blob: 50a08c952ad914c3383877584a3b247523e4c417 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
12** This module contains C code that generates VDBE code used to process
drh909626d2008-05-30 14:58:37 +000013** the WHERE clause of SQL statements. This module is responsible for
drh51669862004-12-18 18:40:26 +000014** generating the code that loops through a table looking for applicable
15** rows. Indices are selected and used to speed the search when doing
16** so is applicable. Because this module is responsible for selecting
17** indices, you might also think of this module as the "query optimizer".
drh75897232000-05-29 14:26:00 +000018**
danielk1977f51d1bd2009-07-31 06:14:51 +000019** $Id: where.c,v 1.411 2009/07/31 06:14:52 danielk1977 Exp $
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
22
23/*
drh51147ba2005-07-23 22:59:55 +000024** Trace output macros
25*/
26#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
mlcreech3a00f902008-03-04 17:45:01 +000027int sqlite3WhereTrace = 0;
drhe8f52c52008-07-12 14:52:20 +000028#endif
drh85799a42009-04-07 13:48:11 +000029#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
mlcreech3a00f902008-03-04 17:45:01 +000030# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
drh51147ba2005-07-23 22:59:55 +000031#else
drh4f0c5872007-03-26 22:05:01 +000032# define WHERETRACE(X)
drh51147ba2005-07-23 22:59:55 +000033#endif
34
drh0fcef5e2005-07-19 17:38:22 +000035/* Forward reference
36*/
37typedef struct WhereClause WhereClause;
drh111a6a72008-12-21 03:51:16 +000038typedef struct WhereMaskSet WhereMaskSet;
drh700a2262008-12-17 19:22:15 +000039typedef struct WhereOrInfo WhereOrInfo;
40typedef struct WhereAndInfo WhereAndInfo;
drh111a6a72008-12-21 03:51:16 +000041typedef struct WhereCost WhereCost;
drh0aa74ed2005-07-16 13:33:20 +000042
43/*
drh75897232000-05-29 14:26:00 +000044** The query generator uses an array of instances of this structure to
45** help it analyze the subexpressions of the WHERE clause. Each WHERE
drh61495262009-04-22 15:32:59 +000046** clause subexpression is separated from the others by AND operators,
47** usually, or sometimes subexpressions separated by OR.
drh51669862004-12-18 18:40:26 +000048**
drh0fcef5e2005-07-19 17:38:22 +000049** All WhereTerms are collected into a single WhereClause structure.
50** The following identity holds:
drh51669862004-12-18 18:40:26 +000051**
drh0fcef5e2005-07-19 17:38:22 +000052** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
drh51669862004-12-18 18:40:26 +000053**
drh0fcef5e2005-07-19 17:38:22 +000054** When a term is of the form:
55**
56** X <op> <expr>
57**
58** where X is a column name and <op> is one of certain operators,
drh700a2262008-12-17 19:22:15 +000059** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
60** cursor number and column number for X. WhereTerm.eOperator records
drh51147ba2005-07-23 22:59:55 +000061** the <op> using a bitmask encoding defined by WO_xxx below. The
62** use of a bitmask encoding for the operator allows us to search
63** quickly for terms that match any of several different operators.
drh0fcef5e2005-07-19 17:38:22 +000064**
drh700a2262008-12-17 19:22:15 +000065** A WhereTerm might also be two or more subterms connected by OR:
66**
67** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
68**
69** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
70** and the WhereTerm.u.pOrInfo field points to auxiliary information that
71** is collected about the
72**
73** If a term in the WHERE clause does not match either of the two previous
74** categories, then eOperator==0. The WhereTerm.pExpr field is still set
75** to the original subexpression content and wtFlags is set up appropriately
76** but no other fields in the WhereTerm object are meaningful.
77**
78** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
drh111a6a72008-12-21 03:51:16 +000079** but they do so indirectly. A single WhereMaskSet structure translates
drh51669862004-12-18 18:40:26 +000080** cursor number into bits and the translated bit is stored in the prereq
81** fields. The translation is used in order to maximize the number of
82** bits that will fit in a Bitmask. The VDBE cursor numbers might be
83** spread out over the non-negative integers. For example, the cursor
drh111a6a72008-12-21 03:51:16 +000084** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
drh51669862004-12-18 18:40:26 +000085** translates these sparse cursor numbers into consecutive integers
86** beginning with 0 in order to make the best possible use of the available
87** bits in the Bitmask. So, in the example above, the cursor numbers
88** would be mapped into integers 0 through 7.
drh6a1e0712008-12-05 15:24:15 +000089**
90** The number of terms in a join is limited by the number of bits
91** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
92** is only able to process joins with 64 or fewer tables.
drh75897232000-05-29 14:26:00 +000093*/
drh0aa74ed2005-07-16 13:33:20 +000094typedef struct WhereTerm WhereTerm;
95struct WhereTerm {
drh165be382008-12-05 02:36:33 +000096 Expr *pExpr; /* Pointer to the subexpression that is this term */
drhec1724e2008-12-09 01:32:03 +000097 int iParent; /* Disable pWC->a[iParent] when this term disabled */
98 int leftCursor; /* Cursor number of X in "X <op> <expr>" */
drh700a2262008-12-17 19:22:15 +000099 union {
100 int leftColumn; /* Column number of X in "X <op> <expr>" */
101 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */
102 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
103 } u;
drhb52076c2006-01-23 13:22:09 +0000104 u16 eOperator; /* A WO_xx value describing <op> */
drh165be382008-12-05 02:36:33 +0000105 u8 wtFlags; /* TERM_xxx bit flags. See below */
drh45b1ee42005-08-02 17:48:22 +0000106 u8 nChild; /* Number of children that must disable us */
drh0fcef5e2005-07-19 17:38:22 +0000107 WhereClause *pWC; /* The clause this term is part of */
drh165be382008-12-05 02:36:33 +0000108 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */
109 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */
drh75897232000-05-29 14:26:00 +0000110};
111
112/*
drh165be382008-12-05 02:36:33 +0000113** Allowed values of WhereTerm.wtFlags
drh0aa74ed2005-07-16 13:33:20 +0000114*/
drh633e6d52008-07-28 19:34:53 +0000115#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
drh6c30be82005-07-29 15:10:17 +0000116#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
117#define TERM_CODED 0x04 /* This term is already coded */
drh45b1ee42005-08-02 17:48:22 +0000118#define TERM_COPIED 0x08 /* Has a child */
drh700a2262008-12-17 19:22:15 +0000119#define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
120#define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
121#define TERM_OR_OK 0x40 /* Used during OR-clause processing */
drh0aa74ed2005-07-16 13:33:20 +0000122
123/*
124** An instance of the following structure holds all information about a
125** WHERE clause. Mostly this is a container for one or more WhereTerms.
126*/
drh0aa74ed2005-07-16 13:33:20 +0000127struct WhereClause {
drhfe05af82005-07-21 03:14:59 +0000128 Parse *pParse; /* The parser context */
drh111a6a72008-12-21 03:51:16 +0000129 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */
danielk1977e672c8e2009-05-22 15:43:26 +0000130 Bitmask vmask; /* Bitmask identifying virtual table cursors */
drh29435252008-12-28 18:35:08 +0000131 u8 op; /* Split operator. TK_AND or TK_OR */
drh0aa74ed2005-07-16 13:33:20 +0000132 int nTerm; /* Number of terms */
133 int nSlot; /* Number of entries in a[] */
drh51147ba2005-07-23 22:59:55 +0000134 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
drh50d654d2009-06-03 01:24:54 +0000135#if defined(SQLITE_SMALL_STACK)
136 WhereTerm aStatic[1]; /* Initial static space for a[] */
137#else
138 WhereTerm aStatic[8]; /* Initial static space for a[] */
139#endif
drhe23399f2005-07-22 00:31:39 +0000140};
141
142/*
drh700a2262008-12-17 19:22:15 +0000143** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
144** a dynamically allocated instance of the following structure.
145*/
146struct WhereOrInfo {
drh111a6a72008-12-21 03:51:16 +0000147 WhereClause wc; /* Decomposition into subterms */
drh1a58fe02008-12-20 02:06:13 +0000148 Bitmask indexable; /* Bitmask of all indexable tables in the clause */
drh700a2262008-12-17 19:22:15 +0000149};
150
151/*
152** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
153** a dynamically allocated instance of the following structure.
154*/
155struct WhereAndInfo {
drh29435252008-12-28 18:35:08 +0000156 WhereClause wc; /* The subexpression broken out */
drh700a2262008-12-17 19:22:15 +0000157};
158
159/*
drh6a3ea0e2003-05-02 14:32:12 +0000160** An instance of the following structure keeps track of a mapping
drh0aa74ed2005-07-16 13:33:20 +0000161** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
drh51669862004-12-18 18:40:26 +0000162**
163** The VDBE cursor numbers are small integers contained in
164** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
165** clause, the cursor numbers might not begin with 0 and they might
166** contain gaps in the numbering sequence. But we want to make maximum
167** use of the bits in our bitmasks. This structure provides a mapping
168** from the sparse cursor numbers into consecutive integers beginning
169** with 0.
170**
drh111a6a72008-12-21 03:51:16 +0000171** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
drh51669862004-12-18 18:40:26 +0000172** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
173**
174** For example, if the WHERE clause expression used these VDBE
drh111a6a72008-12-21 03:51:16 +0000175** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
drh51669862004-12-18 18:40:26 +0000176** would map those cursor numbers into bits 0 through 5.
177**
178** Note that the mapping is not necessarily ordered. In the example
179** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
180** 57->5, 73->4. Or one of 719 other combinations might be used. It
181** does not really matter. What is important is that sparse cursor
182** numbers all get mapped into bit numbers that begin with 0 and contain
183** no gaps.
drh6a3ea0e2003-05-02 14:32:12 +0000184*/
drh111a6a72008-12-21 03:51:16 +0000185struct WhereMaskSet {
drh1398ad32005-01-19 23:24:50 +0000186 int n; /* Number of assigned cursor values */
danielk197723432972008-11-17 16:42:00 +0000187 int ix[BMS]; /* Cursor assigned to each bit */
drh6a3ea0e2003-05-02 14:32:12 +0000188};
189
drh111a6a72008-12-21 03:51:16 +0000190/*
191** A WhereCost object records a lookup strategy and the estimated
192** cost of pursuing that strategy.
193*/
194struct WhereCost {
195 WherePlan plan; /* The lookup strategy */
196 double rCost; /* Overall cost of pursuing this search strategy */
197 double nRow; /* Estimated number of output rows */
dan5236ac12009-08-13 07:09:33 +0000198 Bitmask used; /* Bitmask of cursors used by this plan */
drh111a6a72008-12-21 03:51:16 +0000199};
drh0aa74ed2005-07-16 13:33:20 +0000200
drh6a3ea0e2003-05-02 14:32:12 +0000201/*
drh51147ba2005-07-23 22:59:55 +0000202** Bitmasks for the operators that indices are able to exploit. An
203** OR-ed combination of these values can be used when searching for
204** terms in the where clause.
205*/
drh165be382008-12-05 02:36:33 +0000206#define WO_IN 0x001
207#define WO_EQ 0x002
drh51147ba2005-07-23 22:59:55 +0000208#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
209#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
210#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
211#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
drh165be382008-12-05 02:36:33 +0000212#define WO_MATCH 0x040
213#define WO_ISNULL 0x080
drh700a2262008-12-17 19:22:15 +0000214#define WO_OR 0x100 /* Two or more OR-connected terms */
215#define WO_AND 0x200 /* Two or more AND-connected terms */
drh51147ba2005-07-23 22:59:55 +0000216
drhec1724e2008-12-09 01:32:03 +0000217#define WO_ALL 0xfff /* Mask of all possible WO_* values */
drh1a58fe02008-12-20 02:06:13 +0000218#define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
drhec1724e2008-12-09 01:32:03 +0000219
drh51147ba2005-07-23 22:59:55 +0000220/*
drh700a2262008-12-17 19:22:15 +0000221** Value for wsFlags returned by bestIndex() and stored in
222** WhereLevel.wsFlags. These flags determine which search
223** strategies are appropriate.
drhf2d315d2007-01-25 16:56:06 +0000224**
drh165be382008-12-05 02:36:33 +0000225** The least significant 12 bits is reserved as a mask for WO_ values above.
drh700a2262008-12-17 19:22:15 +0000226** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
227** But if the table is the right table of a left join, WhereLevel.wsFlags
228** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as
drhf2d315d2007-01-25 16:56:06 +0000229** the "op" parameter to findTerm when we are resolving equality constraints.
230** ISNULL constraints will then not be used on the right table of a left
231** join. Tickets #2177 and #2189.
drh51147ba2005-07-23 22:59:55 +0000232*/
drh165be382008-12-05 02:36:33 +0000233#define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */
234#define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */
drh46619d62009-04-24 14:51:42 +0000235#define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */
drh165be382008-12-05 02:36:33 +0000236#define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */
237#define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */
drh46619d62009-04-24 14:51:42 +0000238#define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */
239#define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */
240#define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */
drh165be382008-12-05 02:36:33 +0000241#define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */
242#define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */
243#define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */
244#define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */
245#define WHERE_REVERSE 0x02000000 /* Scan in reverse order */
246#define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */
247#define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */
248#define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */
drh51147ba2005-07-23 22:59:55 +0000249
250/*
drh0aa74ed2005-07-16 13:33:20 +0000251** Initialize a preallocated WhereClause structure.
drh75897232000-05-29 14:26:00 +0000252*/
drh7b4fc6a2007-02-06 13:26:32 +0000253static void whereClauseInit(
254 WhereClause *pWC, /* The WhereClause to be initialized */
255 Parse *pParse, /* The parsing context */
drh111a6a72008-12-21 03:51:16 +0000256 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */
drh7b4fc6a2007-02-06 13:26:32 +0000257){
drhfe05af82005-07-21 03:14:59 +0000258 pWC->pParse = pParse;
drh7b4fc6a2007-02-06 13:26:32 +0000259 pWC->pMaskSet = pMaskSet;
drh0aa74ed2005-07-16 13:33:20 +0000260 pWC->nTerm = 0;
drhcad651e2007-04-20 12:22:01 +0000261 pWC->nSlot = ArraySize(pWC->aStatic);
drh0aa74ed2005-07-16 13:33:20 +0000262 pWC->a = pWC->aStatic;
danielk1977e672c8e2009-05-22 15:43:26 +0000263 pWC->vmask = 0;
drh0aa74ed2005-07-16 13:33:20 +0000264}
265
drh700a2262008-12-17 19:22:15 +0000266/* Forward reference */
267static void whereClauseClear(WhereClause*);
268
269/*
270** Deallocate all memory associated with a WhereOrInfo object.
271*/
272static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
drh5bd98ae2009-01-07 18:24:03 +0000273 whereClauseClear(&p->wc);
274 sqlite3DbFree(db, p);
drh700a2262008-12-17 19:22:15 +0000275}
276
277/*
278** Deallocate all memory associated with a WhereAndInfo object.
279*/
280static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
drh5bd98ae2009-01-07 18:24:03 +0000281 whereClauseClear(&p->wc);
282 sqlite3DbFree(db, p);
drh700a2262008-12-17 19:22:15 +0000283}
284
drh0aa74ed2005-07-16 13:33:20 +0000285/*
286** Deallocate a WhereClause structure. The WhereClause structure
287** itself is not freed. This routine is the inverse of whereClauseInit().
288*/
289static void whereClauseClear(WhereClause *pWC){
290 int i;
291 WhereTerm *a;
drh633e6d52008-07-28 19:34:53 +0000292 sqlite3 *db = pWC->pParse->db;
drh0aa74ed2005-07-16 13:33:20 +0000293 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
drh165be382008-12-05 02:36:33 +0000294 if( a->wtFlags & TERM_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000295 sqlite3ExprDelete(db, a->pExpr);
drh0aa74ed2005-07-16 13:33:20 +0000296 }
drh700a2262008-12-17 19:22:15 +0000297 if( a->wtFlags & TERM_ORINFO ){
298 whereOrInfoDelete(db, a->u.pOrInfo);
299 }else if( a->wtFlags & TERM_ANDINFO ){
300 whereAndInfoDelete(db, a->u.pAndInfo);
301 }
drh0aa74ed2005-07-16 13:33:20 +0000302 }
303 if( pWC->a!=pWC->aStatic ){
drh633e6d52008-07-28 19:34:53 +0000304 sqlite3DbFree(db, pWC->a);
drh0aa74ed2005-07-16 13:33:20 +0000305 }
306}
307
308/*
drh6a1e0712008-12-05 15:24:15 +0000309** Add a single new WhereTerm entry to the WhereClause object pWC.
310** The new WhereTerm object is constructed from Expr p and with wtFlags.
311** The index in pWC->a[] of the new WhereTerm is returned on success.
312** 0 is returned if the new WhereTerm could not be added due to a memory
313** allocation error. The memory allocation failure will be recorded in
314** the db->mallocFailed flag so that higher-level functions can detect it.
315**
316** This routine will increase the size of the pWC->a[] array as necessary.
drh9eb20282005-08-24 03:52:18 +0000317**
drh165be382008-12-05 02:36:33 +0000318** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
drh6a1e0712008-12-05 15:24:15 +0000319** for freeing the expression p is assumed by the WhereClause object pWC.
320** This is true even if this routine fails to allocate a new WhereTerm.
drhb63a53d2007-03-31 01:34:44 +0000321**
drh9eb20282005-08-24 03:52:18 +0000322** WARNING: This routine might reallocate the space used to store
drh909626d2008-05-30 14:58:37 +0000323** WhereTerms. All pointers to WhereTerms should be invalidated after
drh9eb20282005-08-24 03:52:18 +0000324** calling this routine. Such pointers may be reinitialized by referencing
325** the pWC->a[] array.
drh0aa74ed2005-07-16 13:33:20 +0000326*/
drhec1724e2008-12-09 01:32:03 +0000327static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
drh0aa74ed2005-07-16 13:33:20 +0000328 WhereTerm *pTerm;
drh9eb20282005-08-24 03:52:18 +0000329 int idx;
drh0aa74ed2005-07-16 13:33:20 +0000330 if( pWC->nTerm>=pWC->nSlot ){
331 WhereTerm *pOld = pWC->a;
drh633e6d52008-07-28 19:34:53 +0000332 sqlite3 *db = pWC->pParse->db;
333 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
drhb63a53d2007-03-31 01:34:44 +0000334 if( pWC->a==0 ){
drh165be382008-12-05 02:36:33 +0000335 if( wtFlags & TERM_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000336 sqlite3ExprDelete(db, p);
drhb63a53d2007-03-31 01:34:44 +0000337 }
drhf998b732007-11-26 13:36:00 +0000338 pWC->a = pOld;
drhb63a53d2007-03-31 01:34:44 +0000339 return 0;
340 }
drh0aa74ed2005-07-16 13:33:20 +0000341 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
342 if( pOld!=pWC->aStatic ){
drh633e6d52008-07-28 19:34:53 +0000343 sqlite3DbFree(db, pOld);
drh0aa74ed2005-07-16 13:33:20 +0000344 }
drh6a1e0712008-12-05 15:24:15 +0000345 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
drh0aa74ed2005-07-16 13:33:20 +0000346 }
drh6a1e0712008-12-05 15:24:15 +0000347 pTerm = &pWC->a[idx = pWC->nTerm++];
drh0fcef5e2005-07-19 17:38:22 +0000348 pTerm->pExpr = p;
drh165be382008-12-05 02:36:33 +0000349 pTerm->wtFlags = wtFlags;
drh0fcef5e2005-07-19 17:38:22 +0000350 pTerm->pWC = pWC;
drh45b1ee42005-08-02 17:48:22 +0000351 pTerm->iParent = -1;
drh9eb20282005-08-24 03:52:18 +0000352 return idx;
drh0aa74ed2005-07-16 13:33:20 +0000353}
drh75897232000-05-29 14:26:00 +0000354
355/*
drh51669862004-12-18 18:40:26 +0000356** This routine identifies subexpressions in the WHERE clause where
drhb6fb62d2005-09-20 08:47:20 +0000357** each subexpression is separated by the AND operator or some other
drh6c30be82005-07-29 15:10:17 +0000358** operator specified in the op parameter. The WhereClause structure
359** is filled with pointers to subexpressions. For example:
drh75897232000-05-29 14:26:00 +0000360**
drh51669862004-12-18 18:40:26 +0000361** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
362** \________/ \_______________/ \________________/
363** slot[0] slot[1] slot[2]
364**
365** The original WHERE clause in pExpr is unaltered. All this routine
drh51147ba2005-07-23 22:59:55 +0000366** does is make slot[] entries point to substructure within pExpr.
drh51669862004-12-18 18:40:26 +0000367**
drh51147ba2005-07-23 22:59:55 +0000368** In the previous sentence and in the diagram, "slot[]" refers to
drh902b9ee2008-12-05 17:17:07 +0000369** the WhereClause.a[] array. The slot[] array grows as needed to contain
drh51147ba2005-07-23 22:59:55 +0000370** all terms of the WHERE clause.
drh75897232000-05-29 14:26:00 +0000371*/
drh6c30be82005-07-29 15:10:17 +0000372static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
drh29435252008-12-28 18:35:08 +0000373 pWC->op = (u8)op;
drh0aa74ed2005-07-16 13:33:20 +0000374 if( pExpr==0 ) return;
drh6c30be82005-07-29 15:10:17 +0000375 if( pExpr->op!=op ){
drh0aa74ed2005-07-16 13:33:20 +0000376 whereClauseInsert(pWC, pExpr, 0);
drh75897232000-05-29 14:26:00 +0000377 }else{
drh6c30be82005-07-29 15:10:17 +0000378 whereSplit(pWC, pExpr->pLeft, op);
379 whereSplit(pWC, pExpr->pRight, op);
drh75897232000-05-29 14:26:00 +0000380 }
drh75897232000-05-29 14:26:00 +0000381}
382
383/*
drh61495262009-04-22 15:32:59 +0000384** Initialize an expression mask set (a WhereMaskSet object)
drh6a3ea0e2003-05-02 14:32:12 +0000385*/
386#define initMaskSet(P) memset(P, 0, sizeof(*P))
387
388/*
drh1398ad32005-01-19 23:24:50 +0000389** Return the bitmask for the given cursor number. Return 0 if
390** iCursor is not in the set.
drh6a3ea0e2003-05-02 14:32:12 +0000391*/
drh111a6a72008-12-21 03:51:16 +0000392static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
drh6a3ea0e2003-05-02 14:32:12 +0000393 int i;
drh3500ed62009-05-05 15:46:43 +0000394 assert( pMaskSet->n<=sizeof(Bitmask)*8 );
drh6a3ea0e2003-05-02 14:32:12 +0000395 for(i=0; i<pMaskSet->n; i++){
drh51669862004-12-18 18:40:26 +0000396 if( pMaskSet->ix[i]==iCursor ){
397 return ((Bitmask)1)<<i;
398 }
drh6a3ea0e2003-05-02 14:32:12 +0000399 }
drh6a3ea0e2003-05-02 14:32:12 +0000400 return 0;
401}
402
403/*
drh1398ad32005-01-19 23:24:50 +0000404** Create a new mask for cursor iCursor.
drh0fcef5e2005-07-19 17:38:22 +0000405**
406** There is one cursor per table in the FROM clause. The number of
407** tables in the FROM clause is limited by a test early in the
drhb6fb62d2005-09-20 08:47:20 +0000408** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
drh0fcef5e2005-07-19 17:38:22 +0000409** array will never overflow.
drh1398ad32005-01-19 23:24:50 +0000410*/
drh111a6a72008-12-21 03:51:16 +0000411static void createMask(WhereMaskSet *pMaskSet, int iCursor){
drhcad651e2007-04-20 12:22:01 +0000412 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
drh0fcef5e2005-07-19 17:38:22 +0000413 pMaskSet->ix[pMaskSet->n++] = iCursor;
drh1398ad32005-01-19 23:24:50 +0000414}
415
416/*
drh75897232000-05-29 14:26:00 +0000417** This routine walks (recursively) an expression tree and generates
418** a bitmask indicating which tables are used in that expression
drh6a3ea0e2003-05-02 14:32:12 +0000419** tree.
drh75897232000-05-29 14:26:00 +0000420**
421** In order for this routine to work, the calling function must have
drh7d10d5a2008-08-20 16:35:10 +0000422** previously invoked sqlite3ResolveExprNames() on the expression. See
drh75897232000-05-29 14:26:00 +0000423** the header comment on that routine for additional information.
drh7d10d5a2008-08-20 16:35:10 +0000424** The sqlite3ResolveExprNames() routines looks for column names and
drh6a3ea0e2003-05-02 14:32:12 +0000425** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
drh51147ba2005-07-23 22:59:55 +0000426** the VDBE cursor number of the table. This routine just has to
427** translate the cursor numbers into bitmask values and OR all
428** the bitmasks together.
drh75897232000-05-29 14:26:00 +0000429*/
drh111a6a72008-12-21 03:51:16 +0000430static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
431static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
432static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
drh51669862004-12-18 18:40:26 +0000433 Bitmask mask = 0;
drh75897232000-05-29 14:26:00 +0000434 if( p==0 ) return 0;
drh967e8b72000-06-21 13:59:10 +0000435 if( p->op==TK_COLUMN ){
drh8feb4b12004-07-19 02:12:14 +0000436 mask = getMask(pMaskSet, p->iTable);
drh8feb4b12004-07-19 02:12:14 +0000437 return mask;
drh75897232000-05-29 14:26:00 +0000438 }
danielk1977b3bce662005-01-29 08:32:43 +0000439 mask = exprTableUsage(pMaskSet, p->pRight);
440 mask |= exprTableUsage(pMaskSet, p->pLeft);
danielk19776ab3a2e2009-02-19 14:39:25 +0000441 if( ExprHasProperty(p, EP_xIsSelect) ){
442 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
443 }else{
444 mask |= exprListTableUsage(pMaskSet, p->x.pList);
445 }
danielk1977b3bce662005-01-29 08:32:43 +0000446 return mask;
447}
drh111a6a72008-12-21 03:51:16 +0000448static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
danielk1977b3bce662005-01-29 08:32:43 +0000449 int i;
450 Bitmask mask = 0;
451 if( pList ){
452 for(i=0; i<pList->nExpr; i++){
453 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
drhdd579122002-04-02 01:58:57 +0000454 }
455 }
drh75897232000-05-29 14:26:00 +0000456 return mask;
457}
drh111a6a72008-12-21 03:51:16 +0000458static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
drha430ae82007-09-12 15:41:01 +0000459 Bitmask mask = 0;
460 while( pS ){
461 mask |= exprListTableUsage(pMaskSet, pS->pEList);
drhf5b11382005-09-17 13:07:13 +0000462 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
463 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
464 mask |= exprTableUsage(pMaskSet, pS->pWhere);
465 mask |= exprTableUsage(pMaskSet, pS->pHaving);
drha430ae82007-09-12 15:41:01 +0000466 pS = pS->pPrior;
drhf5b11382005-09-17 13:07:13 +0000467 }
468 return mask;
469}
drh75897232000-05-29 14:26:00 +0000470
471/*
drh487ab3c2001-11-08 00:45:21 +0000472** Return TRUE if the given operator is one of the operators that is
drh51669862004-12-18 18:40:26 +0000473** allowed for an indexable WHERE clause term. The allowed operators are
drhc27a1ce2002-06-14 20:58:45 +0000474** "=", "<", ">", "<=", ">=", and "IN".
drh487ab3c2001-11-08 00:45:21 +0000475*/
476static int allowedOp(int op){
drhfe05af82005-07-21 03:14:59 +0000477 assert( TK_GT>TK_EQ && TK_GT<TK_GE );
478 assert( TK_LT>TK_EQ && TK_LT<TK_GE );
479 assert( TK_LE>TK_EQ && TK_LE<TK_GE );
480 assert( TK_GE==TK_EQ+4 );
drh50b39962006-10-28 00:28:09 +0000481 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
drh487ab3c2001-11-08 00:45:21 +0000482}
483
484/*
drh902b9ee2008-12-05 17:17:07 +0000485** Swap two objects of type TYPE.
drh193bd772004-07-20 18:23:14 +0000486*/
487#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
488
489/*
drh909626d2008-05-30 14:58:37 +0000490** Commute a comparison operator. Expressions of the form "X op Y"
drh0fcef5e2005-07-19 17:38:22 +0000491** are converted into "Y op X".
danielk1977eb5453d2007-07-30 14:40:48 +0000492**
493** If a collation sequence is associated with either the left or right
494** side of the comparison, it remains associated with the same side after
495** the commutation. So "Y collate NOCASE op X" becomes
496** "X collate NOCASE op Y". This is because any collation sequence on
497** the left hand side of a comparison overrides any collation sequence
498** attached to the right. For the same reason the EP_ExpCollate flag
499** is not commuted.
drh193bd772004-07-20 18:23:14 +0000500*/
drh7d10d5a2008-08-20 16:35:10 +0000501static void exprCommute(Parse *pParse, Expr *pExpr){
danielk1977eb5453d2007-07-30 14:40:48 +0000502 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
503 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
drhfe05af82005-07-21 03:14:59 +0000504 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
drh7d10d5a2008-08-20 16:35:10 +0000505 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
506 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
drh0fcef5e2005-07-19 17:38:22 +0000507 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
danielk1977eb5453d2007-07-30 14:40:48 +0000508 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
509 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
drh0fcef5e2005-07-19 17:38:22 +0000510 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
511 if( pExpr->op>=TK_GT ){
512 assert( TK_LT==TK_GT+2 );
513 assert( TK_GE==TK_LE+2 );
514 assert( TK_GT>TK_EQ );
515 assert( TK_GT<TK_LE );
516 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
517 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
drh193bd772004-07-20 18:23:14 +0000518 }
drh193bd772004-07-20 18:23:14 +0000519}
520
521/*
drhfe05af82005-07-21 03:14:59 +0000522** Translate from TK_xx operator to WO_xx bitmask.
523*/
drhec1724e2008-12-09 01:32:03 +0000524static u16 operatorMask(int op){
525 u16 c;
drhfe05af82005-07-21 03:14:59 +0000526 assert( allowedOp(op) );
527 if( op==TK_IN ){
drh51147ba2005-07-23 22:59:55 +0000528 c = WO_IN;
drh50b39962006-10-28 00:28:09 +0000529 }else if( op==TK_ISNULL ){
530 c = WO_ISNULL;
drhfe05af82005-07-21 03:14:59 +0000531 }else{
drhec1724e2008-12-09 01:32:03 +0000532 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
533 c = (u16)(WO_EQ<<(op-TK_EQ));
drhfe05af82005-07-21 03:14:59 +0000534 }
drh50b39962006-10-28 00:28:09 +0000535 assert( op!=TK_ISNULL || c==WO_ISNULL );
drh51147ba2005-07-23 22:59:55 +0000536 assert( op!=TK_IN || c==WO_IN );
537 assert( op!=TK_EQ || c==WO_EQ );
538 assert( op!=TK_LT || c==WO_LT );
539 assert( op!=TK_LE || c==WO_LE );
540 assert( op!=TK_GT || c==WO_GT );
541 assert( op!=TK_GE || c==WO_GE );
542 return c;
drhfe05af82005-07-21 03:14:59 +0000543}
544
545/*
546** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
547** where X is a reference to the iColumn of table iCur and <op> is one of
548** the WO_xx operator codes specified by the op parameter.
549** Return a pointer to the term. Return 0 if not found.
550*/
551static WhereTerm *findTerm(
552 WhereClause *pWC, /* The WHERE clause to be searched */
553 int iCur, /* Cursor number of LHS */
554 int iColumn, /* Column number of LHS */
555 Bitmask notReady, /* RHS must not overlap with this mask */
drhec1724e2008-12-09 01:32:03 +0000556 u32 op, /* Mask of WO_xx values describing operator */
drhfe05af82005-07-21 03:14:59 +0000557 Index *pIdx /* Must be compatible with this index, if not NULL */
558){
559 WhereTerm *pTerm;
560 int k;
drh22c24032008-07-09 13:28:53 +0000561 assert( iCur>=0 );
drhec1724e2008-12-09 01:32:03 +0000562 op &= WO_ALL;
drhfe05af82005-07-21 03:14:59 +0000563 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
564 if( pTerm->leftCursor==iCur
565 && (pTerm->prereqRight & notReady)==0
drh700a2262008-12-17 19:22:15 +0000566 && pTerm->u.leftColumn==iColumn
drhb52076c2006-01-23 13:22:09 +0000567 && (pTerm->eOperator & op)!=0
drhfe05af82005-07-21 03:14:59 +0000568 ){
drh22c24032008-07-09 13:28:53 +0000569 if( pIdx && pTerm->eOperator!=WO_ISNULL ){
drhfe05af82005-07-21 03:14:59 +0000570 Expr *pX = pTerm->pExpr;
571 CollSeq *pColl;
572 char idxaff;
danielk1977f0113002006-01-24 12:09:17 +0000573 int j;
drhfe05af82005-07-21 03:14:59 +0000574 Parse *pParse = pWC->pParse;
575
576 idxaff = pIdx->pTable->aCol[iColumn].affinity;
577 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
danielk1977bcbb04e2007-05-29 12:11:29 +0000578
579 /* Figure out the collation sequence required from an index for
580 ** it to be useful for optimising expression pX. Store this
581 ** value in variable pColl.
582 */
583 assert(pX->pLeft);
584 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
danielk197793574162008-12-30 15:26:29 +0000585 assert(pColl || pParse->nErr);
danielk1977bcbb04e2007-05-29 12:11:29 +0000586
drh22c24032008-07-09 13:28:53 +0000587 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
drh34004ce2008-07-11 16:15:17 +0000588 if( NEVER(j>=pIdx->nColumn) ) return 0;
drh22c24032008-07-09 13:28:53 +0000589 }
danielk197793574162008-12-30 15:26:29 +0000590 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
drhfe05af82005-07-21 03:14:59 +0000591 }
592 return pTerm;
593 }
594 }
595 return 0;
596}
597
drh6c30be82005-07-29 15:10:17 +0000598/* Forward reference */
drh7b4fc6a2007-02-06 13:26:32 +0000599static void exprAnalyze(SrcList*, WhereClause*, int);
drh6c30be82005-07-29 15:10:17 +0000600
601/*
602** Call exprAnalyze on all terms in a WHERE clause.
603**
604**
605*/
606static void exprAnalyzeAll(
607 SrcList *pTabList, /* the FROM clause */
drh6c30be82005-07-29 15:10:17 +0000608 WhereClause *pWC /* the WHERE clause to be analyzed */
609){
drh6c30be82005-07-29 15:10:17 +0000610 int i;
drh9eb20282005-08-24 03:52:18 +0000611 for(i=pWC->nTerm-1; i>=0; i--){
drh7b4fc6a2007-02-06 13:26:32 +0000612 exprAnalyze(pTabList, pWC, i);
drh6c30be82005-07-29 15:10:17 +0000613 }
614}
615
drhd2687b72005-08-12 22:56:09 +0000616#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
617/*
618** Check to see if the given expression is a LIKE or GLOB operator that
619** can be optimized using inequality constraints. Return TRUE if it is
620** so and false if not.
621**
622** In order for the operator to be optimizible, the RHS must be a string
623** literal that does not begin with a wildcard.
624*/
625static int isLikeOrGlob(
drh7d10d5a2008-08-20 16:35:10 +0000626 Parse *pParse, /* Parsing and code generating context */
drhd2687b72005-08-12 22:56:09 +0000627 Expr *pExpr, /* Test this expression */
628 int *pnPattern, /* Number of non-wildcard prefix characters */
drh9f504ea2008-02-23 21:55:39 +0000629 int *pisComplete, /* True if the only wildcard is % in the last character */
630 int *pnoCase /* True if uppercase is equivalent to lowercase */
drhd2687b72005-08-12 22:56:09 +0000631){
drh5bd98ae2009-01-07 18:24:03 +0000632 const char *z; /* String on RHS of LIKE operator */
633 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
634 ExprList *pList; /* List of operands to the LIKE operator */
635 int c; /* One character in z[] */
636 int cnt; /* Number of non-wildcard prefix characters */
637 char wc[3]; /* Wildcard characters */
638 CollSeq *pColl; /* Collating sequence for LHS */
639 sqlite3 *db = pParse->db; /* Database connection */
drhd64fe2f2005-08-28 17:00:23 +0000640
drh9f504ea2008-02-23 21:55:39 +0000641 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
drhd2687b72005-08-12 22:56:09 +0000642 return 0;
643 }
drh9f504ea2008-02-23 21:55:39 +0000644#ifdef SQLITE_EBCDIC
645 if( *pnoCase ) return 0;
646#endif
danielk19776ab3a2e2009-02-19 14:39:25 +0000647 pList = pExpr->x.pList;
drh55ef4d92005-08-14 01:20:37 +0000648 pRight = pList->a[0].pExpr;
drh5bd98ae2009-01-07 18:24:03 +0000649 if( pRight->op!=TK_STRING ){
drhd2687b72005-08-12 22:56:09 +0000650 return 0;
651 }
drh55ef4d92005-08-14 01:20:37 +0000652 pLeft = pList->a[1].pExpr;
drhd2687b72005-08-12 22:56:09 +0000653 if( pLeft->op!=TK_COLUMN ){
654 return 0;
655 }
drh7d10d5a2008-08-20 16:35:10 +0000656 pColl = sqlite3ExprCollSeq(pParse, pLeft);
drh01495b92008-01-23 12:52:40 +0000657 assert( pColl!=0 || pLeft->iColumn==-1 );
drhc4ac22e2009-06-07 23:45:10 +0000658 if( pColl==0 ) return 0;
drh9f504ea2008-02-23 21:55:39 +0000659 if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
660 (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
drhd64fe2f2005-08-28 17:00:23 +0000661 return 0;
662 }
drhc4ac22e2009-06-07 23:45:10 +0000663 if( sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ) return 0;
drh33e619f2009-05-28 01:00:55 +0000664 z = pRight->u.zToken;
drhc4ac22e2009-06-07 23:45:10 +0000665 if( ALWAYS(z) ){
shane85095702009-06-15 16:27:08 +0000666 cnt = 0;
drhb7916a72009-05-27 10:31:29 +0000667 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
drh24fb6272009-05-01 21:13:36 +0000668 cnt++;
669 }
shane85095702009-06-15 16:27:08 +0000670 if( cnt!=0 && c!=0 && 255!=(u8)z[cnt-1] ){
671 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
672 *pnPattern = cnt;
673 return 1;
674 }
drhf998b732007-11-26 13:36:00 +0000675 }
shane85095702009-06-15 16:27:08 +0000676 return 0;
drhd2687b72005-08-12 22:56:09 +0000677}
678#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
679
drhedb193b2006-06-27 13:20:21 +0000680
681#ifndef SQLITE_OMIT_VIRTUALTABLE
drhfe05af82005-07-21 03:14:59 +0000682/*
drh7f375902006-06-13 17:38:59 +0000683** Check to see if the given expression is of the form
684**
685** column MATCH expr
686**
687** If it is then return TRUE. If not, return FALSE.
688*/
689static int isMatchOfColumn(
690 Expr *pExpr /* Test this expression */
691){
692 ExprList *pList;
693
694 if( pExpr->op!=TK_FUNCTION ){
695 return 0;
696 }
drh33e619f2009-05-28 01:00:55 +0000697 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
drh7f375902006-06-13 17:38:59 +0000698 return 0;
699 }
danielk19776ab3a2e2009-02-19 14:39:25 +0000700 pList = pExpr->x.pList;
drh7f375902006-06-13 17:38:59 +0000701 if( pList->nExpr!=2 ){
702 return 0;
703 }
704 if( pList->a[1].pExpr->op != TK_COLUMN ){
705 return 0;
706 }
707 return 1;
708}
drhedb193b2006-06-27 13:20:21 +0000709#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh7f375902006-06-13 17:38:59 +0000710
711/*
drh54a167d2005-11-26 14:08:07 +0000712** If the pBase expression originated in the ON or USING clause of
713** a join, then transfer the appropriate markings over to derived.
714*/
715static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
716 pDerived->flags |= pBase->flags & EP_FromJoin;
717 pDerived->iRightJoinTable = pBase->iRightJoinTable;
718}
719
drh3e355802007-02-23 23:13:33 +0000720#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
721/*
drh1a58fe02008-12-20 02:06:13 +0000722** Analyze a term that consists of two or more OR-connected
723** subterms. So in:
drh3e355802007-02-23 23:13:33 +0000724**
drh1a58fe02008-12-20 02:06:13 +0000725** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
726** ^^^^^^^^^^^^^^^^^^^^
drh3e355802007-02-23 23:13:33 +0000727**
drh1a58fe02008-12-20 02:06:13 +0000728** This routine analyzes terms such as the middle term in the above example.
729** A WhereOrTerm object is computed and attached to the term under
730** analysis, regardless of the outcome of the analysis. Hence:
drh3e355802007-02-23 23:13:33 +0000731**
drh1a58fe02008-12-20 02:06:13 +0000732** WhereTerm.wtFlags |= TERM_ORINFO
733** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
drh3e355802007-02-23 23:13:33 +0000734**
drh1a58fe02008-12-20 02:06:13 +0000735** The term being analyzed must have two or more of OR-connected subterms.
danielk1977fdc40192008-12-29 18:33:32 +0000736** A single subterm might be a set of AND-connected sub-subterms.
drh1a58fe02008-12-20 02:06:13 +0000737** Examples of terms under analysis:
drh3e355802007-02-23 23:13:33 +0000738**
drh1a58fe02008-12-20 02:06:13 +0000739** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
740** (B) x=expr1 OR expr2=x OR x=expr3
741** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
742** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
743** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
drh3e355802007-02-23 23:13:33 +0000744**
drh1a58fe02008-12-20 02:06:13 +0000745** CASE 1:
746**
747** If all subterms are of the form T.C=expr for some single column of C
748** a single table T (as shown in example B above) then create a new virtual
749** term that is an equivalent IN expression. In other words, if the term
750** being analyzed is:
751**
752** x = expr1 OR expr2 = x OR x = expr3
753**
754** then create a new virtual term like this:
755**
756** x IN (expr1,expr2,expr3)
757**
758** CASE 2:
759**
760** If all subterms are indexable by a single table T, then set
761**
762** WhereTerm.eOperator = WO_OR
763** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
764**
765** A subterm is "indexable" if it is of the form
766** "T.C <op> <expr>" where C is any column of table T and
767** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
768** A subterm is also indexable if it is an AND of two or more
769** subsubterms at least one of which is indexable. Indexable AND
770** subterms have their eOperator set to WO_AND and they have
771** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
772**
773** From another point of view, "indexable" means that the subterm could
774** potentially be used with an index if an appropriate index exists.
775** This analysis does not consider whether or not the index exists; that
776** is something the bestIndex() routine will determine. This analysis
777** only looks at whether subterms appropriate for indexing exist.
778**
779** All examples A through E above all satisfy case 2. But if a term
780** also statisfies case 1 (such as B) we know that the optimizer will
781** always prefer case 1, so in that case we pretend that case 2 is not
782** satisfied.
783**
784** It might be the case that multiple tables are indexable. For example,
785** (E) above is indexable on tables P, Q, and R.
786**
787** Terms that satisfy case 2 are candidates for lookup by using
788** separate indices to find rowids for each subterm and composing
789** the union of all rowids using a RowSet object. This is similar
790** to "bitmap indices" in other database engines.
791**
792** OTHERWISE:
793**
794** If neither case 1 nor case 2 apply, then leave the eOperator set to
795** zero. This term is not useful for search.
drh3e355802007-02-23 23:13:33 +0000796*/
drh1a58fe02008-12-20 02:06:13 +0000797static void exprAnalyzeOrTerm(
798 SrcList *pSrc, /* the FROM clause */
799 WhereClause *pWC, /* the complete WHERE clause */
800 int idxTerm /* Index of the OR-term to be analyzed */
801){
802 Parse *pParse = pWC->pParse; /* Parser context */
803 sqlite3 *db = pParse->db; /* Database connection */
804 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
805 Expr *pExpr = pTerm->pExpr; /* The expression of the term */
drh111a6a72008-12-21 03:51:16 +0000806 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
drh1a58fe02008-12-20 02:06:13 +0000807 int i; /* Loop counters */
808 WhereClause *pOrWc; /* Breakup of pTerm into subterms */
809 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
810 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
811 Bitmask chngToIN; /* Tables that might satisfy case 1 */
812 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
drh3e355802007-02-23 23:13:33 +0000813
drh1a58fe02008-12-20 02:06:13 +0000814 /*
815 ** Break the OR clause into its separate subterms. The subterms are
816 ** stored in a WhereClause structure containing within the WhereOrInfo
817 ** object that is attached to the original OR clause term.
818 */
819 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
820 assert( pExpr->op==TK_OR );
drh954701a2008-12-29 23:45:07 +0000821 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
drh1a58fe02008-12-20 02:06:13 +0000822 if( pOrInfo==0 ) return;
823 pTerm->wtFlags |= TERM_ORINFO;
824 pOrWc = &pOrInfo->wc;
825 whereClauseInit(pOrWc, pWC->pParse, pMaskSet);
826 whereSplit(pOrWc, pExpr, TK_OR);
827 exprAnalyzeAll(pSrc, pOrWc);
828 if( db->mallocFailed ) return;
829 assert( pOrWc->nTerm>=2 );
830
831 /*
832 ** Compute the set of tables that might satisfy cases 1 or 2.
833 */
danielk1977e672c8e2009-05-22 15:43:26 +0000834 indexable = ~(Bitmask)0;
835 chngToIN = ~(pWC->vmask);
drh1a58fe02008-12-20 02:06:13 +0000836 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
837 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
drh29435252008-12-28 18:35:08 +0000838 WhereAndInfo *pAndInfo;
839 assert( pOrTerm->eOperator==0 );
840 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
drh1a58fe02008-12-20 02:06:13 +0000841 chngToIN = 0;
drh29435252008-12-28 18:35:08 +0000842 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
843 if( pAndInfo ){
844 WhereClause *pAndWC;
845 WhereTerm *pAndTerm;
846 int j;
847 Bitmask b = 0;
848 pOrTerm->u.pAndInfo = pAndInfo;
849 pOrTerm->wtFlags |= TERM_ANDINFO;
850 pOrTerm->eOperator = WO_AND;
851 pAndWC = &pAndInfo->wc;
852 whereClauseInit(pAndWC, pWC->pParse, pMaskSet);
853 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
854 exprAnalyzeAll(pSrc, pAndWC);
drh7c2fbde2009-01-07 20:58:57 +0000855 testcase( db->mallocFailed );
drh96c7a7d2009-01-10 15:34:12 +0000856 if( !db->mallocFailed ){
857 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
858 assert( pAndTerm->pExpr );
859 if( allowedOp(pAndTerm->pExpr->op) ){
860 b |= getMask(pMaskSet, pAndTerm->leftCursor);
861 }
drh29435252008-12-28 18:35:08 +0000862 }
863 }
864 indexable &= b;
865 }
drh1a58fe02008-12-20 02:06:13 +0000866 }else if( pOrTerm->wtFlags & TERM_COPIED ){
867 /* Skip this term for now. We revisit it when we process the
868 ** corresponding TERM_VIRTUAL term */
869 }else{
870 Bitmask b;
871 b = getMask(pMaskSet, pOrTerm->leftCursor);
872 if( pOrTerm->wtFlags & TERM_VIRTUAL ){
873 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
874 b |= getMask(pMaskSet, pOther->leftCursor);
875 }
876 indexable &= b;
877 if( pOrTerm->eOperator!=WO_EQ ){
878 chngToIN = 0;
879 }else{
880 chngToIN &= b;
881 }
882 }
drh3e355802007-02-23 23:13:33 +0000883 }
drh1a58fe02008-12-20 02:06:13 +0000884
885 /*
886 ** Record the set of tables that satisfy case 2. The set might be
drh111a6a72008-12-21 03:51:16 +0000887 ** empty.
drh1a58fe02008-12-20 02:06:13 +0000888 */
889 pOrInfo->indexable = indexable;
drh111a6a72008-12-21 03:51:16 +0000890 pTerm->eOperator = indexable==0 ? 0 : WO_OR;
drh1a58fe02008-12-20 02:06:13 +0000891
892 /*
893 ** chngToIN holds a set of tables that *might* satisfy case 1. But
894 ** we have to do some additional checking to see if case 1 really
895 ** is satisfied.
drh4e8be3b2009-06-08 17:11:08 +0000896 **
897 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
898 ** that there is no possibility of transforming the OR clause into an
899 ** IN operator because one or more terms in the OR clause contain
900 ** something other than == on a column in the single table. The 1-bit
901 ** case means that every term of the OR clause is of the form
902 ** "table.column=expr" for some single table. The one bit that is set
903 ** will correspond to the common table. We still need to check to make
904 ** sure the same column is used on all terms. The 2-bit case is when
905 ** the all terms are of the form "table1.column=table2.column". It
906 ** might be possible to form an IN operator with either table1.column
907 ** or table2.column as the LHS if either is common to every term of
908 ** the OR clause.
909 **
910 ** Note that terms of the form "table.column1=table.column2" (the
911 ** same table on both sizes of the ==) cannot be optimized.
drh1a58fe02008-12-20 02:06:13 +0000912 */
913 if( chngToIN ){
914 int okToChngToIN = 0; /* True if the conversion to IN is valid */
915 int iColumn = -1; /* Column index on lhs of IN operator */
shane63207ab2009-02-04 01:49:30 +0000916 int iCursor = -1; /* Table cursor common to all terms */
drh1a58fe02008-12-20 02:06:13 +0000917 int j = 0; /* Loop counter */
918
919 /* Search for a table and column that appears on one side or the
920 ** other of the == operator in every subterm. That table and column
921 ** will be recorded in iCursor and iColumn. There might not be any
922 ** such table and column. Set okToChngToIN if an appropriate table
923 ** and column is found but leave okToChngToIN false if not found.
924 */
925 for(j=0; j<2 && !okToChngToIN; j++){
926 pOrTerm = pOrWc->a;
927 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
928 assert( pOrTerm->eOperator==WO_EQ );
929 pOrTerm->wtFlags &= ~TERM_OR_OK;
drh4e8be3b2009-06-08 17:11:08 +0000930 if( pOrTerm->leftCursor==iCursor ){
931 /* This is the 2-bit case and we are on the second iteration and
932 ** current term is from the first iteration. So skip this term. */
933 assert( j==1 );
934 continue;
935 }
936 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
937 /* This term must be of the form t1.a==t2.b where t2 is in the
938 ** chngToIN set but t1 is not. This term will be either preceeded
939 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
940 ** and use its inversion. */
941 testcase( pOrTerm->wtFlags & TERM_COPIED );
942 testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
943 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
944 continue;
945 }
drh1a58fe02008-12-20 02:06:13 +0000946 iColumn = pOrTerm->u.leftColumn;
947 iCursor = pOrTerm->leftCursor;
948 break;
949 }
950 if( i<0 ){
drh4e8be3b2009-06-08 17:11:08 +0000951 /* No candidate table+column was found. This can only occur
952 ** on the second iteration */
drh1a58fe02008-12-20 02:06:13 +0000953 assert( j==1 );
954 assert( (chngToIN&(chngToIN-1))==0 );
drh4e8be3b2009-06-08 17:11:08 +0000955 assert( chngToIN==getMask(pMaskSet, iCursor) );
drh1a58fe02008-12-20 02:06:13 +0000956 break;
957 }
drh4e8be3b2009-06-08 17:11:08 +0000958 testcase( j==1 );
959
960 /* We have found a candidate table and column. Check to see if that
961 ** table and column is common to every term in the OR clause */
drh1a58fe02008-12-20 02:06:13 +0000962 okToChngToIN = 1;
963 for(; i>=0 && okToChngToIN; i--, pOrTerm++){
964 assert( pOrTerm->eOperator==WO_EQ );
965 if( pOrTerm->leftCursor!=iCursor ){
966 pOrTerm->wtFlags &= ~TERM_OR_OK;
967 }else if( pOrTerm->u.leftColumn!=iColumn ){
968 okToChngToIN = 0;
969 }else{
970 int affLeft, affRight;
971 /* If the right-hand side is also a column, then the affinities
972 ** of both right and left sides must be such that no type
973 ** conversions are required on the right. (Ticket #2249)
974 */
975 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
976 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
977 if( affRight!=0 && affRight!=affLeft ){
978 okToChngToIN = 0;
979 }else{
980 pOrTerm->wtFlags |= TERM_OR_OK;
981 }
982 }
983 }
984 }
985
986 /* At this point, okToChngToIN is true if original pTerm satisfies
987 ** case 1. In that case, construct a new virtual term that is
988 ** pTerm converted into an IN operator.
989 */
990 if( okToChngToIN ){
991 Expr *pDup; /* A transient duplicate expression */
992 ExprList *pList = 0; /* The RHS of the IN operator */
993 Expr *pLeft = 0; /* The LHS of the IN operator */
994 Expr *pNew; /* The complete IN operator */
995
996 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
997 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
998 assert( pOrTerm->eOperator==WO_EQ );
999 assert( pOrTerm->leftCursor==iCursor );
1000 assert( pOrTerm->u.leftColumn==iColumn );
danielk19776ab3a2e2009-02-19 14:39:25 +00001001 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
drhb7916a72009-05-27 10:31:29 +00001002 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
drh1a58fe02008-12-20 02:06:13 +00001003 pLeft = pOrTerm->pExpr->pLeft;
1004 }
1005 assert( pLeft!=0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001006 pDup = sqlite3ExprDup(db, pLeft, 0);
drhb7916a72009-05-27 10:31:29 +00001007 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
drh1a58fe02008-12-20 02:06:13 +00001008 if( pNew ){
1009 int idxNew;
1010 transferJoinMarkings(pNew, pExpr);
danielk19776ab3a2e2009-02-19 14:39:25 +00001011 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1012 pNew->x.pList = pList;
drh1a58fe02008-12-20 02:06:13 +00001013 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
1014 testcase( idxNew==0 );
1015 exprAnalyze(pSrc, pWC, idxNew);
1016 pTerm = &pWC->a[idxTerm];
1017 pWC->a[idxNew].iParent = idxTerm;
1018 pTerm->nChild = 1;
1019 }else{
1020 sqlite3ExprListDelete(db, pList);
1021 }
1022 pTerm->eOperator = 0; /* case 1 trumps case 2 */
1023 }
drh3e355802007-02-23 23:13:33 +00001024 }
drh3e355802007-02-23 23:13:33 +00001025}
1026#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
drh54a167d2005-11-26 14:08:07 +00001027
drh1a58fe02008-12-20 02:06:13 +00001028
drh54a167d2005-11-26 14:08:07 +00001029/*
drh0aa74ed2005-07-16 13:33:20 +00001030** The input to this routine is an WhereTerm structure with only the
drh51147ba2005-07-23 22:59:55 +00001031** "pExpr" field filled in. The job of this routine is to analyze the
drh0aa74ed2005-07-16 13:33:20 +00001032** subexpression and populate all the other fields of the WhereTerm
drh75897232000-05-29 14:26:00 +00001033** structure.
drh51147ba2005-07-23 22:59:55 +00001034**
1035** If the expression is of the form "<expr> <op> X" it gets commuted
drh1a58fe02008-12-20 02:06:13 +00001036** to the standard form of "X <op> <expr>".
1037**
1038** If the expression is of the form "X <op> Y" where both X and Y are
1039** columns, then the original expression is unchanged and a new virtual
1040** term of the form "Y <op> X" is added to the WHERE clause and
1041** analyzed separately. The original term is marked with TERM_COPIED
1042** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1043** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1044** is a commuted copy of a prior term.) The original term has nChild=1
1045** and the copy has idxParent set to the index of the original term.
drh75897232000-05-29 14:26:00 +00001046*/
drh0fcef5e2005-07-19 17:38:22 +00001047static void exprAnalyze(
1048 SrcList *pSrc, /* the FROM clause */
drh9eb20282005-08-24 03:52:18 +00001049 WhereClause *pWC, /* the WHERE clause */
1050 int idxTerm /* Index of the term to be analyzed */
drh0fcef5e2005-07-19 17:38:22 +00001051){
drh1a58fe02008-12-20 02:06:13 +00001052 WhereTerm *pTerm; /* The term to be analyzed */
drh111a6a72008-12-21 03:51:16 +00001053 WhereMaskSet *pMaskSet; /* Set of table index masks */
drh1a58fe02008-12-20 02:06:13 +00001054 Expr *pExpr; /* The expression to be analyzed */
1055 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
1056 Bitmask prereqAll; /* Prerequesites of pExpr */
drhdafc0ce2008-04-17 19:14:02 +00001057 Bitmask extraRight = 0;
drhd2687b72005-08-12 22:56:09 +00001058 int nPattern;
1059 int isComplete;
drh9f504ea2008-02-23 21:55:39 +00001060 int noCase;
drh1a58fe02008-12-20 02:06:13 +00001061 int op; /* Top-level operator. pExpr->op */
1062 Parse *pParse = pWC->pParse; /* Parsing context */
1063 sqlite3 *db = pParse->db; /* Database connection */
drh0fcef5e2005-07-19 17:38:22 +00001064
drhf998b732007-11-26 13:36:00 +00001065 if( db->mallocFailed ){
1066 return;
1067 }
1068 pTerm = &pWC->a[idxTerm];
1069 pMaskSet = pWC->pMaskSet;
1070 pExpr = pTerm->pExpr;
drh0fcef5e2005-07-19 17:38:22 +00001071 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
drh50b39962006-10-28 00:28:09 +00001072 op = pExpr->op;
1073 if( op==TK_IN ){
drhf5b11382005-09-17 13:07:13 +00001074 assert( pExpr->pRight==0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001075 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1076 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
1077 }else{
1078 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
1079 }
drh50b39962006-10-28 00:28:09 +00001080 }else if( op==TK_ISNULL ){
1081 pTerm->prereqRight = 0;
drhf5b11382005-09-17 13:07:13 +00001082 }else{
1083 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
1084 }
drh22d6a532005-09-19 21:05:48 +00001085 prereqAll = exprTableUsage(pMaskSet, pExpr);
1086 if( ExprHasProperty(pExpr, EP_FromJoin) ){
drh42165be2008-03-26 14:56:34 +00001087 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
1088 prereqAll |= x;
drhdafc0ce2008-04-17 19:14:02 +00001089 extraRight = x-1; /* ON clause terms may not be used with an index
1090 ** on left table of a LEFT JOIN. Ticket #3015 */
drh22d6a532005-09-19 21:05:48 +00001091 }
1092 pTerm->prereqAll = prereqAll;
drh0fcef5e2005-07-19 17:38:22 +00001093 pTerm->leftCursor = -1;
drh45b1ee42005-08-02 17:48:22 +00001094 pTerm->iParent = -1;
drhb52076c2006-01-23 13:22:09 +00001095 pTerm->eOperator = 0;
drh50b39962006-10-28 00:28:09 +00001096 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
drh0fcef5e2005-07-19 17:38:22 +00001097 Expr *pLeft = pExpr->pLeft;
1098 Expr *pRight = pExpr->pRight;
1099 if( pLeft->op==TK_COLUMN ){
1100 pTerm->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001101 pTerm->u.leftColumn = pLeft->iColumn;
drh50b39962006-10-28 00:28:09 +00001102 pTerm->eOperator = operatorMask(op);
drh75897232000-05-29 14:26:00 +00001103 }
drh0fcef5e2005-07-19 17:38:22 +00001104 if( pRight && pRight->op==TK_COLUMN ){
1105 WhereTerm *pNew;
1106 Expr *pDup;
1107 if( pTerm->leftCursor>=0 ){
drh9eb20282005-08-24 03:52:18 +00001108 int idxNew;
danielk19776ab3a2e2009-02-19 14:39:25 +00001109 pDup = sqlite3ExprDup(db, pExpr, 0);
drh17435752007-08-16 04:30:38 +00001110 if( db->mallocFailed ){
drh633e6d52008-07-28 19:34:53 +00001111 sqlite3ExprDelete(db, pDup);
drh28f45912006-10-18 23:26:38 +00001112 return;
1113 }
drh9eb20282005-08-24 03:52:18 +00001114 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1115 if( idxNew==0 ) return;
1116 pNew = &pWC->a[idxNew];
1117 pNew->iParent = idxTerm;
1118 pTerm = &pWC->a[idxTerm];
drh45b1ee42005-08-02 17:48:22 +00001119 pTerm->nChild = 1;
drh165be382008-12-05 02:36:33 +00001120 pTerm->wtFlags |= TERM_COPIED;
drh0fcef5e2005-07-19 17:38:22 +00001121 }else{
1122 pDup = pExpr;
1123 pNew = pTerm;
1124 }
drh7d10d5a2008-08-20 16:35:10 +00001125 exprCommute(pParse, pDup);
drh0fcef5e2005-07-19 17:38:22 +00001126 pLeft = pDup->pLeft;
1127 pNew->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001128 pNew->u.leftColumn = pLeft->iColumn;
drh0fcef5e2005-07-19 17:38:22 +00001129 pNew->prereqRight = prereqLeft;
1130 pNew->prereqAll = prereqAll;
drhb52076c2006-01-23 13:22:09 +00001131 pNew->eOperator = operatorMask(pDup->op);
drh75897232000-05-29 14:26:00 +00001132 }
1133 }
drhed378002005-07-28 23:12:08 +00001134
drhd2687b72005-08-12 22:56:09 +00001135#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
drhed378002005-07-28 23:12:08 +00001136 /* If a term is the BETWEEN operator, create two new virtual terms
drh1a58fe02008-12-20 02:06:13 +00001137 ** that define the range that the BETWEEN implements. For example:
1138 **
1139 ** a BETWEEN b AND c
1140 **
1141 ** is converted into:
1142 **
1143 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1144 **
1145 ** The two new terms are added onto the end of the WhereClause object.
1146 ** The new terms are "dynamic" and are children of the original BETWEEN
1147 ** term. That means that if the BETWEEN term is coded, the children are
1148 ** skipped. Or, if the children are satisfied by an index, the original
1149 ** BETWEEN term is skipped.
drhed378002005-07-28 23:12:08 +00001150 */
drh29435252008-12-28 18:35:08 +00001151 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
danielk19776ab3a2e2009-02-19 14:39:25 +00001152 ExprList *pList = pExpr->x.pList;
drhed378002005-07-28 23:12:08 +00001153 int i;
1154 static const u8 ops[] = {TK_GE, TK_LE};
1155 assert( pList!=0 );
1156 assert( pList->nExpr==2 );
1157 for(i=0; i<2; i++){
1158 Expr *pNewExpr;
drh9eb20282005-08-24 03:52:18 +00001159 int idxNew;
drhb7916a72009-05-27 10:31:29 +00001160 pNewExpr = sqlite3PExpr(pParse, ops[i],
1161 sqlite3ExprDup(db, pExpr->pLeft, 0),
danielk19776ab3a2e2009-02-19 14:39:25 +00001162 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
drh9eb20282005-08-24 03:52:18 +00001163 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001164 testcase( idxNew==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001165 exprAnalyze(pSrc, pWC, idxNew);
drh9eb20282005-08-24 03:52:18 +00001166 pTerm = &pWC->a[idxTerm];
1167 pWC->a[idxNew].iParent = idxTerm;
drhed378002005-07-28 23:12:08 +00001168 }
drh45b1ee42005-08-02 17:48:22 +00001169 pTerm->nChild = 2;
drhed378002005-07-28 23:12:08 +00001170 }
drhd2687b72005-08-12 22:56:09 +00001171#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
drhed378002005-07-28 23:12:08 +00001172
danielk19771576cd92006-01-14 08:02:28 +00001173#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
drh1a58fe02008-12-20 02:06:13 +00001174 /* Analyze a term that is composed of two or more subterms connected by
1175 ** an OR operator.
drh6c30be82005-07-29 15:10:17 +00001176 */
1177 else if( pExpr->op==TK_OR ){
drh29435252008-12-28 18:35:08 +00001178 assert( pWC->op==TK_AND );
drh1a58fe02008-12-20 02:06:13 +00001179 exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
danielk1977f51d1bd2009-07-31 06:14:51 +00001180 pTerm = &pWC->a[idxTerm];
drh6c30be82005-07-29 15:10:17 +00001181 }
drhd2687b72005-08-12 22:56:09 +00001182#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1183
1184#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1185 /* Add constraints to reduce the search space on a LIKE or GLOB
1186 ** operator.
drh9f504ea2008-02-23 21:55:39 +00001187 **
1188 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1189 **
1190 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
1191 **
1192 ** The last character of the prefix "abc" is incremented to form the
shane7bc71e52008-05-28 18:01:44 +00001193 ** termination condition "abd".
drhd2687b72005-08-12 22:56:09 +00001194 */
drh29435252008-12-28 18:35:08 +00001195 if( isLikeOrGlob(pParse, pExpr, &nPattern, &isComplete, &noCase)
1196 && pWC->op==TK_AND ){
drhd2687b72005-08-12 22:56:09 +00001197 Expr *pLeft, *pRight;
1198 Expr *pStr1, *pStr2;
1199 Expr *pNewExpr1, *pNewExpr2;
drh9eb20282005-08-24 03:52:18 +00001200 int idxNew1, idxNew2;
1201
danielk19776ab3a2e2009-02-19 14:39:25 +00001202 pLeft = pExpr->x.pList->a[1].pExpr;
1203 pRight = pExpr->x.pList->a[0].pExpr;
drh33e619f2009-05-28 01:00:55 +00001204 pStr1 = sqlite3Expr(db, TK_STRING, pRight->u.zToken);
1205 if( pStr1 ) pStr1->u.zToken[nPattern] = 0;
danielk19776ab3a2e2009-02-19 14:39:25 +00001206 pStr2 = sqlite3ExprDup(db, pStr1, 0);
drhf998b732007-11-26 13:36:00 +00001207 if( !db->mallocFailed ){
drh254993e2009-06-08 19:44:36 +00001208 u8 c, *pC; /* Last character before the first wildcard */
drh33e619f2009-05-28 01:00:55 +00001209 pC = (u8*)&pStr2->u.zToken[nPattern-1];
drh9f504ea2008-02-23 21:55:39 +00001210 c = *pC;
drh02a50b72008-05-26 18:33:40 +00001211 if( noCase ){
drh254993e2009-06-08 19:44:36 +00001212 /* The point is to increment the last character before the first
1213 ** wildcard. But if we increment '@', that will push it into the
1214 ** alphabetic range where case conversions will mess up the
1215 ** inequality. To avoid this, make sure to also run the full
1216 ** LIKE on all candidate expressions by clearing the isComplete flag
1217 */
1218 if( c=='A'-1 ) isComplete = 0;
1219
drh02a50b72008-05-26 18:33:40 +00001220 c = sqlite3UpperToLower[c];
1221 }
drh9f504ea2008-02-23 21:55:39 +00001222 *pC = c + 1;
drhd2687b72005-08-12 22:56:09 +00001223 }
danielk19776ab3a2e2009-02-19 14:39:25 +00001224 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft,0),pStr1,0);
drh9eb20282005-08-24 03:52:18 +00001225 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001226 testcase( idxNew1==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001227 exprAnalyze(pSrc, pWC, idxNew1);
danielk19776ab3a2e2009-02-19 14:39:25 +00001228 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft,0),pStr2,0);
drh9eb20282005-08-24 03:52:18 +00001229 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001230 testcase( idxNew2==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001231 exprAnalyze(pSrc, pWC, idxNew2);
drh9eb20282005-08-24 03:52:18 +00001232 pTerm = &pWC->a[idxTerm];
drhd2687b72005-08-12 22:56:09 +00001233 if( isComplete ){
drh9eb20282005-08-24 03:52:18 +00001234 pWC->a[idxNew1].iParent = idxTerm;
1235 pWC->a[idxNew2].iParent = idxTerm;
drhd2687b72005-08-12 22:56:09 +00001236 pTerm->nChild = 2;
1237 }
1238 }
1239#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
drh7f375902006-06-13 17:38:59 +00001240
1241#ifndef SQLITE_OMIT_VIRTUALTABLE
1242 /* Add a WO_MATCH auxiliary term to the constraint set if the
1243 ** current expression is of the form: column MATCH expr.
1244 ** This information is used by the xBestIndex methods of
1245 ** virtual tables. The native query optimizer does not attempt
1246 ** to do anything with MATCH functions.
1247 */
1248 if( isMatchOfColumn(pExpr) ){
1249 int idxNew;
1250 Expr *pRight, *pLeft;
1251 WhereTerm *pNewTerm;
1252 Bitmask prereqColumn, prereqExpr;
1253
danielk19776ab3a2e2009-02-19 14:39:25 +00001254 pRight = pExpr->x.pList->a[0].pExpr;
1255 pLeft = pExpr->x.pList->a[1].pExpr;
drh7f375902006-06-13 17:38:59 +00001256 prereqExpr = exprTableUsage(pMaskSet, pRight);
1257 prereqColumn = exprTableUsage(pMaskSet, pLeft);
1258 if( (prereqExpr & prereqColumn)==0 ){
drh1a90e092006-06-14 22:07:10 +00001259 Expr *pNewExpr;
drhb7916a72009-05-27 10:31:29 +00001260 pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1261 0, sqlite3ExprDup(db, pRight, 0), 0);
drh1a90e092006-06-14 22:07:10 +00001262 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001263 testcase( idxNew==0 );
drh7f375902006-06-13 17:38:59 +00001264 pNewTerm = &pWC->a[idxNew];
1265 pNewTerm->prereqRight = prereqExpr;
1266 pNewTerm->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001267 pNewTerm->u.leftColumn = pLeft->iColumn;
drh7f375902006-06-13 17:38:59 +00001268 pNewTerm->eOperator = WO_MATCH;
1269 pNewTerm->iParent = idxTerm;
drhd2ca60d2006-06-27 02:36:58 +00001270 pTerm = &pWC->a[idxTerm];
drh7f375902006-06-13 17:38:59 +00001271 pTerm->nChild = 1;
drh165be382008-12-05 02:36:33 +00001272 pTerm->wtFlags |= TERM_COPIED;
drh7f375902006-06-13 17:38:59 +00001273 pNewTerm->prereqAll = pTerm->prereqAll;
1274 }
1275 }
1276#endif /* SQLITE_OMIT_VIRTUALTABLE */
drhdafc0ce2008-04-17 19:14:02 +00001277
1278 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1279 ** an index for tables to the left of the join.
1280 */
1281 pTerm->prereqRight |= extraRight;
drh75897232000-05-29 14:26:00 +00001282}
1283
drh7b4fc6a2007-02-06 13:26:32 +00001284/*
1285** Return TRUE if any of the expressions in pList->a[iFirst...] contain
1286** a reference to any table other than the iBase table.
1287*/
1288static int referencesOtherTables(
1289 ExprList *pList, /* Search expressions in ths list */
drh111a6a72008-12-21 03:51:16 +00001290 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
drh7b4fc6a2007-02-06 13:26:32 +00001291 int iFirst, /* Be searching with the iFirst-th expression */
1292 int iBase /* Ignore references to this table */
1293){
1294 Bitmask allowed = ~getMask(pMaskSet, iBase);
1295 while( iFirst<pList->nExpr ){
1296 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
1297 return 1;
1298 }
1299 }
1300 return 0;
1301}
1302
drh0fcef5e2005-07-19 17:38:22 +00001303
drh75897232000-05-29 14:26:00 +00001304/*
drh51669862004-12-18 18:40:26 +00001305** This routine decides if pIdx can be used to satisfy the ORDER BY
1306** clause. If it can, it returns 1. If pIdx cannot satisfy the
1307** ORDER BY clause, this routine returns 0.
1308**
1309** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
1310** left-most table in the FROM clause of that same SELECT statement and
1311** the table has a cursor number of "base". pIdx is an index on pTab.
1312**
1313** nEqCol is the number of columns of pIdx that are used as equality
1314** constraints. Any of these columns may be missing from the ORDER BY
1315** clause and the match can still be a success.
1316**
drh51669862004-12-18 18:40:26 +00001317** All terms of the ORDER BY that match against the index must be either
1318** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
1319** index do not need to satisfy this constraint.) The *pbRev value is
1320** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1321** the ORDER BY clause is all ASC.
1322*/
1323static int isSortingIndex(
1324 Parse *pParse, /* Parsing context */
drh111a6a72008-12-21 03:51:16 +00001325 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
drh51669862004-12-18 18:40:26 +00001326 Index *pIdx, /* The index we are testing */
drh74161702006-02-24 02:53:49 +00001327 int base, /* Cursor number for the table to be sorted */
drh51669862004-12-18 18:40:26 +00001328 ExprList *pOrderBy, /* The ORDER BY clause */
1329 int nEqCol, /* Number of index columns with == constraints */
1330 int *pbRev /* Set to 1 if ORDER BY is DESC */
1331){
drhb46b5772005-08-29 16:40:52 +00001332 int i, j; /* Loop counters */
drh85eeb692005-12-21 03:16:42 +00001333 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
drhb46b5772005-08-29 16:40:52 +00001334 int nTerm; /* Number of ORDER BY terms */
1335 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
drh51669862004-12-18 18:40:26 +00001336 sqlite3 *db = pParse->db;
1337
1338 assert( pOrderBy!=0 );
1339 nTerm = pOrderBy->nExpr;
1340 assert( nTerm>0 );
1341
dan5236ac12009-08-13 07:09:33 +00001342 /* Argument pIdx must either point to a 'real' named index structure,
1343 ** or an index structure allocated on the stack by bestBtreeIndex() to
1344 ** represent the rowid index that is part of every table. */
1345 assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
1346
drh51669862004-12-18 18:40:26 +00001347 /* Match terms of the ORDER BY clause against columns of
1348 ** the index.
drhcc192542006-12-20 03:24:19 +00001349 **
1350 ** Note that indices have pIdx->nColumn regular columns plus
1351 ** one additional column containing the rowid. The rowid column
1352 ** of the index is also allowed to match against the ORDER BY
1353 ** clause.
drh51669862004-12-18 18:40:26 +00001354 */
drhcc192542006-12-20 03:24:19 +00001355 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
drh51669862004-12-18 18:40:26 +00001356 Expr *pExpr; /* The expression of the ORDER BY pTerm */
1357 CollSeq *pColl; /* The collating sequence of pExpr */
drh85eeb692005-12-21 03:16:42 +00001358 int termSortOrder; /* Sort order for this term */
drhcc192542006-12-20 03:24:19 +00001359 int iColumn; /* The i-th column of the index. -1 for rowid */
1360 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
1361 const char *zColl; /* Name of the collating sequence for i-th index term */
drh51669862004-12-18 18:40:26 +00001362
1363 pExpr = pTerm->pExpr;
1364 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1365 /* Can not use an index sort on anything that is not a column in the
1366 ** left-most table of the FROM clause */
drh7b4fc6a2007-02-06 13:26:32 +00001367 break;
drh51669862004-12-18 18:40:26 +00001368 }
1369 pColl = sqlite3ExprCollSeq(pParse, pExpr);
drhcc192542006-12-20 03:24:19 +00001370 if( !pColl ){
1371 pColl = db->pDfltColl;
1372 }
dan5236ac12009-08-13 07:09:33 +00001373 if( pIdx->zName && i<pIdx->nColumn ){
drhcc192542006-12-20 03:24:19 +00001374 iColumn = pIdx->aiColumn[i];
1375 if( iColumn==pIdx->pTable->iPKey ){
1376 iColumn = -1;
1377 }
1378 iSortOrder = pIdx->aSortOrder[i];
1379 zColl = pIdx->azColl[i];
1380 }else{
1381 iColumn = -1;
1382 iSortOrder = 0;
1383 zColl = pColl->zName;
1384 }
1385 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
drh9012bcb2004-12-19 00:11:35 +00001386 /* Term j of the ORDER BY clause does not match column i of the index */
1387 if( i<nEqCol ){
drh51669862004-12-18 18:40:26 +00001388 /* If an index column that is constrained by == fails to match an
1389 ** ORDER BY term, that is OK. Just ignore that column of the index
1390 */
1391 continue;
drhff354e92008-06-25 02:47:57 +00001392 }else if( i==pIdx->nColumn ){
1393 /* Index column i is the rowid. All other terms match. */
1394 break;
drh51669862004-12-18 18:40:26 +00001395 }else{
1396 /* If an index column fails to match and is not constrained by ==
1397 ** then the index cannot satisfy the ORDER BY constraint.
1398 */
1399 return 0;
1400 }
1401 }
dan5236ac12009-08-13 07:09:33 +00001402 assert( pIdx->aSortOrder!=0 || iColumn==-1 );
drh85eeb692005-12-21 03:16:42 +00001403 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
drhcc192542006-12-20 03:24:19 +00001404 assert( iSortOrder==0 || iSortOrder==1 );
1405 termSortOrder = iSortOrder ^ pTerm->sortOrder;
drh51669862004-12-18 18:40:26 +00001406 if( i>nEqCol ){
drh85eeb692005-12-21 03:16:42 +00001407 if( termSortOrder!=sortOrder ){
drh51669862004-12-18 18:40:26 +00001408 /* Indices can only be used if all ORDER BY terms past the
1409 ** equality constraints are all either DESC or ASC. */
1410 return 0;
1411 }
1412 }else{
drh85eeb692005-12-21 03:16:42 +00001413 sortOrder = termSortOrder;
drh51669862004-12-18 18:40:26 +00001414 }
1415 j++;
1416 pTerm++;
drh7b4fc6a2007-02-06 13:26:32 +00001417 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
drhcc192542006-12-20 03:24:19 +00001418 /* If the indexed column is the primary key and everything matches
drh7b4fc6a2007-02-06 13:26:32 +00001419 ** so far and none of the ORDER BY terms to the right reference other
1420 ** tables in the join, then we are assured that the index can be used
1421 ** to sort because the primary key is unique and so none of the other
1422 ** columns will make any difference
drhcc192542006-12-20 03:24:19 +00001423 */
1424 j = nTerm;
1425 }
drh51669862004-12-18 18:40:26 +00001426 }
1427
drhcc192542006-12-20 03:24:19 +00001428 *pbRev = sortOrder!=0;
drh8718f522005-08-13 16:13:04 +00001429 if( j>=nTerm ){
drhcc192542006-12-20 03:24:19 +00001430 /* All terms of the ORDER BY clause are covered by this index so
1431 ** this index can be used for sorting. */
1432 return 1;
1433 }
drh7b4fc6a2007-02-06 13:26:32 +00001434 if( pIdx->onError!=OE_None && i==pIdx->nColumn
1435 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
drhcc192542006-12-20 03:24:19 +00001436 /* All terms of this index match some prefix of the ORDER BY clause
drh7b4fc6a2007-02-06 13:26:32 +00001437 ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1438 ** clause reference other tables in a join. If this is all true then
1439 ** the order by clause is superfluous. */
drh51669862004-12-18 18:40:26 +00001440 return 1;
1441 }
1442 return 0;
1443}
1444
1445/*
drhb6fb62d2005-09-20 08:47:20 +00001446** Prepare a crude estimate of the logarithm of the input value.
drh28c4cf42005-07-27 20:41:43 +00001447** The results need not be exact. This is only used for estimating
drh909626d2008-05-30 14:58:37 +00001448** the total cost of performing operations with O(logN) or O(NlogN)
drh28c4cf42005-07-27 20:41:43 +00001449** complexity. Because N is just a guess, it is no great tragedy if
1450** logN is a little off.
drh28c4cf42005-07-27 20:41:43 +00001451*/
1452static double estLog(double N){
drhb37df7b2005-10-13 02:09:49 +00001453 double logN = 1;
1454 double x = 10;
drh28c4cf42005-07-27 20:41:43 +00001455 while( N>x ){
drhb37df7b2005-10-13 02:09:49 +00001456 logN += 1;
drh28c4cf42005-07-27 20:41:43 +00001457 x *= 10;
1458 }
1459 return logN;
1460}
1461
drh6d209d82006-06-27 01:54:26 +00001462/*
1463** Two routines for printing the content of an sqlite3_index_info
1464** structure. Used for testing and debugging only. If neither
1465** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1466** are no-ops.
1467*/
drh77a2a5e2007-04-06 01:04:39 +00001468#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
drh6d209d82006-06-27 01:54:26 +00001469static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1470 int i;
mlcreech3a00f902008-03-04 17:45:01 +00001471 if( !sqlite3WhereTrace ) return;
drh6d209d82006-06-27 01:54:26 +00001472 for(i=0; i<p->nConstraint; i++){
1473 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1474 i,
1475 p->aConstraint[i].iColumn,
1476 p->aConstraint[i].iTermOffset,
1477 p->aConstraint[i].op,
1478 p->aConstraint[i].usable);
1479 }
1480 for(i=0; i<p->nOrderBy; i++){
1481 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
1482 i,
1483 p->aOrderBy[i].iColumn,
1484 p->aOrderBy[i].desc);
1485 }
1486}
1487static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1488 int i;
mlcreech3a00f902008-03-04 17:45:01 +00001489 if( !sqlite3WhereTrace ) return;
drh6d209d82006-06-27 01:54:26 +00001490 for(i=0; i<p->nConstraint; i++){
1491 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
1492 i,
1493 p->aConstraintUsage[i].argvIndex,
1494 p->aConstraintUsage[i].omit);
1495 }
1496 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
1497 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
1498 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
1499 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
1500}
1501#else
1502#define TRACE_IDX_INPUTS(A)
1503#define TRACE_IDX_OUTPUTS(A)
1504#endif
1505
danielk19771d461462009-04-21 09:02:45 +00001506/*
1507** Required because bestIndex() is called by bestOrClauseIndex()
1508*/
1509static void bestIndex(
1510 Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*);
1511
1512/*
1513** This routine attempts to find an scanning strategy that can be used
1514** to optimize an 'OR' expression that is part of a WHERE clause.
1515**
1516** The table associated with FROM clause term pSrc may be either a
1517** regular B-Tree table or a virtual table.
1518*/
1519static void bestOrClauseIndex(
1520 Parse *pParse, /* The parsing context */
1521 WhereClause *pWC, /* The WHERE clause */
1522 struct SrcList_item *pSrc, /* The FROM clause term to search */
1523 Bitmask notReady, /* Mask of cursors that are not available */
1524 ExprList *pOrderBy, /* The ORDER BY clause */
1525 WhereCost *pCost /* Lowest cost query plan */
1526){
1527#ifndef SQLITE_OMIT_OR_OPTIMIZATION
1528 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
1529 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */
1530 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */
1531 WhereTerm *pTerm; /* A single term of the WHERE clause */
1532
1533 /* Search the WHERE clause terms for a usable WO_OR term. */
1534 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1535 if( pTerm->eOperator==WO_OR
1536 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
1537 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
1538 ){
1539 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
1540 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
1541 WhereTerm *pOrTerm;
1542 int flags = WHERE_MULTI_OR;
1543 double rTotal = 0;
1544 double nRow = 0;
dan5236ac12009-08-13 07:09:33 +00001545 Bitmask used = 0;
danielk19771d461462009-04-21 09:02:45 +00001546
1547 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
1548 WhereCost sTermCost;
1549 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
1550 (pOrTerm - pOrWC->a), (pTerm - pWC->a)
1551 ));
1552 if( pOrTerm->eOperator==WO_AND ){
1553 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
1554 bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost);
1555 }else if( pOrTerm->leftCursor==iCur ){
1556 WhereClause tempWC;
1557 tempWC.pParse = pWC->pParse;
1558 tempWC.pMaskSet = pWC->pMaskSet;
1559 tempWC.op = TK_AND;
1560 tempWC.a = pOrTerm;
1561 tempWC.nTerm = 1;
1562 bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost);
1563 }else{
1564 continue;
1565 }
1566 rTotal += sTermCost.rCost;
1567 nRow += sTermCost.nRow;
dan5236ac12009-08-13 07:09:33 +00001568 used |= sTermCost.used;
danielk19771d461462009-04-21 09:02:45 +00001569 if( rTotal>=pCost->rCost ) break;
1570 }
1571
1572 /* If there is an ORDER BY clause, increase the scan cost to account
1573 ** for the cost of the sort. */
1574 if( pOrderBy!=0 ){
1575 rTotal += nRow*estLog(nRow);
1576 WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal));
1577 }
1578
1579 /* If the cost of scanning using this OR term for optimization is
1580 ** less than the current cost stored in pCost, replace the contents
1581 ** of pCost. */
1582 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
1583 if( rTotal<pCost->rCost ){
1584 pCost->rCost = rTotal;
1585 pCost->nRow = nRow;
dan5236ac12009-08-13 07:09:33 +00001586 pCost->used = used;
danielk19771d461462009-04-21 09:02:45 +00001587 pCost->plan.wsFlags = flags;
1588 pCost->plan.u.pTerm = pTerm;
1589 }
1590 }
1591 }
1592#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1593}
1594
drh9eff6162006-06-12 21:59:13 +00001595#ifndef SQLITE_OMIT_VIRTUALTABLE
1596/*
danielk19771d461462009-04-21 09:02:45 +00001597** Allocate and populate an sqlite3_index_info structure. It is the
1598** responsibility of the caller to eventually release the structure
1599** by passing the pointer returned by this function to sqlite3_free().
1600*/
1601static sqlite3_index_info *allocateIndexInfo(
1602 Parse *pParse,
1603 WhereClause *pWC,
1604 struct SrcList_item *pSrc,
1605 ExprList *pOrderBy
1606){
1607 int i, j;
1608 int nTerm;
1609 struct sqlite3_index_constraint *pIdxCons;
1610 struct sqlite3_index_orderby *pIdxOrderBy;
1611 struct sqlite3_index_constraint_usage *pUsage;
1612 WhereTerm *pTerm;
1613 int nOrderBy;
1614 sqlite3_index_info *pIdxInfo;
1615
1616 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
1617
1618 /* Count the number of possible WHERE clause constraints referring
1619 ** to this virtual table */
1620 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1621 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1622 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1623 testcase( pTerm->eOperator==WO_IN );
1624 testcase( pTerm->eOperator==WO_ISNULL );
1625 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1626 nTerm++;
1627 }
1628
1629 /* If the ORDER BY clause contains only columns in the current
1630 ** virtual table then allocate space for the aOrderBy part of
1631 ** the sqlite3_index_info structure.
1632 */
1633 nOrderBy = 0;
1634 if( pOrderBy ){
1635 for(i=0; i<pOrderBy->nExpr; i++){
1636 Expr *pExpr = pOrderBy->a[i].pExpr;
1637 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1638 }
1639 if( i==pOrderBy->nExpr ){
1640 nOrderBy = pOrderBy->nExpr;
1641 }
1642 }
1643
1644 /* Allocate the sqlite3_index_info structure
1645 */
1646 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1647 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1648 + sizeof(*pIdxOrderBy)*nOrderBy );
1649 if( pIdxInfo==0 ){
1650 sqlite3ErrorMsg(pParse, "out of memory");
1651 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1652 return 0;
1653 }
1654
1655 /* Initialize the structure. The sqlite3_index_info structure contains
1656 ** many fields that are declared "const" to prevent xBestIndex from
1657 ** changing them. We have to do some funky casting in order to
1658 ** initialize those fields.
1659 */
1660 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1661 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1662 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1663 *(int*)&pIdxInfo->nConstraint = nTerm;
1664 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1665 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1666 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1667 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1668 pUsage;
1669
1670 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1671 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1672 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1673 testcase( pTerm->eOperator==WO_IN );
1674 testcase( pTerm->eOperator==WO_ISNULL );
1675 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1676 pIdxCons[j].iColumn = pTerm->u.leftColumn;
1677 pIdxCons[j].iTermOffset = i;
1678 pIdxCons[j].op = (u8)pTerm->eOperator;
1679 /* The direct assignment in the previous line is possible only because
1680 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1681 ** following asserts verify this fact. */
1682 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1683 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1684 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1685 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1686 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1687 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1688 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1689 j++;
1690 }
1691 for(i=0; i<nOrderBy; i++){
1692 Expr *pExpr = pOrderBy->a[i].pExpr;
1693 pIdxOrderBy[i].iColumn = pExpr->iColumn;
1694 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1695 }
1696
1697 return pIdxInfo;
1698}
1699
1700/*
1701** The table object reference passed as the second argument to this function
1702** must represent a virtual table. This function invokes the xBestIndex()
1703** method of the virtual table with the sqlite3_index_info pointer passed
1704** as the argument.
1705**
1706** If an error occurs, pParse is populated with an error message and a
1707** non-zero value is returned. Otherwise, 0 is returned and the output
1708** part of the sqlite3_index_info structure is left populated.
1709**
1710** Whether or not an error is returned, it is the responsibility of the
1711** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1712** that this is required.
1713*/
1714static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
danielk1977595a5232009-07-24 17:58:53 +00001715 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
danielk19771d461462009-04-21 09:02:45 +00001716 int i;
1717 int rc;
1718
1719 (void)sqlite3SafetyOff(pParse->db);
1720 WHERETRACE(("xBestIndex for %s\n", pTab->zName));
1721 TRACE_IDX_INPUTS(p);
1722 rc = pVtab->pModule->xBestIndex(pVtab, p);
1723 TRACE_IDX_OUTPUTS(p);
1724 (void)sqlite3SafetyOn(pParse->db);
1725
1726 if( rc!=SQLITE_OK ){
1727 if( rc==SQLITE_NOMEM ){
1728 pParse->db->mallocFailed = 1;
1729 }else if( !pVtab->zErrMsg ){
1730 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1731 }else{
1732 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1733 }
1734 }
1735 sqlite3DbFree(pParse->db, pVtab->zErrMsg);
1736 pVtab->zErrMsg = 0;
1737
1738 for(i=0; i<p->nConstraint; i++){
1739 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
1740 sqlite3ErrorMsg(pParse,
1741 "table %s: xBestIndex returned an invalid plan", pTab->zName);
1742 }
1743 }
1744
1745 return pParse->nErr;
1746}
1747
1748
1749/*
drh7f375902006-06-13 17:38:59 +00001750** Compute the best index for a virtual table.
1751**
1752** The best index is computed by the xBestIndex method of the virtual
1753** table module. This routine is really just a wrapper that sets up
1754** the sqlite3_index_info structure that is used to communicate with
1755** xBestIndex.
1756**
1757** In a join, this routine might be called multiple times for the
1758** same virtual table. The sqlite3_index_info structure is created
1759** and initialized on the first invocation and reused on all subsequent
1760** invocations. The sqlite3_index_info structure is also used when
1761** code is generated to access the virtual table. The whereInfoDelete()
1762** routine takes care of freeing the sqlite3_index_info structure after
1763** everybody has finished with it.
drh9eff6162006-06-12 21:59:13 +00001764*/
danielk19771d461462009-04-21 09:02:45 +00001765static void bestVirtualIndex(
1766 Parse *pParse, /* The parsing context */
1767 WhereClause *pWC, /* The WHERE clause */
1768 struct SrcList_item *pSrc, /* The FROM clause term to search */
1769 Bitmask notReady, /* Mask of cursors that are not available */
1770 ExprList *pOrderBy, /* The order by clause */
1771 WhereCost *pCost, /* Lowest cost query plan */
1772 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
drh9eff6162006-06-12 21:59:13 +00001773){
1774 Table *pTab = pSrc->pTab;
1775 sqlite3_index_info *pIdxInfo;
1776 struct sqlite3_index_constraint *pIdxCons;
drh9eff6162006-06-12 21:59:13 +00001777 struct sqlite3_index_constraint_usage *pUsage;
1778 WhereTerm *pTerm;
1779 int i, j;
1780 int nOrderBy;
1781
danielk19776eacd282009-04-29 11:50:53 +00001782 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
1783 ** malloc in allocateIndexInfo() fails and this function returns leaving
1784 ** wsFlags in an uninitialized state, the caller may behave unpredictably.
1785 */
drh6a863cd2009-05-06 18:42:21 +00001786 memset(pCost, 0, sizeof(*pCost));
danielk19776eacd282009-04-29 11:50:53 +00001787 pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
1788
drh9eff6162006-06-12 21:59:13 +00001789 /* If the sqlite3_index_info structure has not been previously
danielk19771d461462009-04-21 09:02:45 +00001790 ** allocated and initialized, then allocate and initialize it now.
drh9eff6162006-06-12 21:59:13 +00001791 */
1792 pIdxInfo = *ppIdxInfo;
1793 if( pIdxInfo==0 ){
danielk19771d461462009-04-21 09:02:45 +00001794 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
drh9eff6162006-06-12 21:59:13 +00001795 }
danielk1977732dc552009-04-21 17:23:04 +00001796 if( pIdxInfo==0 ){
1797 return;
1798 }
drh9eff6162006-06-12 21:59:13 +00001799
drh7f375902006-06-13 17:38:59 +00001800 /* At this point, the sqlite3_index_info structure that pIdxInfo points
1801 ** to will have been initialized, either during the current invocation or
1802 ** during some prior invocation. Now we just have to customize the
1803 ** details of pIdxInfo for the current invocation and pass it to
1804 ** xBestIndex.
1805 */
1806
danielk1977935ed5e2007-03-30 09:13:13 +00001807 /* The module name must be defined. Also, by this point there must
1808 ** be a pointer to an sqlite3_vtab structure. Otherwise
1809 ** sqlite3ViewGetColumnNames() would have picked up the error.
1810 */
drh9eff6162006-06-12 21:59:13 +00001811 assert( pTab->azModuleArg && pTab->azModuleArg[0] );
danielk1977595a5232009-07-24 17:58:53 +00001812 assert( sqlite3GetVTable(pParse->db, pTab) );
drh9eff6162006-06-12 21:59:13 +00001813
1814 /* Set the aConstraint[].usable fields and initialize all
drh7f375902006-06-13 17:38:59 +00001815 ** output variables to zero.
1816 **
1817 ** aConstraint[].usable is true for constraints where the right-hand
1818 ** side contains only references to tables to the left of the current
1819 ** table. In other words, if the constraint is of the form:
1820 **
1821 ** column = expr
1822 **
1823 ** and we are evaluating a join, then the constraint on column is
1824 ** only valid if all tables referenced in expr occur to the left
1825 ** of the table containing column.
1826 **
1827 ** The aConstraints[] array contains entries for all constraints
1828 ** on the current table. That way we only have to compute it once
1829 ** even though we might try to pick the best index multiple times.
1830 ** For each attempt at picking an index, the order of tables in the
1831 ** join might be different so we have to recompute the usable flag
1832 ** each time.
drh9eff6162006-06-12 21:59:13 +00001833 */
1834 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1835 pUsage = pIdxInfo->aConstraintUsage;
1836 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
1837 j = pIdxCons->iTermOffset;
1838 pTerm = &pWC->a[j];
dan5236ac12009-08-13 07:09:33 +00001839 pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
drh9eff6162006-06-12 21:59:13 +00001840 }
1841 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
drh4be8b512006-06-13 23:51:34 +00001842 if( pIdxInfo->needToFreeIdxStr ){
1843 sqlite3_free(pIdxInfo->idxStr);
1844 }
1845 pIdxInfo->idxStr = 0;
1846 pIdxInfo->idxNum = 0;
1847 pIdxInfo->needToFreeIdxStr = 0;
drh9eff6162006-06-12 21:59:13 +00001848 pIdxInfo->orderByConsumed = 0;
shanefbd60f82009-02-04 03:59:25 +00001849 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
1850 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
drh9eff6162006-06-12 21:59:13 +00001851 nOrderBy = pIdxInfo->nOrderBy;
danielk19771d461462009-04-21 09:02:45 +00001852 if( !pOrderBy ){
1853 pIdxInfo->nOrderBy = 0;
drh9eff6162006-06-12 21:59:13 +00001854 }
danielk197774cdba42006-06-19 12:02:58 +00001855
danielk19771d461462009-04-21 09:02:45 +00001856 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
1857 return;
danielk197739359dc2008-03-17 09:36:44 +00001858 }
1859
dan5236ac12009-08-13 07:09:33 +00001860 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1861 for(i=0; i<pIdxInfo->nConstraint; i++){
1862 if( pUsage[i].argvIndex>0 ){
1863 pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
1864 }
1865 }
1866
danielk19771d461462009-04-21 09:02:45 +00001867 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
1868 ** inital value of lowestCost in this loop. If it is, then the
1869 ** (cost<lowestCost) test below will never be true.
1870 **
1871 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
1872 ** is defined.
1873 */
1874 if( (SQLITE_BIG_DBL/((double)2))<pIdxInfo->estimatedCost ){
1875 pCost->rCost = (SQLITE_BIG_DBL/((double)2));
1876 }else{
1877 pCost->rCost = pIdxInfo->estimatedCost;
1878 }
danielk19771d461462009-04-21 09:02:45 +00001879 pCost->plan.u.pVtabIdx = pIdxInfo;
drh5901b572009-06-10 19:33:28 +00001880 if( pIdxInfo->orderByConsumed ){
danielk19771d461462009-04-21 09:02:45 +00001881 pCost->plan.wsFlags |= WHERE_ORDERBY;
1882 }
1883 pCost->plan.nEq = 0;
1884 pIdxInfo->nOrderBy = nOrderBy;
1885
1886 /* Try to find a more efficient access pattern by using multiple indexes
1887 ** to optimize an OR expression within the WHERE clause.
1888 */
1889 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
drh9eff6162006-06-12 21:59:13 +00001890}
1891#endif /* SQLITE_OMIT_VIRTUALTABLE */
1892
drh28c4cf42005-07-27 20:41:43 +00001893/*
drh111a6a72008-12-21 03:51:16 +00001894** Find the query plan for accessing a particular table. Write the
1895** best query plan and its cost into the WhereCost object supplied as the
1896** last parameter.
drh51147ba2005-07-23 22:59:55 +00001897**
drh111a6a72008-12-21 03:51:16 +00001898** The lowest cost plan wins. The cost is an estimate of the amount of
1899** CPU and disk I/O need to process the request using the selected plan.
drh51147ba2005-07-23 22:59:55 +00001900** Factors that influence cost include:
1901**
1902** * The estimated number of rows that will be retrieved. (The
1903** fewer the better.)
1904**
1905** * Whether or not sorting must occur.
1906**
1907** * Whether or not there must be separate lookups in the
1908** index and in the main table.
1909**
danielk1977e2d7b242009-02-23 17:33:49 +00001910** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
1911** the SQL statement, then this function only considers plans using the
drh296a4832009-03-22 20:36:18 +00001912** named index. If no such plan is found, then the returned cost is
1913** SQLITE_BIG_DBL. If a plan is found that uses the named index,
danielk197785574e32008-10-06 05:32:18 +00001914** then the cost is calculated in the usual way.
1915**
danielk1977e2d7b242009-02-23 17:33:49 +00001916** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
1917** in the SELECT statement, then no indexes are considered. However, the
1918** selected plan may still take advantage of the tables built-in rowid
danielk197785574e32008-10-06 05:32:18 +00001919** index.
drhfe05af82005-07-21 03:14:59 +00001920*/
danielk19771d461462009-04-21 09:02:45 +00001921static void bestBtreeIndex(
drhfe05af82005-07-21 03:14:59 +00001922 Parse *pParse, /* The parsing context */
1923 WhereClause *pWC, /* The WHERE clause */
1924 struct SrcList_item *pSrc, /* The FROM clause term to search */
1925 Bitmask notReady, /* Mask of cursors that are not available */
drh111a6a72008-12-21 03:51:16 +00001926 ExprList *pOrderBy, /* The ORDER BY clause */
1927 WhereCost *pCost /* Lowest cost query plan */
drhfe05af82005-07-21 03:14:59 +00001928){
drh51147ba2005-07-23 22:59:55 +00001929 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
1930 Index *pProbe; /* An index we are evaluating */
dan5236ac12009-08-13 07:09:33 +00001931 Index *pIdx; /* Copy of pProbe, or zero for IPK index */
1932 int eqTermMask; /* Current mask of valid equality operators */
1933 int idxEqTermMask; /* Index mask of valid equality operators */
drhfe05af82005-07-21 03:14:59 +00001934
dan5236ac12009-08-13 07:09:33 +00001935 Index pk;
1936 unsigned int pkint[2] = {1000000, 1};
1937 int pkicol = -1;
1938 int wsFlagMask;
drh4dd238a2006-03-28 23:55:57 +00001939
drh111a6a72008-12-21 03:51:16 +00001940 memset(pCost, 0, sizeof(*pCost));
drh111a6a72008-12-21 03:51:16 +00001941 pCost->rCost = SQLITE_BIG_DBL;
drh51147ba2005-07-23 22:59:55 +00001942
drhc49de5d2007-01-19 01:06:01 +00001943 /* If the pSrc table is the right table of a LEFT JOIN then we may not
1944 ** use an index to satisfy IS NULL constraints on that table. This is
1945 ** because columns might end up being NULL if the table does not match -
1946 ** a circumstance which the index cannot help us discover. Ticket #2177.
1947 */
dan5236ac12009-08-13 07:09:33 +00001948 if( pSrc->jointype & JT_LEFT ){
1949 idxEqTermMask = WO_EQ|WO_IN;
drhc49de5d2007-01-19 01:06:01 +00001950 }else{
dan5236ac12009-08-13 07:09:33 +00001951 idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
drhc49de5d2007-01-19 01:06:01 +00001952 }
1953
danielk197785574e32008-10-06 05:32:18 +00001954 if( pSrc->pIndex ){
dan5236ac12009-08-13 07:09:33 +00001955 pIdx = pProbe = pSrc->pIndex;
1956 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
1957 eqTermMask = idxEqTermMask;
1958 }else{
1959 Index *pFirst = pSrc->pTab->pIndex;
1960 memset(&pk, 0, sizeof(Index));
1961 pk.nColumn = 1;
1962 pk.aiColumn = &pkicol;
1963 pk.aiRowEst = pkint;
1964 pk.onError = OE_Replace;
1965 pk.pTable = pSrc->pTab;
1966 if( pSrc->notIndexed==0 ){
1967 pk.pNext = pFirst;
1968 }
1969 if( pFirst && pFirst->aiRowEst ){
1970 pkint[0] = pFirst->aiRowEst[0];
1971 }
1972 pProbe = &pk;
1973 wsFlagMask = ~(
1974 WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
1975 );
1976 eqTermMask = WO_EQ|WO_IN;
1977 pIdx = 0;
danielk197785574e32008-10-06 05:32:18 +00001978 }
drh51147ba2005-07-23 22:59:55 +00001979
drhfe05af82005-07-21 03:14:59 +00001980
dan5236ac12009-08-13 07:09:33 +00001981 for(; pProbe; pIdx=pProbe=pProbe->pNext){
1982 const unsigned int * const aiRowEst = pProbe->aiRowEst;
1983 double cost; /* Cost of using pProbe */
1984 double nRow; /* Estimated number of rows in result set */
1985 int rev; /* True to scan in reverse order */
1986 int wsFlags = 0;
1987 Bitmask used = 0;
1988
1989 /* The following variables are populated based on the properties of
1990 ** scan being evaluated. They are then used to determine the expected
1991 ** cost and number of rows returned.
1992 **
1993 ** nEq:
1994 ** Number of equality terms that can be implemented using the index.
1995 **
1996 ** nInMul:
1997 ** The "in-multiplier". This is an estimate of how many seek operations
1998 ** SQLite must perform on the index in question. For example, if the
1999 ** WHERE clause is:
2000 **
2001 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
2002 **
2003 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
2004 ** set to 9. Given the same schema and either of the following WHERE
2005 ** clauses:
2006 **
2007 ** WHERE a = 1
2008 ** WHERE a >= 2
2009 **
2010 ** nInMul is set to 1.
2011 **
2012 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
2013 ** the sub-select is assumed to return 25 rows for the purposes of
2014 ** determining nInMul.
2015 **
2016 ** bInEst:
2017 ** Set to true if there was at least one "x IN (SELECT ...)" term used
2018 ** in determining the value of nInMul.
2019 **
2020 ** nBound:
2021 ** Set based on whether or not there is a range constraint on the
2022 ** (nEq+1)th column of the index. 1 if there is neither an upper or
2023 ** lower bound, 3 if there is an upper or lower bound, or 9 if there
2024 ** is both an upper and lower bound.
2025 **
2026 ** bSort:
2027 ** Boolean. True if there is an ORDER BY clause that will require an
2028 ** external sort (i.e. scanning the index being evaluated will not
2029 ** correctly order records).
2030 **
2031 ** bLookup:
2032 ** Boolean. True if for each index entry visited a lookup on the
2033 ** corresponding table b-tree is required. This is always false
2034 ** for the rowid index. For other indexes, it is true unless all the
2035 ** columns of the table used by the SELECT statement are present in
2036 ** the index (such an index is sometimes described as a covering index).
2037 ** For example, given the index on (a, b), the second of the following
2038 ** two queries requires table b-tree lookups, but the first does not.
2039 **
2040 ** SELECT a, b FROM tbl WHERE a = 1;
2041 ** SELECT a, b, c FROM tbl WHERE a = 1;
drhfe05af82005-07-21 03:14:59 +00002042 */
dan5236ac12009-08-13 07:09:33 +00002043 int nEq;
2044 int bInEst = 0;
2045 int nInMul = 1;
2046 int nBound = 1;
2047 int bSort = 0;
2048 int bLookup = 0;
2049
2050 /* Determine the values of nEq and nInMul */
2051 for(nEq=0; nEq<pProbe->nColumn; nEq++){
2052 WhereTerm *pTerm; /* A single term of the WHERE clause */
2053 int j = pProbe->aiColumn[nEq];
2054 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
drhfe05af82005-07-21 03:14:59 +00002055 if( pTerm==0 ) break;
dan5236ac12009-08-13 07:09:33 +00002056 wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
drhb52076c2006-01-23 13:22:09 +00002057 if( pTerm->eOperator & WO_IN ){
drha6110402005-07-28 20:51:19 +00002058 Expr *pExpr = pTerm->pExpr;
drh165be382008-12-05 02:36:33 +00002059 wsFlags |= WHERE_COLUMN_IN;
danielk19776ab3a2e2009-02-19 14:39:25 +00002060 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
dan5236ac12009-08-13 07:09:33 +00002061 nInMul *= 25;
2062 bInEst = 1;
danielk19776ab3a2e2009-02-19 14:39:25 +00002063 }else if( pExpr->x.pList ){
dan5236ac12009-08-13 07:09:33 +00002064 nInMul *= pExpr->x.pList->nExpr + 1;
drhfe05af82005-07-21 03:14:59 +00002065 }
drh46619d62009-04-24 14:51:42 +00002066 }else if( pTerm->eOperator & WO_ISNULL ){
2067 wsFlags |= WHERE_COLUMN_NULL;
drhfe05af82005-07-21 03:14:59 +00002068 }
dan5236ac12009-08-13 07:09:33 +00002069 used |= pTerm->prereqRight;
drhfe05af82005-07-21 03:14:59 +00002070 }
dan5236ac12009-08-13 07:09:33 +00002071
2072 /* Determine the value of nBound. */
2073 if( nEq<pProbe->nColumn ){
2074 int j = pProbe->aiColumn[nEq];
2075 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
2076 WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
2077 WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
2078 if( pTop ){
2079 wsFlags |= WHERE_TOP_LIMIT;
2080 nBound *= 3;
2081 used |= pTop->prereqRight;
2082 }
2083 if( pBtm ){
2084 wsFlags |= WHERE_BTM_LIMIT;
2085 nBound *= 3;
2086 used |= pBtm->prereqRight;
2087 }
2088 wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
2089 }
2090 }else if( pProbe->onError!=OE_None ){
drh46619d62009-04-24 14:51:42 +00002091 testcase( wsFlags & WHERE_COLUMN_IN );
2092 testcase( wsFlags & WHERE_COLUMN_NULL );
2093 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
2094 wsFlags |= WHERE_UNIQUE;
2095 }
drh943af3c2005-07-29 19:43:58 +00002096 }
drhfe05af82005-07-21 03:14:59 +00002097
dan5236ac12009-08-13 07:09:33 +00002098 /* If there is an ORDER BY clause and the index being considered will
2099 ** naturally scan rows in the required order, set the appropriate flags
2100 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
2101 ** will scan rows in a different order, set the bSort variable. */
drh28c4cf42005-07-27 20:41:43 +00002102 if( pOrderBy ){
drh46619d62009-04-24 14:51:42 +00002103 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0
dan5236ac12009-08-13 07:09:33 +00002104 && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev)
drh46619d62009-04-24 14:51:42 +00002105 ){
dan5236ac12009-08-13 07:09:33 +00002106 wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
2107 wsFlags |= (rev ? WHERE_REVERSE : 0);
drh28c4cf42005-07-27 20:41:43 +00002108 }else{
dan5236ac12009-08-13 07:09:33 +00002109 bSort = 1;
drh51147ba2005-07-23 22:59:55 +00002110 }
drhfe05af82005-07-21 03:14:59 +00002111 }
2112
dan5236ac12009-08-13 07:09:33 +00002113 /* If currently calculating the cost of using an index (not the IPK
2114 ** index), determine if all required column data may be obtained without
2115 ** seeking to entries in the main table (i.e. if the index is a covering
2116 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
2117 ** wsFlags. Otherwise, set the bLookup variable to true. */
2118 if( pIdx && wsFlags ){
drhfe05af82005-07-21 03:14:59 +00002119 Bitmask m = pSrc->colUsed;
2120 int j;
dan5236ac12009-08-13 07:09:33 +00002121 for(j=0; j<pIdx->nColumn; j++){
2122 int x = pIdx->aiColumn[j];
drhfe05af82005-07-21 03:14:59 +00002123 if( x<BMS-1 ){
2124 m &= ~(((Bitmask)1)<<x);
2125 }
2126 }
2127 if( m==0 ){
drh165be382008-12-05 02:36:33 +00002128 wsFlags |= WHERE_IDX_ONLY;
dan5236ac12009-08-13 07:09:33 +00002129 }else{
2130 bLookup = 1;
drhfe05af82005-07-21 03:14:59 +00002131 }
2132 }
2133
dan5236ac12009-08-13 07:09:33 +00002134#if 0
2135 if( bInEst && (nInMul*aiRowEst[nEq])>(aiRowEst[0]/2) ){
2136 nInMul = aiRowEst[0] / (2 * aiRowEst[nEq]);
2137 }
2138 nRow = (double)(aiRowEst[nEq] * nInMul) / nBound;
2139 cost = (nEq>0) * nInMul * estLog(aiRowEst[0])
2140 + nRow
2141 + bSort * nRow * estLog(nRow)
2142 + bLookup * nRow * estLog(aiRowEst[0]);
2143#else
2144
2145 /* The following block calculates nRow and cost for the index scan
2146 ** in the same way as SQLite versions 3.6.17 and earlier. Some elements
2147 ** of this calculation are difficult to justify. But using this strategy
2148 ** works well in practice and causes the test suite to pass. */
2149 nRow = (double)(aiRowEst[nEq] * nInMul);
2150 if( bInEst && nRow*2>aiRowEst[0] ){
2151 nRow = aiRowEst[0]/2;
2152 nInMul = nRow / aiRowEst[nEq];
2153 }
2154 cost = nRow + nInMul*estLog(aiRowEst[0]);
2155 nRow /= nBound;
2156 cost /= nBound;
2157 if( bSort ){
2158 cost += cost*estLog(cost);
2159 }
2160 if( pIdx && bLookup==0 ){
2161 cost /= 2;
2162 }
2163#endif
2164
2165 WHERETRACE((
2166 "tbl=%s idx=%s nEq=%d nInMul=%d nBound=%d bSort=%d bLookup=%d"
2167 " wsFlags=%d (nRow=%.2f cost=%.2f)\n",
2168 pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"),
2169 nEq, nInMul, nBound, bSort, bLookup, wsFlags, nRow, cost
2170 ));
2171
2172 if( (!pIdx || wsFlags) && cost<pCost->rCost ){
drh111a6a72008-12-21 03:51:16 +00002173 pCost->rCost = cost;
2174 pCost->nRow = nRow;
dan5236ac12009-08-13 07:09:33 +00002175 pCost->used = used;
2176 pCost->plan.wsFlags = (wsFlags&wsFlagMask);
drh111a6a72008-12-21 03:51:16 +00002177 pCost->plan.nEq = nEq;
dan5236ac12009-08-13 07:09:33 +00002178 pCost->plan.u.pIdx = pIdx;
drhfe05af82005-07-21 03:14:59 +00002179 }
dan5236ac12009-08-13 07:09:33 +00002180
2181 if( pSrc->pIndex ) break;
2182 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2183 eqTermMask = idxEqTermMask;
drhfe05af82005-07-21 03:14:59 +00002184 }
2185
dan5236ac12009-08-13 07:09:33 +00002186 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
2187 ** is set, then reverse the order that the index will be scanned
2188 ** in. This is used for application testing, to help find cases
2189 ** where application behaviour depends on the (undefined) order that
2190 ** SQLite outputs rows in in the absence of an ORDER BY clause. */
2191 if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
2192 pCost->plan.wsFlags |= WHERE_REVERSE;
2193 }
2194
2195 assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
2196 assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
2197 assert( pSrc->pIndex==0
2198 || pCost->plan.u.pIdx==0
2199 || pCost->plan.u.pIdx==pSrc->pIndex
2200 );
2201
2202 WHERETRACE(("best index is: %s\n",
2203 (pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
2204 ));
2205
2206 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
drh111a6a72008-12-21 03:51:16 +00002207 pCost->plan.wsFlags |= eqTermMask;
drhfe05af82005-07-21 03:14:59 +00002208}
2209
danielk19771d461462009-04-21 09:02:45 +00002210/*
2211** Find the query plan for accessing table pSrc->pTab. Write the
2212** best query plan and its cost into the WhereCost object supplied
2213** as the last parameter. This function may calculate the cost of
2214** both real and virtual table scans.
2215*/
2216static void bestIndex(
2217 Parse *pParse, /* The parsing context */
2218 WhereClause *pWC, /* The WHERE clause */
2219 struct SrcList_item *pSrc, /* The FROM clause term to search */
2220 Bitmask notReady, /* Mask of cursors that are not available */
2221 ExprList *pOrderBy, /* The ORDER BY clause */
2222 WhereCost *pCost /* Lowest cost query plan */
2223){
shanee26fa4c2009-06-16 14:15:22 +00002224#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19771d461462009-04-21 09:02:45 +00002225 if( IsVirtual(pSrc->pTab) ){
2226 sqlite3_index_info *p = 0;
2227 bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p);
2228 if( p->needToFreeIdxStr ){
2229 sqlite3_free(p->idxStr);
2230 }
2231 sqlite3DbFree(pParse->db, p);
shanee26fa4c2009-06-16 14:15:22 +00002232 }else
2233#endif
2234 {
danielk19771d461462009-04-21 09:02:45 +00002235 bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
2236 }
2237}
drhb6c29892004-11-22 19:12:19 +00002238
2239/*
drh2ffb1182004-07-19 19:14:01 +00002240** Disable a term in the WHERE clause. Except, do not disable the term
2241** if it controls a LEFT OUTER JOIN and it did not originate in the ON
2242** or USING clause of that join.
2243**
2244** Consider the term t2.z='ok' in the following queries:
2245**
2246** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
2247** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
2248** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
2249**
drh23bf66d2004-12-14 03:34:34 +00002250** The t2.z='ok' is disabled in the in (2) because it originates
drh2ffb1182004-07-19 19:14:01 +00002251** in the ON clause. The term is disabled in (3) because it is not part
2252** of a LEFT OUTER JOIN. In (1), the term is not disabled.
2253**
2254** Disabling a term causes that term to not be tested in the inner loop
drhb6fb62d2005-09-20 08:47:20 +00002255** of the join. Disabling is an optimization. When terms are satisfied
2256** by indices, we disable them to prevent redundant tests in the inner
2257** loop. We would get the correct results if nothing were ever disabled,
2258** but joins might run a little slower. The trick is to disable as much
2259** as we can without disabling too much. If we disabled in (1), we'd get
2260** the wrong answer. See ticket #813.
drh2ffb1182004-07-19 19:14:01 +00002261*/
drh0fcef5e2005-07-19 17:38:22 +00002262static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
2263 if( pTerm
drh165be382008-12-05 02:36:33 +00002264 && ALWAYS((pTerm->wtFlags & TERM_CODED)==0)
drh0fcef5e2005-07-19 17:38:22 +00002265 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
2266 ){
drh165be382008-12-05 02:36:33 +00002267 pTerm->wtFlags |= TERM_CODED;
drh45b1ee42005-08-02 17:48:22 +00002268 if( pTerm->iParent>=0 ){
2269 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
2270 if( (--pOther->nChild)==0 ){
drhed378002005-07-28 23:12:08 +00002271 disableTerm(pLevel, pOther);
2272 }
drh0fcef5e2005-07-19 17:38:22 +00002273 }
drh2ffb1182004-07-19 19:14:01 +00002274 }
2275}
2276
2277/*
dan69f8bb92009-08-13 19:21:16 +00002278** Code an OP_Affinity opcode to apply the column affinity string zAff
2279** to the n registers starting at base.
2280**
2281** Buffer zAff was allocated using sqlite3DbMalloc(). It is the
2282** responsibility of this function to arrange for it to be eventually
2283** freed using sqlite3DbFree().
drh94a11212004-09-25 13:12:14 +00002284*/
dan69f8bb92009-08-13 19:21:16 +00002285static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
2286 Vdbe *v = pParse->pVdbe;
2287 assert( v!=0 );
2288 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
2289 sqlite3VdbeChangeP4(v, -1, zAff, P4_DYNAMIC);
2290 sqlite3ExprCacheAffinityChange(pParse, base, n);
drh94a11212004-09-25 13:12:14 +00002291}
2292
drhe8b97272005-07-19 22:22:12 +00002293
2294/*
drh51147ba2005-07-23 22:59:55 +00002295** Generate code for a single equality term of the WHERE clause. An equality
2296** term can be either X=expr or X IN (...). pTerm is the term to be
2297** coded.
2298**
drh1db639c2008-01-17 02:36:28 +00002299** The current value for the constraint is left in register iReg.
drh51147ba2005-07-23 22:59:55 +00002300**
2301** For a constraint of the form X=expr, the expression is evaluated and its
2302** result is left on the stack. For constraints of the form X IN (...)
2303** this routine sets up a loop that will iterate over all values of X.
drh94a11212004-09-25 13:12:14 +00002304*/
drh678ccce2008-03-31 18:19:54 +00002305static int codeEqualityTerm(
drh94a11212004-09-25 13:12:14 +00002306 Parse *pParse, /* The parsing context */
drhe23399f2005-07-22 00:31:39 +00002307 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
drh1db639c2008-01-17 02:36:28 +00002308 WhereLevel *pLevel, /* When level of the FROM clause we are working on */
drh678ccce2008-03-31 18:19:54 +00002309 int iTarget /* Attempt to leave results in this register */
drh94a11212004-09-25 13:12:14 +00002310){
drh0fcef5e2005-07-19 17:38:22 +00002311 Expr *pX = pTerm->pExpr;
drh50b39962006-10-28 00:28:09 +00002312 Vdbe *v = pParse->pVdbe;
drh678ccce2008-03-31 18:19:54 +00002313 int iReg; /* Register holding results */
drh1db639c2008-01-17 02:36:28 +00002314
danielk19772d605492008-10-01 08:43:03 +00002315 assert( iTarget>0 );
drh50b39962006-10-28 00:28:09 +00002316 if( pX->op==TK_EQ ){
drh678ccce2008-03-31 18:19:54 +00002317 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
drh50b39962006-10-28 00:28:09 +00002318 }else if( pX->op==TK_ISNULL ){
drh678ccce2008-03-31 18:19:54 +00002319 iReg = iTarget;
drh1db639c2008-01-17 02:36:28 +00002320 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
danielk1977b3bce662005-01-29 08:32:43 +00002321#ifndef SQLITE_OMIT_SUBQUERY
drh94a11212004-09-25 13:12:14 +00002322 }else{
danielk19779a96b662007-11-29 17:05:18 +00002323 int eType;
danielk1977b3bce662005-01-29 08:32:43 +00002324 int iTab;
drh72e8fa42007-03-28 14:30:06 +00002325 struct InLoop *pIn;
danielk1977b3bce662005-01-29 08:32:43 +00002326
drh50b39962006-10-28 00:28:09 +00002327 assert( pX->op==TK_IN );
drh678ccce2008-03-31 18:19:54 +00002328 iReg = iTarget;
danielk19770cdc0222008-06-26 18:04:03 +00002329 eType = sqlite3FindInIndex(pParse, pX, 0);
danielk1977b3bce662005-01-29 08:32:43 +00002330 iTab = pX->iTable;
drh66a51672008-01-03 00:01:23 +00002331 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
drh111a6a72008-12-21 03:51:16 +00002332 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
2333 if( pLevel->u.in.nIn==0 ){
drhb3190c12008-12-08 21:37:14 +00002334 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
drh72e8fa42007-03-28 14:30:06 +00002335 }
drh111a6a72008-12-21 03:51:16 +00002336 pLevel->u.in.nIn++;
2337 pLevel->u.in.aInLoop =
2338 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
2339 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
2340 pIn = pLevel->u.in.aInLoop;
drh72e8fa42007-03-28 14:30:06 +00002341 if( pIn ){
drh111a6a72008-12-21 03:51:16 +00002342 pIn += pLevel->u.in.nIn - 1;
drh72e8fa42007-03-28 14:30:06 +00002343 pIn->iCur = iTab;
drh1db639c2008-01-17 02:36:28 +00002344 if( eType==IN_INDEX_ROWID ){
drhb3190c12008-12-08 21:37:14 +00002345 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
drh1db639c2008-01-17 02:36:28 +00002346 }else{
drhb3190c12008-12-08 21:37:14 +00002347 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
drh1db639c2008-01-17 02:36:28 +00002348 }
2349 sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
drha6110402005-07-28 20:51:19 +00002350 }else{
drh111a6a72008-12-21 03:51:16 +00002351 pLevel->u.in.nIn = 0;
drhe23399f2005-07-22 00:31:39 +00002352 }
danielk1977b3bce662005-01-29 08:32:43 +00002353#endif
drh94a11212004-09-25 13:12:14 +00002354 }
drh0fcef5e2005-07-19 17:38:22 +00002355 disableTerm(pLevel, pTerm);
drh678ccce2008-03-31 18:19:54 +00002356 return iReg;
drh94a11212004-09-25 13:12:14 +00002357}
2358
drh51147ba2005-07-23 22:59:55 +00002359/*
2360** Generate code that will evaluate all == and IN constraints for an
2361** index. The values for all constraints are left on the stack.
2362**
2363** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
2364** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
2365** The index has as many as three equality constraints, but in this
2366** example, the third "c" value is an inequality. So only two
2367** constraints are coded. This routine will generate code to evaluate
drh6df2acd2008-12-28 16:55:25 +00002368** a==5 and b IN (1,2,3). The current values for a and b will be stored
2369** in consecutive registers and the index of the first register is returned.
drh51147ba2005-07-23 22:59:55 +00002370**
2371** In the example above nEq==2. But this subroutine works for any value
2372** of nEq including 0. If nEq==0, this routine is nearly a no-op.
2373** The only thing it does is allocate the pLevel->iMem memory cell.
2374**
drh700a2262008-12-17 19:22:15 +00002375** This routine always allocates at least one memory cell and returns
2376** the index of that memory cell. The code that
2377** calls this routine will use that memory cell to store the termination
drh51147ba2005-07-23 22:59:55 +00002378** key value of the loop. If one or more IN operators appear, then
2379** this routine allocates an additional nEq memory cells for internal
2380** use.
dan69f8bb92009-08-13 19:21:16 +00002381**
2382** Before returning, *pzAff is set to point to a buffer containing a
2383** copy of the column affinity string of the index allocated using
2384** sqlite3DbMalloc(). Except, entries in the copy of the string associated
2385** with equality constraints that use NONE affinity are set to
2386** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
2387**
2388** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
2389** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
2390**
2391** In the example above, the index on t1(a) has TEXT affinity. But since
2392** the right hand side of the equality constraint (t2.b) has NONE affinity,
2393** no conversion should be attempted before using a t2.b value as part of
2394** a key to search the index. Hence the first byte in the returned affinity
2395** string in this example would be set to SQLITE_AFF_NONE.
drh51147ba2005-07-23 22:59:55 +00002396*/
drh1db639c2008-01-17 02:36:28 +00002397static int codeAllEqualityTerms(
drh51147ba2005-07-23 22:59:55 +00002398 Parse *pParse, /* Parsing context */
2399 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
2400 WhereClause *pWC, /* The WHERE clause */
drh1db639c2008-01-17 02:36:28 +00002401 Bitmask notReady, /* Which parts of FROM have not yet been coded */
dan69f8bb92009-08-13 19:21:16 +00002402 int nExtraReg, /* Number of extra registers to allocate */
2403 char **pzAff /* OUT: Set to point to affinity string */
drh51147ba2005-07-23 22:59:55 +00002404){
drh111a6a72008-12-21 03:51:16 +00002405 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */
2406 Vdbe *v = pParse->pVdbe; /* The vm under construction */
2407 Index *pIdx; /* The index being used for this loop */
drh51147ba2005-07-23 22:59:55 +00002408 int iCur = pLevel->iTabCur; /* The cursor of the table */
2409 WhereTerm *pTerm; /* A single constraint term */
2410 int j; /* Loop counter */
drh1db639c2008-01-17 02:36:28 +00002411 int regBase; /* Base register */
drh6df2acd2008-12-28 16:55:25 +00002412 int nReg; /* Number of registers to allocate */
dan69f8bb92009-08-13 19:21:16 +00002413 char *zAff; /* Affinity string to return */
drh51147ba2005-07-23 22:59:55 +00002414
drh111a6a72008-12-21 03:51:16 +00002415 /* This module is only called on query plans that use an index. */
2416 assert( pLevel->plan.wsFlags & WHERE_INDEXED );
2417 pIdx = pLevel->plan.u.pIdx;
2418
drh51147ba2005-07-23 22:59:55 +00002419 /* Figure out how many memory cells we will need then allocate them.
drh51147ba2005-07-23 22:59:55 +00002420 */
drh700a2262008-12-17 19:22:15 +00002421 regBase = pParse->nMem + 1;
drh6df2acd2008-12-28 16:55:25 +00002422 nReg = pLevel->plan.nEq + nExtraReg;
2423 pParse->nMem += nReg;
drh51147ba2005-07-23 22:59:55 +00002424
dan69f8bb92009-08-13 19:21:16 +00002425 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
2426 if( !zAff ){
2427 pParse->db->mallocFailed = 1;
2428 }
2429
drh51147ba2005-07-23 22:59:55 +00002430 /* Evaluate the equality constraints
2431 */
drhc49de5d2007-01-19 01:06:01 +00002432 assert( pIdx->nColumn>=nEq );
2433 for(j=0; j<nEq; j++){
drh678ccce2008-03-31 18:19:54 +00002434 int r1;
drh51147ba2005-07-23 22:59:55 +00002435 int k = pIdx->aiColumn[j];
drh111a6a72008-12-21 03:51:16 +00002436 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
drh34004ce2008-07-11 16:15:17 +00002437 if( NEVER(pTerm==0) ) break;
drh165be382008-12-05 02:36:33 +00002438 assert( (pTerm->wtFlags & TERM_CODED)==0 );
drh678ccce2008-03-31 18:19:54 +00002439 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
2440 if( r1!=regBase+j ){
drh6df2acd2008-12-28 16:55:25 +00002441 if( nReg==1 ){
2442 sqlite3ReleaseTempReg(pParse, regBase);
2443 regBase = r1;
2444 }else{
2445 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
2446 }
drh678ccce2008-03-31 18:19:54 +00002447 }
drh981642f2008-04-19 14:40:43 +00002448 testcase( pTerm->eOperator & WO_ISNULL );
2449 testcase( pTerm->eOperator & WO_IN );
drh72e8fa42007-03-28 14:30:06 +00002450 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
drhb3190c12008-12-08 21:37:14 +00002451 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
dan69f8bb92009-08-13 19:21:16 +00002452 if( zAff
2453 && sqlite3CompareAffinity(pTerm->pExpr->pRight, zAff[j])==SQLITE_AFF_NONE
2454 ){
2455 zAff[j] = SQLITE_AFF_NONE;
2456 }
drh51147ba2005-07-23 22:59:55 +00002457 }
2458 }
dan69f8bb92009-08-13 19:21:16 +00002459 *pzAff = zAff;
drh1db639c2008-01-17 02:36:28 +00002460 return regBase;
drh51147ba2005-07-23 22:59:55 +00002461}
2462
drh111a6a72008-12-21 03:51:16 +00002463/*
2464** Generate code for the start of the iLevel-th loop in the WHERE clause
2465** implementation described by pWInfo.
2466*/
2467static Bitmask codeOneLoopStart(
2468 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
2469 int iLevel, /* Which level of pWInfo->a[] should be coded */
drh336a5302009-04-24 15:46:21 +00002470 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */
drh111a6a72008-12-21 03:51:16 +00002471 Bitmask notReady /* Which tables are currently available */
2472){
2473 int j, k; /* Loop counters */
2474 int iCur; /* The VDBE cursor for the table */
2475 int addrNxt; /* Where to jump to continue with the next IN case */
2476 int omitTable; /* True if we use the index only */
2477 int bRev; /* True if we need to scan in reverse order */
2478 WhereLevel *pLevel; /* The where level to be coded */
2479 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
2480 WhereTerm *pTerm; /* A WHERE clause term */
2481 Parse *pParse; /* Parsing context */
2482 Vdbe *v; /* The prepared stmt under constructions */
2483 struct SrcList_item *pTabItem; /* FROM clause term being coded */
drh23d04d52008-12-23 23:56:22 +00002484 int addrBrk; /* Jump here to break out of the loop */
2485 int addrCont; /* Jump here to continue with next cycle */
drh61495262009-04-22 15:32:59 +00002486 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
2487 int iReleaseReg = 0; /* Temp register to free before returning */
drh111a6a72008-12-21 03:51:16 +00002488
2489 pParse = pWInfo->pParse;
2490 v = pParse->pVdbe;
2491 pWC = pWInfo->pWC;
2492 pLevel = &pWInfo->a[iLevel];
2493 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
2494 iCur = pTabItem->iCursor;
2495 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
danielk19771d461462009-04-21 09:02:45 +00002496 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
drh336a5302009-04-24 15:46:21 +00002497 && (wctrlFlags & WHERE_FORCE_TABLE)==0;
drh111a6a72008-12-21 03:51:16 +00002498
2499 /* Create labels for the "break" and "continue" instructions
2500 ** for the current loop. Jump to addrBrk to break out of a loop.
2501 ** Jump to cont to go immediately to the next iteration of the
2502 ** loop.
2503 **
2504 ** When there is an IN operator, we also have a "addrNxt" label that
2505 ** means to continue with the next IN value combination. When
2506 ** there are no IN operators in the constraints, the "addrNxt" label
2507 ** is the same as "addrBrk".
2508 */
2509 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
2510 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
2511
2512 /* If this is the right table of a LEFT OUTER JOIN, allocate and
2513 ** initialize a memory cell that records if this table matches any
2514 ** row of the left table of the join.
2515 */
2516 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
2517 pLevel->iLeftJoin = ++pParse->nMem;
2518 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
2519 VdbeComment((v, "init LEFT JOIN no-match flag"));
2520 }
2521
2522#ifndef SQLITE_OMIT_VIRTUALTABLE
2523 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
2524 /* Case 0: The table is a virtual-table. Use the VFilter and VNext
2525 ** to access the data.
2526 */
2527 int iReg; /* P3 Value for OP_VFilter */
2528 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
2529 int nConstraint = pVtabIdx->nConstraint;
2530 struct sqlite3_index_constraint_usage *aUsage =
2531 pVtabIdx->aConstraintUsage;
2532 const struct sqlite3_index_constraint *aConstraint =
2533 pVtabIdx->aConstraint;
2534
2535 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
drh111a6a72008-12-21 03:51:16 +00002536 for(j=1; j<=nConstraint; j++){
2537 for(k=0; k<nConstraint; k++){
2538 if( aUsage[k].argvIndex==j ){
2539 int iTerm = aConstraint[k].iTermOffset;
drh111a6a72008-12-21 03:51:16 +00002540 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
2541 break;
2542 }
2543 }
2544 if( k==nConstraint ) break;
2545 }
drh111a6a72008-12-21 03:51:16 +00002546 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
2547 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
2548 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
2549 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
drh111a6a72008-12-21 03:51:16 +00002550 pVtabIdx->needToFreeIdxStr = 0;
2551 for(j=0; j<nConstraint; j++){
2552 if( aUsage[j].omit ){
2553 int iTerm = aConstraint[j].iTermOffset;
2554 disableTerm(pLevel, &pWC->a[iTerm]);
2555 }
2556 }
2557 pLevel->op = OP_VNext;
2558 pLevel->p1 = iCur;
2559 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
drh23d04d52008-12-23 23:56:22 +00002560 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
drh111a6a72008-12-21 03:51:16 +00002561 }else
2562#endif /* SQLITE_OMIT_VIRTUALTABLE */
2563
2564 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
2565 /* Case 1: We can directly reference a single row using an
2566 ** equality comparison against the ROWID field. Or
2567 ** we reference multiple rows using a "rowid IN (...)"
2568 ** construct.
2569 */
danielk19771d461462009-04-21 09:02:45 +00002570 iReleaseReg = sqlite3GetTempReg(pParse);
drh111a6a72008-12-21 03:51:16 +00002571 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
2572 assert( pTerm!=0 );
2573 assert( pTerm->pExpr!=0 );
2574 assert( pTerm->leftCursor==iCur );
2575 assert( omitTable==0 );
danielk19771d461462009-04-21 09:02:45 +00002576 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
drh111a6a72008-12-21 03:51:16 +00002577 addrNxt = pLevel->addrNxt;
danielk19771d461462009-04-21 09:02:45 +00002578 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
2579 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
drhceea3322009-04-23 13:22:42 +00002580 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
drh111a6a72008-12-21 03:51:16 +00002581 VdbeComment((v, "pk"));
2582 pLevel->op = OP_Noop;
2583 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
2584 /* Case 2: We have an inequality comparison against the ROWID field.
2585 */
2586 int testOp = OP_Noop;
2587 int start;
2588 int memEndValue = 0;
2589 WhereTerm *pStart, *pEnd;
2590
2591 assert( omitTable==0 );
2592 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
2593 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
2594 if( bRev ){
2595 pTerm = pStart;
2596 pStart = pEnd;
2597 pEnd = pTerm;
2598 }
2599 if( pStart ){
2600 Expr *pX; /* The expression that defines the start bound */
2601 int r1, rTemp; /* Registers for holding the start boundary */
2602
2603 /* The following constant maps TK_xx codes into corresponding
2604 ** seek opcodes. It depends on a particular ordering of TK_xx
2605 */
2606 const u8 aMoveOp[] = {
2607 /* TK_GT */ OP_SeekGt,
2608 /* TK_LE */ OP_SeekLe,
2609 /* TK_LT */ OP_SeekLt,
2610 /* TK_GE */ OP_SeekGe
2611 };
2612 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
2613 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
2614 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
2615
2616 pX = pStart->pExpr;
2617 assert( pX!=0 );
2618 assert( pStart->leftCursor==iCur );
2619 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
2620 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
2621 VdbeComment((v, "pk"));
2622 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
2623 sqlite3ReleaseTempReg(pParse, rTemp);
2624 disableTerm(pLevel, pStart);
2625 }else{
2626 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
2627 }
2628 if( pEnd ){
2629 Expr *pX;
2630 pX = pEnd->pExpr;
2631 assert( pX!=0 );
2632 assert( pEnd->leftCursor==iCur );
2633 memEndValue = ++pParse->nMem;
2634 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
2635 if( pX->op==TK_LT || pX->op==TK_GT ){
2636 testOp = bRev ? OP_Le : OP_Ge;
2637 }else{
2638 testOp = bRev ? OP_Lt : OP_Gt;
2639 }
2640 disableTerm(pLevel, pEnd);
2641 }
2642 start = sqlite3VdbeCurrentAddr(v);
2643 pLevel->op = bRev ? OP_Prev : OP_Next;
2644 pLevel->p1 = iCur;
2645 pLevel->p2 = start;
drhca8c4662008-12-28 20:47:02 +00002646 pLevel->p5 = (pStart==0 && pEnd==0) ?1:0;
danielk19771d461462009-04-21 09:02:45 +00002647 if( testOp!=OP_Noop ){
2648 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
2649 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
drhceea3322009-04-23 13:22:42 +00002650 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danielk19771d461462009-04-21 09:02:45 +00002651 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
2652 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
drh111a6a72008-12-21 03:51:16 +00002653 }
2654 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
2655 /* Case 3: A scan using an index.
2656 **
2657 ** The WHERE clause may contain zero or more equality
2658 ** terms ("==" or "IN" operators) that refer to the N
2659 ** left-most columns of the index. It may also contain
2660 ** inequality constraints (>, <, >= or <=) on the indexed
2661 ** column that immediately follows the N equalities. Only
2662 ** the right-most column can be an inequality - the rest must
2663 ** use the "==" and "IN" operators. For example, if the
2664 ** index is on (x,y,z), then the following clauses are all
2665 ** optimized:
2666 **
2667 ** x=5
2668 ** x=5 AND y=10
2669 ** x=5 AND y<10
2670 ** x=5 AND y>5 AND y<10
2671 ** x=5 AND y=5 AND z<=10
2672 **
2673 ** The z<10 term of the following cannot be used, only
2674 ** the x=5 term:
2675 **
2676 ** x=5 AND z<10
2677 **
2678 ** N may be zero if there are inequality constraints.
2679 ** If there are no inequality constraints, then N is at
2680 ** least one.
2681 **
2682 ** This case is also used when there are no WHERE clause
2683 ** constraints but an index is selected anyway, in order
2684 ** to force the output order to conform to an ORDER BY.
2685 */
2686 int aStartOp[] = {
2687 0,
2688 0,
2689 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
2690 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
2691 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */
2692 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */
2693 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */
2694 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */
2695 };
2696 int aEndOp[] = {
2697 OP_Noop, /* 0: (!end_constraints) */
2698 OP_IdxGE, /* 1: (end_constraints && !bRev) */
2699 OP_IdxLT /* 2: (end_constraints && bRev) */
2700 };
2701 int nEq = pLevel->plan.nEq;
2702 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
2703 int regBase; /* Base register holding constraint values */
2704 int r1; /* Temp register */
2705 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
2706 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
2707 int startEq; /* True if range start uses ==, >= or <= */
2708 int endEq; /* True if range end uses ==, >= or <= */
2709 int start_constraints; /* Start of range is constrained */
2710 int nConstraint; /* Number of constraint terms */
2711 Index *pIdx; /* The index we will be using */
2712 int iIdxCur; /* The VDBE cursor for the index */
drh6df2acd2008-12-28 16:55:25 +00002713 int nExtraReg = 0; /* Number of extra registers needed */
2714 int op; /* Instruction opcode */
dan69f8bb92009-08-13 19:21:16 +00002715 char *zAff;
drh111a6a72008-12-21 03:51:16 +00002716
2717 pIdx = pLevel->plan.u.pIdx;
2718 iIdxCur = pLevel->iIdxCur;
2719 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
2720
drh111a6a72008-12-21 03:51:16 +00002721 /* If this loop satisfies a sort order (pOrderBy) request that
2722 ** was passed to this function to implement a "SELECT min(x) ..."
2723 ** query, then the caller will only allow the loop to run for
2724 ** a single iteration. This means that the first row returned
2725 ** should not have a NULL value stored in 'x'. If column 'x' is
2726 ** the first one after the nEq equality constraints in the index,
2727 ** this requires some special handling.
2728 */
2729 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
2730 && (pLevel->plan.wsFlags&WHERE_ORDERBY)
2731 && (pIdx->nColumn>nEq)
2732 ){
2733 /* assert( pOrderBy->nExpr==1 ); */
2734 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
2735 isMinQuery = 1;
drh6df2acd2008-12-28 16:55:25 +00002736 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00002737 }
2738
2739 /* Find any inequality constraint terms for the start and end
2740 ** of the range.
2741 */
2742 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
2743 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
drh6df2acd2008-12-28 16:55:25 +00002744 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00002745 }
2746 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
2747 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
drh6df2acd2008-12-28 16:55:25 +00002748 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00002749 }
2750
drh6df2acd2008-12-28 16:55:25 +00002751 /* Generate code to evaluate all constraint terms using == or IN
2752 ** and store the values of those terms in an array of registers
2753 ** starting at regBase.
2754 */
dan69f8bb92009-08-13 19:21:16 +00002755 regBase = codeAllEqualityTerms(
2756 pParse, pLevel, pWC, notReady, nExtraReg, &zAff
2757 );
drh6df2acd2008-12-28 16:55:25 +00002758 addrNxt = pLevel->addrNxt;
2759
drh111a6a72008-12-21 03:51:16 +00002760 /* If we are doing a reverse order scan on an ascending index, or
2761 ** a forward order scan on a descending index, interchange the
2762 ** start and end terms (pRangeStart and pRangeEnd).
2763 */
2764 if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
2765 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
2766 }
2767
2768 testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
2769 testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
2770 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
2771 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
2772 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
2773 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
2774 start_constraints = pRangeStart || nEq>0;
2775
2776 /* Seek the index cursor to the start of the range. */
2777 nConstraint = nEq;
2778 if( pRangeStart ){
dan69f8bb92009-08-13 19:21:16 +00002779 Expr *pRight = pRangeStart->pExpr->pRight;
2780 sqlite3ExprCode(pParse, pRight, regBase+nEq);
drh111a6a72008-12-21 03:51:16 +00002781 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
dan69f8bb92009-08-13 19:21:16 +00002782 if( zAff
2783 && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE
2784 ){
2785 /* Since the comparison is to be performed with no conversions applied
2786 ** to the operands, set the affinity to apply to pRight to
2787 ** SQLITE_AFF_NONE. */
2788 zAff[nConstraint] = SQLITE_AFF_NONE;
2789 }
drh111a6a72008-12-21 03:51:16 +00002790 nConstraint++;
2791 }else if( isMinQuery ){
2792 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2793 nConstraint++;
2794 startEq = 0;
2795 start_constraints = 1;
2796 }
dan69f8bb92009-08-13 19:21:16 +00002797 codeApplyAffinity(pParse, regBase, nConstraint, zAff);
drh111a6a72008-12-21 03:51:16 +00002798 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
2799 assert( op!=0 );
2800 testcase( op==OP_Rewind );
2801 testcase( op==OP_Last );
2802 testcase( op==OP_SeekGt );
2803 testcase( op==OP_SeekGe );
2804 testcase( op==OP_SeekLe );
2805 testcase( op==OP_SeekLt );
2806 sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase,
2807 SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
2808
2809 /* Load the value for the inequality constraint at the end of the
2810 ** range (if any).
2811 */
2812 nConstraint = nEq;
2813 if( pRangeEnd ){
dan69f8bb92009-08-13 19:21:16 +00002814 Expr *pRight = pRangeEnd->pExpr->pRight;
drhceea3322009-04-23 13:22:42 +00002815 sqlite3ExprCacheRemove(pParse, regBase+nEq);
dan69f8bb92009-08-13 19:21:16 +00002816 sqlite3ExprCode(pParse, pRight, regBase+nEq);
drh111a6a72008-12-21 03:51:16 +00002817 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
dan69f8bb92009-08-13 19:21:16 +00002818 zAff = sqlite3DbStrDup(pParse->db, zAff);
2819 if( zAff
2820 && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE
2821 ){
2822 /* Since the comparison is to be performed with no conversions applied
2823 ** to the operands, set the affinity to apply to pRight to
2824 ** SQLITE_AFF_NONE. */
2825 zAff[nConstraint] = SQLITE_AFF_NONE;
2826 }
2827 codeApplyAffinity(pParse, regBase, nEq+1, zAff);
drh111a6a72008-12-21 03:51:16 +00002828 nConstraint++;
2829 }
2830
2831 /* Top of the loop body */
2832 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2833
2834 /* Check if the index cursor is past the end of the range. */
2835 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
2836 testcase( op==OP_Noop );
2837 testcase( op==OP_IdxGE );
2838 testcase( op==OP_IdxLT );
drh6df2acd2008-12-28 16:55:25 +00002839 if( op!=OP_Noop ){
2840 sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase,
2841 SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
2842 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
2843 }
drh111a6a72008-12-21 03:51:16 +00002844
2845 /* If there are inequality constraints, check that the value
2846 ** of the table column that the inequality contrains is not NULL.
2847 ** If it is, jump to the next iteration of the loop.
2848 */
2849 r1 = sqlite3GetTempReg(pParse);
2850 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
2851 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
2852 if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
2853 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
2854 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
2855 }
danielk19771d461462009-04-21 09:02:45 +00002856 sqlite3ReleaseTempReg(pParse, r1);
drh111a6a72008-12-21 03:51:16 +00002857
2858 /* Seek the table cursor, if required */
drh23d04d52008-12-23 23:56:22 +00002859 disableTerm(pLevel, pRangeStart);
2860 disableTerm(pLevel, pRangeEnd);
danielk19771d461462009-04-21 09:02:45 +00002861 if( !omitTable ){
2862 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
2863 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
drhceea3322009-04-23 13:22:42 +00002864 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danielk19771d461462009-04-21 09:02:45 +00002865 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
drh111a6a72008-12-21 03:51:16 +00002866 }
drh111a6a72008-12-21 03:51:16 +00002867
2868 /* Record the instruction used to terminate the loop. Disable
2869 ** WHERE clause terms made redundant by the index range scan.
2870 */
2871 pLevel->op = bRev ? OP_Prev : OP_Next;
2872 pLevel->p1 = iIdxCur;
drhdd5f5a62008-12-23 13:35:23 +00002873 }else
2874
drh23d04d52008-12-23 23:56:22 +00002875#ifndef SQLITE_OMIT_OR_OPTIMIZATION
drhdd5f5a62008-12-23 13:35:23 +00002876 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
drh111a6a72008-12-21 03:51:16 +00002877 /* Case 4: Two or more separately indexed terms connected by OR
2878 **
2879 ** Example:
2880 **
2881 ** CREATE TABLE t1(a,b,c,d);
2882 ** CREATE INDEX i1 ON t1(a);
2883 ** CREATE INDEX i2 ON t1(b);
2884 ** CREATE INDEX i3 ON t1(c);
2885 **
2886 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2887 **
2888 ** In the example, there are three indexed terms connected by OR.
danielk19771d461462009-04-21 09:02:45 +00002889 ** The top of the loop looks like this:
drh111a6a72008-12-21 03:51:16 +00002890 **
drh1b26c7c2009-04-22 02:15:47 +00002891 ** Null 1 # Zero the rowset in reg 1
drh111a6a72008-12-21 03:51:16 +00002892 **
danielk19771d461462009-04-21 09:02:45 +00002893 ** Then, for each indexed term, the following. The arguments to
drh1b26c7c2009-04-22 02:15:47 +00002894 ** RowSetTest are such that the rowid of the current row is inserted
2895 ** into the RowSet. If it is already present, control skips the
danielk19771d461462009-04-21 09:02:45 +00002896 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
drh111a6a72008-12-21 03:51:16 +00002897 **
danielk19771d461462009-04-21 09:02:45 +00002898 ** sqlite3WhereBegin(<term>)
drh1b26c7c2009-04-22 02:15:47 +00002899 ** RowSetTest # Insert rowid into rowset
danielk19771d461462009-04-21 09:02:45 +00002900 ** Gosub 2 A
2901 ** sqlite3WhereEnd()
2902 **
2903 ** Following the above, code to terminate the loop. Label A, the target
2904 ** of the Gosub above, jumps to the instruction right after the Goto.
2905 **
drh1b26c7c2009-04-22 02:15:47 +00002906 ** Null 1 # Zero the rowset in reg 1
danielk19771d461462009-04-21 09:02:45 +00002907 ** Goto B # The loop is finished.
2908 **
2909 ** A: <loop body> # Return data, whatever.
2910 **
2911 ** Return 2 # Jump back to the Gosub
2912 **
2913 ** B: <after the loop>
2914 **
drh111a6a72008-12-21 03:51:16 +00002915 */
drh111a6a72008-12-21 03:51:16 +00002916 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
danielk19771d461462009-04-21 09:02:45 +00002917 WhereTerm *pFinal; /* Final subterm within the OR-clause. */
drhdd5f5a62008-12-23 13:35:23 +00002918 SrcList oneTab; /* Shortened table list */
danielk19771d461462009-04-21 09:02:45 +00002919
2920 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
shane85095702009-06-15 16:27:08 +00002921 int regRowset = 0; /* Register for RowSet object */
2922 int regRowid = 0; /* Register holding rowid */
danielk19771d461462009-04-21 09:02:45 +00002923 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
2924 int iRetInit; /* Address of regReturn init */
2925 int ii;
drh111a6a72008-12-21 03:51:16 +00002926
2927 pTerm = pLevel->plan.u.pTerm;
2928 assert( pTerm!=0 );
2929 assert( pTerm->eOperator==WO_OR );
2930 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2931 pOrWc = &pTerm->u.pOrInfo->wc;
danielk19771d461462009-04-21 09:02:45 +00002932 pFinal = &pOrWc->a[pOrWc->nTerm-1];
drh23d04d52008-12-23 23:56:22 +00002933
danielk19771d461462009-04-21 09:02:45 +00002934 /* Set up a SrcList containing just the table being scanned by this loop. */
drhdd5f5a62008-12-23 13:35:23 +00002935 oneTab.nSrc = 1;
2936 oneTab.nAlloc = 1;
2937 oneTab.a[0] = *pTabItem;
danielk19771d461462009-04-21 09:02:45 +00002938
drh1b26c7c2009-04-22 02:15:47 +00002939 /* Initialize the rowset register to contain NULL. An SQL NULL is
2940 ** equivalent to an empty rowset.
danielk19771d461462009-04-21 09:02:45 +00002941 **
2942 ** Also initialize regReturn to contain the address of the instruction
2943 ** immediately following the OP_Return at the bottom of the loop. This
2944 ** is required in a few obscure LEFT JOIN cases where control jumps
2945 ** over the top of the loop into the body of it. In this case the
2946 ** correct response for the end-of-loop code (the OP_Return) is to
2947 ** fall through to the next instruction, just as an OP_Next does if
2948 ** called on an uninitialized cursor.
2949 */
drh336a5302009-04-24 15:46:21 +00002950 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2951 regRowset = ++pParse->nMem;
2952 regRowid = ++pParse->nMem;
2953 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2954 }
danielk19771d461462009-04-21 09:02:45 +00002955 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2956
danielk19771d461462009-04-21 09:02:45 +00002957 for(ii=0; ii<pOrWc->nTerm; ii++){
2958 WhereTerm *pOrTerm = &pOrWc->a[ii];
2959 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
2960 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
danielk19771d461462009-04-21 09:02:45 +00002961 /* Loop through table entries that match term pOrTerm. */
drh336a5302009-04-24 15:46:21 +00002962 pSubWInfo = sqlite3WhereBegin(pParse, &oneTab, pOrTerm->pExpr, 0,
2963 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | WHERE_FORCE_TABLE);
danielk19771d461462009-04-21 09:02:45 +00002964 if( pSubWInfo ){
drh336a5302009-04-24 15:46:21 +00002965 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2966 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2967 int r;
2968 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
2969 regRowid, 0);
shane85095702009-06-15 16:27:08 +00002970 sqlite3VdbeAddOp4(v, OP_RowSetTest, regRowset,
shane60a4b532009-05-06 18:57:09 +00002971 sqlite3VdbeCurrentAddr(v)+2,
2972 r, SQLITE_INT_TO_PTR(iSet), P4_INT32);
drh336a5302009-04-24 15:46:21 +00002973 }
danielk19771d461462009-04-21 09:02:45 +00002974 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2975
2976 /* Finish the loop through table entries that match term pOrTerm. */
2977 sqlite3WhereEnd(pSubWInfo);
2978 }
drhdd5f5a62008-12-23 13:35:23 +00002979 }
2980 }
danielk19771d461462009-04-21 09:02:45 +00002981 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
drh336a5302009-04-24 15:46:21 +00002982 /* sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); */
danielk19771d461462009-04-21 09:02:45 +00002983 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
2984 sqlite3VdbeResolveLabel(v, iLoopBody);
2985
2986 pLevel->op = OP_Return;
2987 pLevel->p1 = regReturn;
drh23d04d52008-12-23 23:56:22 +00002988 disableTerm(pLevel, pTerm);
drhdd5f5a62008-12-23 13:35:23 +00002989 }else
drh23d04d52008-12-23 23:56:22 +00002990#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
drhdd5f5a62008-12-23 13:35:23 +00002991
2992 {
drh111a6a72008-12-21 03:51:16 +00002993 /* Case 5: There is no usable index. We must do a complete
2994 ** scan of the entire table.
2995 */
drh699b3d42009-02-23 16:52:07 +00002996 static const u8 aStep[] = { OP_Next, OP_Prev };
2997 static const u8 aStart[] = { OP_Rewind, OP_Last };
2998 assert( bRev==0 || bRev==1 );
drh111a6a72008-12-21 03:51:16 +00002999 assert( omitTable==0 );
drh699b3d42009-02-23 16:52:07 +00003000 pLevel->op = aStep[bRev];
drh111a6a72008-12-21 03:51:16 +00003001 pLevel->p1 = iCur;
drh699b3d42009-02-23 16:52:07 +00003002 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
drh111a6a72008-12-21 03:51:16 +00003003 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3004 }
3005 notReady &= ~getMask(pWC->pMaskSet, iCur);
3006
3007 /* Insert code to test every subexpression that can be completely
3008 ** computed using the current set of tables.
3009 */
3010 k = 0;
3011 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
3012 Expr *pE;
3013 testcase( pTerm->wtFlags & TERM_VIRTUAL );
3014 testcase( pTerm->wtFlags & TERM_CODED );
3015 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
3016 if( (pTerm->prereqAll & notReady)!=0 ) continue;
3017 pE = pTerm->pExpr;
3018 assert( pE!=0 );
3019 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
3020 continue;
3021 }
drh111a6a72008-12-21 03:51:16 +00003022 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
drh111a6a72008-12-21 03:51:16 +00003023 k = 1;
3024 pTerm->wtFlags |= TERM_CODED;
3025 }
3026
3027 /* For a LEFT OUTER JOIN, generate code that will record the fact that
3028 ** at least one row of the right table has matched the left table.
3029 */
3030 if( pLevel->iLeftJoin ){
3031 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
3032 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
3033 VdbeComment((v, "record LEFT JOIN hit"));
drhceea3322009-04-23 13:22:42 +00003034 sqlite3ExprCacheClear(pParse);
drh111a6a72008-12-21 03:51:16 +00003035 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
3036 testcase( pTerm->wtFlags & TERM_VIRTUAL );
3037 testcase( pTerm->wtFlags & TERM_CODED );
3038 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
3039 if( (pTerm->prereqAll & notReady)!=0 ) continue;
3040 assert( pTerm->pExpr );
3041 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
3042 pTerm->wtFlags |= TERM_CODED;
3043 }
3044 }
danielk19771d461462009-04-21 09:02:45 +00003045 sqlite3ReleaseTempReg(pParse, iReleaseReg);
drh23d04d52008-12-23 23:56:22 +00003046
drh111a6a72008-12-21 03:51:16 +00003047 return notReady;
3048}
3049
drh549c8b62005-09-19 13:15:23 +00003050#if defined(SQLITE_TEST)
drh84bfda42005-07-15 13:05:21 +00003051/*
3052** The following variable holds a text description of query plan generated
3053** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
3054** overwrites the previous. This information is used for testing and
3055** analysis only.
3056*/
3057char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
3058static int nQPlan = 0; /* Next free slow in _query_plan[] */
3059
3060#endif /* SQLITE_TEST */
3061
3062
drh9eff6162006-06-12 21:59:13 +00003063/*
3064** Free a WhereInfo structure
3065*/
drh10fe8402008-10-11 16:47:35 +00003066static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
drh9eff6162006-06-12 21:59:13 +00003067 if( pWInfo ){
3068 int i;
3069 for(i=0; i<pWInfo->nLevel; i++){
drh4be8b512006-06-13 23:51:34 +00003070 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
3071 if( pInfo ){
danielk19771d461462009-04-21 09:02:45 +00003072 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
danielk197780442942008-12-24 11:25:39 +00003073 if( pInfo->needToFreeIdxStr ){
3074 sqlite3_free(pInfo->idxStr);
danielk1977be229652009-03-20 14:18:51 +00003075 }
drh633e6d52008-07-28 19:34:53 +00003076 sqlite3DbFree(db, pInfo);
danielk1977be8a7832006-06-13 15:00:54 +00003077 }
drh9eff6162006-06-12 21:59:13 +00003078 }
drh111a6a72008-12-21 03:51:16 +00003079 whereClauseClear(pWInfo->pWC);
drh633e6d52008-07-28 19:34:53 +00003080 sqlite3DbFree(db, pWInfo);
drh9eff6162006-06-12 21:59:13 +00003081 }
3082}
3083
drh94a11212004-09-25 13:12:14 +00003084
3085/*
drhe3184742002-06-19 14:27:05 +00003086** Generate the beginning of the loop used for WHERE clause processing.
drhacf3b982005-01-03 01:27:18 +00003087** The return value is a pointer to an opaque structure that contains
drh75897232000-05-29 14:26:00 +00003088** information needed to terminate the loop. Later, the calling routine
danielk19774adee202004-05-08 08:23:19 +00003089** should invoke sqlite3WhereEnd() with the return value of this function
drh75897232000-05-29 14:26:00 +00003090** in order to complete the WHERE clause processing.
3091**
3092** If an error occurs, this routine returns NULL.
drhc27a1ce2002-06-14 20:58:45 +00003093**
3094** The basic idea is to do a nested loop, one loop for each table in
3095** the FROM clause of a select. (INSERT and UPDATE statements are the
3096** same as a SELECT with only a single table in the FROM clause.) For
3097** example, if the SQL is this:
3098**
3099** SELECT * FROM t1, t2, t3 WHERE ...;
3100**
3101** Then the code generated is conceptually like the following:
3102**
3103** foreach row1 in t1 do \ Code generated
danielk19774adee202004-05-08 08:23:19 +00003104** foreach row2 in t2 do |-- by sqlite3WhereBegin()
drhc27a1ce2002-06-14 20:58:45 +00003105** foreach row3 in t3 do /
3106** ...
3107** end \ Code generated
danielk19774adee202004-05-08 08:23:19 +00003108** end |-- by sqlite3WhereEnd()
drhc27a1ce2002-06-14 20:58:45 +00003109** end /
3110**
drh29dda4a2005-07-21 18:23:20 +00003111** Note that the loops might not be nested in the order in which they
3112** appear in the FROM clause if a different order is better able to make
drh51147ba2005-07-23 22:59:55 +00003113** use of indices. Note also that when the IN operator appears in
3114** the WHERE clause, it might result in additional nested loops for
3115** scanning through all values on the right-hand side of the IN.
drh29dda4a2005-07-21 18:23:20 +00003116**
drhc27a1ce2002-06-14 20:58:45 +00003117** There are Btree cursors associated with each table. t1 uses cursor
drh6a3ea0e2003-05-02 14:32:12 +00003118** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
3119** And so forth. This routine generates code to open those VDBE cursors
danielk19774adee202004-05-08 08:23:19 +00003120** and sqlite3WhereEnd() generates the code to close them.
drhc27a1ce2002-06-14 20:58:45 +00003121**
drhe6f85e72004-12-25 01:03:13 +00003122** The code that sqlite3WhereBegin() generates leaves the cursors named
3123** in pTabList pointing at their appropriate entries. The [...] code
drhf0863fe2005-06-12 21:35:51 +00003124** can use OP_Column and OP_Rowid opcodes on these cursors to extract
drhe6f85e72004-12-25 01:03:13 +00003125** data from the various tables of the loop.
3126**
drhc27a1ce2002-06-14 20:58:45 +00003127** If the WHERE clause is empty, the foreach loops must each scan their
3128** entire tables. Thus a three-way join is an O(N^3) operation. But if
3129** the tables have indices and there are terms in the WHERE clause that
3130** refer to those indices, a complete table scan can be avoided and the
3131** code will run much faster. Most of the work of this routine is checking
3132** to see if there are indices that can be used to speed up the loop.
3133**
3134** Terms of the WHERE clause are also used to limit which rows actually
3135** make it to the "..." in the middle of the loop. After each "foreach",
3136** terms of the WHERE clause that use only terms in that loop and outer
3137** loops are evaluated and if false a jump is made around all subsequent
3138** inner loops (or around the "..." if the test occurs within the inner-
3139** most loop)
3140**
3141** OUTER JOINS
3142**
3143** An outer join of tables t1 and t2 is conceptally coded as follows:
3144**
3145** foreach row1 in t1 do
3146** flag = 0
3147** foreach row2 in t2 do
3148** start:
3149** ...
3150** flag = 1
3151** end
drhe3184742002-06-19 14:27:05 +00003152** if flag==0 then
3153** move the row2 cursor to a null row
3154** goto start
3155** fi
drhc27a1ce2002-06-14 20:58:45 +00003156** end
3157**
drhe3184742002-06-19 14:27:05 +00003158** ORDER BY CLAUSE PROCESSING
3159**
3160** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
3161** if there is one. If there is no ORDER BY clause or if this routine
3162** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
3163**
3164** If an index can be used so that the natural output order of the table
3165** scan is correct for the ORDER BY clause, then that index is used and
3166** *ppOrderBy is set to NULL. This is an optimization that prevents an
3167** unnecessary sort of the result set if an index appropriate for the
3168** ORDER BY clause already exists.
3169**
3170** If the where clause loops cannot be arranged to provide the correct
3171** output order, then the *ppOrderBy is unchanged.
drh75897232000-05-29 14:26:00 +00003172*/
danielk19774adee202004-05-08 08:23:19 +00003173WhereInfo *sqlite3WhereBegin(
danielk1977ed326d72004-11-16 15:50:19 +00003174 Parse *pParse, /* The parser context */
3175 SrcList *pTabList, /* A list of all tables to be scanned */
3176 Expr *pWhere, /* The WHERE clause */
danielk1977a9d1ccb2008-01-05 17:39:29 +00003177 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
drh336a5302009-04-24 15:46:21 +00003178 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */
drh75897232000-05-29 14:26:00 +00003179){
3180 int i; /* Loop counter */
danielk1977be229652009-03-20 14:18:51 +00003181 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
drh75897232000-05-29 14:26:00 +00003182 WhereInfo *pWInfo; /* Will become the return value of this function */
3183 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
drhfe05af82005-07-21 03:14:59 +00003184 Bitmask notReady; /* Cursors that are not yet positioned */
drh111a6a72008-12-21 03:51:16 +00003185 WhereMaskSet *pMaskSet; /* The expression mask set */
drh111a6a72008-12-21 03:51:16 +00003186 WhereClause *pWC; /* Decomposition of the WHERE clause */
drh9012bcb2004-12-19 00:11:35 +00003187 struct SrcList_item *pTabItem; /* A single entry from pTabList */
3188 WhereLevel *pLevel; /* A single level in the pWInfo list */
drh29dda4a2005-07-21 18:23:20 +00003189 int iFrom; /* First unused FROM clause element */
drh111a6a72008-12-21 03:51:16 +00003190 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */
drh17435752007-08-16 04:30:38 +00003191 sqlite3 *db; /* Database connection */
drh75897232000-05-29 14:26:00 +00003192
drh29dda4a2005-07-21 18:23:20 +00003193 /* The number of tables in the FROM clause is limited by the number of
drh1398ad32005-01-19 23:24:50 +00003194 ** bits in a Bitmask
3195 */
drh29dda4a2005-07-21 18:23:20 +00003196 if( pTabList->nSrc>BMS ){
3197 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
drh1398ad32005-01-19 23:24:50 +00003198 return 0;
3199 }
3200
drh75897232000-05-29 14:26:00 +00003201 /* Allocate and initialize the WhereInfo structure that will become the
danielk1977be229652009-03-20 14:18:51 +00003202 ** return value. A single allocation is used to store the WhereInfo
3203 ** struct, the contents of WhereInfo.a[], the WhereClause structure
3204 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
3205 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
3206 ** some architectures. Hence the ROUND8() below.
drh75897232000-05-29 14:26:00 +00003207 */
drh17435752007-08-16 04:30:38 +00003208 db = pParse->db;
danielk1977be229652009-03-20 14:18:51 +00003209 nByteWInfo = ROUND8(sizeof(WhereInfo)+(pTabList->nSrc-1)*sizeof(WhereLevel));
3210 pWInfo = sqlite3DbMallocZero(db,
3211 nByteWInfo +
3212 sizeof(WhereClause) +
3213 sizeof(WhereMaskSet)
3214 );
drh17435752007-08-16 04:30:38 +00003215 if( db->mallocFailed ){
danielk197785574e32008-10-06 05:32:18 +00003216 goto whereBeginError;
drh75897232000-05-29 14:26:00 +00003217 }
danielk197770b6d572006-06-19 04:49:34 +00003218 pWInfo->nLevel = pTabList->nSrc;
drh75897232000-05-29 14:26:00 +00003219 pWInfo->pParse = pParse;
3220 pWInfo->pTabList = pTabList;
danielk19774adee202004-05-08 08:23:19 +00003221 pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
danielk1977be229652009-03-20 14:18:51 +00003222 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
drh6df2acd2008-12-28 16:55:25 +00003223 pWInfo->wctrlFlags = wctrlFlags;
drh111a6a72008-12-21 03:51:16 +00003224 pMaskSet = (WhereMaskSet*)&pWC[1];
drh08192d52002-04-30 19:20:28 +00003225
drh111a6a72008-12-21 03:51:16 +00003226 /* Split the WHERE clause into separate subexpressions where each
3227 ** subexpression is separated by an AND operator.
3228 */
3229 initMaskSet(pMaskSet);
3230 whereClauseInit(pWC, pParse, pMaskSet);
3231 sqlite3ExprCodeConstants(pParse, pWhere);
3232 whereSplit(pWC, pWhere, TK_AND);
3233
drh08192d52002-04-30 19:20:28 +00003234 /* Special case: a WHERE clause that is constant. Evaluate the
3235 ** expression and either jump over all of the code or fall thru.
3236 */
drh0a168372007-06-08 00:20:47 +00003237 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
drh35573352008-01-08 23:54:25 +00003238 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
drhdf199a22002-06-14 22:38:41 +00003239 pWhere = 0;
drh08192d52002-04-30 19:20:28 +00003240 }
drh75897232000-05-29 14:26:00 +00003241
drh42165be2008-03-26 14:56:34 +00003242 /* Assign a bit from the bitmask to every term in the FROM clause.
3243 **
3244 ** When assigning bitmask values to FROM clause cursors, it must be
3245 ** the case that if X is the bitmask for the N-th FROM clause term then
3246 ** the bitmask for all FROM clause terms to the left of the N-th term
3247 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
3248 ** its Expr.iRightJoinTable value to find the bitmask of the right table
3249 ** of the join. Subtracting one from the right table bitmask gives a
3250 ** bitmask for all tables to the left of the join. Knowing the bitmask
3251 ** for all tables to the left of a left join is important. Ticket #3015.
danielk1977e672c8e2009-05-22 15:43:26 +00003252 **
3253 ** Configure the WhereClause.vmask variable so that bits that correspond
3254 ** to virtual table cursors are set. This is used to selectively disable
3255 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
3256 ** with virtual tables.
drh42165be2008-03-26 14:56:34 +00003257 */
danielk1977e672c8e2009-05-22 15:43:26 +00003258 assert( pWC->vmask==0 && pMaskSet->n==0 );
drh42165be2008-03-26 14:56:34 +00003259 for(i=0; i<pTabList->nSrc; i++){
drh111a6a72008-12-21 03:51:16 +00003260 createMask(pMaskSet, pTabList->a[i].iCursor);
shanee26fa4c2009-06-16 14:15:22 +00003261#ifndef SQLITE_OMIT_VIRTUALTABLE
drh2c1a0c52009-06-11 17:04:28 +00003262 if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
danielk1977e672c8e2009-05-22 15:43:26 +00003263 pWC->vmask |= ((Bitmask)1 << i);
3264 }
shanee26fa4c2009-06-16 14:15:22 +00003265#endif
drh42165be2008-03-26 14:56:34 +00003266 }
3267#ifndef NDEBUG
3268 {
3269 Bitmask toTheLeft = 0;
3270 for(i=0; i<pTabList->nSrc; i++){
drh111a6a72008-12-21 03:51:16 +00003271 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
drh42165be2008-03-26 14:56:34 +00003272 assert( (m-1)==toTheLeft );
3273 toTheLeft |= m;
3274 }
3275 }
3276#endif
3277
drh29dda4a2005-07-21 18:23:20 +00003278 /* Analyze all of the subexpressions. Note that exprAnalyze() might
3279 ** add new virtual terms onto the end of the WHERE clause. We do not
3280 ** want to analyze these virtual terms, so start analyzing at the end
drhb6fb62d2005-09-20 08:47:20 +00003281 ** and work forward so that the added virtual terms are never processed.
drh75897232000-05-29 14:26:00 +00003282 */
drh111a6a72008-12-21 03:51:16 +00003283 exprAnalyzeAll(pTabList, pWC);
drh17435752007-08-16 04:30:38 +00003284 if( db->mallocFailed ){
danielk197785574e32008-10-06 05:32:18 +00003285 goto whereBeginError;
drh0bbaa1b2005-08-19 19:14:12 +00003286 }
drh75897232000-05-29 14:26:00 +00003287
drh29dda4a2005-07-21 18:23:20 +00003288 /* Chose the best index to use for each table in the FROM clause.
3289 **
drh51147ba2005-07-23 22:59:55 +00003290 ** This loop fills in the following fields:
3291 **
3292 ** pWInfo->a[].pIdx The index to use for this level of the loop.
drh165be382008-12-05 02:36:33 +00003293 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
drh51147ba2005-07-23 22:59:55 +00003294 ** pWInfo->a[].nEq The number of == and IN constraints
danielk197785574e32008-10-06 05:32:18 +00003295 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
drh51147ba2005-07-23 22:59:55 +00003296 ** pWInfo->a[].iTabCur The VDBE cursor for the database table
3297 ** pWInfo->a[].iIdxCur The VDBE cursor for the index
drh111a6a72008-12-21 03:51:16 +00003298 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
drh51147ba2005-07-23 22:59:55 +00003299 **
3300 ** This loop also figures out the nesting order of tables in the FROM
3301 ** clause.
drh75897232000-05-29 14:26:00 +00003302 */
drhfe05af82005-07-21 03:14:59 +00003303 notReady = ~(Bitmask)0;
drh9012bcb2004-12-19 00:11:35 +00003304 pTabItem = pTabList->a;
3305 pLevel = pWInfo->a;
drh943af3c2005-07-29 19:43:58 +00003306 andFlags = ~0;
drh4f0c5872007-03-26 22:05:01 +00003307 WHERETRACE(("*** Optimizer Start ***\n"));
drh29dda4a2005-07-21 18:23:20 +00003308 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
drh111a6a72008-12-21 03:51:16 +00003309 WhereCost bestPlan; /* Most efficient plan seen so far */
drh29dda4a2005-07-21 18:23:20 +00003310 Index *pIdx; /* Index for FROM table at pTabItem */
drh29dda4a2005-07-21 18:23:20 +00003311 int j; /* For looping over FROM tables */
dan5236ac12009-08-13 07:09:33 +00003312 int bestJ = -1; /* The value of j */
drh29dda4a2005-07-21 18:23:20 +00003313 Bitmask m; /* Bitmask value for j or bestJ */
dan5236ac12009-08-13 07:09:33 +00003314 int isOptimal; /* Iterator for optimal/non-optimal search */
drh29dda4a2005-07-21 18:23:20 +00003315
drh111a6a72008-12-21 03:51:16 +00003316 memset(&bestPlan, 0, sizeof(bestPlan));
3317 bestPlan.rCost = SQLITE_BIG_DBL;
drhdf26fd52006-06-06 11:45:54 +00003318
dan5236ac12009-08-13 07:09:33 +00003319 /* Loop through the remaining entries in the FROM clause to find the
3320 ** next nested loop. The FROM clause entries may be iterated through
3321 ** either once or twice.
3322 **
3323 ** The first iteration, which is always performed, searches for the
3324 ** FROM clause entry that permits the lowest-cost, "optimal" scan. In
3325 ** this context an optimal scan is one that uses the same strategy
3326 ** for the given FROM clause entry as would be selected if the entry
3327 ** were used as the innermost nested loop.
3328 **
3329 ** The second iteration is only performed if no optimal scan strategies
3330 ** were found by the first. This iteration is used to search for the
3331 ** lowest cost scan overall.
3332 **
3333 ** Previous versions of SQLite performed only the second iteration -
3334 ** the next outermost loop was always that with the lowest overall
3335 ** cost. However, this meant that SQLite could select the wrong plan
3336 ** for scripts such as the following:
3337 **
3338 ** CREATE TABLE t1(a, b);
3339 ** CREATE TABLE t2(c, d);
3340 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
3341 **
3342 ** The best strategy is to iterate through table t1 first. However it
3343 ** is not possible to determine this with a simple greedy algorithm.
3344 ** However, since the cost of a linear scan through table t2 is the same
3345 ** as the cost of a linear scan through table t1, a simple greedy
3346 ** algorithm may choose to use t2 for the outer loop, which is a much
3347 ** costlier approach.
3348 */
3349 for(isOptimal=1; isOptimal>=0 && bestJ<0; isOptimal--){
3350 Bitmask mask = (isOptimal ? 0 : notReady);
3351 assert( (pTabList->nSrc-iFrom)>1 || isOptimal );
3352 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
3353 int doNotReorder; /* True if this table should not be reordered */
3354 WhereCost sCost; /* Cost information from best[Virtual]Index() */
3355 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */
3356
3357 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
3358 if( j!=iFrom && doNotReorder ) break;
3359 m = getMask(pMaskSet, pTabItem->iCursor);
3360 if( (m & notReady)==0 ){
3361 if( j==iFrom ) iFrom++;
3362 continue;
3363 }
3364 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
3365
3366 assert( pTabItem->pTab );
drh9eff6162006-06-12 21:59:13 +00003367#ifndef SQLITE_OMIT_VIRTUALTABLE
dan5236ac12009-08-13 07:09:33 +00003368 if( IsVirtual(pTabItem->pTab) ){
3369 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
3370 bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp);
3371 }else
drh9eff6162006-06-12 21:59:13 +00003372#endif
dan5236ac12009-08-13 07:09:33 +00003373 {
3374 bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost);
3375 }
3376 assert( isOptimal || (sCost.used&notReady)==0 );
3377
3378 if( (sCost.used&notReady)==0
3379 && (j==iFrom || sCost.rCost<bestPlan.rCost)
3380 ){
3381 bestPlan = sCost;
3382 bestJ = j;
3383 }
3384 if( doNotReorder ) break;
drh9eff6162006-06-12 21:59:13 +00003385 }
drh29dda4a2005-07-21 18:23:20 +00003386 }
dan5236ac12009-08-13 07:09:33 +00003387 assert( bestJ>=0 );
danielk1977992347f2008-12-30 09:45:45 +00003388 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
drhcb041342008-06-12 00:07:29 +00003389 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
drh3dec2232005-09-10 15:28:09 +00003390 pLevel-pWInfo->a));
drh111a6a72008-12-21 03:51:16 +00003391 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
drhfe05af82005-07-21 03:14:59 +00003392 *ppOrderBy = 0;
drhc4a3c772001-04-04 11:48:57 +00003393 }
drh111a6a72008-12-21 03:51:16 +00003394 andFlags &= bestPlan.plan.wsFlags;
3395 pLevel->plan = bestPlan.plan;
3396 if( bestPlan.plan.wsFlags & WHERE_INDEXED ){
drh9012bcb2004-12-19 00:11:35 +00003397 pLevel->iIdxCur = pParse->nTab++;
drhfe05af82005-07-21 03:14:59 +00003398 }else{
3399 pLevel->iIdxCur = -1;
drh6b563442001-11-07 16:48:26 +00003400 }
drh111a6a72008-12-21 03:51:16 +00003401 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
shaned87897d2009-01-30 05:40:27 +00003402 pLevel->iFrom = (u8)bestJ;
danielk197785574e32008-10-06 05:32:18 +00003403
3404 /* Check that if the table scanned by this loop iteration had an
3405 ** INDEXED BY clause attached to it, that the named index is being
3406 ** used for the scan. If not, then query compilation has failed.
3407 ** Return an error.
3408 */
3409 pIdx = pTabList->a[bestJ].pIndex;
drh171256c2009-01-08 03:11:19 +00003410 if( pIdx ){
3411 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
3412 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
3413 goto whereBeginError;
3414 }else{
3415 /* If an INDEXED BY clause is used, the bestIndex() function is
3416 ** guaranteed to find the index specified in the INDEXED BY clause
3417 ** if it find an index at all. */
3418 assert( bestPlan.plan.u.pIdx==pIdx );
3419 }
danielk197785574e32008-10-06 05:32:18 +00003420 }
drh75897232000-05-29 14:26:00 +00003421 }
drh4f0c5872007-03-26 22:05:01 +00003422 WHERETRACE(("*** Optimizer Finished ***\n"));
danielk19771d461462009-04-21 09:02:45 +00003423 if( pParse->nErr || db->mallocFailed ){
danielk197780442942008-12-24 11:25:39 +00003424 goto whereBeginError;
3425 }
drh75897232000-05-29 14:26:00 +00003426
drh943af3c2005-07-29 19:43:58 +00003427 /* If the total query only selects a single row, then the ORDER BY
3428 ** clause is irrelevant.
3429 */
3430 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
3431 *ppOrderBy = 0;
3432 }
3433
drh08c88eb2008-04-10 13:33:18 +00003434 /* If the caller is an UPDATE or DELETE statement that is requesting
3435 ** to use a one-pass algorithm, determine if this is appropriate.
3436 ** The one-pass algorithm only works if the WHERE clause constraints
3437 ** the statement to update a single row.
3438 */
drh165be382008-12-05 02:36:33 +00003439 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
3440 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
drh08c88eb2008-04-10 13:33:18 +00003441 pWInfo->okOnePass = 1;
drh111a6a72008-12-21 03:51:16 +00003442 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
drh08c88eb2008-04-10 13:33:18 +00003443 }
3444
drh9012bcb2004-12-19 00:11:35 +00003445 /* Open all tables in the pTabList and any indices selected for
3446 ** searching those tables.
3447 */
3448 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
drh29dda4a2005-07-21 18:23:20 +00003449 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
danielk1977da184232006-01-05 11:34:32 +00003450 Table *pTab; /* Table to open */
danielk1977da184232006-01-05 11:34:32 +00003451 int iDb; /* Index of database containing table/index */
drh9012bcb2004-12-19 00:11:35 +00003452
drhecc92422005-09-10 16:46:12 +00003453#ifndef SQLITE_OMIT_EXPLAIN
3454 if( pParse->explain==2 ){
3455 char *zMsg;
3456 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
danielk19771e536952007-08-16 10:09:01 +00003457 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
drhecc92422005-09-10 16:46:12 +00003458 if( pItem->zAlias ){
drh633e6d52008-07-28 19:34:53 +00003459 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
drhecc92422005-09-10 16:46:12 +00003460 }
drh111a6a72008-12-21 03:51:16 +00003461 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3462 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s",
3463 zMsg, pLevel->plan.u.pIdx->zName);
drh46129af2008-12-30 16:18:47 +00003464 }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
3465 zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg);
drh111a6a72008-12-21 03:51:16 +00003466 }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
drh633e6d52008-07-28 19:34:53 +00003467 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg);
drhecc92422005-09-10 16:46:12 +00003468 }
drh9eff6162006-06-12 21:59:13 +00003469#ifndef SQLITE_OMIT_VIRTUALTABLE
drh111a6a72008-12-21 03:51:16 +00003470 else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
3471 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
drh633e6d52008-07-28 19:34:53 +00003472 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
drh111a6a72008-12-21 03:51:16 +00003473 pVtabIdx->idxNum, pVtabIdx->idxStr);
drh9eff6162006-06-12 21:59:13 +00003474 }
3475#endif
drh111a6a72008-12-21 03:51:16 +00003476 if( pLevel->plan.wsFlags & WHERE_ORDERBY ){
drh633e6d52008-07-28 19:34:53 +00003477 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg);
drhe2b39092006-04-21 09:38:36 +00003478 }
drh66a51672008-01-03 00:01:23 +00003479 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
drhecc92422005-09-10 16:46:12 +00003480 }
3481#endif /* SQLITE_OMIT_EXPLAIN */
drh29dda4a2005-07-21 18:23:20 +00003482 pTabItem = &pTabList->a[pLevel->iFrom];
drh9012bcb2004-12-19 00:11:35 +00003483 pTab = pTabItem->pTab;
danielk1977595a5232009-07-24 17:58:53 +00003484 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
drh7d10d5a2008-08-20 16:35:10 +00003485 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
drh9eff6162006-06-12 21:59:13 +00003486#ifndef SQLITE_OMIT_VIRTUALTABLE
drh111a6a72008-12-21 03:51:16 +00003487 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
danielk1977595a5232009-07-24 17:58:53 +00003488 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
danielk197793626f42006-06-20 13:07:27 +00003489 int iCur = pTabItem->iCursor;
danielk1977595a5232009-07-24 17:58:53 +00003490 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
drh9eff6162006-06-12 21:59:13 +00003491 }else
3492#endif
drh6df2acd2008-12-28 16:55:25 +00003493 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
3494 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){
drh08c88eb2008-04-10 13:33:18 +00003495 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
3496 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
danielk197723432972008-11-17 16:42:00 +00003497 if( !pWInfo->okOnePass && pTab->nCol<BMS ){
danielk19779792eef2006-01-13 15:58:43 +00003498 Bitmask b = pTabItem->colUsed;
3499 int n = 0;
drh74161702006-02-24 02:53:49 +00003500 for(; b; b=b>>1, n++){}
shanec0688ea2009-03-05 03:48:06 +00003501 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, SQLITE_INT_TO_PTR(n), P4_INT32);
danielk19779792eef2006-01-13 15:58:43 +00003502 assert( n<=pTab->nCol );
3503 }
danielk1977c00da102006-01-07 13:21:04 +00003504 }else{
3505 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
drh9012bcb2004-12-19 00:11:35 +00003506 }
3507 pLevel->iTabCur = pTabItem->iCursor;
drh111a6a72008-12-21 03:51:16 +00003508 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3509 Index *pIx = pLevel->plan.u.pIdx;
danielk1977b3bf5562006-01-10 17:58:23 +00003510 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
drh111a6a72008-12-21 03:51:16 +00003511 int iIdxCur = pLevel->iIdxCur;
danielk1977da184232006-01-05 11:34:32 +00003512 assert( pIx->pSchema==pTab->pSchema );
drh111a6a72008-12-21 03:51:16 +00003513 assert( iIdxCur>=0 );
danielk1977207872a2008-01-03 07:54:23 +00003514 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
drh66a51672008-01-03 00:01:23 +00003515 (char*)pKey, P4_KEYINFO_HANDOFF);
danielk1977207872a2008-01-03 07:54:23 +00003516 VdbeComment((v, "%s", pIx->zName));
drh9012bcb2004-12-19 00:11:35 +00003517 }
danielk1977da184232006-01-05 11:34:32 +00003518 sqlite3CodeVerifySchema(pParse, iDb);
drh9012bcb2004-12-19 00:11:35 +00003519 }
3520 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
3521
drh29dda4a2005-07-21 18:23:20 +00003522 /* Generate the code to do the search. Each iteration of the for
3523 ** loop below generates code for a single nested loop of the VM
3524 ** program.
drh75897232000-05-29 14:26:00 +00003525 */
drhfe05af82005-07-21 03:14:59 +00003526 notReady = ~(Bitmask)0;
drh111a6a72008-12-21 03:51:16 +00003527 for(i=0; i<pTabList->nSrc; i++){
3528 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
drh813f31e2009-01-06 00:08:02 +00003529 pWInfo->iContinue = pWInfo->a[i].addrCont;
drh75897232000-05-29 14:26:00 +00003530 }
drh7ec764a2005-07-21 03:48:20 +00003531
3532#ifdef SQLITE_TEST /* For testing and debugging use only */
3533 /* Record in the query plan information about the current table
3534 ** and the index used to access it (if any). If the table itself
3535 ** is not used, its name is just '{}'. If no index is used
3536 ** the index is listed as "{}". If the primary key is used the
3537 ** index name is '*'.
3538 */
3539 for(i=0; i<pTabList->nSrc; i++){
3540 char *z;
3541 int n;
drh7ec764a2005-07-21 03:48:20 +00003542 pLevel = &pWInfo->a[i];
drh29dda4a2005-07-21 18:23:20 +00003543 pTabItem = &pTabList->a[pLevel->iFrom];
drh7ec764a2005-07-21 03:48:20 +00003544 z = pTabItem->zAlias;
3545 if( z==0 ) z = pTabItem->pTab->zName;
drhea678832008-12-10 19:26:22 +00003546 n = sqlite3Strlen30(z);
drh7ec764a2005-07-21 03:48:20 +00003547 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
drh111a6a72008-12-21 03:51:16 +00003548 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
drh5bb3eb92007-05-04 13:15:55 +00003549 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
drh7ec764a2005-07-21 03:48:20 +00003550 nQPlan += 2;
3551 }else{
drh5bb3eb92007-05-04 13:15:55 +00003552 memcpy(&sqlite3_query_plan[nQPlan], z, n);
drh7ec764a2005-07-21 03:48:20 +00003553 nQPlan += n;
3554 }
3555 sqlite3_query_plan[nQPlan++] = ' ';
3556 }
drh111a6a72008-12-21 03:51:16 +00003557 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
3558 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
3559 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
drh5bb3eb92007-05-04 13:15:55 +00003560 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
drh7ec764a2005-07-21 03:48:20 +00003561 nQPlan += 2;
drh111a6a72008-12-21 03:51:16 +00003562 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3563 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
drh7ec764a2005-07-21 03:48:20 +00003564 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
drh111a6a72008-12-21 03:51:16 +00003565 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
drh7ec764a2005-07-21 03:48:20 +00003566 nQPlan += n;
3567 sqlite3_query_plan[nQPlan++] = ' ';
3568 }
drh111a6a72008-12-21 03:51:16 +00003569 }else{
3570 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
3571 nQPlan += 3;
drh7ec764a2005-07-21 03:48:20 +00003572 }
3573 }
3574 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
3575 sqlite3_query_plan[--nQPlan] = 0;
3576 }
3577 sqlite3_query_plan[nQPlan] = 0;
3578 nQPlan = 0;
3579#endif /* SQLITE_TEST // Testing and debugging use only */
3580
drh29dda4a2005-07-21 18:23:20 +00003581 /* Record the continuation address in the WhereInfo structure. Then
3582 ** clean up and return.
3583 */
drh75897232000-05-29 14:26:00 +00003584 return pWInfo;
drhe23399f2005-07-22 00:31:39 +00003585
3586 /* Jump here if malloc fails */
danielk197785574e32008-10-06 05:32:18 +00003587whereBeginError:
drh10fe8402008-10-11 16:47:35 +00003588 whereInfoFree(db, pWInfo);
drhe23399f2005-07-22 00:31:39 +00003589 return 0;
drh75897232000-05-29 14:26:00 +00003590}
3591
3592/*
drhc27a1ce2002-06-14 20:58:45 +00003593** Generate the end of the WHERE loop. See comments on
danielk19774adee202004-05-08 08:23:19 +00003594** sqlite3WhereBegin() for additional information.
drh75897232000-05-29 14:26:00 +00003595*/
danielk19774adee202004-05-08 08:23:19 +00003596void sqlite3WhereEnd(WhereInfo *pWInfo){
drh633e6d52008-07-28 19:34:53 +00003597 Parse *pParse = pWInfo->pParse;
3598 Vdbe *v = pParse->pVdbe;
drh19a775c2000-06-05 18:54:46 +00003599 int i;
drh6b563442001-11-07 16:48:26 +00003600 WhereLevel *pLevel;
drhad3cab52002-05-24 02:04:32 +00003601 SrcList *pTabList = pWInfo->pTabList;
drh633e6d52008-07-28 19:34:53 +00003602 sqlite3 *db = pParse->db;
drh19a775c2000-06-05 18:54:46 +00003603
drh9012bcb2004-12-19 00:11:35 +00003604 /* Generate loop termination code.
3605 */
drhceea3322009-04-23 13:22:42 +00003606 sqlite3ExprCacheClear(pParse);
drhad3cab52002-05-24 02:04:32 +00003607 for(i=pTabList->nSrc-1; i>=0; i--){
drh6b563442001-11-07 16:48:26 +00003608 pLevel = &pWInfo->a[i];
drhb3190c12008-12-08 21:37:14 +00003609 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
drh6b563442001-11-07 16:48:26 +00003610 if( pLevel->op!=OP_Noop ){
drh66a51672008-01-03 00:01:23 +00003611 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
drhd1d38482008-10-07 23:46:38 +00003612 sqlite3VdbeChangeP5(v, pLevel->p5);
drh19a775c2000-06-05 18:54:46 +00003613 }
drh111a6a72008-12-21 03:51:16 +00003614 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
drh72e8fa42007-03-28 14:30:06 +00003615 struct InLoop *pIn;
drhe23399f2005-07-22 00:31:39 +00003616 int j;
drhb3190c12008-12-08 21:37:14 +00003617 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
drh111a6a72008-12-21 03:51:16 +00003618 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
drhb3190c12008-12-08 21:37:14 +00003619 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
3620 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
3621 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
drhe23399f2005-07-22 00:31:39 +00003622 }
drh111a6a72008-12-21 03:51:16 +00003623 sqlite3DbFree(db, pLevel->u.in.aInLoop);
drhd99f7062002-06-08 23:25:08 +00003624 }
drhb3190c12008-12-08 21:37:14 +00003625 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
drhad2d8302002-05-24 20:31:36 +00003626 if( pLevel->iLeftJoin ){
3627 int addr;
drh3c84ddf2008-01-09 02:15:38 +00003628 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
3629 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
drh9012bcb2004-12-19 00:11:35 +00003630 if( pLevel->iIdxCur>=0 ){
drh3c84ddf2008-01-09 02:15:38 +00003631 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
drh7f09b3e2002-08-13 13:15:49 +00003632 }
drh336a5302009-04-24 15:46:21 +00003633 if( pLevel->op==OP_Return ){
3634 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
3635 }else{
3636 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
3637 }
drhd654be82005-09-20 17:42:23 +00003638 sqlite3VdbeJumpHere(v, addr);
drhad2d8302002-05-24 20:31:36 +00003639 }
drh19a775c2000-06-05 18:54:46 +00003640 }
drh9012bcb2004-12-19 00:11:35 +00003641
3642 /* The "break" point is here, just past the end of the outer loop.
3643 ** Set it.
3644 */
danielk19774adee202004-05-08 08:23:19 +00003645 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
drh9012bcb2004-12-19 00:11:35 +00003646
drh29dda4a2005-07-21 18:23:20 +00003647 /* Close all of the cursors that were opened by sqlite3WhereBegin.
drh9012bcb2004-12-19 00:11:35 +00003648 */
drh29dda4a2005-07-21 18:23:20 +00003649 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
3650 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
drh9012bcb2004-12-19 00:11:35 +00003651 Table *pTab = pTabItem->pTab;
drh5cf590c2003-04-24 01:45:04 +00003652 assert( pTab!=0 );
drh7d10d5a2008-08-20 16:35:10 +00003653 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
drh6df2acd2008-12-28 16:55:25 +00003654 if( (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 ){
3655 if( !pWInfo->okOnePass && (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
3656 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
3657 }
3658 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3659 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
3660 }
drh9012bcb2004-12-19 00:11:35 +00003661 }
3662
danielk197721de2e72007-11-29 17:43:27 +00003663 /* If this scan uses an index, make code substitutions to read data
3664 ** from the index in preference to the table. Sometimes, this means
3665 ** the table need never be read from. This is a performance boost,
3666 ** as the vdbe level waits until the table is read before actually
3667 ** seeking the table cursor to the record corresponding to the current
3668 ** position in the index.
drh9012bcb2004-12-19 00:11:35 +00003669 **
3670 ** Calls to the code generator in between sqlite3WhereBegin and
3671 ** sqlite3WhereEnd will have created code that references the table
3672 ** directly. This loop scans all that code looking for opcodes
3673 ** that reference the table and converts them into opcodes that
3674 ** reference the index.
3675 */
drh125feff2009-06-06 15:17:27 +00003676 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
danielk1977f0113002006-01-24 12:09:17 +00003677 int k, j, last;
drh9012bcb2004-12-19 00:11:35 +00003678 VdbeOp *pOp;
drh111a6a72008-12-21 03:51:16 +00003679 Index *pIdx = pLevel->plan.u.pIdx;
3680 int useIndexOnly = pLevel->plan.wsFlags & WHERE_IDX_ONLY;
drh9012bcb2004-12-19 00:11:35 +00003681
3682 assert( pIdx!=0 );
3683 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
3684 last = sqlite3VdbeCurrentAddr(v);
danielk1977f0113002006-01-24 12:09:17 +00003685 for(k=pWInfo->iTop; k<last; k++, pOp++){
drh9012bcb2004-12-19 00:11:35 +00003686 if( pOp->p1!=pLevel->iTabCur ) continue;
3687 if( pOp->opcode==OP_Column ){
drh9012bcb2004-12-19 00:11:35 +00003688 for(j=0; j<pIdx->nColumn; j++){
3689 if( pOp->p2==pIdx->aiColumn[j] ){
3690 pOp->p2 = j;
danielk197721de2e72007-11-29 17:43:27 +00003691 pOp->p1 = pLevel->iIdxCur;
drh9012bcb2004-12-19 00:11:35 +00003692 break;
3693 }
3694 }
danielk197721de2e72007-11-29 17:43:27 +00003695 assert(!useIndexOnly || j<pIdx->nColumn);
drhf0863fe2005-06-12 21:35:51 +00003696 }else if( pOp->opcode==OP_Rowid ){
drh9012bcb2004-12-19 00:11:35 +00003697 pOp->p1 = pLevel->iIdxCur;
drhf0863fe2005-06-12 21:35:51 +00003698 pOp->opcode = OP_IdxRowid;
danielk197721de2e72007-11-29 17:43:27 +00003699 }else if( pOp->opcode==OP_NullRow && useIndexOnly ){
danielk19776c18b6e2005-01-30 09:17:58 +00003700 pOp->opcode = OP_Noop;
drh9012bcb2004-12-19 00:11:35 +00003701 }
3702 }
drh6b563442001-11-07 16:48:26 +00003703 }
drh19a775c2000-06-05 18:54:46 +00003704 }
drh9012bcb2004-12-19 00:11:35 +00003705
3706 /* Final cleanup
3707 */
drh10fe8402008-10-11 16:47:35 +00003708 whereInfoFree(db, pWInfo);
drh75897232000-05-29 14:26:00 +00003709 return;
3710}