53 +00009411 /* Clean up and report errors.
9412 */
drhe05b3f82015-07-01 17:53:49 +00009413integrity_ck_cleanup:
9414 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009415 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009416 if( sCheck.mallocFailed ){
9417 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009418 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009419 }
drh1dcdbc02007-01-27 02:24:54 +00009420 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009421 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009422 /* Make sure this analysis did not leave any unref() pages. */
9423 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9424 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009425 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009426}
drhb7f91642004-10-31 02:22:47 +00009427#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009428
drh73509ee2003-04-06 20:44:45 +00009429/*
drhd4e0bb02012-05-27 01:19:04 +00009430** Return the full pathname of the underlying database file. Return
9431** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009432**
9433** The pager filename is invariant as long as the pager is
9434** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009435*/
danielk1977aef0bf62005-12-30 16:28:01 +00009436const char *sqlite3BtreeGetFilename(Btree *p){
9437 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009438 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009439}
9440
9441/*
danielk19775865e3d2004-06-14 06:03:57 +00009442** Return the pathname of the journal file for this database. The return
9443** value of this routine is the same regardless of whether the journal file
9444** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009445**
9446** The pager journal filename is invariant as long as the pager is
9447** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009448*/
danielk1977aef0bf62005-12-30 16:28:01 +00009449const char *sqlite3BtreeGetJournalname(Btree *p){
9450 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009451 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009452}
9453
danielk19771d850a72004-05-31 08:26:49 +00009454/*
9455** Return non-zero if a transaction is active.
9456*/
danielk1977aef0bf62005-12-30 16:28:01 +00009457int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009458 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009459 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009460}
9461
dana550f2d2010-08-02 10:47:05 +00009462#ifndef SQLITE_OMIT_WAL
9463/*
9464** Run a checkpoint on the Btree passed as the first argument.
9465**
9466** Return SQLITE_LOCKED if this or any other connection has an open
9467** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009468**
dancdc1f042010-11-18 12:11:05 +00009469** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009470*/
dancdc1f042010-11-18 12:11:05 +00009471int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009472 int rc = SQLITE_OK;
9473 if( p ){
9474 BtShared *pBt = p->pBt;
9475 sqlite3BtreeEnter(p);
9476 if( pBt->inTransaction!=TRANS_NONE ){
9477 rc = SQLITE_LOCKED;
9478 }else{
dan7fb89902016-08-12 16:21:15 +00009479 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009480 }
9481 sqlite3BtreeLeave(p);
9482 }
9483 return rc;
9484}
9485#endif
9486
danielk19771d850a72004-05-31 08:26:49 +00009487/*
danielk19772372c2b2006-06-27 16:34:56 +00009488** Return non-zero if a read (or write) transaction is active.
9489*/
9490int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009491 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009492 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009493 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009494}
9495
danielk197704103022009-02-03 16:51:24 +00009496int sqlite3BtreeIsInBackup(Btree *p){
9497 assert( p );
9498 assert( sqlite3_mutex_held(p->db->mutex) );
9499 return p->nBackup!=0;
9500}
9501
danielk19772372c2b2006-06-27 16:34:56 +00009502/*
danielk1977da184232006-01-05 11:34:32 +00009503** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009504** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009505** purposes (for example, to store a high-level schema associated with
9506** the shared-btree). The btree layer manages reference counting issues.
9507**
9508** The first time this is called on a shared-btree, nBytes bytes of memory
9509** are allocated, zeroed, and returned to the caller. For each subsequent
9510** call the nBytes parameter is ignored and a pointer to the same blob
9511** of memory returned.
9512**
danielk1977171bfed2008-06-23 09:50:50 +00009513** If the nBytes parameter is 0 and the blob of memory has not yet been
9514** allocated, a null pointer is returned. If the blob has already been
9515** allocated, it is returned as normal.
9516**
danielk1977da184232006-01-05 11:34:32 +00009517** Just before the shared-btree is closed, the function passed as the
9518** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009519** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009520** on the memory, the btree layer does that.
9521*/
9522void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9523 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009524 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009525 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009526 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009527 pBt->xFreeSchema = xFree;
9528 }
drh27641702007-08-22 02:56:42 +00009529 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009530 return pBt->pSchema;
9531}
9532
danielk1977c87d34d2006-01-06 13:00:28 +00009533/*
danielk1977404ca072009-03-16 13:19:36 +00009534** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9535** btree as the argument handle holds an exclusive lock on the
9536** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009537*/
9538int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009539 int rc;
drhe5fe6902007-12-07 18:55:28 +00009540 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009541 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009542 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9543 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009544 sqlite3BtreeLeave(p);
9545 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009546}
9547
drha154dcd2006-03-22 22:10:07 +00009548
9549#ifndef SQLITE_OMIT_SHARED_CACHE
9550/*
9551** Obtain a lock on the table whose root page is iTab. The
9552** lock is a write lock if isWritelock is true or a read lock
9553** if it is false.
9554*/
danielk1977c00da102006-01-07 13:21:04 +00009555int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009556 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009557 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009558 if( p->sharable ){
9559 u8 lockType = READ_LOCK + isWriteLock;
9560 assert( READ_LOCK+1==WRITE_LOCK );
9561 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009562
drh6a9ad3d2008-04-02 16:29:30 +00009563 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009564 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009565 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009566 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009567 }
9568 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009569 }
9570 return rc;
9571}
drha154dcd2006-03-22 22:10:07 +00009572#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009573
danielk1977b4e9af92007-05-01 17:49:49 +00009574#ifndef SQLITE_OMIT_INCRBLOB
9575/*
9576** Argument pCsr must be a cursor opened for writing on an
9577** INTKEY table currently pointing at a valid table entry.
9578** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009579**
9580** Only the data content may only be modified, it is not possible to
9581** change the length of the data stored. If this function is called with
9582** parameters that attempt to write past the end of the existing data,
9583** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009584*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009585int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009586 int rc;
dan7a2347e2016-01-07 16:43:54 +00009587 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009588 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009589 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009590
danielk1977c9000e62009-07-08 13:55:28 +00009591 rc = restoreCursorPosition(pCsr);
9592 if( rc!=SQLITE_OK ){
9593 return rc;
9594 }
danielk19773588ceb2008-06-10 17:30:26 +00009595 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9596 if( pCsr->eState!=CURSOR_VALID ){
9597 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009598 }
9599
dan227a1c42013-04-03 11:17:39 +00009600 /* Save the positions of all other cursors open on this table. This is
9601 ** required in case any of them are holding references to an xFetch
9602 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009603 **
drh3f387402014-09-24 01:23:00 +00009604 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009605 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9606 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009607 */
drh370c9f42013-04-03 20:04:04 +00009608 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9609 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009610
danielk1977c9000e62009-07-08 13:55:28 +00009611 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009612 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009613 ** (b) there is a read/write transaction open,
9614 ** (c) the connection holds a write-lock on the table (if required),
9615 ** (d) there are no conflicting read-locks, and
9616 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009617 */
drh036dbec2014-03-11 23:40:44 +00009618 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009619 return SQLITE_READONLY;
9620 }
drhc9166342012-01-05 23:32:06 +00009621 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9622 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009623 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9624 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009625 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009626
drhfb192682009-07-11 18:26:28 +00009627 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009628}
danielk19772dec9702007-05-02 16:48:37 +00009629
9630/*
dan5a500af2014-03-11 20:33:04 +00009631** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009632*/
dan5a500af2014-03-11 20:33:04 +00009633void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009634 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009635 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009636}
danielk1977b4e9af92007-05-01 17:49:49 +00009637#endif
dane04dc882010-04-20 18:53:15 +00009638
9639/*
9640** Set both the "read version" (single byte at byte offset 18) and
9641** "write version" (single byte at byte offset 19) fields in the database
9642** header to iVersion.
9643*/
9644int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9645 BtShared *pBt = pBtree->pBt;
9646 int rc; /* Return code */
9647
dane04dc882010-04-20 18:53:15 +00009648 assert( iVersion==1 || iVersion==2 );
9649
danb9780022010-04-21 18:37:57 +00009650 /* If setting the version fields to 1, do not automatically open the
9651 ** WAL connection, even if the version fields are currently set to 2.
9652 */
drhc9166342012-01-05 23:32:06 +00009653 pBt->btsFlags &= ~BTS_NO_WAL;
9654 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009655
9656 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009657 if( rc==SQLITE_OK ){
9658 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009659 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009660 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009661 if( rc==SQLITE_OK ){
9662 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9663 if( rc==SQLITE_OK ){
9664 aData[18] = (u8)iVersion;
9665 aData[19] = (u8)iVersion;
9666 }
9667 }
9668 }
dane04dc882010-04-20 18:53:15 +00009669 }
9670
drhc9166342012-01-05 23:32:06 +00009671 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009672 return rc;
9673}
dan428c2182012-08-06 18:50:11 +00009674
drhe0997b32015-03-20 14:57:50 +00009675/*
9676** Return true if the cursor has a hint specified. This routine is
9677** only used from within assert() statements
9678*/
9679int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9680 return (pCsr->hints & mask)!=0;
9681}
drhe0997b32015-03-20 14:57:50 +00009682
drh781597f2014-05-21 08:21:07 +00009683/*
9684** Return true if the given Btree is read-only.
9685*/
9686int sqlite3BtreeIsReadonly(Btree *p){
9687 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9688}
drhdef68892014-11-04 12:11:23 +00009689
9690/*
9691** Return the size of the header added to each page by this module.
9692*/
drh37c057b2014-12-30 00:57:29 +00009693int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +00009694
drh5a1fb182016-01-08 19:34:39 +00009695#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +00009696/*
9697** Return true if the Btree passed as the only argument is sharable.
9698*/
9699int sqlite3BtreeSharable(Btree *p){
9700 return p->sharable;
9701}
dan272989b2016-07-06 10:12:02 +00009702
9703/*
9704** Return the number of connections to the BtShared object accessed by
9705** the Btree handle passed as the only argument. For private caches
9706** this is always 1. For shared caches it may be 1 or greater.
9707*/
9708int sqlite3BtreeConnectionCount(Btree *p){
9709 testcase( p->sharable );
9710 return p->pBt->nRef;
9711}
drh5a1fb182016-01-08 19:34:39 +00009712#endif