blob: b900331bd32357e92b354fcbe1407fd3735783a9 [file] [log] [blame]
drhbbd42a62004-05-22 17:41:58 +00001/*
2** 2004 May 22
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11******************************************************************************
12**
13** This file contains code that is specific to Unix systems.
14*/
drhbbd42a62004-05-22 17:41:58 +000015#include "sqliteInt.h"
drheb206252004-10-01 02:00:31 +000016#include "os.h"
17#if OS_UNIX /* This file is used on unix only */
drhbbd42a62004-05-22 17:41:58 +000018
19
20#include <time.h>
21#include <errno.h>
22#include <unistd.h>
23#ifndef O_LARGEFILE
24# define O_LARGEFILE 0
25#endif
26#ifdef SQLITE_DISABLE_LFS
27# undef O_LARGEFILE
28# define O_LARGEFILE 0
29#endif
30#ifndef O_NOFOLLOW
31# define O_NOFOLLOW 0
32#endif
33#ifndef O_BINARY
34# define O_BINARY 0
35#endif
36
drheb206252004-10-01 02:00:31 +000037
drhbbd42a62004-05-22 17:41:58 +000038/*
39** The DJGPP compiler environment looks mostly like Unix, but it
40** lacks the fcntl() system call. So redefine fcntl() to be something
41** that always succeeds. This means that locking does not occur under
42** DJGPP. But its DOS - what did you expect?
43*/
44#ifdef __DJGPP__
45# define fcntl(A,B,C) 0
46#endif
47
48/*
49** Macros used to determine whether or not to use threads. The
50** SQLITE_UNIX_THREADS macro is defined if we are synchronizing for
51** Posix threads and SQLITE_W32_THREADS is defined if we are
52** synchronizing using Win32 threads.
53*/
54#if defined(THREADSAFE) && THREADSAFE
55# include <pthread.h>
56# define SQLITE_UNIX_THREADS 1
57#endif
58
59
60/*
61** Include code that is common to all os_*.c files
62*/
63#include "os_common.h"
64
drh0bb132b2004-07-20 14:06:51 +000065#if defined(THREADSAFE) && THREADSAFE && defined(__linux__)
danielk197713adf8a2004-06-03 16:08:41 +000066#define getpid pthread_self
67#endif
68
drhbbd42a62004-05-22 17:41:58 +000069/*
70** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
71** section 6.5.2.2 lines 483 through 490 specify that when a process
72** sets or clears a lock, that operation overrides any prior locks set
73** by the same process. It does not explicitly say so, but this implies
74** that it overrides locks set by the same process using a different
75** file descriptor. Consider this test case:
76**
77** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
78** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
79**
80** Suppose ./file1 and ./file2 are really the same file (because
81** one is a hard or symbolic link to the other) then if you set
82** an exclusive lock on fd1, then try to get an exclusive lock
83** on fd2, it works. I would have expected the second lock to
84** fail since there was already a lock on the file due to fd1.
85** But not so. Since both locks came from the same process, the
86** second overrides the first, even though they were on different
87** file descriptors opened on different file names.
88**
89** Bummer. If you ask me, this is broken. Badly broken. It means
90** that we cannot use POSIX locks to synchronize file access among
91** competing threads of the same process. POSIX locks will work fine
92** to synchronize access for threads in separate processes, but not
93** threads within the same process.
94**
95** To work around the problem, SQLite has to manage file locks internally
96** on its own. Whenever a new database is opened, we have to find the
97** specific inode of the database file (the inode is determined by the
98** st_dev and st_ino fields of the stat structure that fstat() fills in)
99** and check for locks already existing on that inode. When locks are
100** created or removed, we have to look at our own internal record of the
101** locks to see if another thread has previously set a lock on that same
102** inode.
103**
104** The OsFile structure for POSIX is no longer just an integer file
105** descriptor. It is now a structure that holds the integer file
106** descriptor and a pointer to a structure that describes the internal
107** locks on the corresponding inode. There is one locking structure
108** per inode, so if the same inode is opened twice, both OsFile structures
109** point to the same locking structure. The locking structure keeps
110** a reference count (so we will know when to delete it) and a "cnt"
111** field that tells us its internal lock status. cnt==0 means the
112** file is unlocked. cnt==-1 means the file has an exclusive lock.
113** cnt>0 means there are cnt shared locks on the file.
114**
115** Any attempt to lock or unlock a file first checks the locking
116** structure. The fcntl() system call is only invoked to set a
117** POSIX lock if the internal lock structure transitions between
118** a locked and an unlocked state.
119**
120** 2004-Jan-11:
121** More recent discoveries about POSIX advisory locks. (The more
122** I discover, the more I realize the a POSIX advisory locks are
123** an abomination.)
124**
125** If you close a file descriptor that points to a file that has locks,
126** all locks on that file that are owned by the current process are
127** released. To work around this problem, each OsFile structure contains
128** a pointer to an openCnt structure. There is one openCnt structure
129** per open inode, which means that multiple OsFiles can point to a single
130** openCnt. When an attempt is made to close an OsFile, if there are
131** other OsFiles open on the same inode that are holding locks, the call
132** to close() the file descriptor is deferred until all of the locks clear.
133** The openCnt structure keeps a list of file descriptors that need to
134** be closed and that list is walked (and cleared) when the last lock
135** clears.
136**
137** First, under Linux threads, because each thread has a separate
138** process ID, lock operations in one thread do not override locks
139** to the same file in other threads. Linux threads behave like
140** separate processes in this respect. But, if you close a file
141** descriptor in linux threads, all locks are cleared, even locks
142** on other threads and even though the other threads have different
143** process IDs. Linux threads is inconsistent in this respect.
144** (I'm beginning to think that linux threads is an abomination too.)
145** The consequence of this all is that the hash table for the lockInfo
146** structure has to include the process id as part of its key because
147** locks in different threads are treated as distinct. But the
148** openCnt structure should not include the process id in its
149** key because close() clears lock on all threads, not just the current
150** thread. Were it not for this goofiness in linux threads, we could
151** combine the lockInfo and openCnt structures into a single structure.
drh5fdae772004-06-29 03:29:00 +0000152**
153** 2004-Jun-28:
154** On some versions of linux, threads can override each others locks.
155** On others not. Sometimes you can change the behavior on the same
156** system by setting the LD_ASSUME_KERNEL environment variable. The
157** POSIX standard is silent as to which behavior is correct, as far
158** as I can tell, so other versions of unix might show the same
159** inconsistency. There is no little doubt in my mind that posix
160** advisory locks and linux threads are profoundly broken.
161**
162** To work around the inconsistencies, we have to test at runtime
163** whether or not threads can override each others locks. This test
164** is run once, the first time any lock is attempted. A static
165** variable is set to record the results of this test for future
166** use.
drhbbd42a62004-05-22 17:41:58 +0000167*/
168
169/*
170** An instance of the following structure serves as the key used
drh5fdae772004-06-29 03:29:00 +0000171** to locate a particular lockInfo structure given its inode.
172**
173** If threads cannot override each others locks, then we set the
174** lockKey.tid field to the thread ID. If threads can override
175** each others locks then tid is always set to zero. tid is also
176** set to zero if we compile without threading support.
drhbbd42a62004-05-22 17:41:58 +0000177*/
178struct lockKey {
drh5fdae772004-06-29 03:29:00 +0000179 dev_t dev; /* Device number */
180 ino_t ino; /* Inode number */
181#ifdef SQLITE_UNIX_THREADS
182 pthread_t tid; /* Thread ID or zero if threads cannot override each other */
183#endif
drhbbd42a62004-05-22 17:41:58 +0000184};
185
186/*
187** An instance of the following structure is allocated for each open
188** inode on each thread with a different process ID. (Threads have
189** different process IDs on linux, but not on most other unixes.)
190**
191** A single inode can have multiple file descriptors, so each OsFile
192** structure contains a pointer to an instance of this object and this
193** object keeps a count of the number of OsFiles pointing to it.
194*/
195struct lockInfo {
196 struct lockKey key; /* The lookup key */
drh2ac3ee92004-06-07 16:27:46 +0000197 int cnt; /* Number of SHARED locks held */
danielk19779a1d0ab2004-06-01 14:09:28 +0000198 int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
drhbbd42a62004-05-22 17:41:58 +0000199 int nRef; /* Number of pointers to this structure */
200};
201
202/*
203** An instance of the following structure serves as the key used
204** to locate a particular openCnt structure given its inode. This
drh5fdae772004-06-29 03:29:00 +0000205** is the same as the lockKey except that the thread ID is omitted.
drhbbd42a62004-05-22 17:41:58 +0000206*/
207struct openKey {
208 dev_t dev; /* Device number */
209 ino_t ino; /* Inode number */
210};
211
212/*
213** An instance of the following structure is allocated for each open
214** inode. This structure keeps track of the number of locks on that
215** inode. If a close is attempted against an inode that is holding
216** locks, the close is deferred until all locks clear by adding the
217** file descriptor to be closed to the pending list.
218*/
219struct openCnt {
220 struct openKey key; /* The lookup key */
221 int nRef; /* Number of pointers to this structure */
222 int nLock; /* Number of outstanding locks */
223 int nPending; /* Number of pending close() operations */
224 int *aPending; /* Malloced space holding fd's awaiting a close() */
225};
226
227/*
228** These hash table maps inodes and process IDs into lockInfo and openCnt
229** structures. Access to these hash tables must be protected by a mutex.
230*/
231static Hash lockHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
232static Hash openHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
233
drh5fdae772004-06-29 03:29:00 +0000234
235#ifdef SQLITE_UNIX_THREADS
236/*
237** This variable records whether or not threads can override each others
238** locks.
239**
240** 0: No. Threads cannot override each others locks.
241** 1: Yes. Threads can override each others locks.
242** -1: We don't know yet.
243*/
244static int threadsOverrideEachOthersLocks = -1;
245
246/*
247** This structure holds information passed into individual test
248** threads by the testThreadLockingBehavior() routine.
249*/
250struct threadTestData {
251 int fd; /* File to be locked */
252 struct flock lock; /* The locking operation */
253 int result; /* Result of the locking operation */
254};
255
256/*
257** The testThreadLockingBehavior() routine launches two separate
258** threads on this routine. This routine attempts to lock a file
259** descriptor then returns. The success or failure of that attempt
260** allows the testThreadLockingBehavior() procedure to determine
261** whether or not threads can override each others locks.
262*/
263static void *threadLockingTest(void *pArg){
264 struct threadTestData *pData = (struct threadTestData*)pArg;
265 pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
266 return pArg;
267}
268
269/*
270** This procedure attempts to determine whether or not threads
271** can override each others locks then sets the
272** threadsOverrideEachOthersLocks variable appropriately.
273*/
274static void testThreadLockingBehavior(fd_orig){
275 int fd;
276 struct threadTestData d[2];
277 pthread_t t[2];
278
279 fd = dup(fd_orig);
280 if( fd<0 ) return;
281 memset(d, 0, sizeof(d));
282 d[0].fd = fd;
283 d[0].lock.l_type = F_RDLCK;
284 d[0].lock.l_len = 1;
285 d[0].lock.l_start = 0;
286 d[0].lock.l_whence = SEEK_SET;
287 d[1] = d[0];
288 d[1].lock.l_type = F_WRLCK;
289 pthread_create(&t[0], 0, threadLockingTest, &d[0]);
290 pthread_create(&t[1], 0, threadLockingTest, &d[1]);
291 pthread_join(t[0], 0);
292 pthread_join(t[1], 0);
293 close(fd);
294 threadsOverrideEachOthersLocks = d[0].result==0 && d[1].result==0;
295}
296#endif /* SQLITE_UNIX_THREADS */
297
drhbbd42a62004-05-22 17:41:58 +0000298/*
299** Release a lockInfo structure previously allocated by findLockInfo().
300*/
301static void releaseLockInfo(struct lockInfo *pLock){
302 pLock->nRef--;
303 if( pLock->nRef==0 ){
304 sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
305 sqliteFree(pLock);
306 }
307}
308
309/*
310** Release a openCnt structure previously allocated by findLockInfo().
311*/
312static void releaseOpenCnt(struct openCnt *pOpen){
313 pOpen->nRef--;
314 if( pOpen->nRef==0 ){
315 sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
316 sqliteFree(pOpen->aPending);
317 sqliteFree(pOpen);
318 }
319}
320
321/*
322** Given a file descriptor, locate lockInfo and openCnt structures that
323** describes that file descriptor. Create a new ones if necessary. The
324** return values might be unset if an error occurs.
325**
326** Return the number of errors.
327*/
drh38f82712004-06-18 17:10:16 +0000328static int findLockInfo(
drhbbd42a62004-05-22 17:41:58 +0000329 int fd, /* The file descriptor used in the key */
330 struct lockInfo **ppLock, /* Return the lockInfo structure here */
drh5fdae772004-06-29 03:29:00 +0000331 struct openCnt **ppOpen /* Return the openCnt structure here */
drhbbd42a62004-05-22 17:41:58 +0000332){
333 int rc;
334 struct lockKey key1;
335 struct openKey key2;
336 struct stat statbuf;
337 struct lockInfo *pLock;
338 struct openCnt *pOpen;
339 rc = fstat(fd, &statbuf);
340 if( rc!=0 ) return 1;
341 memset(&key1, 0, sizeof(key1));
342 key1.dev = statbuf.st_dev;
343 key1.ino = statbuf.st_ino;
drh5fdae772004-06-29 03:29:00 +0000344#ifdef SQLITE_UNIX_THREADS
345 if( threadsOverrideEachOthersLocks<0 ){
346 testThreadLockingBehavior(fd);
347 }
348 key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
349#endif
drhbbd42a62004-05-22 17:41:58 +0000350 memset(&key2, 0, sizeof(key2));
351 key2.dev = statbuf.st_dev;
352 key2.ino = statbuf.st_ino;
353 pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1));
354 if( pLock==0 ){
355 struct lockInfo *pOld;
356 pLock = sqliteMallocRaw( sizeof(*pLock) );
357 if( pLock==0 ) return 1;
358 pLock->key = key1;
359 pLock->nRef = 1;
360 pLock->cnt = 0;
danielk19779a1d0ab2004-06-01 14:09:28 +0000361 pLock->locktype = 0;
drhbbd42a62004-05-22 17:41:58 +0000362 pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
363 if( pOld!=0 ){
364 assert( pOld==pLock );
365 sqliteFree(pLock);
366 return 1;
367 }
368 }else{
369 pLock->nRef++;
370 }
371 *ppLock = pLock;
372 pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2));
373 if( pOpen==0 ){
374 struct openCnt *pOld;
375 pOpen = sqliteMallocRaw( sizeof(*pOpen) );
376 if( pOpen==0 ){
377 releaseLockInfo(pLock);
378 return 1;
379 }
380 pOpen->key = key2;
381 pOpen->nRef = 1;
382 pOpen->nLock = 0;
383 pOpen->nPending = 0;
384 pOpen->aPending = 0;
385 pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
386 if( pOld!=0 ){
387 assert( pOld==pOpen );
388 sqliteFree(pOpen);
389 releaseLockInfo(pLock);
390 return 1;
391 }
392 }else{
393 pOpen->nRef++;
394 }
395 *ppOpen = pOpen;
396 return 0;
397}
398
399/*
400** Delete the named file
401*/
402int sqlite3OsDelete(const char *zFilename){
403 unlink(zFilename);
404 return SQLITE_OK;
405}
406
407/*
408** Return TRUE if the named file exists.
409*/
410int sqlite3OsFileExists(const char *zFilename){
411 return access(zFilename, 0)==0;
412}
413
414/*
415** Attempt to open a file for both reading and writing. If that
416** fails, try opening it read-only. If the file does not exist,
417** try to create it.
418**
419** On success, a handle for the open file is written to *id
420** and *pReadonly is set to 0 if the file was opened for reading and
421** writing or 1 if the file was opened read-only. The function returns
422** SQLITE_OK.
423**
424** On failure, the function returns SQLITE_CANTOPEN and leaves
425** *id and *pReadonly unchanged.
426*/
427int sqlite3OsOpenReadWrite(
428 const char *zFilename,
429 OsFile *id,
430 int *pReadonly
431){
432 int rc;
drhda71ce12004-06-21 18:14:45 +0000433 assert( !id->isOpen );
drhbbd42a62004-05-22 17:41:58 +0000434 id->dirfd = -1;
drh8e855772005-05-17 11:25:31 +0000435 id->h = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY,
436 SQLITE_DEFAULT_FILE_PERMISSIONS);
drha6abd042004-06-09 17:37:22 +0000437 if( id->h<0 ){
drh6458e392004-07-20 01:14:13 +0000438#ifdef EISDIR
439 if( errno==EISDIR ){
440 return SQLITE_CANTOPEN;
441 }
442#endif
drha6abd042004-06-09 17:37:22 +0000443 id->h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
444 if( id->h<0 ){
drhbbd42a62004-05-22 17:41:58 +0000445 return SQLITE_CANTOPEN;
446 }
447 *pReadonly = 1;
448 }else{
449 *pReadonly = 0;
450 }
451 sqlite3OsEnterMutex();
drha6abd042004-06-09 17:37:22 +0000452 rc = findLockInfo(id->h, &id->pLock, &id->pOpen);
drhbbd42a62004-05-22 17:41:58 +0000453 sqlite3OsLeaveMutex();
454 if( rc ){
drha6abd042004-06-09 17:37:22 +0000455 close(id->h);
drhbbd42a62004-05-22 17:41:58 +0000456 return SQLITE_NOMEM;
457 }
danielk197713adf8a2004-06-03 16:08:41 +0000458 id->locktype = 0;
drhda71ce12004-06-21 18:14:45 +0000459 id->isOpen = 1;
drha6abd042004-06-09 17:37:22 +0000460 TRACE3("OPEN %-3d %s\n", id->h, zFilename);
drhbbd42a62004-05-22 17:41:58 +0000461 OpenCounter(+1);
462 return SQLITE_OK;
463}
464
465
466/*
467** Attempt to open a new file for exclusive access by this process.
468** The file will be opened for both reading and writing. To avoid
469** a potential security problem, we do not allow the file to have
470** previously existed. Nor do we allow the file to be a symbolic
471** link.
472**
473** If delFlag is true, then make arrangements to automatically delete
474** the file when it is closed.
475**
476** On success, write the file handle into *id and return SQLITE_OK.
477**
478** On failure, return SQLITE_CANTOPEN.
479*/
480int sqlite3OsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){
481 int rc;
drhda71ce12004-06-21 18:14:45 +0000482 assert( !id->isOpen );
drhbbd42a62004-05-22 17:41:58 +0000483 if( access(zFilename, 0)==0 ){
484 return SQLITE_CANTOPEN;
485 }
486 id->dirfd = -1;
drha6abd042004-06-09 17:37:22 +0000487 id->h = open(zFilename,
drhbbd42a62004-05-22 17:41:58 +0000488 O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY, 0600);
drha6abd042004-06-09 17:37:22 +0000489 if( id->h<0 ){
drhbbd42a62004-05-22 17:41:58 +0000490 return SQLITE_CANTOPEN;
491 }
492 sqlite3OsEnterMutex();
drha6abd042004-06-09 17:37:22 +0000493 rc = findLockInfo(id->h, &id->pLock, &id->pOpen);
drhbbd42a62004-05-22 17:41:58 +0000494 sqlite3OsLeaveMutex();
495 if( rc ){
drha6abd042004-06-09 17:37:22 +0000496 close(id->h);
drhbbd42a62004-05-22 17:41:58 +0000497 unlink(zFilename);
498 return SQLITE_NOMEM;
499 }
danielk197713adf8a2004-06-03 16:08:41 +0000500 id->locktype = 0;
drhda71ce12004-06-21 18:14:45 +0000501 id->isOpen = 1;
drhbbd42a62004-05-22 17:41:58 +0000502 if( delFlag ){
503 unlink(zFilename);
504 }
drha6abd042004-06-09 17:37:22 +0000505 TRACE3("OPEN-EX %-3d %s\n", id->h, zFilename);
drhbbd42a62004-05-22 17:41:58 +0000506 OpenCounter(+1);
507 return SQLITE_OK;
508}
509
510/*
511** Attempt to open a new file for read-only access.
512**
513** On success, write the file handle into *id and return SQLITE_OK.
514**
515** On failure, return SQLITE_CANTOPEN.
516*/
517int sqlite3OsOpenReadOnly(const char *zFilename, OsFile *id){
518 int rc;
drhda71ce12004-06-21 18:14:45 +0000519 assert( !id->isOpen );
drhbbd42a62004-05-22 17:41:58 +0000520 id->dirfd = -1;
drha6abd042004-06-09 17:37:22 +0000521 id->h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
522 if( id->h<0 ){
drhbbd42a62004-05-22 17:41:58 +0000523 return SQLITE_CANTOPEN;
524 }
525 sqlite3OsEnterMutex();
drha6abd042004-06-09 17:37:22 +0000526 rc = findLockInfo(id->h, &id->pLock, &id->pOpen);
drhbbd42a62004-05-22 17:41:58 +0000527 sqlite3OsLeaveMutex();
528 if( rc ){
drha6abd042004-06-09 17:37:22 +0000529 close(id->h);
drhbbd42a62004-05-22 17:41:58 +0000530 return SQLITE_NOMEM;
531 }
danielk197713adf8a2004-06-03 16:08:41 +0000532 id->locktype = 0;
drhda71ce12004-06-21 18:14:45 +0000533 id->isOpen = 1;
drha6abd042004-06-09 17:37:22 +0000534 TRACE3("OPEN-RO %-3d %s\n", id->h, zFilename);
drhbbd42a62004-05-22 17:41:58 +0000535 OpenCounter(+1);
536 return SQLITE_OK;
537}
538
539/*
540** Attempt to open a file descriptor for the directory that contains a
541** file. This file descriptor can be used to fsync() the directory
542** in order to make sure the creation of a new file is actually written
543** to disk.
544**
545** This routine is only meaningful for Unix. It is a no-op under
546** windows since windows does not support hard links.
547**
548** On success, a handle for a previously open file is at *id is
549** updated with the new directory file descriptor and SQLITE_OK is
550** returned.
551**
552** On failure, the function returns SQLITE_CANTOPEN and leaves
553** *id unchanged.
554*/
555int sqlite3OsOpenDirectory(
556 const char *zDirname,
557 OsFile *id
558){
drhda71ce12004-06-21 18:14:45 +0000559 if( !id->isOpen ){
drhbbd42a62004-05-22 17:41:58 +0000560 /* Do not open the directory if the corresponding file is not already
561 ** open. */
562 return SQLITE_CANTOPEN;
563 }
564 assert( id->dirfd<0 );
drh8e855772005-05-17 11:25:31 +0000565 id->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0);
drhbbd42a62004-05-22 17:41:58 +0000566 if( id->dirfd<0 ){
567 return SQLITE_CANTOPEN;
568 }
569 TRACE3("OPENDIR %-3d %s\n", id->dirfd, zDirname);
570 return SQLITE_OK;
571}
572
573/*
drhab3f9fe2004-08-14 17:10:10 +0000574** If the following global variable points to a string which is the
575** name of a directory, then that directory will be used to store
576** temporary files.
577*/
tpoindex9a09a3c2004-12-20 19:01:32 +0000578char *sqlite3_temp_directory = 0;
drhab3f9fe2004-08-14 17:10:10 +0000579
580/*
drhbbd42a62004-05-22 17:41:58 +0000581** Create a temporary file name in zBuf. zBuf must be big enough to
582** hold at least SQLITE_TEMPNAME_SIZE characters.
583*/
584int sqlite3OsTempFileName(char *zBuf){
585 static const char *azDirs[] = {
drhab3f9fe2004-08-14 17:10:10 +0000586 0,
drhbbd42a62004-05-22 17:41:58 +0000587 "/var/tmp",
588 "/usr/tmp",
589 "/tmp",
590 ".",
591 };
drh57196282004-10-06 15:41:16 +0000592 static const unsigned char zChars[] =
drhbbd42a62004-05-22 17:41:58 +0000593 "abcdefghijklmnopqrstuvwxyz"
594 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
595 "0123456789";
596 int i, j;
597 struct stat buf;
598 const char *zDir = ".";
drheffd02b2004-08-29 23:42:13 +0000599 azDirs[0] = sqlite3_temp_directory;
drhbbd42a62004-05-22 17:41:58 +0000600 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
drhab3f9fe2004-08-14 17:10:10 +0000601 if( azDirs[i]==0 ) continue;
drhbbd42a62004-05-22 17:41:58 +0000602 if( stat(azDirs[i], &buf) ) continue;
603 if( !S_ISDIR(buf.st_mode) ) continue;
604 if( access(azDirs[i], 07) ) continue;
605 zDir = azDirs[i];
606 break;
607 }
608 do{
609 sprintf(zBuf, "%s/"TEMP_FILE_PREFIX, zDir);
610 j = strlen(zBuf);
611 sqlite3Randomness(15, &zBuf[j]);
612 for(i=0; i<15; i++, j++){
613 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
614 }
615 zBuf[j] = 0;
616 }while( access(zBuf,0)==0 );
617 return SQLITE_OK;
618}
619
drh268283b2005-01-08 15:44:25 +0000620#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhbbd42a62004-05-22 17:41:58 +0000621/*
tpoindex9a09a3c2004-12-20 19:01:32 +0000622** Check that a given pathname is a directory and is writable
623**
624*/
625int sqlite3OsIsDirWritable(char *zBuf){
626 struct stat buf;
627 if( zBuf==0 ) return 0;
drh268283b2005-01-08 15:44:25 +0000628 if( zBuf[0]==0 ) return 0;
tpoindex9a09a3c2004-12-20 19:01:32 +0000629 if( stat(zBuf, &buf) ) return 0;
630 if( !S_ISDIR(buf.st_mode) ) return 0;
631 if( access(zBuf, 07) ) return 0;
632 return 1;
633}
drh268283b2005-01-08 15:44:25 +0000634#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
tpoindex9a09a3c2004-12-20 19:01:32 +0000635
636/*
drhbbd42a62004-05-22 17:41:58 +0000637** Read data from a file into a buffer. Return SQLITE_OK if all
638** bytes were read successfully and SQLITE_IOERR if anything goes
639** wrong.
640*/
641int sqlite3OsRead(OsFile *id, void *pBuf, int amt){
642 int got;
drhda71ce12004-06-21 18:14:45 +0000643 assert( id->isOpen );
drhbbd42a62004-05-22 17:41:58 +0000644 SimulateIOError(SQLITE_IOERR);
645 TIMER_START;
drha6abd042004-06-09 17:37:22 +0000646 got = read(id->h, pBuf, amt);
drhbbd42a62004-05-22 17:41:58 +0000647 TIMER_END;
drhe29b9152005-03-18 14:03:15 +0000648 TRACE5("READ %-3d %5d %7d %d\n", id->h, got, last_page, TIMER_ELAPSED);
drhbbd42a62004-05-22 17:41:58 +0000649 SEEK(0);
650 /* if( got<0 ) got = 0; */
651 if( got==amt ){
652 return SQLITE_OK;
653 }else{
654 return SQLITE_IOERR;
655 }
656}
657
658/*
659** Write data from a buffer into a file. Return SQLITE_OK on success
660** or some other error code on failure.
661*/
662int sqlite3OsWrite(OsFile *id, const void *pBuf, int amt){
663 int wrote = 0;
drhda71ce12004-06-21 18:14:45 +0000664 assert( id->isOpen );
drh4c7f9412005-02-03 00:29:47 +0000665 assert( amt>0 );
drhbbd42a62004-05-22 17:41:58 +0000666 SimulateIOError(SQLITE_IOERR);
drh047d4832004-10-01 14:38:02 +0000667 SimulateDiskfullError;
drhbbd42a62004-05-22 17:41:58 +0000668 TIMER_START;
drha6abd042004-06-09 17:37:22 +0000669 while( amt>0 && (wrote = write(id->h, pBuf, amt))>0 ){
drhbbd42a62004-05-22 17:41:58 +0000670 amt -= wrote;
671 pBuf = &((char*)pBuf)[wrote];
672 }
673 TIMER_END;
drhe29b9152005-03-18 14:03:15 +0000674 TRACE5("WRITE %-3d %5d %7d %d\n", id->h, wrote, last_page, TIMER_ELAPSED);
drhbbd42a62004-05-22 17:41:58 +0000675 SEEK(0);
676 if( amt>0 ){
677 return SQLITE_FULL;
678 }
679 return SQLITE_OK;
680}
681
682/*
683** Move the read/write pointer in a file.
684*/
drheb206252004-10-01 02:00:31 +0000685int sqlite3OsSeek(OsFile *id, i64 offset){
drhda71ce12004-06-21 18:14:45 +0000686 assert( id->isOpen );
drhbbd42a62004-05-22 17:41:58 +0000687 SEEK(offset/1024 + 1);
drha6abd042004-06-09 17:37:22 +0000688 lseek(id->h, offset, SEEK_SET);
drhbbd42a62004-05-22 17:41:58 +0000689 return SQLITE_OK;
690}
691
drhb851b2c2005-03-10 14:11:12 +0000692#ifdef SQLITE_TEST
693/*
694** Count the number of fullsyncs and normal syncs. This is used to test
695** that syncs and fullsyncs are occuring at the right times.
696*/
697int sqlite3_sync_count = 0;
698int sqlite3_fullsync_count = 0;
699#endif
700
701
drhbbd42a62004-05-22 17:41:58 +0000702/*
drhdd809b02004-07-17 21:44:57 +0000703** The fsync() system call does not work as advertised on many
704** unix systems. The following procedure is an attempt to make
705** it work better.
drh1398ad32005-01-19 23:24:50 +0000706**
707** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
708** for testing when we want to run through the test suite quickly.
709** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
710** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
711** or power failure will likely corrupt the database file.
drhdd809b02004-07-17 21:44:57 +0000712*/
drhb851b2c2005-03-10 14:11:12 +0000713static int full_fsync(int fd, int fullSync){
drhdd809b02004-07-17 21:44:57 +0000714 int rc;
drhb851b2c2005-03-10 14:11:12 +0000715
716 /* Record the number of times that we do a normal fsync() and
717 ** FULLSYNC. This is used during testing to verify that this procedure
718 ** gets called with the correct arguments.
719 */
720#ifdef SQLITE_TEST
721 if( fullSync ) sqlite3_fullsync_count++;
722 sqlite3_sync_count++;
723#endif
724
725 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
726 ** no-op
727 */
728#ifdef SQLITE_NO_SYNC
729 rc = SQLITE_OK;
730#else
731
drhdd809b02004-07-17 21:44:57 +0000732#ifdef F_FULLFSYNC
drhb851b2c2005-03-10 14:11:12 +0000733 if( fullSync ){
drhf30cc942005-03-11 17:52:34 +0000734 rc = fcntl(fd, F_FULLFSYNC, 0);
drhb851b2c2005-03-10 14:11:12 +0000735 }else{
736 rc = 1;
737 }
738 /* If the FULLSYNC failed, try to do a normal fsync() */
drhdd809b02004-07-17 21:44:57 +0000739 if( rc ) rc = fsync(fd);
drhb851b2c2005-03-10 14:11:12 +0000740
drhdd809b02004-07-17 21:44:57 +0000741#else
742 rc = fsync(fd);
drhf30cc942005-03-11 17:52:34 +0000743#endif /* defined(F_FULLFSYNC) */
drhb851b2c2005-03-10 14:11:12 +0000744#endif /* defined(SQLITE_NO_SYNC) */
745
drhdd809b02004-07-17 21:44:57 +0000746 return rc;
747}
748
749/*
drhbbd42a62004-05-22 17:41:58 +0000750** Make sure all writes to a particular file are committed to disk.
751**
752** Under Unix, also make sure that the directory entry for the file
753** has been created by fsync-ing the directory that contains the file.
754** If we do not do this and we encounter a power failure, the directory
755** entry for the journal might not exist after we reboot. The next
756** SQLite to access the file will not know that the journal exists (because
757** the directory entry for the journal was never created) and the transaction
758** will not roll back - possibly leading to database corruption.
759*/
760int sqlite3OsSync(OsFile *id){
drhda71ce12004-06-21 18:14:45 +0000761 assert( id->isOpen );
drhbbd42a62004-05-22 17:41:58 +0000762 SimulateIOError(SQLITE_IOERR);
drha6abd042004-06-09 17:37:22 +0000763 TRACE2("SYNC %-3d\n", id->h);
drhb851b2c2005-03-10 14:11:12 +0000764 if( full_fsync(id->h, id->fullSync) ){
drhbbd42a62004-05-22 17:41:58 +0000765 return SQLITE_IOERR;
drhbbd42a62004-05-22 17:41:58 +0000766 }
drha2854222004-06-17 19:04:17 +0000767 if( id->dirfd>=0 ){
768 TRACE2("DIRSYNC %-3d\n", id->dirfd);
drhb851b2c2005-03-10 14:11:12 +0000769 full_fsync(id->dirfd, id->fullSync);
drha2854222004-06-17 19:04:17 +0000770 close(id->dirfd); /* Only need to sync once, so close the directory */
771 id->dirfd = -1; /* when we are done. */
772 }
drha2854222004-06-17 19:04:17 +0000773 return SQLITE_OK;
drhbbd42a62004-05-22 17:41:58 +0000774}
775
776/*
danielk1977962398d2004-06-14 09:35:16 +0000777** Sync the directory zDirname. This is a no-op on operating systems other
778** than UNIX.
drhb851b2c2005-03-10 14:11:12 +0000779**
780** This is used to make sure the master journal file has truely been deleted
781** before making changes to individual journals on a multi-database commit.
drhf30cc942005-03-11 17:52:34 +0000782** The F_FULLFSYNC option is not needed here.
danielk1977962398d2004-06-14 09:35:16 +0000783*/
784int sqlite3OsSyncDirectory(const char *zDirname){
785 int fd;
786 int r;
danielk1977369f27e2004-06-15 11:40:04 +0000787 SimulateIOError(SQLITE_IOERR);
drh8e855772005-05-17 11:25:31 +0000788 fd = open(zDirname, O_RDONLY|O_BINARY, 0);
danielk1977369f27e2004-06-15 11:40:04 +0000789 TRACE3("DIRSYNC %-3d (%s)\n", fd, zDirname);
danielk1977962398d2004-06-14 09:35:16 +0000790 if( fd<0 ){
791 return SQLITE_CANTOPEN;
792 }
793 r = fsync(fd);
794 close(fd);
795 return ((r==0)?SQLITE_OK:SQLITE_IOERR);
796}
797
798/*
drhbbd42a62004-05-22 17:41:58 +0000799** Truncate an open file to a specified size
800*/
drheb206252004-10-01 02:00:31 +0000801int sqlite3OsTruncate(OsFile *id, i64 nByte){
drhda71ce12004-06-21 18:14:45 +0000802 assert( id->isOpen );
drhbbd42a62004-05-22 17:41:58 +0000803 SimulateIOError(SQLITE_IOERR);
drha6abd042004-06-09 17:37:22 +0000804 return ftruncate(id->h, nByte)==0 ? SQLITE_OK : SQLITE_IOERR;
drhbbd42a62004-05-22 17:41:58 +0000805}
806
807/*
808** Determine the current size of a file in bytes
809*/
drheb206252004-10-01 02:00:31 +0000810int sqlite3OsFileSize(OsFile *id, i64 *pSize){
drhbbd42a62004-05-22 17:41:58 +0000811 struct stat buf;
drhda71ce12004-06-21 18:14:45 +0000812 assert( id->isOpen );
drhbbd42a62004-05-22 17:41:58 +0000813 SimulateIOError(SQLITE_IOERR);
drha6abd042004-06-09 17:37:22 +0000814 if( fstat(id->h, &buf)!=0 ){
drhbbd42a62004-05-22 17:41:58 +0000815 return SQLITE_IOERR;
816 }
817 *pSize = buf.st_size;
818 return SQLITE_OK;
819}
820
danielk19779a1d0ab2004-06-01 14:09:28 +0000821/*
danielk197713adf8a2004-06-03 16:08:41 +0000822** This routine checks if there is a RESERVED lock held on the specified
823** file by this or any other process. If such a lock is held, return
drh2ac3ee92004-06-07 16:27:46 +0000824** non-zero. If the file is unlocked or holds only SHARED locks, then
825** return zero.
danielk197713adf8a2004-06-03 16:08:41 +0000826*/
drha6abd042004-06-09 17:37:22 +0000827int sqlite3OsCheckReservedLock(OsFile *id){
danielk197713adf8a2004-06-03 16:08:41 +0000828 int r = 0;
829
drhda71ce12004-06-21 18:14:45 +0000830 assert( id->isOpen );
drh2ac3ee92004-06-07 16:27:46 +0000831 sqlite3OsEnterMutex(); /* Needed because id->pLock is shared across threads */
danielk197713adf8a2004-06-03 16:08:41 +0000832
833 /* Check if a thread in this process holds such a lock */
834 if( id->pLock->locktype>SHARED_LOCK ){
835 r = 1;
836 }
837
drh2ac3ee92004-06-07 16:27:46 +0000838 /* Otherwise see if some other process holds it.
danielk197713adf8a2004-06-03 16:08:41 +0000839 */
840 if( !r ){
841 struct flock lock;
842 lock.l_whence = SEEK_SET;
drh2ac3ee92004-06-07 16:27:46 +0000843 lock.l_start = RESERVED_BYTE;
844 lock.l_len = 1;
845 lock.l_type = F_WRLCK;
drha6abd042004-06-09 17:37:22 +0000846 fcntl(id->h, F_GETLK, &lock);
danielk197713adf8a2004-06-03 16:08:41 +0000847 if( lock.l_type!=F_UNLCK ){
848 r = 1;
849 }
850 }
851
852 sqlite3OsLeaveMutex();
drha6abd042004-06-09 17:37:22 +0000853 TRACE3("TEST WR-LOCK %d %d\n", id->h, r);
danielk197713adf8a2004-06-03 16:08:41 +0000854
855 return r;
856}
857
danielk19772b444852004-06-29 07:45:33 +0000858#ifdef SQLITE_DEBUG
859/*
860** Helper function for printing out trace information from debugging
861** binaries. This returns the string represetation of the supplied
862** integer lock-type.
863*/
864static const char * locktypeName(int locktype){
865 switch( locktype ){
866 case NO_LOCK: return "NONE";
867 case SHARED_LOCK: return "SHARED";
868 case RESERVED_LOCK: return "RESERVED";
869 case PENDING_LOCK: return "PENDING";
870 case EXCLUSIVE_LOCK: return "EXCLUSIVE";
871 }
872 return "ERROR";
873}
874#endif
875
danielk197713adf8a2004-06-03 16:08:41 +0000876/*
danielk19779a1d0ab2004-06-01 14:09:28 +0000877** Lock the file with the lock specified by parameter locktype - one
878** of the following:
879**
drh2ac3ee92004-06-07 16:27:46 +0000880** (1) SHARED_LOCK
881** (2) RESERVED_LOCK
882** (3) PENDING_LOCK
883** (4) EXCLUSIVE_LOCK
884**
drhb3e04342004-06-08 00:47:47 +0000885** Sometimes when requesting one lock state, additional lock states
886** are inserted in between. The locking might fail on one of the later
887** transitions leaving the lock state different from what it started but
888** still short of its goal. The following chart shows the allowed
889** transitions and the inserted intermediate states:
890**
891** UNLOCKED -> SHARED
892** SHARED -> RESERVED
893** SHARED -> (PENDING) -> EXCLUSIVE
894** RESERVED -> (PENDING) -> EXCLUSIVE
895** PENDING -> EXCLUSIVE
drh2ac3ee92004-06-07 16:27:46 +0000896**
drha6abd042004-06-09 17:37:22 +0000897** This routine will only increase a lock. Use the sqlite3OsUnlock()
898** routine to lower a locking level.
danielk19779a1d0ab2004-06-01 14:09:28 +0000899*/
900int sqlite3OsLock(OsFile *id, int locktype){
danielk1977f42f25c2004-06-25 07:21:28 +0000901 /* The following describes the implementation of the various locks and
902 ** lock transitions in terms of the POSIX advisory shared and exclusive
903 ** lock primitives (called read-locks and write-locks below, to avoid
904 ** confusion with SQLite lock names). The algorithms are complicated
905 ** slightly in order to be compatible with windows systems simultaneously
906 ** accessing the same database file, in case that is ever required.
907 **
908 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
909 ** byte', each single bytes at well known offsets, and the 'shared byte
910 ** range', a range of 510 bytes at a well known offset.
911 **
912 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
913 ** byte'. If this is successful, a random byte from the 'shared byte
914 ** range' is read-locked and the lock on the 'pending byte' released.
915 **
danielk197790ba3bd2004-06-25 08:32:25 +0000916 ** A process may only obtain a RESERVED lock after it has a SHARED lock.
917 ** A RESERVED lock is implemented by grabbing a write-lock on the
918 ** 'reserved byte'.
danielk1977f42f25c2004-06-25 07:21:28 +0000919 **
920 ** A process may only obtain a PENDING lock after it has obtained a
danielk197790ba3bd2004-06-25 08:32:25 +0000921 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
922 ** on the 'pending byte'. This ensures that no new SHARED locks can be
923 ** obtained, but existing SHARED locks are allowed to persist. A process
924 ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
925 ** This property is used by the algorithm for rolling back a journal file
926 ** after a crash.
danielk1977f42f25c2004-06-25 07:21:28 +0000927 **
danielk197790ba3bd2004-06-25 08:32:25 +0000928 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
929 ** implemented by obtaining a write-lock on the entire 'shared byte
930 ** range'. Since all other locks require a read-lock on one of the bytes
931 ** within this range, this ensures that no other locks are held on the
932 ** database.
danielk1977f42f25c2004-06-25 07:21:28 +0000933 **
934 ** The reason a single byte cannot be used instead of the 'shared byte
935 ** range' is that some versions of windows do not support read-locks. By
936 ** locking a random byte from a range, concurrent SHARED locks may exist
937 ** even if the locking primitive used is always a write-lock.
938 */
danielk19779a1d0ab2004-06-01 14:09:28 +0000939 int rc = SQLITE_OK;
940 struct lockInfo *pLock = id->pLock;
941 struct flock lock;
942 int s;
943
drhda71ce12004-06-21 18:14:45 +0000944 assert( id->isOpen );
drhe29b9152005-03-18 14:03:15 +0000945 TRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", id->h, locktypeName(locktype),
danielk19772b444852004-06-29 07:45:33 +0000946 locktypeName(id->locktype), locktypeName(pLock->locktype), pLock->cnt
947 ,getpid() );
danielk19779a1d0ab2004-06-01 14:09:28 +0000948
949 /* If there is already a lock of this type or more restrictive on the
950 ** OsFile, do nothing. Don't use the end_lock: exit path, as
951 ** sqlite3OsEnterMutex() hasn't been called yet.
952 */
danielk197713adf8a2004-06-03 16:08:41 +0000953 if( id->locktype>=locktype ){
drhe29b9152005-03-18 14:03:15 +0000954 TRACE3("LOCK %d %s ok (already held)\n", id->h, locktypeName(locktype));
danielk19779a1d0ab2004-06-01 14:09:28 +0000955 return SQLITE_OK;
956 }
957
drhb3e04342004-06-08 00:47:47 +0000958 /* Make sure the locking sequence is correct
drh2ac3ee92004-06-07 16:27:46 +0000959 */
drhb3e04342004-06-08 00:47:47 +0000960 assert( id->locktype!=NO_LOCK || locktype==SHARED_LOCK );
961 assert( locktype!=PENDING_LOCK );
962 assert( locktype!=RESERVED_LOCK || id->locktype==SHARED_LOCK );
drh2ac3ee92004-06-07 16:27:46 +0000963
drhb3e04342004-06-08 00:47:47 +0000964 /* This mutex is needed because id->pLock is shared across threads
965 */
966 sqlite3OsEnterMutex();
danielk19779a1d0ab2004-06-01 14:09:28 +0000967
968 /* If some thread using this PID has a lock via a different OsFile*
969 ** handle that precludes the requested lock, return BUSY.
970 */
danielk197713adf8a2004-06-03 16:08:41 +0000971 if( (id->locktype!=pLock->locktype &&
drh2ac3ee92004-06-07 16:27:46 +0000972 (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK))
danielk19779a1d0ab2004-06-01 14:09:28 +0000973 ){
974 rc = SQLITE_BUSY;
975 goto end_lock;
976 }
977
978 /* If a SHARED lock is requested, and some thread using this PID already
979 ** has a SHARED or RESERVED lock, then increment reference counts and
980 ** return SQLITE_OK.
981 */
982 if( locktype==SHARED_LOCK &&
983 (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){
984 assert( locktype==SHARED_LOCK );
danielk197713adf8a2004-06-03 16:08:41 +0000985 assert( id->locktype==0 );
danielk1977ecb2a962004-06-02 06:30:16 +0000986 assert( pLock->cnt>0 );
danielk197713adf8a2004-06-03 16:08:41 +0000987 id->locktype = SHARED_LOCK;
danielk19779a1d0ab2004-06-01 14:09:28 +0000988 pLock->cnt++;
989 id->pOpen->nLock++;
990 goto end_lock;
991 }
992
danielk197713adf8a2004-06-03 16:08:41 +0000993 lock.l_len = 1L;
danielk19779a1d0ab2004-06-01 14:09:28 +0000994 lock.l_whence = SEEK_SET;
995
drh3cde3bb2004-06-12 02:17:14 +0000996 /* A PENDING lock is needed before acquiring a SHARED lock and before
997 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
998 ** be released.
danielk19779a1d0ab2004-06-01 14:09:28 +0000999 */
drh3cde3bb2004-06-12 02:17:14 +00001000 if( locktype==SHARED_LOCK
1001 || (locktype==EXCLUSIVE_LOCK && id->locktype<PENDING_LOCK)
1002 ){
danielk1977489468c2004-06-28 08:25:47 +00001003 lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
drh2ac3ee92004-06-07 16:27:46 +00001004 lock.l_start = PENDING_BYTE;
drha6abd042004-06-09 17:37:22 +00001005 s = fcntl(id->h, F_SETLK, &lock);
danielk19779a1d0ab2004-06-01 14:09:28 +00001006 if( s ){
1007 rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1008 goto end_lock;
1009 }
drh3cde3bb2004-06-12 02:17:14 +00001010 }
1011
1012
1013 /* If control gets to this point, then actually go ahead and make
1014 ** operating system calls for the specified lock.
1015 */
1016 if( locktype==SHARED_LOCK ){
1017 assert( pLock->cnt==0 );
1018 assert( pLock->locktype==0 );
danielk19779a1d0ab2004-06-01 14:09:28 +00001019
drh2ac3ee92004-06-07 16:27:46 +00001020 /* Now get the read-lock */
1021 lock.l_start = SHARED_FIRST;
1022 lock.l_len = SHARED_SIZE;
drha6abd042004-06-09 17:37:22 +00001023 s = fcntl(id->h, F_SETLK, &lock);
drh2ac3ee92004-06-07 16:27:46 +00001024
1025 /* Drop the temporary PENDING lock */
1026 lock.l_start = PENDING_BYTE;
1027 lock.l_len = 1L;
danielk19779a1d0ab2004-06-01 14:09:28 +00001028 lock.l_type = F_UNLCK;
drha6abd042004-06-09 17:37:22 +00001029 fcntl(id->h, F_SETLK, &lock);
danielk19779a1d0ab2004-06-01 14:09:28 +00001030 if( s ){
drhbbd42a62004-05-22 17:41:58 +00001031 rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1032 }else{
danielk197713adf8a2004-06-03 16:08:41 +00001033 id->locktype = SHARED_LOCK;
danielk1977ecb2a962004-06-02 06:30:16 +00001034 id->pOpen->nLock++;
danielk19779a1d0ab2004-06-01 14:09:28 +00001035 pLock->cnt = 1;
drhbbd42a62004-05-22 17:41:58 +00001036 }
drh3cde3bb2004-06-12 02:17:14 +00001037 }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){
1038 /* We are trying for an exclusive lock but another thread in this
1039 ** same process is still holding a shared lock. */
1040 rc = SQLITE_BUSY;
drhbbd42a62004-05-22 17:41:58 +00001041 }else{
drh3cde3bb2004-06-12 02:17:14 +00001042 /* The request was for a RESERVED or EXCLUSIVE lock. It is
danielk19779a1d0ab2004-06-01 14:09:28 +00001043 ** assumed that there is a SHARED or greater lock on the file
1044 ** already.
1045 */
danielk197713adf8a2004-06-03 16:08:41 +00001046 assert( 0!=id->locktype );
danielk19779a1d0ab2004-06-01 14:09:28 +00001047 lock.l_type = F_WRLCK;
1048 switch( locktype ){
1049 case RESERVED_LOCK:
drh2ac3ee92004-06-07 16:27:46 +00001050 lock.l_start = RESERVED_BYTE;
danielk19779a1d0ab2004-06-01 14:09:28 +00001051 break;
danielk19779a1d0ab2004-06-01 14:09:28 +00001052 case EXCLUSIVE_LOCK:
drh2ac3ee92004-06-07 16:27:46 +00001053 lock.l_start = SHARED_FIRST;
1054 lock.l_len = SHARED_SIZE;
danielk19779a1d0ab2004-06-01 14:09:28 +00001055 break;
1056 default:
1057 assert(0);
1058 }
drha6abd042004-06-09 17:37:22 +00001059 s = fcntl(id->h, F_SETLK, &lock);
danielk19779a1d0ab2004-06-01 14:09:28 +00001060 if( s ){
1061 rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1062 }
drhbbd42a62004-05-22 17:41:58 +00001063 }
danielk19779a1d0ab2004-06-01 14:09:28 +00001064
danielk1977ecb2a962004-06-02 06:30:16 +00001065 if( rc==SQLITE_OK ){
danielk197713adf8a2004-06-03 16:08:41 +00001066 id->locktype = locktype;
danielk1977ecb2a962004-06-02 06:30:16 +00001067 pLock->locktype = locktype;
drh3cde3bb2004-06-12 02:17:14 +00001068 }else if( locktype==EXCLUSIVE_LOCK ){
1069 id->locktype = PENDING_LOCK;
1070 pLock->locktype = PENDING_LOCK;
danielk1977ecb2a962004-06-02 06:30:16 +00001071 }
danielk19779a1d0ab2004-06-01 14:09:28 +00001072
1073end_lock:
drhbbd42a62004-05-22 17:41:58 +00001074 sqlite3OsLeaveMutex();
drhe29b9152005-03-18 14:03:15 +00001075 TRACE4("LOCK %d %s %s\n", id->h, locktypeName(locktype),
danielk19772b444852004-06-29 07:45:33 +00001076 rc==SQLITE_OK ? "ok" : "failed");
drhbbd42a62004-05-22 17:41:58 +00001077 return rc;
1078}
1079
1080/*
drha6abd042004-06-09 17:37:22 +00001081** Lower the locking level on file descriptor id to locktype. locktype
1082** must be either NO_LOCK or SHARED_LOCK.
1083**
1084** If the locking level of the file descriptor is already at or below
1085** the requested locking level, this routine is a no-op.
1086**
drh9c105bb2004-10-02 20:38:28 +00001087** It is not possible for this routine to fail if the second argument
1088** is NO_LOCK. If the second argument is SHARED_LOCK, this routine
1089** might return SQLITE_IOERR instead of SQLITE_OK.
drhbbd42a62004-05-22 17:41:58 +00001090*/
drha6abd042004-06-09 17:37:22 +00001091int sqlite3OsUnlock(OsFile *id, int locktype){
1092 struct lockInfo *pLock;
1093 struct flock lock;
drh9c105bb2004-10-02 20:38:28 +00001094 int rc = SQLITE_OK;
drha6abd042004-06-09 17:37:22 +00001095
drhda71ce12004-06-21 18:14:45 +00001096 assert( id->isOpen );
drhe29b9152005-03-18 14:03:15 +00001097 TRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", id->h, locktype, id->locktype,
danielk19772b444852004-06-29 07:45:33 +00001098 id->pLock->locktype, id->pLock->cnt, getpid());
drha6abd042004-06-09 17:37:22 +00001099
1100 assert( locktype<=SHARED_LOCK );
1101 if( id->locktype<=locktype ){
1102 return SQLITE_OK;
1103 }
drhbbd42a62004-05-22 17:41:58 +00001104 sqlite3OsEnterMutex();
drha6abd042004-06-09 17:37:22 +00001105 pLock = id->pLock;
1106 assert( pLock->cnt!=0 );
1107 if( id->locktype>SHARED_LOCK ){
1108 assert( pLock->locktype==id->locktype );
drh9c105bb2004-10-02 20:38:28 +00001109 if( locktype==SHARED_LOCK ){
1110 lock.l_type = F_RDLCK;
1111 lock.l_whence = SEEK_SET;
1112 lock.l_start = SHARED_FIRST;
1113 lock.l_len = SHARED_SIZE;
1114 if( fcntl(id->h, F_SETLK, &lock)!=0 ){
1115 /* This should never happen */
1116 rc = SQLITE_IOERR;
1117 }
1118 }
drhbbd42a62004-05-22 17:41:58 +00001119 lock.l_type = F_UNLCK;
1120 lock.l_whence = SEEK_SET;
drha6abd042004-06-09 17:37:22 +00001121 lock.l_start = PENDING_BYTE;
1122 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
1123 fcntl(id->h, F_SETLK, &lock);
1124 pLock->locktype = SHARED_LOCK;
drhbbd42a62004-05-22 17:41:58 +00001125 }
drha6abd042004-06-09 17:37:22 +00001126 if( locktype==NO_LOCK ){
1127 struct openCnt *pOpen;
danielk1977ecb2a962004-06-02 06:30:16 +00001128
drha6abd042004-06-09 17:37:22 +00001129 /* Decrement the shared lock counter. Release the lock using an
1130 ** OS call only when all threads in this same process have released
1131 ** the lock.
1132 */
1133 pLock->cnt--;
1134 if( pLock->cnt==0 ){
1135 lock.l_type = F_UNLCK;
1136 lock.l_whence = SEEK_SET;
1137 lock.l_start = lock.l_len = 0L;
1138 fcntl(id->h, F_SETLK, &lock);
1139 pLock->locktype = NO_LOCK;
1140 }
1141
drhbbd42a62004-05-22 17:41:58 +00001142 /* Decrement the count of locks against this same file. When the
1143 ** count reaches zero, close any other file descriptors whose close
1144 ** was deferred because of outstanding locks.
1145 */
drha6abd042004-06-09 17:37:22 +00001146 pOpen = id->pOpen;
drhbbd42a62004-05-22 17:41:58 +00001147 pOpen->nLock--;
1148 assert( pOpen->nLock>=0 );
1149 if( pOpen->nLock==0 && pOpen->nPending>0 ){
1150 int i;
1151 for(i=0; i<pOpen->nPending; i++){
1152 close(pOpen->aPending[i]);
1153 }
1154 sqliteFree(pOpen->aPending);
1155 pOpen->nPending = 0;
1156 pOpen->aPending = 0;
1157 }
1158 }
1159 sqlite3OsLeaveMutex();
drha6abd042004-06-09 17:37:22 +00001160 id->locktype = locktype;
drh9c105bb2004-10-02 20:38:28 +00001161 return rc;
drhbbd42a62004-05-22 17:41:58 +00001162}
1163
1164/*
danielk1977e3026632004-06-22 11:29:02 +00001165** Close a file.
1166*/
1167int sqlite3OsClose(OsFile *id){
1168 if( !id->isOpen ) return SQLITE_OK;
1169 sqlite3OsUnlock(id, NO_LOCK);
1170 if( id->dirfd>=0 ) close(id->dirfd);
1171 id->dirfd = -1;
1172 sqlite3OsEnterMutex();
1173 if( id->pOpen->nLock ){
1174 /* If there are outstanding locks, do not actually close the file just
1175 ** yet because that would clear those locks. Instead, add the file
1176 ** descriptor to pOpen->aPending. It will be automatically closed when
1177 ** the last lock is cleared.
1178 */
1179 int *aNew;
1180 struct openCnt *pOpen = id->pOpen;
1181 pOpen->nPending++;
1182 aNew = sqliteRealloc( pOpen->aPending, pOpen->nPending*sizeof(int) );
1183 if( aNew==0 ){
1184 /* If a malloc fails, just leak the file descriptor */
1185 }else{
1186 pOpen->aPending = aNew;
1187 pOpen->aPending[pOpen->nPending-1] = id->h;
1188 }
1189 }else{
1190 /* There are no outstanding locks so we can close the file immediately */
1191 close(id->h);
1192 }
1193 releaseLockInfo(id->pLock);
1194 releaseOpenCnt(id->pOpen);
1195 sqlite3OsLeaveMutex();
1196 id->isOpen = 0;
1197 TRACE2("CLOSE %-3d\n", id->h);
1198 OpenCounter(-1);
1199 return SQLITE_OK;
1200}
1201
1202/*
drhbbd42a62004-05-22 17:41:58 +00001203** Get information to seed the random number generator. The seed
1204** is written into the buffer zBuf[256]. The calling function must
1205** supply a sufficiently large buffer.
1206*/
1207int sqlite3OsRandomSeed(char *zBuf){
1208 /* We have to initialize zBuf to prevent valgrind from reporting
1209 ** errors. The reports issued by valgrind are incorrect - we would
1210 ** prefer that the randomness be increased by making use of the
1211 ** uninitialized space in zBuf - but valgrind errors tend to worry
1212 ** some users. Rather than argue, it seems easier just to initialize
1213 ** the whole array and silence valgrind, even if that means less randomness
1214 ** in the random seed.
1215 **
1216 ** When testing, initializing zBuf[] to zero is all we do. That means
1217 ** that we always use the same random number sequence.* This makes the
1218 ** tests repeatable.
1219 */
1220 memset(zBuf, 0, 256);
1221#if !defined(SQLITE_TEST)
1222 {
drh842b8642005-01-21 17:53:17 +00001223 int pid, fd;
1224 fd = open("/dev/urandom", O_RDONLY);
1225 if( fd<0 ){
1226 time((time_t*)zBuf);
1227 pid = getpid();
1228 memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid));
1229 }else{
1230 read(fd, zBuf, 256);
1231 close(fd);
1232 }
drhbbd42a62004-05-22 17:41:58 +00001233 }
1234#endif
1235 return SQLITE_OK;
1236}
1237
1238/*
1239** Sleep for a little while. Return the amount of time slept.
1240*/
1241int sqlite3OsSleep(int ms){
1242#if defined(HAVE_USLEEP) && HAVE_USLEEP
1243 usleep(ms*1000);
1244 return ms;
1245#else
1246 sleep((ms+999)/1000);
1247 return 1000*((ms+999)/1000);
1248#endif
1249}
1250
1251/*
1252** Static variables used for thread synchronization
1253*/
1254static int inMutex = 0;
drh79069752004-05-22 21:30:40 +00001255#ifdef SQLITE_UNIX_THREADS
drhbbd42a62004-05-22 17:41:58 +00001256static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
drh79069752004-05-22 21:30:40 +00001257#endif
drhbbd42a62004-05-22 17:41:58 +00001258
1259/*
1260** The following pair of routine implement mutual exclusion for
1261** multi-threaded processes. Only a single thread is allowed to
1262** executed code that is surrounded by EnterMutex() and LeaveMutex().
1263**
1264** SQLite uses only a single Mutex. There is not much critical
1265** code and what little there is executes quickly and without blocking.
1266*/
1267void sqlite3OsEnterMutex(){
1268#ifdef SQLITE_UNIX_THREADS
1269 pthread_mutex_lock(&mutex);
1270#endif
1271 assert( !inMutex );
1272 inMutex = 1;
1273}
1274void sqlite3OsLeaveMutex(){
1275 assert( inMutex );
1276 inMutex = 0;
1277#ifdef SQLITE_UNIX_THREADS
1278 pthread_mutex_unlock(&mutex);
1279#endif
1280}
1281
1282/*
1283** Turn a relative pathname into a full pathname. Return a pointer
1284** to the full pathname stored in space obtained from sqliteMalloc().
1285** The calling function is responsible for freeing this space once it
1286** is no longer needed.
1287*/
1288char *sqlite3OsFullPathname(const char *zRelative){
1289 char *zFull = 0;
1290 if( zRelative[0]=='/' ){
1291 sqlite3SetString(&zFull, zRelative, (char*)0);
1292 }else{
1293 char zBuf[5000];
drh41f58522005-06-06 15:06:39 +00001294 zBuf[0] = 0;
drhbbd42a62004-05-22 17:41:58 +00001295 sqlite3SetString(&zFull, getcwd(zBuf, sizeof(zBuf)), "/", zRelative,
1296 (char*)0);
1297 }
1298 return zFull;
1299}
1300
1301/*
1302** The following variable, if set to a non-zero value, becomes the result
1303** returned from sqlite3OsCurrentTime(). This is used for testing.
1304*/
1305#ifdef SQLITE_TEST
1306int sqlite3_current_time = 0;
1307#endif
1308
1309/*
1310** Find the current time (in Universal Coordinated Time). Write the
1311** current time and date as a Julian Day number into *prNow and
1312** return 0. Return 1 if the time and date cannot be found.
1313*/
1314int sqlite3OsCurrentTime(double *prNow){
1315 time_t t;
1316 time(&t);
1317 *prNow = t/86400.0 + 2440587.5;
1318#ifdef SQLITE_TEST
1319 if( sqlite3_current_time ){
1320 *prNow = sqlite3_current_time/86400.0 + 2440587.5;
1321 }
1322#endif
1323 return 0;
1324}
1325
drhfd69dd62004-06-29 11:08:19 +00001326#if 0 /* NOT USED */
drhbf9a7e42004-06-15 00:29:03 +00001327/*
1328** Find the time that the file was last modified. Write the
1329** modification time and date as a Julian Day number into *prNow and
1330** return SQLITE_OK. Return SQLITE_ERROR if the modification
1331** time cannot be found.
1332*/
1333int sqlite3OsFileModTime(OsFile *id, double *prNow){
1334 int rc;
1335 struct stat statbuf;
1336 if( fstat(id->h, &statbuf)==0 ){
1337 *prNow = statbuf.st_mtime/86400.0 + 2440587.5;
1338 rc = SQLITE_OK;
1339 }else{
1340 rc = SQLITE_ERROR;
1341 }
1342 return rc;
1343}
drhfd69dd62004-06-29 11:08:19 +00001344#endif /* NOT USED */
drhbf9a7e42004-06-15 00:29:03 +00001345
drhbbd42a62004-05-22 17:41:58 +00001346#endif /* OS_UNIX */