blob: 84cbd4636da7c9642775ef513c8288e1995b4706 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
12** This module contains C code that generates VDBE code used to process
drh909626d2008-05-30 14:58:37 +000013** the WHERE clause of SQL statements. This module is responsible for
drh51669862004-12-18 18:40:26 +000014** generating the code that loops through a table looking for applicable
15** rows. Indices are selected and used to speed the search when doing
16** so is applicable. Because this module is responsible for selecting
17** indices, you might also think of this module as the "query optimizer".
drh75897232000-05-29 14:26:00 +000018*/
19#include "sqliteInt.h"
20
21/*
drh51147ba2005-07-23 22:59:55 +000022** Trace output macros
23*/
24#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
mlcreech3a00f902008-03-04 17:45:01 +000025int sqlite3WhereTrace = 0;
drhe8f52c52008-07-12 14:52:20 +000026#endif
drh85799a42009-04-07 13:48:11 +000027#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
mlcreech3a00f902008-03-04 17:45:01 +000028# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
drh51147ba2005-07-23 22:59:55 +000029#else
drh4f0c5872007-03-26 22:05:01 +000030# define WHERETRACE(X)
drh51147ba2005-07-23 22:59:55 +000031#endif
32
drh0fcef5e2005-07-19 17:38:22 +000033/* Forward reference
34*/
35typedef struct WhereClause WhereClause;
drh111a6a72008-12-21 03:51:16 +000036typedef struct WhereMaskSet WhereMaskSet;
drh700a2262008-12-17 19:22:15 +000037typedef struct WhereOrInfo WhereOrInfo;
38typedef struct WhereAndInfo WhereAndInfo;
drh111a6a72008-12-21 03:51:16 +000039typedef struct WhereCost WhereCost;
drh0aa74ed2005-07-16 13:33:20 +000040
41/*
drh75897232000-05-29 14:26:00 +000042** The query generator uses an array of instances of this structure to
43** help it analyze the subexpressions of the WHERE clause. Each WHERE
drh61495262009-04-22 15:32:59 +000044** clause subexpression is separated from the others by AND operators,
45** usually, or sometimes subexpressions separated by OR.
drh51669862004-12-18 18:40:26 +000046**
drh0fcef5e2005-07-19 17:38:22 +000047** All WhereTerms are collected into a single WhereClause structure.
48** The following identity holds:
drh51669862004-12-18 18:40:26 +000049**
drh0fcef5e2005-07-19 17:38:22 +000050** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
drh51669862004-12-18 18:40:26 +000051**
drh0fcef5e2005-07-19 17:38:22 +000052** When a term is of the form:
53**
54** X <op> <expr>
55**
56** where X is a column name and <op> is one of certain operators,
drh700a2262008-12-17 19:22:15 +000057** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
58** cursor number and column number for X. WhereTerm.eOperator records
drh51147ba2005-07-23 22:59:55 +000059** the <op> using a bitmask encoding defined by WO_xxx below. The
60** use of a bitmask encoding for the operator allows us to search
61** quickly for terms that match any of several different operators.
drh0fcef5e2005-07-19 17:38:22 +000062**
drh700a2262008-12-17 19:22:15 +000063** A WhereTerm might also be two or more subterms connected by OR:
64**
65** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
66**
67** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
68** and the WhereTerm.u.pOrInfo field points to auxiliary information that
69** is collected about the
70**
71** If a term in the WHERE clause does not match either of the two previous
72** categories, then eOperator==0. The WhereTerm.pExpr field is still set
73** to the original subexpression content and wtFlags is set up appropriately
74** but no other fields in the WhereTerm object are meaningful.
75**
76** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
drh111a6a72008-12-21 03:51:16 +000077** but they do so indirectly. A single WhereMaskSet structure translates
drh51669862004-12-18 18:40:26 +000078** cursor number into bits and the translated bit is stored in the prereq
79** fields. The translation is used in order to maximize the number of
80** bits that will fit in a Bitmask. The VDBE cursor numbers might be
81** spread out over the non-negative integers. For example, the cursor
drh111a6a72008-12-21 03:51:16 +000082** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
drh51669862004-12-18 18:40:26 +000083** translates these sparse cursor numbers into consecutive integers
84** beginning with 0 in order to make the best possible use of the available
85** bits in the Bitmask. So, in the example above, the cursor numbers
86** would be mapped into integers 0 through 7.
drh6a1e0712008-12-05 15:24:15 +000087**
88** The number of terms in a join is limited by the number of bits
89** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
90** is only able to process joins with 64 or fewer tables.
drh75897232000-05-29 14:26:00 +000091*/
drh0aa74ed2005-07-16 13:33:20 +000092typedef struct WhereTerm WhereTerm;
93struct WhereTerm {
drh165be382008-12-05 02:36:33 +000094 Expr *pExpr; /* Pointer to the subexpression that is this term */
drhec1724e2008-12-09 01:32:03 +000095 int iParent; /* Disable pWC->a[iParent] when this term disabled */
96 int leftCursor; /* Cursor number of X in "X <op> <expr>" */
drh700a2262008-12-17 19:22:15 +000097 union {
98 int leftColumn; /* Column number of X in "X <op> <expr>" */
99 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */
100 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
101 } u;
drhb52076c2006-01-23 13:22:09 +0000102 u16 eOperator; /* A WO_xx value describing <op> */
drh165be382008-12-05 02:36:33 +0000103 u8 wtFlags; /* TERM_xxx bit flags. See below */
drh45b1ee42005-08-02 17:48:22 +0000104 u8 nChild; /* Number of children that must disable us */
drh0fcef5e2005-07-19 17:38:22 +0000105 WhereClause *pWC; /* The clause this term is part of */
drh165be382008-12-05 02:36:33 +0000106 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */
107 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */
drh75897232000-05-29 14:26:00 +0000108};
109
110/*
drh165be382008-12-05 02:36:33 +0000111** Allowed values of WhereTerm.wtFlags
drh0aa74ed2005-07-16 13:33:20 +0000112*/
drh633e6d52008-07-28 19:34:53 +0000113#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
drh6c30be82005-07-29 15:10:17 +0000114#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
115#define TERM_CODED 0x04 /* This term is already coded */
drh45b1ee42005-08-02 17:48:22 +0000116#define TERM_COPIED 0x08 /* Has a child */
drh700a2262008-12-17 19:22:15 +0000117#define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
118#define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
119#define TERM_OR_OK 0x40 /* Used during OR-clause processing */
drh0aa74ed2005-07-16 13:33:20 +0000120
121/*
122** An instance of the following structure holds all information about a
123** WHERE clause. Mostly this is a container for one or more WhereTerms.
124*/
drh0aa74ed2005-07-16 13:33:20 +0000125struct WhereClause {
drhfe05af82005-07-21 03:14:59 +0000126 Parse *pParse; /* The parser context */
drh111a6a72008-12-21 03:51:16 +0000127 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */
danielk1977e672c8e2009-05-22 15:43:26 +0000128 Bitmask vmask; /* Bitmask identifying virtual table cursors */
drh29435252008-12-28 18:35:08 +0000129 u8 op; /* Split operator. TK_AND or TK_OR */
drh0aa74ed2005-07-16 13:33:20 +0000130 int nTerm; /* Number of terms */
131 int nSlot; /* Number of entries in a[] */
drh51147ba2005-07-23 22:59:55 +0000132 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
drh50d654d2009-06-03 01:24:54 +0000133#if defined(SQLITE_SMALL_STACK)
134 WhereTerm aStatic[1]; /* Initial static space for a[] */
135#else
136 WhereTerm aStatic[8]; /* Initial static space for a[] */
137#endif
drhe23399f2005-07-22 00:31:39 +0000138};
139
140/*
drh700a2262008-12-17 19:22:15 +0000141** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
142** a dynamically allocated instance of the following structure.
143*/
144struct WhereOrInfo {
drh111a6a72008-12-21 03:51:16 +0000145 WhereClause wc; /* Decomposition into subterms */
drh1a58fe02008-12-20 02:06:13 +0000146 Bitmask indexable; /* Bitmask of all indexable tables in the clause */
drh700a2262008-12-17 19:22:15 +0000147};
148
149/*
150** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
151** a dynamically allocated instance of the following structure.
152*/
153struct WhereAndInfo {
drh29435252008-12-28 18:35:08 +0000154 WhereClause wc; /* The subexpression broken out */
drh700a2262008-12-17 19:22:15 +0000155};
156
157/*
drh6a3ea0e2003-05-02 14:32:12 +0000158** An instance of the following structure keeps track of a mapping
drh0aa74ed2005-07-16 13:33:20 +0000159** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
drh51669862004-12-18 18:40:26 +0000160**
161** The VDBE cursor numbers are small integers contained in
162** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
163** clause, the cursor numbers might not begin with 0 and they might
164** contain gaps in the numbering sequence. But we want to make maximum
165** use of the bits in our bitmasks. This structure provides a mapping
166** from the sparse cursor numbers into consecutive integers beginning
167** with 0.
168**
drh111a6a72008-12-21 03:51:16 +0000169** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
drh51669862004-12-18 18:40:26 +0000170** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
171**
172** For example, if the WHERE clause expression used these VDBE
drh111a6a72008-12-21 03:51:16 +0000173** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
drh51669862004-12-18 18:40:26 +0000174** would map those cursor numbers into bits 0 through 5.
175**
176** Note that the mapping is not necessarily ordered. In the example
177** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
178** 57->5, 73->4. Or one of 719 other combinations might be used. It
179** does not really matter. What is important is that sparse cursor
180** numbers all get mapped into bit numbers that begin with 0 and contain
181** no gaps.
drh6a3ea0e2003-05-02 14:32:12 +0000182*/
drh111a6a72008-12-21 03:51:16 +0000183struct WhereMaskSet {
drh1398ad32005-01-19 23:24:50 +0000184 int n; /* Number of assigned cursor values */
danielk197723432972008-11-17 16:42:00 +0000185 int ix[BMS]; /* Cursor assigned to each bit */
drh6a3ea0e2003-05-02 14:32:12 +0000186};
187
drh111a6a72008-12-21 03:51:16 +0000188/*
189** A WhereCost object records a lookup strategy and the estimated
190** cost of pursuing that strategy.
191*/
192struct WhereCost {
193 WherePlan plan; /* The lookup strategy */
194 double rCost; /* Overall cost of pursuing this search strategy */
195 double nRow; /* Estimated number of output rows */
dan5236ac12009-08-13 07:09:33 +0000196 Bitmask used; /* Bitmask of cursors used by this plan */
drh111a6a72008-12-21 03:51:16 +0000197};
drh0aa74ed2005-07-16 13:33:20 +0000198
drh6a3ea0e2003-05-02 14:32:12 +0000199/*
drh51147ba2005-07-23 22:59:55 +0000200** Bitmasks for the operators that indices are able to exploit. An
201** OR-ed combination of these values can be used when searching for
202** terms in the where clause.
203*/
drh165be382008-12-05 02:36:33 +0000204#define WO_IN 0x001
205#define WO_EQ 0x002
drh51147ba2005-07-23 22:59:55 +0000206#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
207#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
208#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
209#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
drh165be382008-12-05 02:36:33 +0000210#define WO_MATCH 0x040
211#define WO_ISNULL 0x080
drh700a2262008-12-17 19:22:15 +0000212#define WO_OR 0x100 /* Two or more OR-connected terms */
213#define WO_AND 0x200 /* Two or more AND-connected terms */
drh51147ba2005-07-23 22:59:55 +0000214
drhec1724e2008-12-09 01:32:03 +0000215#define WO_ALL 0xfff /* Mask of all possible WO_* values */
drh1a58fe02008-12-20 02:06:13 +0000216#define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
drhec1724e2008-12-09 01:32:03 +0000217
drh51147ba2005-07-23 22:59:55 +0000218/*
drh700a2262008-12-17 19:22:15 +0000219** Value for wsFlags returned by bestIndex() and stored in
220** WhereLevel.wsFlags. These flags determine which search
221** strategies are appropriate.
drhf2d315d2007-01-25 16:56:06 +0000222**
drh165be382008-12-05 02:36:33 +0000223** The least significant 12 bits is reserved as a mask for WO_ values above.
drh700a2262008-12-17 19:22:15 +0000224** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
225** But if the table is the right table of a left join, WhereLevel.wsFlags
226** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as
drhf2d315d2007-01-25 16:56:06 +0000227** the "op" parameter to findTerm when we are resolving equality constraints.
228** ISNULL constraints will then not be used on the right table of a left
229** join. Tickets #2177 and #2189.
drh51147ba2005-07-23 22:59:55 +0000230*/
drh165be382008-12-05 02:36:33 +0000231#define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */
232#define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */
drh46619d62009-04-24 14:51:42 +0000233#define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */
drh165be382008-12-05 02:36:33 +0000234#define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */
235#define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */
drh46619d62009-04-24 14:51:42 +0000236#define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */
237#define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */
238#define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */
drh165be382008-12-05 02:36:33 +0000239#define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */
240#define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */
241#define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */
242#define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */
243#define WHERE_REVERSE 0x02000000 /* Scan in reverse order */
244#define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */
245#define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */
246#define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */
drh51147ba2005-07-23 22:59:55 +0000247
248/*
drh0aa74ed2005-07-16 13:33:20 +0000249** Initialize a preallocated WhereClause structure.
drh75897232000-05-29 14:26:00 +0000250*/
drh7b4fc6a2007-02-06 13:26:32 +0000251static void whereClauseInit(
252 WhereClause *pWC, /* The WhereClause to be initialized */
253 Parse *pParse, /* The parsing context */
drh111a6a72008-12-21 03:51:16 +0000254 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */
drh7b4fc6a2007-02-06 13:26:32 +0000255){
drhfe05af82005-07-21 03:14:59 +0000256 pWC->pParse = pParse;
drh7b4fc6a2007-02-06 13:26:32 +0000257 pWC->pMaskSet = pMaskSet;
drh0aa74ed2005-07-16 13:33:20 +0000258 pWC->nTerm = 0;
drhcad651e2007-04-20 12:22:01 +0000259 pWC->nSlot = ArraySize(pWC->aStatic);
drh0aa74ed2005-07-16 13:33:20 +0000260 pWC->a = pWC->aStatic;
danielk1977e672c8e2009-05-22 15:43:26 +0000261 pWC->vmask = 0;
drh0aa74ed2005-07-16 13:33:20 +0000262}
263
drh700a2262008-12-17 19:22:15 +0000264/* Forward reference */
265static void whereClauseClear(WhereClause*);
266
267/*
268** Deallocate all memory associated with a WhereOrInfo object.
269*/
270static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
drh5bd98ae2009-01-07 18:24:03 +0000271 whereClauseClear(&p->wc);
272 sqlite3DbFree(db, p);
drh700a2262008-12-17 19:22:15 +0000273}
274
275/*
276** Deallocate all memory associated with a WhereAndInfo object.
277*/
278static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
drh5bd98ae2009-01-07 18:24:03 +0000279 whereClauseClear(&p->wc);
280 sqlite3DbFree(db, p);
drh700a2262008-12-17 19:22:15 +0000281}
282
drh0aa74ed2005-07-16 13:33:20 +0000283/*
284** Deallocate a WhereClause structure. The WhereClause structure
285** itself is not freed. This routine is the inverse of whereClauseInit().
286*/
287static void whereClauseClear(WhereClause *pWC){
288 int i;
289 WhereTerm *a;
drh633e6d52008-07-28 19:34:53 +0000290 sqlite3 *db = pWC->pParse->db;
drh0aa74ed2005-07-16 13:33:20 +0000291 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
drh165be382008-12-05 02:36:33 +0000292 if( a->wtFlags & TERM_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000293 sqlite3ExprDelete(db, a->pExpr);
drh0aa74ed2005-07-16 13:33:20 +0000294 }
drh700a2262008-12-17 19:22:15 +0000295 if( a->wtFlags & TERM_ORINFO ){
296 whereOrInfoDelete(db, a->u.pOrInfo);
297 }else if( a->wtFlags & TERM_ANDINFO ){
298 whereAndInfoDelete(db, a->u.pAndInfo);
299 }
drh0aa74ed2005-07-16 13:33:20 +0000300 }
301 if( pWC->a!=pWC->aStatic ){
drh633e6d52008-07-28 19:34:53 +0000302 sqlite3DbFree(db, pWC->a);
drh0aa74ed2005-07-16 13:33:20 +0000303 }
304}
305
306/*
drh6a1e0712008-12-05 15:24:15 +0000307** Add a single new WhereTerm entry to the WhereClause object pWC.
308** The new WhereTerm object is constructed from Expr p and with wtFlags.
309** The index in pWC->a[] of the new WhereTerm is returned on success.
310** 0 is returned if the new WhereTerm could not be added due to a memory
311** allocation error. The memory allocation failure will be recorded in
312** the db->mallocFailed flag so that higher-level functions can detect it.
313**
314** This routine will increase the size of the pWC->a[] array as necessary.
drh9eb20282005-08-24 03:52:18 +0000315**
drh165be382008-12-05 02:36:33 +0000316** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
drh6a1e0712008-12-05 15:24:15 +0000317** for freeing the expression p is assumed by the WhereClause object pWC.
318** This is true even if this routine fails to allocate a new WhereTerm.
drhb63a53d2007-03-31 01:34:44 +0000319**
drh9eb20282005-08-24 03:52:18 +0000320** WARNING: This routine might reallocate the space used to store
drh909626d2008-05-30 14:58:37 +0000321** WhereTerms. All pointers to WhereTerms should be invalidated after
drh9eb20282005-08-24 03:52:18 +0000322** calling this routine. Such pointers may be reinitialized by referencing
323** the pWC->a[] array.
drh0aa74ed2005-07-16 13:33:20 +0000324*/
drhec1724e2008-12-09 01:32:03 +0000325static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
drh0aa74ed2005-07-16 13:33:20 +0000326 WhereTerm *pTerm;
drh9eb20282005-08-24 03:52:18 +0000327 int idx;
drh0aa74ed2005-07-16 13:33:20 +0000328 if( pWC->nTerm>=pWC->nSlot ){
329 WhereTerm *pOld = pWC->a;
drh633e6d52008-07-28 19:34:53 +0000330 sqlite3 *db = pWC->pParse->db;
331 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
drhb63a53d2007-03-31 01:34:44 +0000332 if( pWC->a==0 ){
drh165be382008-12-05 02:36:33 +0000333 if( wtFlags & TERM_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000334 sqlite3ExprDelete(db, p);
drhb63a53d2007-03-31 01:34:44 +0000335 }
drhf998b732007-11-26 13:36:00 +0000336 pWC->a = pOld;
drhb63a53d2007-03-31 01:34:44 +0000337 return 0;
338 }
drh0aa74ed2005-07-16 13:33:20 +0000339 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
340 if( pOld!=pWC->aStatic ){
drh633e6d52008-07-28 19:34:53 +0000341 sqlite3DbFree(db, pOld);
drh0aa74ed2005-07-16 13:33:20 +0000342 }
drh6a1e0712008-12-05 15:24:15 +0000343 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
drh0aa74ed2005-07-16 13:33:20 +0000344 }
drh6a1e0712008-12-05 15:24:15 +0000345 pTerm = &pWC->a[idx = pWC->nTerm++];
drh0fcef5e2005-07-19 17:38:22 +0000346 pTerm->pExpr = p;
drh165be382008-12-05 02:36:33 +0000347 pTerm->wtFlags = wtFlags;
drh0fcef5e2005-07-19 17:38:22 +0000348 pTerm->pWC = pWC;
drh45b1ee42005-08-02 17:48:22 +0000349 pTerm->iParent = -1;
drh9eb20282005-08-24 03:52:18 +0000350 return idx;
drh0aa74ed2005-07-16 13:33:20 +0000351}
drh75897232000-05-29 14:26:00 +0000352
353/*
drh51669862004-12-18 18:40:26 +0000354** This routine identifies subexpressions in the WHERE clause where
drhb6fb62d2005-09-20 08:47:20 +0000355** each subexpression is separated by the AND operator or some other
drh6c30be82005-07-29 15:10:17 +0000356** operator specified in the op parameter. The WhereClause structure
357** is filled with pointers to subexpressions. For example:
drh75897232000-05-29 14:26:00 +0000358**
drh51669862004-12-18 18:40:26 +0000359** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
360** \________/ \_______________/ \________________/
361** slot[0] slot[1] slot[2]
362**
363** The original WHERE clause in pExpr is unaltered. All this routine
drh51147ba2005-07-23 22:59:55 +0000364** does is make slot[] entries point to substructure within pExpr.
drh51669862004-12-18 18:40:26 +0000365**
drh51147ba2005-07-23 22:59:55 +0000366** In the previous sentence and in the diagram, "slot[]" refers to
drh902b9ee2008-12-05 17:17:07 +0000367** the WhereClause.a[] array. The slot[] array grows as needed to contain
drh51147ba2005-07-23 22:59:55 +0000368** all terms of the WHERE clause.
drh75897232000-05-29 14:26:00 +0000369*/
drh6c30be82005-07-29 15:10:17 +0000370static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
drh29435252008-12-28 18:35:08 +0000371 pWC->op = (u8)op;
drh0aa74ed2005-07-16 13:33:20 +0000372 if( pExpr==0 ) return;
drh6c30be82005-07-29 15:10:17 +0000373 if( pExpr->op!=op ){
drh0aa74ed2005-07-16 13:33:20 +0000374 whereClauseInsert(pWC, pExpr, 0);
drh75897232000-05-29 14:26:00 +0000375 }else{
drh6c30be82005-07-29 15:10:17 +0000376 whereSplit(pWC, pExpr->pLeft, op);
377 whereSplit(pWC, pExpr->pRight, op);
drh75897232000-05-29 14:26:00 +0000378 }
drh75897232000-05-29 14:26:00 +0000379}
380
381/*
drh61495262009-04-22 15:32:59 +0000382** Initialize an expression mask set (a WhereMaskSet object)
drh6a3ea0e2003-05-02 14:32:12 +0000383*/
384#define initMaskSet(P) memset(P, 0, sizeof(*P))
385
386/*
drh1398ad32005-01-19 23:24:50 +0000387** Return the bitmask for the given cursor number. Return 0 if
388** iCursor is not in the set.
drh6a3ea0e2003-05-02 14:32:12 +0000389*/
drh111a6a72008-12-21 03:51:16 +0000390static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
drh6a3ea0e2003-05-02 14:32:12 +0000391 int i;
drh3500ed62009-05-05 15:46:43 +0000392 assert( pMaskSet->n<=sizeof(Bitmask)*8 );
drh6a3ea0e2003-05-02 14:32:12 +0000393 for(i=0; i<pMaskSet->n; i++){
drh51669862004-12-18 18:40:26 +0000394 if( pMaskSet->ix[i]==iCursor ){
395 return ((Bitmask)1)<<i;
396 }
drh6a3ea0e2003-05-02 14:32:12 +0000397 }
drh6a3ea0e2003-05-02 14:32:12 +0000398 return 0;
399}
400
401/*
drh1398ad32005-01-19 23:24:50 +0000402** Create a new mask for cursor iCursor.
drh0fcef5e2005-07-19 17:38:22 +0000403**
404** There is one cursor per table in the FROM clause. The number of
405** tables in the FROM clause is limited by a test early in the
drhb6fb62d2005-09-20 08:47:20 +0000406** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
drh0fcef5e2005-07-19 17:38:22 +0000407** array will never overflow.
drh1398ad32005-01-19 23:24:50 +0000408*/
drh111a6a72008-12-21 03:51:16 +0000409static void createMask(WhereMaskSet *pMaskSet, int iCursor){
drhcad651e2007-04-20 12:22:01 +0000410 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
drh0fcef5e2005-07-19 17:38:22 +0000411 pMaskSet->ix[pMaskSet->n++] = iCursor;
drh1398ad32005-01-19 23:24:50 +0000412}
413
414/*
drh75897232000-05-29 14:26:00 +0000415** This routine walks (recursively) an expression tree and generates
416** a bitmask indicating which tables are used in that expression
drh6a3ea0e2003-05-02 14:32:12 +0000417** tree.
drh75897232000-05-29 14:26:00 +0000418**
419** In order for this routine to work, the calling function must have
drh7d10d5a2008-08-20 16:35:10 +0000420** previously invoked sqlite3ResolveExprNames() on the expression. See
drh75897232000-05-29 14:26:00 +0000421** the header comment on that routine for additional information.
drh7d10d5a2008-08-20 16:35:10 +0000422** The sqlite3ResolveExprNames() routines looks for column names and
drh6a3ea0e2003-05-02 14:32:12 +0000423** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
drh51147ba2005-07-23 22:59:55 +0000424** the VDBE cursor number of the table. This routine just has to
425** translate the cursor numbers into bitmask values and OR all
426** the bitmasks together.
drh75897232000-05-29 14:26:00 +0000427*/
drh111a6a72008-12-21 03:51:16 +0000428static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
429static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
430static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
drh51669862004-12-18 18:40:26 +0000431 Bitmask mask = 0;
drh75897232000-05-29 14:26:00 +0000432 if( p==0 ) return 0;
drh967e8b72000-06-21 13:59:10 +0000433 if( p->op==TK_COLUMN ){
drh8feb4b12004-07-19 02:12:14 +0000434 mask = getMask(pMaskSet, p->iTable);
drh8feb4b12004-07-19 02:12:14 +0000435 return mask;
drh75897232000-05-29 14:26:00 +0000436 }
danielk1977b3bce662005-01-29 08:32:43 +0000437 mask = exprTableUsage(pMaskSet, p->pRight);
438 mask |= exprTableUsage(pMaskSet, p->pLeft);
danielk19776ab3a2e2009-02-19 14:39:25 +0000439 if( ExprHasProperty(p, EP_xIsSelect) ){
440 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
441 }else{
442 mask |= exprListTableUsage(pMaskSet, p->x.pList);
443 }
danielk1977b3bce662005-01-29 08:32:43 +0000444 return mask;
445}
drh111a6a72008-12-21 03:51:16 +0000446static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
danielk1977b3bce662005-01-29 08:32:43 +0000447 int i;
448 Bitmask mask = 0;
449 if( pList ){
450 for(i=0; i<pList->nExpr; i++){
451 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
drhdd579122002-04-02 01:58:57 +0000452 }
453 }
drh75897232000-05-29 14:26:00 +0000454 return mask;
455}
drh111a6a72008-12-21 03:51:16 +0000456static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
drha430ae82007-09-12 15:41:01 +0000457 Bitmask mask = 0;
458 while( pS ){
459 mask |= exprListTableUsage(pMaskSet, pS->pEList);
drhf5b11382005-09-17 13:07:13 +0000460 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
461 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
462 mask |= exprTableUsage(pMaskSet, pS->pWhere);
463 mask |= exprTableUsage(pMaskSet, pS->pHaving);
drha430ae82007-09-12 15:41:01 +0000464 pS = pS->pPrior;
drhf5b11382005-09-17 13:07:13 +0000465 }
466 return mask;
467}
drh75897232000-05-29 14:26:00 +0000468
469/*
drh487ab3c2001-11-08 00:45:21 +0000470** Return TRUE if the given operator is one of the operators that is
drh51669862004-12-18 18:40:26 +0000471** allowed for an indexable WHERE clause term. The allowed operators are
drhc27a1ce2002-06-14 20:58:45 +0000472** "=", "<", ">", "<=", ">=", and "IN".
drh487ab3c2001-11-08 00:45:21 +0000473*/
474static int allowedOp(int op){
drhfe05af82005-07-21 03:14:59 +0000475 assert( TK_GT>TK_EQ && TK_GT<TK_GE );
476 assert( TK_LT>TK_EQ && TK_LT<TK_GE );
477 assert( TK_LE>TK_EQ && TK_LE<TK_GE );
478 assert( TK_GE==TK_EQ+4 );
drh50b39962006-10-28 00:28:09 +0000479 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
drh487ab3c2001-11-08 00:45:21 +0000480}
481
482/*
drh902b9ee2008-12-05 17:17:07 +0000483** Swap two objects of type TYPE.
drh193bd772004-07-20 18:23:14 +0000484*/
485#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
486
487/*
drh909626d2008-05-30 14:58:37 +0000488** Commute a comparison operator. Expressions of the form "X op Y"
drh0fcef5e2005-07-19 17:38:22 +0000489** are converted into "Y op X".
danielk1977eb5453d2007-07-30 14:40:48 +0000490**
491** If a collation sequence is associated with either the left or right
492** side of the comparison, it remains associated with the same side after
493** the commutation. So "Y collate NOCASE op X" becomes
494** "X collate NOCASE op Y". This is because any collation sequence on
495** the left hand side of a comparison overrides any collation sequence
496** attached to the right. For the same reason the EP_ExpCollate flag
497** is not commuted.
drh193bd772004-07-20 18:23:14 +0000498*/
drh7d10d5a2008-08-20 16:35:10 +0000499static void exprCommute(Parse *pParse, Expr *pExpr){
danielk1977eb5453d2007-07-30 14:40:48 +0000500 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
501 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
drhfe05af82005-07-21 03:14:59 +0000502 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
drh7d10d5a2008-08-20 16:35:10 +0000503 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
504 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
drh0fcef5e2005-07-19 17:38:22 +0000505 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
danielk1977eb5453d2007-07-30 14:40:48 +0000506 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
507 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
drh0fcef5e2005-07-19 17:38:22 +0000508 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
509 if( pExpr->op>=TK_GT ){
510 assert( TK_LT==TK_GT+2 );
511 assert( TK_GE==TK_LE+2 );
512 assert( TK_GT>TK_EQ );
513 assert( TK_GT<TK_LE );
514 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
515 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
drh193bd772004-07-20 18:23:14 +0000516 }
drh193bd772004-07-20 18:23:14 +0000517}
518
519/*
drhfe05af82005-07-21 03:14:59 +0000520** Translate from TK_xx operator to WO_xx bitmask.
521*/
drhec1724e2008-12-09 01:32:03 +0000522static u16 operatorMask(int op){
523 u16 c;
drhfe05af82005-07-21 03:14:59 +0000524 assert( allowedOp(op) );
525 if( op==TK_IN ){
drh51147ba2005-07-23 22:59:55 +0000526 c = WO_IN;
drh50b39962006-10-28 00:28:09 +0000527 }else if( op==TK_ISNULL ){
528 c = WO_ISNULL;
drhfe05af82005-07-21 03:14:59 +0000529 }else{
drhec1724e2008-12-09 01:32:03 +0000530 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
531 c = (u16)(WO_EQ<<(op-TK_EQ));
drhfe05af82005-07-21 03:14:59 +0000532 }
drh50b39962006-10-28 00:28:09 +0000533 assert( op!=TK_ISNULL || c==WO_ISNULL );
drh51147ba2005-07-23 22:59:55 +0000534 assert( op!=TK_IN || c==WO_IN );
535 assert( op!=TK_EQ || c==WO_EQ );
536 assert( op!=TK_LT || c==WO_LT );
537 assert( op!=TK_LE || c==WO_LE );
538 assert( op!=TK_GT || c==WO_GT );
539 assert( op!=TK_GE || c==WO_GE );
540 return c;
drhfe05af82005-07-21 03:14:59 +0000541}
542
543/*
544** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
545** where X is a reference to the iColumn of table iCur and <op> is one of
546** the WO_xx operator codes specified by the op parameter.
547** Return a pointer to the term. Return 0 if not found.
548*/
549static WhereTerm *findTerm(
550 WhereClause *pWC, /* The WHERE clause to be searched */
551 int iCur, /* Cursor number of LHS */
552 int iColumn, /* Column number of LHS */
553 Bitmask notReady, /* RHS must not overlap with this mask */
drhec1724e2008-12-09 01:32:03 +0000554 u32 op, /* Mask of WO_xx values describing operator */
drhfe05af82005-07-21 03:14:59 +0000555 Index *pIdx /* Must be compatible with this index, if not NULL */
556){
557 WhereTerm *pTerm;
558 int k;
drh22c24032008-07-09 13:28:53 +0000559 assert( iCur>=0 );
drhec1724e2008-12-09 01:32:03 +0000560 op &= WO_ALL;
drhfe05af82005-07-21 03:14:59 +0000561 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
562 if( pTerm->leftCursor==iCur
563 && (pTerm->prereqRight & notReady)==0
drh700a2262008-12-17 19:22:15 +0000564 && pTerm->u.leftColumn==iColumn
drhb52076c2006-01-23 13:22:09 +0000565 && (pTerm->eOperator & op)!=0
drhfe05af82005-07-21 03:14:59 +0000566 ){
drh22c24032008-07-09 13:28:53 +0000567 if( pIdx && pTerm->eOperator!=WO_ISNULL ){
drhfe05af82005-07-21 03:14:59 +0000568 Expr *pX = pTerm->pExpr;
569 CollSeq *pColl;
570 char idxaff;
danielk1977f0113002006-01-24 12:09:17 +0000571 int j;
drhfe05af82005-07-21 03:14:59 +0000572 Parse *pParse = pWC->pParse;
573
574 idxaff = pIdx->pTable->aCol[iColumn].affinity;
575 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
danielk1977bcbb04e2007-05-29 12:11:29 +0000576
577 /* Figure out the collation sequence required from an index for
578 ** it to be useful for optimising expression pX. Store this
579 ** value in variable pColl.
580 */
581 assert(pX->pLeft);
582 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
danielk197793574162008-12-30 15:26:29 +0000583 assert(pColl || pParse->nErr);
danielk1977bcbb04e2007-05-29 12:11:29 +0000584
drh22c24032008-07-09 13:28:53 +0000585 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
drh34004ce2008-07-11 16:15:17 +0000586 if( NEVER(j>=pIdx->nColumn) ) return 0;
drh22c24032008-07-09 13:28:53 +0000587 }
danielk197793574162008-12-30 15:26:29 +0000588 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
drhfe05af82005-07-21 03:14:59 +0000589 }
590 return pTerm;
591 }
592 }
593 return 0;
594}
595
drh6c30be82005-07-29 15:10:17 +0000596/* Forward reference */
drh7b4fc6a2007-02-06 13:26:32 +0000597static void exprAnalyze(SrcList*, WhereClause*, int);
drh6c30be82005-07-29 15:10:17 +0000598
599/*
600** Call exprAnalyze on all terms in a WHERE clause.
601**
602**
603*/
604static void exprAnalyzeAll(
605 SrcList *pTabList, /* the FROM clause */
drh6c30be82005-07-29 15:10:17 +0000606 WhereClause *pWC /* the WHERE clause to be analyzed */
607){
drh6c30be82005-07-29 15:10:17 +0000608 int i;
drh9eb20282005-08-24 03:52:18 +0000609 for(i=pWC->nTerm-1; i>=0; i--){
drh7b4fc6a2007-02-06 13:26:32 +0000610 exprAnalyze(pTabList, pWC, i);
drh6c30be82005-07-29 15:10:17 +0000611 }
612}
613
drhd2687b72005-08-12 22:56:09 +0000614#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
615/*
616** Check to see if the given expression is a LIKE or GLOB operator that
617** can be optimized using inequality constraints. Return TRUE if it is
618** so and false if not.
619**
620** In order for the operator to be optimizible, the RHS must be a string
621** literal that does not begin with a wildcard.
622*/
623static int isLikeOrGlob(
drh7d10d5a2008-08-20 16:35:10 +0000624 Parse *pParse, /* Parsing and code generating context */
drhd2687b72005-08-12 22:56:09 +0000625 Expr *pExpr, /* Test this expression */
dan937d0de2009-10-15 18:35:38 +0000626 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
drh9f504ea2008-02-23 21:55:39 +0000627 int *pisComplete, /* True if the only wildcard is % in the last character */
628 int *pnoCase /* True if uppercase is equivalent to lowercase */
drhd2687b72005-08-12 22:56:09 +0000629){
dan937d0de2009-10-15 18:35:38 +0000630 const char *z = 0; /* String on RHS of LIKE operator */
drh5bd98ae2009-01-07 18:24:03 +0000631 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
632 ExprList *pList; /* List of operands to the LIKE operator */
633 int c; /* One character in z[] */
634 int cnt; /* Number of non-wildcard prefix characters */
635 char wc[3]; /* Wildcard characters */
636 CollSeq *pColl; /* Collating sequence for LHS */
637 sqlite3 *db = pParse->db; /* Database connection */
dan937d0de2009-10-15 18:35:38 +0000638 sqlite3_value *pVal = 0;
639 int op; /* Opcode of pRight */
drhd64fe2f2005-08-28 17:00:23 +0000640
drh9f504ea2008-02-23 21:55:39 +0000641 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
drhd2687b72005-08-12 22:56:09 +0000642 return 0;
643 }
drh9f504ea2008-02-23 21:55:39 +0000644#ifdef SQLITE_EBCDIC
645 if( *pnoCase ) return 0;
646#endif
danielk19776ab3a2e2009-02-19 14:39:25 +0000647 pList = pExpr->x.pList;
drh55ef4d92005-08-14 01:20:37 +0000648 pLeft = pList->a[1].pExpr;
drhd91ca492009-10-22 20:50:36 +0000649 if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){
650 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
651 ** be the name of an indexed column with TEXT affinity. */
drhd2687b72005-08-12 22:56:09 +0000652 return 0;
653 }
drhd91ca492009-10-22 20:50:36 +0000654 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
drh7d10d5a2008-08-20 16:35:10 +0000655 pColl = sqlite3ExprCollSeq(pParse, pLeft);
drhd91ca492009-10-22 20:50:36 +0000656 assert( pColl!=0 ); /* Every non-IPK column has a collating sequence */
drh9f504ea2008-02-23 21:55:39 +0000657 if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
658 (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
drhd91ca492009-10-22 20:50:36 +0000659 /* IMP: R-09003-32046 For the GLOB operator, the column must use the
660 ** default BINARY collating sequence.
661 ** IMP: R-41408-28306 For the LIKE operator, if case_sensitive_like mode
662 ** is enabled then the column must use the default BINARY collating
663 ** sequence, or if case_sensitive_like mode is disabled then the column
664 ** must use the built-in NOCASE collating sequence.
665 */
drhd64fe2f2005-08-28 17:00:23 +0000666 return 0;
667 }
dan937d0de2009-10-15 18:35:38 +0000668
669 pRight = pList->a[0].pExpr;
670 op = pRight->op;
671 if( op==TK_REGISTER ){
672 op = pRight->op2;
673 }
674 if( op==TK_VARIABLE ){
675 Vdbe *pReprepare = pParse->pReprepare;
676 pVal = sqlite3VdbeGetValue(pReprepare, pRight->iColumn, SQLITE_AFF_NONE);
677 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
678 z = (char *)sqlite3_value_text(pVal);
679 }
dan1d2ce4f2009-10-19 18:11:09 +0000680 sqlite3VdbeSetVarmask(pParse->pVdbe, pRight->iColumn);
dan937d0de2009-10-15 18:35:38 +0000681 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
682 }else if( op==TK_STRING ){
683 z = pRight->u.zToken;
684 }
685 if( z ){
shane85095702009-06-15 16:27:08 +0000686 cnt = 0;
drhb7916a72009-05-27 10:31:29 +0000687 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
drh24fb6272009-05-01 21:13:36 +0000688 cnt++;
689 }
shane85095702009-06-15 16:27:08 +0000690 if( cnt!=0 && c!=0 && 255!=(u8)z[cnt-1] ){
dan937d0de2009-10-15 18:35:38 +0000691 Expr *pPrefix;
shane85095702009-06-15 16:27:08 +0000692 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
dan937d0de2009-10-15 18:35:38 +0000693 pPrefix = sqlite3Expr(db, TK_STRING, z);
694 if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
695 *ppPrefix = pPrefix;
696 if( op==TK_VARIABLE ){
697 Vdbe *v = pParse->pVdbe;
dan1d2ce4f2009-10-19 18:11:09 +0000698 sqlite3VdbeSetVarmask(v, pRight->iColumn);
dan937d0de2009-10-15 18:35:38 +0000699 if( *pisComplete && pRight->u.zToken[1] ){
700 /* If the rhs of the LIKE expression is a variable, and the current
701 ** value of the variable means there is no need to invoke the LIKE
702 ** function, then no OP_Variable will be added to the program.
703 ** This causes problems for the sqlite3_bind_parameter_name()
drhbec451f2009-10-17 13:13:02 +0000704 ** API. To workaround them, add a dummy OP_Variable here.
705 */
706 int r1 = sqlite3GetTempReg(pParse);
707 sqlite3ExprCodeTarget(pParse, pRight, r1);
dan937d0de2009-10-15 18:35:38 +0000708 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
drhbec451f2009-10-17 13:13:02 +0000709 sqlite3ReleaseTempReg(pParse, r1);
dan937d0de2009-10-15 18:35:38 +0000710 }
711 }
712 }else{
713 z = 0;
shane85095702009-06-15 16:27:08 +0000714 }
drhf998b732007-11-26 13:36:00 +0000715 }
dan937d0de2009-10-15 18:35:38 +0000716
717 sqlite3ValueFree(pVal);
718 return (z!=0);
drhd2687b72005-08-12 22:56:09 +0000719}
720#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
721
drhedb193b2006-06-27 13:20:21 +0000722
723#ifndef SQLITE_OMIT_VIRTUALTABLE
drhfe05af82005-07-21 03:14:59 +0000724/*
drh7f375902006-06-13 17:38:59 +0000725** Check to see if the given expression is of the form
726**
727** column MATCH expr
728**
729** If it is then return TRUE. If not, return FALSE.
730*/
731static int isMatchOfColumn(
732 Expr *pExpr /* Test this expression */
733){
734 ExprList *pList;
735
736 if( pExpr->op!=TK_FUNCTION ){
737 return 0;
738 }
drh33e619f2009-05-28 01:00:55 +0000739 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
drh7f375902006-06-13 17:38:59 +0000740 return 0;
741 }
danielk19776ab3a2e2009-02-19 14:39:25 +0000742 pList = pExpr->x.pList;
drh7f375902006-06-13 17:38:59 +0000743 if( pList->nExpr!=2 ){
744 return 0;
745 }
746 if( pList->a[1].pExpr->op != TK_COLUMN ){
747 return 0;
748 }
749 return 1;
750}
drhedb193b2006-06-27 13:20:21 +0000751#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh7f375902006-06-13 17:38:59 +0000752
753/*
drh54a167d2005-11-26 14:08:07 +0000754** If the pBase expression originated in the ON or USING clause of
755** a join, then transfer the appropriate markings over to derived.
756*/
757static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
758 pDerived->flags |= pBase->flags & EP_FromJoin;
759 pDerived->iRightJoinTable = pBase->iRightJoinTable;
760}
761
drh3e355802007-02-23 23:13:33 +0000762#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
763/*
drh1a58fe02008-12-20 02:06:13 +0000764** Analyze a term that consists of two or more OR-connected
765** subterms. So in:
drh3e355802007-02-23 23:13:33 +0000766**
drh1a58fe02008-12-20 02:06:13 +0000767** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
768** ^^^^^^^^^^^^^^^^^^^^
drh3e355802007-02-23 23:13:33 +0000769**
drh1a58fe02008-12-20 02:06:13 +0000770** This routine analyzes terms such as the middle term in the above example.
771** A WhereOrTerm object is computed and attached to the term under
772** analysis, regardless of the outcome of the analysis. Hence:
drh3e355802007-02-23 23:13:33 +0000773**
drh1a58fe02008-12-20 02:06:13 +0000774** WhereTerm.wtFlags |= TERM_ORINFO
775** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
drh3e355802007-02-23 23:13:33 +0000776**
drh1a58fe02008-12-20 02:06:13 +0000777** The term being analyzed must have two or more of OR-connected subterms.
danielk1977fdc40192008-12-29 18:33:32 +0000778** A single subterm might be a set of AND-connected sub-subterms.
drh1a58fe02008-12-20 02:06:13 +0000779** Examples of terms under analysis:
drh3e355802007-02-23 23:13:33 +0000780**
drh1a58fe02008-12-20 02:06:13 +0000781** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
782** (B) x=expr1 OR expr2=x OR x=expr3
783** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
784** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
785** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
drh3e355802007-02-23 23:13:33 +0000786**
drh1a58fe02008-12-20 02:06:13 +0000787** CASE 1:
788**
789** If all subterms are of the form T.C=expr for some single column of C
790** a single table T (as shown in example B above) then create a new virtual
791** term that is an equivalent IN expression. In other words, if the term
792** being analyzed is:
793**
794** x = expr1 OR expr2 = x OR x = expr3
795**
796** then create a new virtual term like this:
797**
798** x IN (expr1,expr2,expr3)
799**
800** CASE 2:
801**
802** If all subterms are indexable by a single table T, then set
803**
804** WhereTerm.eOperator = WO_OR
805** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
806**
807** A subterm is "indexable" if it is of the form
808** "T.C <op> <expr>" where C is any column of table T and
809** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
810** A subterm is also indexable if it is an AND of two or more
811** subsubterms at least one of which is indexable. Indexable AND
812** subterms have their eOperator set to WO_AND and they have
813** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
814**
815** From another point of view, "indexable" means that the subterm could
816** potentially be used with an index if an appropriate index exists.
817** This analysis does not consider whether or not the index exists; that
818** is something the bestIndex() routine will determine. This analysis
819** only looks at whether subterms appropriate for indexing exist.
820**
821** All examples A through E above all satisfy case 2. But if a term
822** also statisfies case 1 (such as B) we know that the optimizer will
823** always prefer case 1, so in that case we pretend that case 2 is not
824** satisfied.
825**
826** It might be the case that multiple tables are indexable. For example,
827** (E) above is indexable on tables P, Q, and R.
828**
829** Terms that satisfy case 2 are candidates for lookup by using
830** separate indices to find rowids for each subterm and composing
831** the union of all rowids using a RowSet object. This is similar
832** to "bitmap indices" in other database engines.
833**
834** OTHERWISE:
835**
836** If neither case 1 nor case 2 apply, then leave the eOperator set to
837** zero. This term is not useful for search.
drh3e355802007-02-23 23:13:33 +0000838*/
drh1a58fe02008-12-20 02:06:13 +0000839static void exprAnalyzeOrTerm(
840 SrcList *pSrc, /* the FROM clause */
841 WhereClause *pWC, /* the complete WHERE clause */
842 int idxTerm /* Index of the OR-term to be analyzed */
843){
844 Parse *pParse = pWC->pParse; /* Parser context */
845 sqlite3 *db = pParse->db; /* Database connection */
846 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
847 Expr *pExpr = pTerm->pExpr; /* The expression of the term */
drh111a6a72008-12-21 03:51:16 +0000848 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
drh1a58fe02008-12-20 02:06:13 +0000849 int i; /* Loop counters */
850 WhereClause *pOrWc; /* Breakup of pTerm into subterms */
851 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
852 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
853 Bitmask chngToIN; /* Tables that might satisfy case 1 */
854 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
drh3e355802007-02-23 23:13:33 +0000855
drh1a58fe02008-12-20 02:06:13 +0000856 /*
857 ** Break the OR clause into its separate subterms. The subterms are
858 ** stored in a WhereClause structure containing within the WhereOrInfo
859 ** object that is attached to the original OR clause term.
860 */
861 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
862 assert( pExpr->op==TK_OR );
drh954701a2008-12-29 23:45:07 +0000863 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
drh1a58fe02008-12-20 02:06:13 +0000864 if( pOrInfo==0 ) return;
865 pTerm->wtFlags |= TERM_ORINFO;
866 pOrWc = &pOrInfo->wc;
867 whereClauseInit(pOrWc, pWC->pParse, pMaskSet);
868 whereSplit(pOrWc, pExpr, TK_OR);
869 exprAnalyzeAll(pSrc, pOrWc);
870 if( db->mallocFailed ) return;
871 assert( pOrWc->nTerm>=2 );
872
873 /*
874 ** Compute the set of tables that might satisfy cases 1 or 2.
875 */
danielk1977e672c8e2009-05-22 15:43:26 +0000876 indexable = ~(Bitmask)0;
877 chngToIN = ~(pWC->vmask);
drh1a58fe02008-12-20 02:06:13 +0000878 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
879 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
drh29435252008-12-28 18:35:08 +0000880 WhereAndInfo *pAndInfo;
881 assert( pOrTerm->eOperator==0 );
882 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
drh1a58fe02008-12-20 02:06:13 +0000883 chngToIN = 0;
drh29435252008-12-28 18:35:08 +0000884 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
885 if( pAndInfo ){
886 WhereClause *pAndWC;
887 WhereTerm *pAndTerm;
888 int j;
889 Bitmask b = 0;
890 pOrTerm->u.pAndInfo = pAndInfo;
891 pOrTerm->wtFlags |= TERM_ANDINFO;
892 pOrTerm->eOperator = WO_AND;
893 pAndWC = &pAndInfo->wc;
894 whereClauseInit(pAndWC, pWC->pParse, pMaskSet);
895 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
896 exprAnalyzeAll(pSrc, pAndWC);
drh7c2fbde2009-01-07 20:58:57 +0000897 testcase( db->mallocFailed );
drh96c7a7d2009-01-10 15:34:12 +0000898 if( !db->mallocFailed ){
899 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
900 assert( pAndTerm->pExpr );
901 if( allowedOp(pAndTerm->pExpr->op) ){
902 b |= getMask(pMaskSet, pAndTerm->leftCursor);
903 }
drh29435252008-12-28 18:35:08 +0000904 }
905 }
906 indexable &= b;
907 }
drh1a58fe02008-12-20 02:06:13 +0000908 }else if( pOrTerm->wtFlags & TERM_COPIED ){
909 /* Skip this term for now. We revisit it when we process the
910 ** corresponding TERM_VIRTUAL term */
911 }else{
912 Bitmask b;
913 b = getMask(pMaskSet, pOrTerm->leftCursor);
914 if( pOrTerm->wtFlags & TERM_VIRTUAL ){
915 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
916 b |= getMask(pMaskSet, pOther->leftCursor);
917 }
918 indexable &= b;
919 if( pOrTerm->eOperator!=WO_EQ ){
920 chngToIN = 0;
921 }else{
922 chngToIN &= b;
923 }
924 }
drh3e355802007-02-23 23:13:33 +0000925 }
drh1a58fe02008-12-20 02:06:13 +0000926
927 /*
928 ** Record the set of tables that satisfy case 2. The set might be
drh111a6a72008-12-21 03:51:16 +0000929 ** empty.
drh1a58fe02008-12-20 02:06:13 +0000930 */
931 pOrInfo->indexable = indexable;
drh111a6a72008-12-21 03:51:16 +0000932 pTerm->eOperator = indexable==0 ? 0 : WO_OR;
drh1a58fe02008-12-20 02:06:13 +0000933
934 /*
935 ** chngToIN holds a set of tables that *might* satisfy case 1. But
936 ** we have to do some additional checking to see if case 1 really
937 ** is satisfied.
drh4e8be3b2009-06-08 17:11:08 +0000938 **
939 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
940 ** that there is no possibility of transforming the OR clause into an
941 ** IN operator because one or more terms in the OR clause contain
942 ** something other than == on a column in the single table. The 1-bit
943 ** case means that every term of the OR clause is of the form
944 ** "table.column=expr" for some single table. The one bit that is set
945 ** will correspond to the common table. We still need to check to make
946 ** sure the same column is used on all terms. The 2-bit case is when
947 ** the all terms are of the form "table1.column=table2.column". It
948 ** might be possible to form an IN operator with either table1.column
949 ** or table2.column as the LHS if either is common to every term of
950 ** the OR clause.
951 **
952 ** Note that terms of the form "table.column1=table.column2" (the
953 ** same table on both sizes of the ==) cannot be optimized.
drh1a58fe02008-12-20 02:06:13 +0000954 */
955 if( chngToIN ){
956 int okToChngToIN = 0; /* True if the conversion to IN is valid */
957 int iColumn = -1; /* Column index on lhs of IN operator */
shane63207ab2009-02-04 01:49:30 +0000958 int iCursor = -1; /* Table cursor common to all terms */
drh1a58fe02008-12-20 02:06:13 +0000959 int j = 0; /* Loop counter */
960
961 /* Search for a table and column that appears on one side or the
962 ** other of the == operator in every subterm. That table and column
963 ** will be recorded in iCursor and iColumn. There might not be any
964 ** such table and column. Set okToChngToIN if an appropriate table
965 ** and column is found but leave okToChngToIN false if not found.
966 */
967 for(j=0; j<2 && !okToChngToIN; j++){
968 pOrTerm = pOrWc->a;
969 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
970 assert( pOrTerm->eOperator==WO_EQ );
971 pOrTerm->wtFlags &= ~TERM_OR_OK;
drh4e8be3b2009-06-08 17:11:08 +0000972 if( pOrTerm->leftCursor==iCursor ){
973 /* This is the 2-bit case and we are on the second iteration and
974 ** current term is from the first iteration. So skip this term. */
975 assert( j==1 );
976 continue;
977 }
978 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
979 /* This term must be of the form t1.a==t2.b where t2 is in the
980 ** chngToIN set but t1 is not. This term will be either preceeded
981 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
982 ** and use its inversion. */
983 testcase( pOrTerm->wtFlags & TERM_COPIED );
984 testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
985 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
986 continue;
987 }
drh1a58fe02008-12-20 02:06:13 +0000988 iColumn = pOrTerm->u.leftColumn;
989 iCursor = pOrTerm->leftCursor;
990 break;
991 }
992 if( i<0 ){
drh4e8be3b2009-06-08 17:11:08 +0000993 /* No candidate table+column was found. This can only occur
994 ** on the second iteration */
drh1a58fe02008-12-20 02:06:13 +0000995 assert( j==1 );
996 assert( (chngToIN&(chngToIN-1))==0 );
drh4e8be3b2009-06-08 17:11:08 +0000997 assert( chngToIN==getMask(pMaskSet, iCursor) );
drh1a58fe02008-12-20 02:06:13 +0000998 break;
999 }
drh4e8be3b2009-06-08 17:11:08 +00001000 testcase( j==1 );
1001
1002 /* We have found a candidate table and column. Check to see if that
1003 ** table and column is common to every term in the OR clause */
drh1a58fe02008-12-20 02:06:13 +00001004 okToChngToIN = 1;
1005 for(; i>=0 && okToChngToIN; i--, pOrTerm++){
1006 assert( pOrTerm->eOperator==WO_EQ );
1007 if( pOrTerm->leftCursor!=iCursor ){
1008 pOrTerm->wtFlags &= ~TERM_OR_OK;
1009 }else if( pOrTerm->u.leftColumn!=iColumn ){
1010 okToChngToIN = 0;
1011 }else{
1012 int affLeft, affRight;
1013 /* If the right-hand side is also a column, then the affinities
1014 ** of both right and left sides must be such that no type
1015 ** conversions are required on the right. (Ticket #2249)
1016 */
1017 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
1018 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
1019 if( affRight!=0 && affRight!=affLeft ){
1020 okToChngToIN = 0;
1021 }else{
1022 pOrTerm->wtFlags |= TERM_OR_OK;
1023 }
1024 }
1025 }
1026 }
1027
1028 /* At this point, okToChngToIN is true if original pTerm satisfies
1029 ** case 1. In that case, construct a new virtual term that is
1030 ** pTerm converted into an IN operator.
1031 */
1032 if( okToChngToIN ){
1033 Expr *pDup; /* A transient duplicate expression */
1034 ExprList *pList = 0; /* The RHS of the IN operator */
1035 Expr *pLeft = 0; /* The LHS of the IN operator */
1036 Expr *pNew; /* The complete IN operator */
1037
1038 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
1039 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
1040 assert( pOrTerm->eOperator==WO_EQ );
1041 assert( pOrTerm->leftCursor==iCursor );
1042 assert( pOrTerm->u.leftColumn==iColumn );
danielk19776ab3a2e2009-02-19 14:39:25 +00001043 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
drhb7916a72009-05-27 10:31:29 +00001044 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
drh1a58fe02008-12-20 02:06:13 +00001045 pLeft = pOrTerm->pExpr->pLeft;
1046 }
1047 assert( pLeft!=0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001048 pDup = sqlite3ExprDup(db, pLeft, 0);
drhb7916a72009-05-27 10:31:29 +00001049 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
drh1a58fe02008-12-20 02:06:13 +00001050 if( pNew ){
1051 int idxNew;
1052 transferJoinMarkings(pNew, pExpr);
danielk19776ab3a2e2009-02-19 14:39:25 +00001053 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1054 pNew->x.pList = pList;
drh1a58fe02008-12-20 02:06:13 +00001055 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
1056 testcase( idxNew==0 );
1057 exprAnalyze(pSrc, pWC, idxNew);
1058 pTerm = &pWC->a[idxTerm];
1059 pWC->a[idxNew].iParent = idxTerm;
1060 pTerm->nChild = 1;
1061 }else{
1062 sqlite3ExprListDelete(db, pList);
1063 }
1064 pTerm->eOperator = 0; /* case 1 trumps case 2 */
1065 }
drh3e355802007-02-23 23:13:33 +00001066 }
drh3e355802007-02-23 23:13:33 +00001067}
1068#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
drh54a167d2005-11-26 14:08:07 +00001069
drh1a58fe02008-12-20 02:06:13 +00001070
drh54a167d2005-11-26 14:08:07 +00001071/*
drh0aa74ed2005-07-16 13:33:20 +00001072** The input to this routine is an WhereTerm structure with only the
drh51147ba2005-07-23 22:59:55 +00001073** "pExpr" field filled in. The job of this routine is to analyze the
drh0aa74ed2005-07-16 13:33:20 +00001074** subexpression and populate all the other fields of the WhereTerm
drh75897232000-05-29 14:26:00 +00001075** structure.
drh51147ba2005-07-23 22:59:55 +00001076**
1077** If the expression is of the form "<expr> <op> X" it gets commuted
drh1a58fe02008-12-20 02:06:13 +00001078** to the standard form of "X <op> <expr>".
1079**
1080** If the expression is of the form "X <op> Y" where both X and Y are
1081** columns, then the original expression is unchanged and a new virtual
1082** term of the form "Y <op> X" is added to the WHERE clause and
1083** analyzed separately. The original term is marked with TERM_COPIED
1084** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1085** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1086** is a commuted copy of a prior term.) The original term has nChild=1
1087** and the copy has idxParent set to the index of the original term.
drh75897232000-05-29 14:26:00 +00001088*/
drh0fcef5e2005-07-19 17:38:22 +00001089static void exprAnalyze(
1090 SrcList *pSrc, /* the FROM clause */
drh9eb20282005-08-24 03:52:18 +00001091 WhereClause *pWC, /* the WHERE clause */
1092 int idxTerm /* Index of the term to be analyzed */
drh0fcef5e2005-07-19 17:38:22 +00001093){
drh1a58fe02008-12-20 02:06:13 +00001094 WhereTerm *pTerm; /* The term to be analyzed */
drh111a6a72008-12-21 03:51:16 +00001095 WhereMaskSet *pMaskSet; /* Set of table index masks */
drh1a58fe02008-12-20 02:06:13 +00001096 Expr *pExpr; /* The expression to be analyzed */
1097 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
1098 Bitmask prereqAll; /* Prerequesites of pExpr */
drh1d452e12009-11-01 19:26:59 +00001099 Bitmask extraRight = 0; /* */
1100 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
1101 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
1102 int noCase = 0; /* LIKE/GLOB distinguishes case */
drh1a58fe02008-12-20 02:06:13 +00001103 int op; /* Top-level operator. pExpr->op */
1104 Parse *pParse = pWC->pParse; /* Parsing context */
1105 sqlite3 *db = pParse->db; /* Database connection */
drh0fcef5e2005-07-19 17:38:22 +00001106
drhf998b732007-11-26 13:36:00 +00001107 if( db->mallocFailed ){
1108 return;
1109 }
1110 pTerm = &pWC->a[idxTerm];
1111 pMaskSet = pWC->pMaskSet;
1112 pExpr = pTerm->pExpr;
drh0fcef5e2005-07-19 17:38:22 +00001113 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
drh50b39962006-10-28 00:28:09 +00001114 op = pExpr->op;
1115 if( op==TK_IN ){
drhf5b11382005-09-17 13:07:13 +00001116 assert( pExpr->pRight==0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001117 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1118 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
1119 }else{
1120 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
1121 }
drh50b39962006-10-28 00:28:09 +00001122 }else if( op==TK_ISNULL ){
1123 pTerm->prereqRight = 0;
drhf5b11382005-09-17 13:07:13 +00001124 }else{
1125 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
1126 }
drh22d6a532005-09-19 21:05:48 +00001127 prereqAll = exprTableUsage(pMaskSet, pExpr);
1128 if( ExprHasProperty(pExpr, EP_FromJoin) ){
drh42165be2008-03-26 14:56:34 +00001129 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
1130 prereqAll |= x;
drhdafc0ce2008-04-17 19:14:02 +00001131 extraRight = x-1; /* ON clause terms may not be used with an index
1132 ** on left table of a LEFT JOIN. Ticket #3015 */
drh22d6a532005-09-19 21:05:48 +00001133 }
1134 pTerm->prereqAll = prereqAll;
drh0fcef5e2005-07-19 17:38:22 +00001135 pTerm->leftCursor = -1;
drh45b1ee42005-08-02 17:48:22 +00001136 pTerm->iParent = -1;
drhb52076c2006-01-23 13:22:09 +00001137 pTerm->eOperator = 0;
drh50b39962006-10-28 00:28:09 +00001138 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
drh0fcef5e2005-07-19 17:38:22 +00001139 Expr *pLeft = pExpr->pLeft;
1140 Expr *pRight = pExpr->pRight;
1141 if( pLeft->op==TK_COLUMN ){
1142 pTerm->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001143 pTerm->u.leftColumn = pLeft->iColumn;
drh50b39962006-10-28 00:28:09 +00001144 pTerm->eOperator = operatorMask(op);
drh75897232000-05-29 14:26:00 +00001145 }
drh0fcef5e2005-07-19 17:38:22 +00001146 if( pRight && pRight->op==TK_COLUMN ){
1147 WhereTerm *pNew;
1148 Expr *pDup;
1149 if( pTerm->leftCursor>=0 ){
drh9eb20282005-08-24 03:52:18 +00001150 int idxNew;
danielk19776ab3a2e2009-02-19 14:39:25 +00001151 pDup = sqlite3ExprDup(db, pExpr, 0);
drh17435752007-08-16 04:30:38 +00001152 if( db->mallocFailed ){
drh633e6d52008-07-28 19:34:53 +00001153 sqlite3ExprDelete(db, pDup);
drh28f45912006-10-18 23:26:38 +00001154 return;
1155 }
drh9eb20282005-08-24 03:52:18 +00001156 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1157 if( idxNew==0 ) return;
1158 pNew = &pWC->a[idxNew];
1159 pNew->iParent = idxTerm;
1160 pTerm = &pWC->a[idxTerm];
drh45b1ee42005-08-02 17:48:22 +00001161 pTerm->nChild = 1;
drh165be382008-12-05 02:36:33 +00001162 pTerm->wtFlags |= TERM_COPIED;
drh0fcef5e2005-07-19 17:38:22 +00001163 }else{
1164 pDup = pExpr;
1165 pNew = pTerm;
1166 }
drh7d10d5a2008-08-20 16:35:10 +00001167 exprCommute(pParse, pDup);
drh0fcef5e2005-07-19 17:38:22 +00001168 pLeft = pDup->pLeft;
1169 pNew->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001170 pNew->u.leftColumn = pLeft->iColumn;
drh0fcef5e2005-07-19 17:38:22 +00001171 pNew->prereqRight = prereqLeft;
1172 pNew->prereqAll = prereqAll;
drhb52076c2006-01-23 13:22:09 +00001173 pNew->eOperator = operatorMask(pDup->op);
drh75897232000-05-29 14:26:00 +00001174 }
1175 }
drhed378002005-07-28 23:12:08 +00001176
drhd2687b72005-08-12 22:56:09 +00001177#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
drhed378002005-07-28 23:12:08 +00001178 /* If a term is the BETWEEN operator, create two new virtual terms
drh1a58fe02008-12-20 02:06:13 +00001179 ** that define the range that the BETWEEN implements. For example:
1180 **
1181 ** a BETWEEN b AND c
1182 **
1183 ** is converted into:
1184 **
1185 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1186 **
1187 ** The two new terms are added onto the end of the WhereClause object.
1188 ** The new terms are "dynamic" and are children of the original BETWEEN
1189 ** term. That means that if the BETWEEN term is coded, the children are
1190 ** skipped. Or, if the children are satisfied by an index, the original
1191 ** BETWEEN term is skipped.
drhed378002005-07-28 23:12:08 +00001192 */
drh29435252008-12-28 18:35:08 +00001193 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
danielk19776ab3a2e2009-02-19 14:39:25 +00001194 ExprList *pList = pExpr->x.pList;
drhed378002005-07-28 23:12:08 +00001195 int i;
1196 static const u8 ops[] = {TK_GE, TK_LE};
1197 assert( pList!=0 );
1198 assert( pList->nExpr==2 );
1199 for(i=0; i<2; i++){
1200 Expr *pNewExpr;
drh9eb20282005-08-24 03:52:18 +00001201 int idxNew;
drhb7916a72009-05-27 10:31:29 +00001202 pNewExpr = sqlite3PExpr(pParse, ops[i],
1203 sqlite3ExprDup(db, pExpr->pLeft, 0),
danielk19776ab3a2e2009-02-19 14:39:25 +00001204 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
drh9eb20282005-08-24 03:52:18 +00001205 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001206 testcase( idxNew==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001207 exprAnalyze(pSrc, pWC, idxNew);
drh9eb20282005-08-24 03:52:18 +00001208 pTerm = &pWC->a[idxTerm];
1209 pWC->a[idxNew].iParent = idxTerm;
drhed378002005-07-28 23:12:08 +00001210 }
drh45b1ee42005-08-02 17:48:22 +00001211 pTerm->nChild = 2;
drhed378002005-07-28 23:12:08 +00001212 }
drhd2687b72005-08-12 22:56:09 +00001213#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
drhed378002005-07-28 23:12:08 +00001214
danielk19771576cd92006-01-14 08:02:28 +00001215#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
drh1a58fe02008-12-20 02:06:13 +00001216 /* Analyze a term that is composed of two or more subterms connected by
1217 ** an OR operator.
drh6c30be82005-07-29 15:10:17 +00001218 */
1219 else if( pExpr->op==TK_OR ){
drh29435252008-12-28 18:35:08 +00001220 assert( pWC->op==TK_AND );
drh1a58fe02008-12-20 02:06:13 +00001221 exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
danielk1977f51d1bd2009-07-31 06:14:51 +00001222 pTerm = &pWC->a[idxTerm];
drh6c30be82005-07-29 15:10:17 +00001223 }
drhd2687b72005-08-12 22:56:09 +00001224#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1225
1226#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1227 /* Add constraints to reduce the search space on a LIKE or GLOB
1228 ** operator.
drh9f504ea2008-02-23 21:55:39 +00001229 **
1230 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1231 **
1232 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
1233 **
1234 ** The last character of the prefix "abc" is incremented to form the
shane7bc71e52008-05-28 18:01:44 +00001235 ** termination condition "abd".
drhd2687b72005-08-12 22:56:09 +00001236 */
dan937d0de2009-10-15 18:35:38 +00001237 if( pWC->op==TK_AND
1238 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1239 ){
drh1d452e12009-11-01 19:26:59 +00001240 Expr *pLeft; /* LHS of LIKE/GLOB operator */
1241 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1242 Expr *pNewExpr1;
1243 Expr *pNewExpr2;
1244 int idxNew1;
1245 int idxNew2;
drh9eb20282005-08-24 03:52:18 +00001246
danielk19776ab3a2e2009-02-19 14:39:25 +00001247 pLeft = pExpr->x.pList->a[1].pExpr;
danielk19776ab3a2e2009-02-19 14:39:25 +00001248 pStr2 = sqlite3ExprDup(db, pStr1, 0);
drhf998b732007-11-26 13:36:00 +00001249 if( !db->mallocFailed ){
drh254993e2009-06-08 19:44:36 +00001250 u8 c, *pC; /* Last character before the first wildcard */
dan937d0de2009-10-15 18:35:38 +00001251 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
drh9f504ea2008-02-23 21:55:39 +00001252 c = *pC;
drh02a50b72008-05-26 18:33:40 +00001253 if( noCase ){
drh254993e2009-06-08 19:44:36 +00001254 /* The point is to increment the last character before the first
1255 ** wildcard. But if we increment '@', that will push it into the
1256 ** alphabetic range where case conversions will mess up the
1257 ** inequality. To avoid this, make sure to also run the full
1258 ** LIKE on all candidate expressions by clearing the isComplete flag
1259 */
1260 if( c=='A'-1 ) isComplete = 0;
1261
drh02a50b72008-05-26 18:33:40 +00001262 c = sqlite3UpperToLower[c];
1263 }
drh9f504ea2008-02-23 21:55:39 +00001264 *pC = c + 1;
drhd2687b72005-08-12 22:56:09 +00001265 }
danielk19776ab3a2e2009-02-19 14:39:25 +00001266 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft,0),pStr1,0);
drh9eb20282005-08-24 03:52:18 +00001267 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001268 testcase( idxNew1==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001269 exprAnalyze(pSrc, pWC, idxNew1);
danielk19776ab3a2e2009-02-19 14:39:25 +00001270 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft,0),pStr2,0);
drh9eb20282005-08-24 03:52:18 +00001271 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001272 testcase( idxNew2==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001273 exprAnalyze(pSrc, pWC, idxNew2);
drh9eb20282005-08-24 03:52:18 +00001274 pTerm = &pWC->a[idxTerm];
drhd2687b72005-08-12 22:56:09 +00001275 if( isComplete ){
drh9eb20282005-08-24 03:52:18 +00001276 pWC->a[idxNew1].iParent = idxTerm;
1277 pWC->a[idxNew2].iParent = idxTerm;
drhd2687b72005-08-12 22:56:09 +00001278 pTerm->nChild = 2;
1279 }
1280 }
1281#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
drh7f375902006-06-13 17:38:59 +00001282
1283#ifndef SQLITE_OMIT_VIRTUALTABLE
1284 /* Add a WO_MATCH auxiliary term to the constraint set if the
1285 ** current expression is of the form: column MATCH expr.
1286 ** This information is used by the xBestIndex methods of
1287 ** virtual tables. The native query optimizer does not attempt
1288 ** to do anything with MATCH functions.
1289 */
1290 if( isMatchOfColumn(pExpr) ){
1291 int idxNew;
1292 Expr *pRight, *pLeft;
1293 WhereTerm *pNewTerm;
1294 Bitmask prereqColumn, prereqExpr;
1295
danielk19776ab3a2e2009-02-19 14:39:25 +00001296 pRight = pExpr->x.pList->a[0].pExpr;
1297 pLeft = pExpr->x.pList->a[1].pExpr;
drh7f375902006-06-13 17:38:59 +00001298 prereqExpr = exprTableUsage(pMaskSet, pRight);
1299 prereqColumn = exprTableUsage(pMaskSet, pLeft);
1300 if( (prereqExpr & prereqColumn)==0 ){
drh1a90e092006-06-14 22:07:10 +00001301 Expr *pNewExpr;
drhb7916a72009-05-27 10:31:29 +00001302 pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1303 0, sqlite3ExprDup(db, pRight, 0), 0);
drh1a90e092006-06-14 22:07:10 +00001304 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001305 testcase( idxNew==0 );
drh7f375902006-06-13 17:38:59 +00001306 pNewTerm = &pWC->a[idxNew];
1307 pNewTerm->prereqRight = prereqExpr;
1308 pNewTerm->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001309 pNewTerm->u.leftColumn = pLeft->iColumn;
drh7f375902006-06-13 17:38:59 +00001310 pNewTerm->eOperator = WO_MATCH;
1311 pNewTerm->iParent = idxTerm;
drhd2ca60d2006-06-27 02:36:58 +00001312 pTerm = &pWC->a[idxTerm];
drh7f375902006-06-13 17:38:59 +00001313 pTerm->nChild = 1;
drh165be382008-12-05 02:36:33 +00001314 pTerm->wtFlags |= TERM_COPIED;
drh7f375902006-06-13 17:38:59 +00001315 pNewTerm->prereqAll = pTerm->prereqAll;
1316 }
1317 }
1318#endif /* SQLITE_OMIT_VIRTUALTABLE */
drhdafc0ce2008-04-17 19:14:02 +00001319
1320 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1321 ** an index for tables to the left of the join.
1322 */
1323 pTerm->prereqRight |= extraRight;
drh75897232000-05-29 14:26:00 +00001324}
1325
drh7b4fc6a2007-02-06 13:26:32 +00001326/*
1327** Return TRUE if any of the expressions in pList->a[iFirst...] contain
1328** a reference to any table other than the iBase table.
1329*/
1330static int referencesOtherTables(
1331 ExprList *pList, /* Search expressions in ths list */
drh111a6a72008-12-21 03:51:16 +00001332 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
drh7b4fc6a2007-02-06 13:26:32 +00001333 int iFirst, /* Be searching with the iFirst-th expression */
1334 int iBase /* Ignore references to this table */
1335){
1336 Bitmask allowed = ~getMask(pMaskSet, iBase);
1337 while( iFirst<pList->nExpr ){
1338 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
1339 return 1;
1340 }
1341 }
1342 return 0;
1343}
1344
drh0fcef5e2005-07-19 17:38:22 +00001345
drh75897232000-05-29 14:26:00 +00001346/*
drh51669862004-12-18 18:40:26 +00001347** This routine decides if pIdx can be used to satisfy the ORDER BY
1348** clause. If it can, it returns 1. If pIdx cannot satisfy the
1349** ORDER BY clause, this routine returns 0.
1350**
1351** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
1352** left-most table in the FROM clause of that same SELECT statement and
1353** the table has a cursor number of "base". pIdx is an index on pTab.
1354**
1355** nEqCol is the number of columns of pIdx that are used as equality
1356** constraints. Any of these columns may be missing from the ORDER BY
1357** clause and the match can still be a success.
1358**
drh51669862004-12-18 18:40:26 +00001359** All terms of the ORDER BY that match against the index must be either
1360** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
1361** index do not need to satisfy this constraint.) The *pbRev value is
1362** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1363** the ORDER BY clause is all ASC.
1364*/
1365static int isSortingIndex(
1366 Parse *pParse, /* Parsing context */
drh111a6a72008-12-21 03:51:16 +00001367 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
drh51669862004-12-18 18:40:26 +00001368 Index *pIdx, /* The index we are testing */
drh74161702006-02-24 02:53:49 +00001369 int base, /* Cursor number for the table to be sorted */
drh51669862004-12-18 18:40:26 +00001370 ExprList *pOrderBy, /* The ORDER BY clause */
1371 int nEqCol, /* Number of index columns with == constraints */
1372 int *pbRev /* Set to 1 if ORDER BY is DESC */
1373){
drhb46b5772005-08-29 16:40:52 +00001374 int i, j; /* Loop counters */
drh85eeb692005-12-21 03:16:42 +00001375 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
drhb46b5772005-08-29 16:40:52 +00001376 int nTerm; /* Number of ORDER BY terms */
1377 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
drh51669862004-12-18 18:40:26 +00001378 sqlite3 *db = pParse->db;
1379
1380 assert( pOrderBy!=0 );
1381 nTerm = pOrderBy->nExpr;
1382 assert( nTerm>0 );
1383
dan5236ac12009-08-13 07:09:33 +00001384 /* Argument pIdx must either point to a 'real' named index structure,
1385 ** or an index structure allocated on the stack by bestBtreeIndex() to
1386 ** represent the rowid index that is part of every table. */
1387 assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
1388
drh51669862004-12-18 18:40:26 +00001389 /* Match terms of the ORDER BY clause against columns of
1390 ** the index.
drhcc192542006-12-20 03:24:19 +00001391 **
1392 ** Note that indices have pIdx->nColumn regular columns plus
1393 ** one additional column containing the rowid. The rowid column
1394 ** of the index is also allowed to match against the ORDER BY
1395 ** clause.
drh51669862004-12-18 18:40:26 +00001396 */
drhcc192542006-12-20 03:24:19 +00001397 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
drh51669862004-12-18 18:40:26 +00001398 Expr *pExpr; /* The expression of the ORDER BY pTerm */
1399 CollSeq *pColl; /* The collating sequence of pExpr */
drh85eeb692005-12-21 03:16:42 +00001400 int termSortOrder; /* Sort order for this term */
drhcc192542006-12-20 03:24:19 +00001401 int iColumn; /* The i-th column of the index. -1 for rowid */
1402 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
1403 const char *zColl; /* Name of the collating sequence for i-th index term */
drh51669862004-12-18 18:40:26 +00001404
1405 pExpr = pTerm->pExpr;
1406 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1407 /* Can not use an index sort on anything that is not a column in the
1408 ** left-most table of the FROM clause */
drh7b4fc6a2007-02-06 13:26:32 +00001409 break;
drh51669862004-12-18 18:40:26 +00001410 }
1411 pColl = sqlite3ExprCollSeq(pParse, pExpr);
drhcc192542006-12-20 03:24:19 +00001412 if( !pColl ){
1413 pColl = db->pDfltColl;
1414 }
dan5236ac12009-08-13 07:09:33 +00001415 if( pIdx->zName && i<pIdx->nColumn ){
drhcc192542006-12-20 03:24:19 +00001416 iColumn = pIdx->aiColumn[i];
1417 if( iColumn==pIdx->pTable->iPKey ){
1418 iColumn = -1;
1419 }
1420 iSortOrder = pIdx->aSortOrder[i];
1421 zColl = pIdx->azColl[i];
1422 }else{
1423 iColumn = -1;
1424 iSortOrder = 0;
1425 zColl = pColl->zName;
1426 }
1427 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
drh9012bcb2004-12-19 00:11:35 +00001428 /* Term j of the ORDER BY clause does not match column i of the index */
1429 if( i<nEqCol ){
drh51669862004-12-18 18:40:26 +00001430 /* If an index column that is constrained by == fails to match an
1431 ** ORDER BY term, that is OK. Just ignore that column of the index
1432 */
1433 continue;
drhff354e92008-06-25 02:47:57 +00001434 }else if( i==pIdx->nColumn ){
1435 /* Index column i is the rowid. All other terms match. */
1436 break;
drh51669862004-12-18 18:40:26 +00001437 }else{
1438 /* If an index column fails to match and is not constrained by ==
1439 ** then the index cannot satisfy the ORDER BY constraint.
1440 */
1441 return 0;
1442 }
1443 }
dan5236ac12009-08-13 07:09:33 +00001444 assert( pIdx->aSortOrder!=0 || iColumn==-1 );
drh85eeb692005-12-21 03:16:42 +00001445 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
drhcc192542006-12-20 03:24:19 +00001446 assert( iSortOrder==0 || iSortOrder==1 );
1447 termSortOrder = iSortOrder ^ pTerm->sortOrder;
drh51669862004-12-18 18:40:26 +00001448 if( i>nEqCol ){
drh85eeb692005-12-21 03:16:42 +00001449 if( termSortOrder!=sortOrder ){
drh51669862004-12-18 18:40:26 +00001450 /* Indices can only be used if all ORDER BY terms past the
1451 ** equality constraints are all either DESC or ASC. */
1452 return 0;
1453 }
1454 }else{
drh85eeb692005-12-21 03:16:42 +00001455 sortOrder = termSortOrder;
drh51669862004-12-18 18:40:26 +00001456 }
1457 j++;
1458 pTerm++;
drh7b4fc6a2007-02-06 13:26:32 +00001459 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
drhcc192542006-12-20 03:24:19 +00001460 /* If the indexed column is the primary key and everything matches
drh7b4fc6a2007-02-06 13:26:32 +00001461 ** so far and none of the ORDER BY terms to the right reference other
1462 ** tables in the join, then we are assured that the index can be used
1463 ** to sort because the primary key is unique and so none of the other
1464 ** columns will make any difference
drhcc192542006-12-20 03:24:19 +00001465 */
1466 j = nTerm;
1467 }
drh51669862004-12-18 18:40:26 +00001468 }
1469
drhcc192542006-12-20 03:24:19 +00001470 *pbRev = sortOrder!=0;
drh8718f522005-08-13 16:13:04 +00001471 if( j>=nTerm ){
drhcc192542006-12-20 03:24:19 +00001472 /* All terms of the ORDER BY clause are covered by this index so
1473 ** this index can be used for sorting. */
1474 return 1;
1475 }
drh7b4fc6a2007-02-06 13:26:32 +00001476 if( pIdx->onError!=OE_None && i==pIdx->nColumn
1477 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
drhcc192542006-12-20 03:24:19 +00001478 /* All terms of this index match some prefix of the ORDER BY clause
drh7b4fc6a2007-02-06 13:26:32 +00001479 ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1480 ** clause reference other tables in a join. If this is all true then
1481 ** the order by clause is superfluous. */
drh51669862004-12-18 18:40:26 +00001482 return 1;
1483 }
1484 return 0;
1485}
1486
1487/*
drhb6fb62d2005-09-20 08:47:20 +00001488** Prepare a crude estimate of the logarithm of the input value.
drh28c4cf42005-07-27 20:41:43 +00001489** The results need not be exact. This is only used for estimating
drh909626d2008-05-30 14:58:37 +00001490** the total cost of performing operations with O(logN) or O(NlogN)
drh28c4cf42005-07-27 20:41:43 +00001491** complexity. Because N is just a guess, it is no great tragedy if
1492** logN is a little off.
drh28c4cf42005-07-27 20:41:43 +00001493*/
1494static double estLog(double N){
drhb37df7b2005-10-13 02:09:49 +00001495 double logN = 1;
1496 double x = 10;
drh28c4cf42005-07-27 20:41:43 +00001497 while( N>x ){
drhb37df7b2005-10-13 02:09:49 +00001498 logN += 1;
drh28c4cf42005-07-27 20:41:43 +00001499 x *= 10;
1500 }
1501 return logN;
1502}
1503
drh6d209d82006-06-27 01:54:26 +00001504/*
1505** Two routines for printing the content of an sqlite3_index_info
1506** structure. Used for testing and debugging only. If neither
1507** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1508** are no-ops.
1509*/
drh77a2a5e2007-04-06 01:04:39 +00001510#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
drh6d209d82006-06-27 01:54:26 +00001511static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1512 int i;
mlcreech3a00f902008-03-04 17:45:01 +00001513 if( !sqlite3WhereTrace ) return;
drh6d209d82006-06-27 01:54:26 +00001514 for(i=0; i<p->nConstraint; i++){
1515 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1516 i,
1517 p->aConstraint[i].iColumn,
1518 p->aConstraint[i].iTermOffset,
1519 p->aConstraint[i].op,
1520 p->aConstraint[i].usable);
1521 }
1522 for(i=0; i<p->nOrderBy; i++){
1523 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
1524 i,
1525 p->aOrderBy[i].iColumn,
1526 p->aOrderBy[i].desc);
1527 }
1528}
1529static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1530 int i;
mlcreech3a00f902008-03-04 17:45:01 +00001531 if( !sqlite3WhereTrace ) return;
drh6d209d82006-06-27 01:54:26 +00001532 for(i=0; i<p->nConstraint; i++){
1533 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
1534 i,
1535 p->aConstraintUsage[i].argvIndex,
1536 p->aConstraintUsage[i].omit);
1537 }
1538 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
1539 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
1540 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
1541 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
1542}
1543#else
1544#define TRACE_IDX_INPUTS(A)
1545#define TRACE_IDX_OUTPUTS(A)
1546#endif
1547
danielk19771d461462009-04-21 09:02:45 +00001548/*
1549** Required because bestIndex() is called by bestOrClauseIndex()
1550*/
1551static void bestIndex(
1552 Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*);
1553
1554/*
1555** This routine attempts to find an scanning strategy that can be used
1556** to optimize an 'OR' expression that is part of a WHERE clause.
1557**
1558** The table associated with FROM clause term pSrc may be either a
1559** regular B-Tree table or a virtual table.
1560*/
1561static void bestOrClauseIndex(
1562 Parse *pParse, /* The parsing context */
1563 WhereClause *pWC, /* The WHERE clause */
1564 struct SrcList_item *pSrc, /* The FROM clause term to search */
1565 Bitmask notReady, /* Mask of cursors that are not available */
1566 ExprList *pOrderBy, /* The ORDER BY clause */
1567 WhereCost *pCost /* Lowest cost query plan */
1568){
1569#ifndef SQLITE_OMIT_OR_OPTIMIZATION
1570 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
1571 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */
1572 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */
1573 WhereTerm *pTerm; /* A single term of the WHERE clause */
1574
1575 /* Search the WHERE clause terms for a usable WO_OR term. */
1576 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1577 if( pTerm->eOperator==WO_OR
1578 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
1579 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
1580 ){
1581 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
1582 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
1583 WhereTerm *pOrTerm;
1584 int flags = WHERE_MULTI_OR;
1585 double rTotal = 0;
1586 double nRow = 0;
dan5236ac12009-08-13 07:09:33 +00001587 Bitmask used = 0;
danielk19771d461462009-04-21 09:02:45 +00001588
1589 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
1590 WhereCost sTermCost;
1591 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
1592 (pOrTerm - pOrWC->a), (pTerm - pWC->a)
1593 ));
1594 if( pOrTerm->eOperator==WO_AND ){
1595 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
1596 bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost);
1597 }else if( pOrTerm->leftCursor==iCur ){
1598 WhereClause tempWC;
1599 tempWC.pParse = pWC->pParse;
1600 tempWC.pMaskSet = pWC->pMaskSet;
1601 tempWC.op = TK_AND;
1602 tempWC.a = pOrTerm;
1603 tempWC.nTerm = 1;
1604 bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost);
1605 }else{
1606 continue;
1607 }
1608 rTotal += sTermCost.rCost;
1609 nRow += sTermCost.nRow;
dan5236ac12009-08-13 07:09:33 +00001610 used |= sTermCost.used;
danielk19771d461462009-04-21 09:02:45 +00001611 if( rTotal>=pCost->rCost ) break;
1612 }
1613
1614 /* If there is an ORDER BY clause, increase the scan cost to account
1615 ** for the cost of the sort. */
1616 if( pOrderBy!=0 ){
1617 rTotal += nRow*estLog(nRow);
1618 WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal));
1619 }
1620
1621 /* If the cost of scanning using this OR term for optimization is
1622 ** less than the current cost stored in pCost, replace the contents
1623 ** of pCost. */
1624 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
1625 if( rTotal<pCost->rCost ){
1626 pCost->rCost = rTotal;
1627 pCost->nRow = nRow;
dan5236ac12009-08-13 07:09:33 +00001628 pCost->used = used;
danielk19771d461462009-04-21 09:02:45 +00001629 pCost->plan.wsFlags = flags;
1630 pCost->plan.u.pTerm = pTerm;
1631 }
1632 }
1633 }
1634#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1635}
1636
drh9eff6162006-06-12 21:59:13 +00001637#ifndef SQLITE_OMIT_VIRTUALTABLE
1638/*
danielk19771d461462009-04-21 09:02:45 +00001639** Allocate and populate an sqlite3_index_info structure. It is the
1640** responsibility of the caller to eventually release the structure
1641** by passing the pointer returned by this function to sqlite3_free().
1642*/
1643static sqlite3_index_info *allocateIndexInfo(
1644 Parse *pParse,
1645 WhereClause *pWC,
1646 struct SrcList_item *pSrc,
1647 ExprList *pOrderBy
1648){
1649 int i, j;
1650 int nTerm;
1651 struct sqlite3_index_constraint *pIdxCons;
1652 struct sqlite3_index_orderby *pIdxOrderBy;
1653 struct sqlite3_index_constraint_usage *pUsage;
1654 WhereTerm *pTerm;
1655 int nOrderBy;
1656 sqlite3_index_info *pIdxInfo;
1657
1658 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
1659
1660 /* Count the number of possible WHERE clause constraints referring
1661 ** to this virtual table */
1662 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1663 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1664 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1665 testcase( pTerm->eOperator==WO_IN );
1666 testcase( pTerm->eOperator==WO_ISNULL );
1667 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1668 nTerm++;
1669 }
1670
1671 /* If the ORDER BY clause contains only columns in the current
1672 ** virtual table then allocate space for the aOrderBy part of
1673 ** the sqlite3_index_info structure.
1674 */
1675 nOrderBy = 0;
1676 if( pOrderBy ){
1677 for(i=0; i<pOrderBy->nExpr; i++){
1678 Expr *pExpr = pOrderBy->a[i].pExpr;
1679 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1680 }
1681 if( i==pOrderBy->nExpr ){
1682 nOrderBy = pOrderBy->nExpr;
1683 }
1684 }
1685
1686 /* Allocate the sqlite3_index_info structure
1687 */
1688 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1689 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1690 + sizeof(*pIdxOrderBy)*nOrderBy );
1691 if( pIdxInfo==0 ){
1692 sqlite3ErrorMsg(pParse, "out of memory");
1693 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1694 return 0;
1695 }
1696
1697 /* Initialize the structure. The sqlite3_index_info structure contains
1698 ** many fields that are declared "const" to prevent xBestIndex from
1699 ** changing them. We have to do some funky casting in order to
1700 ** initialize those fields.
1701 */
1702 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1703 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1704 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1705 *(int*)&pIdxInfo->nConstraint = nTerm;
1706 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1707 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1708 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1709 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1710 pUsage;
1711
1712 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1713 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1714 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1715 testcase( pTerm->eOperator==WO_IN );
1716 testcase( pTerm->eOperator==WO_ISNULL );
1717 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1718 pIdxCons[j].iColumn = pTerm->u.leftColumn;
1719 pIdxCons[j].iTermOffset = i;
1720 pIdxCons[j].op = (u8)pTerm->eOperator;
1721 /* The direct assignment in the previous line is possible only because
1722 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1723 ** following asserts verify this fact. */
1724 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1725 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1726 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1727 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1728 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1729 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1730 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1731 j++;
1732 }
1733 for(i=0; i<nOrderBy; i++){
1734 Expr *pExpr = pOrderBy->a[i].pExpr;
1735 pIdxOrderBy[i].iColumn = pExpr->iColumn;
1736 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1737 }
1738
1739 return pIdxInfo;
1740}
1741
1742/*
1743** The table object reference passed as the second argument to this function
1744** must represent a virtual table. This function invokes the xBestIndex()
1745** method of the virtual table with the sqlite3_index_info pointer passed
1746** as the argument.
1747**
1748** If an error occurs, pParse is populated with an error message and a
1749** non-zero value is returned. Otherwise, 0 is returned and the output
1750** part of the sqlite3_index_info structure is left populated.
1751**
1752** Whether or not an error is returned, it is the responsibility of the
1753** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1754** that this is required.
1755*/
1756static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
danielk1977595a5232009-07-24 17:58:53 +00001757 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
danielk19771d461462009-04-21 09:02:45 +00001758 int i;
1759 int rc;
1760
1761 (void)sqlite3SafetyOff(pParse->db);
1762 WHERETRACE(("xBestIndex for %s\n", pTab->zName));
1763 TRACE_IDX_INPUTS(p);
1764 rc = pVtab->pModule->xBestIndex(pVtab, p);
1765 TRACE_IDX_OUTPUTS(p);
1766 (void)sqlite3SafetyOn(pParse->db);
1767
1768 if( rc!=SQLITE_OK ){
1769 if( rc==SQLITE_NOMEM ){
1770 pParse->db->mallocFailed = 1;
1771 }else if( !pVtab->zErrMsg ){
1772 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1773 }else{
1774 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1775 }
1776 }
1777 sqlite3DbFree(pParse->db, pVtab->zErrMsg);
1778 pVtab->zErrMsg = 0;
1779
1780 for(i=0; i<p->nConstraint; i++){
1781 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
1782 sqlite3ErrorMsg(pParse,
1783 "table %s: xBestIndex returned an invalid plan", pTab->zName);
1784 }
1785 }
1786
1787 return pParse->nErr;
1788}
1789
1790
1791/*
drh7f375902006-06-13 17:38:59 +00001792** Compute the best index for a virtual table.
1793**
1794** The best index is computed by the xBestIndex method of the virtual
1795** table module. This routine is really just a wrapper that sets up
1796** the sqlite3_index_info structure that is used to communicate with
1797** xBestIndex.
1798**
1799** In a join, this routine might be called multiple times for the
1800** same virtual table. The sqlite3_index_info structure is created
1801** and initialized on the first invocation and reused on all subsequent
1802** invocations. The sqlite3_index_info structure is also used when
1803** code is generated to access the virtual table. The whereInfoDelete()
1804** routine takes care of freeing the sqlite3_index_info structure after
1805** everybody has finished with it.
drh9eff6162006-06-12 21:59:13 +00001806*/
danielk19771d461462009-04-21 09:02:45 +00001807static void bestVirtualIndex(
1808 Parse *pParse, /* The parsing context */
1809 WhereClause *pWC, /* The WHERE clause */
1810 struct SrcList_item *pSrc, /* The FROM clause term to search */
1811 Bitmask notReady, /* Mask of cursors that are not available */
1812 ExprList *pOrderBy, /* The order by clause */
1813 WhereCost *pCost, /* Lowest cost query plan */
1814 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
drh9eff6162006-06-12 21:59:13 +00001815){
1816 Table *pTab = pSrc->pTab;
1817 sqlite3_index_info *pIdxInfo;
1818 struct sqlite3_index_constraint *pIdxCons;
drh9eff6162006-06-12 21:59:13 +00001819 struct sqlite3_index_constraint_usage *pUsage;
1820 WhereTerm *pTerm;
1821 int i, j;
1822 int nOrderBy;
1823
danielk19776eacd282009-04-29 11:50:53 +00001824 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
1825 ** malloc in allocateIndexInfo() fails and this function returns leaving
1826 ** wsFlags in an uninitialized state, the caller may behave unpredictably.
1827 */
drh6a863cd2009-05-06 18:42:21 +00001828 memset(pCost, 0, sizeof(*pCost));
danielk19776eacd282009-04-29 11:50:53 +00001829 pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
1830
drh9eff6162006-06-12 21:59:13 +00001831 /* If the sqlite3_index_info structure has not been previously
danielk19771d461462009-04-21 09:02:45 +00001832 ** allocated and initialized, then allocate and initialize it now.
drh9eff6162006-06-12 21:59:13 +00001833 */
1834 pIdxInfo = *ppIdxInfo;
1835 if( pIdxInfo==0 ){
danielk19771d461462009-04-21 09:02:45 +00001836 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
drh9eff6162006-06-12 21:59:13 +00001837 }
danielk1977732dc552009-04-21 17:23:04 +00001838 if( pIdxInfo==0 ){
1839 return;
1840 }
drh9eff6162006-06-12 21:59:13 +00001841
drh7f375902006-06-13 17:38:59 +00001842 /* At this point, the sqlite3_index_info structure that pIdxInfo points
1843 ** to will have been initialized, either during the current invocation or
1844 ** during some prior invocation. Now we just have to customize the
1845 ** details of pIdxInfo for the current invocation and pass it to
1846 ** xBestIndex.
1847 */
1848
danielk1977935ed5e2007-03-30 09:13:13 +00001849 /* The module name must be defined. Also, by this point there must
1850 ** be a pointer to an sqlite3_vtab structure. Otherwise
1851 ** sqlite3ViewGetColumnNames() would have picked up the error.
1852 */
drh9eff6162006-06-12 21:59:13 +00001853 assert( pTab->azModuleArg && pTab->azModuleArg[0] );
danielk1977595a5232009-07-24 17:58:53 +00001854 assert( sqlite3GetVTable(pParse->db, pTab) );
drh9eff6162006-06-12 21:59:13 +00001855
1856 /* Set the aConstraint[].usable fields and initialize all
drh7f375902006-06-13 17:38:59 +00001857 ** output variables to zero.
1858 **
1859 ** aConstraint[].usable is true for constraints where the right-hand
1860 ** side contains only references to tables to the left of the current
1861 ** table. In other words, if the constraint is of the form:
1862 **
1863 ** column = expr
1864 **
1865 ** and we are evaluating a join, then the constraint on column is
1866 ** only valid if all tables referenced in expr occur to the left
1867 ** of the table containing column.
1868 **
1869 ** The aConstraints[] array contains entries for all constraints
1870 ** on the current table. That way we only have to compute it once
1871 ** even though we might try to pick the best index multiple times.
1872 ** For each attempt at picking an index, the order of tables in the
1873 ** join might be different so we have to recompute the usable flag
1874 ** each time.
drh9eff6162006-06-12 21:59:13 +00001875 */
1876 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1877 pUsage = pIdxInfo->aConstraintUsage;
1878 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
1879 j = pIdxCons->iTermOffset;
1880 pTerm = &pWC->a[j];
dan5236ac12009-08-13 07:09:33 +00001881 pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
drh9eff6162006-06-12 21:59:13 +00001882 }
1883 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
drh4be8b512006-06-13 23:51:34 +00001884 if( pIdxInfo->needToFreeIdxStr ){
1885 sqlite3_free(pIdxInfo->idxStr);
1886 }
1887 pIdxInfo->idxStr = 0;
1888 pIdxInfo->idxNum = 0;
1889 pIdxInfo->needToFreeIdxStr = 0;
drh9eff6162006-06-12 21:59:13 +00001890 pIdxInfo->orderByConsumed = 0;
shanefbd60f82009-02-04 03:59:25 +00001891 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
1892 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
drh9eff6162006-06-12 21:59:13 +00001893 nOrderBy = pIdxInfo->nOrderBy;
danielk19771d461462009-04-21 09:02:45 +00001894 if( !pOrderBy ){
1895 pIdxInfo->nOrderBy = 0;
drh9eff6162006-06-12 21:59:13 +00001896 }
danielk197774cdba42006-06-19 12:02:58 +00001897
danielk19771d461462009-04-21 09:02:45 +00001898 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
1899 return;
danielk197739359dc2008-03-17 09:36:44 +00001900 }
1901
dan5236ac12009-08-13 07:09:33 +00001902 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1903 for(i=0; i<pIdxInfo->nConstraint; i++){
1904 if( pUsage[i].argvIndex>0 ){
1905 pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
1906 }
1907 }
1908
danielk19771d461462009-04-21 09:02:45 +00001909 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
1910 ** inital value of lowestCost in this loop. If it is, then the
1911 ** (cost<lowestCost) test below will never be true.
1912 **
1913 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
1914 ** is defined.
1915 */
1916 if( (SQLITE_BIG_DBL/((double)2))<pIdxInfo->estimatedCost ){
1917 pCost->rCost = (SQLITE_BIG_DBL/((double)2));
1918 }else{
1919 pCost->rCost = pIdxInfo->estimatedCost;
1920 }
danielk19771d461462009-04-21 09:02:45 +00001921 pCost->plan.u.pVtabIdx = pIdxInfo;
drh5901b572009-06-10 19:33:28 +00001922 if( pIdxInfo->orderByConsumed ){
danielk19771d461462009-04-21 09:02:45 +00001923 pCost->plan.wsFlags |= WHERE_ORDERBY;
1924 }
1925 pCost->plan.nEq = 0;
1926 pIdxInfo->nOrderBy = nOrderBy;
1927
1928 /* Try to find a more efficient access pattern by using multiple indexes
1929 ** to optimize an OR expression within the WHERE clause.
1930 */
1931 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
drh9eff6162006-06-12 21:59:13 +00001932}
1933#endif /* SQLITE_OMIT_VIRTUALTABLE */
1934
drh28c4cf42005-07-27 20:41:43 +00001935/*
dan02fa4692009-08-17 17:06:58 +00001936** Argument pIdx is a pointer to an index structure that has an array of
1937** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
1938** stored in Index.aSample. The domain of values stored in said column
1939** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions.
1940** Region 0 contains all values smaller than the first sample value. Region
1941** 1 contains values larger than or equal to the value of the first sample,
1942** but smaller than the value of the second. And so on.
1943**
1944** If successful, this function determines which of the regions value
drh98cdf622009-08-20 18:14:42 +00001945** pVal lies in, sets *piRegion to the region index (a value between 0
1946** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK.
dan02fa4692009-08-17 17:06:58 +00001947** Or, if an OOM occurs while converting text values between encodings,
drh98cdf622009-08-20 18:14:42 +00001948** SQLITE_NOMEM is returned and *piRegion is undefined.
dan02fa4692009-08-17 17:06:58 +00001949*/
dan69188d92009-08-19 08:18:32 +00001950#ifdef SQLITE_ENABLE_STAT2
dan02fa4692009-08-17 17:06:58 +00001951static int whereRangeRegion(
1952 Parse *pParse, /* Database connection */
1953 Index *pIdx, /* Index to consider domain of */
1954 sqlite3_value *pVal, /* Value to consider */
1955 int *piRegion /* OUT: Region of domain in which value lies */
1956){
drhdaf4a9f2009-08-20 20:05:55 +00001957 if( ALWAYS(pVal) ){
dan02fa4692009-08-17 17:06:58 +00001958 IndexSample *aSample = pIdx->aSample;
1959 int i = 0;
1960 int eType = sqlite3_value_type(pVal);
1961
1962 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
1963 double r = sqlite3_value_double(pVal);
1964 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
1965 if( aSample[i].eType==SQLITE_NULL ) continue;
1966 if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break;
1967 }
drhcdaca552009-08-20 13:45:07 +00001968 }else{
dan02fa4692009-08-17 17:06:58 +00001969 sqlite3 *db = pParse->db;
1970 CollSeq *pColl;
1971 const u8 *z;
1972 int n;
drhcdaca552009-08-20 13:45:07 +00001973
1974 /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */
1975 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
1976
dan02fa4692009-08-17 17:06:58 +00001977 if( eType==SQLITE_BLOB ){
1978 z = (const u8 *)sqlite3_value_blob(pVal);
1979 pColl = db->pDfltColl;
dane275dc32009-08-18 16:24:58 +00001980 assert( pColl->enc==SQLITE_UTF8 );
dan02fa4692009-08-17 17:06:58 +00001981 }else{
drh9aeda792009-08-20 02:34:15 +00001982 pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
1983 if( pColl==0 ){
1984 sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
1985 *pIdx->azColl);
dane275dc32009-08-18 16:24:58 +00001986 return SQLITE_ERROR;
1987 }
dan02fa4692009-08-17 17:06:58 +00001988 z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
dane275dc32009-08-18 16:24:58 +00001989 if( !z ){
1990 return SQLITE_NOMEM;
1991 }
dan02fa4692009-08-17 17:06:58 +00001992 assert( z && pColl && pColl->xCmp );
1993 }
1994 n = sqlite3ValueBytes(pVal, pColl->enc);
1995
1996 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
dane275dc32009-08-18 16:24:58 +00001997 int r;
dan02fa4692009-08-17 17:06:58 +00001998 int eSampletype = aSample[i].eType;
1999 if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
2000 if( (eSampletype!=eType) ) break;
dane83c4f32009-09-21 16:34:24 +00002001#ifndef SQLITE_OMIT_UTF16
2002 if( pColl->enc!=SQLITE_UTF8 ){
dane275dc32009-08-18 16:24:58 +00002003 int nSample;
2004 char *zSample = sqlite3Utf8to16(
dan02fa4692009-08-17 17:06:58 +00002005 db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
2006 );
dane275dc32009-08-18 16:24:58 +00002007 if( !zSample ){
2008 assert( db->mallocFailed );
2009 return SQLITE_NOMEM;
2010 }
2011 r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
2012 sqlite3DbFree(db, zSample);
dane83c4f32009-09-21 16:34:24 +00002013 }else
2014#endif
2015 {
2016 r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
dan02fa4692009-08-17 17:06:58 +00002017 }
dane275dc32009-08-18 16:24:58 +00002018 if( r>0 ) break;
dan02fa4692009-08-17 17:06:58 +00002019 }
2020 }
2021
drha8f57612009-08-25 16:28:14 +00002022 assert( i>=0 && i<=SQLITE_INDEX_SAMPLES );
dan02fa4692009-08-17 17:06:58 +00002023 *piRegion = i;
2024 }
2025 return SQLITE_OK;
2026}
dan69188d92009-08-19 08:18:32 +00002027#endif /* #ifdef SQLITE_ENABLE_STAT2 */
dan02fa4692009-08-17 17:06:58 +00002028
2029/*
dan937d0de2009-10-15 18:35:38 +00002030** If expression pExpr represents a literal value, set *pp to point to
2031** an sqlite3_value structure containing the same value, with affinity
2032** aff applied to it, before returning. It is the responsibility of the
2033** caller to eventually release this structure by passing it to
2034** sqlite3ValueFree().
2035**
2036** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
2037** is an SQL variable that currently has a non-NULL value bound to it,
2038** create an sqlite3_value structure containing this value, again with
2039** affinity aff applied to it, instead.
2040**
2041** If neither of the above apply, set *pp to NULL.
2042**
2043** If an error occurs, return an error code. Otherwise, SQLITE_OK.
2044*/
danf7b0b0a2009-10-19 15:52:32 +00002045#ifdef SQLITE_ENABLE_STAT2
dan937d0de2009-10-15 18:35:38 +00002046static int valueFromExpr(
2047 Parse *pParse,
2048 Expr *pExpr,
2049 u8 aff,
2050 sqlite3_value **pp
2051){
drhb4138de2009-10-19 22:41:06 +00002052 /* The evalConstExpr() function will have already converted any TK_VARIABLE
2053 ** expression involved in an comparison into a TK_REGISTER. */
2054 assert( pExpr->op!=TK_VARIABLE );
2055 if( pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE ){
dan937d0de2009-10-15 18:35:38 +00002056 int iVar = pExpr->iColumn;
dan1d2ce4f2009-10-19 18:11:09 +00002057 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
dan937d0de2009-10-15 18:35:38 +00002058 *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
2059 return SQLITE_OK;
2060 }
2061 return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
2062}
danf7b0b0a2009-10-19 15:52:32 +00002063#endif
dan937d0de2009-10-15 18:35:38 +00002064
2065/*
dan02fa4692009-08-17 17:06:58 +00002066** This function is used to estimate the number of rows that will be visited
2067** by scanning an index for a range of values. The range may have an upper
2068** bound, a lower bound, or both. The WHERE clause terms that set the upper
2069** and lower bounds are represented by pLower and pUpper respectively. For
2070** example, assuming that index p is on t1(a):
2071**
2072** ... FROM t1 WHERE a > ? AND a < ? ...
2073** |_____| |_____|
2074** | |
2075** pLower pUpper
2076**
drh98cdf622009-08-20 18:14:42 +00002077** If either of the upper or lower bound is not present, then NULL is passed in
drhcdaca552009-08-20 13:45:07 +00002078** place of the corresponding WhereTerm.
dan02fa4692009-08-17 17:06:58 +00002079**
2080** The nEq parameter is passed the index of the index column subject to the
2081** range constraint. Or, equivalently, the number of equality constraints
2082** optimized by the proposed index scan. For example, assuming index p is
2083** on t1(a, b), and the SQL query is:
2084**
2085** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
2086**
2087** then nEq should be passed the value 1 (as the range restricted column,
2088** b, is the second left-most column of the index). Or, if the query is:
2089**
2090** ... FROM t1 WHERE a > ? AND a < ? ...
2091**
2092** then nEq should be passed 0.
2093**
drh98cdf622009-08-20 18:14:42 +00002094** The returned value is an integer between 1 and 100, inclusive. A return
dan02fa4692009-08-17 17:06:58 +00002095** value of 1 indicates that the proposed range scan is expected to visit
drh98cdf622009-08-20 18:14:42 +00002096** approximately 1/100th (1%) of the rows selected by the nEq equality
2097** constraints (if any). A return value of 100 indicates that it is expected
2098** that the range scan will visit every row (100%) selected by the equality
dan02fa4692009-08-17 17:06:58 +00002099** constraints.
drh98cdf622009-08-20 18:14:42 +00002100**
2101** In the absence of sqlite_stat2 ANALYZE data, each range inequality
2102** reduces the search space by 2/3rds. Hence a single constraint (x>?)
2103** results in a return of 33 and a range constraint (x>? AND x<?) results
2104** in a return of 11.
dan02fa4692009-08-17 17:06:58 +00002105*/
2106static int whereRangeScanEst(
drhcdaca552009-08-20 13:45:07 +00002107 Parse *pParse, /* Parsing & code generating context */
2108 Index *p, /* The index containing the range-compared column; "x" */
2109 int nEq, /* index into p->aCol[] of the range-compared column */
2110 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
2111 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
2112 int *piEst /* OUT: Return value */
dan02fa4692009-08-17 17:06:58 +00002113){
dan69188d92009-08-19 08:18:32 +00002114 int rc = SQLITE_OK;
2115
2116#ifdef SQLITE_ENABLE_STAT2
dan02fa4692009-08-17 17:06:58 +00002117
2118 if( nEq==0 && p->aSample ){
dan937d0de2009-10-15 18:35:38 +00002119 sqlite3_value *pLowerVal = 0;
2120 sqlite3_value *pUpperVal = 0;
dan02fa4692009-08-17 17:06:58 +00002121 int iEst;
drh011cfca2009-08-25 15:56:51 +00002122 int iLower = 0;
2123 int iUpper = SQLITE_INDEX_SAMPLES;
dan937d0de2009-10-15 18:35:38 +00002124 u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
drh98cdf622009-08-20 18:14:42 +00002125
dan02fa4692009-08-17 17:06:58 +00002126 if( pLower ){
2127 Expr *pExpr = pLower->pExpr->pRight;
dan937d0de2009-10-15 18:35:38 +00002128 rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal);
dan02fa4692009-08-17 17:06:58 +00002129 }
drh98cdf622009-08-20 18:14:42 +00002130 if( rc==SQLITE_OK && pUpper ){
dan02fa4692009-08-17 17:06:58 +00002131 Expr *pExpr = pUpper->pExpr->pRight;
dan937d0de2009-10-15 18:35:38 +00002132 rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal);
drh98cdf622009-08-20 18:14:42 +00002133 }
2134
2135 if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){
2136 sqlite3ValueFree(pLowerVal);
2137 sqlite3ValueFree(pUpperVal);
2138 goto range_est_fallback;
2139 }else if( pLowerVal==0 ){
2140 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
drh011cfca2009-08-25 15:56:51 +00002141 if( pLower ) iLower = iUpper/2;
drh98cdf622009-08-20 18:14:42 +00002142 }else if( pUpperVal==0 ){
2143 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
drh011cfca2009-08-25 15:56:51 +00002144 if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2;
drh98cdf622009-08-20 18:14:42 +00002145 }else{
2146 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
2147 if( rc==SQLITE_OK ){
2148 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
dan02fa4692009-08-17 17:06:58 +00002149 }
2150 }
2151
dan02fa4692009-08-17 17:06:58 +00002152 iEst = iUpper - iLower;
drha8f57612009-08-25 16:28:14 +00002153 testcase( iEst==SQLITE_INDEX_SAMPLES );
2154 assert( iEst<=SQLITE_INDEX_SAMPLES );
2155 if( iEst<1 ){
drh98cdf622009-08-20 18:14:42 +00002156 iEst = 1;
2157 }
dan02fa4692009-08-17 17:06:58 +00002158
2159 sqlite3ValueFree(pLowerVal);
2160 sqlite3ValueFree(pUpperVal);
drh98cdf622009-08-20 18:14:42 +00002161 *piEst = (iEst * 100)/SQLITE_INDEX_SAMPLES;
dan02fa4692009-08-17 17:06:58 +00002162 return rc;
2163 }
drh98cdf622009-08-20 18:14:42 +00002164range_est_fallback:
drh3f022182009-09-09 16:10:50 +00002165#else
2166 UNUSED_PARAMETER(pParse);
2167 UNUSED_PARAMETER(p);
2168 UNUSED_PARAMETER(nEq);
dan69188d92009-08-19 08:18:32 +00002169#endif
dan02fa4692009-08-17 17:06:58 +00002170 assert( pLower || pUpper );
drh98cdf622009-08-20 18:14:42 +00002171 if( pLower && pUpper ){
2172 *piEst = 11;
2173 }else{
2174 *piEst = 33;
2175 }
dan02fa4692009-08-17 17:06:58 +00002176 return rc;
2177}
2178
2179
2180/*
drh111a6a72008-12-21 03:51:16 +00002181** Find the query plan for accessing a particular table. Write the
2182** best query plan and its cost into the WhereCost object supplied as the
2183** last parameter.
drh51147ba2005-07-23 22:59:55 +00002184**
drh111a6a72008-12-21 03:51:16 +00002185** The lowest cost plan wins. The cost is an estimate of the amount of
2186** CPU and disk I/O need to process the request using the selected plan.
drh51147ba2005-07-23 22:59:55 +00002187** Factors that influence cost include:
2188**
2189** * The estimated number of rows that will be retrieved. (The
2190** fewer the better.)
2191**
2192** * Whether or not sorting must occur.
2193**
2194** * Whether or not there must be separate lookups in the
2195** index and in the main table.
2196**
danielk1977e2d7b242009-02-23 17:33:49 +00002197** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
2198** the SQL statement, then this function only considers plans using the
drh296a4832009-03-22 20:36:18 +00002199** named index. If no such plan is found, then the returned cost is
2200** SQLITE_BIG_DBL. If a plan is found that uses the named index,
danielk197785574e32008-10-06 05:32:18 +00002201** then the cost is calculated in the usual way.
2202**
danielk1977e2d7b242009-02-23 17:33:49 +00002203** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
2204** in the SELECT statement, then no indexes are considered. However, the
2205** selected plan may still take advantage of the tables built-in rowid
danielk197785574e32008-10-06 05:32:18 +00002206** index.
drhfe05af82005-07-21 03:14:59 +00002207*/
danielk19771d461462009-04-21 09:02:45 +00002208static void bestBtreeIndex(
drhfe05af82005-07-21 03:14:59 +00002209 Parse *pParse, /* The parsing context */
2210 WhereClause *pWC, /* The WHERE clause */
2211 struct SrcList_item *pSrc, /* The FROM clause term to search */
2212 Bitmask notReady, /* Mask of cursors that are not available */
drh111a6a72008-12-21 03:51:16 +00002213 ExprList *pOrderBy, /* The ORDER BY clause */
2214 WhereCost *pCost /* Lowest cost query plan */
drhfe05af82005-07-21 03:14:59 +00002215){
drh51147ba2005-07-23 22:59:55 +00002216 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
2217 Index *pProbe; /* An index we are evaluating */
dan5236ac12009-08-13 07:09:33 +00002218 Index *pIdx; /* Copy of pProbe, or zero for IPK index */
2219 int eqTermMask; /* Current mask of valid equality operators */
2220 int idxEqTermMask; /* Index mask of valid equality operators */
drhcdaca552009-08-20 13:45:07 +00002221 Index sPk; /* A fake index object for the primary key */
2222 unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
2223 int aiColumnPk = -1; /* The aColumn[] value for the sPk index */
2224 int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */
drhfe05af82005-07-21 03:14:59 +00002225
drhcdaca552009-08-20 13:45:07 +00002226 /* Initialize the cost to a worst-case value */
drh111a6a72008-12-21 03:51:16 +00002227 memset(pCost, 0, sizeof(*pCost));
drh111a6a72008-12-21 03:51:16 +00002228 pCost->rCost = SQLITE_BIG_DBL;
drh51147ba2005-07-23 22:59:55 +00002229
drhc49de5d2007-01-19 01:06:01 +00002230 /* If the pSrc table is the right table of a LEFT JOIN then we may not
2231 ** use an index to satisfy IS NULL constraints on that table. This is
2232 ** because columns might end up being NULL if the table does not match -
2233 ** a circumstance which the index cannot help us discover. Ticket #2177.
2234 */
dan5236ac12009-08-13 07:09:33 +00002235 if( pSrc->jointype & JT_LEFT ){
2236 idxEqTermMask = WO_EQ|WO_IN;
drhc49de5d2007-01-19 01:06:01 +00002237 }else{
dan5236ac12009-08-13 07:09:33 +00002238 idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
drhc49de5d2007-01-19 01:06:01 +00002239 }
2240
danielk197785574e32008-10-06 05:32:18 +00002241 if( pSrc->pIndex ){
drhcdaca552009-08-20 13:45:07 +00002242 /* An INDEXED BY clause specifies a particular index to use */
dan5236ac12009-08-13 07:09:33 +00002243 pIdx = pProbe = pSrc->pIndex;
2244 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2245 eqTermMask = idxEqTermMask;
2246 }else{
drhcdaca552009-08-20 13:45:07 +00002247 /* There is no INDEXED BY clause. Create a fake Index object to
2248 ** represent the primary key */
2249 Index *pFirst; /* Any other index on the table */
2250 memset(&sPk, 0, sizeof(Index));
2251 sPk.nColumn = 1;
2252 sPk.aiColumn = &aiColumnPk;
2253 sPk.aiRowEst = aiRowEstPk;
2254 aiRowEstPk[1] = 1;
2255 sPk.onError = OE_Replace;
2256 sPk.pTable = pSrc->pTab;
2257 pFirst = pSrc->pTab->pIndex;
dan5236ac12009-08-13 07:09:33 +00002258 if( pSrc->notIndexed==0 ){
drhcdaca552009-08-20 13:45:07 +00002259 sPk.pNext = pFirst;
dan5236ac12009-08-13 07:09:33 +00002260 }
drhcdaca552009-08-20 13:45:07 +00002261 /* The aiRowEstPk[0] is an estimate of the total number of rows in the
2262 ** table. Get this information from the ANALYZE information if it is
2263 ** available. If not available, assume the table 1 million rows in size.
2264 */
2265 if( pFirst ){
2266 assert( pFirst->aiRowEst!=0 ); /* Allocated together with pFirst */
2267 aiRowEstPk[0] = pFirst->aiRowEst[0];
2268 }else{
2269 aiRowEstPk[0] = 1000000;
dan5236ac12009-08-13 07:09:33 +00002270 }
drhcdaca552009-08-20 13:45:07 +00002271 pProbe = &sPk;
dan5236ac12009-08-13 07:09:33 +00002272 wsFlagMask = ~(
2273 WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
2274 );
2275 eqTermMask = WO_EQ|WO_IN;
2276 pIdx = 0;
danielk197785574e32008-10-06 05:32:18 +00002277 }
drh51147ba2005-07-23 22:59:55 +00002278
drhcdaca552009-08-20 13:45:07 +00002279 /* Loop over all indices looking for the best one to use
2280 */
dan5236ac12009-08-13 07:09:33 +00002281 for(; pProbe; pIdx=pProbe=pProbe->pNext){
2282 const unsigned int * const aiRowEst = pProbe->aiRowEst;
2283 double cost; /* Cost of using pProbe */
2284 double nRow; /* Estimated number of rows in result set */
2285 int rev; /* True to scan in reverse order */
2286 int wsFlags = 0;
2287 Bitmask used = 0;
2288
2289 /* The following variables are populated based on the properties of
2290 ** scan being evaluated. They are then used to determine the expected
2291 ** cost and number of rows returned.
2292 **
2293 ** nEq:
2294 ** Number of equality terms that can be implemented using the index.
2295 **
2296 ** nInMul:
2297 ** The "in-multiplier". This is an estimate of how many seek operations
2298 ** SQLite must perform on the index in question. For example, if the
2299 ** WHERE clause is:
2300 **
2301 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
2302 **
2303 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
2304 ** set to 9. Given the same schema and either of the following WHERE
2305 ** clauses:
2306 **
2307 ** WHERE a = 1
2308 ** WHERE a >= 2
2309 **
2310 ** nInMul is set to 1.
2311 **
2312 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
2313 ** the sub-select is assumed to return 25 rows for the purposes of
2314 ** determining nInMul.
2315 **
2316 ** bInEst:
2317 ** Set to true if there was at least one "x IN (SELECT ...)" term used
2318 ** in determining the value of nInMul.
2319 **
drhcdaca552009-08-20 13:45:07 +00002320 ** nBound:
drh98cdf622009-08-20 18:14:42 +00002321 ** An estimate on the amount of the table that must be searched. A
2322 ** value of 100 means the entire table is searched. Range constraints
2323 ** might reduce this to a value less than 100 to indicate that only
2324 ** a fraction of the table needs searching. In the absence of
2325 ** sqlite_stat2 ANALYZE data, a single inequality reduces the search
2326 ** space to 1/3rd its original size. So an x>? constraint reduces
2327 ** nBound to 33. Two constraints (x>? AND x<?) reduce nBound to 11.
dan5236ac12009-08-13 07:09:33 +00002328 **
2329 ** bSort:
2330 ** Boolean. True if there is an ORDER BY clause that will require an
2331 ** external sort (i.e. scanning the index being evaluated will not
2332 ** correctly order records).
2333 **
2334 ** bLookup:
2335 ** Boolean. True if for each index entry visited a lookup on the
2336 ** corresponding table b-tree is required. This is always false
2337 ** for the rowid index. For other indexes, it is true unless all the
2338 ** columns of the table used by the SELECT statement are present in
2339 ** the index (such an index is sometimes described as a covering index).
2340 ** For example, given the index on (a, b), the second of the following
2341 ** two queries requires table b-tree lookups, but the first does not.
2342 **
2343 ** SELECT a, b FROM tbl WHERE a = 1;
2344 ** SELECT a, b, c FROM tbl WHERE a = 1;
drhfe05af82005-07-21 03:14:59 +00002345 */
dan5236ac12009-08-13 07:09:33 +00002346 int nEq;
2347 int bInEst = 0;
2348 int nInMul = 1;
drh98cdf622009-08-20 18:14:42 +00002349 int nBound = 100;
dan5236ac12009-08-13 07:09:33 +00002350 int bSort = 0;
2351 int bLookup = 0;
2352
2353 /* Determine the values of nEq and nInMul */
2354 for(nEq=0; nEq<pProbe->nColumn; nEq++){
2355 WhereTerm *pTerm; /* A single term of the WHERE clause */
2356 int j = pProbe->aiColumn[nEq];
2357 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
drhfe05af82005-07-21 03:14:59 +00002358 if( pTerm==0 ) break;
dan5236ac12009-08-13 07:09:33 +00002359 wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
drhb52076c2006-01-23 13:22:09 +00002360 if( pTerm->eOperator & WO_IN ){
drha6110402005-07-28 20:51:19 +00002361 Expr *pExpr = pTerm->pExpr;
drh165be382008-12-05 02:36:33 +00002362 wsFlags |= WHERE_COLUMN_IN;
danielk19776ab3a2e2009-02-19 14:39:25 +00002363 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
dan5236ac12009-08-13 07:09:33 +00002364 nInMul *= 25;
2365 bInEst = 1;
danielk19776ab3a2e2009-02-19 14:39:25 +00002366 }else if( pExpr->x.pList ){
dan5236ac12009-08-13 07:09:33 +00002367 nInMul *= pExpr->x.pList->nExpr + 1;
drhfe05af82005-07-21 03:14:59 +00002368 }
drh46619d62009-04-24 14:51:42 +00002369 }else if( pTerm->eOperator & WO_ISNULL ){
2370 wsFlags |= WHERE_COLUMN_NULL;
drhfe05af82005-07-21 03:14:59 +00002371 }
dan5236ac12009-08-13 07:09:33 +00002372 used |= pTerm->prereqRight;
drhfe05af82005-07-21 03:14:59 +00002373 }
dan5236ac12009-08-13 07:09:33 +00002374
2375 /* Determine the value of nBound. */
2376 if( nEq<pProbe->nColumn ){
2377 int j = pProbe->aiColumn[nEq];
2378 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
2379 WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
2380 WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
dane275dc32009-08-18 16:24:58 +00002381 whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &nBound);
dan5236ac12009-08-13 07:09:33 +00002382 if( pTop ){
2383 wsFlags |= WHERE_TOP_LIMIT;
dan5236ac12009-08-13 07:09:33 +00002384 used |= pTop->prereqRight;
2385 }
2386 if( pBtm ){
2387 wsFlags |= WHERE_BTM_LIMIT;
dan5236ac12009-08-13 07:09:33 +00002388 used |= pBtm->prereqRight;
2389 }
2390 wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
2391 }
2392 }else if( pProbe->onError!=OE_None ){
drh46619d62009-04-24 14:51:42 +00002393 testcase( wsFlags & WHERE_COLUMN_IN );
2394 testcase( wsFlags & WHERE_COLUMN_NULL );
2395 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
2396 wsFlags |= WHERE_UNIQUE;
2397 }
drh943af3c2005-07-29 19:43:58 +00002398 }
drhfe05af82005-07-21 03:14:59 +00002399
dan5236ac12009-08-13 07:09:33 +00002400 /* If there is an ORDER BY clause and the index being considered will
2401 ** naturally scan rows in the required order, set the appropriate flags
2402 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
2403 ** will scan rows in a different order, set the bSort variable. */
drh28c4cf42005-07-27 20:41:43 +00002404 if( pOrderBy ){
drh46619d62009-04-24 14:51:42 +00002405 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0
dan5236ac12009-08-13 07:09:33 +00002406 && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev)
drh46619d62009-04-24 14:51:42 +00002407 ){
dan5236ac12009-08-13 07:09:33 +00002408 wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
2409 wsFlags |= (rev ? WHERE_REVERSE : 0);
drh28c4cf42005-07-27 20:41:43 +00002410 }else{
dan5236ac12009-08-13 07:09:33 +00002411 bSort = 1;
drh51147ba2005-07-23 22:59:55 +00002412 }
drhfe05af82005-07-21 03:14:59 +00002413 }
2414
dan5236ac12009-08-13 07:09:33 +00002415 /* If currently calculating the cost of using an index (not the IPK
2416 ** index), determine if all required column data may be obtained without
2417 ** seeking to entries in the main table (i.e. if the index is a covering
2418 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
2419 ** wsFlags. Otherwise, set the bLookup variable to true. */
2420 if( pIdx && wsFlags ){
drhfe05af82005-07-21 03:14:59 +00002421 Bitmask m = pSrc->colUsed;
2422 int j;
dan5236ac12009-08-13 07:09:33 +00002423 for(j=0; j<pIdx->nColumn; j++){
2424 int x = pIdx->aiColumn[j];
drhfe05af82005-07-21 03:14:59 +00002425 if( x<BMS-1 ){
2426 m &= ~(((Bitmask)1)<<x);
2427 }
2428 }
2429 if( m==0 ){
drh165be382008-12-05 02:36:33 +00002430 wsFlags |= WHERE_IDX_ONLY;
dan5236ac12009-08-13 07:09:33 +00002431 }else{
2432 bLookup = 1;
drhfe05af82005-07-21 03:14:59 +00002433 }
2434 }
2435
drhcdaca552009-08-20 13:45:07 +00002436 /**** Begin adding up the cost of using this index (Needs improvements)
2437 **
2438 ** Estimate the number of rows of output. For an IN operator,
2439 ** do not let the estimate exceed half the rows in the table.
2440 */
dan5236ac12009-08-13 07:09:33 +00002441 nRow = (double)(aiRowEst[nEq] * nInMul);
2442 if( bInEst && nRow*2>aiRowEst[0] ){
2443 nRow = aiRowEst[0]/2;
shanecea72b22009-09-07 04:38:36 +00002444 nInMul = (int)(nRow / aiRowEst[nEq]);
dan5236ac12009-08-13 07:09:33 +00002445 }
drhcdaca552009-08-20 13:45:07 +00002446
2447 /* Assume constant cost to access a row and logarithmic cost to
2448 ** do a binary search. Hence, the initial cost is the number of output
2449 ** rows plus log2(table-size) times the number of binary searches.
2450 */
dan5236ac12009-08-13 07:09:33 +00002451 cost = nRow + nInMul*estLog(aiRowEst[0]);
drhcdaca552009-08-20 13:45:07 +00002452
2453 /* Adjust the number of rows and the cost downward to reflect rows
2454 ** that are excluded by range constraints.
2455 */
drh98cdf622009-08-20 18:14:42 +00002456 nRow = (nRow * (double)nBound) / (double)100;
2457 cost = (cost * (double)nBound) / (double)100;
drhcdaca552009-08-20 13:45:07 +00002458
2459 /* Add in the estimated cost of sorting the result
2460 */
dan5236ac12009-08-13 07:09:33 +00002461 if( bSort ){
2462 cost += cost*estLog(cost);
2463 }
drhcdaca552009-08-20 13:45:07 +00002464
2465 /* If all information can be taken directly from the index, we avoid
2466 ** doing table lookups. This reduces the cost by half. (Not really -
2467 ** this needs to be fixed.)
2468 */
dan5236ac12009-08-13 07:09:33 +00002469 if( pIdx && bLookup==0 ){
drhcdaca552009-08-20 13:45:07 +00002470 cost /= (double)2;
dan5236ac12009-08-13 07:09:33 +00002471 }
drhcdaca552009-08-20 13:45:07 +00002472 /**** Cost of using this index has now been computed ****/
dan5236ac12009-08-13 07:09:33 +00002473
2474 WHERETRACE((
2475 "tbl=%s idx=%s nEq=%d nInMul=%d nBound=%d bSort=%d bLookup=%d"
2476 " wsFlags=%d (nRow=%.2f cost=%.2f)\n",
2477 pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"),
2478 nEq, nInMul, nBound, bSort, bLookup, wsFlags, nRow, cost
2479 ));
2480
drhcdaca552009-08-20 13:45:07 +00002481 /* If this index is the best we have seen so far, then record this
2482 ** index and its cost in the pCost structure.
2483 */
dan5236ac12009-08-13 07:09:33 +00002484 if( (!pIdx || wsFlags) && cost<pCost->rCost ){
drh111a6a72008-12-21 03:51:16 +00002485 pCost->rCost = cost;
2486 pCost->nRow = nRow;
dan5236ac12009-08-13 07:09:33 +00002487 pCost->used = used;
2488 pCost->plan.wsFlags = (wsFlags&wsFlagMask);
drh111a6a72008-12-21 03:51:16 +00002489 pCost->plan.nEq = nEq;
dan5236ac12009-08-13 07:09:33 +00002490 pCost->plan.u.pIdx = pIdx;
drhfe05af82005-07-21 03:14:59 +00002491 }
dan5236ac12009-08-13 07:09:33 +00002492
drhcdaca552009-08-20 13:45:07 +00002493 /* If there was an INDEXED BY clause, then only that one index is
2494 ** considered. */
dan5236ac12009-08-13 07:09:33 +00002495 if( pSrc->pIndex ) break;
drhcdaca552009-08-20 13:45:07 +00002496
2497 /* Reset masks for the next index in the loop */
dan5236ac12009-08-13 07:09:33 +00002498 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2499 eqTermMask = idxEqTermMask;
drhfe05af82005-07-21 03:14:59 +00002500 }
2501
dan5236ac12009-08-13 07:09:33 +00002502 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
2503 ** is set, then reverse the order that the index will be scanned
2504 ** in. This is used for application testing, to help find cases
2505 ** where application behaviour depends on the (undefined) order that
2506 ** SQLite outputs rows in in the absence of an ORDER BY clause. */
2507 if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
2508 pCost->plan.wsFlags |= WHERE_REVERSE;
2509 }
2510
2511 assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
2512 assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
2513 assert( pSrc->pIndex==0
2514 || pCost->plan.u.pIdx==0
2515 || pCost->plan.u.pIdx==pSrc->pIndex
2516 );
2517
2518 WHERETRACE(("best index is: %s\n",
2519 (pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
2520 ));
2521
2522 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
drh111a6a72008-12-21 03:51:16 +00002523 pCost->plan.wsFlags |= eqTermMask;
drhfe05af82005-07-21 03:14:59 +00002524}
2525
danielk19771d461462009-04-21 09:02:45 +00002526/*
2527** Find the query plan for accessing table pSrc->pTab. Write the
2528** best query plan and its cost into the WhereCost object supplied
2529** as the last parameter. This function may calculate the cost of
2530** both real and virtual table scans.
2531*/
2532static void bestIndex(
2533 Parse *pParse, /* The parsing context */
2534 WhereClause *pWC, /* The WHERE clause */
2535 struct SrcList_item *pSrc, /* The FROM clause term to search */
2536 Bitmask notReady, /* Mask of cursors that are not available */
2537 ExprList *pOrderBy, /* The ORDER BY clause */
2538 WhereCost *pCost /* Lowest cost query plan */
2539){
shanee26fa4c2009-06-16 14:15:22 +00002540#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19771d461462009-04-21 09:02:45 +00002541 if( IsVirtual(pSrc->pTab) ){
2542 sqlite3_index_info *p = 0;
2543 bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p);
2544 if( p->needToFreeIdxStr ){
2545 sqlite3_free(p->idxStr);
2546 }
2547 sqlite3DbFree(pParse->db, p);
shanee26fa4c2009-06-16 14:15:22 +00002548 }else
2549#endif
2550 {
danielk19771d461462009-04-21 09:02:45 +00002551 bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
2552 }
2553}
drhb6c29892004-11-22 19:12:19 +00002554
2555/*
drh2ffb1182004-07-19 19:14:01 +00002556** Disable a term in the WHERE clause. Except, do not disable the term
2557** if it controls a LEFT OUTER JOIN and it did not originate in the ON
2558** or USING clause of that join.
2559**
2560** Consider the term t2.z='ok' in the following queries:
2561**
2562** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
2563** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
2564** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
2565**
drh23bf66d2004-12-14 03:34:34 +00002566** The t2.z='ok' is disabled in the in (2) because it originates
drh2ffb1182004-07-19 19:14:01 +00002567** in the ON clause. The term is disabled in (3) because it is not part
2568** of a LEFT OUTER JOIN. In (1), the term is not disabled.
2569**
2570** Disabling a term causes that term to not be tested in the inner loop
drhb6fb62d2005-09-20 08:47:20 +00002571** of the join. Disabling is an optimization. When terms are satisfied
2572** by indices, we disable them to prevent redundant tests in the inner
2573** loop. We would get the correct results if nothing were ever disabled,
2574** but joins might run a little slower. The trick is to disable as much
2575** as we can without disabling too much. If we disabled in (1), we'd get
2576** the wrong answer. See ticket #813.
drh2ffb1182004-07-19 19:14:01 +00002577*/
drh0fcef5e2005-07-19 17:38:22 +00002578static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
2579 if( pTerm
drh165be382008-12-05 02:36:33 +00002580 && ALWAYS((pTerm->wtFlags & TERM_CODED)==0)
drh0fcef5e2005-07-19 17:38:22 +00002581 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
2582 ){
drh165be382008-12-05 02:36:33 +00002583 pTerm->wtFlags |= TERM_CODED;
drh45b1ee42005-08-02 17:48:22 +00002584 if( pTerm->iParent>=0 ){
2585 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
2586 if( (--pOther->nChild)==0 ){
drhed378002005-07-28 23:12:08 +00002587 disableTerm(pLevel, pOther);
2588 }
drh0fcef5e2005-07-19 17:38:22 +00002589 }
drh2ffb1182004-07-19 19:14:01 +00002590 }
2591}
2592
2593/*
dan69f8bb92009-08-13 19:21:16 +00002594** Code an OP_Affinity opcode to apply the column affinity string zAff
2595** to the n registers starting at base.
2596**
drhf6a82032009-11-16 22:54:50 +00002597** This routine assumes that zAff is dynamic and makes its own copy.
drh94a11212004-09-25 13:12:14 +00002598*/
dan69f8bb92009-08-13 19:21:16 +00002599static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
2600 Vdbe *v = pParse->pVdbe;
2601 assert( v!=0 );
2602 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
drhf6a82032009-11-16 22:54:50 +00002603 sqlite3VdbeChangeP4(v, -1, zAff, 0);
dan69f8bb92009-08-13 19:21:16 +00002604 sqlite3ExprCacheAffinityChange(pParse, base, n);
drh94a11212004-09-25 13:12:14 +00002605}
2606
drhe8b97272005-07-19 22:22:12 +00002607
2608/*
drh51147ba2005-07-23 22:59:55 +00002609** Generate code for a single equality term of the WHERE clause. An equality
2610** term can be either X=expr or X IN (...). pTerm is the term to be
2611** coded.
2612**
drh1db639c2008-01-17 02:36:28 +00002613** The current value for the constraint is left in register iReg.
drh51147ba2005-07-23 22:59:55 +00002614**
2615** For a constraint of the form X=expr, the expression is evaluated and its
2616** result is left on the stack. For constraints of the form X IN (...)
2617** this routine sets up a loop that will iterate over all values of X.
drh94a11212004-09-25 13:12:14 +00002618*/
drh678ccce2008-03-31 18:19:54 +00002619static int codeEqualityTerm(
drh94a11212004-09-25 13:12:14 +00002620 Parse *pParse, /* The parsing context */
drhe23399f2005-07-22 00:31:39 +00002621 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
drh1db639c2008-01-17 02:36:28 +00002622 WhereLevel *pLevel, /* When level of the FROM clause we are working on */
drh678ccce2008-03-31 18:19:54 +00002623 int iTarget /* Attempt to leave results in this register */
drh94a11212004-09-25 13:12:14 +00002624){
drh0fcef5e2005-07-19 17:38:22 +00002625 Expr *pX = pTerm->pExpr;
drh50b39962006-10-28 00:28:09 +00002626 Vdbe *v = pParse->pVdbe;
drh678ccce2008-03-31 18:19:54 +00002627 int iReg; /* Register holding results */
drh1db639c2008-01-17 02:36:28 +00002628
danielk19772d605492008-10-01 08:43:03 +00002629 assert( iTarget>0 );
drh50b39962006-10-28 00:28:09 +00002630 if( pX->op==TK_EQ ){
drh678ccce2008-03-31 18:19:54 +00002631 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
drh50b39962006-10-28 00:28:09 +00002632 }else if( pX->op==TK_ISNULL ){
drh678ccce2008-03-31 18:19:54 +00002633 iReg = iTarget;
drh1db639c2008-01-17 02:36:28 +00002634 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
danielk1977b3bce662005-01-29 08:32:43 +00002635#ifndef SQLITE_OMIT_SUBQUERY
drh94a11212004-09-25 13:12:14 +00002636 }else{
danielk19779a96b662007-11-29 17:05:18 +00002637 int eType;
danielk1977b3bce662005-01-29 08:32:43 +00002638 int iTab;
drh72e8fa42007-03-28 14:30:06 +00002639 struct InLoop *pIn;
danielk1977b3bce662005-01-29 08:32:43 +00002640
drh50b39962006-10-28 00:28:09 +00002641 assert( pX->op==TK_IN );
drh678ccce2008-03-31 18:19:54 +00002642 iReg = iTarget;
danielk19770cdc0222008-06-26 18:04:03 +00002643 eType = sqlite3FindInIndex(pParse, pX, 0);
danielk1977b3bce662005-01-29 08:32:43 +00002644 iTab = pX->iTable;
drh66a51672008-01-03 00:01:23 +00002645 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
drh111a6a72008-12-21 03:51:16 +00002646 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
2647 if( pLevel->u.in.nIn==0 ){
drhb3190c12008-12-08 21:37:14 +00002648 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
drh72e8fa42007-03-28 14:30:06 +00002649 }
drh111a6a72008-12-21 03:51:16 +00002650 pLevel->u.in.nIn++;
2651 pLevel->u.in.aInLoop =
2652 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
2653 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
2654 pIn = pLevel->u.in.aInLoop;
drh72e8fa42007-03-28 14:30:06 +00002655 if( pIn ){
drh111a6a72008-12-21 03:51:16 +00002656 pIn += pLevel->u.in.nIn - 1;
drh72e8fa42007-03-28 14:30:06 +00002657 pIn->iCur = iTab;
drh1db639c2008-01-17 02:36:28 +00002658 if( eType==IN_INDEX_ROWID ){
drhb3190c12008-12-08 21:37:14 +00002659 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
drh1db639c2008-01-17 02:36:28 +00002660 }else{
drhb3190c12008-12-08 21:37:14 +00002661 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
drh1db639c2008-01-17 02:36:28 +00002662 }
2663 sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
drha6110402005-07-28 20:51:19 +00002664 }else{
drh111a6a72008-12-21 03:51:16 +00002665 pLevel->u.in.nIn = 0;
drhe23399f2005-07-22 00:31:39 +00002666 }
danielk1977b3bce662005-01-29 08:32:43 +00002667#endif
drh94a11212004-09-25 13:12:14 +00002668 }
drh0fcef5e2005-07-19 17:38:22 +00002669 disableTerm(pLevel, pTerm);
drh678ccce2008-03-31 18:19:54 +00002670 return iReg;
drh94a11212004-09-25 13:12:14 +00002671}
2672
drh51147ba2005-07-23 22:59:55 +00002673/*
2674** Generate code that will evaluate all == and IN constraints for an
2675** index. The values for all constraints are left on the stack.
2676**
2677** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
2678** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
2679** The index has as many as three equality constraints, but in this
2680** example, the third "c" value is an inequality. So only two
2681** constraints are coded. This routine will generate code to evaluate
drh6df2acd2008-12-28 16:55:25 +00002682** a==5 and b IN (1,2,3). The current values for a and b will be stored
2683** in consecutive registers and the index of the first register is returned.
drh51147ba2005-07-23 22:59:55 +00002684**
2685** In the example above nEq==2. But this subroutine works for any value
2686** of nEq including 0. If nEq==0, this routine is nearly a no-op.
2687** The only thing it does is allocate the pLevel->iMem memory cell.
2688**
drh700a2262008-12-17 19:22:15 +00002689** This routine always allocates at least one memory cell and returns
2690** the index of that memory cell. The code that
2691** calls this routine will use that memory cell to store the termination
drh51147ba2005-07-23 22:59:55 +00002692** key value of the loop. If one or more IN operators appear, then
2693** this routine allocates an additional nEq memory cells for internal
2694** use.
dan69f8bb92009-08-13 19:21:16 +00002695**
2696** Before returning, *pzAff is set to point to a buffer containing a
2697** copy of the column affinity string of the index allocated using
2698** sqlite3DbMalloc(). Except, entries in the copy of the string associated
2699** with equality constraints that use NONE affinity are set to
2700** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
2701**
2702** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
2703** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
2704**
2705** In the example above, the index on t1(a) has TEXT affinity. But since
2706** the right hand side of the equality constraint (t2.b) has NONE affinity,
2707** no conversion should be attempted before using a t2.b value as part of
2708** a key to search the index. Hence the first byte in the returned affinity
2709** string in this example would be set to SQLITE_AFF_NONE.
drh51147ba2005-07-23 22:59:55 +00002710*/
drh1db639c2008-01-17 02:36:28 +00002711static int codeAllEqualityTerms(
drh51147ba2005-07-23 22:59:55 +00002712 Parse *pParse, /* Parsing context */
2713 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
2714 WhereClause *pWC, /* The WHERE clause */
drh1db639c2008-01-17 02:36:28 +00002715 Bitmask notReady, /* Which parts of FROM have not yet been coded */
dan69f8bb92009-08-13 19:21:16 +00002716 int nExtraReg, /* Number of extra registers to allocate */
2717 char **pzAff /* OUT: Set to point to affinity string */
drh51147ba2005-07-23 22:59:55 +00002718){
drh111a6a72008-12-21 03:51:16 +00002719 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */
2720 Vdbe *v = pParse->pVdbe; /* The vm under construction */
2721 Index *pIdx; /* The index being used for this loop */
drh51147ba2005-07-23 22:59:55 +00002722 int iCur = pLevel->iTabCur; /* The cursor of the table */
2723 WhereTerm *pTerm; /* A single constraint term */
2724 int j; /* Loop counter */
drh1db639c2008-01-17 02:36:28 +00002725 int regBase; /* Base register */
drh6df2acd2008-12-28 16:55:25 +00002726 int nReg; /* Number of registers to allocate */
dan69f8bb92009-08-13 19:21:16 +00002727 char *zAff; /* Affinity string to return */
drh51147ba2005-07-23 22:59:55 +00002728
drh111a6a72008-12-21 03:51:16 +00002729 /* This module is only called on query plans that use an index. */
2730 assert( pLevel->plan.wsFlags & WHERE_INDEXED );
2731 pIdx = pLevel->plan.u.pIdx;
2732
drh51147ba2005-07-23 22:59:55 +00002733 /* Figure out how many memory cells we will need then allocate them.
drh51147ba2005-07-23 22:59:55 +00002734 */
drh700a2262008-12-17 19:22:15 +00002735 regBase = pParse->nMem + 1;
drh6df2acd2008-12-28 16:55:25 +00002736 nReg = pLevel->plan.nEq + nExtraReg;
2737 pParse->nMem += nReg;
drh51147ba2005-07-23 22:59:55 +00002738
dan69f8bb92009-08-13 19:21:16 +00002739 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
2740 if( !zAff ){
2741 pParse->db->mallocFailed = 1;
2742 }
2743
drh51147ba2005-07-23 22:59:55 +00002744 /* Evaluate the equality constraints
2745 */
drhc49de5d2007-01-19 01:06:01 +00002746 assert( pIdx->nColumn>=nEq );
2747 for(j=0; j<nEq; j++){
drh678ccce2008-03-31 18:19:54 +00002748 int r1;
drh51147ba2005-07-23 22:59:55 +00002749 int k = pIdx->aiColumn[j];
drh111a6a72008-12-21 03:51:16 +00002750 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
drh34004ce2008-07-11 16:15:17 +00002751 if( NEVER(pTerm==0) ) break;
drh165be382008-12-05 02:36:33 +00002752 assert( (pTerm->wtFlags & TERM_CODED)==0 );
drh678ccce2008-03-31 18:19:54 +00002753 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
2754 if( r1!=regBase+j ){
drh6df2acd2008-12-28 16:55:25 +00002755 if( nReg==1 ){
2756 sqlite3ReleaseTempReg(pParse, regBase);
2757 regBase = r1;
2758 }else{
2759 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
2760 }
drh678ccce2008-03-31 18:19:54 +00002761 }
drh981642f2008-04-19 14:40:43 +00002762 testcase( pTerm->eOperator & WO_ISNULL );
2763 testcase( pTerm->eOperator & WO_IN );
drh72e8fa42007-03-28 14:30:06 +00002764 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
drhb3190c12008-12-08 21:37:14 +00002765 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
dan69f8bb92009-08-13 19:21:16 +00002766 if( zAff
2767 && sqlite3CompareAffinity(pTerm->pExpr->pRight, zAff[j])==SQLITE_AFF_NONE
2768 ){
2769 zAff[j] = SQLITE_AFF_NONE;
2770 }
drh51147ba2005-07-23 22:59:55 +00002771 }
2772 }
dan69f8bb92009-08-13 19:21:16 +00002773 *pzAff = zAff;
drh1db639c2008-01-17 02:36:28 +00002774 return regBase;
drh51147ba2005-07-23 22:59:55 +00002775}
2776
drh111a6a72008-12-21 03:51:16 +00002777/*
2778** Generate code for the start of the iLevel-th loop in the WHERE clause
2779** implementation described by pWInfo.
2780*/
2781static Bitmask codeOneLoopStart(
2782 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
2783 int iLevel, /* Which level of pWInfo->a[] should be coded */
drh336a5302009-04-24 15:46:21 +00002784 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */
drh111a6a72008-12-21 03:51:16 +00002785 Bitmask notReady /* Which tables are currently available */
2786){
2787 int j, k; /* Loop counters */
2788 int iCur; /* The VDBE cursor for the table */
2789 int addrNxt; /* Where to jump to continue with the next IN case */
2790 int omitTable; /* True if we use the index only */
2791 int bRev; /* True if we need to scan in reverse order */
2792 WhereLevel *pLevel; /* The where level to be coded */
2793 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
2794 WhereTerm *pTerm; /* A WHERE clause term */
2795 Parse *pParse; /* Parsing context */
2796 Vdbe *v; /* The prepared stmt under constructions */
2797 struct SrcList_item *pTabItem; /* FROM clause term being coded */
drh23d04d52008-12-23 23:56:22 +00002798 int addrBrk; /* Jump here to break out of the loop */
2799 int addrCont; /* Jump here to continue with next cycle */
drh61495262009-04-22 15:32:59 +00002800 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
2801 int iReleaseReg = 0; /* Temp register to free before returning */
drh111a6a72008-12-21 03:51:16 +00002802
2803 pParse = pWInfo->pParse;
2804 v = pParse->pVdbe;
2805 pWC = pWInfo->pWC;
2806 pLevel = &pWInfo->a[iLevel];
2807 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
2808 iCur = pTabItem->iCursor;
2809 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
danielk19771d461462009-04-21 09:02:45 +00002810 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
drh336a5302009-04-24 15:46:21 +00002811 && (wctrlFlags & WHERE_FORCE_TABLE)==0;
drh111a6a72008-12-21 03:51:16 +00002812
2813 /* Create labels for the "break" and "continue" instructions
2814 ** for the current loop. Jump to addrBrk to break out of a loop.
2815 ** Jump to cont to go immediately to the next iteration of the
2816 ** loop.
2817 **
2818 ** When there is an IN operator, we also have a "addrNxt" label that
2819 ** means to continue with the next IN value combination. When
2820 ** there are no IN operators in the constraints, the "addrNxt" label
2821 ** is the same as "addrBrk".
2822 */
2823 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
2824 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
2825
2826 /* If this is the right table of a LEFT OUTER JOIN, allocate and
2827 ** initialize a memory cell that records if this table matches any
2828 ** row of the left table of the join.
2829 */
2830 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
2831 pLevel->iLeftJoin = ++pParse->nMem;
2832 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
2833 VdbeComment((v, "init LEFT JOIN no-match flag"));
2834 }
2835
2836#ifndef SQLITE_OMIT_VIRTUALTABLE
2837 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
2838 /* Case 0: The table is a virtual-table. Use the VFilter and VNext
2839 ** to access the data.
2840 */
2841 int iReg; /* P3 Value for OP_VFilter */
2842 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
2843 int nConstraint = pVtabIdx->nConstraint;
2844 struct sqlite3_index_constraint_usage *aUsage =
2845 pVtabIdx->aConstraintUsage;
2846 const struct sqlite3_index_constraint *aConstraint =
2847 pVtabIdx->aConstraint;
2848
2849 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
drh111a6a72008-12-21 03:51:16 +00002850 for(j=1; j<=nConstraint; j++){
2851 for(k=0; k<nConstraint; k++){
2852 if( aUsage[k].argvIndex==j ){
2853 int iTerm = aConstraint[k].iTermOffset;
drh111a6a72008-12-21 03:51:16 +00002854 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
2855 break;
2856 }
2857 }
2858 if( k==nConstraint ) break;
2859 }
drh111a6a72008-12-21 03:51:16 +00002860 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
2861 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
2862 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
2863 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
drh111a6a72008-12-21 03:51:16 +00002864 pVtabIdx->needToFreeIdxStr = 0;
2865 for(j=0; j<nConstraint; j++){
2866 if( aUsage[j].omit ){
2867 int iTerm = aConstraint[j].iTermOffset;
2868 disableTerm(pLevel, &pWC->a[iTerm]);
2869 }
2870 }
2871 pLevel->op = OP_VNext;
2872 pLevel->p1 = iCur;
2873 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
drh23d04d52008-12-23 23:56:22 +00002874 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
drh111a6a72008-12-21 03:51:16 +00002875 }else
2876#endif /* SQLITE_OMIT_VIRTUALTABLE */
2877
2878 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
2879 /* Case 1: We can directly reference a single row using an
2880 ** equality comparison against the ROWID field. Or
2881 ** we reference multiple rows using a "rowid IN (...)"
2882 ** construct.
2883 */
danielk19771d461462009-04-21 09:02:45 +00002884 iReleaseReg = sqlite3GetTempReg(pParse);
drh111a6a72008-12-21 03:51:16 +00002885 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
2886 assert( pTerm!=0 );
2887 assert( pTerm->pExpr!=0 );
2888 assert( pTerm->leftCursor==iCur );
2889 assert( omitTable==0 );
danielk19771d461462009-04-21 09:02:45 +00002890 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
drh111a6a72008-12-21 03:51:16 +00002891 addrNxt = pLevel->addrNxt;
danielk19771d461462009-04-21 09:02:45 +00002892 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
2893 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
drhceea3322009-04-23 13:22:42 +00002894 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
drh111a6a72008-12-21 03:51:16 +00002895 VdbeComment((v, "pk"));
2896 pLevel->op = OP_Noop;
2897 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
2898 /* Case 2: We have an inequality comparison against the ROWID field.
2899 */
2900 int testOp = OP_Noop;
2901 int start;
2902 int memEndValue = 0;
2903 WhereTerm *pStart, *pEnd;
2904
2905 assert( omitTable==0 );
2906 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
2907 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
2908 if( bRev ){
2909 pTerm = pStart;
2910 pStart = pEnd;
2911 pEnd = pTerm;
2912 }
2913 if( pStart ){
2914 Expr *pX; /* The expression that defines the start bound */
2915 int r1, rTemp; /* Registers for holding the start boundary */
2916
2917 /* The following constant maps TK_xx codes into corresponding
2918 ** seek opcodes. It depends on a particular ordering of TK_xx
2919 */
2920 const u8 aMoveOp[] = {
2921 /* TK_GT */ OP_SeekGt,
2922 /* TK_LE */ OP_SeekLe,
2923 /* TK_LT */ OP_SeekLt,
2924 /* TK_GE */ OP_SeekGe
2925 };
2926 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
2927 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
2928 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
2929
2930 pX = pStart->pExpr;
2931 assert( pX!=0 );
2932 assert( pStart->leftCursor==iCur );
2933 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
2934 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
2935 VdbeComment((v, "pk"));
2936 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
2937 sqlite3ReleaseTempReg(pParse, rTemp);
2938 disableTerm(pLevel, pStart);
2939 }else{
2940 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
2941 }
2942 if( pEnd ){
2943 Expr *pX;
2944 pX = pEnd->pExpr;
2945 assert( pX!=0 );
2946 assert( pEnd->leftCursor==iCur );
2947 memEndValue = ++pParse->nMem;
2948 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
2949 if( pX->op==TK_LT || pX->op==TK_GT ){
2950 testOp = bRev ? OP_Le : OP_Ge;
2951 }else{
2952 testOp = bRev ? OP_Lt : OP_Gt;
2953 }
2954 disableTerm(pLevel, pEnd);
2955 }
2956 start = sqlite3VdbeCurrentAddr(v);
2957 pLevel->op = bRev ? OP_Prev : OP_Next;
2958 pLevel->p1 = iCur;
2959 pLevel->p2 = start;
drhca8c4662008-12-28 20:47:02 +00002960 pLevel->p5 = (pStart==0 && pEnd==0) ?1:0;
danielk19771d461462009-04-21 09:02:45 +00002961 if( testOp!=OP_Noop ){
2962 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
2963 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
drhceea3322009-04-23 13:22:42 +00002964 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danielk19771d461462009-04-21 09:02:45 +00002965 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
2966 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
drh111a6a72008-12-21 03:51:16 +00002967 }
2968 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
2969 /* Case 3: A scan using an index.
2970 **
2971 ** The WHERE clause may contain zero or more equality
2972 ** terms ("==" or "IN" operators) that refer to the N
2973 ** left-most columns of the index. It may also contain
2974 ** inequality constraints (>, <, >= or <=) on the indexed
2975 ** column that immediately follows the N equalities. Only
2976 ** the right-most column can be an inequality - the rest must
2977 ** use the "==" and "IN" operators. For example, if the
2978 ** index is on (x,y,z), then the following clauses are all
2979 ** optimized:
2980 **
2981 ** x=5
2982 ** x=5 AND y=10
2983 ** x=5 AND y<10
2984 ** x=5 AND y>5 AND y<10
2985 ** x=5 AND y=5 AND z<=10
2986 **
2987 ** The z<10 term of the following cannot be used, only
2988 ** the x=5 term:
2989 **
2990 ** x=5 AND z<10
2991 **
2992 ** N may be zero if there are inequality constraints.
2993 ** If there are no inequality constraints, then N is at
2994 ** least one.
2995 **
2996 ** This case is also used when there are no WHERE clause
2997 ** constraints but an index is selected anyway, in order
2998 ** to force the output order to conform to an ORDER BY.
2999 */
3000 int aStartOp[] = {
3001 0,
3002 0,
3003 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
3004 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
3005 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */
3006 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */
3007 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */
3008 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */
3009 };
3010 int aEndOp[] = {
3011 OP_Noop, /* 0: (!end_constraints) */
3012 OP_IdxGE, /* 1: (end_constraints && !bRev) */
3013 OP_IdxLT /* 2: (end_constraints && bRev) */
3014 };
3015 int nEq = pLevel->plan.nEq;
3016 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
3017 int regBase; /* Base register holding constraint values */
3018 int r1; /* Temp register */
3019 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
3020 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
3021 int startEq; /* True if range start uses ==, >= or <= */
3022 int endEq; /* True if range end uses ==, >= or <= */
3023 int start_constraints; /* Start of range is constrained */
3024 int nConstraint; /* Number of constraint terms */
3025 Index *pIdx; /* The index we will be using */
3026 int iIdxCur; /* The VDBE cursor for the index */
drh6df2acd2008-12-28 16:55:25 +00003027 int nExtraReg = 0; /* Number of extra registers needed */
3028 int op; /* Instruction opcode */
dan69f8bb92009-08-13 19:21:16 +00003029 char *zAff;
drh111a6a72008-12-21 03:51:16 +00003030
3031 pIdx = pLevel->plan.u.pIdx;
3032 iIdxCur = pLevel->iIdxCur;
3033 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
3034
drh111a6a72008-12-21 03:51:16 +00003035 /* If this loop satisfies a sort order (pOrderBy) request that
3036 ** was passed to this function to implement a "SELECT min(x) ..."
3037 ** query, then the caller will only allow the loop to run for
3038 ** a single iteration. This means that the first row returned
3039 ** should not have a NULL value stored in 'x'. If column 'x' is
3040 ** the first one after the nEq equality constraints in the index,
3041 ** this requires some special handling.
3042 */
3043 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
3044 && (pLevel->plan.wsFlags&WHERE_ORDERBY)
3045 && (pIdx->nColumn>nEq)
3046 ){
3047 /* assert( pOrderBy->nExpr==1 ); */
3048 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
3049 isMinQuery = 1;
drh6df2acd2008-12-28 16:55:25 +00003050 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003051 }
3052
3053 /* Find any inequality constraint terms for the start and end
3054 ** of the range.
3055 */
3056 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
3057 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
drh6df2acd2008-12-28 16:55:25 +00003058 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003059 }
3060 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
3061 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
drh6df2acd2008-12-28 16:55:25 +00003062 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003063 }
3064
drh6df2acd2008-12-28 16:55:25 +00003065 /* Generate code to evaluate all constraint terms using == or IN
3066 ** and store the values of those terms in an array of registers
3067 ** starting at regBase.
3068 */
dan69f8bb92009-08-13 19:21:16 +00003069 regBase = codeAllEqualityTerms(
3070 pParse, pLevel, pWC, notReady, nExtraReg, &zAff
3071 );
drh6df2acd2008-12-28 16:55:25 +00003072 addrNxt = pLevel->addrNxt;
3073
drh111a6a72008-12-21 03:51:16 +00003074 /* If we are doing a reverse order scan on an ascending index, or
3075 ** a forward order scan on a descending index, interchange the
3076 ** start and end terms (pRangeStart and pRangeEnd).
3077 */
3078 if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
3079 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
3080 }
3081
3082 testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
3083 testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
3084 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
3085 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
3086 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
3087 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
3088 start_constraints = pRangeStart || nEq>0;
3089
3090 /* Seek the index cursor to the start of the range. */
3091 nConstraint = nEq;
3092 if( pRangeStart ){
dan69f8bb92009-08-13 19:21:16 +00003093 Expr *pRight = pRangeStart->pExpr->pRight;
3094 sqlite3ExprCode(pParse, pRight, regBase+nEq);
drh111a6a72008-12-21 03:51:16 +00003095 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
dan69f8bb92009-08-13 19:21:16 +00003096 if( zAff
3097 && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE
3098 ){
3099 /* Since the comparison is to be performed with no conversions applied
3100 ** to the operands, set the affinity to apply to pRight to
3101 ** SQLITE_AFF_NONE. */
3102 zAff[nConstraint] = SQLITE_AFF_NONE;
3103 }
drh111a6a72008-12-21 03:51:16 +00003104 nConstraint++;
3105 }else if( isMinQuery ){
3106 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
3107 nConstraint++;
3108 startEq = 0;
3109 start_constraints = 1;
3110 }
dan69f8bb92009-08-13 19:21:16 +00003111 codeApplyAffinity(pParse, regBase, nConstraint, zAff);
drh111a6a72008-12-21 03:51:16 +00003112 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
3113 assert( op!=0 );
3114 testcase( op==OP_Rewind );
3115 testcase( op==OP_Last );
3116 testcase( op==OP_SeekGt );
3117 testcase( op==OP_SeekGe );
3118 testcase( op==OP_SeekLe );
3119 testcase( op==OP_SeekLt );
drh8cff69d2009-11-12 19:59:44 +00003120 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
drh111a6a72008-12-21 03:51:16 +00003121
3122 /* Load the value for the inequality constraint at the end of the
3123 ** range (if any).
3124 */
3125 nConstraint = nEq;
3126 if( pRangeEnd ){
dan69f8bb92009-08-13 19:21:16 +00003127 Expr *pRight = pRangeEnd->pExpr->pRight;
drhceea3322009-04-23 13:22:42 +00003128 sqlite3ExprCacheRemove(pParse, regBase+nEq);
dan69f8bb92009-08-13 19:21:16 +00003129 sqlite3ExprCode(pParse, pRight, regBase+nEq);
drh111a6a72008-12-21 03:51:16 +00003130 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
dan69f8bb92009-08-13 19:21:16 +00003131 if( zAff
3132 && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE
3133 ){
3134 /* Since the comparison is to be performed with no conversions applied
3135 ** to the operands, set the affinity to apply to pRight to
3136 ** SQLITE_AFF_NONE. */
3137 zAff[nConstraint] = SQLITE_AFF_NONE;
3138 }
3139 codeApplyAffinity(pParse, regBase, nEq+1, zAff);
drh111a6a72008-12-21 03:51:16 +00003140 nConstraint++;
3141 }
drhf6a82032009-11-16 22:54:50 +00003142 sqlite3DbFree(pParse->db, zAff);
drh111a6a72008-12-21 03:51:16 +00003143
3144 /* Top of the loop body */
3145 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
3146
3147 /* Check if the index cursor is past the end of the range. */
3148 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
3149 testcase( op==OP_Noop );
3150 testcase( op==OP_IdxGE );
3151 testcase( op==OP_IdxLT );
drh6df2acd2008-12-28 16:55:25 +00003152 if( op!=OP_Noop ){
drh8cff69d2009-11-12 19:59:44 +00003153 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
drh6df2acd2008-12-28 16:55:25 +00003154 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
3155 }
drh111a6a72008-12-21 03:51:16 +00003156
3157 /* If there are inequality constraints, check that the value
3158 ** of the table column that the inequality contrains is not NULL.
3159 ** If it is, jump to the next iteration of the loop.
3160 */
3161 r1 = sqlite3GetTempReg(pParse);
3162 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
3163 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
3164 if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
3165 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
3166 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
3167 }
danielk19771d461462009-04-21 09:02:45 +00003168 sqlite3ReleaseTempReg(pParse, r1);
drh111a6a72008-12-21 03:51:16 +00003169
3170 /* Seek the table cursor, if required */
drh23d04d52008-12-23 23:56:22 +00003171 disableTerm(pLevel, pRangeStart);
3172 disableTerm(pLevel, pRangeEnd);
danielk19771d461462009-04-21 09:02:45 +00003173 if( !omitTable ){
3174 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
3175 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
drhceea3322009-04-23 13:22:42 +00003176 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danielk19771d461462009-04-21 09:02:45 +00003177 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
drh111a6a72008-12-21 03:51:16 +00003178 }
drh111a6a72008-12-21 03:51:16 +00003179
3180 /* Record the instruction used to terminate the loop. Disable
3181 ** WHERE clause terms made redundant by the index range scan.
3182 */
3183 pLevel->op = bRev ? OP_Prev : OP_Next;
3184 pLevel->p1 = iIdxCur;
drhdd5f5a62008-12-23 13:35:23 +00003185 }else
3186
drh23d04d52008-12-23 23:56:22 +00003187#ifndef SQLITE_OMIT_OR_OPTIMIZATION
drhdd5f5a62008-12-23 13:35:23 +00003188 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
drh111a6a72008-12-21 03:51:16 +00003189 /* Case 4: Two or more separately indexed terms connected by OR
3190 **
3191 ** Example:
3192 **
3193 ** CREATE TABLE t1(a,b,c,d);
3194 ** CREATE INDEX i1 ON t1(a);
3195 ** CREATE INDEX i2 ON t1(b);
3196 ** CREATE INDEX i3 ON t1(c);
3197 **
3198 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
3199 **
3200 ** In the example, there are three indexed terms connected by OR.
danielk19771d461462009-04-21 09:02:45 +00003201 ** The top of the loop looks like this:
drh111a6a72008-12-21 03:51:16 +00003202 **
drh1b26c7c2009-04-22 02:15:47 +00003203 ** Null 1 # Zero the rowset in reg 1
drh111a6a72008-12-21 03:51:16 +00003204 **
danielk19771d461462009-04-21 09:02:45 +00003205 ** Then, for each indexed term, the following. The arguments to
drh1b26c7c2009-04-22 02:15:47 +00003206 ** RowSetTest are such that the rowid of the current row is inserted
3207 ** into the RowSet. If it is already present, control skips the
danielk19771d461462009-04-21 09:02:45 +00003208 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
drh111a6a72008-12-21 03:51:16 +00003209 **
danielk19771d461462009-04-21 09:02:45 +00003210 ** sqlite3WhereBegin(<term>)
drh1b26c7c2009-04-22 02:15:47 +00003211 ** RowSetTest # Insert rowid into rowset
danielk19771d461462009-04-21 09:02:45 +00003212 ** Gosub 2 A
3213 ** sqlite3WhereEnd()
3214 **
3215 ** Following the above, code to terminate the loop. Label A, the target
3216 ** of the Gosub above, jumps to the instruction right after the Goto.
3217 **
drh1b26c7c2009-04-22 02:15:47 +00003218 ** Null 1 # Zero the rowset in reg 1
danielk19771d461462009-04-21 09:02:45 +00003219 ** Goto B # The loop is finished.
3220 **
3221 ** A: <loop body> # Return data, whatever.
3222 **
3223 ** Return 2 # Jump back to the Gosub
3224 **
3225 ** B: <after the loop>
3226 **
drh111a6a72008-12-21 03:51:16 +00003227 */
drh111a6a72008-12-21 03:51:16 +00003228 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
danielk19771d461462009-04-21 09:02:45 +00003229 WhereTerm *pFinal; /* Final subterm within the OR-clause. */
drhdd5f5a62008-12-23 13:35:23 +00003230 SrcList oneTab; /* Shortened table list */
danielk19771d461462009-04-21 09:02:45 +00003231
3232 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
shane85095702009-06-15 16:27:08 +00003233 int regRowset = 0; /* Register for RowSet object */
3234 int regRowid = 0; /* Register holding rowid */
danielk19771d461462009-04-21 09:02:45 +00003235 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
3236 int iRetInit; /* Address of regReturn init */
3237 int ii;
drh111a6a72008-12-21 03:51:16 +00003238
3239 pTerm = pLevel->plan.u.pTerm;
3240 assert( pTerm!=0 );
3241 assert( pTerm->eOperator==WO_OR );
3242 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
3243 pOrWc = &pTerm->u.pOrInfo->wc;
danielk19771d461462009-04-21 09:02:45 +00003244 pFinal = &pOrWc->a[pOrWc->nTerm-1];
drh23d04d52008-12-23 23:56:22 +00003245
danielk19771d461462009-04-21 09:02:45 +00003246 /* Set up a SrcList containing just the table being scanned by this loop. */
drhdd5f5a62008-12-23 13:35:23 +00003247 oneTab.nSrc = 1;
3248 oneTab.nAlloc = 1;
3249 oneTab.a[0] = *pTabItem;
danielk19771d461462009-04-21 09:02:45 +00003250
drh1b26c7c2009-04-22 02:15:47 +00003251 /* Initialize the rowset register to contain NULL. An SQL NULL is
3252 ** equivalent to an empty rowset.
danielk19771d461462009-04-21 09:02:45 +00003253 **
3254 ** Also initialize regReturn to contain the address of the instruction
3255 ** immediately following the OP_Return at the bottom of the loop. This
3256 ** is required in a few obscure LEFT JOIN cases where control jumps
3257 ** over the top of the loop into the body of it. In this case the
3258 ** correct response for the end-of-loop code (the OP_Return) is to
3259 ** fall through to the next instruction, just as an OP_Next does if
3260 ** called on an uninitialized cursor.
3261 */
drh336a5302009-04-24 15:46:21 +00003262 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3263 regRowset = ++pParse->nMem;
3264 regRowid = ++pParse->nMem;
3265 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
3266 }
danielk19771d461462009-04-21 09:02:45 +00003267 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
3268
danielk19771d461462009-04-21 09:02:45 +00003269 for(ii=0; ii<pOrWc->nTerm; ii++){
3270 WhereTerm *pOrTerm = &pOrWc->a[ii];
3271 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
3272 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
danielk19771d461462009-04-21 09:02:45 +00003273 /* Loop through table entries that match term pOrTerm. */
drh336a5302009-04-24 15:46:21 +00003274 pSubWInfo = sqlite3WhereBegin(pParse, &oneTab, pOrTerm->pExpr, 0,
3275 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | WHERE_FORCE_TABLE);
danielk19771d461462009-04-21 09:02:45 +00003276 if( pSubWInfo ){
drh336a5302009-04-24 15:46:21 +00003277 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3278 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
3279 int r;
3280 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
3281 regRowid, 0);
drh8cff69d2009-11-12 19:59:44 +00003282 sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
3283 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
drh336a5302009-04-24 15:46:21 +00003284 }
danielk19771d461462009-04-21 09:02:45 +00003285 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
3286
3287 /* Finish the loop through table entries that match term pOrTerm. */
3288 sqlite3WhereEnd(pSubWInfo);
3289 }
drhdd5f5a62008-12-23 13:35:23 +00003290 }
3291 }
danielk19771d461462009-04-21 09:02:45 +00003292 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
drh336a5302009-04-24 15:46:21 +00003293 /* sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); */
danielk19771d461462009-04-21 09:02:45 +00003294 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
3295 sqlite3VdbeResolveLabel(v, iLoopBody);
3296
3297 pLevel->op = OP_Return;
3298 pLevel->p1 = regReturn;
drh23d04d52008-12-23 23:56:22 +00003299 disableTerm(pLevel, pTerm);
drhdd5f5a62008-12-23 13:35:23 +00003300 }else
drh23d04d52008-12-23 23:56:22 +00003301#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
drhdd5f5a62008-12-23 13:35:23 +00003302
3303 {
drh111a6a72008-12-21 03:51:16 +00003304 /* Case 5: There is no usable index. We must do a complete
3305 ** scan of the entire table.
3306 */
drh699b3d42009-02-23 16:52:07 +00003307 static const u8 aStep[] = { OP_Next, OP_Prev };
3308 static const u8 aStart[] = { OP_Rewind, OP_Last };
3309 assert( bRev==0 || bRev==1 );
drh111a6a72008-12-21 03:51:16 +00003310 assert( omitTable==0 );
drh699b3d42009-02-23 16:52:07 +00003311 pLevel->op = aStep[bRev];
drh111a6a72008-12-21 03:51:16 +00003312 pLevel->p1 = iCur;
drh699b3d42009-02-23 16:52:07 +00003313 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
drh111a6a72008-12-21 03:51:16 +00003314 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3315 }
3316 notReady &= ~getMask(pWC->pMaskSet, iCur);
3317
3318 /* Insert code to test every subexpression that can be completely
3319 ** computed using the current set of tables.
3320 */
3321 k = 0;
3322 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
3323 Expr *pE;
3324 testcase( pTerm->wtFlags & TERM_VIRTUAL );
3325 testcase( pTerm->wtFlags & TERM_CODED );
3326 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
3327 if( (pTerm->prereqAll & notReady)!=0 ) continue;
3328 pE = pTerm->pExpr;
3329 assert( pE!=0 );
3330 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
3331 continue;
3332 }
drh111a6a72008-12-21 03:51:16 +00003333 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
drh111a6a72008-12-21 03:51:16 +00003334 k = 1;
3335 pTerm->wtFlags |= TERM_CODED;
3336 }
3337
3338 /* For a LEFT OUTER JOIN, generate code that will record the fact that
3339 ** at least one row of the right table has matched the left table.
3340 */
3341 if( pLevel->iLeftJoin ){
3342 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
3343 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
3344 VdbeComment((v, "record LEFT JOIN hit"));
drhceea3322009-04-23 13:22:42 +00003345 sqlite3ExprCacheClear(pParse);
drh111a6a72008-12-21 03:51:16 +00003346 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
3347 testcase( pTerm->wtFlags & TERM_VIRTUAL );
3348 testcase( pTerm->wtFlags & TERM_CODED );
3349 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
3350 if( (pTerm->prereqAll & notReady)!=0 ) continue;
3351 assert( pTerm->pExpr );
3352 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
3353 pTerm->wtFlags |= TERM_CODED;
3354 }
3355 }
danielk19771d461462009-04-21 09:02:45 +00003356 sqlite3ReleaseTempReg(pParse, iReleaseReg);
drh23d04d52008-12-23 23:56:22 +00003357
drh111a6a72008-12-21 03:51:16 +00003358 return notReady;
3359}
3360
drh549c8b62005-09-19 13:15:23 +00003361#if defined(SQLITE_TEST)
drh84bfda42005-07-15 13:05:21 +00003362/*
3363** The following variable holds a text description of query plan generated
3364** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
3365** overwrites the previous. This information is used for testing and
3366** analysis only.
3367*/
3368char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
3369static int nQPlan = 0; /* Next free slow in _query_plan[] */
3370
3371#endif /* SQLITE_TEST */
3372
3373
drh9eff6162006-06-12 21:59:13 +00003374/*
3375** Free a WhereInfo structure
3376*/
drh10fe8402008-10-11 16:47:35 +00003377static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
drh9eff6162006-06-12 21:59:13 +00003378 if( pWInfo ){
3379 int i;
3380 for(i=0; i<pWInfo->nLevel; i++){
drh4be8b512006-06-13 23:51:34 +00003381 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
3382 if( pInfo ){
danielk19771d461462009-04-21 09:02:45 +00003383 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
danielk197780442942008-12-24 11:25:39 +00003384 if( pInfo->needToFreeIdxStr ){
3385 sqlite3_free(pInfo->idxStr);
danielk1977be229652009-03-20 14:18:51 +00003386 }
drh633e6d52008-07-28 19:34:53 +00003387 sqlite3DbFree(db, pInfo);
danielk1977be8a7832006-06-13 15:00:54 +00003388 }
drh9eff6162006-06-12 21:59:13 +00003389 }
drh111a6a72008-12-21 03:51:16 +00003390 whereClauseClear(pWInfo->pWC);
drh633e6d52008-07-28 19:34:53 +00003391 sqlite3DbFree(db, pWInfo);
drh9eff6162006-06-12 21:59:13 +00003392 }
3393}
3394
drh94a11212004-09-25 13:12:14 +00003395
3396/*
drhe3184742002-06-19 14:27:05 +00003397** Generate the beginning of the loop used for WHERE clause processing.
drhacf3b982005-01-03 01:27:18 +00003398** The return value is a pointer to an opaque structure that contains
drh75897232000-05-29 14:26:00 +00003399** information needed to terminate the loop. Later, the calling routine
danielk19774adee202004-05-08 08:23:19 +00003400** should invoke sqlite3WhereEnd() with the return value of this function
drh75897232000-05-29 14:26:00 +00003401** in order to complete the WHERE clause processing.
3402**
3403** If an error occurs, this routine returns NULL.
drhc27a1ce2002-06-14 20:58:45 +00003404**
3405** The basic idea is to do a nested loop, one loop for each table in
3406** the FROM clause of a select. (INSERT and UPDATE statements are the
3407** same as a SELECT with only a single table in the FROM clause.) For
3408** example, if the SQL is this:
3409**
3410** SELECT * FROM t1, t2, t3 WHERE ...;
3411**
3412** Then the code generated is conceptually like the following:
3413**
3414** foreach row1 in t1 do \ Code generated
danielk19774adee202004-05-08 08:23:19 +00003415** foreach row2 in t2 do |-- by sqlite3WhereBegin()
drhc27a1ce2002-06-14 20:58:45 +00003416** foreach row3 in t3 do /
3417** ...
3418** end \ Code generated
danielk19774adee202004-05-08 08:23:19 +00003419** end |-- by sqlite3WhereEnd()
drhc27a1ce2002-06-14 20:58:45 +00003420** end /
3421**
drh29dda4a2005-07-21 18:23:20 +00003422** Note that the loops might not be nested in the order in which they
3423** appear in the FROM clause if a different order is better able to make
drh51147ba2005-07-23 22:59:55 +00003424** use of indices. Note also that when the IN operator appears in
3425** the WHERE clause, it might result in additional nested loops for
3426** scanning through all values on the right-hand side of the IN.
drh29dda4a2005-07-21 18:23:20 +00003427**
drhc27a1ce2002-06-14 20:58:45 +00003428** There are Btree cursors associated with each table. t1 uses cursor
drh6a3ea0e2003-05-02 14:32:12 +00003429** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
3430** And so forth. This routine generates code to open those VDBE cursors
danielk19774adee202004-05-08 08:23:19 +00003431** and sqlite3WhereEnd() generates the code to close them.
drhc27a1ce2002-06-14 20:58:45 +00003432**
drhe6f85e72004-12-25 01:03:13 +00003433** The code that sqlite3WhereBegin() generates leaves the cursors named
3434** in pTabList pointing at their appropriate entries. The [...] code
drhf0863fe2005-06-12 21:35:51 +00003435** can use OP_Column and OP_Rowid opcodes on these cursors to extract
drhe6f85e72004-12-25 01:03:13 +00003436** data from the various tables of the loop.
3437**
drhc27a1ce2002-06-14 20:58:45 +00003438** If the WHERE clause is empty, the foreach loops must each scan their
3439** entire tables. Thus a three-way join is an O(N^3) operation. But if
3440** the tables have indices and there are terms in the WHERE clause that
3441** refer to those indices, a complete table scan can be avoided and the
3442** code will run much faster. Most of the work of this routine is checking
3443** to see if there are indices that can be used to speed up the loop.
3444**
3445** Terms of the WHERE clause are also used to limit which rows actually
3446** make it to the "..." in the middle of the loop. After each "foreach",
3447** terms of the WHERE clause that use only terms in that loop and outer
3448** loops are evaluated and if false a jump is made around all subsequent
3449** inner loops (or around the "..." if the test occurs within the inner-
3450** most loop)
3451**
3452** OUTER JOINS
3453**
3454** An outer join of tables t1 and t2 is conceptally coded as follows:
3455**
3456** foreach row1 in t1 do
3457** flag = 0
3458** foreach row2 in t2 do
3459** start:
3460** ...
3461** flag = 1
3462** end
drhe3184742002-06-19 14:27:05 +00003463** if flag==0 then
3464** move the row2 cursor to a null row
3465** goto start
3466** fi
drhc27a1ce2002-06-14 20:58:45 +00003467** end
3468**
drhe3184742002-06-19 14:27:05 +00003469** ORDER BY CLAUSE PROCESSING
3470**
3471** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
3472** if there is one. If there is no ORDER BY clause or if this routine
3473** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
3474**
3475** If an index can be used so that the natural output order of the table
3476** scan is correct for the ORDER BY clause, then that index is used and
3477** *ppOrderBy is set to NULL. This is an optimization that prevents an
3478** unnecessary sort of the result set if an index appropriate for the
3479** ORDER BY clause already exists.
3480**
3481** If the where clause loops cannot be arranged to provide the correct
3482** output order, then the *ppOrderBy is unchanged.
drh75897232000-05-29 14:26:00 +00003483*/
danielk19774adee202004-05-08 08:23:19 +00003484WhereInfo *sqlite3WhereBegin(
danielk1977ed326d72004-11-16 15:50:19 +00003485 Parse *pParse, /* The parser context */
3486 SrcList *pTabList, /* A list of all tables to be scanned */
3487 Expr *pWhere, /* The WHERE clause */
danielk1977a9d1ccb2008-01-05 17:39:29 +00003488 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
drh336a5302009-04-24 15:46:21 +00003489 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */
drh75897232000-05-29 14:26:00 +00003490){
3491 int i; /* Loop counter */
danielk1977be229652009-03-20 14:18:51 +00003492 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
drh75897232000-05-29 14:26:00 +00003493 WhereInfo *pWInfo; /* Will become the return value of this function */
3494 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
drhfe05af82005-07-21 03:14:59 +00003495 Bitmask notReady; /* Cursors that are not yet positioned */
drh111a6a72008-12-21 03:51:16 +00003496 WhereMaskSet *pMaskSet; /* The expression mask set */
drh111a6a72008-12-21 03:51:16 +00003497 WhereClause *pWC; /* Decomposition of the WHERE clause */
drh9012bcb2004-12-19 00:11:35 +00003498 struct SrcList_item *pTabItem; /* A single entry from pTabList */
3499 WhereLevel *pLevel; /* A single level in the pWInfo list */
drh29dda4a2005-07-21 18:23:20 +00003500 int iFrom; /* First unused FROM clause element */
drh111a6a72008-12-21 03:51:16 +00003501 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */
drh17435752007-08-16 04:30:38 +00003502 sqlite3 *db; /* Database connection */
drh75897232000-05-29 14:26:00 +00003503
drh29dda4a2005-07-21 18:23:20 +00003504 /* The number of tables in the FROM clause is limited by the number of
drh1398ad32005-01-19 23:24:50 +00003505 ** bits in a Bitmask
3506 */
drh29dda4a2005-07-21 18:23:20 +00003507 if( pTabList->nSrc>BMS ){
3508 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
drh1398ad32005-01-19 23:24:50 +00003509 return 0;
3510 }
3511
drh75897232000-05-29 14:26:00 +00003512 /* Allocate and initialize the WhereInfo structure that will become the
danielk1977be229652009-03-20 14:18:51 +00003513 ** return value. A single allocation is used to store the WhereInfo
3514 ** struct, the contents of WhereInfo.a[], the WhereClause structure
3515 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
3516 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
3517 ** some architectures. Hence the ROUND8() below.
drh75897232000-05-29 14:26:00 +00003518 */
drh17435752007-08-16 04:30:38 +00003519 db = pParse->db;
danielk1977be229652009-03-20 14:18:51 +00003520 nByteWInfo = ROUND8(sizeof(WhereInfo)+(pTabList->nSrc-1)*sizeof(WhereLevel));
3521 pWInfo = sqlite3DbMallocZero(db,
3522 nByteWInfo +
3523 sizeof(WhereClause) +
3524 sizeof(WhereMaskSet)
3525 );
drh17435752007-08-16 04:30:38 +00003526 if( db->mallocFailed ){
danielk197785574e32008-10-06 05:32:18 +00003527 goto whereBeginError;
drh75897232000-05-29 14:26:00 +00003528 }
danielk197770b6d572006-06-19 04:49:34 +00003529 pWInfo->nLevel = pTabList->nSrc;
drh75897232000-05-29 14:26:00 +00003530 pWInfo->pParse = pParse;
3531 pWInfo->pTabList = pTabList;
danielk19774adee202004-05-08 08:23:19 +00003532 pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
danielk1977be229652009-03-20 14:18:51 +00003533 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
drh6df2acd2008-12-28 16:55:25 +00003534 pWInfo->wctrlFlags = wctrlFlags;
drh111a6a72008-12-21 03:51:16 +00003535 pMaskSet = (WhereMaskSet*)&pWC[1];
drh08192d52002-04-30 19:20:28 +00003536
drh111a6a72008-12-21 03:51:16 +00003537 /* Split the WHERE clause into separate subexpressions where each
3538 ** subexpression is separated by an AND operator.
3539 */
3540 initMaskSet(pMaskSet);
3541 whereClauseInit(pWC, pParse, pMaskSet);
3542 sqlite3ExprCodeConstants(pParse, pWhere);
3543 whereSplit(pWC, pWhere, TK_AND);
3544
drh08192d52002-04-30 19:20:28 +00003545 /* Special case: a WHERE clause that is constant. Evaluate the
3546 ** expression and either jump over all of the code or fall thru.
3547 */
drh0a168372007-06-08 00:20:47 +00003548 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
drh35573352008-01-08 23:54:25 +00003549 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
drhdf199a22002-06-14 22:38:41 +00003550 pWhere = 0;
drh08192d52002-04-30 19:20:28 +00003551 }
drh75897232000-05-29 14:26:00 +00003552
drh42165be2008-03-26 14:56:34 +00003553 /* Assign a bit from the bitmask to every term in the FROM clause.
3554 **
3555 ** When assigning bitmask values to FROM clause cursors, it must be
3556 ** the case that if X is the bitmask for the N-th FROM clause term then
3557 ** the bitmask for all FROM clause terms to the left of the N-th term
3558 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
3559 ** its Expr.iRightJoinTable value to find the bitmask of the right table
3560 ** of the join. Subtracting one from the right table bitmask gives a
3561 ** bitmask for all tables to the left of the join. Knowing the bitmask
3562 ** for all tables to the left of a left join is important. Ticket #3015.
danielk1977e672c8e2009-05-22 15:43:26 +00003563 **
3564 ** Configure the WhereClause.vmask variable so that bits that correspond
3565 ** to virtual table cursors are set. This is used to selectively disable
3566 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
3567 ** with virtual tables.
drh42165be2008-03-26 14:56:34 +00003568 */
danielk1977e672c8e2009-05-22 15:43:26 +00003569 assert( pWC->vmask==0 && pMaskSet->n==0 );
drh42165be2008-03-26 14:56:34 +00003570 for(i=0; i<pTabList->nSrc; i++){
drh111a6a72008-12-21 03:51:16 +00003571 createMask(pMaskSet, pTabList->a[i].iCursor);
shanee26fa4c2009-06-16 14:15:22 +00003572#ifndef SQLITE_OMIT_VIRTUALTABLE
drh2c1a0c52009-06-11 17:04:28 +00003573 if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
danielk1977e672c8e2009-05-22 15:43:26 +00003574 pWC->vmask |= ((Bitmask)1 << i);
3575 }
shanee26fa4c2009-06-16 14:15:22 +00003576#endif
drh42165be2008-03-26 14:56:34 +00003577 }
3578#ifndef NDEBUG
3579 {
3580 Bitmask toTheLeft = 0;
3581 for(i=0; i<pTabList->nSrc; i++){
drh111a6a72008-12-21 03:51:16 +00003582 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
drh42165be2008-03-26 14:56:34 +00003583 assert( (m-1)==toTheLeft );
3584 toTheLeft |= m;
3585 }
3586 }
3587#endif
3588
drh29dda4a2005-07-21 18:23:20 +00003589 /* Analyze all of the subexpressions. Note that exprAnalyze() might
3590 ** add new virtual terms onto the end of the WHERE clause. We do not
3591 ** want to analyze these virtual terms, so start analyzing at the end
drhb6fb62d2005-09-20 08:47:20 +00003592 ** and work forward so that the added virtual terms are never processed.
drh75897232000-05-29 14:26:00 +00003593 */
drh111a6a72008-12-21 03:51:16 +00003594 exprAnalyzeAll(pTabList, pWC);
drh17435752007-08-16 04:30:38 +00003595 if( db->mallocFailed ){
danielk197785574e32008-10-06 05:32:18 +00003596 goto whereBeginError;
drh0bbaa1b2005-08-19 19:14:12 +00003597 }
drh75897232000-05-29 14:26:00 +00003598
drh29dda4a2005-07-21 18:23:20 +00003599 /* Chose the best index to use for each table in the FROM clause.
3600 **
drh51147ba2005-07-23 22:59:55 +00003601 ** This loop fills in the following fields:
3602 **
3603 ** pWInfo->a[].pIdx The index to use for this level of the loop.
drh165be382008-12-05 02:36:33 +00003604 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
drh51147ba2005-07-23 22:59:55 +00003605 ** pWInfo->a[].nEq The number of == and IN constraints
danielk197785574e32008-10-06 05:32:18 +00003606 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
drh51147ba2005-07-23 22:59:55 +00003607 ** pWInfo->a[].iTabCur The VDBE cursor for the database table
3608 ** pWInfo->a[].iIdxCur The VDBE cursor for the index
drh111a6a72008-12-21 03:51:16 +00003609 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
drh51147ba2005-07-23 22:59:55 +00003610 **
3611 ** This loop also figures out the nesting order of tables in the FROM
3612 ** clause.
drh75897232000-05-29 14:26:00 +00003613 */
drhfe05af82005-07-21 03:14:59 +00003614 notReady = ~(Bitmask)0;
drh9012bcb2004-12-19 00:11:35 +00003615 pTabItem = pTabList->a;
3616 pLevel = pWInfo->a;
drh943af3c2005-07-29 19:43:58 +00003617 andFlags = ~0;
drh4f0c5872007-03-26 22:05:01 +00003618 WHERETRACE(("*** Optimizer Start ***\n"));
drh29dda4a2005-07-21 18:23:20 +00003619 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
drh111a6a72008-12-21 03:51:16 +00003620 WhereCost bestPlan; /* Most efficient plan seen so far */
drh29dda4a2005-07-21 18:23:20 +00003621 Index *pIdx; /* Index for FROM table at pTabItem */
drh29dda4a2005-07-21 18:23:20 +00003622 int j; /* For looping over FROM tables */
dan5236ac12009-08-13 07:09:33 +00003623 int bestJ = -1; /* The value of j */
drh29dda4a2005-07-21 18:23:20 +00003624 Bitmask m; /* Bitmask value for j or bestJ */
dan5236ac12009-08-13 07:09:33 +00003625 int isOptimal; /* Iterator for optimal/non-optimal search */
drh29dda4a2005-07-21 18:23:20 +00003626
drh111a6a72008-12-21 03:51:16 +00003627 memset(&bestPlan, 0, sizeof(bestPlan));
3628 bestPlan.rCost = SQLITE_BIG_DBL;
drhdf26fd52006-06-06 11:45:54 +00003629
dan5236ac12009-08-13 07:09:33 +00003630 /* Loop through the remaining entries in the FROM clause to find the
3631 ** next nested loop. The FROM clause entries may be iterated through
3632 ** either once or twice.
3633 **
3634 ** The first iteration, which is always performed, searches for the
3635 ** FROM clause entry that permits the lowest-cost, "optimal" scan. In
3636 ** this context an optimal scan is one that uses the same strategy
3637 ** for the given FROM clause entry as would be selected if the entry
drhd0015162009-08-21 13:22:25 +00003638 ** were used as the innermost nested loop. In other words, a table
3639 ** is chosen such that the cost of running that table cannot be reduced
3640 ** by waiting for other tables to run first.
dan5236ac12009-08-13 07:09:33 +00003641 **
3642 ** The second iteration is only performed if no optimal scan strategies
3643 ** were found by the first. This iteration is used to search for the
3644 ** lowest cost scan overall.
3645 **
3646 ** Previous versions of SQLite performed only the second iteration -
3647 ** the next outermost loop was always that with the lowest overall
3648 ** cost. However, this meant that SQLite could select the wrong plan
3649 ** for scripts such as the following:
3650 **
3651 ** CREATE TABLE t1(a, b);
3652 ** CREATE TABLE t2(c, d);
3653 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
3654 **
3655 ** The best strategy is to iterate through table t1 first. However it
3656 ** is not possible to determine this with a simple greedy algorithm.
3657 ** However, since the cost of a linear scan through table t2 is the same
3658 ** as the cost of a linear scan through table t1, a simple greedy
3659 ** algorithm may choose to use t2 for the outer loop, which is a much
3660 ** costlier approach.
3661 */
3662 for(isOptimal=1; isOptimal>=0 && bestJ<0; isOptimal--){
3663 Bitmask mask = (isOptimal ? 0 : notReady);
3664 assert( (pTabList->nSrc-iFrom)>1 || isOptimal );
3665 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
3666 int doNotReorder; /* True if this table should not be reordered */
3667 WhereCost sCost; /* Cost information from best[Virtual]Index() */
3668 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */
3669
3670 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
3671 if( j!=iFrom && doNotReorder ) break;
3672 m = getMask(pMaskSet, pTabItem->iCursor);
3673 if( (m & notReady)==0 ){
3674 if( j==iFrom ) iFrom++;
3675 continue;
3676 }
3677 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
3678
3679 assert( pTabItem->pTab );
drh9eff6162006-06-12 21:59:13 +00003680#ifndef SQLITE_OMIT_VIRTUALTABLE
dan5236ac12009-08-13 07:09:33 +00003681 if( IsVirtual(pTabItem->pTab) ){
3682 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
3683 bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp);
3684 }else
drh9eff6162006-06-12 21:59:13 +00003685#endif
dan5236ac12009-08-13 07:09:33 +00003686 {
3687 bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost);
3688 }
3689 assert( isOptimal || (sCost.used&notReady)==0 );
3690
3691 if( (sCost.used&notReady)==0
3692 && (j==iFrom || sCost.rCost<bestPlan.rCost)
3693 ){
3694 bestPlan = sCost;
3695 bestJ = j;
3696 }
3697 if( doNotReorder ) break;
drh9eff6162006-06-12 21:59:13 +00003698 }
drh29dda4a2005-07-21 18:23:20 +00003699 }
dan5236ac12009-08-13 07:09:33 +00003700 assert( bestJ>=0 );
danielk1977992347f2008-12-30 09:45:45 +00003701 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
drhcb041342008-06-12 00:07:29 +00003702 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
drh3dec2232005-09-10 15:28:09 +00003703 pLevel-pWInfo->a));
drh111a6a72008-12-21 03:51:16 +00003704 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
drhfe05af82005-07-21 03:14:59 +00003705 *ppOrderBy = 0;
drhc4a3c772001-04-04 11:48:57 +00003706 }
drh111a6a72008-12-21 03:51:16 +00003707 andFlags &= bestPlan.plan.wsFlags;
3708 pLevel->plan = bestPlan.plan;
3709 if( bestPlan.plan.wsFlags & WHERE_INDEXED ){
drh9012bcb2004-12-19 00:11:35 +00003710 pLevel->iIdxCur = pParse->nTab++;
drhfe05af82005-07-21 03:14:59 +00003711 }else{
3712 pLevel->iIdxCur = -1;
drh6b563442001-11-07 16:48:26 +00003713 }
drh111a6a72008-12-21 03:51:16 +00003714 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
shaned87897d2009-01-30 05:40:27 +00003715 pLevel->iFrom = (u8)bestJ;
danielk197785574e32008-10-06 05:32:18 +00003716
3717 /* Check that if the table scanned by this loop iteration had an
3718 ** INDEXED BY clause attached to it, that the named index is being
3719 ** used for the scan. If not, then query compilation has failed.
3720 ** Return an error.
3721 */
3722 pIdx = pTabList->a[bestJ].pIndex;
drh171256c2009-01-08 03:11:19 +00003723 if( pIdx ){
3724 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
3725 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
3726 goto whereBeginError;
3727 }else{
3728 /* If an INDEXED BY clause is used, the bestIndex() function is
3729 ** guaranteed to find the index specified in the INDEXED BY clause
3730 ** if it find an index at all. */
3731 assert( bestPlan.plan.u.pIdx==pIdx );
3732 }
danielk197785574e32008-10-06 05:32:18 +00003733 }
drh75897232000-05-29 14:26:00 +00003734 }
drh4f0c5872007-03-26 22:05:01 +00003735 WHERETRACE(("*** Optimizer Finished ***\n"));
danielk19771d461462009-04-21 09:02:45 +00003736 if( pParse->nErr || db->mallocFailed ){
danielk197780442942008-12-24 11:25:39 +00003737 goto whereBeginError;
3738 }
drh75897232000-05-29 14:26:00 +00003739
drh943af3c2005-07-29 19:43:58 +00003740 /* If the total query only selects a single row, then the ORDER BY
3741 ** clause is irrelevant.
3742 */
3743 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
3744 *ppOrderBy = 0;
3745 }
3746
drh08c88eb2008-04-10 13:33:18 +00003747 /* If the caller is an UPDATE or DELETE statement that is requesting
3748 ** to use a one-pass algorithm, determine if this is appropriate.
3749 ** The one-pass algorithm only works if the WHERE clause constraints
3750 ** the statement to update a single row.
3751 */
drh165be382008-12-05 02:36:33 +00003752 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
3753 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
drh08c88eb2008-04-10 13:33:18 +00003754 pWInfo->okOnePass = 1;
drh111a6a72008-12-21 03:51:16 +00003755 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
drh08c88eb2008-04-10 13:33:18 +00003756 }
3757
drh9012bcb2004-12-19 00:11:35 +00003758 /* Open all tables in the pTabList and any indices selected for
3759 ** searching those tables.
3760 */
3761 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
drh29dda4a2005-07-21 18:23:20 +00003762 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
danielk1977da184232006-01-05 11:34:32 +00003763 Table *pTab; /* Table to open */
danielk1977da184232006-01-05 11:34:32 +00003764 int iDb; /* Index of database containing table/index */
drh9012bcb2004-12-19 00:11:35 +00003765
drhecc92422005-09-10 16:46:12 +00003766#ifndef SQLITE_OMIT_EXPLAIN
3767 if( pParse->explain==2 ){
3768 char *zMsg;
3769 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
danielk19771e536952007-08-16 10:09:01 +00003770 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
drhecc92422005-09-10 16:46:12 +00003771 if( pItem->zAlias ){
drh633e6d52008-07-28 19:34:53 +00003772 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
drhecc92422005-09-10 16:46:12 +00003773 }
drh111a6a72008-12-21 03:51:16 +00003774 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3775 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s",
3776 zMsg, pLevel->plan.u.pIdx->zName);
drh46129af2008-12-30 16:18:47 +00003777 }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
3778 zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg);
drh111a6a72008-12-21 03:51:16 +00003779 }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
drh633e6d52008-07-28 19:34:53 +00003780 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg);
drhecc92422005-09-10 16:46:12 +00003781 }
drh9eff6162006-06-12 21:59:13 +00003782#ifndef SQLITE_OMIT_VIRTUALTABLE
drh111a6a72008-12-21 03:51:16 +00003783 else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
3784 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
drh633e6d52008-07-28 19:34:53 +00003785 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
drh111a6a72008-12-21 03:51:16 +00003786 pVtabIdx->idxNum, pVtabIdx->idxStr);
drh9eff6162006-06-12 21:59:13 +00003787 }
3788#endif
drh111a6a72008-12-21 03:51:16 +00003789 if( pLevel->plan.wsFlags & WHERE_ORDERBY ){
drh633e6d52008-07-28 19:34:53 +00003790 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg);
drhe2b39092006-04-21 09:38:36 +00003791 }
drh66a51672008-01-03 00:01:23 +00003792 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
drhecc92422005-09-10 16:46:12 +00003793 }
3794#endif /* SQLITE_OMIT_EXPLAIN */
drh29dda4a2005-07-21 18:23:20 +00003795 pTabItem = &pTabList->a[pLevel->iFrom];
drh9012bcb2004-12-19 00:11:35 +00003796 pTab = pTabItem->pTab;
danielk1977595a5232009-07-24 17:58:53 +00003797 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
drh7d10d5a2008-08-20 16:35:10 +00003798 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
drh9eff6162006-06-12 21:59:13 +00003799#ifndef SQLITE_OMIT_VIRTUALTABLE
drh111a6a72008-12-21 03:51:16 +00003800 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
danielk1977595a5232009-07-24 17:58:53 +00003801 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
danielk197793626f42006-06-20 13:07:27 +00003802 int iCur = pTabItem->iCursor;
danielk1977595a5232009-07-24 17:58:53 +00003803 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
drh9eff6162006-06-12 21:59:13 +00003804 }else
3805#endif
drh6df2acd2008-12-28 16:55:25 +00003806 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
3807 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){
drh08c88eb2008-04-10 13:33:18 +00003808 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
3809 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
danielk197723432972008-11-17 16:42:00 +00003810 if( !pWInfo->okOnePass && pTab->nCol<BMS ){
danielk19779792eef2006-01-13 15:58:43 +00003811 Bitmask b = pTabItem->colUsed;
3812 int n = 0;
drh74161702006-02-24 02:53:49 +00003813 for(; b; b=b>>1, n++){}
drh8cff69d2009-11-12 19:59:44 +00003814 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
3815 SQLITE_INT_TO_PTR(n), P4_INT32);
danielk19779792eef2006-01-13 15:58:43 +00003816 assert( n<=pTab->nCol );
3817 }
danielk1977c00da102006-01-07 13:21:04 +00003818 }else{
3819 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
drh9012bcb2004-12-19 00:11:35 +00003820 }
3821 pLevel->iTabCur = pTabItem->iCursor;
drh111a6a72008-12-21 03:51:16 +00003822 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3823 Index *pIx = pLevel->plan.u.pIdx;
danielk1977b3bf5562006-01-10 17:58:23 +00003824 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
drh111a6a72008-12-21 03:51:16 +00003825 int iIdxCur = pLevel->iIdxCur;
danielk1977da184232006-01-05 11:34:32 +00003826 assert( pIx->pSchema==pTab->pSchema );
drh111a6a72008-12-21 03:51:16 +00003827 assert( iIdxCur>=0 );
danielk1977207872a2008-01-03 07:54:23 +00003828 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
drh66a51672008-01-03 00:01:23 +00003829 (char*)pKey, P4_KEYINFO_HANDOFF);
danielk1977207872a2008-01-03 07:54:23 +00003830 VdbeComment((v, "%s", pIx->zName));
drh9012bcb2004-12-19 00:11:35 +00003831 }
danielk1977da184232006-01-05 11:34:32 +00003832 sqlite3CodeVerifySchema(pParse, iDb);
drh9012bcb2004-12-19 00:11:35 +00003833 }
3834 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
3835
drh29dda4a2005-07-21 18:23:20 +00003836 /* Generate the code to do the search. Each iteration of the for
3837 ** loop below generates code for a single nested loop of the VM
3838 ** program.
drh75897232000-05-29 14:26:00 +00003839 */
drhfe05af82005-07-21 03:14:59 +00003840 notReady = ~(Bitmask)0;
drh111a6a72008-12-21 03:51:16 +00003841 for(i=0; i<pTabList->nSrc; i++){
3842 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
drh813f31e2009-01-06 00:08:02 +00003843 pWInfo->iContinue = pWInfo->a[i].addrCont;
drh75897232000-05-29 14:26:00 +00003844 }
drh7ec764a2005-07-21 03:48:20 +00003845
3846#ifdef SQLITE_TEST /* For testing and debugging use only */
3847 /* Record in the query plan information about the current table
3848 ** and the index used to access it (if any). If the table itself
3849 ** is not used, its name is just '{}'. If no index is used
3850 ** the index is listed as "{}". If the primary key is used the
3851 ** index name is '*'.
3852 */
3853 for(i=0; i<pTabList->nSrc; i++){
3854 char *z;
3855 int n;
drh7ec764a2005-07-21 03:48:20 +00003856 pLevel = &pWInfo->a[i];
drh29dda4a2005-07-21 18:23:20 +00003857 pTabItem = &pTabList->a[pLevel->iFrom];
drh7ec764a2005-07-21 03:48:20 +00003858 z = pTabItem->zAlias;
3859 if( z==0 ) z = pTabItem->pTab->zName;
drhea678832008-12-10 19:26:22 +00003860 n = sqlite3Strlen30(z);
drh7ec764a2005-07-21 03:48:20 +00003861 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
drh111a6a72008-12-21 03:51:16 +00003862 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
drh5bb3eb92007-05-04 13:15:55 +00003863 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
drh7ec764a2005-07-21 03:48:20 +00003864 nQPlan += 2;
3865 }else{
drh5bb3eb92007-05-04 13:15:55 +00003866 memcpy(&sqlite3_query_plan[nQPlan], z, n);
drh7ec764a2005-07-21 03:48:20 +00003867 nQPlan += n;
3868 }
3869 sqlite3_query_plan[nQPlan++] = ' ';
3870 }
drh111a6a72008-12-21 03:51:16 +00003871 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
3872 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
3873 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
drh5bb3eb92007-05-04 13:15:55 +00003874 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
drh7ec764a2005-07-21 03:48:20 +00003875 nQPlan += 2;
drh111a6a72008-12-21 03:51:16 +00003876 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3877 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
drh7ec764a2005-07-21 03:48:20 +00003878 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
drh111a6a72008-12-21 03:51:16 +00003879 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
drh7ec764a2005-07-21 03:48:20 +00003880 nQPlan += n;
3881 sqlite3_query_plan[nQPlan++] = ' ';
3882 }
drh111a6a72008-12-21 03:51:16 +00003883 }else{
3884 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
3885 nQPlan += 3;
drh7ec764a2005-07-21 03:48:20 +00003886 }
3887 }
3888 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
3889 sqlite3_query_plan[--nQPlan] = 0;
3890 }
3891 sqlite3_query_plan[nQPlan] = 0;
3892 nQPlan = 0;
3893#endif /* SQLITE_TEST // Testing and debugging use only */
3894
drh29dda4a2005-07-21 18:23:20 +00003895 /* Record the continuation address in the WhereInfo structure. Then
3896 ** clean up and return.
3897 */
drh75897232000-05-29 14:26:00 +00003898 return pWInfo;
drhe23399f2005-07-22 00:31:39 +00003899
3900 /* Jump here if malloc fails */
danielk197785574e32008-10-06 05:32:18 +00003901whereBeginError:
drh10fe8402008-10-11 16:47:35 +00003902 whereInfoFree(db, pWInfo);
drhe23399f2005-07-22 00:31:39 +00003903 return 0;
drh75897232000-05-29 14:26:00 +00003904}
3905
3906/*
drhc27a1ce2002-06-14 20:58:45 +00003907** Generate the end of the WHERE loop. See comments on
danielk19774adee202004-05-08 08:23:19 +00003908** sqlite3WhereBegin() for additional information.
drh75897232000-05-29 14:26:00 +00003909*/
danielk19774adee202004-05-08 08:23:19 +00003910void sqlite3WhereEnd(WhereInfo *pWInfo){
drh633e6d52008-07-28 19:34:53 +00003911 Parse *pParse = pWInfo->pParse;
3912 Vdbe *v = pParse->pVdbe;
drh19a775c2000-06-05 18:54:46 +00003913 int i;
drh6b563442001-11-07 16:48:26 +00003914 WhereLevel *pLevel;
drhad3cab52002-05-24 02:04:32 +00003915 SrcList *pTabList = pWInfo->pTabList;
drh633e6d52008-07-28 19:34:53 +00003916 sqlite3 *db = pParse->db;
drh19a775c2000-06-05 18:54:46 +00003917
drh9012bcb2004-12-19 00:11:35 +00003918 /* Generate loop termination code.
3919 */
drhceea3322009-04-23 13:22:42 +00003920 sqlite3ExprCacheClear(pParse);
drhad3cab52002-05-24 02:04:32 +00003921 for(i=pTabList->nSrc-1; i>=0; i--){
drh6b563442001-11-07 16:48:26 +00003922 pLevel = &pWInfo->a[i];
drhb3190c12008-12-08 21:37:14 +00003923 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
drh6b563442001-11-07 16:48:26 +00003924 if( pLevel->op!=OP_Noop ){
drh66a51672008-01-03 00:01:23 +00003925 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
drhd1d38482008-10-07 23:46:38 +00003926 sqlite3VdbeChangeP5(v, pLevel->p5);
drh19a775c2000-06-05 18:54:46 +00003927 }
drh111a6a72008-12-21 03:51:16 +00003928 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
drh72e8fa42007-03-28 14:30:06 +00003929 struct InLoop *pIn;
drhe23399f2005-07-22 00:31:39 +00003930 int j;
drhb3190c12008-12-08 21:37:14 +00003931 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
drh111a6a72008-12-21 03:51:16 +00003932 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
drhb3190c12008-12-08 21:37:14 +00003933 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
3934 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
3935 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
drhe23399f2005-07-22 00:31:39 +00003936 }
drh111a6a72008-12-21 03:51:16 +00003937 sqlite3DbFree(db, pLevel->u.in.aInLoop);
drhd99f7062002-06-08 23:25:08 +00003938 }
drhb3190c12008-12-08 21:37:14 +00003939 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
drhad2d8302002-05-24 20:31:36 +00003940 if( pLevel->iLeftJoin ){
3941 int addr;
drh3c84ddf2008-01-09 02:15:38 +00003942 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
drh35451c62009-11-12 04:26:39 +00003943 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
3944 || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
3945 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
3946 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
3947 }
drh9012bcb2004-12-19 00:11:35 +00003948 if( pLevel->iIdxCur>=0 ){
drh3c84ddf2008-01-09 02:15:38 +00003949 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
drh7f09b3e2002-08-13 13:15:49 +00003950 }
drh336a5302009-04-24 15:46:21 +00003951 if( pLevel->op==OP_Return ){
3952 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
3953 }else{
3954 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
3955 }
drhd654be82005-09-20 17:42:23 +00003956 sqlite3VdbeJumpHere(v, addr);
drhad2d8302002-05-24 20:31:36 +00003957 }
drh19a775c2000-06-05 18:54:46 +00003958 }
drh9012bcb2004-12-19 00:11:35 +00003959
3960 /* The "break" point is here, just past the end of the outer loop.
3961 ** Set it.
3962 */
danielk19774adee202004-05-08 08:23:19 +00003963 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
drh9012bcb2004-12-19 00:11:35 +00003964
drh29dda4a2005-07-21 18:23:20 +00003965 /* Close all of the cursors that were opened by sqlite3WhereBegin.
drh9012bcb2004-12-19 00:11:35 +00003966 */
drh29dda4a2005-07-21 18:23:20 +00003967 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
3968 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
drh9012bcb2004-12-19 00:11:35 +00003969 Table *pTab = pTabItem->pTab;
drh5cf590c2003-04-24 01:45:04 +00003970 assert( pTab!=0 );
drh7d10d5a2008-08-20 16:35:10 +00003971 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
drh6df2acd2008-12-28 16:55:25 +00003972 if( (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 ){
3973 if( !pWInfo->okOnePass && (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
3974 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
3975 }
3976 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3977 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
3978 }
drh9012bcb2004-12-19 00:11:35 +00003979 }
3980
danielk197721de2e72007-11-29 17:43:27 +00003981 /* If this scan uses an index, make code substitutions to read data
3982 ** from the index in preference to the table. Sometimes, this means
3983 ** the table need never be read from. This is a performance boost,
3984 ** as the vdbe level waits until the table is read before actually
3985 ** seeking the table cursor to the record corresponding to the current
3986 ** position in the index.
drh9012bcb2004-12-19 00:11:35 +00003987 **
3988 ** Calls to the code generator in between sqlite3WhereBegin and
3989 ** sqlite3WhereEnd will have created code that references the table
3990 ** directly. This loop scans all that code looking for opcodes
3991 ** that reference the table and converts them into opcodes that
3992 ** reference the index.
3993 */
drh125feff2009-06-06 15:17:27 +00003994 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
danielk1977f0113002006-01-24 12:09:17 +00003995 int k, j, last;
drh9012bcb2004-12-19 00:11:35 +00003996 VdbeOp *pOp;
drh111a6a72008-12-21 03:51:16 +00003997 Index *pIdx = pLevel->plan.u.pIdx;
drh9012bcb2004-12-19 00:11:35 +00003998
3999 assert( pIdx!=0 );
4000 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
4001 last = sqlite3VdbeCurrentAddr(v);
danielk1977f0113002006-01-24 12:09:17 +00004002 for(k=pWInfo->iTop; k<last; k++, pOp++){
drh9012bcb2004-12-19 00:11:35 +00004003 if( pOp->p1!=pLevel->iTabCur ) continue;
4004 if( pOp->opcode==OP_Column ){
drh9012bcb2004-12-19 00:11:35 +00004005 for(j=0; j<pIdx->nColumn; j++){
4006 if( pOp->p2==pIdx->aiColumn[j] ){
4007 pOp->p2 = j;
danielk197721de2e72007-11-29 17:43:27 +00004008 pOp->p1 = pLevel->iIdxCur;
drh9012bcb2004-12-19 00:11:35 +00004009 break;
4010 }
4011 }
drh35451c62009-11-12 04:26:39 +00004012 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4013 || j<pIdx->nColumn );
drhf0863fe2005-06-12 21:35:51 +00004014 }else if( pOp->opcode==OP_Rowid ){
drh9012bcb2004-12-19 00:11:35 +00004015 pOp->p1 = pLevel->iIdxCur;
drhf0863fe2005-06-12 21:35:51 +00004016 pOp->opcode = OP_IdxRowid;
drh9012bcb2004-12-19 00:11:35 +00004017 }
4018 }
drh6b563442001-11-07 16:48:26 +00004019 }
drh19a775c2000-06-05 18:54:46 +00004020 }
drh9012bcb2004-12-19 00:11:35 +00004021
4022 /* Final cleanup
4023 */
drh10fe8402008-10-11 16:47:35 +00004024 whereInfoFree(db, pWInfo);
drh75897232000-05-29 14:26:00 +00004025 return;
4026}