blob: 85617bf054220a08694f5e2d6dab108255a81db6 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
12** This module contains C code that generates VDBE code used to process
drh909626d2008-05-30 14:58:37 +000013** the WHERE clause of SQL statements. This module is responsible for
drh51669862004-12-18 18:40:26 +000014** generating the code that loops through a table looking for applicable
15** rows. Indices are selected and used to speed the search when doing
16** so is applicable. Because this module is responsible for selecting
17** indices, you might also think of this module as the "query optimizer".
drh75897232000-05-29 14:26:00 +000018**
danielk1977f51d1bd2009-07-31 06:14:51 +000019** $Id: where.c,v 1.411 2009/07/31 06:14:52 danielk1977 Exp $
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
22
23/*
drh51147ba2005-07-23 22:59:55 +000024** Trace output macros
25*/
26#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
mlcreech3a00f902008-03-04 17:45:01 +000027int sqlite3WhereTrace = 0;
drhe8f52c52008-07-12 14:52:20 +000028#endif
drh85799a42009-04-07 13:48:11 +000029#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
mlcreech3a00f902008-03-04 17:45:01 +000030# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
drh51147ba2005-07-23 22:59:55 +000031#else
drh4f0c5872007-03-26 22:05:01 +000032# define WHERETRACE(X)
drh51147ba2005-07-23 22:59:55 +000033#endif
34
drh0fcef5e2005-07-19 17:38:22 +000035/* Forward reference
36*/
37typedef struct WhereClause WhereClause;
drh111a6a72008-12-21 03:51:16 +000038typedef struct WhereMaskSet WhereMaskSet;
drh700a2262008-12-17 19:22:15 +000039typedef struct WhereOrInfo WhereOrInfo;
40typedef struct WhereAndInfo WhereAndInfo;
drh111a6a72008-12-21 03:51:16 +000041typedef struct WhereCost WhereCost;
drh0aa74ed2005-07-16 13:33:20 +000042
43/*
drh75897232000-05-29 14:26:00 +000044** The query generator uses an array of instances of this structure to
45** help it analyze the subexpressions of the WHERE clause. Each WHERE
drh61495262009-04-22 15:32:59 +000046** clause subexpression is separated from the others by AND operators,
47** usually, or sometimes subexpressions separated by OR.
drh51669862004-12-18 18:40:26 +000048**
drh0fcef5e2005-07-19 17:38:22 +000049** All WhereTerms are collected into a single WhereClause structure.
50** The following identity holds:
drh51669862004-12-18 18:40:26 +000051**
drh0fcef5e2005-07-19 17:38:22 +000052** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
drh51669862004-12-18 18:40:26 +000053**
drh0fcef5e2005-07-19 17:38:22 +000054** When a term is of the form:
55**
56** X <op> <expr>
57**
58** where X is a column name and <op> is one of certain operators,
drh700a2262008-12-17 19:22:15 +000059** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
60** cursor number and column number for X. WhereTerm.eOperator records
drh51147ba2005-07-23 22:59:55 +000061** the <op> using a bitmask encoding defined by WO_xxx below. The
62** use of a bitmask encoding for the operator allows us to search
63** quickly for terms that match any of several different operators.
drh0fcef5e2005-07-19 17:38:22 +000064**
drh700a2262008-12-17 19:22:15 +000065** A WhereTerm might also be two or more subterms connected by OR:
66**
67** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
68**
69** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
70** and the WhereTerm.u.pOrInfo field points to auxiliary information that
71** is collected about the
72**
73** If a term in the WHERE clause does not match either of the two previous
74** categories, then eOperator==0. The WhereTerm.pExpr field is still set
75** to the original subexpression content and wtFlags is set up appropriately
76** but no other fields in the WhereTerm object are meaningful.
77**
78** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
drh111a6a72008-12-21 03:51:16 +000079** but they do so indirectly. A single WhereMaskSet structure translates
drh51669862004-12-18 18:40:26 +000080** cursor number into bits and the translated bit is stored in the prereq
81** fields. The translation is used in order to maximize the number of
82** bits that will fit in a Bitmask. The VDBE cursor numbers might be
83** spread out over the non-negative integers. For example, the cursor
drh111a6a72008-12-21 03:51:16 +000084** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
drh51669862004-12-18 18:40:26 +000085** translates these sparse cursor numbers into consecutive integers
86** beginning with 0 in order to make the best possible use of the available
87** bits in the Bitmask. So, in the example above, the cursor numbers
88** would be mapped into integers 0 through 7.
drh6a1e0712008-12-05 15:24:15 +000089**
90** The number of terms in a join is limited by the number of bits
91** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
92** is only able to process joins with 64 or fewer tables.
drh75897232000-05-29 14:26:00 +000093*/
drh0aa74ed2005-07-16 13:33:20 +000094typedef struct WhereTerm WhereTerm;
95struct WhereTerm {
drh165be382008-12-05 02:36:33 +000096 Expr *pExpr; /* Pointer to the subexpression that is this term */
drhec1724e2008-12-09 01:32:03 +000097 int iParent; /* Disable pWC->a[iParent] when this term disabled */
98 int leftCursor; /* Cursor number of X in "X <op> <expr>" */
drh700a2262008-12-17 19:22:15 +000099 union {
100 int leftColumn; /* Column number of X in "X <op> <expr>" */
101 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */
102 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
103 } u;
drhb52076c2006-01-23 13:22:09 +0000104 u16 eOperator; /* A WO_xx value describing <op> */
drh165be382008-12-05 02:36:33 +0000105 u8 wtFlags; /* TERM_xxx bit flags. See below */
drh45b1ee42005-08-02 17:48:22 +0000106 u8 nChild; /* Number of children that must disable us */
drh0fcef5e2005-07-19 17:38:22 +0000107 WhereClause *pWC; /* The clause this term is part of */
drh165be382008-12-05 02:36:33 +0000108 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */
109 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */
drh75897232000-05-29 14:26:00 +0000110};
111
112/*
drh165be382008-12-05 02:36:33 +0000113** Allowed values of WhereTerm.wtFlags
drh0aa74ed2005-07-16 13:33:20 +0000114*/
drh633e6d52008-07-28 19:34:53 +0000115#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
drh6c30be82005-07-29 15:10:17 +0000116#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
117#define TERM_CODED 0x04 /* This term is already coded */
drh45b1ee42005-08-02 17:48:22 +0000118#define TERM_COPIED 0x08 /* Has a child */
drh700a2262008-12-17 19:22:15 +0000119#define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
120#define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
121#define TERM_OR_OK 0x40 /* Used during OR-clause processing */
drh0aa74ed2005-07-16 13:33:20 +0000122
123/*
124** An instance of the following structure holds all information about a
125** WHERE clause. Mostly this is a container for one or more WhereTerms.
126*/
drh0aa74ed2005-07-16 13:33:20 +0000127struct WhereClause {
drhfe05af82005-07-21 03:14:59 +0000128 Parse *pParse; /* The parser context */
drh111a6a72008-12-21 03:51:16 +0000129 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */
danielk1977e672c8e2009-05-22 15:43:26 +0000130 Bitmask vmask; /* Bitmask identifying virtual table cursors */
drh29435252008-12-28 18:35:08 +0000131 u8 op; /* Split operator. TK_AND or TK_OR */
drh0aa74ed2005-07-16 13:33:20 +0000132 int nTerm; /* Number of terms */
133 int nSlot; /* Number of entries in a[] */
drh51147ba2005-07-23 22:59:55 +0000134 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
drh50d654d2009-06-03 01:24:54 +0000135#if defined(SQLITE_SMALL_STACK)
136 WhereTerm aStatic[1]; /* Initial static space for a[] */
137#else
138 WhereTerm aStatic[8]; /* Initial static space for a[] */
139#endif
drhe23399f2005-07-22 00:31:39 +0000140};
141
142/*
drh700a2262008-12-17 19:22:15 +0000143** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
144** a dynamically allocated instance of the following structure.
145*/
146struct WhereOrInfo {
drh111a6a72008-12-21 03:51:16 +0000147 WhereClause wc; /* Decomposition into subterms */
drh1a58fe02008-12-20 02:06:13 +0000148 Bitmask indexable; /* Bitmask of all indexable tables in the clause */
drh700a2262008-12-17 19:22:15 +0000149};
150
151/*
152** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
153** a dynamically allocated instance of the following structure.
154*/
155struct WhereAndInfo {
drh29435252008-12-28 18:35:08 +0000156 WhereClause wc; /* The subexpression broken out */
drh700a2262008-12-17 19:22:15 +0000157};
158
159/*
drh6a3ea0e2003-05-02 14:32:12 +0000160** An instance of the following structure keeps track of a mapping
drh0aa74ed2005-07-16 13:33:20 +0000161** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
drh51669862004-12-18 18:40:26 +0000162**
163** The VDBE cursor numbers are small integers contained in
164** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
165** clause, the cursor numbers might not begin with 0 and they might
166** contain gaps in the numbering sequence. But we want to make maximum
167** use of the bits in our bitmasks. This structure provides a mapping
168** from the sparse cursor numbers into consecutive integers beginning
169** with 0.
170**
drh111a6a72008-12-21 03:51:16 +0000171** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
drh51669862004-12-18 18:40:26 +0000172** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
173**
174** For example, if the WHERE clause expression used these VDBE
drh111a6a72008-12-21 03:51:16 +0000175** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
drh51669862004-12-18 18:40:26 +0000176** would map those cursor numbers into bits 0 through 5.
177**
178** Note that the mapping is not necessarily ordered. In the example
179** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
180** 57->5, 73->4. Or one of 719 other combinations might be used. It
181** does not really matter. What is important is that sparse cursor
182** numbers all get mapped into bit numbers that begin with 0 and contain
183** no gaps.
drh6a3ea0e2003-05-02 14:32:12 +0000184*/
drh111a6a72008-12-21 03:51:16 +0000185struct WhereMaskSet {
drh1398ad32005-01-19 23:24:50 +0000186 int n; /* Number of assigned cursor values */
danielk197723432972008-11-17 16:42:00 +0000187 int ix[BMS]; /* Cursor assigned to each bit */
drh6a3ea0e2003-05-02 14:32:12 +0000188};
189
drh111a6a72008-12-21 03:51:16 +0000190/*
191** A WhereCost object records a lookup strategy and the estimated
192** cost of pursuing that strategy.
193*/
194struct WhereCost {
195 WherePlan plan; /* The lookup strategy */
196 double rCost; /* Overall cost of pursuing this search strategy */
197 double nRow; /* Estimated number of output rows */
dan5236ac12009-08-13 07:09:33 +0000198 Bitmask used; /* Bitmask of cursors used by this plan */
drh111a6a72008-12-21 03:51:16 +0000199};
drh0aa74ed2005-07-16 13:33:20 +0000200
drh6a3ea0e2003-05-02 14:32:12 +0000201/*
drh51147ba2005-07-23 22:59:55 +0000202** Bitmasks for the operators that indices are able to exploit. An
203** OR-ed combination of these values can be used when searching for
204** terms in the where clause.
205*/
drh165be382008-12-05 02:36:33 +0000206#define WO_IN 0x001
207#define WO_EQ 0x002
drh51147ba2005-07-23 22:59:55 +0000208#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
209#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
210#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
211#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
drh165be382008-12-05 02:36:33 +0000212#define WO_MATCH 0x040
213#define WO_ISNULL 0x080
drh700a2262008-12-17 19:22:15 +0000214#define WO_OR 0x100 /* Two or more OR-connected terms */
215#define WO_AND 0x200 /* Two or more AND-connected terms */
drh51147ba2005-07-23 22:59:55 +0000216
drhec1724e2008-12-09 01:32:03 +0000217#define WO_ALL 0xfff /* Mask of all possible WO_* values */
drh1a58fe02008-12-20 02:06:13 +0000218#define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
drhec1724e2008-12-09 01:32:03 +0000219
drh51147ba2005-07-23 22:59:55 +0000220/*
drh700a2262008-12-17 19:22:15 +0000221** Value for wsFlags returned by bestIndex() and stored in
222** WhereLevel.wsFlags. These flags determine which search
223** strategies are appropriate.
drhf2d315d2007-01-25 16:56:06 +0000224**
drh165be382008-12-05 02:36:33 +0000225** The least significant 12 bits is reserved as a mask for WO_ values above.
drh700a2262008-12-17 19:22:15 +0000226** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
227** But if the table is the right table of a left join, WhereLevel.wsFlags
228** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as
drhf2d315d2007-01-25 16:56:06 +0000229** the "op" parameter to findTerm when we are resolving equality constraints.
230** ISNULL constraints will then not be used on the right table of a left
231** join. Tickets #2177 and #2189.
drh51147ba2005-07-23 22:59:55 +0000232*/
drh165be382008-12-05 02:36:33 +0000233#define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */
234#define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */
drh46619d62009-04-24 14:51:42 +0000235#define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */
drh165be382008-12-05 02:36:33 +0000236#define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */
237#define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */
drh46619d62009-04-24 14:51:42 +0000238#define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */
239#define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */
240#define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */
drh165be382008-12-05 02:36:33 +0000241#define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */
242#define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */
243#define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */
244#define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */
245#define WHERE_REVERSE 0x02000000 /* Scan in reverse order */
246#define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */
247#define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */
248#define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */
drh51147ba2005-07-23 22:59:55 +0000249
250/*
drh0aa74ed2005-07-16 13:33:20 +0000251** Initialize a preallocated WhereClause structure.
drh75897232000-05-29 14:26:00 +0000252*/
drh7b4fc6a2007-02-06 13:26:32 +0000253static void whereClauseInit(
254 WhereClause *pWC, /* The WhereClause to be initialized */
255 Parse *pParse, /* The parsing context */
drh111a6a72008-12-21 03:51:16 +0000256 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */
drh7b4fc6a2007-02-06 13:26:32 +0000257){
drhfe05af82005-07-21 03:14:59 +0000258 pWC->pParse = pParse;
drh7b4fc6a2007-02-06 13:26:32 +0000259 pWC->pMaskSet = pMaskSet;
drh0aa74ed2005-07-16 13:33:20 +0000260 pWC->nTerm = 0;
drhcad651e2007-04-20 12:22:01 +0000261 pWC->nSlot = ArraySize(pWC->aStatic);
drh0aa74ed2005-07-16 13:33:20 +0000262 pWC->a = pWC->aStatic;
danielk1977e672c8e2009-05-22 15:43:26 +0000263 pWC->vmask = 0;
drh0aa74ed2005-07-16 13:33:20 +0000264}
265
drh700a2262008-12-17 19:22:15 +0000266/* Forward reference */
267static void whereClauseClear(WhereClause*);
268
269/*
270** Deallocate all memory associated with a WhereOrInfo object.
271*/
272static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
drh5bd98ae2009-01-07 18:24:03 +0000273 whereClauseClear(&p->wc);
274 sqlite3DbFree(db, p);
drh700a2262008-12-17 19:22:15 +0000275}
276
277/*
278** Deallocate all memory associated with a WhereAndInfo object.
279*/
280static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
drh5bd98ae2009-01-07 18:24:03 +0000281 whereClauseClear(&p->wc);
282 sqlite3DbFree(db, p);
drh700a2262008-12-17 19:22:15 +0000283}
284
drh0aa74ed2005-07-16 13:33:20 +0000285/*
286** Deallocate a WhereClause structure. The WhereClause structure
287** itself is not freed. This routine is the inverse of whereClauseInit().
288*/
289static void whereClauseClear(WhereClause *pWC){
290 int i;
291 WhereTerm *a;
drh633e6d52008-07-28 19:34:53 +0000292 sqlite3 *db = pWC->pParse->db;
drh0aa74ed2005-07-16 13:33:20 +0000293 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
drh165be382008-12-05 02:36:33 +0000294 if( a->wtFlags & TERM_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000295 sqlite3ExprDelete(db, a->pExpr);
drh0aa74ed2005-07-16 13:33:20 +0000296 }
drh700a2262008-12-17 19:22:15 +0000297 if( a->wtFlags & TERM_ORINFO ){
298 whereOrInfoDelete(db, a->u.pOrInfo);
299 }else if( a->wtFlags & TERM_ANDINFO ){
300 whereAndInfoDelete(db, a->u.pAndInfo);
301 }
drh0aa74ed2005-07-16 13:33:20 +0000302 }
303 if( pWC->a!=pWC->aStatic ){
drh633e6d52008-07-28 19:34:53 +0000304 sqlite3DbFree(db, pWC->a);
drh0aa74ed2005-07-16 13:33:20 +0000305 }
306}
307
308/*
drh6a1e0712008-12-05 15:24:15 +0000309** Add a single new WhereTerm entry to the WhereClause object pWC.
310** The new WhereTerm object is constructed from Expr p and with wtFlags.
311** The index in pWC->a[] of the new WhereTerm is returned on success.
312** 0 is returned if the new WhereTerm could not be added due to a memory
313** allocation error. The memory allocation failure will be recorded in
314** the db->mallocFailed flag so that higher-level functions can detect it.
315**
316** This routine will increase the size of the pWC->a[] array as necessary.
drh9eb20282005-08-24 03:52:18 +0000317**
drh165be382008-12-05 02:36:33 +0000318** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
drh6a1e0712008-12-05 15:24:15 +0000319** for freeing the expression p is assumed by the WhereClause object pWC.
320** This is true even if this routine fails to allocate a new WhereTerm.
drhb63a53d2007-03-31 01:34:44 +0000321**
drh9eb20282005-08-24 03:52:18 +0000322** WARNING: This routine might reallocate the space used to store
drh909626d2008-05-30 14:58:37 +0000323** WhereTerms. All pointers to WhereTerms should be invalidated after
drh9eb20282005-08-24 03:52:18 +0000324** calling this routine. Such pointers may be reinitialized by referencing
325** the pWC->a[] array.
drh0aa74ed2005-07-16 13:33:20 +0000326*/
drhec1724e2008-12-09 01:32:03 +0000327static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
drh0aa74ed2005-07-16 13:33:20 +0000328 WhereTerm *pTerm;
drh9eb20282005-08-24 03:52:18 +0000329 int idx;
drh0aa74ed2005-07-16 13:33:20 +0000330 if( pWC->nTerm>=pWC->nSlot ){
331 WhereTerm *pOld = pWC->a;
drh633e6d52008-07-28 19:34:53 +0000332 sqlite3 *db = pWC->pParse->db;
333 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
drhb63a53d2007-03-31 01:34:44 +0000334 if( pWC->a==0 ){
drh165be382008-12-05 02:36:33 +0000335 if( wtFlags & TERM_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000336 sqlite3ExprDelete(db, p);
drhb63a53d2007-03-31 01:34:44 +0000337 }
drhf998b732007-11-26 13:36:00 +0000338 pWC->a = pOld;
drhb63a53d2007-03-31 01:34:44 +0000339 return 0;
340 }
drh0aa74ed2005-07-16 13:33:20 +0000341 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
342 if( pOld!=pWC->aStatic ){
drh633e6d52008-07-28 19:34:53 +0000343 sqlite3DbFree(db, pOld);
drh0aa74ed2005-07-16 13:33:20 +0000344 }
drh6a1e0712008-12-05 15:24:15 +0000345 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
drh0aa74ed2005-07-16 13:33:20 +0000346 }
drh6a1e0712008-12-05 15:24:15 +0000347 pTerm = &pWC->a[idx = pWC->nTerm++];
drh0fcef5e2005-07-19 17:38:22 +0000348 pTerm->pExpr = p;
drh165be382008-12-05 02:36:33 +0000349 pTerm->wtFlags = wtFlags;
drh0fcef5e2005-07-19 17:38:22 +0000350 pTerm->pWC = pWC;
drh45b1ee42005-08-02 17:48:22 +0000351 pTerm->iParent = -1;
drh9eb20282005-08-24 03:52:18 +0000352 return idx;
drh0aa74ed2005-07-16 13:33:20 +0000353}
drh75897232000-05-29 14:26:00 +0000354
355/*
drh51669862004-12-18 18:40:26 +0000356** This routine identifies subexpressions in the WHERE clause where
drhb6fb62d2005-09-20 08:47:20 +0000357** each subexpression is separated by the AND operator or some other
drh6c30be82005-07-29 15:10:17 +0000358** operator specified in the op parameter. The WhereClause structure
359** is filled with pointers to subexpressions. For example:
drh75897232000-05-29 14:26:00 +0000360**
drh51669862004-12-18 18:40:26 +0000361** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
362** \________/ \_______________/ \________________/
363** slot[0] slot[1] slot[2]
364**
365** The original WHERE clause in pExpr is unaltered. All this routine
drh51147ba2005-07-23 22:59:55 +0000366** does is make slot[] entries point to substructure within pExpr.
drh51669862004-12-18 18:40:26 +0000367**
drh51147ba2005-07-23 22:59:55 +0000368** In the previous sentence and in the diagram, "slot[]" refers to
drh902b9ee2008-12-05 17:17:07 +0000369** the WhereClause.a[] array. The slot[] array grows as needed to contain
drh51147ba2005-07-23 22:59:55 +0000370** all terms of the WHERE clause.
drh75897232000-05-29 14:26:00 +0000371*/
drh6c30be82005-07-29 15:10:17 +0000372static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
drh29435252008-12-28 18:35:08 +0000373 pWC->op = (u8)op;
drh0aa74ed2005-07-16 13:33:20 +0000374 if( pExpr==0 ) return;
drh6c30be82005-07-29 15:10:17 +0000375 if( pExpr->op!=op ){
drh0aa74ed2005-07-16 13:33:20 +0000376 whereClauseInsert(pWC, pExpr, 0);
drh75897232000-05-29 14:26:00 +0000377 }else{
drh6c30be82005-07-29 15:10:17 +0000378 whereSplit(pWC, pExpr->pLeft, op);
379 whereSplit(pWC, pExpr->pRight, op);
drh75897232000-05-29 14:26:00 +0000380 }
drh75897232000-05-29 14:26:00 +0000381}
382
383/*
drh61495262009-04-22 15:32:59 +0000384** Initialize an expression mask set (a WhereMaskSet object)
drh6a3ea0e2003-05-02 14:32:12 +0000385*/
386#define initMaskSet(P) memset(P, 0, sizeof(*P))
387
388/*
drh1398ad32005-01-19 23:24:50 +0000389** Return the bitmask for the given cursor number. Return 0 if
390** iCursor is not in the set.
drh6a3ea0e2003-05-02 14:32:12 +0000391*/
drh111a6a72008-12-21 03:51:16 +0000392static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
drh6a3ea0e2003-05-02 14:32:12 +0000393 int i;
drh3500ed62009-05-05 15:46:43 +0000394 assert( pMaskSet->n<=sizeof(Bitmask)*8 );
drh6a3ea0e2003-05-02 14:32:12 +0000395 for(i=0; i<pMaskSet->n; i++){
drh51669862004-12-18 18:40:26 +0000396 if( pMaskSet->ix[i]==iCursor ){
397 return ((Bitmask)1)<<i;
398 }
drh6a3ea0e2003-05-02 14:32:12 +0000399 }
drh6a3ea0e2003-05-02 14:32:12 +0000400 return 0;
401}
402
403/*
drh1398ad32005-01-19 23:24:50 +0000404** Create a new mask for cursor iCursor.
drh0fcef5e2005-07-19 17:38:22 +0000405**
406** There is one cursor per table in the FROM clause. The number of
407** tables in the FROM clause is limited by a test early in the
drhb6fb62d2005-09-20 08:47:20 +0000408** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
drh0fcef5e2005-07-19 17:38:22 +0000409** array will never overflow.
drh1398ad32005-01-19 23:24:50 +0000410*/
drh111a6a72008-12-21 03:51:16 +0000411static void createMask(WhereMaskSet *pMaskSet, int iCursor){
drhcad651e2007-04-20 12:22:01 +0000412 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
drh0fcef5e2005-07-19 17:38:22 +0000413 pMaskSet->ix[pMaskSet->n++] = iCursor;
drh1398ad32005-01-19 23:24:50 +0000414}
415
416/*
drh75897232000-05-29 14:26:00 +0000417** This routine walks (recursively) an expression tree and generates
418** a bitmask indicating which tables are used in that expression
drh6a3ea0e2003-05-02 14:32:12 +0000419** tree.
drh75897232000-05-29 14:26:00 +0000420**
421** In order for this routine to work, the calling function must have
drh7d10d5a2008-08-20 16:35:10 +0000422** previously invoked sqlite3ResolveExprNames() on the expression. See
drh75897232000-05-29 14:26:00 +0000423** the header comment on that routine for additional information.
drh7d10d5a2008-08-20 16:35:10 +0000424** The sqlite3ResolveExprNames() routines looks for column names and
drh6a3ea0e2003-05-02 14:32:12 +0000425** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
drh51147ba2005-07-23 22:59:55 +0000426** the VDBE cursor number of the table. This routine just has to
427** translate the cursor numbers into bitmask values and OR all
428** the bitmasks together.
drh75897232000-05-29 14:26:00 +0000429*/
drh111a6a72008-12-21 03:51:16 +0000430static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
431static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
432static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
drh51669862004-12-18 18:40:26 +0000433 Bitmask mask = 0;
drh75897232000-05-29 14:26:00 +0000434 if( p==0 ) return 0;
drh967e8b72000-06-21 13:59:10 +0000435 if( p->op==TK_COLUMN ){
drh8feb4b12004-07-19 02:12:14 +0000436 mask = getMask(pMaskSet, p->iTable);
drh8feb4b12004-07-19 02:12:14 +0000437 return mask;
drh75897232000-05-29 14:26:00 +0000438 }
danielk1977b3bce662005-01-29 08:32:43 +0000439 mask = exprTableUsage(pMaskSet, p->pRight);
440 mask |= exprTableUsage(pMaskSet, p->pLeft);
danielk19776ab3a2e2009-02-19 14:39:25 +0000441 if( ExprHasProperty(p, EP_xIsSelect) ){
442 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
443 }else{
444 mask |= exprListTableUsage(pMaskSet, p->x.pList);
445 }
danielk1977b3bce662005-01-29 08:32:43 +0000446 return mask;
447}
drh111a6a72008-12-21 03:51:16 +0000448static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
danielk1977b3bce662005-01-29 08:32:43 +0000449 int i;
450 Bitmask mask = 0;
451 if( pList ){
452 for(i=0; i<pList->nExpr; i++){
453 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
drhdd579122002-04-02 01:58:57 +0000454 }
455 }
drh75897232000-05-29 14:26:00 +0000456 return mask;
457}
drh111a6a72008-12-21 03:51:16 +0000458static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
drha430ae82007-09-12 15:41:01 +0000459 Bitmask mask = 0;
460 while( pS ){
461 mask |= exprListTableUsage(pMaskSet, pS->pEList);
drhf5b11382005-09-17 13:07:13 +0000462 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
463 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
464 mask |= exprTableUsage(pMaskSet, pS->pWhere);
465 mask |= exprTableUsage(pMaskSet, pS->pHaving);
drha430ae82007-09-12 15:41:01 +0000466 pS = pS->pPrior;
drhf5b11382005-09-17 13:07:13 +0000467 }
468 return mask;
469}
drh75897232000-05-29 14:26:00 +0000470
471/*
drh487ab3c2001-11-08 00:45:21 +0000472** Return TRUE if the given operator is one of the operators that is
drh51669862004-12-18 18:40:26 +0000473** allowed for an indexable WHERE clause term. The allowed operators are
drhc27a1ce2002-06-14 20:58:45 +0000474** "=", "<", ">", "<=", ">=", and "IN".
drh487ab3c2001-11-08 00:45:21 +0000475*/
476static int allowedOp(int op){
drhfe05af82005-07-21 03:14:59 +0000477 assert( TK_GT>TK_EQ && TK_GT<TK_GE );
478 assert( TK_LT>TK_EQ && TK_LT<TK_GE );
479 assert( TK_LE>TK_EQ && TK_LE<TK_GE );
480 assert( TK_GE==TK_EQ+4 );
drh50b39962006-10-28 00:28:09 +0000481 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
drh487ab3c2001-11-08 00:45:21 +0000482}
483
484/*
drh902b9ee2008-12-05 17:17:07 +0000485** Swap two objects of type TYPE.
drh193bd772004-07-20 18:23:14 +0000486*/
487#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
488
489/*
drh909626d2008-05-30 14:58:37 +0000490** Commute a comparison operator. Expressions of the form "X op Y"
drh0fcef5e2005-07-19 17:38:22 +0000491** are converted into "Y op X".
danielk1977eb5453d2007-07-30 14:40:48 +0000492**
493** If a collation sequence is associated with either the left or right
494** side of the comparison, it remains associated with the same side after
495** the commutation. So "Y collate NOCASE op X" becomes
496** "X collate NOCASE op Y". This is because any collation sequence on
497** the left hand side of a comparison overrides any collation sequence
498** attached to the right. For the same reason the EP_ExpCollate flag
499** is not commuted.
drh193bd772004-07-20 18:23:14 +0000500*/
drh7d10d5a2008-08-20 16:35:10 +0000501static void exprCommute(Parse *pParse, Expr *pExpr){
danielk1977eb5453d2007-07-30 14:40:48 +0000502 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
503 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
drhfe05af82005-07-21 03:14:59 +0000504 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
drh7d10d5a2008-08-20 16:35:10 +0000505 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
506 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
drh0fcef5e2005-07-19 17:38:22 +0000507 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
danielk1977eb5453d2007-07-30 14:40:48 +0000508 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
509 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
drh0fcef5e2005-07-19 17:38:22 +0000510 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
511 if( pExpr->op>=TK_GT ){
512 assert( TK_LT==TK_GT+2 );
513 assert( TK_GE==TK_LE+2 );
514 assert( TK_GT>TK_EQ );
515 assert( TK_GT<TK_LE );
516 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
517 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
drh193bd772004-07-20 18:23:14 +0000518 }
drh193bd772004-07-20 18:23:14 +0000519}
520
521/*
drhfe05af82005-07-21 03:14:59 +0000522** Translate from TK_xx operator to WO_xx bitmask.
523*/
drhec1724e2008-12-09 01:32:03 +0000524static u16 operatorMask(int op){
525 u16 c;
drhfe05af82005-07-21 03:14:59 +0000526 assert( allowedOp(op) );
527 if( op==TK_IN ){
drh51147ba2005-07-23 22:59:55 +0000528 c = WO_IN;
drh50b39962006-10-28 00:28:09 +0000529 }else if( op==TK_ISNULL ){
530 c = WO_ISNULL;
drhfe05af82005-07-21 03:14:59 +0000531 }else{
drhec1724e2008-12-09 01:32:03 +0000532 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
533 c = (u16)(WO_EQ<<(op-TK_EQ));
drhfe05af82005-07-21 03:14:59 +0000534 }
drh50b39962006-10-28 00:28:09 +0000535 assert( op!=TK_ISNULL || c==WO_ISNULL );
drh51147ba2005-07-23 22:59:55 +0000536 assert( op!=TK_IN || c==WO_IN );
537 assert( op!=TK_EQ || c==WO_EQ );
538 assert( op!=TK_LT || c==WO_LT );
539 assert( op!=TK_LE || c==WO_LE );
540 assert( op!=TK_GT || c==WO_GT );
541 assert( op!=TK_GE || c==WO_GE );
542 return c;
drhfe05af82005-07-21 03:14:59 +0000543}
544
545/*
546** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
547** where X is a reference to the iColumn of table iCur and <op> is one of
548** the WO_xx operator codes specified by the op parameter.
549** Return a pointer to the term. Return 0 if not found.
550*/
551static WhereTerm *findTerm(
552 WhereClause *pWC, /* The WHERE clause to be searched */
553 int iCur, /* Cursor number of LHS */
554 int iColumn, /* Column number of LHS */
555 Bitmask notReady, /* RHS must not overlap with this mask */
drhec1724e2008-12-09 01:32:03 +0000556 u32 op, /* Mask of WO_xx values describing operator */
drhfe05af82005-07-21 03:14:59 +0000557 Index *pIdx /* Must be compatible with this index, if not NULL */
558){
559 WhereTerm *pTerm;
560 int k;
drh22c24032008-07-09 13:28:53 +0000561 assert( iCur>=0 );
drhec1724e2008-12-09 01:32:03 +0000562 op &= WO_ALL;
drhfe05af82005-07-21 03:14:59 +0000563 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
564 if( pTerm->leftCursor==iCur
565 && (pTerm->prereqRight & notReady)==0
drh700a2262008-12-17 19:22:15 +0000566 && pTerm->u.leftColumn==iColumn
drhb52076c2006-01-23 13:22:09 +0000567 && (pTerm->eOperator & op)!=0
drhfe05af82005-07-21 03:14:59 +0000568 ){
drh22c24032008-07-09 13:28:53 +0000569 if( pIdx && pTerm->eOperator!=WO_ISNULL ){
drhfe05af82005-07-21 03:14:59 +0000570 Expr *pX = pTerm->pExpr;
571 CollSeq *pColl;
572 char idxaff;
danielk1977f0113002006-01-24 12:09:17 +0000573 int j;
drhfe05af82005-07-21 03:14:59 +0000574 Parse *pParse = pWC->pParse;
575
576 idxaff = pIdx->pTable->aCol[iColumn].affinity;
577 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
danielk1977bcbb04e2007-05-29 12:11:29 +0000578
579 /* Figure out the collation sequence required from an index for
580 ** it to be useful for optimising expression pX. Store this
581 ** value in variable pColl.
582 */
583 assert(pX->pLeft);
584 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
danielk197793574162008-12-30 15:26:29 +0000585 assert(pColl || pParse->nErr);
danielk1977bcbb04e2007-05-29 12:11:29 +0000586
drh22c24032008-07-09 13:28:53 +0000587 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
drh34004ce2008-07-11 16:15:17 +0000588 if( NEVER(j>=pIdx->nColumn) ) return 0;
drh22c24032008-07-09 13:28:53 +0000589 }
danielk197793574162008-12-30 15:26:29 +0000590 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
drhfe05af82005-07-21 03:14:59 +0000591 }
592 return pTerm;
593 }
594 }
595 return 0;
596}
597
drh6c30be82005-07-29 15:10:17 +0000598/* Forward reference */
drh7b4fc6a2007-02-06 13:26:32 +0000599static void exprAnalyze(SrcList*, WhereClause*, int);
drh6c30be82005-07-29 15:10:17 +0000600
601/*
602** Call exprAnalyze on all terms in a WHERE clause.
603**
604**
605*/
606static void exprAnalyzeAll(
607 SrcList *pTabList, /* the FROM clause */
drh6c30be82005-07-29 15:10:17 +0000608 WhereClause *pWC /* the WHERE clause to be analyzed */
609){
drh6c30be82005-07-29 15:10:17 +0000610 int i;
drh9eb20282005-08-24 03:52:18 +0000611 for(i=pWC->nTerm-1; i>=0; i--){
drh7b4fc6a2007-02-06 13:26:32 +0000612 exprAnalyze(pTabList, pWC, i);
drh6c30be82005-07-29 15:10:17 +0000613 }
614}
615
drhd2687b72005-08-12 22:56:09 +0000616#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
617/*
618** Check to see if the given expression is a LIKE or GLOB operator that
619** can be optimized using inequality constraints. Return TRUE if it is
620** so and false if not.
621**
622** In order for the operator to be optimizible, the RHS must be a string
623** literal that does not begin with a wildcard.
624*/
625static int isLikeOrGlob(
drh7d10d5a2008-08-20 16:35:10 +0000626 Parse *pParse, /* Parsing and code generating context */
drhd2687b72005-08-12 22:56:09 +0000627 Expr *pExpr, /* Test this expression */
dan937d0de2009-10-15 18:35:38 +0000628 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
drh9f504ea2008-02-23 21:55:39 +0000629 int *pisComplete, /* True if the only wildcard is % in the last character */
630 int *pnoCase /* True if uppercase is equivalent to lowercase */
drhd2687b72005-08-12 22:56:09 +0000631){
dan937d0de2009-10-15 18:35:38 +0000632 const char *z = 0; /* String on RHS of LIKE operator */
drh5bd98ae2009-01-07 18:24:03 +0000633 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
634 ExprList *pList; /* List of operands to the LIKE operator */
635 int c; /* One character in z[] */
636 int cnt; /* Number of non-wildcard prefix characters */
637 char wc[3]; /* Wildcard characters */
638 CollSeq *pColl; /* Collating sequence for LHS */
639 sqlite3 *db = pParse->db; /* Database connection */
dan937d0de2009-10-15 18:35:38 +0000640 sqlite3_value *pVal = 0;
641 int op; /* Opcode of pRight */
drhd64fe2f2005-08-28 17:00:23 +0000642
drh9f504ea2008-02-23 21:55:39 +0000643 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
drhd2687b72005-08-12 22:56:09 +0000644 return 0;
645 }
drh9f504ea2008-02-23 21:55:39 +0000646#ifdef SQLITE_EBCDIC
647 if( *pnoCase ) return 0;
648#endif
danielk19776ab3a2e2009-02-19 14:39:25 +0000649 pList = pExpr->x.pList;
drh55ef4d92005-08-14 01:20:37 +0000650 pLeft = pList->a[1].pExpr;
drhd2687b72005-08-12 22:56:09 +0000651 if( pLeft->op!=TK_COLUMN ){
652 return 0;
653 }
drh7d10d5a2008-08-20 16:35:10 +0000654 pColl = sqlite3ExprCollSeq(pParse, pLeft);
drh01495b92008-01-23 12:52:40 +0000655 assert( pColl!=0 || pLeft->iColumn==-1 );
drhc4ac22e2009-06-07 23:45:10 +0000656 if( pColl==0 ) return 0;
drh9f504ea2008-02-23 21:55:39 +0000657 if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
658 (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
drhd64fe2f2005-08-28 17:00:23 +0000659 return 0;
660 }
drhc4ac22e2009-06-07 23:45:10 +0000661 if( sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ) return 0;
dan937d0de2009-10-15 18:35:38 +0000662
663 pRight = pList->a[0].pExpr;
664 op = pRight->op;
665 if( op==TK_REGISTER ){
666 op = pRight->op2;
667 }
668 if( op==TK_VARIABLE ){
669 Vdbe *pReprepare = pParse->pReprepare;
670 pVal = sqlite3VdbeGetValue(pReprepare, pRight->iColumn, SQLITE_AFF_NONE);
671 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
672 z = (char *)sqlite3_value_text(pVal);
673 }
674 sqlite3VdbeSetVarmask(pParse->pVdbe, pRight->iColumn, 0);
675 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
676 }else if( op==TK_STRING ){
677 z = pRight->u.zToken;
678 }
679 if( z ){
shane85095702009-06-15 16:27:08 +0000680 cnt = 0;
drhb7916a72009-05-27 10:31:29 +0000681 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
drh24fb6272009-05-01 21:13:36 +0000682 cnt++;
683 }
shane85095702009-06-15 16:27:08 +0000684 if( cnt!=0 && c!=0 && 255!=(u8)z[cnt-1] ){
dan937d0de2009-10-15 18:35:38 +0000685 Expr *pPrefix;
shane85095702009-06-15 16:27:08 +0000686 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
dan937d0de2009-10-15 18:35:38 +0000687 pPrefix = sqlite3Expr(db, TK_STRING, z);
688 if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
689 *ppPrefix = pPrefix;
690 if( op==TK_VARIABLE ){
691 Vdbe *v = pParse->pVdbe;
692 sqlite3VdbeSetVarmask(v, pRight->iColumn, 1);
693 if( *pisComplete && pRight->u.zToken[1] ){
694 /* If the rhs of the LIKE expression is a variable, and the current
695 ** value of the variable means there is no need to invoke the LIKE
696 ** function, then no OP_Variable will be added to the program.
697 ** This causes problems for the sqlite3_bind_parameter_name()
698 ** API. To workaround them, add a dummy OP_Variable here. */
699 sqlite3ExprCodeTarget(pParse, pRight, 1);
700 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
701 }
702 }
703 }else{
704 z = 0;
shane85095702009-06-15 16:27:08 +0000705 }
drhf998b732007-11-26 13:36:00 +0000706 }
dan937d0de2009-10-15 18:35:38 +0000707
708 sqlite3ValueFree(pVal);
709 return (z!=0);
drhd2687b72005-08-12 22:56:09 +0000710}
711#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
712
drhedb193b2006-06-27 13:20:21 +0000713
714#ifndef SQLITE_OMIT_VIRTUALTABLE
drhfe05af82005-07-21 03:14:59 +0000715/*
drh7f375902006-06-13 17:38:59 +0000716** Check to see if the given expression is of the form
717**
718** column MATCH expr
719**
720** If it is then return TRUE. If not, return FALSE.
721*/
722static int isMatchOfColumn(
723 Expr *pExpr /* Test this expression */
724){
725 ExprList *pList;
726
727 if( pExpr->op!=TK_FUNCTION ){
728 return 0;
729 }
drh33e619f2009-05-28 01:00:55 +0000730 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
drh7f375902006-06-13 17:38:59 +0000731 return 0;
732 }
danielk19776ab3a2e2009-02-19 14:39:25 +0000733 pList = pExpr->x.pList;
drh7f375902006-06-13 17:38:59 +0000734 if( pList->nExpr!=2 ){
735 return 0;
736 }
737 if( pList->a[1].pExpr->op != TK_COLUMN ){
738 return 0;
739 }
740 return 1;
741}
drhedb193b2006-06-27 13:20:21 +0000742#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh7f375902006-06-13 17:38:59 +0000743
744/*
drh54a167d2005-11-26 14:08:07 +0000745** If the pBase expression originated in the ON or USING clause of
746** a join, then transfer the appropriate markings over to derived.
747*/
748static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
749 pDerived->flags |= pBase->flags & EP_FromJoin;
750 pDerived->iRightJoinTable = pBase->iRightJoinTable;
751}
752
drh3e355802007-02-23 23:13:33 +0000753#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
754/*
drh1a58fe02008-12-20 02:06:13 +0000755** Analyze a term that consists of two or more OR-connected
756** subterms. So in:
drh3e355802007-02-23 23:13:33 +0000757**
drh1a58fe02008-12-20 02:06:13 +0000758** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
759** ^^^^^^^^^^^^^^^^^^^^
drh3e355802007-02-23 23:13:33 +0000760**
drh1a58fe02008-12-20 02:06:13 +0000761** This routine analyzes terms such as the middle term in the above example.
762** A WhereOrTerm object is computed and attached to the term under
763** analysis, regardless of the outcome of the analysis. Hence:
drh3e355802007-02-23 23:13:33 +0000764**
drh1a58fe02008-12-20 02:06:13 +0000765** WhereTerm.wtFlags |= TERM_ORINFO
766** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
drh3e355802007-02-23 23:13:33 +0000767**
drh1a58fe02008-12-20 02:06:13 +0000768** The term being analyzed must have two or more of OR-connected subterms.
danielk1977fdc40192008-12-29 18:33:32 +0000769** A single subterm might be a set of AND-connected sub-subterms.
drh1a58fe02008-12-20 02:06:13 +0000770** Examples of terms under analysis:
drh3e355802007-02-23 23:13:33 +0000771**
drh1a58fe02008-12-20 02:06:13 +0000772** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
773** (B) x=expr1 OR expr2=x OR x=expr3
774** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
775** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
776** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
drh3e355802007-02-23 23:13:33 +0000777**
drh1a58fe02008-12-20 02:06:13 +0000778** CASE 1:
779**
780** If all subterms are of the form T.C=expr for some single column of C
781** a single table T (as shown in example B above) then create a new virtual
782** term that is an equivalent IN expression. In other words, if the term
783** being analyzed is:
784**
785** x = expr1 OR expr2 = x OR x = expr3
786**
787** then create a new virtual term like this:
788**
789** x IN (expr1,expr2,expr3)
790**
791** CASE 2:
792**
793** If all subterms are indexable by a single table T, then set
794**
795** WhereTerm.eOperator = WO_OR
796** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
797**
798** A subterm is "indexable" if it is of the form
799** "T.C <op> <expr>" where C is any column of table T and
800** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
801** A subterm is also indexable if it is an AND of two or more
802** subsubterms at least one of which is indexable. Indexable AND
803** subterms have their eOperator set to WO_AND and they have
804** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
805**
806** From another point of view, "indexable" means that the subterm could
807** potentially be used with an index if an appropriate index exists.
808** This analysis does not consider whether or not the index exists; that
809** is something the bestIndex() routine will determine. This analysis
810** only looks at whether subterms appropriate for indexing exist.
811**
812** All examples A through E above all satisfy case 2. But if a term
813** also statisfies case 1 (such as B) we know that the optimizer will
814** always prefer case 1, so in that case we pretend that case 2 is not
815** satisfied.
816**
817** It might be the case that multiple tables are indexable. For example,
818** (E) above is indexable on tables P, Q, and R.
819**
820** Terms that satisfy case 2 are candidates for lookup by using
821** separate indices to find rowids for each subterm and composing
822** the union of all rowids using a RowSet object. This is similar
823** to "bitmap indices" in other database engines.
824**
825** OTHERWISE:
826**
827** If neither case 1 nor case 2 apply, then leave the eOperator set to
828** zero. This term is not useful for search.
drh3e355802007-02-23 23:13:33 +0000829*/
drh1a58fe02008-12-20 02:06:13 +0000830static void exprAnalyzeOrTerm(
831 SrcList *pSrc, /* the FROM clause */
832 WhereClause *pWC, /* the complete WHERE clause */
833 int idxTerm /* Index of the OR-term to be analyzed */
834){
835 Parse *pParse = pWC->pParse; /* Parser context */
836 sqlite3 *db = pParse->db; /* Database connection */
837 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
838 Expr *pExpr = pTerm->pExpr; /* The expression of the term */
drh111a6a72008-12-21 03:51:16 +0000839 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
drh1a58fe02008-12-20 02:06:13 +0000840 int i; /* Loop counters */
841 WhereClause *pOrWc; /* Breakup of pTerm into subterms */
842 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
843 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
844 Bitmask chngToIN; /* Tables that might satisfy case 1 */
845 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
drh3e355802007-02-23 23:13:33 +0000846
drh1a58fe02008-12-20 02:06:13 +0000847 /*
848 ** Break the OR clause into its separate subterms. The subterms are
849 ** stored in a WhereClause structure containing within the WhereOrInfo
850 ** object that is attached to the original OR clause term.
851 */
852 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
853 assert( pExpr->op==TK_OR );
drh954701a2008-12-29 23:45:07 +0000854 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
drh1a58fe02008-12-20 02:06:13 +0000855 if( pOrInfo==0 ) return;
856 pTerm->wtFlags |= TERM_ORINFO;
857 pOrWc = &pOrInfo->wc;
858 whereClauseInit(pOrWc, pWC->pParse, pMaskSet);
859 whereSplit(pOrWc, pExpr, TK_OR);
860 exprAnalyzeAll(pSrc, pOrWc);
861 if( db->mallocFailed ) return;
862 assert( pOrWc->nTerm>=2 );
863
864 /*
865 ** Compute the set of tables that might satisfy cases 1 or 2.
866 */
danielk1977e672c8e2009-05-22 15:43:26 +0000867 indexable = ~(Bitmask)0;
868 chngToIN = ~(pWC->vmask);
drh1a58fe02008-12-20 02:06:13 +0000869 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
870 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
drh29435252008-12-28 18:35:08 +0000871 WhereAndInfo *pAndInfo;
872 assert( pOrTerm->eOperator==0 );
873 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
drh1a58fe02008-12-20 02:06:13 +0000874 chngToIN = 0;
drh29435252008-12-28 18:35:08 +0000875 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
876 if( pAndInfo ){
877 WhereClause *pAndWC;
878 WhereTerm *pAndTerm;
879 int j;
880 Bitmask b = 0;
881 pOrTerm->u.pAndInfo = pAndInfo;
882 pOrTerm->wtFlags |= TERM_ANDINFO;
883 pOrTerm->eOperator = WO_AND;
884 pAndWC = &pAndInfo->wc;
885 whereClauseInit(pAndWC, pWC->pParse, pMaskSet);
886 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
887 exprAnalyzeAll(pSrc, pAndWC);
drh7c2fbde2009-01-07 20:58:57 +0000888 testcase( db->mallocFailed );
drh96c7a7d2009-01-10 15:34:12 +0000889 if( !db->mallocFailed ){
890 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
891 assert( pAndTerm->pExpr );
892 if( allowedOp(pAndTerm->pExpr->op) ){
893 b |= getMask(pMaskSet, pAndTerm->leftCursor);
894 }
drh29435252008-12-28 18:35:08 +0000895 }
896 }
897 indexable &= b;
898 }
drh1a58fe02008-12-20 02:06:13 +0000899 }else if( pOrTerm->wtFlags & TERM_COPIED ){
900 /* Skip this term for now. We revisit it when we process the
901 ** corresponding TERM_VIRTUAL term */
902 }else{
903 Bitmask b;
904 b = getMask(pMaskSet, pOrTerm->leftCursor);
905 if( pOrTerm->wtFlags & TERM_VIRTUAL ){
906 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
907 b |= getMask(pMaskSet, pOther->leftCursor);
908 }
909 indexable &= b;
910 if( pOrTerm->eOperator!=WO_EQ ){
911 chngToIN = 0;
912 }else{
913 chngToIN &= b;
914 }
915 }
drh3e355802007-02-23 23:13:33 +0000916 }
drh1a58fe02008-12-20 02:06:13 +0000917
918 /*
919 ** Record the set of tables that satisfy case 2. The set might be
drh111a6a72008-12-21 03:51:16 +0000920 ** empty.
drh1a58fe02008-12-20 02:06:13 +0000921 */
922 pOrInfo->indexable = indexable;
drh111a6a72008-12-21 03:51:16 +0000923 pTerm->eOperator = indexable==0 ? 0 : WO_OR;
drh1a58fe02008-12-20 02:06:13 +0000924
925 /*
926 ** chngToIN holds a set of tables that *might* satisfy case 1. But
927 ** we have to do some additional checking to see if case 1 really
928 ** is satisfied.
drh4e8be3b2009-06-08 17:11:08 +0000929 **
930 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
931 ** that there is no possibility of transforming the OR clause into an
932 ** IN operator because one or more terms in the OR clause contain
933 ** something other than == on a column in the single table. The 1-bit
934 ** case means that every term of the OR clause is of the form
935 ** "table.column=expr" for some single table. The one bit that is set
936 ** will correspond to the common table. We still need to check to make
937 ** sure the same column is used on all terms. The 2-bit case is when
938 ** the all terms are of the form "table1.column=table2.column". It
939 ** might be possible to form an IN operator with either table1.column
940 ** or table2.column as the LHS if either is common to every term of
941 ** the OR clause.
942 **
943 ** Note that terms of the form "table.column1=table.column2" (the
944 ** same table on both sizes of the ==) cannot be optimized.
drh1a58fe02008-12-20 02:06:13 +0000945 */
946 if( chngToIN ){
947 int okToChngToIN = 0; /* True if the conversion to IN is valid */
948 int iColumn = -1; /* Column index on lhs of IN operator */
shane63207ab2009-02-04 01:49:30 +0000949 int iCursor = -1; /* Table cursor common to all terms */
drh1a58fe02008-12-20 02:06:13 +0000950 int j = 0; /* Loop counter */
951
952 /* Search for a table and column that appears on one side or the
953 ** other of the == operator in every subterm. That table and column
954 ** will be recorded in iCursor and iColumn. There might not be any
955 ** such table and column. Set okToChngToIN if an appropriate table
956 ** and column is found but leave okToChngToIN false if not found.
957 */
958 for(j=0; j<2 && !okToChngToIN; j++){
959 pOrTerm = pOrWc->a;
960 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
961 assert( pOrTerm->eOperator==WO_EQ );
962 pOrTerm->wtFlags &= ~TERM_OR_OK;
drh4e8be3b2009-06-08 17:11:08 +0000963 if( pOrTerm->leftCursor==iCursor ){
964 /* This is the 2-bit case and we are on the second iteration and
965 ** current term is from the first iteration. So skip this term. */
966 assert( j==1 );
967 continue;
968 }
969 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
970 /* This term must be of the form t1.a==t2.b where t2 is in the
971 ** chngToIN set but t1 is not. This term will be either preceeded
972 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
973 ** and use its inversion. */
974 testcase( pOrTerm->wtFlags & TERM_COPIED );
975 testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
976 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
977 continue;
978 }
drh1a58fe02008-12-20 02:06:13 +0000979 iColumn = pOrTerm->u.leftColumn;
980 iCursor = pOrTerm->leftCursor;
981 break;
982 }
983 if( i<0 ){
drh4e8be3b2009-06-08 17:11:08 +0000984 /* No candidate table+column was found. This can only occur
985 ** on the second iteration */
drh1a58fe02008-12-20 02:06:13 +0000986 assert( j==1 );
987 assert( (chngToIN&(chngToIN-1))==0 );
drh4e8be3b2009-06-08 17:11:08 +0000988 assert( chngToIN==getMask(pMaskSet, iCursor) );
drh1a58fe02008-12-20 02:06:13 +0000989 break;
990 }
drh4e8be3b2009-06-08 17:11:08 +0000991 testcase( j==1 );
992
993 /* We have found a candidate table and column. Check to see if that
994 ** table and column is common to every term in the OR clause */
drh1a58fe02008-12-20 02:06:13 +0000995 okToChngToIN = 1;
996 for(; i>=0 && okToChngToIN; i--, pOrTerm++){
997 assert( pOrTerm->eOperator==WO_EQ );
998 if( pOrTerm->leftCursor!=iCursor ){
999 pOrTerm->wtFlags &= ~TERM_OR_OK;
1000 }else if( pOrTerm->u.leftColumn!=iColumn ){
1001 okToChngToIN = 0;
1002 }else{
1003 int affLeft, affRight;
1004 /* If the right-hand side is also a column, then the affinities
1005 ** of both right and left sides must be such that no type
1006 ** conversions are required on the right. (Ticket #2249)
1007 */
1008 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
1009 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
1010 if( affRight!=0 && affRight!=affLeft ){
1011 okToChngToIN = 0;
1012 }else{
1013 pOrTerm->wtFlags |= TERM_OR_OK;
1014 }
1015 }
1016 }
1017 }
1018
1019 /* At this point, okToChngToIN is true if original pTerm satisfies
1020 ** case 1. In that case, construct a new virtual term that is
1021 ** pTerm converted into an IN operator.
1022 */
1023 if( okToChngToIN ){
1024 Expr *pDup; /* A transient duplicate expression */
1025 ExprList *pList = 0; /* The RHS of the IN operator */
1026 Expr *pLeft = 0; /* The LHS of the IN operator */
1027 Expr *pNew; /* The complete IN operator */
1028
1029 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
1030 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
1031 assert( pOrTerm->eOperator==WO_EQ );
1032 assert( pOrTerm->leftCursor==iCursor );
1033 assert( pOrTerm->u.leftColumn==iColumn );
danielk19776ab3a2e2009-02-19 14:39:25 +00001034 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
drhb7916a72009-05-27 10:31:29 +00001035 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
drh1a58fe02008-12-20 02:06:13 +00001036 pLeft = pOrTerm->pExpr->pLeft;
1037 }
1038 assert( pLeft!=0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001039 pDup = sqlite3ExprDup(db, pLeft, 0);
drhb7916a72009-05-27 10:31:29 +00001040 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
drh1a58fe02008-12-20 02:06:13 +00001041 if( pNew ){
1042 int idxNew;
1043 transferJoinMarkings(pNew, pExpr);
danielk19776ab3a2e2009-02-19 14:39:25 +00001044 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1045 pNew->x.pList = pList;
drh1a58fe02008-12-20 02:06:13 +00001046 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
1047 testcase( idxNew==0 );
1048 exprAnalyze(pSrc, pWC, idxNew);
1049 pTerm = &pWC->a[idxTerm];
1050 pWC->a[idxNew].iParent = idxTerm;
1051 pTerm->nChild = 1;
1052 }else{
1053 sqlite3ExprListDelete(db, pList);
1054 }
1055 pTerm->eOperator = 0; /* case 1 trumps case 2 */
1056 }
drh3e355802007-02-23 23:13:33 +00001057 }
drh3e355802007-02-23 23:13:33 +00001058}
1059#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
drh54a167d2005-11-26 14:08:07 +00001060
drh1a58fe02008-12-20 02:06:13 +00001061
drh54a167d2005-11-26 14:08:07 +00001062/*
drh0aa74ed2005-07-16 13:33:20 +00001063** The input to this routine is an WhereTerm structure with only the
drh51147ba2005-07-23 22:59:55 +00001064** "pExpr" field filled in. The job of this routine is to analyze the
drh0aa74ed2005-07-16 13:33:20 +00001065** subexpression and populate all the other fields of the WhereTerm
drh75897232000-05-29 14:26:00 +00001066** structure.
drh51147ba2005-07-23 22:59:55 +00001067**
1068** If the expression is of the form "<expr> <op> X" it gets commuted
drh1a58fe02008-12-20 02:06:13 +00001069** to the standard form of "X <op> <expr>".
1070**
1071** If the expression is of the form "X <op> Y" where both X and Y are
1072** columns, then the original expression is unchanged and a new virtual
1073** term of the form "Y <op> X" is added to the WHERE clause and
1074** analyzed separately. The original term is marked with TERM_COPIED
1075** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1076** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1077** is a commuted copy of a prior term.) The original term has nChild=1
1078** and the copy has idxParent set to the index of the original term.
drh75897232000-05-29 14:26:00 +00001079*/
drh0fcef5e2005-07-19 17:38:22 +00001080static void exprAnalyze(
1081 SrcList *pSrc, /* the FROM clause */
drh9eb20282005-08-24 03:52:18 +00001082 WhereClause *pWC, /* the WHERE clause */
1083 int idxTerm /* Index of the term to be analyzed */
drh0fcef5e2005-07-19 17:38:22 +00001084){
drh1a58fe02008-12-20 02:06:13 +00001085 WhereTerm *pTerm; /* The term to be analyzed */
drh111a6a72008-12-21 03:51:16 +00001086 WhereMaskSet *pMaskSet; /* Set of table index masks */
drh1a58fe02008-12-20 02:06:13 +00001087 Expr *pExpr; /* The expression to be analyzed */
1088 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
1089 Bitmask prereqAll; /* Prerequesites of pExpr */
drhdafc0ce2008-04-17 19:14:02 +00001090 Bitmask extraRight = 0;
drhd2687b72005-08-12 22:56:09 +00001091 int isComplete;
drh9f504ea2008-02-23 21:55:39 +00001092 int noCase;
drh1a58fe02008-12-20 02:06:13 +00001093 int op; /* Top-level operator. pExpr->op */
1094 Parse *pParse = pWC->pParse; /* Parsing context */
1095 sqlite3 *db = pParse->db; /* Database connection */
dan937d0de2009-10-15 18:35:38 +00001096 Expr *pStr1;
drh0fcef5e2005-07-19 17:38:22 +00001097
drhf998b732007-11-26 13:36:00 +00001098 if( db->mallocFailed ){
1099 return;
1100 }
1101 pTerm = &pWC->a[idxTerm];
1102 pMaskSet = pWC->pMaskSet;
1103 pExpr = pTerm->pExpr;
drh0fcef5e2005-07-19 17:38:22 +00001104 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
drh50b39962006-10-28 00:28:09 +00001105 op = pExpr->op;
1106 if( op==TK_IN ){
drhf5b11382005-09-17 13:07:13 +00001107 assert( pExpr->pRight==0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001108 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1109 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
1110 }else{
1111 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
1112 }
drh50b39962006-10-28 00:28:09 +00001113 }else if( op==TK_ISNULL ){
1114 pTerm->prereqRight = 0;
drhf5b11382005-09-17 13:07:13 +00001115 }else{
1116 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
1117 }
drh22d6a532005-09-19 21:05:48 +00001118 prereqAll = exprTableUsage(pMaskSet, pExpr);
1119 if( ExprHasProperty(pExpr, EP_FromJoin) ){
drh42165be2008-03-26 14:56:34 +00001120 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
1121 prereqAll |= x;
drhdafc0ce2008-04-17 19:14:02 +00001122 extraRight = x-1; /* ON clause terms may not be used with an index
1123 ** on left table of a LEFT JOIN. Ticket #3015 */
drh22d6a532005-09-19 21:05:48 +00001124 }
1125 pTerm->prereqAll = prereqAll;
drh0fcef5e2005-07-19 17:38:22 +00001126 pTerm->leftCursor = -1;
drh45b1ee42005-08-02 17:48:22 +00001127 pTerm->iParent = -1;
drhb52076c2006-01-23 13:22:09 +00001128 pTerm->eOperator = 0;
drh50b39962006-10-28 00:28:09 +00001129 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
drh0fcef5e2005-07-19 17:38:22 +00001130 Expr *pLeft = pExpr->pLeft;
1131 Expr *pRight = pExpr->pRight;
1132 if( pLeft->op==TK_COLUMN ){
1133 pTerm->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001134 pTerm->u.leftColumn = pLeft->iColumn;
drh50b39962006-10-28 00:28:09 +00001135 pTerm->eOperator = operatorMask(op);
drh75897232000-05-29 14:26:00 +00001136 }
drh0fcef5e2005-07-19 17:38:22 +00001137 if( pRight && pRight->op==TK_COLUMN ){
1138 WhereTerm *pNew;
1139 Expr *pDup;
1140 if( pTerm->leftCursor>=0 ){
drh9eb20282005-08-24 03:52:18 +00001141 int idxNew;
danielk19776ab3a2e2009-02-19 14:39:25 +00001142 pDup = sqlite3ExprDup(db, pExpr, 0);
drh17435752007-08-16 04:30:38 +00001143 if( db->mallocFailed ){
drh633e6d52008-07-28 19:34:53 +00001144 sqlite3ExprDelete(db, pDup);
drh28f45912006-10-18 23:26:38 +00001145 return;
1146 }
drh9eb20282005-08-24 03:52:18 +00001147 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1148 if( idxNew==0 ) return;
1149 pNew = &pWC->a[idxNew];
1150 pNew->iParent = idxTerm;
1151 pTerm = &pWC->a[idxTerm];
drh45b1ee42005-08-02 17:48:22 +00001152 pTerm->nChild = 1;
drh165be382008-12-05 02:36:33 +00001153 pTerm->wtFlags |= TERM_COPIED;
drh0fcef5e2005-07-19 17:38:22 +00001154 }else{
1155 pDup = pExpr;
1156 pNew = pTerm;
1157 }
drh7d10d5a2008-08-20 16:35:10 +00001158 exprCommute(pParse, pDup);
drh0fcef5e2005-07-19 17:38:22 +00001159 pLeft = pDup->pLeft;
1160 pNew->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001161 pNew->u.leftColumn = pLeft->iColumn;
drh0fcef5e2005-07-19 17:38:22 +00001162 pNew->prereqRight = prereqLeft;
1163 pNew->prereqAll = prereqAll;
drhb52076c2006-01-23 13:22:09 +00001164 pNew->eOperator = operatorMask(pDup->op);
drh75897232000-05-29 14:26:00 +00001165 }
1166 }
drhed378002005-07-28 23:12:08 +00001167
drhd2687b72005-08-12 22:56:09 +00001168#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
drhed378002005-07-28 23:12:08 +00001169 /* If a term is the BETWEEN operator, create two new virtual terms
drh1a58fe02008-12-20 02:06:13 +00001170 ** that define the range that the BETWEEN implements. For example:
1171 **
1172 ** a BETWEEN b AND c
1173 **
1174 ** is converted into:
1175 **
1176 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1177 **
1178 ** The two new terms are added onto the end of the WhereClause object.
1179 ** The new terms are "dynamic" and are children of the original BETWEEN
1180 ** term. That means that if the BETWEEN term is coded, the children are
1181 ** skipped. Or, if the children are satisfied by an index, the original
1182 ** BETWEEN term is skipped.
drhed378002005-07-28 23:12:08 +00001183 */
drh29435252008-12-28 18:35:08 +00001184 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
danielk19776ab3a2e2009-02-19 14:39:25 +00001185 ExprList *pList = pExpr->x.pList;
drhed378002005-07-28 23:12:08 +00001186 int i;
1187 static const u8 ops[] = {TK_GE, TK_LE};
1188 assert( pList!=0 );
1189 assert( pList->nExpr==2 );
1190 for(i=0; i<2; i++){
1191 Expr *pNewExpr;
drh9eb20282005-08-24 03:52:18 +00001192 int idxNew;
drhb7916a72009-05-27 10:31:29 +00001193 pNewExpr = sqlite3PExpr(pParse, ops[i],
1194 sqlite3ExprDup(db, pExpr->pLeft, 0),
danielk19776ab3a2e2009-02-19 14:39:25 +00001195 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
drh9eb20282005-08-24 03:52:18 +00001196 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001197 testcase( idxNew==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001198 exprAnalyze(pSrc, pWC, idxNew);
drh9eb20282005-08-24 03:52:18 +00001199 pTerm = &pWC->a[idxTerm];
1200 pWC->a[idxNew].iParent = idxTerm;
drhed378002005-07-28 23:12:08 +00001201 }
drh45b1ee42005-08-02 17:48:22 +00001202 pTerm->nChild = 2;
drhed378002005-07-28 23:12:08 +00001203 }
drhd2687b72005-08-12 22:56:09 +00001204#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
drhed378002005-07-28 23:12:08 +00001205
danielk19771576cd92006-01-14 08:02:28 +00001206#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
drh1a58fe02008-12-20 02:06:13 +00001207 /* Analyze a term that is composed of two or more subterms connected by
1208 ** an OR operator.
drh6c30be82005-07-29 15:10:17 +00001209 */
1210 else if( pExpr->op==TK_OR ){
drh29435252008-12-28 18:35:08 +00001211 assert( pWC->op==TK_AND );
drh1a58fe02008-12-20 02:06:13 +00001212 exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
danielk1977f51d1bd2009-07-31 06:14:51 +00001213 pTerm = &pWC->a[idxTerm];
drh6c30be82005-07-29 15:10:17 +00001214 }
drhd2687b72005-08-12 22:56:09 +00001215#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1216
1217#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1218 /* Add constraints to reduce the search space on a LIKE or GLOB
1219 ** operator.
drh9f504ea2008-02-23 21:55:39 +00001220 **
1221 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1222 **
1223 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
1224 **
1225 ** The last character of the prefix "abc" is incremented to form the
shane7bc71e52008-05-28 18:01:44 +00001226 ** termination condition "abd".
drhd2687b72005-08-12 22:56:09 +00001227 */
dan937d0de2009-10-15 18:35:38 +00001228 if( pWC->op==TK_AND
1229 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1230 ){
1231 Expr *pLeft;
1232 Expr *pStr2;
drhd2687b72005-08-12 22:56:09 +00001233 Expr *pNewExpr1, *pNewExpr2;
drh9eb20282005-08-24 03:52:18 +00001234 int idxNew1, idxNew2;
1235
danielk19776ab3a2e2009-02-19 14:39:25 +00001236 pLeft = pExpr->x.pList->a[1].pExpr;
danielk19776ab3a2e2009-02-19 14:39:25 +00001237 pStr2 = sqlite3ExprDup(db, pStr1, 0);
drhf998b732007-11-26 13:36:00 +00001238 if( !db->mallocFailed ){
drh254993e2009-06-08 19:44:36 +00001239 u8 c, *pC; /* Last character before the first wildcard */
dan937d0de2009-10-15 18:35:38 +00001240 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
drh9f504ea2008-02-23 21:55:39 +00001241 c = *pC;
drh02a50b72008-05-26 18:33:40 +00001242 if( noCase ){
drh254993e2009-06-08 19:44:36 +00001243 /* The point is to increment the last character before the first
1244 ** wildcard. But if we increment '@', that will push it into the
1245 ** alphabetic range where case conversions will mess up the
1246 ** inequality. To avoid this, make sure to also run the full
1247 ** LIKE on all candidate expressions by clearing the isComplete flag
1248 */
1249 if( c=='A'-1 ) isComplete = 0;
1250
drh02a50b72008-05-26 18:33:40 +00001251 c = sqlite3UpperToLower[c];
1252 }
drh9f504ea2008-02-23 21:55:39 +00001253 *pC = c + 1;
drhd2687b72005-08-12 22:56:09 +00001254 }
danielk19776ab3a2e2009-02-19 14:39:25 +00001255 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft,0),pStr1,0);
drh9eb20282005-08-24 03:52:18 +00001256 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001257 testcase( idxNew1==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001258 exprAnalyze(pSrc, pWC, idxNew1);
danielk19776ab3a2e2009-02-19 14:39:25 +00001259 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft,0),pStr2,0);
drh9eb20282005-08-24 03:52:18 +00001260 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001261 testcase( idxNew2==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001262 exprAnalyze(pSrc, pWC, idxNew2);
drh9eb20282005-08-24 03:52:18 +00001263 pTerm = &pWC->a[idxTerm];
drhd2687b72005-08-12 22:56:09 +00001264 if( isComplete ){
drh9eb20282005-08-24 03:52:18 +00001265 pWC->a[idxNew1].iParent = idxTerm;
1266 pWC->a[idxNew2].iParent = idxTerm;
drhd2687b72005-08-12 22:56:09 +00001267 pTerm->nChild = 2;
1268 }
1269 }
1270#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
drh7f375902006-06-13 17:38:59 +00001271
1272#ifndef SQLITE_OMIT_VIRTUALTABLE
1273 /* Add a WO_MATCH auxiliary term to the constraint set if the
1274 ** current expression is of the form: column MATCH expr.
1275 ** This information is used by the xBestIndex methods of
1276 ** virtual tables. The native query optimizer does not attempt
1277 ** to do anything with MATCH functions.
1278 */
1279 if( isMatchOfColumn(pExpr) ){
1280 int idxNew;
1281 Expr *pRight, *pLeft;
1282 WhereTerm *pNewTerm;
1283 Bitmask prereqColumn, prereqExpr;
1284
danielk19776ab3a2e2009-02-19 14:39:25 +00001285 pRight = pExpr->x.pList->a[0].pExpr;
1286 pLeft = pExpr->x.pList->a[1].pExpr;
drh7f375902006-06-13 17:38:59 +00001287 prereqExpr = exprTableUsage(pMaskSet, pRight);
1288 prereqColumn = exprTableUsage(pMaskSet, pLeft);
1289 if( (prereqExpr & prereqColumn)==0 ){
drh1a90e092006-06-14 22:07:10 +00001290 Expr *pNewExpr;
drhb7916a72009-05-27 10:31:29 +00001291 pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1292 0, sqlite3ExprDup(db, pRight, 0), 0);
drh1a90e092006-06-14 22:07:10 +00001293 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001294 testcase( idxNew==0 );
drh7f375902006-06-13 17:38:59 +00001295 pNewTerm = &pWC->a[idxNew];
1296 pNewTerm->prereqRight = prereqExpr;
1297 pNewTerm->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001298 pNewTerm->u.leftColumn = pLeft->iColumn;
drh7f375902006-06-13 17:38:59 +00001299 pNewTerm->eOperator = WO_MATCH;
1300 pNewTerm->iParent = idxTerm;
drhd2ca60d2006-06-27 02:36:58 +00001301 pTerm = &pWC->a[idxTerm];
drh7f375902006-06-13 17:38:59 +00001302 pTerm->nChild = 1;
drh165be382008-12-05 02:36:33 +00001303 pTerm->wtFlags |= TERM_COPIED;
drh7f375902006-06-13 17:38:59 +00001304 pNewTerm->prereqAll = pTerm->prereqAll;
1305 }
1306 }
1307#endif /* SQLITE_OMIT_VIRTUALTABLE */
drhdafc0ce2008-04-17 19:14:02 +00001308
1309 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1310 ** an index for tables to the left of the join.
1311 */
1312 pTerm->prereqRight |= extraRight;
drh75897232000-05-29 14:26:00 +00001313}
1314
drh7b4fc6a2007-02-06 13:26:32 +00001315/*
1316** Return TRUE if any of the expressions in pList->a[iFirst...] contain
1317** a reference to any table other than the iBase table.
1318*/
1319static int referencesOtherTables(
1320 ExprList *pList, /* Search expressions in ths list */
drh111a6a72008-12-21 03:51:16 +00001321 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
drh7b4fc6a2007-02-06 13:26:32 +00001322 int iFirst, /* Be searching with the iFirst-th expression */
1323 int iBase /* Ignore references to this table */
1324){
1325 Bitmask allowed = ~getMask(pMaskSet, iBase);
1326 while( iFirst<pList->nExpr ){
1327 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
1328 return 1;
1329 }
1330 }
1331 return 0;
1332}
1333
drh0fcef5e2005-07-19 17:38:22 +00001334
drh75897232000-05-29 14:26:00 +00001335/*
drh51669862004-12-18 18:40:26 +00001336** This routine decides if pIdx can be used to satisfy the ORDER BY
1337** clause. If it can, it returns 1. If pIdx cannot satisfy the
1338** ORDER BY clause, this routine returns 0.
1339**
1340** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
1341** left-most table in the FROM clause of that same SELECT statement and
1342** the table has a cursor number of "base". pIdx is an index on pTab.
1343**
1344** nEqCol is the number of columns of pIdx that are used as equality
1345** constraints. Any of these columns may be missing from the ORDER BY
1346** clause and the match can still be a success.
1347**
drh51669862004-12-18 18:40:26 +00001348** All terms of the ORDER BY that match against the index must be either
1349** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
1350** index do not need to satisfy this constraint.) The *pbRev value is
1351** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1352** the ORDER BY clause is all ASC.
1353*/
1354static int isSortingIndex(
1355 Parse *pParse, /* Parsing context */
drh111a6a72008-12-21 03:51:16 +00001356 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
drh51669862004-12-18 18:40:26 +00001357 Index *pIdx, /* The index we are testing */
drh74161702006-02-24 02:53:49 +00001358 int base, /* Cursor number for the table to be sorted */
drh51669862004-12-18 18:40:26 +00001359 ExprList *pOrderBy, /* The ORDER BY clause */
1360 int nEqCol, /* Number of index columns with == constraints */
1361 int *pbRev /* Set to 1 if ORDER BY is DESC */
1362){
drhb46b5772005-08-29 16:40:52 +00001363 int i, j; /* Loop counters */
drh85eeb692005-12-21 03:16:42 +00001364 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
drhb46b5772005-08-29 16:40:52 +00001365 int nTerm; /* Number of ORDER BY terms */
1366 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
drh51669862004-12-18 18:40:26 +00001367 sqlite3 *db = pParse->db;
1368
1369 assert( pOrderBy!=0 );
1370 nTerm = pOrderBy->nExpr;
1371 assert( nTerm>0 );
1372
dan5236ac12009-08-13 07:09:33 +00001373 /* Argument pIdx must either point to a 'real' named index structure,
1374 ** or an index structure allocated on the stack by bestBtreeIndex() to
1375 ** represent the rowid index that is part of every table. */
1376 assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
1377
drh51669862004-12-18 18:40:26 +00001378 /* Match terms of the ORDER BY clause against columns of
1379 ** the index.
drhcc192542006-12-20 03:24:19 +00001380 **
1381 ** Note that indices have pIdx->nColumn regular columns plus
1382 ** one additional column containing the rowid. The rowid column
1383 ** of the index is also allowed to match against the ORDER BY
1384 ** clause.
drh51669862004-12-18 18:40:26 +00001385 */
drhcc192542006-12-20 03:24:19 +00001386 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
drh51669862004-12-18 18:40:26 +00001387 Expr *pExpr; /* The expression of the ORDER BY pTerm */
1388 CollSeq *pColl; /* The collating sequence of pExpr */
drh85eeb692005-12-21 03:16:42 +00001389 int termSortOrder; /* Sort order for this term */
drhcc192542006-12-20 03:24:19 +00001390 int iColumn; /* The i-th column of the index. -1 for rowid */
1391 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
1392 const char *zColl; /* Name of the collating sequence for i-th index term */
drh51669862004-12-18 18:40:26 +00001393
1394 pExpr = pTerm->pExpr;
1395 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1396 /* Can not use an index sort on anything that is not a column in the
1397 ** left-most table of the FROM clause */
drh7b4fc6a2007-02-06 13:26:32 +00001398 break;
drh51669862004-12-18 18:40:26 +00001399 }
1400 pColl = sqlite3ExprCollSeq(pParse, pExpr);
drhcc192542006-12-20 03:24:19 +00001401 if( !pColl ){
1402 pColl = db->pDfltColl;
1403 }
dan5236ac12009-08-13 07:09:33 +00001404 if( pIdx->zName && i<pIdx->nColumn ){
drhcc192542006-12-20 03:24:19 +00001405 iColumn = pIdx->aiColumn[i];
1406 if( iColumn==pIdx->pTable->iPKey ){
1407 iColumn = -1;
1408 }
1409 iSortOrder = pIdx->aSortOrder[i];
1410 zColl = pIdx->azColl[i];
1411 }else{
1412 iColumn = -1;
1413 iSortOrder = 0;
1414 zColl = pColl->zName;
1415 }
1416 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
drh9012bcb2004-12-19 00:11:35 +00001417 /* Term j of the ORDER BY clause does not match column i of the index */
1418 if( i<nEqCol ){
drh51669862004-12-18 18:40:26 +00001419 /* If an index column that is constrained by == fails to match an
1420 ** ORDER BY term, that is OK. Just ignore that column of the index
1421 */
1422 continue;
drhff354e92008-06-25 02:47:57 +00001423 }else if( i==pIdx->nColumn ){
1424 /* Index column i is the rowid. All other terms match. */
1425 break;
drh51669862004-12-18 18:40:26 +00001426 }else{
1427 /* If an index column fails to match and is not constrained by ==
1428 ** then the index cannot satisfy the ORDER BY constraint.
1429 */
1430 return 0;
1431 }
1432 }
dan5236ac12009-08-13 07:09:33 +00001433 assert( pIdx->aSortOrder!=0 || iColumn==-1 );
drh85eeb692005-12-21 03:16:42 +00001434 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
drhcc192542006-12-20 03:24:19 +00001435 assert( iSortOrder==0 || iSortOrder==1 );
1436 termSortOrder = iSortOrder ^ pTerm->sortOrder;
drh51669862004-12-18 18:40:26 +00001437 if( i>nEqCol ){
drh85eeb692005-12-21 03:16:42 +00001438 if( termSortOrder!=sortOrder ){
drh51669862004-12-18 18:40:26 +00001439 /* Indices can only be used if all ORDER BY terms past the
1440 ** equality constraints are all either DESC or ASC. */
1441 return 0;
1442 }
1443 }else{
drh85eeb692005-12-21 03:16:42 +00001444 sortOrder = termSortOrder;
drh51669862004-12-18 18:40:26 +00001445 }
1446 j++;
1447 pTerm++;
drh7b4fc6a2007-02-06 13:26:32 +00001448 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
drhcc192542006-12-20 03:24:19 +00001449 /* If the indexed column is the primary key and everything matches
drh7b4fc6a2007-02-06 13:26:32 +00001450 ** so far and none of the ORDER BY terms to the right reference other
1451 ** tables in the join, then we are assured that the index can be used
1452 ** to sort because the primary key is unique and so none of the other
1453 ** columns will make any difference
drhcc192542006-12-20 03:24:19 +00001454 */
1455 j = nTerm;
1456 }
drh51669862004-12-18 18:40:26 +00001457 }
1458
drhcc192542006-12-20 03:24:19 +00001459 *pbRev = sortOrder!=0;
drh8718f522005-08-13 16:13:04 +00001460 if( j>=nTerm ){
drhcc192542006-12-20 03:24:19 +00001461 /* All terms of the ORDER BY clause are covered by this index so
1462 ** this index can be used for sorting. */
1463 return 1;
1464 }
drh7b4fc6a2007-02-06 13:26:32 +00001465 if( pIdx->onError!=OE_None && i==pIdx->nColumn
1466 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
drhcc192542006-12-20 03:24:19 +00001467 /* All terms of this index match some prefix of the ORDER BY clause
drh7b4fc6a2007-02-06 13:26:32 +00001468 ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1469 ** clause reference other tables in a join. If this is all true then
1470 ** the order by clause is superfluous. */
drh51669862004-12-18 18:40:26 +00001471 return 1;
1472 }
1473 return 0;
1474}
1475
1476/*
drhb6fb62d2005-09-20 08:47:20 +00001477** Prepare a crude estimate of the logarithm of the input value.
drh28c4cf42005-07-27 20:41:43 +00001478** The results need not be exact. This is only used for estimating
drh909626d2008-05-30 14:58:37 +00001479** the total cost of performing operations with O(logN) or O(NlogN)
drh28c4cf42005-07-27 20:41:43 +00001480** complexity. Because N is just a guess, it is no great tragedy if
1481** logN is a little off.
drh28c4cf42005-07-27 20:41:43 +00001482*/
1483static double estLog(double N){
drhb37df7b2005-10-13 02:09:49 +00001484 double logN = 1;
1485 double x = 10;
drh28c4cf42005-07-27 20:41:43 +00001486 while( N>x ){
drhb37df7b2005-10-13 02:09:49 +00001487 logN += 1;
drh28c4cf42005-07-27 20:41:43 +00001488 x *= 10;
1489 }
1490 return logN;
1491}
1492
drh6d209d82006-06-27 01:54:26 +00001493/*
1494** Two routines for printing the content of an sqlite3_index_info
1495** structure. Used for testing and debugging only. If neither
1496** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1497** are no-ops.
1498*/
drh77a2a5e2007-04-06 01:04:39 +00001499#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
drh6d209d82006-06-27 01:54:26 +00001500static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1501 int i;
mlcreech3a00f902008-03-04 17:45:01 +00001502 if( !sqlite3WhereTrace ) return;
drh6d209d82006-06-27 01:54:26 +00001503 for(i=0; i<p->nConstraint; i++){
1504 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1505 i,
1506 p->aConstraint[i].iColumn,
1507 p->aConstraint[i].iTermOffset,
1508 p->aConstraint[i].op,
1509 p->aConstraint[i].usable);
1510 }
1511 for(i=0; i<p->nOrderBy; i++){
1512 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
1513 i,
1514 p->aOrderBy[i].iColumn,
1515 p->aOrderBy[i].desc);
1516 }
1517}
1518static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1519 int i;
mlcreech3a00f902008-03-04 17:45:01 +00001520 if( !sqlite3WhereTrace ) return;
drh6d209d82006-06-27 01:54:26 +00001521 for(i=0; i<p->nConstraint; i++){
1522 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
1523 i,
1524 p->aConstraintUsage[i].argvIndex,
1525 p->aConstraintUsage[i].omit);
1526 }
1527 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
1528 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
1529 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
1530 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
1531}
1532#else
1533#define TRACE_IDX_INPUTS(A)
1534#define TRACE_IDX_OUTPUTS(A)
1535#endif
1536
danielk19771d461462009-04-21 09:02:45 +00001537/*
1538** Required because bestIndex() is called by bestOrClauseIndex()
1539*/
1540static void bestIndex(
1541 Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*);
1542
1543/*
1544** This routine attempts to find an scanning strategy that can be used
1545** to optimize an 'OR' expression that is part of a WHERE clause.
1546**
1547** The table associated with FROM clause term pSrc may be either a
1548** regular B-Tree table or a virtual table.
1549*/
1550static void bestOrClauseIndex(
1551 Parse *pParse, /* The parsing context */
1552 WhereClause *pWC, /* The WHERE clause */
1553 struct SrcList_item *pSrc, /* The FROM clause term to search */
1554 Bitmask notReady, /* Mask of cursors that are not available */
1555 ExprList *pOrderBy, /* The ORDER BY clause */
1556 WhereCost *pCost /* Lowest cost query plan */
1557){
1558#ifndef SQLITE_OMIT_OR_OPTIMIZATION
1559 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
1560 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */
1561 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */
1562 WhereTerm *pTerm; /* A single term of the WHERE clause */
1563
1564 /* Search the WHERE clause terms for a usable WO_OR term. */
1565 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1566 if( pTerm->eOperator==WO_OR
1567 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
1568 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
1569 ){
1570 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
1571 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
1572 WhereTerm *pOrTerm;
1573 int flags = WHERE_MULTI_OR;
1574 double rTotal = 0;
1575 double nRow = 0;
dan5236ac12009-08-13 07:09:33 +00001576 Bitmask used = 0;
danielk19771d461462009-04-21 09:02:45 +00001577
1578 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
1579 WhereCost sTermCost;
1580 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
1581 (pOrTerm - pOrWC->a), (pTerm - pWC->a)
1582 ));
1583 if( pOrTerm->eOperator==WO_AND ){
1584 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
1585 bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost);
1586 }else if( pOrTerm->leftCursor==iCur ){
1587 WhereClause tempWC;
1588 tempWC.pParse = pWC->pParse;
1589 tempWC.pMaskSet = pWC->pMaskSet;
1590 tempWC.op = TK_AND;
1591 tempWC.a = pOrTerm;
1592 tempWC.nTerm = 1;
1593 bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost);
1594 }else{
1595 continue;
1596 }
1597 rTotal += sTermCost.rCost;
1598 nRow += sTermCost.nRow;
dan5236ac12009-08-13 07:09:33 +00001599 used |= sTermCost.used;
danielk19771d461462009-04-21 09:02:45 +00001600 if( rTotal>=pCost->rCost ) break;
1601 }
1602
1603 /* If there is an ORDER BY clause, increase the scan cost to account
1604 ** for the cost of the sort. */
1605 if( pOrderBy!=0 ){
1606 rTotal += nRow*estLog(nRow);
1607 WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal));
1608 }
1609
1610 /* If the cost of scanning using this OR term for optimization is
1611 ** less than the current cost stored in pCost, replace the contents
1612 ** of pCost. */
1613 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
1614 if( rTotal<pCost->rCost ){
1615 pCost->rCost = rTotal;
1616 pCost->nRow = nRow;
dan5236ac12009-08-13 07:09:33 +00001617 pCost->used = used;
danielk19771d461462009-04-21 09:02:45 +00001618 pCost->plan.wsFlags = flags;
1619 pCost->plan.u.pTerm = pTerm;
1620 }
1621 }
1622 }
1623#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1624}
1625
drh9eff6162006-06-12 21:59:13 +00001626#ifndef SQLITE_OMIT_VIRTUALTABLE
1627/*
danielk19771d461462009-04-21 09:02:45 +00001628** Allocate and populate an sqlite3_index_info structure. It is the
1629** responsibility of the caller to eventually release the structure
1630** by passing the pointer returned by this function to sqlite3_free().
1631*/
1632static sqlite3_index_info *allocateIndexInfo(
1633 Parse *pParse,
1634 WhereClause *pWC,
1635 struct SrcList_item *pSrc,
1636 ExprList *pOrderBy
1637){
1638 int i, j;
1639 int nTerm;
1640 struct sqlite3_index_constraint *pIdxCons;
1641 struct sqlite3_index_orderby *pIdxOrderBy;
1642 struct sqlite3_index_constraint_usage *pUsage;
1643 WhereTerm *pTerm;
1644 int nOrderBy;
1645 sqlite3_index_info *pIdxInfo;
1646
1647 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
1648
1649 /* Count the number of possible WHERE clause constraints referring
1650 ** to this virtual table */
1651 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1652 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1653 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1654 testcase( pTerm->eOperator==WO_IN );
1655 testcase( pTerm->eOperator==WO_ISNULL );
1656 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1657 nTerm++;
1658 }
1659
1660 /* If the ORDER BY clause contains only columns in the current
1661 ** virtual table then allocate space for the aOrderBy part of
1662 ** the sqlite3_index_info structure.
1663 */
1664 nOrderBy = 0;
1665 if( pOrderBy ){
1666 for(i=0; i<pOrderBy->nExpr; i++){
1667 Expr *pExpr = pOrderBy->a[i].pExpr;
1668 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1669 }
1670 if( i==pOrderBy->nExpr ){
1671 nOrderBy = pOrderBy->nExpr;
1672 }
1673 }
1674
1675 /* Allocate the sqlite3_index_info structure
1676 */
1677 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1678 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1679 + sizeof(*pIdxOrderBy)*nOrderBy );
1680 if( pIdxInfo==0 ){
1681 sqlite3ErrorMsg(pParse, "out of memory");
1682 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1683 return 0;
1684 }
1685
1686 /* Initialize the structure. The sqlite3_index_info structure contains
1687 ** many fields that are declared "const" to prevent xBestIndex from
1688 ** changing them. We have to do some funky casting in order to
1689 ** initialize those fields.
1690 */
1691 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1692 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1693 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1694 *(int*)&pIdxInfo->nConstraint = nTerm;
1695 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1696 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1697 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1698 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1699 pUsage;
1700
1701 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1702 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1703 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1704 testcase( pTerm->eOperator==WO_IN );
1705 testcase( pTerm->eOperator==WO_ISNULL );
1706 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1707 pIdxCons[j].iColumn = pTerm->u.leftColumn;
1708 pIdxCons[j].iTermOffset = i;
1709 pIdxCons[j].op = (u8)pTerm->eOperator;
1710 /* The direct assignment in the previous line is possible only because
1711 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1712 ** following asserts verify this fact. */
1713 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1714 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1715 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1716 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1717 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1718 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1719 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1720 j++;
1721 }
1722 for(i=0; i<nOrderBy; i++){
1723 Expr *pExpr = pOrderBy->a[i].pExpr;
1724 pIdxOrderBy[i].iColumn = pExpr->iColumn;
1725 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1726 }
1727
1728 return pIdxInfo;
1729}
1730
1731/*
1732** The table object reference passed as the second argument to this function
1733** must represent a virtual table. This function invokes the xBestIndex()
1734** method of the virtual table with the sqlite3_index_info pointer passed
1735** as the argument.
1736**
1737** If an error occurs, pParse is populated with an error message and a
1738** non-zero value is returned. Otherwise, 0 is returned and the output
1739** part of the sqlite3_index_info structure is left populated.
1740**
1741** Whether or not an error is returned, it is the responsibility of the
1742** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1743** that this is required.
1744*/
1745static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
danielk1977595a5232009-07-24 17:58:53 +00001746 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
danielk19771d461462009-04-21 09:02:45 +00001747 int i;
1748 int rc;
1749
1750 (void)sqlite3SafetyOff(pParse->db);
1751 WHERETRACE(("xBestIndex for %s\n", pTab->zName));
1752 TRACE_IDX_INPUTS(p);
1753 rc = pVtab->pModule->xBestIndex(pVtab, p);
1754 TRACE_IDX_OUTPUTS(p);
1755 (void)sqlite3SafetyOn(pParse->db);
1756
1757 if( rc!=SQLITE_OK ){
1758 if( rc==SQLITE_NOMEM ){
1759 pParse->db->mallocFailed = 1;
1760 }else if( !pVtab->zErrMsg ){
1761 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1762 }else{
1763 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1764 }
1765 }
1766 sqlite3DbFree(pParse->db, pVtab->zErrMsg);
1767 pVtab->zErrMsg = 0;
1768
1769 for(i=0; i<p->nConstraint; i++){
1770 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
1771 sqlite3ErrorMsg(pParse,
1772 "table %s: xBestIndex returned an invalid plan", pTab->zName);
1773 }
1774 }
1775
1776 return pParse->nErr;
1777}
1778
1779
1780/*
drh7f375902006-06-13 17:38:59 +00001781** Compute the best index for a virtual table.
1782**
1783** The best index is computed by the xBestIndex method of the virtual
1784** table module. This routine is really just a wrapper that sets up
1785** the sqlite3_index_info structure that is used to communicate with
1786** xBestIndex.
1787**
1788** In a join, this routine might be called multiple times for the
1789** same virtual table. The sqlite3_index_info structure is created
1790** and initialized on the first invocation and reused on all subsequent
1791** invocations. The sqlite3_index_info structure is also used when
1792** code is generated to access the virtual table. The whereInfoDelete()
1793** routine takes care of freeing the sqlite3_index_info structure after
1794** everybody has finished with it.
drh9eff6162006-06-12 21:59:13 +00001795*/
danielk19771d461462009-04-21 09:02:45 +00001796static void bestVirtualIndex(
1797 Parse *pParse, /* The parsing context */
1798 WhereClause *pWC, /* The WHERE clause */
1799 struct SrcList_item *pSrc, /* The FROM clause term to search */
1800 Bitmask notReady, /* Mask of cursors that are not available */
1801 ExprList *pOrderBy, /* The order by clause */
1802 WhereCost *pCost, /* Lowest cost query plan */
1803 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
drh9eff6162006-06-12 21:59:13 +00001804){
1805 Table *pTab = pSrc->pTab;
1806 sqlite3_index_info *pIdxInfo;
1807 struct sqlite3_index_constraint *pIdxCons;
drh9eff6162006-06-12 21:59:13 +00001808 struct sqlite3_index_constraint_usage *pUsage;
1809 WhereTerm *pTerm;
1810 int i, j;
1811 int nOrderBy;
1812
danielk19776eacd282009-04-29 11:50:53 +00001813 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
1814 ** malloc in allocateIndexInfo() fails and this function returns leaving
1815 ** wsFlags in an uninitialized state, the caller may behave unpredictably.
1816 */
drh6a863cd2009-05-06 18:42:21 +00001817 memset(pCost, 0, sizeof(*pCost));
danielk19776eacd282009-04-29 11:50:53 +00001818 pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
1819
drh9eff6162006-06-12 21:59:13 +00001820 /* If the sqlite3_index_info structure has not been previously
danielk19771d461462009-04-21 09:02:45 +00001821 ** allocated and initialized, then allocate and initialize it now.
drh9eff6162006-06-12 21:59:13 +00001822 */
1823 pIdxInfo = *ppIdxInfo;
1824 if( pIdxInfo==0 ){
danielk19771d461462009-04-21 09:02:45 +00001825 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
drh9eff6162006-06-12 21:59:13 +00001826 }
danielk1977732dc552009-04-21 17:23:04 +00001827 if( pIdxInfo==0 ){
1828 return;
1829 }
drh9eff6162006-06-12 21:59:13 +00001830
drh7f375902006-06-13 17:38:59 +00001831 /* At this point, the sqlite3_index_info structure that pIdxInfo points
1832 ** to will have been initialized, either during the current invocation or
1833 ** during some prior invocation. Now we just have to customize the
1834 ** details of pIdxInfo for the current invocation and pass it to
1835 ** xBestIndex.
1836 */
1837
danielk1977935ed5e2007-03-30 09:13:13 +00001838 /* The module name must be defined. Also, by this point there must
1839 ** be a pointer to an sqlite3_vtab structure. Otherwise
1840 ** sqlite3ViewGetColumnNames() would have picked up the error.
1841 */
drh9eff6162006-06-12 21:59:13 +00001842 assert( pTab->azModuleArg && pTab->azModuleArg[0] );
danielk1977595a5232009-07-24 17:58:53 +00001843 assert( sqlite3GetVTable(pParse->db, pTab) );
drh9eff6162006-06-12 21:59:13 +00001844
1845 /* Set the aConstraint[].usable fields and initialize all
drh7f375902006-06-13 17:38:59 +00001846 ** output variables to zero.
1847 **
1848 ** aConstraint[].usable is true for constraints where the right-hand
1849 ** side contains only references to tables to the left of the current
1850 ** table. In other words, if the constraint is of the form:
1851 **
1852 ** column = expr
1853 **
1854 ** and we are evaluating a join, then the constraint on column is
1855 ** only valid if all tables referenced in expr occur to the left
1856 ** of the table containing column.
1857 **
1858 ** The aConstraints[] array contains entries for all constraints
1859 ** on the current table. That way we only have to compute it once
1860 ** even though we might try to pick the best index multiple times.
1861 ** For each attempt at picking an index, the order of tables in the
1862 ** join might be different so we have to recompute the usable flag
1863 ** each time.
drh9eff6162006-06-12 21:59:13 +00001864 */
1865 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1866 pUsage = pIdxInfo->aConstraintUsage;
1867 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
1868 j = pIdxCons->iTermOffset;
1869 pTerm = &pWC->a[j];
dan5236ac12009-08-13 07:09:33 +00001870 pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
drh9eff6162006-06-12 21:59:13 +00001871 }
1872 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
drh4be8b512006-06-13 23:51:34 +00001873 if( pIdxInfo->needToFreeIdxStr ){
1874 sqlite3_free(pIdxInfo->idxStr);
1875 }
1876 pIdxInfo->idxStr = 0;
1877 pIdxInfo->idxNum = 0;
1878 pIdxInfo->needToFreeIdxStr = 0;
drh9eff6162006-06-12 21:59:13 +00001879 pIdxInfo->orderByConsumed = 0;
shanefbd60f82009-02-04 03:59:25 +00001880 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
1881 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
drh9eff6162006-06-12 21:59:13 +00001882 nOrderBy = pIdxInfo->nOrderBy;
danielk19771d461462009-04-21 09:02:45 +00001883 if( !pOrderBy ){
1884 pIdxInfo->nOrderBy = 0;
drh9eff6162006-06-12 21:59:13 +00001885 }
danielk197774cdba42006-06-19 12:02:58 +00001886
danielk19771d461462009-04-21 09:02:45 +00001887 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
1888 return;
danielk197739359dc2008-03-17 09:36:44 +00001889 }
1890
dan5236ac12009-08-13 07:09:33 +00001891 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1892 for(i=0; i<pIdxInfo->nConstraint; i++){
1893 if( pUsage[i].argvIndex>0 ){
1894 pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
1895 }
1896 }
1897
danielk19771d461462009-04-21 09:02:45 +00001898 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
1899 ** inital value of lowestCost in this loop. If it is, then the
1900 ** (cost<lowestCost) test below will never be true.
1901 **
1902 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
1903 ** is defined.
1904 */
1905 if( (SQLITE_BIG_DBL/((double)2))<pIdxInfo->estimatedCost ){
1906 pCost->rCost = (SQLITE_BIG_DBL/((double)2));
1907 }else{
1908 pCost->rCost = pIdxInfo->estimatedCost;
1909 }
danielk19771d461462009-04-21 09:02:45 +00001910 pCost->plan.u.pVtabIdx = pIdxInfo;
drh5901b572009-06-10 19:33:28 +00001911 if( pIdxInfo->orderByConsumed ){
danielk19771d461462009-04-21 09:02:45 +00001912 pCost->plan.wsFlags |= WHERE_ORDERBY;
1913 }
1914 pCost->plan.nEq = 0;
1915 pIdxInfo->nOrderBy = nOrderBy;
1916
1917 /* Try to find a more efficient access pattern by using multiple indexes
1918 ** to optimize an OR expression within the WHERE clause.
1919 */
1920 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
drh9eff6162006-06-12 21:59:13 +00001921}
1922#endif /* SQLITE_OMIT_VIRTUALTABLE */
1923
drh28c4cf42005-07-27 20:41:43 +00001924/*
dan02fa4692009-08-17 17:06:58 +00001925** Argument pIdx is a pointer to an index structure that has an array of
1926** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
1927** stored in Index.aSample. The domain of values stored in said column
1928** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions.
1929** Region 0 contains all values smaller than the first sample value. Region
1930** 1 contains values larger than or equal to the value of the first sample,
1931** but smaller than the value of the second. And so on.
1932**
1933** If successful, this function determines which of the regions value
drh98cdf622009-08-20 18:14:42 +00001934** pVal lies in, sets *piRegion to the region index (a value between 0
1935** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK.
dan02fa4692009-08-17 17:06:58 +00001936** Or, if an OOM occurs while converting text values between encodings,
drh98cdf622009-08-20 18:14:42 +00001937** SQLITE_NOMEM is returned and *piRegion is undefined.
dan02fa4692009-08-17 17:06:58 +00001938*/
dan69188d92009-08-19 08:18:32 +00001939#ifdef SQLITE_ENABLE_STAT2
dan02fa4692009-08-17 17:06:58 +00001940static int whereRangeRegion(
1941 Parse *pParse, /* Database connection */
1942 Index *pIdx, /* Index to consider domain of */
1943 sqlite3_value *pVal, /* Value to consider */
1944 int *piRegion /* OUT: Region of domain in which value lies */
1945){
drhdaf4a9f2009-08-20 20:05:55 +00001946 if( ALWAYS(pVal) ){
dan02fa4692009-08-17 17:06:58 +00001947 IndexSample *aSample = pIdx->aSample;
1948 int i = 0;
1949 int eType = sqlite3_value_type(pVal);
1950
1951 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
1952 double r = sqlite3_value_double(pVal);
1953 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
1954 if( aSample[i].eType==SQLITE_NULL ) continue;
1955 if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break;
1956 }
drhcdaca552009-08-20 13:45:07 +00001957 }else{
dan02fa4692009-08-17 17:06:58 +00001958 sqlite3 *db = pParse->db;
1959 CollSeq *pColl;
1960 const u8 *z;
1961 int n;
drhcdaca552009-08-20 13:45:07 +00001962
1963 /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */
1964 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
1965
dan02fa4692009-08-17 17:06:58 +00001966 if( eType==SQLITE_BLOB ){
1967 z = (const u8 *)sqlite3_value_blob(pVal);
1968 pColl = db->pDfltColl;
dane275dc32009-08-18 16:24:58 +00001969 assert( pColl->enc==SQLITE_UTF8 );
dan02fa4692009-08-17 17:06:58 +00001970 }else{
drh9aeda792009-08-20 02:34:15 +00001971 pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
1972 if( pColl==0 ){
1973 sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
1974 *pIdx->azColl);
dane275dc32009-08-18 16:24:58 +00001975 return SQLITE_ERROR;
1976 }
dan02fa4692009-08-17 17:06:58 +00001977 z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
dane275dc32009-08-18 16:24:58 +00001978 if( !z ){
1979 return SQLITE_NOMEM;
1980 }
dan02fa4692009-08-17 17:06:58 +00001981 assert( z && pColl && pColl->xCmp );
1982 }
1983 n = sqlite3ValueBytes(pVal, pColl->enc);
1984
1985 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
dane275dc32009-08-18 16:24:58 +00001986 int r;
dan02fa4692009-08-17 17:06:58 +00001987 int eSampletype = aSample[i].eType;
1988 if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
1989 if( (eSampletype!=eType) ) break;
dane83c4f32009-09-21 16:34:24 +00001990#ifndef SQLITE_OMIT_UTF16
1991 if( pColl->enc!=SQLITE_UTF8 ){
dane275dc32009-08-18 16:24:58 +00001992 int nSample;
1993 char *zSample = sqlite3Utf8to16(
dan02fa4692009-08-17 17:06:58 +00001994 db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
1995 );
dane275dc32009-08-18 16:24:58 +00001996 if( !zSample ){
1997 assert( db->mallocFailed );
1998 return SQLITE_NOMEM;
1999 }
2000 r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
2001 sqlite3DbFree(db, zSample);
dane83c4f32009-09-21 16:34:24 +00002002 }else
2003#endif
2004 {
2005 r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
dan02fa4692009-08-17 17:06:58 +00002006 }
dane275dc32009-08-18 16:24:58 +00002007 if( r>0 ) break;
dan02fa4692009-08-17 17:06:58 +00002008 }
2009 }
2010
drha8f57612009-08-25 16:28:14 +00002011 assert( i>=0 && i<=SQLITE_INDEX_SAMPLES );
dan02fa4692009-08-17 17:06:58 +00002012 *piRegion = i;
2013 }
2014 return SQLITE_OK;
2015}
dan69188d92009-08-19 08:18:32 +00002016#endif /* #ifdef SQLITE_ENABLE_STAT2 */
dan02fa4692009-08-17 17:06:58 +00002017
2018/*
dan937d0de2009-10-15 18:35:38 +00002019** If expression pExpr represents a literal value, set *pp to point to
2020** an sqlite3_value structure containing the same value, with affinity
2021** aff applied to it, before returning. It is the responsibility of the
2022** caller to eventually release this structure by passing it to
2023** sqlite3ValueFree().
2024**
2025** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
2026** is an SQL variable that currently has a non-NULL value bound to it,
2027** create an sqlite3_value structure containing this value, again with
2028** affinity aff applied to it, instead.
2029**
2030** If neither of the above apply, set *pp to NULL.
2031**
2032** If an error occurs, return an error code. Otherwise, SQLITE_OK.
2033*/
2034static int valueFromExpr(
2035 Parse *pParse,
2036 Expr *pExpr,
2037 u8 aff,
2038 sqlite3_value **pp
2039){
2040 if( (pExpr->op==TK_VARIABLE)
2041 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
2042 ){
2043 int iVar = pExpr->iColumn;
2044 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar, 0);
2045 *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
2046 return SQLITE_OK;
2047 }
2048 return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
2049}
2050
2051/*
dan02fa4692009-08-17 17:06:58 +00002052** This function is used to estimate the number of rows that will be visited
2053** by scanning an index for a range of values. The range may have an upper
2054** bound, a lower bound, or both. The WHERE clause terms that set the upper
2055** and lower bounds are represented by pLower and pUpper respectively. For
2056** example, assuming that index p is on t1(a):
2057**
2058** ... FROM t1 WHERE a > ? AND a < ? ...
2059** |_____| |_____|
2060** | |
2061** pLower pUpper
2062**
drh98cdf622009-08-20 18:14:42 +00002063** If either of the upper or lower bound is not present, then NULL is passed in
drhcdaca552009-08-20 13:45:07 +00002064** place of the corresponding WhereTerm.
dan02fa4692009-08-17 17:06:58 +00002065**
2066** The nEq parameter is passed the index of the index column subject to the
2067** range constraint. Or, equivalently, the number of equality constraints
2068** optimized by the proposed index scan. For example, assuming index p is
2069** on t1(a, b), and the SQL query is:
2070**
2071** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
2072**
2073** then nEq should be passed the value 1 (as the range restricted column,
2074** b, is the second left-most column of the index). Or, if the query is:
2075**
2076** ... FROM t1 WHERE a > ? AND a < ? ...
2077**
2078** then nEq should be passed 0.
2079**
drh98cdf622009-08-20 18:14:42 +00002080** The returned value is an integer between 1 and 100, inclusive. A return
dan02fa4692009-08-17 17:06:58 +00002081** value of 1 indicates that the proposed range scan is expected to visit
drh98cdf622009-08-20 18:14:42 +00002082** approximately 1/100th (1%) of the rows selected by the nEq equality
2083** constraints (if any). A return value of 100 indicates that it is expected
2084** that the range scan will visit every row (100%) selected by the equality
dan02fa4692009-08-17 17:06:58 +00002085** constraints.
drh98cdf622009-08-20 18:14:42 +00002086**
2087** In the absence of sqlite_stat2 ANALYZE data, each range inequality
2088** reduces the search space by 2/3rds. Hence a single constraint (x>?)
2089** results in a return of 33 and a range constraint (x>? AND x<?) results
2090** in a return of 11.
dan02fa4692009-08-17 17:06:58 +00002091*/
2092static int whereRangeScanEst(
drhcdaca552009-08-20 13:45:07 +00002093 Parse *pParse, /* Parsing & code generating context */
2094 Index *p, /* The index containing the range-compared column; "x" */
2095 int nEq, /* index into p->aCol[] of the range-compared column */
2096 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
2097 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
2098 int *piEst /* OUT: Return value */
dan02fa4692009-08-17 17:06:58 +00002099){
dan69188d92009-08-19 08:18:32 +00002100 int rc = SQLITE_OK;
2101
2102#ifdef SQLITE_ENABLE_STAT2
dan02fa4692009-08-17 17:06:58 +00002103
2104 if( nEq==0 && p->aSample ){
dan937d0de2009-10-15 18:35:38 +00002105 sqlite3_value *pLowerVal = 0;
2106 sqlite3_value *pUpperVal = 0;
dan02fa4692009-08-17 17:06:58 +00002107 int iEst;
drh011cfca2009-08-25 15:56:51 +00002108 int iLower = 0;
2109 int iUpper = SQLITE_INDEX_SAMPLES;
dan937d0de2009-10-15 18:35:38 +00002110 u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
drh98cdf622009-08-20 18:14:42 +00002111
dan02fa4692009-08-17 17:06:58 +00002112 if( pLower ){
2113 Expr *pExpr = pLower->pExpr->pRight;
dan937d0de2009-10-15 18:35:38 +00002114 rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal);
dan02fa4692009-08-17 17:06:58 +00002115 }
drh98cdf622009-08-20 18:14:42 +00002116 if( rc==SQLITE_OK && pUpper ){
dan02fa4692009-08-17 17:06:58 +00002117 Expr *pExpr = pUpper->pExpr->pRight;
dan937d0de2009-10-15 18:35:38 +00002118 rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal);
drh98cdf622009-08-20 18:14:42 +00002119 }
2120
2121 if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){
2122 sqlite3ValueFree(pLowerVal);
2123 sqlite3ValueFree(pUpperVal);
2124 goto range_est_fallback;
2125 }else if( pLowerVal==0 ){
2126 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
drh011cfca2009-08-25 15:56:51 +00002127 if( pLower ) iLower = iUpper/2;
drh98cdf622009-08-20 18:14:42 +00002128 }else if( pUpperVal==0 ){
2129 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
drh011cfca2009-08-25 15:56:51 +00002130 if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2;
drh98cdf622009-08-20 18:14:42 +00002131 }else{
2132 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
2133 if( rc==SQLITE_OK ){
2134 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
dan02fa4692009-08-17 17:06:58 +00002135 }
2136 }
2137
dan02fa4692009-08-17 17:06:58 +00002138 iEst = iUpper - iLower;
drha8f57612009-08-25 16:28:14 +00002139 testcase( iEst==SQLITE_INDEX_SAMPLES );
2140 assert( iEst<=SQLITE_INDEX_SAMPLES );
2141 if( iEst<1 ){
drh98cdf622009-08-20 18:14:42 +00002142 iEst = 1;
2143 }
dan02fa4692009-08-17 17:06:58 +00002144
2145 sqlite3ValueFree(pLowerVal);
2146 sqlite3ValueFree(pUpperVal);
drh98cdf622009-08-20 18:14:42 +00002147 *piEst = (iEst * 100)/SQLITE_INDEX_SAMPLES;
dan02fa4692009-08-17 17:06:58 +00002148 return rc;
2149 }
drh98cdf622009-08-20 18:14:42 +00002150range_est_fallback:
drh3f022182009-09-09 16:10:50 +00002151#else
2152 UNUSED_PARAMETER(pParse);
2153 UNUSED_PARAMETER(p);
2154 UNUSED_PARAMETER(nEq);
dan69188d92009-08-19 08:18:32 +00002155#endif
dan02fa4692009-08-17 17:06:58 +00002156 assert( pLower || pUpper );
drh98cdf622009-08-20 18:14:42 +00002157 if( pLower && pUpper ){
2158 *piEst = 11;
2159 }else{
2160 *piEst = 33;
2161 }
dan02fa4692009-08-17 17:06:58 +00002162 return rc;
2163}
2164
2165
2166/*
drh111a6a72008-12-21 03:51:16 +00002167** Find the query plan for accessing a particular table. Write the
2168** best query plan and its cost into the WhereCost object supplied as the
2169** last parameter.
drh51147ba2005-07-23 22:59:55 +00002170**
drh111a6a72008-12-21 03:51:16 +00002171** The lowest cost plan wins. The cost is an estimate of the amount of
2172** CPU and disk I/O need to process the request using the selected plan.
drh51147ba2005-07-23 22:59:55 +00002173** Factors that influence cost include:
2174**
2175** * The estimated number of rows that will be retrieved. (The
2176** fewer the better.)
2177**
2178** * Whether or not sorting must occur.
2179**
2180** * Whether or not there must be separate lookups in the
2181** index and in the main table.
2182**
danielk1977e2d7b242009-02-23 17:33:49 +00002183** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
2184** the SQL statement, then this function only considers plans using the
drh296a4832009-03-22 20:36:18 +00002185** named index. If no such plan is found, then the returned cost is
2186** SQLITE_BIG_DBL. If a plan is found that uses the named index,
danielk197785574e32008-10-06 05:32:18 +00002187** then the cost is calculated in the usual way.
2188**
danielk1977e2d7b242009-02-23 17:33:49 +00002189** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
2190** in the SELECT statement, then no indexes are considered. However, the
2191** selected plan may still take advantage of the tables built-in rowid
danielk197785574e32008-10-06 05:32:18 +00002192** index.
drhfe05af82005-07-21 03:14:59 +00002193*/
danielk19771d461462009-04-21 09:02:45 +00002194static void bestBtreeIndex(
drhfe05af82005-07-21 03:14:59 +00002195 Parse *pParse, /* The parsing context */
2196 WhereClause *pWC, /* The WHERE clause */
2197 struct SrcList_item *pSrc, /* The FROM clause term to search */
2198 Bitmask notReady, /* Mask of cursors that are not available */
drh111a6a72008-12-21 03:51:16 +00002199 ExprList *pOrderBy, /* The ORDER BY clause */
2200 WhereCost *pCost /* Lowest cost query plan */
drhfe05af82005-07-21 03:14:59 +00002201){
drh51147ba2005-07-23 22:59:55 +00002202 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
2203 Index *pProbe; /* An index we are evaluating */
dan5236ac12009-08-13 07:09:33 +00002204 Index *pIdx; /* Copy of pProbe, or zero for IPK index */
2205 int eqTermMask; /* Current mask of valid equality operators */
2206 int idxEqTermMask; /* Index mask of valid equality operators */
drhcdaca552009-08-20 13:45:07 +00002207 Index sPk; /* A fake index object for the primary key */
2208 unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
2209 int aiColumnPk = -1; /* The aColumn[] value for the sPk index */
2210 int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */
drhfe05af82005-07-21 03:14:59 +00002211
drhcdaca552009-08-20 13:45:07 +00002212 /* Initialize the cost to a worst-case value */
drh111a6a72008-12-21 03:51:16 +00002213 memset(pCost, 0, sizeof(*pCost));
drh111a6a72008-12-21 03:51:16 +00002214 pCost->rCost = SQLITE_BIG_DBL;
drh51147ba2005-07-23 22:59:55 +00002215
drhc49de5d2007-01-19 01:06:01 +00002216 /* If the pSrc table is the right table of a LEFT JOIN then we may not
2217 ** use an index to satisfy IS NULL constraints on that table. This is
2218 ** because columns might end up being NULL if the table does not match -
2219 ** a circumstance which the index cannot help us discover. Ticket #2177.
2220 */
dan5236ac12009-08-13 07:09:33 +00002221 if( pSrc->jointype & JT_LEFT ){
2222 idxEqTermMask = WO_EQ|WO_IN;
drhc49de5d2007-01-19 01:06:01 +00002223 }else{
dan5236ac12009-08-13 07:09:33 +00002224 idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
drhc49de5d2007-01-19 01:06:01 +00002225 }
2226
danielk197785574e32008-10-06 05:32:18 +00002227 if( pSrc->pIndex ){
drhcdaca552009-08-20 13:45:07 +00002228 /* An INDEXED BY clause specifies a particular index to use */
dan5236ac12009-08-13 07:09:33 +00002229 pIdx = pProbe = pSrc->pIndex;
2230 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2231 eqTermMask = idxEqTermMask;
2232 }else{
drhcdaca552009-08-20 13:45:07 +00002233 /* There is no INDEXED BY clause. Create a fake Index object to
2234 ** represent the primary key */
2235 Index *pFirst; /* Any other index on the table */
2236 memset(&sPk, 0, sizeof(Index));
2237 sPk.nColumn = 1;
2238 sPk.aiColumn = &aiColumnPk;
2239 sPk.aiRowEst = aiRowEstPk;
2240 aiRowEstPk[1] = 1;
2241 sPk.onError = OE_Replace;
2242 sPk.pTable = pSrc->pTab;
2243 pFirst = pSrc->pTab->pIndex;
dan5236ac12009-08-13 07:09:33 +00002244 if( pSrc->notIndexed==0 ){
drhcdaca552009-08-20 13:45:07 +00002245 sPk.pNext = pFirst;
dan5236ac12009-08-13 07:09:33 +00002246 }
drhcdaca552009-08-20 13:45:07 +00002247 /* The aiRowEstPk[0] is an estimate of the total number of rows in the
2248 ** table. Get this information from the ANALYZE information if it is
2249 ** available. If not available, assume the table 1 million rows in size.
2250 */
2251 if( pFirst ){
2252 assert( pFirst->aiRowEst!=0 ); /* Allocated together with pFirst */
2253 aiRowEstPk[0] = pFirst->aiRowEst[0];
2254 }else{
2255 aiRowEstPk[0] = 1000000;
dan5236ac12009-08-13 07:09:33 +00002256 }
drhcdaca552009-08-20 13:45:07 +00002257 pProbe = &sPk;
dan5236ac12009-08-13 07:09:33 +00002258 wsFlagMask = ~(
2259 WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
2260 );
2261 eqTermMask = WO_EQ|WO_IN;
2262 pIdx = 0;
danielk197785574e32008-10-06 05:32:18 +00002263 }
drh51147ba2005-07-23 22:59:55 +00002264
drhcdaca552009-08-20 13:45:07 +00002265 /* Loop over all indices looking for the best one to use
2266 */
dan5236ac12009-08-13 07:09:33 +00002267 for(; pProbe; pIdx=pProbe=pProbe->pNext){
2268 const unsigned int * const aiRowEst = pProbe->aiRowEst;
2269 double cost; /* Cost of using pProbe */
2270 double nRow; /* Estimated number of rows in result set */
2271 int rev; /* True to scan in reverse order */
2272 int wsFlags = 0;
2273 Bitmask used = 0;
2274
2275 /* The following variables are populated based on the properties of
2276 ** scan being evaluated. They are then used to determine the expected
2277 ** cost and number of rows returned.
2278 **
2279 ** nEq:
2280 ** Number of equality terms that can be implemented using the index.
2281 **
2282 ** nInMul:
2283 ** The "in-multiplier". This is an estimate of how many seek operations
2284 ** SQLite must perform on the index in question. For example, if the
2285 ** WHERE clause is:
2286 **
2287 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
2288 **
2289 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
2290 ** set to 9. Given the same schema and either of the following WHERE
2291 ** clauses:
2292 **
2293 ** WHERE a = 1
2294 ** WHERE a >= 2
2295 **
2296 ** nInMul is set to 1.
2297 **
2298 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
2299 ** the sub-select is assumed to return 25 rows for the purposes of
2300 ** determining nInMul.
2301 **
2302 ** bInEst:
2303 ** Set to true if there was at least one "x IN (SELECT ...)" term used
2304 ** in determining the value of nInMul.
2305 **
drhcdaca552009-08-20 13:45:07 +00002306 ** nBound:
drh98cdf622009-08-20 18:14:42 +00002307 ** An estimate on the amount of the table that must be searched. A
2308 ** value of 100 means the entire table is searched. Range constraints
2309 ** might reduce this to a value less than 100 to indicate that only
2310 ** a fraction of the table needs searching. In the absence of
2311 ** sqlite_stat2 ANALYZE data, a single inequality reduces the search
2312 ** space to 1/3rd its original size. So an x>? constraint reduces
2313 ** nBound to 33. Two constraints (x>? AND x<?) reduce nBound to 11.
dan5236ac12009-08-13 07:09:33 +00002314 **
2315 ** bSort:
2316 ** Boolean. True if there is an ORDER BY clause that will require an
2317 ** external sort (i.e. scanning the index being evaluated will not
2318 ** correctly order records).
2319 **
2320 ** bLookup:
2321 ** Boolean. True if for each index entry visited a lookup on the
2322 ** corresponding table b-tree is required. This is always false
2323 ** for the rowid index. For other indexes, it is true unless all the
2324 ** columns of the table used by the SELECT statement are present in
2325 ** the index (such an index is sometimes described as a covering index).
2326 ** For example, given the index on (a, b), the second of the following
2327 ** two queries requires table b-tree lookups, but the first does not.
2328 **
2329 ** SELECT a, b FROM tbl WHERE a = 1;
2330 ** SELECT a, b, c FROM tbl WHERE a = 1;
drhfe05af82005-07-21 03:14:59 +00002331 */
dan5236ac12009-08-13 07:09:33 +00002332 int nEq;
2333 int bInEst = 0;
2334 int nInMul = 1;
drh98cdf622009-08-20 18:14:42 +00002335 int nBound = 100;
dan5236ac12009-08-13 07:09:33 +00002336 int bSort = 0;
2337 int bLookup = 0;
2338
2339 /* Determine the values of nEq and nInMul */
2340 for(nEq=0; nEq<pProbe->nColumn; nEq++){
2341 WhereTerm *pTerm; /* A single term of the WHERE clause */
2342 int j = pProbe->aiColumn[nEq];
2343 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
drhfe05af82005-07-21 03:14:59 +00002344 if( pTerm==0 ) break;
dan5236ac12009-08-13 07:09:33 +00002345 wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
drhb52076c2006-01-23 13:22:09 +00002346 if( pTerm->eOperator & WO_IN ){
drha6110402005-07-28 20:51:19 +00002347 Expr *pExpr = pTerm->pExpr;
drh165be382008-12-05 02:36:33 +00002348 wsFlags |= WHERE_COLUMN_IN;
danielk19776ab3a2e2009-02-19 14:39:25 +00002349 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
dan5236ac12009-08-13 07:09:33 +00002350 nInMul *= 25;
2351 bInEst = 1;
danielk19776ab3a2e2009-02-19 14:39:25 +00002352 }else if( pExpr->x.pList ){
dan5236ac12009-08-13 07:09:33 +00002353 nInMul *= pExpr->x.pList->nExpr + 1;
drhfe05af82005-07-21 03:14:59 +00002354 }
drh46619d62009-04-24 14:51:42 +00002355 }else if( pTerm->eOperator & WO_ISNULL ){
2356 wsFlags |= WHERE_COLUMN_NULL;
drhfe05af82005-07-21 03:14:59 +00002357 }
dan5236ac12009-08-13 07:09:33 +00002358 used |= pTerm->prereqRight;
drhfe05af82005-07-21 03:14:59 +00002359 }
dan5236ac12009-08-13 07:09:33 +00002360
2361 /* Determine the value of nBound. */
2362 if( nEq<pProbe->nColumn ){
2363 int j = pProbe->aiColumn[nEq];
2364 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
2365 WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
2366 WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
dane275dc32009-08-18 16:24:58 +00002367 whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &nBound);
dan5236ac12009-08-13 07:09:33 +00002368 if( pTop ){
2369 wsFlags |= WHERE_TOP_LIMIT;
dan5236ac12009-08-13 07:09:33 +00002370 used |= pTop->prereqRight;
2371 }
2372 if( pBtm ){
2373 wsFlags |= WHERE_BTM_LIMIT;
dan5236ac12009-08-13 07:09:33 +00002374 used |= pBtm->prereqRight;
2375 }
2376 wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
2377 }
2378 }else if( pProbe->onError!=OE_None ){
drh46619d62009-04-24 14:51:42 +00002379 testcase( wsFlags & WHERE_COLUMN_IN );
2380 testcase( wsFlags & WHERE_COLUMN_NULL );
2381 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
2382 wsFlags |= WHERE_UNIQUE;
2383 }
drh943af3c2005-07-29 19:43:58 +00002384 }
drhfe05af82005-07-21 03:14:59 +00002385
dan5236ac12009-08-13 07:09:33 +00002386 /* If there is an ORDER BY clause and the index being considered will
2387 ** naturally scan rows in the required order, set the appropriate flags
2388 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
2389 ** will scan rows in a different order, set the bSort variable. */
drh28c4cf42005-07-27 20:41:43 +00002390 if( pOrderBy ){
drh46619d62009-04-24 14:51:42 +00002391 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0
dan5236ac12009-08-13 07:09:33 +00002392 && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev)
drh46619d62009-04-24 14:51:42 +00002393 ){
dan5236ac12009-08-13 07:09:33 +00002394 wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
2395 wsFlags |= (rev ? WHERE_REVERSE : 0);
drh28c4cf42005-07-27 20:41:43 +00002396 }else{
dan5236ac12009-08-13 07:09:33 +00002397 bSort = 1;
drh51147ba2005-07-23 22:59:55 +00002398 }
drhfe05af82005-07-21 03:14:59 +00002399 }
2400
dan5236ac12009-08-13 07:09:33 +00002401 /* If currently calculating the cost of using an index (not the IPK
2402 ** index), determine if all required column data may be obtained without
2403 ** seeking to entries in the main table (i.e. if the index is a covering
2404 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
2405 ** wsFlags. Otherwise, set the bLookup variable to true. */
2406 if( pIdx && wsFlags ){
drhfe05af82005-07-21 03:14:59 +00002407 Bitmask m = pSrc->colUsed;
2408 int j;
dan5236ac12009-08-13 07:09:33 +00002409 for(j=0; j<pIdx->nColumn; j++){
2410 int x = pIdx->aiColumn[j];
drhfe05af82005-07-21 03:14:59 +00002411 if( x<BMS-1 ){
2412 m &= ~(((Bitmask)1)<<x);
2413 }
2414 }
2415 if( m==0 ){
drh165be382008-12-05 02:36:33 +00002416 wsFlags |= WHERE_IDX_ONLY;
dan5236ac12009-08-13 07:09:33 +00002417 }else{
2418 bLookup = 1;
drhfe05af82005-07-21 03:14:59 +00002419 }
2420 }
2421
drhcdaca552009-08-20 13:45:07 +00002422 /**** Begin adding up the cost of using this index (Needs improvements)
2423 **
2424 ** Estimate the number of rows of output. For an IN operator,
2425 ** do not let the estimate exceed half the rows in the table.
2426 */
dan5236ac12009-08-13 07:09:33 +00002427 nRow = (double)(aiRowEst[nEq] * nInMul);
2428 if( bInEst && nRow*2>aiRowEst[0] ){
2429 nRow = aiRowEst[0]/2;
shanecea72b22009-09-07 04:38:36 +00002430 nInMul = (int)(nRow / aiRowEst[nEq]);
dan5236ac12009-08-13 07:09:33 +00002431 }
drhcdaca552009-08-20 13:45:07 +00002432
2433 /* Assume constant cost to access a row and logarithmic cost to
2434 ** do a binary search. Hence, the initial cost is the number of output
2435 ** rows plus log2(table-size) times the number of binary searches.
2436 */
dan5236ac12009-08-13 07:09:33 +00002437 cost = nRow + nInMul*estLog(aiRowEst[0]);
drhcdaca552009-08-20 13:45:07 +00002438
2439 /* Adjust the number of rows and the cost downward to reflect rows
2440 ** that are excluded by range constraints.
2441 */
drh98cdf622009-08-20 18:14:42 +00002442 nRow = (nRow * (double)nBound) / (double)100;
2443 cost = (cost * (double)nBound) / (double)100;
drhcdaca552009-08-20 13:45:07 +00002444
2445 /* Add in the estimated cost of sorting the result
2446 */
dan5236ac12009-08-13 07:09:33 +00002447 if( bSort ){
2448 cost += cost*estLog(cost);
2449 }
drhcdaca552009-08-20 13:45:07 +00002450
2451 /* If all information can be taken directly from the index, we avoid
2452 ** doing table lookups. This reduces the cost by half. (Not really -
2453 ** this needs to be fixed.)
2454 */
dan5236ac12009-08-13 07:09:33 +00002455 if( pIdx && bLookup==0 ){
drhcdaca552009-08-20 13:45:07 +00002456 cost /= (double)2;
dan5236ac12009-08-13 07:09:33 +00002457 }
drhcdaca552009-08-20 13:45:07 +00002458 /**** Cost of using this index has now been computed ****/
dan5236ac12009-08-13 07:09:33 +00002459
2460 WHERETRACE((
2461 "tbl=%s idx=%s nEq=%d nInMul=%d nBound=%d bSort=%d bLookup=%d"
2462 " wsFlags=%d (nRow=%.2f cost=%.2f)\n",
2463 pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"),
2464 nEq, nInMul, nBound, bSort, bLookup, wsFlags, nRow, cost
2465 ));
2466
drhcdaca552009-08-20 13:45:07 +00002467 /* If this index is the best we have seen so far, then record this
2468 ** index and its cost in the pCost structure.
2469 */
dan5236ac12009-08-13 07:09:33 +00002470 if( (!pIdx || wsFlags) && cost<pCost->rCost ){
drh111a6a72008-12-21 03:51:16 +00002471 pCost->rCost = cost;
2472 pCost->nRow = nRow;
dan5236ac12009-08-13 07:09:33 +00002473 pCost->used = used;
2474 pCost->plan.wsFlags = (wsFlags&wsFlagMask);
drh111a6a72008-12-21 03:51:16 +00002475 pCost->plan.nEq = nEq;
dan5236ac12009-08-13 07:09:33 +00002476 pCost->plan.u.pIdx = pIdx;
drhfe05af82005-07-21 03:14:59 +00002477 }
dan5236ac12009-08-13 07:09:33 +00002478
drhcdaca552009-08-20 13:45:07 +00002479 /* If there was an INDEXED BY clause, then only that one index is
2480 ** considered. */
dan5236ac12009-08-13 07:09:33 +00002481 if( pSrc->pIndex ) break;
drhcdaca552009-08-20 13:45:07 +00002482
2483 /* Reset masks for the next index in the loop */
dan5236ac12009-08-13 07:09:33 +00002484 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2485 eqTermMask = idxEqTermMask;
drhfe05af82005-07-21 03:14:59 +00002486 }
2487
dan5236ac12009-08-13 07:09:33 +00002488 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
2489 ** is set, then reverse the order that the index will be scanned
2490 ** in. This is used for application testing, to help find cases
2491 ** where application behaviour depends on the (undefined) order that
2492 ** SQLite outputs rows in in the absence of an ORDER BY clause. */
2493 if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
2494 pCost->plan.wsFlags |= WHERE_REVERSE;
2495 }
2496
2497 assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
2498 assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
2499 assert( pSrc->pIndex==0
2500 || pCost->plan.u.pIdx==0
2501 || pCost->plan.u.pIdx==pSrc->pIndex
2502 );
2503
2504 WHERETRACE(("best index is: %s\n",
2505 (pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
2506 ));
2507
2508 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
drh111a6a72008-12-21 03:51:16 +00002509 pCost->plan.wsFlags |= eqTermMask;
drhfe05af82005-07-21 03:14:59 +00002510}
2511
danielk19771d461462009-04-21 09:02:45 +00002512/*
2513** Find the query plan for accessing table pSrc->pTab. Write the
2514** best query plan and its cost into the WhereCost object supplied
2515** as the last parameter. This function may calculate the cost of
2516** both real and virtual table scans.
2517*/
2518static void bestIndex(
2519 Parse *pParse, /* The parsing context */
2520 WhereClause *pWC, /* The WHERE clause */
2521 struct SrcList_item *pSrc, /* The FROM clause term to search */
2522 Bitmask notReady, /* Mask of cursors that are not available */
2523 ExprList *pOrderBy, /* The ORDER BY clause */
2524 WhereCost *pCost /* Lowest cost query plan */
2525){
shanee26fa4c2009-06-16 14:15:22 +00002526#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19771d461462009-04-21 09:02:45 +00002527 if( IsVirtual(pSrc->pTab) ){
2528 sqlite3_index_info *p = 0;
2529 bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p);
2530 if( p->needToFreeIdxStr ){
2531 sqlite3_free(p->idxStr);
2532 }
2533 sqlite3DbFree(pParse->db, p);
shanee26fa4c2009-06-16 14:15:22 +00002534 }else
2535#endif
2536 {
danielk19771d461462009-04-21 09:02:45 +00002537 bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
2538 }
2539}
drhb6c29892004-11-22 19:12:19 +00002540
2541/*
drh2ffb1182004-07-19 19:14:01 +00002542** Disable a term in the WHERE clause. Except, do not disable the term
2543** if it controls a LEFT OUTER JOIN and it did not originate in the ON
2544** or USING clause of that join.
2545**
2546** Consider the term t2.z='ok' in the following queries:
2547**
2548** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
2549** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
2550** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
2551**
drh23bf66d2004-12-14 03:34:34 +00002552** The t2.z='ok' is disabled in the in (2) because it originates
drh2ffb1182004-07-19 19:14:01 +00002553** in the ON clause. The term is disabled in (3) because it is not part
2554** of a LEFT OUTER JOIN. In (1), the term is not disabled.
2555**
2556** Disabling a term causes that term to not be tested in the inner loop
drhb6fb62d2005-09-20 08:47:20 +00002557** of the join. Disabling is an optimization. When terms are satisfied
2558** by indices, we disable them to prevent redundant tests in the inner
2559** loop. We would get the correct results if nothing were ever disabled,
2560** but joins might run a little slower. The trick is to disable as much
2561** as we can without disabling too much. If we disabled in (1), we'd get
2562** the wrong answer. See ticket #813.
drh2ffb1182004-07-19 19:14:01 +00002563*/
drh0fcef5e2005-07-19 17:38:22 +00002564static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
2565 if( pTerm
drh165be382008-12-05 02:36:33 +00002566 && ALWAYS((pTerm->wtFlags & TERM_CODED)==0)
drh0fcef5e2005-07-19 17:38:22 +00002567 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
2568 ){
drh165be382008-12-05 02:36:33 +00002569 pTerm->wtFlags |= TERM_CODED;
drh45b1ee42005-08-02 17:48:22 +00002570 if( pTerm->iParent>=0 ){
2571 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
2572 if( (--pOther->nChild)==0 ){
drhed378002005-07-28 23:12:08 +00002573 disableTerm(pLevel, pOther);
2574 }
drh0fcef5e2005-07-19 17:38:22 +00002575 }
drh2ffb1182004-07-19 19:14:01 +00002576 }
2577}
2578
2579/*
dan69f8bb92009-08-13 19:21:16 +00002580** Code an OP_Affinity opcode to apply the column affinity string zAff
2581** to the n registers starting at base.
2582**
2583** Buffer zAff was allocated using sqlite3DbMalloc(). It is the
2584** responsibility of this function to arrange for it to be eventually
2585** freed using sqlite3DbFree().
drh94a11212004-09-25 13:12:14 +00002586*/
dan69f8bb92009-08-13 19:21:16 +00002587static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
2588 Vdbe *v = pParse->pVdbe;
2589 assert( v!=0 );
2590 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
2591 sqlite3VdbeChangeP4(v, -1, zAff, P4_DYNAMIC);
2592 sqlite3ExprCacheAffinityChange(pParse, base, n);
drh94a11212004-09-25 13:12:14 +00002593}
2594
drhe8b97272005-07-19 22:22:12 +00002595
2596/*
drh51147ba2005-07-23 22:59:55 +00002597** Generate code for a single equality term of the WHERE clause. An equality
2598** term can be either X=expr or X IN (...). pTerm is the term to be
2599** coded.
2600**
drh1db639c2008-01-17 02:36:28 +00002601** The current value for the constraint is left in register iReg.
drh51147ba2005-07-23 22:59:55 +00002602**
2603** For a constraint of the form X=expr, the expression is evaluated and its
2604** result is left on the stack. For constraints of the form X IN (...)
2605** this routine sets up a loop that will iterate over all values of X.
drh94a11212004-09-25 13:12:14 +00002606*/
drh678ccce2008-03-31 18:19:54 +00002607static int codeEqualityTerm(
drh94a11212004-09-25 13:12:14 +00002608 Parse *pParse, /* The parsing context */
drhe23399f2005-07-22 00:31:39 +00002609 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
drh1db639c2008-01-17 02:36:28 +00002610 WhereLevel *pLevel, /* When level of the FROM clause we are working on */
drh678ccce2008-03-31 18:19:54 +00002611 int iTarget /* Attempt to leave results in this register */
drh94a11212004-09-25 13:12:14 +00002612){
drh0fcef5e2005-07-19 17:38:22 +00002613 Expr *pX = pTerm->pExpr;
drh50b39962006-10-28 00:28:09 +00002614 Vdbe *v = pParse->pVdbe;
drh678ccce2008-03-31 18:19:54 +00002615 int iReg; /* Register holding results */
drh1db639c2008-01-17 02:36:28 +00002616
danielk19772d605492008-10-01 08:43:03 +00002617 assert( iTarget>0 );
drh50b39962006-10-28 00:28:09 +00002618 if( pX->op==TK_EQ ){
drh678ccce2008-03-31 18:19:54 +00002619 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
drh50b39962006-10-28 00:28:09 +00002620 }else if( pX->op==TK_ISNULL ){
drh678ccce2008-03-31 18:19:54 +00002621 iReg = iTarget;
drh1db639c2008-01-17 02:36:28 +00002622 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
danielk1977b3bce662005-01-29 08:32:43 +00002623#ifndef SQLITE_OMIT_SUBQUERY
drh94a11212004-09-25 13:12:14 +00002624 }else{
danielk19779a96b662007-11-29 17:05:18 +00002625 int eType;
danielk1977b3bce662005-01-29 08:32:43 +00002626 int iTab;
drh72e8fa42007-03-28 14:30:06 +00002627 struct InLoop *pIn;
danielk1977b3bce662005-01-29 08:32:43 +00002628
drh50b39962006-10-28 00:28:09 +00002629 assert( pX->op==TK_IN );
drh678ccce2008-03-31 18:19:54 +00002630 iReg = iTarget;
danielk19770cdc0222008-06-26 18:04:03 +00002631 eType = sqlite3FindInIndex(pParse, pX, 0);
danielk1977b3bce662005-01-29 08:32:43 +00002632 iTab = pX->iTable;
drh66a51672008-01-03 00:01:23 +00002633 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
drh111a6a72008-12-21 03:51:16 +00002634 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
2635 if( pLevel->u.in.nIn==0 ){
drhb3190c12008-12-08 21:37:14 +00002636 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
drh72e8fa42007-03-28 14:30:06 +00002637 }
drh111a6a72008-12-21 03:51:16 +00002638 pLevel->u.in.nIn++;
2639 pLevel->u.in.aInLoop =
2640 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
2641 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
2642 pIn = pLevel->u.in.aInLoop;
drh72e8fa42007-03-28 14:30:06 +00002643 if( pIn ){
drh111a6a72008-12-21 03:51:16 +00002644 pIn += pLevel->u.in.nIn - 1;
drh72e8fa42007-03-28 14:30:06 +00002645 pIn->iCur = iTab;
drh1db639c2008-01-17 02:36:28 +00002646 if( eType==IN_INDEX_ROWID ){
drhb3190c12008-12-08 21:37:14 +00002647 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
drh1db639c2008-01-17 02:36:28 +00002648 }else{
drhb3190c12008-12-08 21:37:14 +00002649 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
drh1db639c2008-01-17 02:36:28 +00002650 }
2651 sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
drha6110402005-07-28 20:51:19 +00002652 }else{
drh111a6a72008-12-21 03:51:16 +00002653 pLevel->u.in.nIn = 0;
drhe23399f2005-07-22 00:31:39 +00002654 }
danielk1977b3bce662005-01-29 08:32:43 +00002655#endif
drh94a11212004-09-25 13:12:14 +00002656 }
drh0fcef5e2005-07-19 17:38:22 +00002657 disableTerm(pLevel, pTerm);
drh678ccce2008-03-31 18:19:54 +00002658 return iReg;
drh94a11212004-09-25 13:12:14 +00002659}
2660
drh51147ba2005-07-23 22:59:55 +00002661/*
2662** Generate code that will evaluate all == and IN constraints for an
2663** index. The values for all constraints are left on the stack.
2664**
2665** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
2666** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
2667** The index has as many as three equality constraints, but in this
2668** example, the third "c" value is an inequality. So only two
2669** constraints are coded. This routine will generate code to evaluate
drh6df2acd2008-12-28 16:55:25 +00002670** a==5 and b IN (1,2,3). The current values for a and b will be stored
2671** in consecutive registers and the index of the first register is returned.
drh51147ba2005-07-23 22:59:55 +00002672**
2673** In the example above nEq==2. But this subroutine works for any value
2674** of nEq including 0. If nEq==0, this routine is nearly a no-op.
2675** The only thing it does is allocate the pLevel->iMem memory cell.
2676**
drh700a2262008-12-17 19:22:15 +00002677** This routine always allocates at least one memory cell and returns
2678** the index of that memory cell. The code that
2679** calls this routine will use that memory cell to store the termination
drh51147ba2005-07-23 22:59:55 +00002680** key value of the loop. If one or more IN operators appear, then
2681** this routine allocates an additional nEq memory cells for internal
2682** use.
dan69f8bb92009-08-13 19:21:16 +00002683**
2684** Before returning, *pzAff is set to point to a buffer containing a
2685** copy of the column affinity string of the index allocated using
2686** sqlite3DbMalloc(). Except, entries in the copy of the string associated
2687** with equality constraints that use NONE affinity are set to
2688** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
2689**
2690** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
2691** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
2692**
2693** In the example above, the index on t1(a) has TEXT affinity. But since
2694** the right hand side of the equality constraint (t2.b) has NONE affinity,
2695** no conversion should be attempted before using a t2.b value as part of
2696** a key to search the index. Hence the first byte in the returned affinity
2697** string in this example would be set to SQLITE_AFF_NONE.
drh51147ba2005-07-23 22:59:55 +00002698*/
drh1db639c2008-01-17 02:36:28 +00002699static int codeAllEqualityTerms(
drh51147ba2005-07-23 22:59:55 +00002700 Parse *pParse, /* Parsing context */
2701 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
2702 WhereClause *pWC, /* The WHERE clause */
drh1db639c2008-01-17 02:36:28 +00002703 Bitmask notReady, /* Which parts of FROM have not yet been coded */
dan69f8bb92009-08-13 19:21:16 +00002704 int nExtraReg, /* Number of extra registers to allocate */
2705 char **pzAff /* OUT: Set to point to affinity string */
drh51147ba2005-07-23 22:59:55 +00002706){
drh111a6a72008-12-21 03:51:16 +00002707 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */
2708 Vdbe *v = pParse->pVdbe; /* The vm under construction */
2709 Index *pIdx; /* The index being used for this loop */
drh51147ba2005-07-23 22:59:55 +00002710 int iCur = pLevel->iTabCur; /* The cursor of the table */
2711 WhereTerm *pTerm; /* A single constraint term */
2712 int j; /* Loop counter */
drh1db639c2008-01-17 02:36:28 +00002713 int regBase; /* Base register */
drh6df2acd2008-12-28 16:55:25 +00002714 int nReg; /* Number of registers to allocate */
dan69f8bb92009-08-13 19:21:16 +00002715 char *zAff; /* Affinity string to return */
drh51147ba2005-07-23 22:59:55 +00002716
drh111a6a72008-12-21 03:51:16 +00002717 /* This module is only called on query plans that use an index. */
2718 assert( pLevel->plan.wsFlags & WHERE_INDEXED );
2719 pIdx = pLevel->plan.u.pIdx;
2720
drh51147ba2005-07-23 22:59:55 +00002721 /* Figure out how many memory cells we will need then allocate them.
drh51147ba2005-07-23 22:59:55 +00002722 */
drh700a2262008-12-17 19:22:15 +00002723 regBase = pParse->nMem + 1;
drh6df2acd2008-12-28 16:55:25 +00002724 nReg = pLevel->plan.nEq + nExtraReg;
2725 pParse->nMem += nReg;
drh51147ba2005-07-23 22:59:55 +00002726
dan69f8bb92009-08-13 19:21:16 +00002727 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
2728 if( !zAff ){
2729 pParse->db->mallocFailed = 1;
2730 }
2731
drh51147ba2005-07-23 22:59:55 +00002732 /* Evaluate the equality constraints
2733 */
drhc49de5d2007-01-19 01:06:01 +00002734 assert( pIdx->nColumn>=nEq );
2735 for(j=0; j<nEq; j++){
drh678ccce2008-03-31 18:19:54 +00002736 int r1;
drh51147ba2005-07-23 22:59:55 +00002737 int k = pIdx->aiColumn[j];
drh111a6a72008-12-21 03:51:16 +00002738 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
drh34004ce2008-07-11 16:15:17 +00002739 if( NEVER(pTerm==0) ) break;
drh165be382008-12-05 02:36:33 +00002740 assert( (pTerm->wtFlags & TERM_CODED)==0 );
drh678ccce2008-03-31 18:19:54 +00002741 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
2742 if( r1!=regBase+j ){
drh6df2acd2008-12-28 16:55:25 +00002743 if( nReg==1 ){
2744 sqlite3ReleaseTempReg(pParse, regBase);
2745 regBase = r1;
2746 }else{
2747 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
2748 }
drh678ccce2008-03-31 18:19:54 +00002749 }
drh981642f2008-04-19 14:40:43 +00002750 testcase( pTerm->eOperator & WO_ISNULL );
2751 testcase( pTerm->eOperator & WO_IN );
drh72e8fa42007-03-28 14:30:06 +00002752 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
drhb3190c12008-12-08 21:37:14 +00002753 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
dan69f8bb92009-08-13 19:21:16 +00002754 if( zAff
2755 && sqlite3CompareAffinity(pTerm->pExpr->pRight, zAff[j])==SQLITE_AFF_NONE
2756 ){
2757 zAff[j] = SQLITE_AFF_NONE;
2758 }
drh51147ba2005-07-23 22:59:55 +00002759 }
2760 }
dan69f8bb92009-08-13 19:21:16 +00002761 *pzAff = zAff;
drh1db639c2008-01-17 02:36:28 +00002762 return regBase;
drh51147ba2005-07-23 22:59:55 +00002763}
2764
drh111a6a72008-12-21 03:51:16 +00002765/*
2766** Generate code for the start of the iLevel-th loop in the WHERE clause
2767** implementation described by pWInfo.
2768*/
2769static Bitmask codeOneLoopStart(
2770 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
2771 int iLevel, /* Which level of pWInfo->a[] should be coded */
drh336a5302009-04-24 15:46:21 +00002772 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */
drh111a6a72008-12-21 03:51:16 +00002773 Bitmask notReady /* Which tables are currently available */
2774){
2775 int j, k; /* Loop counters */
2776 int iCur; /* The VDBE cursor for the table */
2777 int addrNxt; /* Where to jump to continue with the next IN case */
2778 int omitTable; /* True if we use the index only */
2779 int bRev; /* True if we need to scan in reverse order */
2780 WhereLevel *pLevel; /* The where level to be coded */
2781 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
2782 WhereTerm *pTerm; /* A WHERE clause term */
2783 Parse *pParse; /* Parsing context */
2784 Vdbe *v; /* The prepared stmt under constructions */
2785 struct SrcList_item *pTabItem; /* FROM clause term being coded */
drh23d04d52008-12-23 23:56:22 +00002786 int addrBrk; /* Jump here to break out of the loop */
2787 int addrCont; /* Jump here to continue with next cycle */
drh61495262009-04-22 15:32:59 +00002788 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
2789 int iReleaseReg = 0; /* Temp register to free before returning */
drh111a6a72008-12-21 03:51:16 +00002790
2791 pParse = pWInfo->pParse;
2792 v = pParse->pVdbe;
2793 pWC = pWInfo->pWC;
2794 pLevel = &pWInfo->a[iLevel];
2795 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
2796 iCur = pTabItem->iCursor;
2797 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
danielk19771d461462009-04-21 09:02:45 +00002798 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
drh336a5302009-04-24 15:46:21 +00002799 && (wctrlFlags & WHERE_FORCE_TABLE)==0;
drh111a6a72008-12-21 03:51:16 +00002800
2801 /* Create labels for the "break" and "continue" instructions
2802 ** for the current loop. Jump to addrBrk to break out of a loop.
2803 ** Jump to cont to go immediately to the next iteration of the
2804 ** loop.
2805 **
2806 ** When there is an IN operator, we also have a "addrNxt" label that
2807 ** means to continue with the next IN value combination. When
2808 ** there are no IN operators in the constraints, the "addrNxt" label
2809 ** is the same as "addrBrk".
2810 */
2811 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
2812 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
2813
2814 /* If this is the right table of a LEFT OUTER JOIN, allocate and
2815 ** initialize a memory cell that records if this table matches any
2816 ** row of the left table of the join.
2817 */
2818 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
2819 pLevel->iLeftJoin = ++pParse->nMem;
2820 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
2821 VdbeComment((v, "init LEFT JOIN no-match flag"));
2822 }
2823
2824#ifndef SQLITE_OMIT_VIRTUALTABLE
2825 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
2826 /* Case 0: The table is a virtual-table. Use the VFilter and VNext
2827 ** to access the data.
2828 */
2829 int iReg; /* P3 Value for OP_VFilter */
2830 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
2831 int nConstraint = pVtabIdx->nConstraint;
2832 struct sqlite3_index_constraint_usage *aUsage =
2833 pVtabIdx->aConstraintUsage;
2834 const struct sqlite3_index_constraint *aConstraint =
2835 pVtabIdx->aConstraint;
2836
2837 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
drh111a6a72008-12-21 03:51:16 +00002838 for(j=1; j<=nConstraint; j++){
2839 for(k=0; k<nConstraint; k++){
2840 if( aUsage[k].argvIndex==j ){
2841 int iTerm = aConstraint[k].iTermOffset;
drh111a6a72008-12-21 03:51:16 +00002842 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
2843 break;
2844 }
2845 }
2846 if( k==nConstraint ) break;
2847 }
drh111a6a72008-12-21 03:51:16 +00002848 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
2849 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
2850 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
2851 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
drh111a6a72008-12-21 03:51:16 +00002852 pVtabIdx->needToFreeIdxStr = 0;
2853 for(j=0; j<nConstraint; j++){
2854 if( aUsage[j].omit ){
2855 int iTerm = aConstraint[j].iTermOffset;
2856 disableTerm(pLevel, &pWC->a[iTerm]);
2857 }
2858 }
2859 pLevel->op = OP_VNext;
2860 pLevel->p1 = iCur;
2861 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
drh23d04d52008-12-23 23:56:22 +00002862 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
drh111a6a72008-12-21 03:51:16 +00002863 }else
2864#endif /* SQLITE_OMIT_VIRTUALTABLE */
2865
2866 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
2867 /* Case 1: We can directly reference a single row using an
2868 ** equality comparison against the ROWID field. Or
2869 ** we reference multiple rows using a "rowid IN (...)"
2870 ** construct.
2871 */
danielk19771d461462009-04-21 09:02:45 +00002872 iReleaseReg = sqlite3GetTempReg(pParse);
drh111a6a72008-12-21 03:51:16 +00002873 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
2874 assert( pTerm!=0 );
2875 assert( pTerm->pExpr!=0 );
2876 assert( pTerm->leftCursor==iCur );
2877 assert( omitTable==0 );
danielk19771d461462009-04-21 09:02:45 +00002878 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
drh111a6a72008-12-21 03:51:16 +00002879 addrNxt = pLevel->addrNxt;
danielk19771d461462009-04-21 09:02:45 +00002880 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
2881 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
drhceea3322009-04-23 13:22:42 +00002882 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
drh111a6a72008-12-21 03:51:16 +00002883 VdbeComment((v, "pk"));
2884 pLevel->op = OP_Noop;
2885 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
2886 /* Case 2: We have an inequality comparison against the ROWID field.
2887 */
2888 int testOp = OP_Noop;
2889 int start;
2890 int memEndValue = 0;
2891 WhereTerm *pStart, *pEnd;
2892
2893 assert( omitTable==0 );
2894 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
2895 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
2896 if( bRev ){
2897 pTerm = pStart;
2898 pStart = pEnd;
2899 pEnd = pTerm;
2900 }
2901 if( pStart ){
2902 Expr *pX; /* The expression that defines the start bound */
2903 int r1, rTemp; /* Registers for holding the start boundary */
2904
2905 /* The following constant maps TK_xx codes into corresponding
2906 ** seek opcodes. It depends on a particular ordering of TK_xx
2907 */
2908 const u8 aMoveOp[] = {
2909 /* TK_GT */ OP_SeekGt,
2910 /* TK_LE */ OP_SeekLe,
2911 /* TK_LT */ OP_SeekLt,
2912 /* TK_GE */ OP_SeekGe
2913 };
2914 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
2915 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
2916 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
2917
2918 pX = pStart->pExpr;
2919 assert( pX!=0 );
2920 assert( pStart->leftCursor==iCur );
2921 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
2922 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
2923 VdbeComment((v, "pk"));
2924 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
2925 sqlite3ReleaseTempReg(pParse, rTemp);
2926 disableTerm(pLevel, pStart);
2927 }else{
2928 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
2929 }
2930 if( pEnd ){
2931 Expr *pX;
2932 pX = pEnd->pExpr;
2933 assert( pX!=0 );
2934 assert( pEnd->leftCursor==iCur );
2935 memEndValue = ++pParse->nMem;
2936 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
2937 if( pX->op==TK_LT || pX->op==TK_GT ){
2938 testOp = bRev ? OP_Le : OP_Ge;
2939 }else{
2940 testOp = bRev ? OP_Lt : OP_Gt;
2941 }
2942 disableTerm(pLevel, pEnd);
2943 }
2944 start = sqlite3VdbeCurrentAddr(v);
2945 pLevel->op = bRev ? OP_Prev : OP_Next;
2946 pLevel->p1 = iCur;
2947 pLevel->p2 = start;
drhca8c4662008-12-28 20:47:02 +00002948 pLevel->p5 = (pStart==0 && pEnd==0) ?1:0;
danielk19771d461462009-04-21 09:02:45 +00002949 if( testOp!=OP_Noop ){
2950 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
2951 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
drhceea3322009-04-23 13:22:42 +00002952 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danielk19771d461462009-04-21 09:02:45 +00002953 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
2954 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
drh111a6a72008-12-21 03:51:16 +00002955 }
2956 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
2957 /* Case 3: A scan using an index.
2958 **
2959 ** The WHERE clause may contain zero or more equality
2960 ** terms ("==" or "IN" operators) that refer to the N
2961 ** left-most columns of the index. It may also contain
2962 ** inequality constraints (>, <, >= or <=) on the indexed
2963 ** column that immediately follows the N equalities. Only
2964 ** the right-most column can be an inequality - the rest must
2965 ** use the "==" and "IN" operators. For example, if the
2966 ** index is on (x,y,z), then the following clauses are all
2967 ** optimized:
2968 **
2969 ** x=5
2970 ** x=5 AND y=10
2971 ** x=5 AND y<10
2972 ** x=5 AND y>5 AND y<10
2973 ** x=5 AND y=5 AND z<=10
2974 **
2975 ** The z<10 term of the following cannot be used, only
2976 ** the x=5 term:
2977 **
2978 ** x=5 AND z<10
2979 **
2980 ** N may be zero if there are inequality constraints.
2981 ** If there are no inequality constraints, then N is at
2982 ** least one.
2983 **
2984 ** This case is also used when there are no WHERE clause
2985 ** constraints but an index is selected anyway, in order
2986 ** to force the output order to conform to an ORDER BY.
2987 */
2988 int aStartOp[] = {
2989 0,
2990 0,
2991 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
2992 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
2993 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */
2994 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */
2995 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */
2996 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */
2997 };
2998 int aEndOp[] = {
2999 OP_Noop, /* 0: (!end_constraints) */
3000 OP_IdxGE, /* 1: (end_constraints && !bRev) */
3001 OP_IdxLT /* 2: (end_constraints && bRev) */
3002 };
3003 int nEq = pLevel->plan.nEq;
3004 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
3005 int regBase; /* Base register holding constraint values */
3006 int r1; /* Temp register */
3007 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
3008 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
3009 int startEq; /* True if range start uses ==, >= or <= */
3010 int endEq; /* True if range end uses ==, >= or <= */
3011 int start_constraints; /* Start of range is constrained */
3012 int nConstraint; /* Number of constraint terms */
3013 Index *pIdx; /* The index we will be using */
3014 int iIdxCur; /* The VDBE cursor for the index */
drh6df2acd2008-12-28 16:55:25 +00003015 int nExtraReg = 0; /* Number of extra registers needed */
3016 int op; /* Instruction opcode */
dan69f8bb92009-08-13 19:21:16 +00003017 char *zAff;
drh111a6a72008-12-21 03:51:16 +00003018
3019 pIdx = pLevel->plan.u.pIdx;
3020 iIdxCur = pLevel->iIdxCur;
3021 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
3022
drh111a6a72008-12-21 03:51:16 +00003023 /* If this loop satisfies a sort order (pOrderBy) request that
3024 ** was passed to this function to implement a "SELECT min(x) ..."
3025 ** query, then the caller will only allow the loop to run for
3026 ** a single iteration. This means that the first row returned
3027 ** should not have a NULL value stored in 'x'. If column 'x' is
3028 ** the first one after the nEq equality constraints in the index,
3029 ** this requires some special handling.
3030 */
3031 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
3032 && (pLevel->plan.wsFlags&WHERE_ORDERBY)
3033 && (pIdx->nColumn>nEq)
3034 ){
3035 /* assert( pOrderBy->nExpr==1 ); */
3036 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
3037 isMinQuery = 1;
drh6df2acd2008-12-28 16:55:25 +00003038 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003039 }
3040
3041 /* Find any inequality constraint terms for the start and end
3042 ** of the range.
3043 */
3044 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
3045 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
drh6df2acd2008-12-28 16:55:25 +00003046 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003047 }
3048 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
3049 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
drh6df2acd2008-12-28 16:55:25 +00003050 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003051 }
3052
drh6df2acd2008-12-28 16:55:25 +00003053 /* Generate code to evaluate all constraint terms using == or IN
3054 ** and store the values of those terms in an array of registers
3055 ** starting at regBase.
3056 */
dan69f8bb92009-08-13 19:21:16 +00003057 regBase = codeAllEqualityTerms(
3058 pParse, pLevel, pWC, notReady, nExtraReg, &zAff
3059 );
drh6df2acd2008-12-28 16:55:25 +00003060 addrNxt = pLevel->addrNxt;
3061
drh111a6a72008-12-21 03:51:16 +00003062 /* If we are doing a reverse order scan on an ascending index, or
3063 ** a forward order scan on a descending index, interchange the
3064 ** start and end terms (pRangeStart and pRangeEnd).
3065 */
3066 if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
3067 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
3068 }
3069
3070 testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
3071 testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
3072 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
3073 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
3074 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
3075 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
3076 start_constraints = pRangeStart || nEq>0;
3077
3078 /* Seek the index cursor to the start of the range. */
3079 nConstraint = nEq;
3080 if( pRangeStart ){
dan69f8bb92009-08-13 19:21:16 +00003081 Expr *pRight = pRangeStart->pExpr->pRight;
3082 sqlite3ExprCode(pParse, pRight, regBase+nEq);
drh111a6a72008-12-21 03:51:16 +00003083 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
dan69f8bb92009-08-13 19:21:16 +00003084 if( zAff
3085 && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE
3086 ){
3087 /* Since the comparison is to be performed with no conversions applied
3088 ** to the operands, set the affinity to apply to pRight to
3089 ** SQLITE_AFF_NONE. */
3090 zAff[nConstraint] = SQLITE_AFF_NONE;
3091 }
drh111a6a72008-12-21 03:51:16 +00003092 nConstraint++;
3093 }else if( isMinQuery ){
3094 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
3095 nConstraint++;
3096 startEq = 0;
3097 start_constraints = 1;
3098 }
dan69f8bb92009-08-13 19:21:16 +00003099 codeApplyAffinity(pParse, regBase, nConstraint, zAff);
drh111a6a72008-12-21 03:51:16 +00003100 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
3101 assert( op!=0 );
3102 testcase( op==OP_Rewind );
3103 testcase( op==OP_Last );
3104 testcase( op==OP_SeekGt );
3105 testcase( op==OP_SeekGe );
3106 testcase( op==OP_SeekLe );
3107 testcase( op==OP_SeekLt );
3108 sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase,
3109 SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
3110
3111 /* Load the value for the inequality constraint at the end of the
3112 ** range (if any).
3113 */
3114 nConstraint = nEq;
3115 if( pRangeEnd ){
dan69f8bb92009-08-13 19:21:16 +00003116 Expr *pRight = pRangeEnd->pExpr->pRight;
drhceea3322009-04-23 13:22:42 +00003117 sqlite3ExprCacheRemove(pParse, regBase+nEq);
dan69f8bb92009-08-13 19:21:16 +00003118 sqlite3ExprCode(pParse, pRight, regBase+nEq);
drh111a6a72008-12-21 03:51:16 +00003119 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
dan69f8bb92009-08-13 19:21:16 +00003120 zAff = sqlite3DbStrDup(pParse->db, zAff);
3121 if( zAff
3122 && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE
3123 ){
3124 /* Since the comparison is to be performed with no conversions applied
3125 ** to the operands, set the affinity to apply to pRight to
3126 ** SQLITE_AFF_NONE. */
3127 zAff[nConstraint] = SQLITE_AFF_NONE;
3128 }
3129 codeApplyAffinity(pParse, regBase, nEq+1, zAff);
drh111a6a72008-12-21 03:51:16 +00003130 nConstraint++;
3131 }
3132
3133 /* Top of the loop body */
3134 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
3135
3136 /* Check if the index cursor is past the end of the range. */
3137 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
3138 testcase( op==OP_Noop );
3139 testcase( op==OP_IdxGE );
3140 testcase( op==OP_IdxLT );
drh6df2acd2008-12-28 16:55:25 +00003141 if( op!=OP_Noop ){
3142 sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase,
3143 SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
3144 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
3145 }
drh111a6a72008-12-21 03:51:16 +00003146
3147 /* If there are inequality constraints, check that the value
3148 ** of the table column that the inequality contrains is not NULL.
3149 ** If it is, jump to the next iteration of the loop.
3150 */
3151 r1 = sqlite3GetTempReg(pParse);
3152 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
3153 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
3154 if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
3155 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
3156 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
3157 }
danielk19771d461462009-04-21 09:02:45 +00003158 sqlite3ReleaseTempReg(pParse, r1);
drh111a6a72008-12-21 03:51:16 +00003159
3160 /* Seek the table cursor, if required */
drh23d04d52008-12-23 23:56:22 +00003161 disableTerm(pLevel, pRangeStart);
3162 disableTerm(pLevel, pRangeEnd);
danielk19771d461462009-04-21 09:02:45 +00003163 if( !omitTable ){
3164 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
3165 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
drhceea3322009-04-23 13:22:42 +00003166 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danielk19771d461462009-04-21 09:02:45 +00003167 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
drh111a6a72008-12-21 03:51:16 +00003168 }
drh111a6a72008-12-21 03:51:16 +00003169
3170 /* Record the instruction used to terminate the loop. Disable
3171 ** WHERE clause terms made redundant by the index range scan.
3172 */
3173 pLevel->op = bRev ? OP_Prev : OP_Next;
3174 pLevel->p1 = iIdxCur;
drhdd5f5a62008-12-23 13:35:23 +00003175 }else
3176
drh23d04d52008-12-23 23:56:22 +00003177#ifndef SQLITE_OMIT_OR_OPTIMIZATION
drhdd5f5a62008-12-23 13:35:23 +00003178 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
drh111a6a72008-12-21 03:51:16 +00003179 /* Case 4: Two or more separately indexed terms connected by OR
3180 **
3181 ** Example:
3182 **
3183 ** CREATE TABLE t1(a,b,c,d);
3184 ** CREATE INDEX i1 ON t1(a);
3185 ** CREATE INDEX i2 ON t1(b);
3186 ** CREATE INDEX i3 ON t1(c);
3187 **
3188 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
3189 **
3190 ** In the example, there are three indexed terms connected by OR.
danielk19771d461462009-04-21 09:02:45 +00003191 ** The top of the loop looks like this:
drh111a6a72008-12-21 03:51:16 +00003192 **
drh1b26c7c2009-04-22 02:15:47 +00003193 ** Null 1 # Zero the rowset in reg 1
drh111a6a72008-12-21 03:51:16 +00003194 **
danielk19771d461462009-04-21 09:02:45 +00003195 ** Then, for each indexed term, the following. The arguments to
drh1b26c7c2009-04-22 02:15:47 +00003196 ** RowSetTest are such that the rowid of the current row is inserted
3197 ** into the RowSet. If it is already present, control skips the
danielk19771d461462009-04-21 09:02:45 +00003198 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
drh111a6a72008-12-21 03:51:16 +00003199 **
danielk19771d461462009-04-21 09:02:45 +00003200 ** sqlite3WhereBegin(<term>)
drh1b26c7c2009-04-22 02:15:47 +00003201 ** RowSetTest # Insert rowid into rowset
danielk19771d461462009-04-21 09:02:45 +00003202 ** Gosub 2 A
3203 ** sqlite3WhereEnd()
3204 **
3205 ** Following the above, code to terminate the loop. Label A, the target
3206 ** of the Gosub above, jumps to the instruction right after the Goto.
3207 **
drh1b26c7c2009-04-22 02:15:47 +00003208 ** Null 1 # Zero the rowset in reg 1
danielk19771d461462009-04-21 09:02:45 +00003209 ** Goto B # The loop is finished.
3210 **
3211 ** A: <loop body> # Return data, whatever.
3212 **
3213 ** Return 2 # Jump back to the Gosub
3214 **
3215 ** B: <after the loop>
3216 **
drh111a6a72008-12-21 03:51:16 +00003217 */
drh111a6a72008-12-21 03:51:16 +00003218 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
danielk19771d461462009-04-21 09:02:45 +00003219 WhereTerm *pFinal; /* Final subterm within the OR-clause. */
drhdd5f5a62008-12-23 13:35:23 +00003220 SrcList oneTab; /* Shortened table list */
danielk19771d461462009-04-21 09:02:45 +00003221
3222 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
shane85095702009-06-15 16:27:08 +00003223 int regRowset = 0; /* Register for RowSet object */
3224 int regRowid = 0; /* Register holding rowid */
danielk19771d461462009-04-21 09:02:45 +00003225 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
3226 int iRetInit; /* Address of regReturn init */
3227 int ii;
drh111a6a72008-12-21 03:51:16 +00003228
3229 pTerm = pLevel->plan.u.pTerm;
3230 assert( pTerm!=0 );
3231 assert( pTerm->eOperator==WO_OR );
3232 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
3233 pOrWc = &pTerm->u.pOrInfo->wc;
danielk19771d461462009-04-21 09:02:45 +00003234 pFinal = &pOrWc->a[pOrWc->nTerm-1];
drh23d04d52008-12-23 23:56:22 +00003235
danielk19771d461462009-04-21 09:02:45 +00003236 /* Set up a SrcList containing just the table being scanned by this loop. */
drhdd5f5a62008-12-23 13:35:23 +00003237 oneTab.nSrc = 1;
3238 oneTab.nAlloc = 1;
3239 oneTab.a[0] = *pTabItem;
danielk19771d461462009-04-21 09:02:45 +00003240
drh1b26c7c2009-04-22 02:15:47 +00003241 /* Initialize the rowset register to contain NULL. An SQL NULL is
3242 ** equivalent to an empty rowset.
danielk19771d461462009-04-21 09:02:45 +00003243 **
3244 ** Also initialize regReturn to contain the address of the instruction
3245 ** immediately following the OP_Return at the bottom of the loop. This
3246 ** is required in a few obscure LEFT JOIN cases where control jumps
3247 ** over the top of the loop into the body of it. In this case the
3248 ** correct response for the end-of-loop code (the OP_Return) is to
3249 ** fall through to the next instruction, just as an OP_Next does if
3250 ** called on an uninitialized cursor.
3251 */
drh336a5302009-04-24 15:46:21 +00003252 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3253 regRowset = ++pParse->nMem;
3254 regRowid = ++pParse->nMem;
3255 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
3256 }
danielk19771d461462009-04-21 09:02:45 +00003257 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
3258
danielk19771d461462009-04-21 09:02:45 +00003259 for(ii=0; ii<pOrWc->nTerm; ii++){
3260 WhereTerm *pOrTerm = &pOrWc->a[ii];
3261 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
3262 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
danielk19771d461462009-04-21 09:02:45 +00003263 /* Loop through table entries that match term pOrTerm. */
drh336a5302009-04-24 15:46:21 +00003264 pSubWInfo = sqlite3WhereBegin(pParse, &oneTab, pOrTerm->pExpr, 0,
3265 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | WHERE_FORCE_TABLE);
danielk19771d461462009-04-21 09:02:45 +00003266 if( pSubWInfo ){
drh336a5302009-04-24 15:46:21 +00003267 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3268 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
3269 int r;
3270 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
3271 regRowid, 0);
shane85095702009-06-15 16:27:08 +00003272 sqlite3VdbeAddOp4(v, OP_RowSetTest, regRowset,
shane60a4b532009-05-06 18:57:09 +00003273 sqlite3VdbeCurrentAddr(v)+2,
3274 r, SQLITE_INT_TO_PTR(iSet), P4_INT32);
drh336a5302009-04-24 15:46:21 +00003275 }
danielk19771d461462009-04-21 09:02:45 +00003276 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
3277
3278 /* Finish the loop through table entries that match term pOrTerm. */
3279 sqlite3WhereEnd(pSubWInfo);
3280 }
drhdd5f5a62008-12-23 13:35:23 +00003281 }
3282 }
danielk19771d461462009-04-21 09:02:45 +00003283 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
drh336a5302009-04-24 15:46:21 +00003284 /* sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); */
danielk19771d461462009-04-21 09:02:45 +00003285 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
3286 sqlite3VdbeResolveLabel(v, iLoopBody);
3287
3288 pLevel->op = OP_Return;
3289 pLevel->p1 = regReturn;
drh23d04d52008-12-23 23:56:22 +00003290 disableTerm(pLevel, pTerm);
drhdd5f5a62008-12-23 13:35:23 +00003291 }else
drh23d04d52008-12-23 23:56:22 +00003292#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
drhdd5f5a62008-12-23 13:35:23 +00003293
3294 {
drh111a6a72008-12-21 03:51:16 +00003295 /* Case 5: There is no usable index. We must do a complete
3296 ** scan of the entire table.
3297 */
drh699b3d42009-02-23 16:52:07 +00003298 static const u8 aStep[] = { OP_Next, OP_Prev };
3299 static const u8 aStart[] = { OP_Rewind, OP_Last };
3300 assert( bRev==0 || bRev==1 );
drh111a6a72008-12-21 03:51:16 +00003301 assert( omitTable==0 );
drh699b3d42009-02-23 16:52:07 +00003302 pLevel->op = aStep[bRev];
drh111a6a72008-12-21 03:51:16 +00003303 pLevel->p1 = iCur;
drh699b3d42009-02-23 16:52:07 +00003304 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
drh111a6a72008-12-21 03:51:16 +00003305 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3306 }
3307 notReady &= ~getMask(pWC->pMaskSet, iCur);
3308
3309 /* Insert code to test every subexpression that can be completely
3310 ** computed using the current set of tables.
3311 */
3312 k = 0;
3313 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
3314 Expr *pE;
3315 testcase( pTerm->wtFlags & TERM_VIRTUAL );
3316 testcase( pTerm->wtFlags & TERM_CODED );
3317 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
3318 if( (pTerm->prereqAll & notReady)!=0 ) continue;
3319 pE = pTerm->pExpr;
3320 assert( pE!=0 );
3321 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
3322 continue;
3323 }
drh111a6a72008-12-21 03:51:16 +00003324 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
drh111a6a72008-12-21 03:51:16 +00003325 k = 1;
3326 pTerm->wtFlags |= TERM_CODED;
3327 }
3328
3329 /* For a LEFT OUTER JOIN, generate code that will record the fact that
3330 ** at least one row of the right table has matched the left table.
3331 */
3332 if( pLevel->iLeftJoin ){
3333 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
3334 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
3335 VdbeComment((v, "record LEFT JOIN hit"));
drhceea3322009-04-23 13:22:42 +00003336 sqlite3ExprCacheClear(pParse);
drh111a6a72008-12-21 03:51:16 +00003337 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
3338 testcase( pTerm->wtFlags & TERM_VIRTUAL );
3339 testcase( pTerm->wtFlags & TERM_CODED );
3340 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
3341 if( (pTerm->prereqAll & notReady)!=0 ) continue;
3342 assert( pTerm->pExpr );
3343 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
3344 pTerm->wtFlags |= TERM_CODED;
3345 }
3346 }
danielk19771d461462009-04-21 09:02:45 +00003347 sqlite3ReleaseTempReg(pParse, iReleaseReg);
drh23d04d52008-12-23 23:56:22 +00003348
drh111a6a72008-12-21 03:51:16 +00003349 return notReady;
3350}
3351
drh549c8b62005-09-19 13:15:23 +00003352#if defined(SQLITE_TEST)
drh84bfda42005-07-15 13:05:21 +00003353/*
3354** The following variable holds a text description of query plan generated
3355** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
3356** overwrites the previous. This information is used for testing and
3357** analysis only.
3358*/
3359char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
3360static int nQPlan = 0; /* Next free slow in _query_plan[] */
3361
3362#endif /* SQLITE_TEST */
3363
3364
drh9eff6162006-06-12 21:59:13 +00003365/*
3366** Free a WhereInfo structure
3367*/
drh10fe8402008-10-11 16:47:35 +00003368static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
drh9eff6162006-06-12 21:59:13 +00003369 if( pWInfo ){
3370 int i;
3371 for(i=0; i<pWInfo->nLevel; i++){
drh4be8b512006-06-13 23:51:34 +00003372 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
3373 if( pInfo ){
danielk19771d461462009-04-21 09:02:45 +00003374 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
danielk197780442942008-12-24 11:25:39 +00003375 if( pInfo->needToFreeIdxStr ){
3376 sqlite3_free(pInfo->idxStr);
danielk1977be229652009-03-20 14:18:51 +00003377 }
drh633e6d52008-07-28 19:34:53 +00003378 sqlite3DbFree(db, pInfo);
danielk1977be8a7832006-06-13 15:00:54 +00003379 }
drh9eff6162006-06-12 21:59:13 +00003380 }
drh111a6a72008-12-21 03:51:16 +00003381 whereClauseClear(pWInfo->pWC);
drh633e6d52008-07-28 19:34:53 +00003382 sqlite3DbFree(db, pWInfo);
drh9eff6162006-06-12 21:59:13 +00003383 }
3384}
3385
drh94a11212004-09-25 13:12:14 +00003386
3387/*
drhe3184742002-06-19 14:27:05 +00003388** Generate the beginning of the loop used for WHERE clause processing.
drhacf3b982005-01-03 01:27:18 +00003389** The return value is a pointer to an opaque structure that contains
drh75897232000-05-29 14:26:00 +00003390** information needed to terminate the loop. Later, the calling routine
danielk19774adee202004-05-08 08:23:19 +00003391** should invoke sqlite3WhereEnd() with the return value of this function
drh75897232000-05-29 14:26:00 +00003392** in order to complete the WHERE clause processing.
3393**
3394** If an error occurs, this routine returns NULL.
drhc27a1ce2002-06-14 20:58:45 +00003395**
3396** The basic idea is to do a nested loop, one loop for each table in
3397** the FROM clause of a select. (INSERT and UPDATE statements are the
3398** same as a SELECT with only a single table in the FROM clause.) For
3399** example, if the SQL is this:
3400**
3401** SELECT * FROM t1, t2, t3 WHERE ...;
3402**
3403** Then the code generated is conceptually like the following:
3404**
3405** foreach row1 in t1 do \ Code generated
danielk19774adee202004-05-08 08:23:19 +00003406** foreach row2 in t2 do |-- by sqlite3WhereBegin()
drhc27a1ce2002-06-14 20:58:45 +00003407** foreach row3 in t3 do /
3408** ...
3409** end \ Code generated
danielk19774adee202004-05-08 08:23:19 +00003410** end |-- by sqlite3WhereEnd()
drhc27a1ce2002-06-14 20:58:45 +00003411** end /
3412**
drh29dda4a2005-07-21 18:23:20 +00003413** Note that the loops might not be nested in the order in which they
3414** appear in the FROM clause if a different order is better able to make
drh51147ba2005-07-23 22:59:55 +00003415** use of indices. Note also that when the IN operator appears in
3416** the WHERE clause, it might result in additional nested loops for
3417** scanning through all values on the right-hand side of the IN.
drh29dda4a2005-07-21 18:23:20 +00003418**
drhc27a1ce2002-06-14 20:58:45 +00003419** There are Btree cursors associated with each table. t1 uses cursor
drh6a3ea0e2003-05-02 14:32:12 +00003420** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
3421** And so forth. This routine generates code to open those VDBE cursors
danielk19774adee202004-05-08 08:23:19 +00003422** and sqlite3WhereEnd() generates the code to close them.
drhc27a1ce2002-06-14 20:58:45 +00003423**
drhe6f85e72004-12-25 01:03:13 +00003424** The code that sqlite3WhereBegin() generates leaves the cursors named
3425** in pTabList pointing at their appropriate entries. The [...] code
drhf0863fe2005-06-12 21:35:51 +00003426** can use OP_Column and OP_Rowid opcodes on these cursors to extract
drhe6f85e72004-12-25 01:03:13 +00003427** data from the various tables of the loop.
3428**
drhc27a1ce2002-06-14 20:58:45 +00003429** If the WHERE clause is empty, the foreach loops must each scan their
3430** entire tables. Thus a three-way join is an O(N^3) operation. But if
3431** the tables have indices and there are terms in the WHERE clause that
3432** refer to those indices, a complete table scan can be avoided and the
3433** code will run much faster. Most of the work of this routine is checking
3434** to see if there are indices that can be used to speed up the loop.
3435**
3436** Terms of the WHERE clause are also used to limit which rows actually
3437** make it to the "..." in the middle of the loop. After each "foreach",
3438** terms of the WHERE clause that use only terms in that loop and outer
3439** loops are evaluated and if false a jump is made around all subsequent
3440** inner loops (or around the "..." if the test occurs within the inner-
3441** most loop)
3442**
3443** OUTER JOINS
3444**
3445** An outer join of tables t1 and t2 is conceptally coded as follows:
3446**
3447** foreach row1 in t1 do
3448** flag = 0
3449** foreach row2 in t2 do
3450** start:
3451** ...
3452** flag = 1
3453** end
drhe3184742002-06-19 14:27:05 +00003454** if flag==0 then
3455** move the row2 cursor to a null row
3456** goto start
3457** fi
drhc27a1ce2002-06-14 20:58:45 +00003458** end
3459**
drhe3184742002-06-19 14:27:05 +00003460** ORDER BY CLAUSE PROCESSING
3461**
3462** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
3463** if there is one. If there is no ORDER BY clause or if this routine
3464** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
3465**
3466** If an index can be used so that the natural output order of the table
3467** scan is correct for the ORDER BY clause, then that index is used and
3468** *ppOrderBy is set to NULL. This is an optimization that prevents an
3469** unnecessary sort of the result set if an index appropriate for the
3470** ORDER BY clause already exists.
3471**
3472** If the where clause loops cannot be arranged to provide the correct
3473** output order, then the *ppOrderBy is unchanged.
drh75897232000-05-29 14:26:00 +00003474*/
danielk19774adee202004-05-08 08:23:19 +00003475WhereInfo *sqlite3WhereBegin(
danielk1977ed326d72004-11-16 15:50:19 +00003476 Parse *pParse, /* The parser context */
3477 SrcList *pTabList, /* A list of all tables to be scanned */
3478 Expr *pWhere, /* The WHERE clause */
danielk1977a9d1ccb2008-01-05 17:39:29 +00003479 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
drh336a5302009-04-24 15:46:21 +00003480 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */
drh75897232000-05-29 14:26:00 +00003481){
3482 int i; /* Loop counter */
danielk1977be229652009-03-20 14:18:51 +00003483 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
drh75897232000-05-29 14:26:00 +00003484 WhereInfo *pWInfo; /* Will become the return value of this function */
3485 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
drhfe05af82005-07-21 03:14:59 +00003486 Bitmask notReady; /* Cursors that are not yet positioned */
drh111a6a72008-12-21 03:51:16 +00003487 WhereMaskSet *pMaskSet; /* The expression mask set */
drh111a6a72008-12-21 03:51:16 +00003488 WhereClause *pWC; /* Decomposition of the WHERE clause */
drh9012bcb2004-12-19 00:11:35 +00003489 struct SrcList_item *pTabItem; /* A single entry from pTabList */
3490 WhereLevel *pLevel; /* A single level in the pWInfo list */
drh29dda4a2005-07-21 18:23:20 +00003491 int iFrom; /* First unused FROM clause element */
drh111a6a72008-12-21 03:51:16 +00003492 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */
drh17435752007-08-16 04:30:38 +00003493 sqlite3 *db; /* Database connection */
drh75897232000-05-29 14:26:00 +00003494
drh29dda4a2005-07-21 18:23:20 +00003495 /* The number of tables in the FROM clause is limited by the number of
drh1398ad32005-01-19 23:24:50 +00003496 ** bits in a Bitmask
3497 */
drh29dda4a2005-07-21 18:23:20 +00003498 if( pTabList->nSrc>BMS ){
3499 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
drh1398ad32005-01-19 23:24:50 +00003500 return 0;
3501 }
3502
drh75897232000-05-29 14:26:00 +00003503 /* Allocate and initialize the WhereInfo structure that will become the
danielk1977be229652009-03-20 14:18:51 +00003504 ** return value. A single allocation is used to store the WhereInfo
3505 ** struct, the contents of WhereInfo.a[], the WhereClause structure
3506 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
3507 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
3508 ** some architectures. Hence the ROUND8() below.
drh75897232000-05-29 14:26:00 +00003509 */
drh17435752007-08-16 04:30:38 +00003510 db = pParse->db;
danielk1977be229652009-03-20 14:18:51 +00003511 nByteWInfo = ROUND8(sizeof(WhereInfo)+(pTabList->nSrc-1)*sizeof(WhereLevel));
3512 pWInfo = sqlite3DbMallocZero(db,
3513 nByteWInfo +
3514 sizeof(WhereClause) +
3515 sizeof(WhereMaskSet)
3516 );
drh17435752007-08-16 04:30:38 +00003517 if( db->mallocFailed ){
danielk197785574e32008-10-06 05:32:18 +00003518 goto whereBeginError;
drh75897232000-05-29 14:26:00 +00003519 }
danielk197770b6d572006-06-19 04:49:34 +00003520 pWInfo->nLevel = pTabList->nSrc;
drh75897232000-05-29 14:26:00 +00003521 pWInfo->pParse = pParse;
3522 pWInfo->pTabList = pTabList;
danielk19774adee202004-05-08 08:23:19 +00003523 pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
danielk1977be229652009-03-20 14:18:51 +00003524 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
drh6df2acd2008-12-28 16:55:25 +00003525 pWInfo->wctrlFlags = wctrlFlags;
drh111a6a72008-12-21 03:51:16 +00003526 pMaskSet = (WhereMaskSet*)&pWC[1];
drh08192d52002-04-30 19:20:28 +00003527
drh111a6a72008-12-21 03:51:16 +00003528 /* Split the WHERE clause into separate subexpressions where each
3529 ** subexpression is separated by an AND operator.
3530 */
3531 initMaskSet(pMaskSet);
3532 whereClauseInit(pWC, pParse, pMaskSet);
3533 sqlite3ExprCodeConstants(pParse, pWhere);
3534 whereSplit(pWC, pWhere, TK_AND);
3535
drh08192d52002-04-30 19:20:28 +00003536 /* Special case: a WHERE clause that is constant. Evaluate the
3537 ** expression and either jump over all of the code or fall thru.
3538 */
drh0a168372007-06-08 00:20:47 +00003539 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
drh35573352008-01-08 23:54:25 +00003540 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
drhdf199a22002-06-14 22:38:41 +00003541 pWhere = 0;
drh08192d52002-04-30 19:20:28 +00003542 }
drh75897232000-05-29 14:26:00 +00003543
drh42165be2008-03-26 14:56:34 +00003544 /* Assign a bit from the bitmask to every term in the FROM clause.
3545 **
3546 ** When assigning bitmask values to FROM clause cursors, it must be
3547 ** the case that if X is the bitmask for the N-th FROM clause term then
3548 ** the bitmask for all FROM clause terms to the left of the N-th term
3549 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
3550 ** its Expr.iRightJoinTable value to find the bitmask of the right table
3551 ** of the join. Subtracting one from the right table bitmask gives a
3552 ** bitmask for all tables to the left of the join. Knowing the bitmask
3553 ** for all tables to the left of a left join is important. Ticket #3015.
danielk1977e672c8e2009-05-22 15:43:26 +00003554 **
3555 ** Configure the WhereClause.vmask variable so that bits that correspond
3556 ** to virtual table cursors are set. This is used to selectively disable
3557 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
3558 ** with virtual tables.
drh42165be2008-03-26 14:56:34 +00003559 */
danielk1977e672c8e2009-05-22 15:43:26 +00003560 assert( pWC->vmask==0 && pMaskSet->n==0 );
drh42165be2008-03-26 14:56:34 +00003561 for(i=0; i<pTabList->nSrc; i++){
drh111a6a72008-12-21 03:51:16 +00003562 createMask(pMaskSet, pTabList->a[i].iCursor);
shanee26fa4c2009-06-16 14:15:22 +00003563#ifndef SQLITE_OMIT_VIRTUALTABLE
drh2c1a0c52009-06-11 17:04:28 +00003564 if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
danielk1977e672c8e2009-05-22 15:43:26 +00003565 pWC->vmask |= ((Bitmask)1 << i);
3566 }
shanee26fa4c2009-06-16 14:15:22 +00003567#endif
drh42165be2008-03-26 14:56:34 +00003568 }
3569#ifndef NDEBUG
3570 {
3571 Bitmask toTheLeft = 0;
3572 for(i=0; i<pTabList->nSrc; i++){
drh111a6a72008-12-21 03:51:16 +00003573 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
drh42165be2008-03-26 14:56:34 +00003574 assert( (m-1)==toTheLeft );
3575 toTheLeft |= m;
3576 }
3577 }
3578#endif
3579
drh29dda4a2005-07-21 18:23:20 +00003580 /* Analyze all of the subexpressions. Note that exprAnalyze() might
3581 ** add new virtual terms onto the end of the WHERE clause. We do not
3582 ** want to analyze these virtual terms, so start analyzing at the end
drhb6fb62d2005-09-20 08:47:20 +00003583 ** and work forward so that the added virtual terms are never processed.
drh75897232000-05-29 14:26:00 +00003584 */
drh111a6a72008-12-21 03:51:16 +00003585 exprAnalyzeAll(pTabList, pWC);
drh17435752007-08-16 04:30:38 +00003586 if( db->mallocFailed ){
danielk197785574e32008-10-06 05:32:18 +00003587 goto whereBeginError;
drh0bbaa1b2005-08-19 19:14:12 +00003588 }
drh75897232000-05-29 14:26:00 +00003589
drh29dda4a2005-07-21 18:23:20 +00003590 /* Chose the best index to use for each table in the FROM clause.
3591 **
drh51147ba2005-07-23 22:59:55 +00003592 ** This loop fills in the following fields:
3593 **
3594 ** pWInfo->a[].pIdx The index to use for this level of the loop.
drh165be382008-12-05 02:36:33 +00003595 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
drh51147ba2005-07-23 22:59:55 +00003596 ** pWInfo->a[].nEq The number of == and IN constraints
danielk197785574e32008-10-06 05:32:18 +00003597 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
drh51147ba2005-07-23 22:59:55 +00003598 ** pWInfo->a[].iTabCur The VDBE cursor for the database table
3599 ** pWInfo->a[].iIdxCur The VDBE cursor for the index
drh111a6a72008-12-21 03:51:16 +00003600 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
drh51147ba2005-07-23 22:59:55 +00003601 **
3602 ** This loop also figures out the nesting order of tables in the FROM
3603 ** clause.
drh75897232000-05-29 14:26:00 +00003604 */
drhfe05af82005-07-21 03:14:59 +00003605 notReady = ~(Bitmask)0;
drh9012bcb2004-12-19 00:11:35 +00003606 pTabItem = pTabList->a;
3607 pLevel = pWInfo->a;
drh943af3c2005-07-29 19:43:58 +00003608 andFlags = ~0;
drh4f0c5872007-03-26 22:05:01 +00003609 WHERETRACE(("*** Optimizer Start ***\n"));
drh29dda4a2005-07-21 18:23:20 +00003610 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
drh111a6a72008-12-21 03:51:16 +00003611 WhereCost bestPlan; /* Most efficient plan seen so far */
drh29dda4a2005-07-21 18:23:20 +00003612 Index *pIdx; /* Index for FROM table at pTabItem */
drh29dda4a2005-07-21 18:23:20 +00003613 int j; /* For looping over FROM tables */
dan5236ac12009-08-13 07:09:33 +00003614 int bestJ = -1; /* The value of j */
drh29dda4a2005-07-21 18:23:20 +00003615 Bitmask m; /* Bitmask value for j or bestJ */
dan5236ac12009-08-13 07:09:33 +00003616 int isOptimal; /* Iterator for optimal/non-optimal search */
drh29dda4a2005-07-21 18:23:20 +00003617
drh111a6a72008-12-21 03:51:16 +00003618 memset(&bestPlan, 0, sizeof(bestPlan));
3619 bestPlan.rCost = SQLITE_BIG_DBL;
drhdf26fd52006-06-06 11:45:54 +00003620
dan5236ac12009-08-13 07:09:33 +00003621 /* Loop through the remaining entries in the FROM clause to find the
3622 ** next nested loop. The FROM clause entries may be iterated through
3623 ** either once or twice.
3624 **
3625 ** The first iteration, which is always performed, searches for the
3626 ** FROM clause entry that permits the lowest-cost, "optimal" scan. In
3627 ** this context an optimal scan is one that uses the same strategy
3628 ** for the given FROM clause entry as would be selected if the entry
drhd0015162009-08-21 13:22:25 +00003629 ** were used as the innermost nested loop. In other words, a table
3630 ** is chosen such that the cost of running that table cannot be reduced
3631 ** by waiting for other tables to run first.
dan5236ac12009-08-13 07:09:33 +00003632 **
3633 ** The second iteration is only performed if no optimal scan strategies
3634 ** were found by the first. This iteration is used to search for the
3635 ** lowest cost scan overall.
3636 **
3637 ** Previous versions of SQLite performed only the second iteration -
3638 ** the next outermost loop was always that with the lowest overall
3639 ** cost. However, this meant that SQLite could select the wrong plan
3640 ** for scripts such as the following:
3641 **
3642 ** CREATE TABLE t1(a, b);
3643 ** CREATE TABLE t2(c, d);
3644 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
3645 **
3646 ** The best strategy is to iterate through table t1 first. However it
3647 ** is not possible to determine this with a simple greedy algorithm.
3648 ** However, since the cost of a linear scan through table t2 is the same
3649 ** as the cost of a linear scan through table t1, a simple greedy
3650 ** algorithm may choose to use t2 for the outer loop, which is a much
3651 ** costlier approach.
3652 */
3653 for(isOptimal=1; isOptimal>=0 && bestJ<0; isOptimal--){
3654 Bitmask mask = (isOptimal ? 0 : notReady);
3655 assert( (pTabList->nSrc-iFrom)>1 || isOptimal );
3656 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
3657 int doNotReorder; /* True if this table should not be reordered */
3658 WhereCost sCost; /* Cost information from best[Virtual]Index() */
3659 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */
3660
3661 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
3662 if( j!=iFrom && doNotReorder ) break;
3663 m = getMask(pMaskSet, pTabItem->iCursor);
3664 if( (m & notReady)==0 ){
3665 if( j==iFrom ) iFrom++;
3666 continue;
3667 }
3668 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
3669
3670 assert( pTabItem->pTab );
drh9eff6162006-06-12 21:59:13 +00003671#ifndef SQLITE_OMIT_VIRTUALTABLE
dan5236ac12009-08-13 07:09:33 +00003672 if( IsVirtual(pTabItem->pTab) ){
3673 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
3674 bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp);
3675 }else
drh9eff6162006-06-12 21:59:13 +00003676#endif
dan5236ac12009-08-13 07:09:33 +00003677 {
3678 bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost);
3679 }
3680 assert( isOptimal || (sCost.used&notReady)==0 );
3681
3682 if( (sCost.used&notReady)==0
3683 && (j==iFrom || sCost.rCost<bestPlan.rCost)
3684 ){
3685 bestPlan = sCost;
3686 bestJ = j;
3687 }
3688 if( doNotReorder ) break;
drh9eff6162006-06-12 21:59:13 +00003689 }
drh29dda4a2005-07-21 18:23:20 +00003690 }
dan5236ac12009-08-13 07:09:33 +00003691 assert( bestJ>=0 );
danielk1977992347f2008-12-30 09:45:45 +00003692 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
drhcb041342008-06-12 00:07:29 +00003693 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
drh3dec2232005-09-10 15:28:09 +00003694 pLevel-pWInfo->a));
drh111a6a72008-12-21 03:51:16 +00003695 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
drhfe05af82005-07-21 03:14:59 +00003696 *ppOrderBy = 0;
drhc4a3c772001-04-04 11:48:57 +00003697 }
drh111a6a72008-12-21 03:51:16 +00003698 andFlags &= bestPlan.plan.wsFlags;
3699 pLevel->plan = bestPlan.plan;
3700 if( bestPlan.plan.wsFlags & WHERE_INDEXED ){
drh9012bcb2004-12-19 00:11:35 +00003701 pLevel->iIdxCur = pParse->nTab++;
drhfe05af82005-07-21 03:14:59 +00003702 }else{
3703 pLevel->iIdxCur = -1;
drh6b563442001-11-07 16:48:26 +00003704 }
drh111a6a72008-12-21 03:51:16 +00003705 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
shaned87897d2009-01-30 05:40:27 +00003706 pLevel->iFrom = (u8)bestJ;
danielk197785574e32008-10-06 05:32:18 +00003707
3708 /* Check that if the table scanned by this loop iteration had an
3709 ** INDEXED BY clause attached to it, that the named index is being
3710 ** used for the scan. If not, then query compilation has failed.
3711 ** Return an error.
3712 */
3713 pIdx = pTabList->a[bestJ].pIndex;
drh171256c2009-01-08 03:11:19 +00003714 if( pIdx ){
3715 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
3716 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
3717 goto whereBeginError;
3718 }else{
3719 /* If an INDEXED BY clause is used, the bestIndex() function is
3720 ** guaranteed to find the index specified in the INDEXED BY clause
3721 ** if it find an index at all. */
3722 assert( bestPlan.plan.u.pIdx==pIdx );
3723 }
danielk197785574e32008-10-06 05:32:18 +00003724 }
drh75897232000-05-29 14:26:00 +00003725 }
drh4f0c5872007-03-26 22:05:01 +00003726 WHERETRACE(("*** Optimizer Finished ***\n"));
danielk19771d461462009-04-21 09:02:45 +00003727 if( pParse->nErr || db->mallocFailed ){
danielk197780442942008-12-24 11:25:39 +00003728 goto whereBeginError;
3729 }
drh75897232000-05-29 14:26:00 +00003730
drh943af3c2005-07-29 19:43:58 +00003731 /* If the total query only selects a single row, then the ORDER BY
3732 ** clause is irrelevant.
3733 */
3734 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
3735 *ppOrderBy = 0;
3736 }
3737
drh08c88eb2008-04-10 13:33:18 +00003738 /* If the caller is an UPDATE or DELETE statement that is requesting
3739 ** to use a one-pass algorithm, determine if this is appropriate.
3740 ** The one-pass algorithm only works if the WHERE clause constraints
3741 ** the statement to update a single row.
3742 */
drh165be382008-12-05 02:36:33 +00003743 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
3744 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
drh08c88eb2008-04-10 13:33:18 +00003745 pWInfo->okOnePass = 1;
drh111a6a72008-12-21 03:51:16 +00003746 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
drh08c88eb2008-04-10 13:33:18 +00003747 }
3748
drh9012bcb2004-12-19 00:11:35 +00003749 /* Open all tables in the pTabList and any indices selected for
3750 ** searching those tables.
3751 */
3752 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
drh29dda4a2005-07-21 18:23:20 +00003753 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
danielk1977da184232006-01-05 11:34:32 +00003754 Table *pTab; /* Table to open */
danielk1977da184232006-01-05 11:34:32 +00003755 int iDb; /* Index of database containing table/index */
drh9012bcb2004-12-19 00:11:35 +00003756
drhecc92422005-09-10 16:46:12 +00003757#ifndef SQLITE_OMIT_EXPLAIN
3758 if( pParse->explain==2 ){
3759 char *zMsg;
3760 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
danielk19771e536952007-08-16 10:09:01 +00003761 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
drhecc92422005-09-10 16:46:12 +00003762 if( pItem->zAlias ){
drh633e6d52008-07-28 19:34:53 +00003763 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
drhecc92422005-09-10 16:46:12 +00003764 }
drh111a6a72008-12-21 03:51:16 +00003765 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3766 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s",
3767 zMsg, pLevel->plan.u.pIdx->zName);
drh46129af2008-12-30 16:18:47 +00003768 }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
3769 zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg);
drh111a6a72008-12-21 03:51:16 +00003770 }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
drh633e6d52008-07-28 19:34:53 +00003771 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg);
drhecc92422005-09-10 16:46:12 +00003772 }
drh9eff6162006-06-12 21:59:13 +00003773#ifndef SQLITE_OMIT_VIRTUALTABLE
drh111a6a72008-12-21 03:51:16 +00003774 else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
3775 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
drh633e6d52008-07-28 19:34:53 +00003776 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
drh111a6a72008-12-21 03:51:16 +00003777 pVtabIdx->idxNum, pVtabIdx->idxStr);
drh9eff6162006-06-12 21:59:13 +00003778 }
3779#endif
drh111a6a72008-12-21 03:51:16 +00003780 if( pLevel->plan.wsFlags & WHERE_ORDERBY ){
drh633e6d52008-07-28 19:34:53 +00003781 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg);
drhe2b39092006-04-21 09:38:36 +00003782 }
drh66a51672008-01-03 00:01:23 +00003783 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
drhecc92422005-09-10 16:46:12 +00003784 }
3785#endif /* SQLITE_OMIT_EXPLAIN */
drh29dda4a2005-07-21 18:23:20 +00003786 pTabItem = &pTabList->a[pLevel->iFrom];
drh9012bcb2004-12-19 00:11:35 +00003787 pTab = pTabItem->pTab;
danielk1977595a5232009-07-24 17:58:53 +00003788 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
drh7d10d5a2008-08-20 16:35:10 +00003789 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
drh9eff6162006-06-12 21:59:13 +00003790#ifndef SQLITE_OMIT_VIRTUALTABLE
drh111a6a72008-12-21 03:51:16 +00003791 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
danielk1977595a5232009-07-24 17:58:53 +00003792 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
danielk197793626f42006-06-20 13:07:27 +00003793 int iCur = pTabItem->iCursor;
danielk1977595a5232009-07-24 17:58:53 +00003794 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
drh9eff6162006-06-12 21:59:13 +00003795 }else
3796#endif
drh6df2acd2008-12-28 16:55:25 +00003797 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
3798 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){
drh08c88eb2008-04-10 13:33:18 +00003799 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
3800 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
danielk197723432972008-11-17 16:42:00 +00003801 if( !pWInfo->okOnePass && pTab->nCol<BMS ){
danielk19779792eef2006-01-13 15:58:43 +00003802 Bitmask b = pTabItem->colUsed;
3803 int n = 0;
drh74161702006-02-24 02:53:49 +00003804 for(; b; b=b>>1, n++){}
shanec0688ea2009-03-05 03:48:06 +00003805 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, SQLITE_INT_TO_PTR(n), P4_INT32);
danielk19779792eef2006-01-13 15:58:43 +00003806 assert( n<=pTab->nCol );
3807 }
danielk1977c00da102006-01-07 13:21:04 +00003808 }else{
3809 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
drh9012bcb2004-12-19 00:11:35 +00003810 }
3811 pLevel->iTabCur = pTabItem->iCursor;
drh111a6a72008-12-21 03:51:16 +00003812 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3813 Index *pIx = pLevel->plan.u.pIdx;
danielk1977b3bf5562006-01-10 17:58:23 +00003814 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
drh111a6a72008-12-21 03:51:16 +00003815 int iIdxCur = pLevel->iIdxCur;
danielk1977da184232006-01-05 11:34:32 +00003816 assert( pIx->pSchema==pTab->pSchema );
drh111a6a72008-12-21 03:51:16 +00003817 assert( iIdxCur>=0 );
danielk1977207872a2008-01-03 07:54:23 +00003818 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
drh66a51672008-01-03 00:01:23 +00003819 (char*)pKey, P4_KEYINFO_HANDOFF);
danielk1977207872a2008-01-03 07:54:23 +00003820 VdbeComment((v, "%s", pIx->zName));
drh9012bcb2004-12-19 00:11:35 +00003821 }
danielk1977da184232006-01-05 11:34:32 +00003822 sqlite3CodeVerifySchema(pParse, iDb);
drh9012bcb2004-12-19 00:11:35 +00003823 }
3824 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
3825
drh29dda4a2005-07-21 18:23:20 +00003826 /* Generate the code to do the search. Each iteration of the for
3827 ** loop below generates code for a single nested loop of the VM
3828 ** program.
drh75897232000-05-29 14:26:00 +00003829 */
drhfe05af82005-07-21 03:14:59 +00003830 notReady = ~(Bitmask)0;
drh111a6a72008-12-21 03:51:16 +00003831 for(i=0; i<pTabList->nSrc; i++){
3832 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
drh813f31e2009-01-06 00:08:02 +00003833 pWInfo->iContinue = pWInfo->a[i].addrCont;
drh75897232000-05-29 14:26:00 +00003834 }
drh7ec764a2005-07-21 03:48:20 +00003835
3836#ifdef SQLITE_TEST /* For testing and debugging use only */
3837 /* Record in the query plan information about the current table
3838 ** and the index used to access it (if any). If the table itself
3839 ** is not used, its name is just '{}'. If no index is used
3840 ** the index is listed as "{}". If the primary key is used the
3841 ** index name is '*'.
3842 */
3843 for(i=0; i<pTabList->nSrc; i++){
3844 char *z;
3845 int n;
drh7ec764a2005-07-21 03:48:20 +00003846 pLevel = &pWInfo->a[i];
drh29dda4a2005-07-21 18:23:20 +00003847 pTabItem = &pTabList->a[pLevel->iFrom];
drh7ec764a2005-07-21 03:48:20 +00003848 z = pTabItem->zAlias;
3849 if( z==0 ) z = pTabItem->pTab->zName;
drhea678832008-12-10 19:26:22 +00003850 n = sqlite3Strlen30(z);
drh7ec764a2005-07-21 03:48:20 +00003851 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
drh111a6a72008-12-21 03:51:16 +00003852 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
drh5bb3eb92007-05-04 13:15:55 +00003853 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
drh7ec764a2005-07-21 03:48:20 +00003854 nQPlan += 2;
3855 }else{
drh5bb3eb92007-05-04 13:15:55 +00003856 memcpy(&sqlite3_query_plan[nQPlan], z, n);
drh7ec764a2005-07-21 03:48:20 +00003857 nQPlan += n;
3858 }
3859 sqlite3_query_plan[nQPlan++] = ' ';
3860 }
drh111a6a72008-12-21 03:51:16 +00003861 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
3862 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
3863 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
drh5bb3eb92007-05-04 13:15:55 +00003864 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
drh7ec764a2005-07-21 03:48:20 +00003865 nQPlan += 2;
drh111a6a72008-12-21 03:51:16 +00003866 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3867 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
drh7ec764a2005-07-21 03:48:20 +00003868 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
drh111a6a72008-12-21 03:51:16 +00003869 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
drh7ec764a2005-07-21 03:48:20 +00003870 nQPlan += n;
3871 sqlite3_query_plan[nQPlan++] = ' ';
3872 }
drh111a6a72008-12-21 03:51:16 +00003873 }else{
3874 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
3875 nQPlan += 3;
drh7ec764a2005-07-21 03:48:20 +00003876 }
3877 }
3878 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
3879 sqlite3_query_plan[--nQPlan] = 0;
3880 }
3881 sqlite3_query_plan[nQPlan] = 0;
3882 nQPlan = 0;
3883#endif /* SQLITE_TEST // Testing and debugging use only */
3884
drh29dda4a2005-07-21 18:23:20 +00003885 /* Record the continuation address in the WhereInfo structure. Then
3886 ** clean up and return.
3887 */
drh75897232000-05-29 14:26:00 +00003888 return pWInfo;
drhe23399f2005-07-22 00:31:39 +00003889
3890 /* Jump here if malloc fails */
danielk197785574e32008-10-06 05:32:18 +00003891whereBeginError:
drh10fe8402008-10-11 16:47:35 +00003892 whereInfoFree(db, pWInfo);
drhe23399f2005-07-22 00:31:39 +00003893 return 0;
drh75897232000-05-29 14:26:00 +00003894}
3895
3896/*
drhc27a1ce2002-06-14 20:58:45 +00003897** Generate the end of the WHERE loop. See comments on
danielk19774adee202004-05-08 08:23:19 +00003898** sqlite3WhereBegin() for additional information.
drh75897232000-05-29 14:26:00 +00003899*/
danielk19774adee202004-05-08 08:23:19 +00003900void sqlite3WhereEnd(WhereInfo *pWInfo){
drh633e6d52008-07-28 19:34:53 +00003901 Parse *pParse = pWInfo->pParse;
3902 Vdbe *v = pParse->pVdbe;
drh19a775c2000-06-05 18:54:46 +00003903 int i;
drh6b563442001-11-07 16:48:26 +00003904 WhereLevel *pLevel;
drhad3cab52002-05-24 02:04:32 +00003905 SrcList *pTabList = pWInfo->pTabList;
drh633e6d52008-07-28 19:34:53 +00003906 sqlite3 *db = pParse->db;
drh19a775c2000-06-05 18:54:46 +00003907
drh9012bcb2004-12-19 00:11:35 +00003908 /* Generate loop termination code.
3909 */
drhceea3322009-04-23 13:22:42 +00003910 sqlite3ExprCacheClear(pParse);
drhad3cab52002-05-24 02:04:32 +00003911 for(i=pTabList->nSrc-1; i>=0; i--){
drh6b563442001-11-07 16:48:26 +00003912 pLevel = &pWInfo->a[i];
drhb3190c12008-12-08 21:37:14 +00003913 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
drh6b563442001-11-07 16:48:26 +00003914 if( pLevel->op!=OP_Noop ){
drh66a51672008-01-03 00:01:23 +00003915 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
drhd1d38482008-10-07 23:46:38 +00003916 sqlite3VdbeChangeP5(v, pLevel->p5);
drh19a775c2000-06-05 18:54:46 +00003917 }
drh111a6a72008-12-21 03:51:16 +00003918 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
drh72e8fa42007-03-28 14:30:06 +00003919 struct InLoop *pIn;
drhe23399f2005-07-22 00:31:39 +00003920 int j;
drhb3190c12008-12-08 21:37:14 +00003921 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
drh111a6a72008-12-21 03:51:16 +00003922 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
drhb3190c12008-12-08 21:37:14 +00003923 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
3924 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
3925 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
drhe23399f2005-07-22 00:31:39 +00003926 }
drh111a6a72008-12-21 03:51:16 +00003927 sqlite3DbFree(db, pLevel->u.in.aInLoop);
drhd99f7062002-06-08 23:25:08 +00003928 }
drhb3190c12008-12-08 21:37:14 +00003929 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
drhad2d8302002-05-24 20:31:36 +00003930 if( pLevel->iLeftJoin ){
3931 int addr;
drh3c84ddf2008-01-09 02:15:38 +00003932 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
3933 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
drh9012bcb2004-12-19 00:11:35 +00003934 if( pLevel->iIdxCur>=0 ){
drh3c84ddf2008-01-09 02:15:38 +00003935 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
drh7f09b3e2002-08-13 13:15:49 +00003936 }
drh336a5302009-04-24 15:46:21 +00003937 if( pLevel->op==OP_Return ){
3938 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
3939 }else{
3940 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
3941 }
drhd654be82005-09-20 17:42:23 +00003942 sqlite3VdbeJumpHere(v, addr);
drhad2d8302002-05-24 20:31:36 +00003943 }
drh19a775c2000-06-05 18:54:46 +00003944 }
drh9012bcb2004-12-19 00:11:35 +00003945
3946 /* The "break" point is here, just past the end of the outer loop.
3947 ** Set it.
3948 */
danielk19774adee202004-05-08 08:23:19 +00003949 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
drh9012bcb2004-12-19 00:11:35 +00003950
drh29dda4a2005-07-21 18:23:20 +00003951 /* Close all of the cursors that were opened by sqlite3WhereBegin.
drh9012bcb2004-12-19 00:11:35 +00003952 */
drh29dda4a2005-07-21 18:23:20 +00003953 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
3954 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
drh9012bcb2004-12-19 00:11:35 +00003955 Table *pTab = pTabItem->pTab;
drh5cf590c2003-04-24 01:45:04 +00003956 assert( pTab!=0 );
drh7d10d5a2008-08-20 16:35:10 +00003957 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
drh6df2acd2008-12-28 16:55:25 +00003958 if( (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 ){
3959 if( !pWInfo->okOnePass && (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
3960 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
3961 }
3962 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3963 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
3964 }
drh9012bcb2004-12-19 00:11:35 +00003965 }
3966
danielk197721de2e72007-11-29 17:43:27 +00003967 /* If this scan uses an index, make code substitutions to read data
3968 ** from the index in preference to the table. Sometimes, this means
3969 ** the table need never be read from. This is a performance boost,
3970 ** as the vdbe level waits until the table is read before actually
3971 ** seeking the table cursor to the record corresponding to the current
3972 ** position in the index.
drh9012bcb2004-12-19 00:11:35 +00003973 **
3974 ** Calls to the code generator in between sqlite3WhereBegin and
3975 ** sqlite3WhereEnd will have created code that references the table
3976 ** directly. This loop scans all that code looking for opcodes
3977 ** that reference the table and converts them into opcodes that
3978 ** reference the index.
3979 */
drh125feff2009-06-06 15:17:27 +00003980 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
danielk1977f0113002006-01-24 12:09:17 +00003981 int k, j, last;
drh9012bcb2004-12-19 00:11:35 +00003982 VdbeOp *pOp;
drh111a6a72008-12-21 03:51:16 +00003983 Index *pIdx = pLevel->plan.u.pIdx;
3984 int useIndexOnly = pLevel->plan.wsFlags & WHERE_IDX_ONLY;
drh9012bcb2004-12-19 00:11:35 +00003985
3986 assert( pIdx!=0 );
3987 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
3988 last = sqlite3VdbeCurrentAddr(v);
danielk1977f0113002006-01-24 12:09:17 +00003989 for(k=pWInfo->iTop; k<last; k++, pOp++){
drh9012bcb2004-12-19 00:11:35 +00003990 if( pOp->p1!=pLevel->iTabCur ) continue;
3991 if( pOp->opcode==OP_Column ){
drh9012bcb2004-12-19 00:11:35 +00003992 for(j=0; j<pIdx->nColumn; j++){
3993 if( pOp->p2==pIdx->aiColumn[j] ){
3994 pOp->p2 = j;
danielk197721de2e72007-11-29 17:43:27 +00003995 pOp->p1 = pLevel->iIdxCur;
drh9012bcb2004-12-19 00:11:35 +00003996 break;
3997 }
3998 }
danielk197721de2e72007-11-29 17:43:27 +00003999 assert(!useIndexOnly || j<pIdx->nColumn);
drhf0863fe2005-06-12 21:35:51 +00004000 }else if( pOp->opcode==OP_Rowid ){
drh9012bcb2004-12-19 00:11:35 +00004001 pOp->p1 = pLevel->iIdxCur;
drhf0863fe2005-06-12 21:35:51 +00004002 pOp->opcode = OP_IdxRowid;
danielk197721de2e72007-11-29 17:43:27 +00004003 }else if( pOp->opcode==OP_NullRow && useIndexOnly ){
danielk19776c18b6e2005-01-30 09:17:58 +00004004 pOp->opcode = OP_Noop;
drh9012bcb2004-12-19 00:11:35 +00004005 }
4006 }
drh6b563442001-11-07 16:48:26 +00004007 }
drh19a775c2000-06-05 18:54:46 +00004008 }
drh9012bcb2004-12-19 00:11:35 +00004009
4010 /* Final cleanup
4011 */
drh10fe8402008-10-11 16:47:35 +00004012 whereInfoFree(db, pWInfo);
drh75897232000-05-29 14:26:00 +00004013 return;
4014}