blob: 6d6b967c4c89175061634ddbed5987f9f8ed4466 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
12** This module contains C code that generates VDBE code used to process
drh909626d2008-05-30 14:58:37 +000013** the WHERE clause of SQL statements. This module is responsible for
drh51669862004-12-18 18:40:26 +000014** generating the code that loops through a table looking for applicable
15** rows. Indices are selected and used to speed the search when doing
16** so is applicable. Because this module is responsible for selecting
17** indices, you might also think of this module as the "query optimizer".
drh75897232000-05-29 14:26:00 +000018*/
19#include "sqliteInt.h"
20
21/*
drh51147ba2005-07-23 22:59:55 +000022** Trace output macros
23*/
24#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
mlcreech3a00f902008-03-04 17:45:01 +000025int sqlite3WhereTrace = 0;
drhe8f52c52008-07-12 14:52:20 +000026#endif
drh85799a42009-04-07 13:48:11 +000027#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
mlcreech3a00f902008-03-04 17:45:01 +000028# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
drh51147ba2005-07-23 22:59:55 +000029#else
drh4f0c5872007-03-26 22:05:01 +000030# define WHERETRACE(X)
drh51147ba2005-07-23 22:59:55 +000031#endif
32
drh0fcef5e2005-07-19 17:38:22 +000033/* Forward reference
34*/
35typedef struct WhereClause WhereClause;
drh111a6a72008-12-21 03:51:16 +000036typedef struct WhereMaskSet WhereMaskSet;
drh700a2262008-12-17 19:22:15 +000037typedef struct WhereOrInfo WhereOrInfo;
38typedef struct WhereAndInfo WhereAndInfo;
drh111a6a72008-12-21 03:51:16 +000039typedef struct WhereCost WhereCost;
drh0aa74ed2005-07-16 13:33:20 +000040
41/*
drh75897232000-05-29 14:26:00 +000042** The query generator uses an array of instances of this structure to
43** help it analyze the subexpressions of the WHERE clause. Each WHERE
drh61495262009-04-22 15:32:59 +000044** clause subexpression is separated from the others by AND operators,
45** usually, or sometimes subexpressions separated by OR.
drh51669862004-12-18 18:40:26 +000046**
drh0fcef5e2005-07-19 17:38:22 +000047** All WhereTerms are collected into a single WhereClause structure.
48** The following identity holds:
drh51669862004-12-18 18:40:26 +000049**
drh0fcef5e2005-07-19 17:38:22 +000050** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
drh51669862004-12-18 18:40:26 +000051**
drh0fcef5e2005-07-19 17:38:22 +000052** When a term is of the form:
53**
54** X <op> <expr>
55**
56** where X is a column name and <op> is one of certain operators,
drh700a2262008-12-17 19:22:15 +000057** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
58** cursor number and column number for X. WhereTerm.eOperator records
drh51147ba2005-07-23 22:59:55 +000059** the <op> using a bitmask encoding defined by WO_xxx below. The
60** use of a bitmask encoding for the operator allows us to search
61** quickly for terms that match any of several different operators.
drh0fcef5e2005-07-19 17:38:22 +000062**
drh700a2262008-12-17 19:22:15 +000063** A WhereTerm might also be two or more subterms connected by OR:
64**
65** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
66**
67** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
68** and the WhereTerm.u.pOrInfo field points to auxiliary information that
69** is collected about the
70**
71** If a term in the WHERE clause does not match either of the two previous
72** categories, then eOperator==0. The WhereTerm.pExpr field is still set
73** to the original subexpression content and wtFlags is set up appropriately
74** but no other fields in the WhereTerm object are meaningful.
75**
76** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
drh111a6a72008-12-21 03:51:16 +000077** but they do so indirectly. A single WhereMaskSet structure translates
drh51669862004-12-18 18:40:26 +000078** cursor number into bits and the translated bit is stored in the prereq
79** fields. The translation is used in order to maximize the number of
80** bits that will fit in a Bitmask. The VDBE cursor numbers might be
81** spread out over the non-negative integers. For example, the cursor
drh111a6a72008-12-21 03:51:16 +000082** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
drh51669862004-12-18 18:40:26 +000083** translates these sparse cursor numbers into consecutive integers
84** beginning with 0 in order to make the best possible use of the available
85** bits in the Bitmask. So, in the example above, the cursor numbers
86** would be mapped into integers 0 through 7.
drh6a1e0712008-12-05 15:24:15 +000087**
88** The number of terms in a join is limited by the number of bits
89** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
90** is only able to process joins with 64 or fewer tables.
drh75897232000-05-29 14:26:00 +000091*/
drh0aa74ed2005-07-16 13:33:20 +000092typedef struct WhereTerm WhereTerm;
93struct WhereTerm {
drh165be382008-12-05 02:36:33 +000094 Expr *pExpr; /* Pointer to the subexpression that is this term */
drhec1724e2008-12-09 01:32:03 +000095 int iParent; /* Disable pWC->a[iParent] when this term disabled */
96 int leftCursor; /* Cursor number of X in "X <op> <expr>" */
drh700a2262008-12-17 19:22:15 +000097 union {
98 int leftColumn; /* Column number of X in "X <op> <expr>" */
99 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */
100 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
101 } u;
drhb52076c2006-01-23 13:22:09 +0000102 u16 eOperator; /* A WO_xx value describing <op> */
drh165be382008-12-05 02:36:33 +0000103 u8 wtFlags; /* TERM_xxx bit flags. See below */
drh45b1ee42005-08-02 17:48:22 +0000104 u8 nChild; /* Number of children that must disable us */
drh0fcef5e2005-07-19 17:38:22 +0000105 WhereClause *pWC; /* The clause this term is part of */
drh165be382008-12-05 02:36:33 +0000106 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */
107 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */
drh75897232000-05-29 14:26:00 +0000108};
109
110/*
drh165be382008-12-05 02:36:33 +0000111** Allowed values of WhereTerm.wtFlags
drh0aa74ed2005-07-16 13:33:20 +0000112*/
drh633e6d52008-07-28 19:34:53 +0000113#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
drh6c30be82005-07-29 15:10:17 +0000114#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
115#define TERM_CODED 0x04 /* This term is already coded */
drh45b1ee42005-08-02 17:48:22 +0000116#define TERM_COPIED 0x08 /* Has a child */
drh700a2262008-12-17 19:22:15 +0000117#define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
118#define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
119#define TERM_OR_OK 0x40 /* Used during OR-clause processing */
drh0aa74ed2005-07-16 13:33:20 +0000120
121/*
122** An instance of the following structure holds all information about a
123** WHERE clause. Mostly this is a container for one or more WhereTerms.
124*/
drh0aa74ed2005-07-16 13:33:20 +0000125struct WhereClause {
drhfe05af82005-07-21 03:14:59 +0000126 Parse *pParse; /* The parser context */
drh111a6a72008-12-21 03:51:16 +0000127 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */
danielk1977e672c8e2009-05-22 15:43:26 +0000128 Bitmask vmask; /* Bitmask identifying virtual table cursors */
drh29435252008-12-28 18:35:08 +0000129 u8 op; /* Split operator. TK_AND or TK_OR */
drh0aa74ed2005-07-16 13:33:20 +0000130 int nTerm; /* Number of terms */
131 int nSlot; /* Number of entries in a[] */
drh51147ba2005-07-23 22:59:55 +0000132 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
drh50d654d2009-06-03 01:24:54 +0000133#if defined(SQLITE_SMALL_STACK)
134 WhereTerm aStatic[1]; /* Initial static space for a[] */
135#else
136 WhereTerm aStatic[8]; /* Initial static space for a[] */
137#endif
drhe23399f2005-07-22 00:31:39 +0000138};
139
140/*
drh700a2262008-12-17 19:22:15 +0000141** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
142** a dynamically allocated instance of the following structure.
143*/
144struct WhereOrInfo {
drh111a6a72008-12-21 03:51:16 +0000145 WhereClause wc; /* Decomposition into subterms */
drh1a58fe02008-12-20 02:06:13 +0000146 Bitmask indexable; /* Bitmask of all indexable tables in the clause */
drh700a2262008-12-17 19:22:15 +0000147};
148
149/*
150** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
151** a dynamically allocated instance of the following structure.
152*/
153struct WhereAndInfo {
drh29435252008-12-28 18:35:08 +0000154 WhereClause wc; /* The subexpression broken out */
drh700a2262008-12-17 19:22:15 +0000155};
156
157/*
drh6a3ea0e2003-05-02 14:32:12 +0000158** An instance of the following structure keeps track of a mapping
drh0aa74ed2005-07-16 13:33:20 +0000159** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
drh51669862004-12-18 18:40:26 +0000160**
161** The VDBE cursor numbers are small integers contained in
162** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
163** clause, the cursor numbers might not begin with 0 and they might
164** contain gaps in the numbering sequence. But we want to make maximum
165** use of the bits in our bitmasks. This structure provides a mapping
166** from the sparse cursor numbers into consecutive integers beginning
167** with 0.
168**
drh111a6a72008-12-21 03:51:16 +0000169** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
drh51669862004-12-18 18:40:26 +0000170** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
171**
172** For example, if the WHERE clause expression used these VDBE
drh111a6a72008-12-21 03:51:16 +0000173** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
drh51669862004-12-18 18:40:26 +0000174** would map those cursor numbers into bits 0 through 5.
175**
176** Note that the mapping is not necessarily ordered. In the example
177** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
178** 57->5, 73->4. Or one of 719 other combinations might be used. It
179** does not really matter. What is important is that sparse cursor
180** numbers all get mapped into bit numbers that begin with 0 and contain
181** no gaps.
drh6a3ea0e2003-05-02 14:32:12 +0000182*/
drh111a6a72008-12-21 03:51:16 +0000183struct WhereMaskSet {
drh1398ad32005-01-19 23:24:50 +0000184 int n; /* Number of assigned cursor values */
danielk197723432972008-11-17 16:42:00 +0000185 int ix[BMS]; /* Cursor assigned to each bit */
drh6a3ea0e2003-05-02 14:32:12 +0000186};
187
drh111a6a72008-12-21 03:51:16 +0000188/*
189** A WhereCost object records a lookup strategy and the estimated
190** cost of pursuing that strategy.
191*/
192struct WhereCost {
193 WherePlan plan; /* The lookup strategy */
194 double rCost; /* Overall cost of pursuing this search strategy */
195 double nRow; /* Estimated number of output rows */
dan5236ac12009-08-13 07:09:33 +0000196 Bitmask used; /* Bitmask of cursors used by this plan */
drh111a6a72008-12-21 03:51:16 +0000197};
drh0aa74ed2005-07-16 13:33:20 +0000198
drh6a3ea0e2003-05-02 14:32:12 +0000199/*
drh51147ba2005-07-23 22:59:55 +0000200** Bitmasks for the operators that indices are able to exploit. An
201** OR-ed combination of these values can be used when searching for
202** terms in the where clause.
203*/
drh165be382008-12-05 02:36:33 +0000204#define WO_IN 0x001
205#define WO_EQ 0x002
drh51147ba2005-07-23 22:59:55 +0000206#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
207#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
208#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
209#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
drh165be382008-12-05 02:36:33 +0000210#define WO_MATCH 0x040
211#define WO_ISNULL 0x080
drh700a2262008-12-17 19:22:15 +0000212#define WO_OR 0x100 /* Two or more OR-connected terms */
213#define WO_AND 0x200 /* Two or more AND-connected terms */
drh51147ba2005-07-23 22:59:55 +0000214
drhec1724e2008-12-09 01:32:03 +0000215#define WO_ALL 0xfff /* Mask of all possible WO_* values */
drh1a58fe02008-12-20 02:06:13 +0000216#define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
drhec1724e2008-12-09 01:32:03 +0000217
drh51147ba2005-07-23 22:59:55 +0000218/*
drh700a2262008-12-17 19:22:15 +0000219** Value for wsFlags returned by bestIndex() and stored in
220** WhereLevel.wsFlags. These flags determine which search
221** strategies are appropriate.
drhf2d315d2007-01-25 16:56:06 +0000222**
drh165be382008-12-05 02:36:33 +0000223** The least significant 12 bits is reserved as a mask for WO_ values above.
drh700a2262008-12-17 19:22:15 +0000224** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
225** But if the table is the right table of a left join, WhereLevel.wsFlags
226** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as
drhf2d315d2007-01-25 16:56:06 +0000227** the "op" parameter to findTerm when we are resolving equality constraints.
228** ISNULL constraints will then not be used on the right table of a left
229** join. Tickets #2177 and #2189.
drh51147ba2005-07-23 22:59:55 +0000230*/
drh165be382008-12-05 02:36:33 +0000231#define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */
232#define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */
drh46619d62009-04-24 14:51:42 +0000233#define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */
drh165be382008-12-05 02:36:33 +0000234#define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */
235#define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */
drh46619d62009-04-24 14:51:42 +0000236#define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */
237#define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */
drh8b307fb2010-04-06 15:57:05 +0000238#define WHERE_NOT_FULLSCAN 0x000f3000 /* Does not do a full table scan */
drh46619d62009-04-24 14:51:42 +0000239#define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */
drh165be382008-12-05 02:36:33 +0000240#define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */
241#define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */
242#define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */
243#define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */
244#define WHERE_REVERSE 0x02000000 /* Scan in reverse order */
245#define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */
246#define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */
247#define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */
drh8b307fb2010-04-06 15:57:05 +0000248#define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */
drh51147ba2005-07-23 22:59:55 +0000249
250/*
drh0aa74ed2005-07-16 13:33:20 +0000251** Initialize a preallocated WhereClause structure.
drh75897232000-05-29 14:26:00 +0000252*/
drh7b4fc6a2007-02-06 13:26:32 +0000253static void whereClauseInit(
254 WhereClause *pWC, /* The WhereClause to be initialized */
255 Parse *pParse, /* The parsing context */
drh111a6a72008-12-21 03:51:16 +0000256 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */
drh7b4fc6a2007-02-06 13:26:32 +0000257){
drhfe05af82005-07-21 03:14:59 +0000258 pWC->pParse = pParse;
drh7b4fc6a2007-02-06 13:26:32 +0000259 pWC->pMaskSet = pMaskSet;
drh0aa74ed2005-07-16 13:33:20 +0000260 pWC->nTerm = 0;
drhcad651e2007-04-20 12:22:01 +0000261 pWC->nSlot = ArraySize(pWC->aStatic);
drh0aa74ed2005-07-16 13:33:20 +0000262 pWC->a = pWC->aStatic;
danielk1977e672c8e2009-05-22 15:43:26 +0000263 pWC->vmask = 0;
drh0aa74ed2005-07-16 13:33:20 +0000264}
265
drh700a2262008-12-17 19:22:15 +0000266/* Forward reference */
267static void whereClauseClear(WhereClause*);
268
269/*
270** Deallocate all memory associated with a WhereOrInfo object.
271*/
272static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
drh5bd98ae2009-01-07 18:24:03 +0000273 whereClauseClear(&p->wc);
274 sqlite3DbFree(db, p);
drh700a2262008-12-17 19:22:15 +0000275}
276
277/*
278** Deallocate all memory associated with a WhereAndInfo object.
279*/
280static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
drh5bd98ae2009-01-07 18:24:03 +0000281 whereClauseClear(&p->wc);
282 sqlite3DbFree(db, p);
drh700a2262008-12-17 19:22:15 +0000283}
284
drh0aa74ed2005-07-16 13:33:20 +0000285/*
286** Deallocate a WhereClause structure. The WhereClause structure
287** itself is not freed. This routine is the inverse of whereClauseInit().
288*/
289static void whereClauseClear(WhereClause *pWC){
290 int i;
291 WhereTerm *a;
drh633e6d52008-07-28 19:34:53 +0000292 sqlite3 *db = pWC->pParse->db;
drh0aa74ed2005-07-16 13:33:20 +0000293 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
drh165be382008-12-05 02:36:33 +0000294 if( a->wtFlags & TERM_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000295 sqlite3ExprDelete(db, a->pExpr);
drh0aa74ed2005-07-16 13:33:20 +0000296 }
drh700a2262008-12-17 19:22:15 +0000297 if( a->wtFlags & TERM_ORINFO ){
298 whereOrInfoDelete(db, a->u.pOrInfo);
299 }else if( a->wtFlags & TERM_ANDINFO ){
300 whereAndInfoDelete(db, a->u.pAndInfo);
301 }
drh0aa74ed2005-07-16 13:33:20 +0000302 }
303 if( pWC->a!=pWC->aStatic ){
drh633e6d52008-07-28 19:34:53 +0000304 sqlite3DbFree(db, pWC->a);
drh0aa74ed2005-07-16 13:33:20 +0000305 }
306}
307
308/*
drh6a1e0712008-12-05 15:24:15 +0000309** Add a single new WhereTerm entry to the WhereClause object pWC.
310** The new WhereTerm object is constructed from Expr p and with wtFlags.
311** The index in pWC->a[] of the new WhereTerm is returned on success.
312** 0 is returned if the new WhereTerm could not be added due to a memory
313** allocation error. The memory allocation failure will be recorded in
314** the db->mallocFailed flag so that higher-level functions can detect it.
315**
316** This routine will increase the size of the pWC->a[] array as necessary.
drh9eb20282005-08-24 03:52:18 +0000317**
drh165be382008-12-05 02:36:33 +0000318** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
drh6a1e0712008-12-05 15:24:15 +0000319** for freeing the expression p is assumed by the WhereClause object pWC.
320** This is true even if this routine fails to allocate a new WhereTerm.
drhb63a53d2007-03-31 01:34:44 +0000321**
drh9eb20282005-08-24 03:52:18 +0000322** WARNING: This routine might reallocate the space used to store
drh909626d2008-05-30 14:58:37 +0000323** WhereTerms. All pointers to WhereTerms should be invalidated after
drh9eb20282005-08-24 03:52:18 +0000324** calling this routine. Such pointers may be reinitialized by referencing
325** the pWC->a[] array.
drh0aa74ed2005-07-16 13:33:20 +0000326*/
drhec1724e2008-12-09 01:32:03 +0000327static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
drh0aa74ed2005-07-16 13:33:20 +0000328 WhereTerm *pTerm;
drh9eb20282005-08-24 03:52:18 +0000329 int idx;
drh0aa74ed2005-07-16 13:33:20 +0000330 if( pWC->nTerm>=pWC->nSlot ){
331 WhereTerm *pOld = pWC->a;
drh633e6d52008-07-28 19:34:53 +0000332 sqlite3 *db = pWC->pParse->db;
333 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
drhb63a53d2007-03-31 01:34:44 +0000334 if( pWC->a==0 ){
drh165be382008-12-05 02:36:33 +0000335 if( wtFlags & TERM_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000336 sqlite3ExprDelete(db, p);
drhb63a53d2007-03-31 01:34:44 +0000337 }
drhf998b732007-11-26 13:36:00 +0000338 pWC->a = pOld;
drhb63a53d2007-03-31 01:34:44 +0000339 return 0;
340 }
drh0aa74ed2005-07-16 13:33:20 +0000341 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
342 if( pOld!=pWC->aStatic ){
drh633e6d52008-07-28 19:34:53 +0000343 sqlite3DbFree(db, pOld);
drh0aa74ed2005-07-16 13:33:20 +0000344 }
drh6a1e0712008-12-05 15:24:15 +0000345 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
drh0aa74ed2005-07-16 13:33:20 +0000346 }
drh6a1e0712008-12-05 15:24:15 +0000347 pTerm = &pWC->a[idx = pWC->nTerm++];
drh0fcef5e2005-07-19 17:38:22 +0000348 pTerm->pExpr = p;
drh165be382008-12-05 02:36:33 +0000349 pTerm->wtFlags = wtFlags;
drh0fcef5e2005-07-19 17:38:22 +0000350 pTerm->pWC = pWC;
drh45b1ee42005-08-02 17:48:22 +0000351 pTerm->iParent = -1;
drh9eb20282005-08-24 03:52:18 +0000352 return idx;
drh0aa74ed2005-07-16 13:33:20 +0000353}
drh75897232000-05-29 14:26:00 +0000354
355/*
drh51669862004-12-18 18:40:26 +0000356** This routine identifies subexpressions in the WHERE clause where
drhb6fb62d2005-09-20 08:47:20 +0000357** each subexpression is separated by the AND operator or some other
drh6c30be82005-07-29 15:10:17 +0000358** operator specified in the op parameter. The WhereClause structure
359** is filled with pointers to subexpressions. For example:
drh75897232000-05-29 14:26:00 +0000360**
drh51669862004-12-18 18:40:26 +0000361** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
362** \________/ \_______________/ \________________/
363** slot[0] slot[1] slot[2]
364**
365** The original WHERE clause in pExpr is unaltered. All this routine
drh51147ba2005-07-23 22:59:55 +0000366** does is make slot[] entries point to substructure within pExpr.
drh51669862004-12-18 18:40:26 +0000367**
drh51147ba2005-07-23 22:59:55 +0000368** In the previous sentence and in the diagram, "slot[]" refers to
drh902b9ee2008-12-05 17:17:07 +0000369** the WhereClause.a[] array. The slot[] array grows as needed to contain
drh51147ba2005-07-23 22:59:55 +0000370** all terms of the WHERE clause.
drh75897232000-05-29 14:26:00 +0000371*/
drh6c30be82005-07-29 15:10:17 +0000372static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
drh29435252008-12-28 18:35:08 +0000373 pWC->op = (u8)op;
drh0aa74ed2005-07-16 13:33:20 +0000374 if( pExpr==0 ) return;
drh6c30be82005-07-29 15:10:17 +0000375 if( pExpr->op!=op ){
drh0aa74ed2005-07-16 13:33:20 +0000376 whereClauseInsert(pWC, pExpr, 0);
drh75897232000-05-29 14:26:00 +0000377 }else{
drh6c30be82005-07-29 15:10:17 +0000378 whereSplit(pWC, pExpr->pLeft, op);
379 whereSplit(pWC, pExpr->pRight, op);
drh75897232000-05-29 14:26:00 +0000380 }
drh75897232000-05-29 14:26:00 +0000381}
382
383/*
drh61495262009-04-22 15:32:59 +0000384** Initialize an expression mask set (a WhereMaskSet object)
drh6a3ea0e2003-05-02 14:32:12 +0000385*/
386#define initMaskSet(P) memset(P, 0, sizeof(*P))
387
388/*
drh1398ad32005-01-19 23:24:50 +0000389** Return the bitmask for the given cursor number. Return 0 if
390** iCursor is not in the set.
drh6a3ea0e2003-05-02 14:32:12 +0000391*/
drh111a6a72008-12-21 03:51:16 +0000392static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
drh6a3ea0e2003-05-02 14:32:12 +0000393 int i;
drh3500ed62009-05-05 15:46:43 +0000394 assert( pMaskSet->n<=sizeof(Bitmask)*8 );
drh6a3ea0e2003-05-02 14:32:12 +0000395 for(i=0; i<pMaskSet->n; i++){
drh51669862004-12-18 18:40:26 +0000396 if( pMaskSet->ix[i]==iCursor ){
397 return ((Bitmask)1)<<i;
398 }
drh6a3ea0e2003-05-02 14:32:12 +0000399 }
drh6a3ea0e2003-05-02 14:32:12 +0000400 return 0;
401}
402
403/*
drh1398ad32005-01-19 23:24:50 +0000404** Create a new mask for cursor iCursor.
drh0fcef5e2005-07-19 17:38:22 +0000405**
406** There is one cursor per table in the FROM clause. The number of
407** tables in the FROM clause is limited by a test early in the
drhb6fb62d2005-09-20 08:47:20 +0000408** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
drh0fcef5e2005-07-19 17:38:22 +0000409** array will never overflow.
drh1398ad32005-01-19 23:24:50 +0000410*/
drh111a6a72008-12-21 03:51:16 +0000411static void createMask(WhereMaskSet *pMaskSet, int iCursor){
drhcad651e2007-04-20 12:22:01 +0000412 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
drh0fcef5e2005-07-19 17:38:22 +0000413 pMaskSet->ix[pMaskSet->n++] = iCursor;
drh1398ad32005-01-19 23:24:50 +0000414}
415
416/*
drh75897232000-05-29 14:26:00 +0000417** This routine walks (recursively) an expression tree and generates
418** a bitmask indicating which tables are used in that expression
drh6a3ea0e2003-05-02 14:32:12 +0000419** tree.
drh75897232000-05-29 14:26:00 +0000420**
421** In order for this routine to work, the calling function must have
drh7d10d5a2008-08-20 16:35:10 +0000422** previously invoked sqlite3ResolveExprNames() on the expression. See
drh75897232000-05-29 14:26:00 +0000423** the header comment on that routine for additional information.
drh7d10d5a2008-08-20 16:35:10 +0000424** The sqlite3ResolveExprNames() routines looks for column names and
drh6a3ea0e2003-05-02 14:32:12 +0000425** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
drh51147ba2005-07-23 22:59:55 +0000426** the VDBE cursor number of the table. This routine just has to
427** translate the cursor numbers into bitmask values and OR all
428** the bitmasks together.
drh75897232000-05-29 14:26:00 +0000429*/
drh111a6a72008-12-21 03:51:16 +0000430static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
431static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
432static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
drh51669862004-12-18 18:40:26 +0000433 Bitmask mask = 0;
drh75897232000-05-29 14:26:00 +0000434 if( p==0 ) return 0;
drh967e8b72000-06-21 13:59:10 +0000435 if( p->op==TK_COLUMN ){
drh8feb4b12004-07-19 02:12:14 +0000436 mask = getMask(pMaskSet, p->iTable);
drh8feb4b12004-07-19 02:12:14 +0000437 return mask;
drh75897232000-05-29 14:26:00 +0000438 }
danielk1977b3bce662005-01-29 08:32:43 +0000439 mask = exprTableUsage(pMaskSet, p->pRight);
440 mask |= exprTableUsage(pMaskSet, p->pLeft);
danielk19776ab3a2e2009-02-19 14:39:25 +0000441 if( ExprHasProperty(p, EP_xIsSelect) ){
442 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
443 }else{
444 mask |= exprListTableUsage(pMaskSet, p->x.pList);
445 }
danielk1977b3bce662005-01-29 08:32:43 +0000446 return mask;
447}
drh111a6a72008-12-21 03:51:16 +0000448static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
danielk1977b3bce662005-01-29 08:32:43 +0000449 int i;
450 Bitmask mask = 0;
451 if( pList ){
452 for(i=0; i<pList->nExpr; i++){
453 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
drhdd579122002-04-02 01:58:57 +0000454 }
455 }
drh75897232000-05-29 14:26:00 +0000456 return mask;
457}
drh111a6a72008-12-21 03:51:16 +0000458static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
drha430ae82007-09-12 15:41:01 +0000459 Bitmask mask = 0;
460 while( pS ){
461 mask |= exprListTableUsage(pMaskSet, pS->pEList);
drhf5b11382005-09-17 13:07:13 +0000462 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
463 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
464 mask |= exprTableUsage(pMaskSet, pS->pWhere);
465 mask |= exprTableUsage(pMaskSet, pS->pHaving);
drha430ae82007-09-12 15:41:01 +0000466 pS = pS->pPrior;
drhf5b11382005-09-17 13:07:13 +0000467 }
468 return mask;
469}
drh75897232000-05-29 14:26:00 +0000470
471/*
drh487ab3c2001-11-08 00:45:21 +0000472** Return TRUE if the given operator is one of the operators that is
drh51669862004-12-18 18:40:26 +0000473** allowed for an indexable WHERE clause term. The allowed operators are
drhc27a1ce2002-06-14 20:58:45 +0000474** "=", "<", ">", "<=", ">=", and "IN".
drh487ab3c2001-11-08 00:45:21 +0000475*/
476static int allowedOp(int op){
drhfe05af82005-07-21 03:14:59 +0000477 assert( TK_GT>TK_EQ && TK_GT<TK_GE );
478 assert( TK_LT>TK_EQ && TK_LT<TK_GE );
479 assert( TK_LE>TK_EQ && TK_LE<TK_GE );
480 assert( TK_GE==TK_EQ+4 );
drh50b39962006-10-28 00:28:09 +0000481 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
drh487ab3c2001-11-08 00:45:21 +0000482}
483
484/*
drh902b9ee2008-12-05 17:17:07 +0000485** Swap two objects of type TYPE.
drh193bd772004-07-20 18:23:14 +0000486*/
487#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
488
489/*
drh909626d2008-05-30 14:58:37 +0000490** Commute a comparison operator. Expressions of the form "X op Y"
drh0fcef5e2005-07-19 17:38:22 +0000491** are converted into "Y op X".
danielk1977eb5453d2007-07-30 14:40:48 +0000492**
493** If a collation sequence is associated with either the left or right
494** side of the comparison, it remains associated with the same side after
495** the commutation. So "Y collate NOCASE op X" becomes
496** "X collate NOCASE op Y". This is because any collation sequence on
497** the left hand side of a comparison overrides any collation sequence
498** attached to the right. For the same reason the EP_ExpCollate flag
499** is not commuted.
drh193bd772004-07-20 18:23:14 +0000500*/
drh7d10d5a2008-08-20 16:35:10 +0000501static void exprCommute(Parse *pParse, Expr *pExpr){
danielk1977eb5453d2007-07-30 14:40:48 +0000502 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
503 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
drhfe05af82005-07-21 03:14:59 +0000504 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
drh7d10d5a2008-08-20 16:35:10 +0000505 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
506 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
drh0fcef5e2005-07-19 17:38:22 +0000507 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
danielk1977eb5453d2007-07-30 14:40:48 +0000508 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
509 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
drh0fcef5e2005-07-19 17:38:22 +0000510 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
511 if( pExpr->op>=TK_GT ){
512 assert( TK_LT==TK_GT+2 );
513 assert( TK_GE==TK_LE+2 );
514 assert( TK_GT>TK_EQ );
515 assert( TK_GT<TK_LE );
516 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
517 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
drh193bd772004-07-20 18:23:14 +0000518 }
drh193bd772004-07-20 18:23:14 +0000519}
520
521/*
drhfe05af82005-07-21 03:14:59 +0000522** Translate from TK_xx operator to WO_xx bitmask.
523*/
drhec1724e2008-12-09 01:32:03 +0000524static u16 operatorMask(int op){
525 u16 c;
drhfe05af82005-07-21 03:14:59 +0000526 assert( allowedOp(op) );
527 if( op==TK_IN ){
drh51147ba2005-07-23 22:59:55 +0000528 c = WO_IN;
drh50b39962006-10-28 00:28:09 +0000529 }else if( op==TK_ISNULL ){
530 c = WO_ISNULL;
drhfe05af82005-07-21 03:14:59 +0000531 }else{
drhec1724e2008-12-09 01:32:03 +0000532 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
533 c = (u16)(WO_EQ<<(op-TK_EQ));
drhfe05af82005-07-21 03:14:59 +0000534 }
drh50b39962006-10-28 00:28:09 +0000535 assert( op!=TK_ISNULL || c==WO_ISNULL );
drh51147ba2005-07-23 22:59:55 +0000536 assert( op!=TK_IN || c==WO_IN );
537 assert( op!=TK_EQ || c==WO_EQ );
538 assert( op!=TK_LT || c==WO_LT );
539 assert( op!=TK_LE || c==WO_LE );
540 assert( op!=TK_GT || c==WO_GT );
541 assert( op!=TK_GE || c==WO_GE );
542 return c;
drhfe05af82005-07-21 03:14:59 +0000543}
544
545/*
546** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
547** where X is a reference to the iColumn of table iCur and <op> is one of
548** the WO_xx operator codes specified by the op parameter.
549** Return a pointer to the term. Return 0 if not found.
550*/
551static WhereTerm *findTerm(
552 WhereClause *pWC, /* The WHERE clause to be searched */
553 int iCur, /* Cursor number of LHS */
554 int iColumn, /* Column number of LHS */
555 Bitmask notReady, /* RHS must not overlap with this mask */
drhec1724e2008-12-09 01:32:03 +0000556 u32 op, /* Mask of WO_xx values describing operator */
drhfe05af82005-07-21 03:14:59 +0000557 Index *pIdx /* Must be compatible with this index, if not NULL */
558){
559 WhereTerm *pTerm;
560 int k;
drh22c24032008-07-09 13:28:53 +0000561 assert( iCur>=0 );
drhec1724e2008-12-09 01:32:03 +0000562 op &= WO_ALL;
drhfe05af82005-07-21 03:14:59 +0000563 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
564 if( pTerm->leftCursor==iCur
565 && (pTerm->prereqRight & notReady)==0
drh700a2262008-12-17 19:22:15 +0000566 && pTerm->u.leftColumn==iColumn
drhb52076c2006-01-23 13:22:09 +0000567 && (pTerm->eOperator & op)!=0
drhfe05af82005-07-21 03:14:59 +0000568 ){
drh22c24032008-07-09 13:28:53 +0000569 if( pIdx && pTerm->eOperator!=WO_ISNULL ){
drhfe05af82005-07-21 03:14:59 +0000570 Expr *pX = pTerm->pExpr;
571 CollSeq *pColl;
572 char idxaff;
danielk1977f0113002006-01-24 12:09:17 +0000573 int j;
drhfe05af82005-07-21 03:14:59 +0000574 Parse *pParse = pWC->pParse;
575
576 idxaff = pIdx->pTable->aCol[iColumn].affinity;
577 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
danielk1977bcbb04e2007-05-29 12:11:29 +0000578
579 /* Figure out the collation sequence required from an index for
580 ** it to be useful for optimising expression pX. Store this
581 ** value in variable pColl.
582 */
583 assert(pX->pLeft);
584 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
danielk197793574162008-12-30 15:26:29 +0000585 assert(pColl || pParse->nErr);
danielk1977bcbb04e2007-05-29 12:11:29 +0000586
drh22c24032008-07-09 13:28:53 +0000587 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
drh34004ce2008-07-11 16:15:17 +0000588 if( NEVER(j>=pIdx->nColumn) ) return 0;
drh22c24032008-07-09 13:28:53 +0000589 }
danielk197793574162008-12-30 15:26:29 +0000590 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
drhfe05af82005-07-21 03:14:59 +0000591 }
592 return pTerm;
593 }
594 }
595 return 0;
596}
597
drh6c30be82005-07-29 15:10:17 +0000598/* Forward reference */
drh7b4fc6a2007-02-06 13:26:32 +0000599static void exprAnalyze(SrcList*, WhereClause*, int);
drh6c30be82005-07-29 15:10:17 +0000600
601/*
602** Call exprAnalyze on all terms in a WHERE clause.
603**
604**
605*/
606static void exprAnalyzeAll(
607 SrcList *pTabList, /* the FROM clause */
drh6c30be82005-07-29 15:10:17 +0000608 WhereClause *pWC /* the WHERE clause to be analyzed */
609){
drh6c30be82005-07-29 15:10:17 +0000610 int i;
drh9eb20282005-08-24 03:52:18 +0000611 for(i=pWC->nTerm-1; i>=0; i--){
drh7b4fc6a2007-02-06 13:26:32 +0000612 exprAnalyze(pTabList, pWC, i);
drh6c30be82005-07-29 15:10:17 +0000613 }
614}
615
drhd2687b72005-08-12 22:56:09 +0000616#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
617/*
618** Check to see if the given expression is a LIKE or GLOB operator that
619** can be optimized using inequality constraints. Return TRUE if it is
620** so and false if not.
621**
622** In order for the operator to be optimizible, the RHS must be a string
623** literal that does not begin with a wildcard.
624*/
625static int isLikeOrGlob(
drh7d10d5a2008-08-20 16:35:10 +0000626 Parse *pParse, /* Parsing and code generating context */
drhd2687b72005-08-12 22:56:09 +0000627 Expr *pExpr, /* Test this expression */
dan937d0de2009-10-15 18:35:38 +0000628 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
drh9f504ea2008-02-23 21:55:39 +0000629 int *pisComplete, /* True if the only wildcard is % in the last character */
630 int *pnoCase /* True if uppercase is equivalent to lowercase */
drhd2687b72005-08-12 22:56:09 +0000631){
dan937d0de2009-10-15 18:35:38 +0000632 const char *z = 0; /* String on RHS of LIKE operator */
drh5bd98ae2009-01-07 18:24:03 +0000633 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
634 ExprList *pList; /* List of operands to the LIKE operator */
635 int c; /* One character in z[] */
636 int cnt; /* Number of non-wildcard prefix characters */
637 char wc[3]; /* Wildcard characters */
638 CollSeq *pColl; /* Collating sequence for LHS */
639 sqlite3 *db = pParse->db; /* Database connection */
dan937d0de2009-10-15 18:35:38 +0000640 sqlite3_value *pVal = 0;
641 int op; /* Opcode of pRight */
drhd64fe2f2005-08-28 17:00:23 +0000642
drh9f504ea2008-02-23 21:55:39 +0000643 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
drhd2687b72005-08-12 22:56:09 +0000644 return 0;
645 }
drh9f504ea2008-02-23 21:55:39 +0000646#ifdef SQLITE_EBCDIC
647 if( *pnoCase ) return 0;
648#endif
danielk19776ab3a2e2009-02-19 14:39:25 +0000649 pList = pExpr->x.pList;
drh55ef4d92005-08-14 01:20:37 +0000650 pLeft = pList->a[1].pExpr;
drhd91ca492009-10-22 20:50:36 +0000651 if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){
652 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
653 ** be the name of an indexed column with TEXT affinity. */
drhd2687b72005-08-12 22:56:09 +0000654 return 0;
655 }
drhd91ca492009-10-22 20:50:36 +0000656 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
drh7d10d5a2008-08-20 16:35:10 +0000657 pColl = sqlite3ExprCollSeq(pParse, pLeft);
drh5cb74342010-01-21 23:11:24 +0000658 if( pColl==0 ) return 0; /* Happens when LHS has an undefined collation */
drh9f504ea2008-02-23 21:55:39 +0000659 if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
660 (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
drhd91ca492009-10-22 20:50:36 +0000661 /* IMP: R-09003-32046 For the GLOB operator, the column must use the
662 ** default BINARY collating sequence.
663 ** IMP: R-41408-28306 For the LIKE operator, if case_sensitive_like mode
664 ** is enabled then the column must use the default BINARY collating
665 ** sequence, or if case_sensitive_like mode is disabled then the column
666 ** must use the built-in NOCASE collating sequence.
667 */
drhd64fe2f2005-08-28 17:00:23 +0000668 return 0;
669 }
dan937d0de2009-10-15 18:35:38 +0000670
671 pRight = pList->a[0].pExpr;
672 op = pRight->op;
673 if( op==TK_REGISTER ){
674 op = pRight->op2;
675 }
676 if( op==TK_VARIABLE ){
677 Vdbe *pReprepare = pParse->pReprepare;
678 pVal = sqlite3VdbeGetValue(pReprepare, pRight->iColumn, SQLITE_AFF_NONE);
679 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
680 z = (char *)sqlite3_value_text(pVal);
681 }
dan1d2ce4f2009-10-19 18:11:09 +0000682 sqlite3VdbeSetVarmask(pParse->pVdbe, pRight->iColumn);
dan937d0de2009-10-15 18:35:38 +0000683 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
684 }else if( op==TK_STRING ){
685 z = pRight->u.zToken;
686 }
687 if( z ){
shane85095702009-06-15 16:27:08 +0000688 cnt = 0;
drhb7916a72009-05-27 10:31:29 +0000689 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
drh24fb6272009-05-01 21:13:36 +0000690 cnt++;
691 }
shane85095702009-06-15 16:27:08 +0000692 if( cnt!=0 && c!=0 && 255!=(u8)z[cnt-1] ){
dan937d0de2009-10-15 18:35:38 +0000693 Expr *pPrefix;
shane85095702009-06-15 16:27:08 +0000694 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
dan937d0de2009-10-15 18:35:38 +0000695 pPrefix = sqlite3Expr(db, TK_STRING, z);
696 if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
697 *ppPrefix = pPrefix;
698 if( op==TK_VARIABLE ){
699 Vdbe *v = pParse->pVdbe;
dan1d2ce4f2009-10-19 18:11:09 +0000700 sqlite3VdbeSetVarmask(v, pRight->iColumn);
dan937d0de2009-10-15 18:35:38 +0000701 if( *pisComplete && pRight->u.zToken[1] ){
702 /* If the rhs of the LIKE expression is a variable, and the current
703 ** value of the variable means there is no need to invoke the LIKE
704 ** function, then no OP_Variable will be added to the program.
705 ** This causes problems for the sqlite3_bind_parameter_name()
drhbec451f2009-10-17 13:13:02 +0000706 ** API. To workaround them, add a dummy OP_Variable here.
707 */
708 int r1 = sqlite3GetTempReg(pParse);
709 sqlite3ExprCodeTarget(pParse, pRight, r1);
dan937d0de2009-10-15 18:35:38 +0000710 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
drhbec451f2009-10-17 13:13:02 +0000711 sqlite3ReleaseTempReg(pParse, r1);
dan937d0de2009-10-15 18:35:38 +0000712 }
713 }
714 }else{
715 z = 0;
shane85095702009-06-15 16:27:08 +0000716 }
drhf998b732007-11-26 13:36:00 +0000717 }
dan937d0de2009-10-15 18:35:38 +0000718
719 sqlite3ValueFree(pVal);
720 return (z!=0);
drhd2687b72005-08-12 22:56:09 +0000721}
722#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
723
drhedb193b2006-06-27 13:20:21 +0000724
725#ifndef SQLITE_OMIT_VIRTUALTABLE
drhfe05af82005-07-21 03:14:59 +0000726/*
drh7f375902006-06-13 17:38:59 +0000727** Check to see if the given expression is of the form
728**
729** column MATCH expr
730**
731** If it is then return TRUE. If not, return FALSE.
732*/
733static int isMatchOfColumn(
734 Expr *pExpr /* Test this expression */
735){
736 ExprList *pList;
737
738 if( pExpr->op!=TK_FUNCTION ){
739 return 0;
740 }
drh33e619f2009-05-28 01:00:55 +0000741 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
drh7f375902006-06-13 17:38:59 +0000742 return 0;
743 }
danielk19776ab3a2e2009-02-19 14:39:25 +0000744 pList = pExpr->x.pList;
drh7f375902006-06-13 17:38:59 +0000745 if( pList->nExpr!=2 ){
746 return 0;
747 }
748 if( pList->a[1].pExpr->op != TK_COLUMN ){
749 return 0;
750 }
751 return 1;
752}
drhedb193b2006-06-27 13:20:21 +0000753#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh7f375902006-06-13 17:38:59 +0000754
755/*
drh54a167d2005-11-26 14:08:07 +0000756** If the pBase expression originated in the ON or USING clause of
757** a join, then transfer the appropriate markings over to derived.
758*/
759static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
760 pDerived->flags |= pBase->flags & EP_FromJoin;
761 pDerived->iRightJoinTable = pBase->iRightJoinTable;
762}
763
drh3e355802007-02-23 23:13:33 +0000764#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
765/*
drh1a58fe02008-12-20 02:06:13 +0000766** Analyze a term that consists of two or more OR-connected
767** subterms. So in:
drh3e355802007-02-23 23:13:33 +0000768**
drh1a58fe02008-12-20 02:06:13 +0000769** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
770** ^^^^^^^^^^^^^^^^^^^^
drh3e355802007-02-23 23:13:33 +0000771**
drh1a58fe02008-12-20 02:06:13 +0000772** This routine analyzes terms such as the middle term in the above example.
773** A WhereOrTerm object is computed and attached to the term under
774** analysis, regardless of the outcome of the analysis. Hence:
drh3e355802007-02-23 23:13:33 +0000775**
drh1a58fe02008-12-20 02:06:13 +0000776** WhereTerm.wtFlags |= TERM_ORINFO
777** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
drh3e355802007-02-23 23:13:33 +0000778**
drh1a58fe02008-12-20 02:06:13 +0000779** The term being analyzed must have two or more of OR-connected subterms.
danielk1977fdc40192008-12-29 18:33:32 +0000780** A single subterm might be a set of AND-connected sub-subterms.
drh1a58fe02008-12-20 02:06:13 +0000781** Examples of terms under analysis:
drh3e355802007-02-23 23:13:33 +0000782**
drh1a58fe02008-12-20 02:06:13 +0000783** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
784** (B) x=expr1 OR expr2=x OR x=expr3
785** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
786** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
787** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
drh3e355802007-02-23 23:13:33 +0000788**
drh1a58fe02008-12-20 02:06:13 +0000789** CASE 1:
790**
791** If all subterms are of the form T.C=expr for some single column of C
792** a single table T (as shown in example B above) then create a new virtual
793** term that is an equivalent IN expression. In other words, if the term
794** being analyzed is:
795**
796** x = expr1 OR expr2 = x OR x = expr3
797**
798** then create a new virtual term like this:
799**
800** x IN (expr1,expr2,expr3)
801**
802** CASE 2:
803**
804** If all subterms are indexable by a single table T, then set
805**
806** WhereTerm.eOperator = WO_OR
807** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
808**
809** A subterm is "indexable" if it is of the form
810** "T.C <op> <expr>" where C is any column of table T and
811** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
812** A subterm is also indexable if it is an AND of two or more
813** subsubterms at least one of which is indexable. Indexable AND
814** subterms have their eOperator set to WO_AND and they have
815** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
816**
817** From another point of view, "indexable" means that the subterm could
818** potentially be used with an index if an appropriate index exists.
819** This analysis does not consider whether or not the index exists; that
820** is something the bestIndex() routine will determine. This analysis
821** only looks at whether subterms appropriate for indexing exist.
822**
823** All examples A through E above all satisfy case 2. But if a term
824** also statisfies case 1 (such as B) we know that the optimizer will
825** always prefer case 1, so in that case we pretend that case 2 is not
826** satisfied.
827**
828** It might be the case that multiple tables are indexable. For example,
829** (E) above is indexable on tables P, Q, and R.
830**
831** Terms that satisfy case 2 are candidates for lookup by using
832** separate indices to find rowids for each subterm and composing
833** the union of all rowids using a RowSet object. This is similar
834** to "bitmap indices" in other database engines.
835**
836** OTHERWISE:
837**
838** If neither case 1 nor case 2 apply, then leave the eOperator set to
839** zero. This term is not useful for search.
drh3e355802007-02-23 23:13:33 +0000840*/
drh1a58fe02008-12-20 02:06:13 +0000841static void exprAnalyzeOrTerm(
842 SrcList *pSrc, /* the FROM clause */
843 WhereClause *pWC, /* the complete WHERE clause */
844 int idxTerm /* Index of the OR-term to be analyzed */
845){
846 Parse *pParse = pWC->pParse; /* Parser context */
847 sqlite3 *db = pParse->db; /* Database connection */
848 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
849 Expr *pExpr = pTerm->pExpr; /* The expression of the term */
drh111a6a72008-12-21 03:51:16 +0000850 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
drh1a58fe02008-12-20 02:06:13 +0000851 int i; /* Loop counters */
852 WhereClause *pOrWc; /* Breakup of pTerm into subterms */
853 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
854 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
855 Bitmask chngToIN; /* Tables that might satisfy case 1 */
856 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
drh3e355802007-02-23 23:13:33 +0000857
drh1a58fe02008-12-20 02:06:13 +0000858 /*
859 ** Break the OR clause into its separate subterms. The subterms are
860 ** stored in a WhereClause structure containing within the WhereOrInfo
861 ** object that is attached to the original OR clause term.
862 */
863 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
864 assert( pExpr->op==TK_OR );
drh954701a2008-12-29 23:45:07 +0000865 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
drh1a58fe02008-12-20 02:06:13 +0000866 if( pOrInfo==0 ) return;
867 pTerm->wtFlags |= TERM_ORINFO;
868 pOrWc = &pOrInfo->wc;
869 whereClauseInit(pOrWc, pWC->pParse, pMaskSet);
870 whereSplit(pOrWc, pExpr, TK_OR);
871 exprAnalyzeAll(pSrc, pOrWc);
872 if( db->mallocFailed ) return;
873 assert( pOrWc->nTerm>=2 );
874
875 /*
876 ** Compute the set of tables that might satisfy cases 1 or 2.
877 */
danielk1977e672c8e2009-05-22 15:43:26 +0000878 indexable = ~(Bitmask)0;
879 chngToIN = ~(pWC->vmask);
drh1a58fe02008-12-20 02:06:13 +0000880 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
881 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
drh29435252008-12-28 18:35:08 +0000882 WhereAndInfo *pAndInfo;
883 assert( pOrTerm->eOperator==0 );
884 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
drh1a58fe02008-12-20 02:06:13 +0000885 chngToIN = 0;
drh29435252008-12-28 18:35:08 +0000886 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
887 if( pAndInfo ){
888 WhereClause *pAndWC;
889 WhereTerm *pAndTerm;
890 int j;
891 Bitmask b = 0;
892 pOrTerm->u.pAndInfo = pAndInfo;
893 pOrTerm->wtFlags |= TERM_ANDINFO;
894 pOrTerm->eOperator = WO_AND;
895 pAndWC = &pAndInfo->wc;
896 whereClauseInit(pAndWC, pWC->pParse, pMaskSet);
897 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
898 exprAnalyzeAll(pSrc, pAndWC);
drh7c2fbde2009-01-07 20:58:57 +0000899 testcase( db->mallocFailed );
drh96c7a7d2009-01-10 15:34:12 +0000900 if( !db->mallocFailed ){
901 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
902 assert( pAndTerm->pExpr );
903 if( allowedOp(pAndTerm->pExpr->op) ){
904 b |= getMask(pMaskSet, pAndTerm->leftCursor);
905 }
drh29435252008-12-28 18:35:08 +0000906 }
907 }
908 indexable &= b;
909 }
drh1a58fe02008-12-20 02:06:13 +0000910 }else if( pOrTerm->wtFlags & TERM_COPIED ){
911 /* Skip this term for now. We revisit it when we process the
912 ** corresponding TERM_VIRTUAL term */
913 }else{
914 Bitmask b;
915 b = getMask(pMaskSet, pOrTerm->leftCursor);
916 if( pOrTerm->wtFlags & TERM_VIRTUAL ){
917 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
918 b |= getMask(pMaskSet, pOther->leftCursor);
919 }
920 indexable &= b;
921 if( pOrTerm->eOperator!=WO_EQ ){
922 chngToIN = 0;
923 }else{
924 chngToIN &= b;
925 }
926 }
drh3e355802007-02-23 23:13:33 +0000927 }
drh1a58fe02008-12-20 02:06:13 +0000928
929 /*
930 ** Record the set of tables that satisfy case 2. The set might be
drh111a6a72008-12-21 03:51:16 +0000931 ** empty.
drh1a58fe02008-12-20 02:06:13 +0000932 */
933 pOrInfo->indexable = indexable;
drh111a6a72008-12-21 03:51:16 +0000934 pTerm->eOperator = indexable==0 ? 0 : WO_OR;
drh1a58fe02008-12-20 02:06:13 +0000935
936 /*
937 ** chngToIN holds a set of tables that *might* satisfy case 1. But
938 ** we have to do some additional checking to see if case 1 really
939 ** is satisfied.
drh4e8be3b2009-06-08 17:11:08 +0000940 **
941 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
942 ** that there is no possibility of transforming the OR clause into an
943 ** IN operator because one or more terms in the OR clause contain
944 ** something other than == on a column in the single table. The 1-bit
945 ** case means that every term of the OR clause is of the form
946 ** "table.column=expr" for some single table. The one bit that is set
947 ** will correspond to the common table. We still need to check to make
948 ** sure the same column is used on all terms. The 2-bit case is when
949 ** the all terms are of the form "table1.column=table2.column". It
950 ** might be possible to form an IN operator with either table1.column
951 ** or table2.column as the LHS if either is common to every term of
952 ** the OR clause.
953 **
954 ** Note that terms of the form "table.column1=table.column2" (the
955 ** same table on both sizes of the ==) cannot be optimized.
drh1a58fe02008-12-20 02:06:13 +0000956 */
957 if( chngToIN ){
958 int okToChngToIN = 0; /* True if the conversion to IN is valid */
959 int iColumn = -1; /* Column index on lhs of IN operator */
shane63207ab2009-02-04 01:49:30 +0000960 int iCursor = -1; /* Table cursor common to all terms */
drh1a58fe02008-12-20 02:06:13 +0000961 int j = 0; /* Loop counter */
962
963 /* Search for a table and column that appears on one side or the
964 ** other of the == operator in every subterm. That table and column
965 ** will be recorded in iCursor and iColumn. There might not be any
966 ** such table and column. Set okToChngToIN if an appropriate table
967 ** and column is found but leave okToChngToIN false if not found.
968 */
969 for(j=0; j<2 && !okToChngToIN; j++){
970 pOrTerm = pOrWc->a;
971 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
972 assert( pOrTerm->eOperator==WO_EQ );
973 pOrTerm->wtFlags &= ~TERM_OR_OK;
drh4e8be3b2009-06-08 17:11:08 +0000974 if( pOrTerm->leftCursor==iCursor ){
975 /* This is the 2-bit case and we are on the second iteration and
976 ** current term is from the first iteration. So skip this term. */
977 assert( j==1 );
978 continue;
979 }
980 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
981 /* This term must be of the form t1.a==t2.b where t2 is in the
982 ** chngToIN set but t1 is not. This term will be either preceeded
983 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
984 ** and use its inversion. */
985 testcase( pOrTerm->wtFlags & TERM_COPIED );
986 testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
987 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
988 continue;
989 }
drh1a58fe02008-12-20 02:06:13 +0000990 iColumn = pOrTerm->u.leftColumn;
991 iCursor = pOrTerm->leftCursor;
992 break;
993 }
994 if( i<0 ){
drh4e8be3b2009-06-08 17:11:08 +0000995 /* No candidate table+column was found. This can only occur
996 ** on the second iteration */
drh1a58fe02008-12-20 02:06:13 +0000997 assert( j==1 );
998 assert( (chngToIN&(chngToIN-1))==0 );
drh4e8be3b2009-06-08 17:11:08 +0000999 assert( chngToIN==getMask(pMaskSet, iCursor) );
drh1a58fe02008-12-20 02:06:13 +00001000 break;
1001 }
drh4e8be3b2009-06-08 17:11:08 +00001002 testcase( j==1 );
1003
1004 /* We have found a candidate table and column. Check to see if that
1005 ** table and column is common to every term in the OR clause */
drh1a58fe02008-12-20 02:06:13 +00001006 okToChngToIN = 1;
1007 for(; i>=0 && okToChngToIN; i--, pOrTerm++){
1008 assert( pOrTerm->eOperator==WO_EQ );
1009 if( pOrTerm->leftCursor!=iCursor ){
1010 pOrTerm->wtFlags &= ~TERM_OR_OK;
1011 }else if( pOrTerm->u.leftColumn!=iColumn ){
1012 okToChngToIN = 0;
1013 }else{
1014 int affLeft, affRight;
1015 /* If the right-hand side is also a column, then the affinities
1016 ** of both right and left sides must be such that no type
1017 ** conversions are required on the right. (Ticket #2249)
1018 */
1019 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
1020 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
1021 if( affRight!=0 && affRight!=affLeft ){
1022 okToChngToIN = 0;
1023 }else{
1024 pOrTerm->wtFlags |= TERM_OR_OK;
1025 }
1026 }
1027 }
1028 }
1029
1030 /* At this point, okToChngToIN is true if original pTerm satisfies
1031 ** case 1. In that case, construct a new virtual term that is
1032 ** pTerm converted into an IN operator.
1033 */
1034 if( okToChngToIN ){
1035 Expr *pDup; /* A transient duplicate expression */
1036 ExprList *pList = 0; /* The RHS of the IN operator */
1037 Expr *pLeft = 0; /* The LHS of the IN operator */
1038 Expr *pNew; /* The complete IN operator */
1039
1040 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
1041 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
1042 assert( pOrTerm->eOperator==WO_EQ );
1043 assert( pOrTerm->leftCursor==iCursor );
1044 assert( pOrTerm->u.leftColumn==iColumn );
danielk19776ab3a2e2009-02-19 14:39:25 +00001045 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
drhb7916a72009-05-27 10:31:29 +00001046 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
drh1a58fe02008-12-20 02:06:13 +00001047 pLeft = pOrTerm->pExpr->pLeft;
1048 }
1049 assert( pLeft!=0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001050 pDup = sqlite3ExprDup(db, pLeft, 0);
drhb7916a72009-05-27 10:31:29 +00001051 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
drh1a58fe02008-12-20 02:06:13 +00001052 if( pNew ){
1053 int idxNew;
1054 transferJoinMarkings(pNew, pExpr);
danielk19776ab3a2e2009-02-19 14:39:25 +00001055 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1056 pNew->x.pList = pList;
drh1a58fe02008-12-20 02:06:13 +00001057 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
1058 testcase( idxNew==0 );
1059 exprAnalyze(pSrc, pWC, idxNew);
1060 pTerm = &pWC->a[idxTerm];
1061 pWC->a[idxNew].iParent = idxTerm;
1062 pTerm->nChild = 1;
1063 }else{
1064 sqlite3ExprListDelete(db, pList);
1065 }
1066 pTerm->eOperator = 0; /* case 1 trumps case 2 */
1067 }
drh3e355802007-02-23 23:13:33 +00001068 }
drh3e355802007-02-23 23:13:33 +00001069}
1070#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
drh54a167d2005-11-26 14:08:07 +00001071
drh1a58fe02008-12-20 02:06:13 +00001072
drh54a167d2005-11-26 14:08:07 +00001073/*
drh0aa74ed2005-07-16 13:33:20 +00001074** The input to this routine is an WhereTerm structure with only the
drh51147ba2005-07-23 22:59:55 +00001075** "pExpr" field filled in. The job of this routine is to analyze the
drh0aa74ed2005-07-16 13:33:20 +00001076** subexpression and populate all the other fields of the WhereTerm
drh75897232000-05-29 14:26:00 +00001077** structure.
drh51147ba2005-07-23 22:59:55 +00001078**
1079** If the expression is of the form "<expr> <op> X" it gets commuted
drh1a58fe02008-12-20 02:06:13 +00001080** to the standard form of "X <op> <expr>".
1081**
1082** If the expression is of the form "X <op> Y" where both X and Y are
1083** columns, then the original expression is unchanged and a new virtual
1084** term of the form "Y <op> X" is added to the WHERE clause and
1085** analyzed separately. The original term is marked with TERM_COPIED
1086** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1087** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1088** is a commuted copy of a prior term.) The original term has nChild=1
1089** and the copy has idxParent set to the index of the original term.
drh75897232000-05-29 14:26:00 +00001090*/
drh0fcef5e2005-07-19 17:38:22 +00001091static void exprAnalyze(
1092 SrcList *pSrc, /* the FROM clause */
drh9eb20282005-08-24 03:52:18 +00001093 WhereClause *pWC, /* the WHERE clause */
1094 int idxTerm /* Index of the term to be analyzed */
drh0fcef5e2005-07-19 17:38:22 +00001095){
drh1a58fe02008-12-20 02:06:13 +00001096 WhereTerm *pTerm; /* The term to be analyzed */
drh111a6a72008-12-21 03:51:16 +00001097 WhereMaskSet *pMaskSet; /* Set of table index masks */
drh1a58fe02008-12-20 02:06:13 +00001098 Expr *pExpr; /* The expression to be analyzed */
1099 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
1100 Bitmask prereqAll; /* Prerequesites of pExpr */
drh5e767c52010-02-25 04:15:47 +00001101 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
drh1d452e12009-11-01 19:26:59 +00001102 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
1103 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
1104 int noCase = 0; /* LIKE/GLOB distinguishes case */
drh1a58fe02008-12-20 02:06:13 +00001105 int op; /* Top-level operator. pExpr->op */
1106 Parse *pParse = pWC->pParse; /* Parsing context */
1107 sqlite3 *db = pParse->db; /* Database connection */
drh0fcef5e2005-07-19 17:38:22 +00001108
drhf998b732007-11-26 13:36:00 +00001109 if( db->mallocFailed ){
1110 return;
1111 }
1112 pTerm = &pWC->a[idxTerm];
1113 pMaskSet = pWC->pMaskSet;
1114 pExpr = pTerm->pExpr;
drh0fcef5e2005-07-19 17:38:22 +00001115 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
drh50b39962006-10-28 00:28:09 +00001116 op = pExpr->op;
1117 if( op==TK_IN ){
drhf5b11382005-09-17 13:07:13 +00001118 assert( pExpr->pRight==0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001119 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1120 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
1121 }else{
1122 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
1123 }
drh50b39962006-10-28 00:28:09 +00001124 }else if( op==TK_ISNULL ){
1125 pTerm->prereqRight = 0;
drhf5b11382005-09-17 13:07:13 +00001126 }else{
1127 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
1128 }
drh22d6a532005-09-19 21:05:48 +00001129 prereqAll = exprTableUsage(pMaskSet, pExpr);
1130 if( ExprHasProperty(pExpr, EP_FromJoin) ){
drh42165be2008-03-26 14:56:34 +00001131 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
1132 prereqAll |= x;
drhdafc0ce2008-04-17 19:14:02 +00001133 extraRight = x-1; /* ON clause terms may not be used with an index
1134 ** on left table of a LEFT JOIN. Ticket #3015 */
drh22d6a532005-09-19 21:05:48 +00001135 }
1136 pTerm->prereqAll = prereqAll;
drh0fcef5e2005-07-19 17:38:22 +00001137 pTerm->leftCursor = -1;
drh45b1ee42005-08-02 17:48:22 +00001138 pTerm->iParent = -1;
drhb52076c2006-01-23 13:22:09 +00001139 pTerm->eOperator = 0;
drh50b39962006-10-28 00:28:09 +00001140 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
drh0fcef5e2005-07-19 17:38:22 +00001141 Expr *pLeft = pExpr->pLeft;
1142 Expr *pRight = pExpr->pRight;
1143 if( pLeft->op==TK_COLUMN ){
1144 pTerm->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001145 pTerm->u.leftColumn = pLeft->iColumn;
drh50b39962006-10-28 00:28:09 +00001146 pTerm->eOperator = operatorMask(op);
drh75897232000-05-29 14:26:00 +00001147 }
drh0fcef5e2005-07-19 17:38:22 +00001148 if( pRight && pRight->op==TK_COLUMN ){
1149 WhereTerm *pNew;
1150 Expr *pDup;
1151 if( pTerm->leftCursor>=0 ){
drh9eb20282005-08-24 03:52:18 +00001152 int idxNew;
danielk19776ab3a2e2009-02-19 14:39:25 +00001153 pDup = sqlite3ExprDup(db, pExpr, 0);
drh17435752007-08-16 04:30:38 +00001154 if( db->mallocFailed ){
drh633e6d52008-07-28 19:34:53 +00001155 sqlite3ExprDelete(db, pDup);
drh28f45912006-10-18 23:26:38 +00001156 return;
1157 }
drh9eb20282005-08-24 03:52:18 +00001158 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1159 if( idxNew==0 ) return;
1160 pNew = &pWC->a[idxNew];
1161 pNew->iParent = idxTerm;
1162 pTerm = &pWC->a[idxTerm];
drh45b1ee42005-08-02 17:48:22 +00001163 pTerm->nChild = 1;
drh165be382008-12-05 02:36:33 +00001164 pTerm->wtFlags |= TERM_COPIED;
drh0fcef5e2005-07-19 17:38:22 +00001165 }else{
1166 pDup = pExpr;
1167 pNew = pTerm;
1168 }
drh7d10d5a2008-08-20 16:35:10 +00001169 exprCommute(pParse, pDup);
drh0fcef5e2005-07-19 17:38:22 +00001170 pLeft = pDup->pLeft;
1171 pNew->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001172 pNew->u.leftColumn = pLeft->iColumn;
drh5e767c52010-02-25 04:15:47 +00001173 testcase( (prereqLeft | extraRight) != prereqLeft );
1174 pNew->prereqRight = prereqLeft | extraRight;
drh0fcef5e2005-07-19 17:38:22 +00001175 pNew->prereqAll = prereqAll;
drhb52076c2006-01-23 13:22:09 +00001176 pNew->eOperator = operatorMask(pDup->op);
drh75897232000-05-29 14:26:00 +00001177 }
1178 }
drhed378002005-07-28 23:12:08 +00001179
drhd2687b72005-08-12 22:56:09 +00001180#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
drhed378002005-07-28 23:12:08 +00001181 /* If a term is the BETWEEN operator, create two new virtual terms
drh1a58fe02008-12-20 02:06:13 +00001182 ** that define the range that the BETWEEN implements. For example:
1183 **
1184 ** a BETWEEN b AND c
1185 **
1186 ** is converted into:
1187 **
1188 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1189 **
1190 ** The two new terms are added onto the end of the WhereClause object.
1191 ** The new terms are "dynamic" and are children of the original BETWEEN
1192 ** term. That means that if the BETWEEN term is coded, the children are
1193 ** skipped. Or, if the children are satisfied by an index, the original
1194 ** BETWEEN term is skipped.
drhed378002005-07-28 23:12:08 +00001195 */
drh29435252008-12-28 18:35:08 +00001196 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
danielk19776ab3a2e2009-02-19 14:39:25 +00001197 ExprList *pList = pExpr->x.pList;
drhed378002005-07-28 23:12:08 +00001198 int i;
1199 static const u8 ops[] = {TK_GE, TK_LE};
1200 assert( pList!=0 );
1201 assert( pList->nExpr==2 );
1202 for(i=0; i<2; i++){
1203 Expr *pNewExpr;
drh9eb20282005-08-24 03:52:18 +00001204 int idxNew;
drhb7916a72009-05-27 10:31:29 +00001205 pNewExpr = sqlite3PExpr(pParse, ops[i],
1206 sqlite3ExprDup(db, pExpr->pLeft, 0),
danielk19776ab3a2e2009-02-19 14:39:25 +00001207 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
drh9eb20282005-08-24 03:52:18 +00001208 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001209 testcase( idxNew==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001210 exprAnalyze(pSrc, pWC, idxNew);
drh9eb20282005-08-24 03:52:18 +00001211 pTerm = &pWC->a[idxTerm];
1212 pWC->a[idxNew].iParent = idxTerm;
drhed378002005-07-28 23:12:08 +00001213 }
drh45b1ee42005-08-02 17:48:22 +00001214 pTerm->nChild = 2;
drhed378002005-07-28 23:12:08 +00001215 }
drhd2687b72005-08-12 22:56:09 +00001216#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
drhed378002005-07-28 23:12:08 +00001217
danielk19771576cd92006-01-14 08:02:28 +00001218#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
drh1a58fe02008-12-20 02:06:13 +00001219 /* Analyze a term that is composed of two or more subterms connected by
1220 ** an OR operator.
drh6c30be82005-07-29 15:10:17 +00001221 */
1222 else if( pExpr->op==TK_OR ){
drh29435252008-12-28 18:35:08 +00001223 assert( pWC->op==TK_AND );
drh1a58fe02008-12-20 02:06:13 +00001224 exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
danielk1977f51d1bd2009-07-31 06:14:51 +00001225 pTerm = &pWC->a[idxTerm];
drh6c30be82005-07-29 15:10:17 +00001226 }
drhd2687b72005-08-12 22:56:09 +00001227#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1228
1229#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1230 /* Add constraints to reduce the search space on a LIKE or GLOB
1231 ** operator.
drh9f504ea2008-02-23 21:55:39 +00001232 **
1233 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1234 **
1235 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
1236 **
1237 ** The last character of the prefix "abc" is incremented to form the
shane7bc71e52008-05-28 18:01:44 +00001238 ** termination condition "abd".
drhd2687b72005-08-12 22:56:09 +00001239 */
dan937d0de2009-10-15 18:35:38 +00001240 if( pWC->op==TK_AND
1241 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1242 ){
drh1d452e12009-11-01 19:26:59 +00001243 Expr *pLeft; /* LHS of LIKE/GLOB operator */
1244 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1245 Expr *pNewExpr1;
1246 Expr *pNewExpr2;
1247 int idxNew1;
1248 int idxNew2;
drh9eb20282005-08-24 03:52:18 +00001249
danielk19776ab3a2e2009-02-19 14:39:25 +00001250 pLeft = pExpr->x.pList->a[1].pExpr;
danielk19776ab3a2e2009-02-19 14:39:25 +00001251 pStr2 = sqlite3ExprDup(db, pStr1, 0);
drhf998b732007-11-26 13:36:00 +00001252 if( !db->mallocFailed ){
drh254993e2009-06-08 19:44:36 +00001253 u8 c, *pC; /* Last character before the first wildcard */
dan937d0de2009-10-15 18:35:38 +00001254 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
drh9f504ea2008-02-23 21:55:39 +00001255 c = *pC;
drh02a50b72008-05-26 18:33:40 +00001256 if( noCase ){
drh254993e2009-06-08 19:44:36 +00001257 /* The point is to increment the last character before the first
1258 ** wildcard. But if we increment '@', that will push it into the
1259 ** alphabetic range where case conversions will mess up the
1260 ** inequality. To avoid this, make sure to also run the full
1261 ** LIKE on all candidate expressions by clearing the isComplete flag
1262 */
1263 if( c=='A'-1 ) isComplete = 0;
1264
drh02a50b72008-05-26 18:33:40 +00001265 c = sqlite3UpperToLower[c];
1266 }
drh9f504ea2008-02-23 21:55:39 +00001267 *pC = c + 1;
drhd2687b72005-08-12 22:56:09 +00001268 }
danielk19776ab3a2e2009-02-19 14:39:25 +00001269 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft,0),pStr1,0);
drh9eb20282005-08-24 03:52:18 +00001270 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001271 testcase( idxNew1==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001272 exprAnalyze(pSrc, pWC, idxNew1);
danielk19776ab3a2e2009-02-19 14:39:25 +00001273 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft,0),pStr2,0);
drh9eb20282005-08-24 03:52:18 +00001274 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001275 testcase( idxNew2==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001276 exprAnalyze(pSrc, pWC, idxNew2);
drh9eb20282005-08-24 03:52:18 +00001277 pTerm = &pWC->a[idxTerm];
drhd2687b72005-08-12 22:56:09 +00001278 if( isComplete ){
drh9eb20282005-08-24 03:52:18 +00001279 pWC->a[idxNew1].iParent = idxTerm;
1280 pWC->a[idxNew2].iParent = idxTerm;
drhd2687b72005-08-12 22:56:09 +00001281 pTerm->nChild = 2;
1282 }
1283 }
1284#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
drh7f375902006-06-13 17:38:59 +00001285
1286#ifndef SQLITE_OMIT_VIRTUALTABLE
1287 /* Add a WO_MATCH auxiliary term to the constraint set if the
1288 ** current expression is of the form: column MATCH expr.
1289 ** This information is used by the xBestIndex methods of
1290 ** virtual tables. The native query optimizer does not attempt
1291 ** to do anything with MATCH functions.
1292 */
1293 if( isMatchOfColumn(pExpr) ){
1294 int idxNew;
1295 Expr *pRight, *pLeft;
1296 WhereTerm *pNewTerm;
1297 Bitmask prereqColumn, prereqExpr;
1298
danielk19776ab3a2e2009-02-19 14:39:25 +00001299 pRight = pExpr->x.pList->a[0].pExpr;
1300 pLeft = pExpr->x.pList->a[1].pExpr;
drh7f375902006-06-13 17:38:59 +00001301 prereqExpr = exprTableUsage(pMaskSet, pRight);
1302 prereqColumn = exprTableUsage(pMaskSet, pLeft);
1303 if( (prereqExpr & prereqColumn)==0 ){
drh1a90e092006-06-14 22:07:10 +00001304 Expr *pNewExpr;
drhb7916a72009-05-27 10:31:29 +00001305 pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1306 0, sqlite3ExprDup(db, pRight, 0), 0);
drh1a90e092006-06-14 22:07:10 +00001307 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001308 testcase( idxNew==0 );
drh7f375902006-06-13 17:38:59 +00001309 pNewTerm = &pWC->a[idxNew];
1310 pNewTerm->prereqRight = prereqExpr;
1311 pNewTerm->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001312 pNewTerm->u.leftColumn = pLeft->iColumn;
drh7f375902006-06-13 17:38:59 +00001313 pNewTerm->eOperator = WO_MATCH;
1314 pNewTerm->iParent = idxTerm;
drhd2ca60d2006-06-27 02:36:58 +00001315 pTerm = &pWC->a[idxTerm];
drh7f375902006-06-13 17:38:59 +00001316 pTerm->nChild = 1;
drh165be382008-12-05 02:36:33 +00001317 pTerm->wtFlags |= TERM_COPIED;
drh7f375902006-06-13 17:38:59 +00001318 pNewTerm->prereqAll = pTerm->prereqAll;
1319 }
1320 }
1321#endif /* SQLITE_OMIT_VIRTUALTABLE */
drhdafc0ce2008-04-17 19:14:02 +00001322
1323 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1324 ** an index for tables to the left of the join.
1325 */
1326 pTerm->prereqRight |= extraRight;
drh75897232000-05-29 14:26:00 +00001327}
1328
drh7b4fc6a2007-02-06 13:26:32 +00001329/*
1330** Return TRUE if any of the expressions in pList->a[iFirst...] contain
1331** a reference to any table other than the iBase table.
1332*/
1333static int referencesOtherTables(
1334 ExprList *pList, /* Search expressions in ths list */
drh111a6a72008-12-21 03:51:16 +00001335 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
drh7b4fc6a2007-02-06 13:26:32 +00001336 int iFirst, /* Be searching with the iFirst-th expression */
1337 int iBase /* Ignore references to this table */
1338){
1339 Bitmask allowed = ~getMask(pMaskSet, iBase);
1340 while( iFirst<pList->nExpr ){
1341 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
1342 return 1;
1343 }
1344 }
1345 return 0;
1346}
1347
drh0fcef5e2005-07-19 17:38:22 +00001348
drh75897232000-05-29 14:26:00 +00001349/*
drh51669862004-12-18 18:40:26 +00001350** This routine decides if pIdx can be used to satisfy the ORDER BY
1351** clause. If it can, it returns 1. If pIdx cannot satisfy the
1352** ORDER BY clause, this routine returns 0.
1353**
1354** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
1355** left-most table in the FROM clause of that same SELECT statement and
1356** the table has a cursor number of "base". pIdx is an index on pTab.
1357**
1358** nEqCol is the number of columns of pIdx that are used as equality
1359** constraints. Any of these columns may be missing from the ORDER BY
1360** clause and the match can still be a success.
1361**
drh51669862004-12-18 18:40:26 +00001362** All terms of the ORDER BY that match against the index must be either
1363** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
1364** index do not need to satisfy this constraint.) The *pbRev value is
1365** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1366** the ORDER BY clause is all ASC.
1367*/
1368static int isSortingIndex(
1369 Parse *pParse, /* Parsing context */
drh111a6a72008-12-21 03:51:16 +00001370 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
drh51669862004-12-18 18:40:26 +00001371 Index *pIdx, /* The index we are testing */
drh74161702006-02-24 02:53:49 +00001372 int base, /* Cursor number for the table to be sorted */
drh51669862004-12-18 18:40:26 +00001373 ExprList *pOrderBy, /* The ORDER BY clause */
1374 int nEqCol, /* Number of index columns with == constraints */
1375 int *pbRev /* Set to 1 if ORDER BY is DESC */
1376){
drhb46b5772005-08-29 16:40:52 +00001377 int i, j; /* Loop counters */
drh85eeb692005-12-21 03:16:42 +00001378 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
drhb46b5772005-08-29 16:40:52 +00001379 int nTerm; /* Number of ORDER BY terms */
1380 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
drh51669862004-12-18 18:40:26 +00001381 sqlite3 *db = pParse->db;
1382
1383 assert( pOrderBy!=0 );
1384 nTerm = pOrderBy->nExpr;
1385 assert( nTerm>0 );
1386
dan5236ac12009-08-13 07:09:33 +00001387 /* Argument pIdx must either point to a 'real' named index structure,
1388 ** or an index structure allocated on the stack by bestBtreeIndex() to
1389 ** represent the rowid index that is part of every table. */
1390 assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
1391
drh51669862004-12-18 18:40:26 +00001392 /* Match terms of the ORDER BY clause against columns of
1393 ** the index.
drhcc192542006-12-20 03:24:19 +00001394 **
1395 ** Note that indices have pIdx->nColumn regular columns plus
1396 ** one additional column containing the rowid. The rowid column
1397 ** of the index is also allowed to match against the ORDER BY
1398 ** clause.
drh51669862004-12-18 18:40:26 +00001399 */
drhcc192542006-12-20 03:24:19 +00001400 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
drh51669862004-12-18 18:40:26 +00001401 Expr *pExpr; /* The expression of the ORDER BY pTerm */
1402 CollSeq *pColl; /* The collating sequence of pExpr */
drh85eeb692005-12-21 03:16:42 +00001403 int termSortOrder; /* Sort order for this term */
drhcc192542006-12-20 03:24:19 +00001404 int iColumn; /* The i-th column of the index. -1 for rowid */
1405 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
1406 const char *zColl; /* Name of the collating sequence for i-th index term */
drh51669862004-12-18 18:40:26 +00001407
1408 pExpr = pTerm->pExpr;
1409 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1410 /* Can not use an index sort on anything that is not a column in the
1411 ** left-most table of the FROM clause */
drh7b4fc6a2007-02-06 13:26:32 +00001412 break;
drh51669862004-12-18 18:40:26 +00001413 }
1414 pColl = sqlite3ExprCollSeq(pParse, pExpr);
drhcc192542006-12-20 03:24:19 +00001415 if( !pColl ){
1416 pColl = db->pDfltColl;
1417 }
dan5236ac12009-08-13 07:09:33 +00001418 if( pIdx->zName && i<pIdx->nColumn ){
drhcc192542006-12-20 03:24:19 +00001419 iColumn = pIdx->aiColumn[i];
1420 if( iColumn==pIdx->pTable->iPKey ){
1421 iColumn = -1;
1422 }
1423 iSortOrder = pIdx->aSortOrder[i];
1424 zColl = pIdx->azColl[i];
1425 }else{
1426 iColumn = -1;
1427 iSortOrder = 0;
1428 zColl = pColl->zName;
1429 }
1430 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
drh9012bcb2004-12-19 00:11:35 +00001431 /* Term j of the ORDER BY clause does not match column i of the index */
1432 if( i<nEqCol ){
drh51669862004-12-18 18:40:26 +00001433 /* If an index column that is constrained by == fails to match an
1434 ** ORDER BY term, that is OK. Just ignore that column of the index
1435 */
1436 continue;
drhff354e92008-06-25 02:47:57 +00001437 }else if( i==pIdx->nColumn ){
1438 /* Index column i is the rowid. All other terms match. */
1439 break;
drh51669862004-12-18 18:40:26 +00001440 }else{
1441 /* If an index column fails to match and is not constrained by ==
1442 ** then the index cannot satisfy the ORDER BY constraint.
1443 */
1444 return 0;
1445 }
1446 }
dan5236ac12009-08-13 07:09:33 +00001447 assert( pIdx->aSortOrder!=0 || iColumn==-1 );
drh85eeb692005-12-21 03:16:42 +00001448 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
drhcc192542006-12-20 03:24:19 +00001449 assert( iSortOrder==0 || iSortOrder==1 );
1450 termSortOrder = iSortOrder ^ pTerm->sortOrder;
drh51669862004-12-18 18:40:26 +00001451 if( i>nEqCol ){
drh85eeb692005-12-21 03:16:42 +00001452 if( termSortOrder!=sortOrder ){
drh51669862004-12-18 18:40:26 +00001453 /* Indices can only be used if all ORDER BY terms past the
1454 ** equality constraints are all either DESC or ASC. */
1455 return 0;
1456 }
1457 }else{
drh85eeb692005-12-21 03:16:42 +00001458 sortOrder = termSortOrder;
drh51669862004-12-18 18:40:26 +00001459 }
1460 j++;
1461 pTerm++;
drh7b4fc6a2007-02-06 13:26:32 +00001462 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
drhcc192542006-12-20 03:24:19 +00001463 /* If the indexed column is the primary key and everything matches
drh7b4fc6a2007-02-06 13:26:32 +00001464 ** so far and none of the ORDER BY terms to the right reference other
1465 ** tables in the join, then we are assured that the index can be used
1466 ** to sort because the primary key is unique and so none of the other
1467 ** columns will make any difference
drhcc192542006-12-20 03:24:19 +00001468 */
1469 j = nTerm;
1470 }
drh51669862004-12-18 18:40:26 +00001471 }
1472
drhcc192542006-12-20 03:24:19 +00001473 *pbRev = sortOrder!=0;
drh8718f522005-08-13 16:13:04 +00001474 if( j>=nTerm ){
drhcc192542006-12-20 03:24:19 +00001475 /* All terms of the ORDER BY clause are covered by this index so
1476 ** this index can be used for sorting. */
1477 return 1;
1478 }
drh7b4fc6a2007-02-06 13:26:32 +00001479 if( pIdx->onError!=OE_None && i==pIdx->nColumn
1480 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
drhcc192542006-12-20 03:24:19 +00001481 /* All terms of this index match some prefix of the ORDER BY clause
drh7b4fc6a2007-02-06 13:26:32 +00001482 ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1483 ** clause reference other tables in a join. If this is all true then
1484 ** the order by clause is superfluous. */
drh51669862004-12-18 18:40:26 +00001485 return 1;
1486 }
1487 return 0;
1488}
1489
1490/*
drhb6fb62d2005-09-20 08:47:20 +00001491** Prepare a crude estimate of the logarithm of the input value.
drh28c4cf42005-07-27 20:41:43 +00001492** The results need not be exact. This is only used for estimating
drh909626d2008-05-30 14:58:37 +00001493** the total cost of performing operations with O(logN) or O(NlogN)
drh28c4cf42005-07-27 20:41:43 +00001494** complexity. Because N is just a guess, it is no great tragedy if
1495** logN is a little off.
drh28c4cf42005-07-27 20:41:43 +00001496*/
1497static double estLog(double N){
drhb37df7b2005-10-13 02:09:49 +00001498 double logN = 1;
1499 double x = 10;
drh28c4cf42005-07-27 20:41:43 +00001500 while( N>x ){
drhb37df7b2005-10-13 02:09:49 +00001501 logN += 1;
drh28c4cf42005-07-27 20:41:43 +00001502 x *= 10;
1503 }
1504 return logN;
1505}
1506
drh6d209d82006-06-27 01:54:26 +00001507/*
1508** Two routines for printing the content of an sqlite3_index_info
1509** structure. Used for testing and debugging only. If neither
1510** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1511** are no-ops.
1512*/
drh77a2a5e2007-04-06 01:04:39 +00001513#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
drh6d209d82006-06-27 01:54:26 +00001514static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1515 int i;
mlcreech3a00f902008-03-04 17:45:01 +00001516 if( !sqlite3WhereTrace ) return;
drh6d209d82006-06-27 01:54:26 +00001517 for(i=0; i<p->nConstraint; i++){
1518 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1519 i,
1520 p->aConstraint[i].iColumn,
1521 p->aConstraint[i].iTermOffset,
1522 p->aConstraint[i].op,
1523 p->aConstraint[i].usable);
1524 }
1525 for(i=0; i<p->nOrderBy; i++){
1526 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
1527 i,
1528 p->aOrderBy[i].iColumn,
1529 p->aOrderBy[i].desc);
1530 }
1531}
1532static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1533 int i;
mlcreech3a00f902008-03-04 17:45:01 +00001534 if( !sqlite3WhereTrace ) return;
drh6d209d82006-06-27 01:54:26 +00001535 for(i=0; i<p->nConstraint; i++){
1536 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
1537 i,
1538 p->aConstraintUsage[i].argvIndex,
1539 p->aConstraintUsage[i].omit);
1540 }
1541 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
1542 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
1543 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
1544 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
1545}
1546#else
1547#define TRACE_IDX_INPUTS(A)
1548#define TRACE_IDX_OUTPUTS(A)
1549#endif
1550
danielk19771d461462009-04-21 09:02:45 +00001551/*
1552** Required because bestIndex() is called by bestOrClauseIndex()
1553*/
1554static void bestIndex(
1555 Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*);
1556
1557/*
1558** This routine attempts to find an scanning strategy that can be used
1559** to optimize an 'OR' expression that is part of a WHERE clause.
1560**
1561** The table associated with FROM clause term pSrc may be either a
1562** regular B-Tree table or a virtual table.
1563*/
1564static void bestOrClauseIndex(
1565 Parse *pParse, /* The parsing context */
1566 WhereClause *pWC, /* The WHERE clause */
1567 struct SrcList_item *pSrc, /* The FROM clause term to search */
1568 Bitmask notReady, /* Mask of cursors that are not available */
1569 ExprList *pOrderBy, /* The ORDER BY clause */
1570 WhereCost *pCost /* Lowest cost query plan */
1571){
1572#ifndef SQLITE_OMIT_OR_OPTIMIZATION
1573 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
1574 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */
1575 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */
1576 WhereTerm *pTerm; /* A single term of the WHERE clause */
1577
1578 /* Search the WHERE clause terms for a usable WO_OR term. */
1579 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1580 if( pTerm->eOperator==WO_OR
1581 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
1582 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
1583 ){
1584 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
1585 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
1586 WhereTerm *pOrTerm;
1587 int flags = WHERE_MULTI_OR;
1588 double rTotal = 0;
1589 double nRow = 0;
dan5236ac12009-08-13 07:09:33 +00001590 Bitmask used = 0;
danielk19771d461462009-04-21 09:02:45 +00001591
1592 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
1593 WhereCost sTermCost;
1594 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
1595 (pOrTerm - pOrWC->a), (pTerm - pWC->a)
1596 ));
1597 if( pOrTerm->eOperator==WO_AND ){
1598 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
1599 bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost);
1600 }else if( pOrTerm->leftCursor==iCur ){
1601 WhereClause tempWC;
1602 tempWC.pParse = pWC->pParse;
1603 tempWC.pMaskSet = pWC->pMaskSet;
1604 tempWC.op = TK_AND;
1605 tempWC.a = pOrTerm;
1606 tempWC.nTerm = 1;
1607 bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost);
1608 }else{
1609 continue;
1610 }
1611 rTotal += sTermCost.rCost;
1612 nRow += sTermCost.nRow;
dan5236ac12009-08-13 07:09:33 +00001613 used |= sTermCost.used;
danielk19771d461462009-04-21 09:02:45 +00001614 if( rTotal>=pCost->rCost ) break;
1615 }
1616
1617 /* If there is an ORDER BY clause, increase the scan cost to account
1618 ** for the cost of the sort. */
1619 if( pOrderBy!=0 ){
1620 rTotal += nRow*estLog(nRow);
1621 WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal));
1622 }
1623
1624 /* If the cost of scanning using this OR term for optimization is
1625 ** less than the current cost stored in pCost, replace the contents
1626 ** of pCost. */
1627 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
1628 if( rTotal<pCost->rCost ){
1629 pCost->rCost = rTotal;
1630 pCost->nRow = nRow;
dan5236ac12009-08-13 07:09:33 +00001631 pCost->used = used;
danielk19771d461462009-04-21 09:02:45 +00001632 pCost->plan.wsFlags = flags;
1633 pCost->plan.u.pTerm = pTerm;
1634 }
1635 }
1636 }
1637#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1638}
1639
drhc6339082010-04-07 16:54:58 +00001640#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
drh8b307fb2010-04-06 15:57:05 +00001641/*
drh4139c992010-04-07 14:59:45 +00001642** Return TRUE if the WHERE clause term pTerm is of a form where it
1643** could be used with an index to access pSrc, assuming an appropriate
1644** index existed.
1645*/
1646static int termCanDriveIndex(
1647 WhereTerm *pTerm, /* WHERE clause term to check */
1648 struct SrcList_item *pSrc, /* Table we are trying to access */
1649 Bitmask notReady /* Tables in outer loops of the join */
1650){
1651 char aff;
1652 if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
1653 if( pTerm->eOperator!=WO_EQ ) return 0;
1654 if( (pTerm->prereqRight & notReady)!=0 ) return 0;
1655 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
1656 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
1657 return 1;
1658}
drhc6339082010-04-07 16:54:58 +00001659#endif
drh4139c992010-04-07 14:59:45 +00001660
drhc6339082010-04-07 16:54:58 +00001661#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
drh4139c992010-04-07 14:59:45 +00001662/*
drh8b307fb2010-04-06 15:57:05 +00001663** If the query plan for pSrc specified in pCost is a full table scan
drh4139c992010-04-07 14:59:45 +00001664** and indexing is allows (if there is no NOT INDEXED clause) and it
drh8b307fb2010-04-06 15:57:05 +00001665** possible to construct a transient index that would perform better
1666** than a full table scan even when the cost of constructing the index
1667** is taken into account, then alter the query plan to use the
1668** transient index.
1669*/
drhc6339082010-04-07 16:54:58 +00001670static void bestAutomaticIndex(
drh8b307fb2010-04-06 15:57:05 +00001671 Parse *pParse, /* The parsing context */
1672 WhereClause *pWC, /* The WHERE clause */
1673 struct SrcList_item *pSrc, /* The FROM clause term to search */
1674 Bitmask notReady, /* Mask of cursors that are not available */
1675 WhereCost *pCost /* Lowest cost query plan */
1676){
1677 double nTableRow; /* Rows in the input table */
1678 double logN; /* log(nTableRow) */
1679 double costTempIdx; /* per-query cost of the transient index */
1680 WhereTerm *pTerm; /* A single term of the WHERE clause */
1681 WhereTerm *pWCEnd; /* End of pWC->a[] */
drh424aab82010-04-06 18:28:20 +00001682 Table *pTable; /* Table tht might be indexed */
drh8b307fb2010-04-06 15:57:05 +00001683
drhc6339082010-04-07 16:54:58 +00001684 if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
1685 /* Automatic indices are disabled at run-time */
1686 return;
1687 }
drh8b307fb2010-04-06 15:57:05 +00001688 if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){
1689 /* We already have some kind of index in use for this query. */
1690 return;
1691 }
1692 if( pSrc->notIndexed ){
1693 /* The NOT INDEXED clause appears in the SQL. */
1694 return;
1695 }
1696
1697 assert( pParse->nQueryLoop >= (double)1 );
1698 nTableRow = pSrc->pIndex ? pSrc->pIndex->aiRowEst[0] : 1000000;
1699 logN = estLog(nTableRow);
1700 costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
1701 if( costTempIdx>=pCost->rCost ){
1702 /* The cost of creating the transient table would be greater than
1703 ** doing the full table scan */
1704 return;
1705 }
1706
1707 /* Search for any equality comparison term */
drh424aab82010-04-06 18:28:20 +00001708 pTable = pSrc->pTab;
drh8b307fb2010-04-06 15:57:05 +00001709 pWCEnd = &pWC->a[pWC->nTerm];
1710 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
drh4139c992010-04-07 14:59:45 +00001711 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
drh8b307fb2010-04-06 15:57:05 +00001712 WHERETRACE(("auto-index reduces cost from %.2f to %.2f\n",
1713 pCost->rCost, costTempIdx));
1714 pCost->rCost = costTempIdx;
1715 pCost->nRow = logN + 1;
1716 pCost->plan.wsFlags = WHERE_TEMP_INDEX;
1717 pCost->used = pTerm->prereqRight;
1718 break;
1719 }
1720 }
1721}
drhc6339082010-04-07 16:54:58 +00001722#else
1723# define bestAutomaticIndex(A,B,C,D,E) /* no-op */
1724#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
drh8b307fb2010-04-06 15:57:05 +00001725
drhc6339082010-04-07 16:54:58 +00001726
1727#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
drh8b307fb2010-04-06 15:57:05 +00001728/*
drhc6339082010-04-07 16:54:58 +00001729** Generate code to construct the Index object for an automatic index
1730** and to set up the WhereLevel object pLevel so that the code generator
1731** makes use of the automatic index.
drh8b307fb2010-04-06 15:57:05 +00001732*/
drhc6339082010-04-07 16:54:58 +00001733static void constructAutomaticIndex(
drh8b307fb2010-04-06 15:57:05 +00001734 Parse *pParse, /* The parsing context */
1735 WhereClause *pWC, /* The WHERE clause */
1736 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */
1737 Bitmask notReady, /* Mask of cursors that are not available */
1738 WhereLevel *pLevel /* Write new index here */
1739){
1740 int nColumn; /* Number of columns in the constructed index */
1741 WhereTerm *pTerm; /* A single term of the WHERE clause */
1742 WhereTerm *pWCEnd; /* End of pWC->a[] */
1743 int nByte; /* Byte of memory needed for pIdx */
1744 Index *pIdx; /* Object describing the transient index */
1745 Vdbe *v; /* Prepared statement under construction */
1746 int regIsInit; /* Register set by initialization */
1747 int addrInit; /* Address of the initialization bypass jump */
1748 Table *pTable; /* The table being indexed */
1749 KeyInfo *pKeyinfo; /* Key information for the index */
1750 int addrTop; /* Top of the index fill loop */
1751 int regRecord; /* Register holding an index record */
1752 int n; /* Column counter */
drh4139c992010-04-07 14:59:45 +00001753 int i; /* Loop counter */
1754 int mxBitCol; /* Maximum column in pSrc->colUsed */
drh424aab82010-04-06 18:28:20 +00001755 CollSeq *pColl; /* Collating sequence to on a column */
drh4139c992010-04-07 14:59:45 +00001756 Bitmask idxCols; /* Bitmap of columns used for indexing */
1757 Bitmask extraCols; /* Bitmap of additional columns */
drh8b307fb2010-04-06 15:57:05 +00001758
1759 /* Generate code to skip over the creation and initialization of the
1760 ** transient index on 2nd and subsequent iterations of the loop. */
1761 v = pParse->pVdbe;
1762 assert( v!=0 );
1763 regIsInit = ++pParse->nMem;
1764 addrInit = sqlite3VdbeAddOp1(v, OP_If, regIsInit);
1765 sqlite3VdbeAddOp2(v, OP_Integer, 1, regIsInit);
1766
drh4139c992010-04-07 14:59:45 +00001767 /* Count the number of columns that will be added to the index
1768 ** and used to match WHERE clause constraints */
drh8b307fb2010-04-06 15:57:05 +00001769 nColumn = 0;
drh424aab82010-04-06 18:28:20 +00001770 pTable = pSrc->pTab;
drh8b307fb2010-04-06 15:57:05 +00001771 pWCEnd = &pWC->a[pWC->nTerm];
drh4139c992010-04-07 14:59:45 +00001772 idxCols = 0;
drh8b307fb2010-04-06 15:57:05 +00001773 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
drh4139c992010-04-07 14:59:45 +00001774 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1775 int iCol = pTerm->u.leftColumn;
1776 if( iCol<BMS && iCol>=0 ) idxCols |= 1<<iCol;
drh8b307fb2010-04-06 15:57:05 +00001777 nColumn++;
1778 }
1779 }
1780 assert( nColumn>0 );
drh424aab82010-04-06 18:28:20 +00001781 pLevel->plan.nEq = nColumn;
drh4139c992010-04-07 14:59:45 +00001782
1783 /* Count the number of additional columns needed to create a
1784 ** covering index. A "covering index" is an index that contains all
1785 ** columns that are needed by the query. With a covering index, the
1786 ** original table never needs to be accessed. Automatic indices must
1787 ** be a covering index because the index will not be updated if the
1788 ** original table changes and the index and table cannot both be used
1789 ** if they go out of sync.
1790 */
1791 extraCols = pSrc->colUsed & ~idxCols;
1792 mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
1793 for(i=0; i<mxBitCol; i++){
1794 if( extraCols & (1<<i) ) nColumn++;
1795 }
1796 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
1797 nColumn += pTable->nCol - BMS + 1;
1798 }
1799 pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ;
drh8b307fb2010-04-06 15:57:05 +00001800
1801 /* Construct the Index object to describe this index */
1802 nByte = sizeof(Index);
1803 nByte += nColumn*sizeof(int); /* Index.aiColumn */
1804 nByte += nColumn*sizeof(char*); /* Index.azColl */
1805 nByte += nColumn; /* Index.aSortOrder */
1806 pIdx = sqlite3DbMallocZero(pParse->db, nByte);
1807 if( pIdx==0 ) return;
1808 pLevel->plan.u.pIdx = pIdx;
1809 pIdx->azColl = (char**)&pIdx[1];
1810 pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
1811 pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
1812 pIdx->zName = "auto-index";
1813 pIdx->nColumn = nColumn;
drh424aab82010-04-06 18:28:20 +00001814 pIdx->pTable = pTable;
drh8b307fb2010-04-06 15:57:05 +00001815 n = 0;
1816 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
drh4139c992010-04-07 14:59:45 +00001817 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1818 Expr *pX = pTerm->pExpr;
1819 pIdx->aiColumn[n] = pTerm->u.leftColumn;
drh424aab82010-04-06 18:28:20 +00001820 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
1821 pIdx->azColl[n] = pColl->zName;
drh8b307fb2010-04-06 15:57:05 +00001822 n++;
1823 }
1824 }
drh4139c992010-04-07 14:59:45 +00001825 assert( n==pLevel->plan.nEq );
1826
drhc6339082010-04-07 16:54:58 +00001827 /* Add additional columns needed to make the automatic index into
1828 ** a covering index */
drh4139c992010-04-07 14:59:45 +00001829 for(i=0; i<mxBitCol; i++){
1830 if( extraCols & (1<<i) ){
1831 pIdx->aiColumn[n] = i;
1832 pIdx->azColl[n] = "BINARY";
1833 n++;
1834 }
1835 }
1836 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
1837 for(i=BMS-1; i<pTable->nCol; i++){
1838 pIdx->aiColumn[n] = i;
1839 pIdx->azColl[n] = "BINARY";
1840 n++;
1841 }
1842 }
1843 assert( n==nColumn );
drh8b307fb2010-04-06 15:57:05 +00001844
drhc6339082010-04-07 16:54:58 +00001845 /* Create the automatic index */
drh8b307fb2010-04-06 15:57:05 +00001846 pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
1847 assert( pLevel->iIdxCur>=0 );
drha21a64d2010-04-06 22:33:55 +00001848 sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
drh8b307fb2010-04-06 15:57:05 +00001849 (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
drha21a64d2010-04-06 22:33:55 +00001850 VdbeComment((v, "for %s", pTable->zName));
drh8b307fb2010-04-06 15:57:05 +00001851
drhc6339082010-04-07 16:54:58 +00001852 /* Fill the automatic index with content */
drh8b307fb2010-04-06 15:57:05 +00001853 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
1854 regRecord = sqlite3GetTempReg(pParse);
1855 sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1);
1856 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
1857 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1858 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
drha21a64d2010-04-06 22:33:55 +00001859 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
drh8b307fb2010-04-06 15:57:05 +00001860 sqlite3VdbeJumpHere(v, addrTop);
1861 sqlite3ReleaseTempReg(pParse, regRecord);
1862
1863 /* Jump here when skipping the initialization */
1864 sqlite3VdbeJumpHere(v, addrInit);
1865}
drhc6339082010-04-07 16:54:58 +00001866#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
drh8b307fb2010-04-06 15:57:05 +00001867
drh9eff6162006-06-12 21:59:13 +00001868#ifndef SQLITE_OMIT_VIRTUALTABLE
1869/*
danielk19771d461462009-04-21 09:02:45 +00001870** Allocate and populate an sqlite3_index_info structure. It is the
1871** responsibility of the caller to eventually release the structure
1872** by passing the pointer returned by this function to sqlite3_free().
1873*/
1874static sqlite3_index_info *allocateIndexInfo(
1875 Parse *pParse,
1876 WhereClause *pWC,
1877 struct SrcList_item *pSrc,
1878 ExprList *pOrderBy
1879){
1880 int i, j;
1881 int nTerm;
1882 struct sqlite3_index_constraint *pIdxCons;
1883 struct sqlite3_index_orderby *pIdxOrderBy;
1884 struct sqlite3_index_constraint_usage *pUsage;
1885 WhereTerm *pTerm;
1886 int nOrderBy;
1887 sqlite3_index_info *pIdxInfo;
1888
1889 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
1890
1891 /* Count the number of possible WHERE clause constraints referring
1892 ** to this virtual table */
1893 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1894 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1895 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1896 testcase( pTerm->eOperator==WO_IN );
1897 testcase( pTerm->eOperator==WO_ISNULL );
1898 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1899 nTerm++;
1900 }
1901
1902 /* If the ORDER BY clause contains only columns in the current
1903 ** virtual table then allocate space for the aOrderBy part of
1904 ** the sqlite3_index_info structure.
1905 */
1906 nOrderBy = 0;
1907 if( pOrderBy ){
1908 for(i=0; i<pOrderBy->nExpr; i++){
1909 Expr *pExpr = pOrderBy->a[i].pExpr;
1910 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1911 }
1912 if( i==pOrderBy->nExpr ){
1913 nOrderBy = pOrderBy->nExpr;
1914 }
1915 }
1916
1917 /* Allocate the sqlite3_index_info structure
1918 */
1919 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1920 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1921 + sizeof(*pIdxOrderBy)*nOrderBy );
1922 if( pIdxInfo==0 ){
1923 sqlite3ErrorMsg(pParse, "out of memory");
1924 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1925 return 0;
1926 }
1927
1928 /* Initialize the structure. The sqlite3_index_info structure contains
1929 ** many fields that are declared "const" to prevent xBestIndex from
1930 ** changing them. We have to do some funky casting in order to
1931 ** initialize those fields.
1932 */
1933 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1934 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1935 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1936 *(int*)&pIdxInfo->nConstraint = nTerm;
1937 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1938 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1939 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1940 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1941 pUsage;
1942
1943 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1944 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1945 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1946 testcase( pTerm->eOperator==WO_IN );
1947 testcase( pTerm->eOperator==WO_ISNULL );
1948 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1949 pIdxCons[j].iColumn = pTerm->u.leftColumn;
1950 pIdxCons[j].iTermOffset = i;
1951 pIdxCons[j].op = (u8)pTerm->eOperator;
1952 /* The direct assignment in the previous line is possible only because
1953 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1954 ** following asserts verify this fact. */
1955 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1956 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1957 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1958 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1959 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1960 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1961 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1962 j++;
1963 }
1964 for(i=0; i<nOrderBy; i++){
1965 Expr *pExpr = pOrderBy->a[i].pExpr;
1966 pIdxOrderBy[i].iColumn = pExpr->iColumn;
1967 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1968 }
1969
1970 return pIdxInfo;
1971}
1972
1973/*
1974** The table object reference passed as the second argument to this function
1975** must represent a virtual table. This function invokes the xBestIndex()
1976** method of the virtual table with the sqlite3_index_info pointer passed
1977** as the argument.
1978**
1979** If an error occurs, pParse is populated with an error message and a
1980** non-zero value is returned. Otherwise, 0 is returned and the output
1981** part of the sqlite3_index_info structure is left populated.
1982**
1983** Whether or not an error is returned, it is the responsibility of the
1984** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1985** that this is required.
1986*/
1987static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
danielk1977595a5232009-07-24 17:58:53 +00001988 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
danielk19771d461462009-04-21 09:02:45 +00001989 int i;
1990 int rc;
1991
danielk19771d461462009-04-21 09:02:45 +00001992 WHERETRACE(("xBestIndex for %s\n", pTab->zName));
1993 TRACE_IDX_INPUTS(p);
1994 rc = pVtab->pModule->xBestIndex(pVtab, p);
1995 TRACE_IDX_OUTPUTS(p);
danielk19771d461462009-04-21 09:02:45 +00001996
1997 if( rc!=SQLITE_OK ){
1998 if( rc==SQLITE_NOMEM ){
1999 pParse->db->mallocFailed = 1;
2000 }else if( !pVtab->zErrMsg ){
2001 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
2002 }else{
2003 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
2004 }
2005 }
2006 sqlite3DbFree(pParse->db, pVtab->zErrMsg);
2007 pVtab->zErrMsg = 0;
2008
2009 for(i=0; i<p->nConstraint; i++){
2010 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
2011 sqlite3ErrorMsg(pParse,
2012 "table %s: xBestIndex returned an invalid plan", pTab->zName);
2013 }
2014 }
2015
2016 return pParse->nErr;
2017}
2018
2019
2020/*
drh7f375902006-06-13 17:38:59 +00002021** Compute the best index for a virtual table.
2022**
2023** The best index is computed by the xBestIndex method of the virtual
2024** table module. This routine is really just a wrapper that sets up
2025** the sqlite3_index_info structure that is used to communicate with
2026** xBestIndex.
2027**
2028** In a join, this routine might be called multiple times for the
2029** same virtual table. The sqlite3_index_info structure is created
2030** and initialized on the first invocation and reused on all subsequent
2031** invocations. The sqlite3_index_info structure is also used when
2032** code is generated to access the virtual table. The whereInfoDelete()
2033** routine takes care of freeing the sqlite3_index_info structure after
2034** everybody has finished with it.
drh9eff6162006-06-12 21:59:13 +00002035*/
danielk19771d461462009-04-21 09:02:45 +00002036static void bestVirtualIndex(
2037 Parse *pParse, /* The parsing context */
2038 WhereClause *pWC, /* The WHERE clause */
2039 struct SrcList_item *pSrc, /* The FROM clause term to search */
2040 Bitmask notReady, /* Mask of cursors that are not available */
2041 ExprList *pOrderBy, /* The order by clause */
2042 WhereCost *pCost, /* Lowest cost query plan */
2043 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
drh9eff6162006-06-12 21:59:13 +00002044){
2045 Table *pTab = pSrc->pTab;
2046 sqlite3_index_info *pIdxInfo;
2047 struct sqlite3_index_constraint *pIdxCons;
drh9eff6162006-06-12 21:59:13 +00002048 struct sqlite3_index_constraint_usage *pUsage;
2049 WhereTerm *pTerm;
2050 int i, j;
2051 int nOrderBy;
danc26c0042010-03-27 09:44:42 +00002052 double rCost;
drh9eff6162006-06-12 21:59:13 +00002053
danielk19776eacd282009-04-29 11:50:53 +00002054 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
2055 ** malloc in allocateIndexInfo() fails and this function returns leaving
2056 ** wsFlags in an uninitialized state, the caller may behave unpredictably.
2057 */
drh6a863cd2009-05-06 18:42:21 +00002058 memset(pCost, 0, sizeof(*pCost));
danielk19776eacd282009-04-29 11:50:53 +00002059 pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
2060
drh9eff6162006-06-12 21:59:13 +00002061 /* If the sqlite3_index_info structure has not been previously
danielk19771d461462009-04-21 09:02:45 +00002062 ** allocated and initialized, then allocate and initialize it now.
drh9eff6162006-06-12 21:59:13 +00002063 */
2064 pIdxInfo = *ppIdxInfo;
2065 if( pIdxInfo==0 ){
danielk19771d461462009-04-21 09:02:45 +00002066 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
drh9eff6162006-06-12 21:59:13 +00002067 }
danielk1977732dc552009-04-21 17:23:04 +00002068 if( pIdxInfo==0 ){
2069 return;
2070 }
drh9eff6162006-06-12 21:59:13 +00002071
drh7f375902006-06-13 17:38:59 +00002072 /* At this point, the sqlite3_index_info structure that pIdxInfo points
2073 ** to will have been initialized, either during the current invocation or
2074 ** during some prior invocation. Now we just have to customize the
2075 ** details of pIdxInfo for the current invocation and pass it to
2076 ** xBestIndex.
2077 */
2078
danielk1977935ed5e2007-03-30 09:13:13 +00002079 /* The module name must be defined. Also, by this point there must
2080 ** be a pointer to an sqlite3_vtab structure. Otherwise
2081 ** sqlite3ViewGetColumnNames() would have picked up the error.
2082 */
drh9eff6162006-06-12 21:59:13 +00002083 assert( pTab->azModuleArg && pTab->azModuleArg[0] );
danielk1977595a5232009-07-24 17:58:53 +00002084 assert( sqlite3GetVTable(pParse->db, pTab) );
drh9eff6162006-06-12 21:59:13 +00002085
2086 /* Set the aConstraint[].usable fields and initialize all
drh7f375902006-06-13 17:38:59 +00002087 ** output variables to zero.
2088 **
2089 ** aConstraint[].usable is true for constraints where the right-hand
2090 ** side contains only references to tables to the left of the current
2091 ** table. In other words, if the constraint is of the form:
2092 **
2093 ** column = expr
2094 **
2095 ** and we are evaluating a join, then the constraint on column is
2096 ** only valid if all tables referenced in expr occur to the left
2097 ** of the table containing column.
2098 **
2099 ** The aConstraints[] array contains entries for all constraints
2100 ** on the current table. That way we only have to compute it once
2101 ** even though we might try to pick the best index multiple times.
2102 ** For each attempt at picking an index, the order of tables in the
2103 ** join might be different so we have to recompute the usable flag
2104 ** each time.
drh9eff6162006-06-12 21:59:13 +00002105 */
2106 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2107 pUsage = pIdxInfo->aConstraintUsage;
2108 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
2109 j = pIdxCons->iTermOffset;
2110 pTerm = &pWC->a[j];
dan5236ac12009-08-13 07:09:33 +00002111 pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
drh9eff6162006-06-12 21:59:13 +00002112 }
2113 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
drh4be8b512006-06-13 23:51:34 +00002114 if( pIdxInfo->needToFreeIdxStr ){
2115 sqlite3_free(pIdxInfo->idxStr);
2116 }
2117 pIdxInfo->idxStr = 0;
2118 pIdxInfo->idxNum = 0;
2119 pIdxInfo->needToFreeIdxStr = 0;
drh9eff6162006-06-12 21:59:13 +00002120 pIdxInfo->orderByConsumed = 0;
shanefbd60f82009-02-04 03:59:25 +00002121 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
2122 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
drh9eff6162006-06-12 21:59:13 +00002123 nOrderBy = pIdxInfo->nOrderBy;
danielk19771d461462009-04-21 09:02:45 +00002124 if( !pOrderBy ){
2125 pIdxInfo->nOrderBy = 0;
drh9eff6162006-06-12 21:59:13 +00002126 }
danielk197774cdba42006-06-19 12:02:58 +00002127
danielk19771d461462009-04-21 09:02:45 +00002128 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
2129 return;
danielk197739359dc2008-03-17 09:36:44 +00002130 }
2131
dan5236ac12009-08-13 07:09:33 +00002132 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2133 for(i=0; i<pIdxInfo->nConstraint; i++){
2134 if( pUsage[i].argvIndex>0 ){
2135 pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
2136 }
2137 }
2138
danc26c0042010-03-27 09:44:42 +00002139 /* If there is an ORDER BY clause, and the selected virtual table index
2140 ** does not satisfy it, increase the cost of the scan accordingly. This
2141 ** matches the processing for non-virtual tables in bestBtreeIndex().
2142 */
2143 rCost = pIdxInfo->estimatedCost;
2144 if( pOrderBy && pIdxInfo->orderByConsumed==0 ){
2145 rCost += estLog(rCost)*rCost;
2146 }
2147
danielk19771d461462009-04-21 09:02:45 +00002148 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2149 ** inital value of lowestCost in this loop. If it is, then the
2150 ** (cost<lowestCost) test below will never be true.
2151 **
2152 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
2153 ** is defined.
2154 */
danc26c0042010-03-27 09:44:42 +00002155 if( (SQLITE_BIG_DBL/((double)2))<rCost ){
danielk19771d461462009-04-21 09:02:45 +00002156 pCost->rCost = (SQLITE_BIG_DBL/((double)2));
2157 }else{
danc26c0042010-03-27 09:44:42 +00002158 pCost->rCost = rCost;
danielk19771d461462009-04-21 09:02:45 +00002159 }
danielk19771d461462009-04-21 09:02:45 +00002160 pCost->plan.u.pVtabIdx = pIdxInfo;
drh5901b572009-06-10 19:33:28 +00002161 if( pIdxInfo->orderByConsumed ){
danielk19771d461462009-04-21 09:02:45 +00002162 pCost->plan.wsFlags |= WHERE_ORDERBY;
2163 }
2164 pCost->plan.nEq = 0;
2165 pIdxInfo->nOrderBy = nOrderBy;
2166
2167 /* Try to find a more efficient access pattern by using multiple indexes
2168 ** to optimize an OR expression within the WHERE clause.
2169 */
2170 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
drh9eff6162006-06-12 21:59:13 +00002171}
2172#endif /* SQLITE_OMIT_VIRTUALTABLE */
2173
drh28c4cf42005-07-27 20:41:43 +00002174/*
dan02fa4692009-08-17 17:06:58 +00002175** Argument pIdx is a pointer to an index structure that has an array of
2176** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
2177** stored in Index.aSample. The domain of values stored in said column
2178** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions.
2179** Region 0 contains all values smaller than the first sample value. Region
2180** 1 contains values larger than or equal to the value of the first sample,
2181** but smaller than the value of the second. And so on.
2182**
2183** If successful, this function determines which of the regions value
drh98cdf622009-08-20 18:14:42 +00002184** pVal lies in, sets *piRegion to the region index (a value between 0
2185** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK.
dan02fa4692009-08-17 17:06:58 +00002186** Or, if an OOM occurs while converting text values between encodings,
drh98cdf622009-08-20 18:14:42 +00002187** SQLITE_NOMEM is returned and *piRegion is undefined.
dan02fa4692009-08-17 17:06:58 +00002188*/
dan69188d92009-08-19 08:18:32 +00002189#ifdef SQLITE_ENABLE_STAT2
dan02fa4692009-08-17 17:06:58 +00002190static int whereRangeRegion(
2191 Parse *pParse, /* Database connection */
2192 Index *pIdx, /* Index to consider domain of */
2193 sqlite3_value *pVal, /* Value to consider */
2194 int *piRegion /* OUT: Region of domain in which value lies */
2195){
drhdaf4a9f2009-08-20 20:05:55 +00002196 if( ALWAYS(pVal) ){
dan02fa4692009-08-17 17:06:58 +00002197 IndexSample *aSample = pIdx->aSample;
2198 int i = 0;
2199 int eType = sqlite3_value_type(pVal);
2200
2201 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
2202 double r = sqlite3_value_double(pVal);
2203 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
2204 if( aSample[i].eType==SQLITE_NULL ) continue;
2205 if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break;
2206 }
drhcdaca552009-08-20 13:45:07 +00002207 }else{
dan02fa4692009-08-17 17:06:58 +00002208 sqlite3 *db = pParse->db;
2209 CollSeq *pColl;
2210 const u8 *z;
2211 int n;
drhcdaca552009-08-20 13:45:07 +00002212
2213 /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */
2214 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
2215
dan02fa4692009-08-17 17:06:58 +00002216 if( eType==SQLITE_BLOB ){
2217 z = (const u8 *)sqlite3_value_blob(pVal);
2218 pColl = db->pDfltColl;
dane275dc32009-08-18 16:24:58 +00002219 assert( pColl->enc==SQLITE_UTF8 );
dan02fa4692009-08-17 17:06:58 +00002220 }else{
drh9aeda792009-08-20 02:34:15 +00002221 pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
2222 if( pColl==0 ){
2223 sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
2224 *pIdx->azColl);
dane275dc32009-08-18 16:24:58 +00002225 return SQLITE_ERROR;
2226 }
dan02fa4692009-08-17 17:06:58 +00002227 z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
dane275dc32009-08-18 16:24:58 +00002228 if( !z ){
2229 return SQLITE_NOMEM;
2230 }
dan02fa4692009-08-17 17:06:58 +00002231 assert( z && pColl && pColl->xCmp );
2232 }
2233 n = sqlite3ValueBytes(pVal, pColl->enc);
2234
2235 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
dane275dc32009-08-18 16:24:58 +00002236 int r;
dan02fa4692009-08-17 17:06:58 +00002237 int eSampletype = aSample[i].eType;
2238 if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
2239 if( (eSampletype!=eType) ) break;
dane83c4f32009-09-21 16:34:24 +00002240#ifndef SQLITE_OMIT_UTF16
2241 if( pColl->enc!=SQLITE_UTF8 ){
dane275dc32009-08-18 16:24:58 +00002242 int nSample;
2243 char *zSample = sqlite3Utf8to16(
dan02fa4692009-08-17 17:06:58 +00002244 db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
2245 );
dane275dc32009-08-18 16:24:58 +00002246 if( !zSample ){
2247 assert( db->mallocFailed );
2248 return SQLITE_NOMEM;
2249 }
2250 r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
2251 sqlite3DbFree(db, zSample);
dane83c4f32009-09-21 16:34:24 +00002252 }else
2253#endif
2254 {
2255 r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
dan02fa4692009-08-17 17:06:58 +00002256 }
dane275dc32009-08-18 16:24:58 +00002257 if( r>0 ) break;
dan02fa4692009-08-17 17:06:58 +00002258 }
2259 }
2260
drha8f57612009-08-25 16:28:14 +00002261 assert( i>=0 && i<=SQLITE_INDEX_SAMPLES );
dan02fa4692009-08-17 17:06:58 +00002262 *piRegion = i;
2263 }
2264 return SQLITE_OK;
2265}
dan69188d92009-08-19 08:18:32 +00002266#endif /* #ifdef SQLITE_ENABLE_STAT2 */
dan02fa4692009-08-17 17:06:58 +00002267
2268/*
dan937d0de2009-10-15 18:35:38 +00002269** If expression pExpr represents a literal value, set *pp to point to
2270** an sqlite3_value structure containing the same value, with affinity
2271** aff applied to it, before returning. It is the responsibility of the
2272** caller to eventually release this structure by passing it to
2273** sqlite3ValueFree().
2274**
2275** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
2276** is an SQL variable that currently has a non-NULL value bound to it,
2277** create an sqlite3_value structure containing this value, again with
2278** affinity aff applied to it, instead.
2279**
2280** If neither of the above apply, set *pp to NULL.
2281**
2282** If an error occurs, return an error code. Otherwise, SQLITE_OK.
2283*/
danf7b0b0a2009-10-19 15:52:32 +00002284#ifdef SQLITE_ENABLE_STAT2
dan937d0de2009-10-15 18:35:38 +00002285static int valueFromExpr(
2286 Parse *pParse,
2287 Expr *pExpr,
2288 u8 aff,
2289 sqlite3_value **pp
2290){
drhb4138de2009-10-19 22:41:06 +00002291 /* The evalConstExpr() function will have already converted any TK_VARIABLE
2292 ** expression involved in an comparison into a TK_REGISTER. */
2293 assert( pExpr->op!=TK_VARIABLE );
2294 if( pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE ){
dan937d0de2009-10-15 18:35:38 +00002295 int iVar = pExpr->iColumn;
dan1d2ce4f2009-10-19 18:11:09 +00002296 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
dan937d0de2009-10-15 18:35:38 +00002297 *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
2298 return SQLITE_OK;
2299 }
2300 return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
2301}
danf7b0b0a2009-10-19 15:52:32 +00002302#endif
dan937d0de2009-10-15 18:35:38 +00002303
2304/*
dan02fa4692009-08-17 17:06:58 +00002305** This function is used to estimate the number of rows that will be visited
2306** by scanning an index for a range of values. The range may have an upper
2307** bound, a lower bound, or both. The WHERE clause terms that set the upper
2308** and lower bounds are represented by pLower and pUpper respectively. For
2309** example, assuming that index p is on t1(a):
2310**
2311** ... FROM t1 WHERE a > ? AND a < ? ...
2312** |_____| |_____|
2313** | |
2314** pLower pUpper
2315**
drh98cdf622009-08-20 18:14:42 +00002316** If either of the upper or lower bound is not present, then NULL is passed in
drhcdaca552009-08-20 13:45:07 +00002317** place of the corresponding WhereTerm.
dan02fa4692009-08-17 17:06:58 +00002318**
2319** The nEq parameter is passed the index of the index column subject to the
2320** range constraint. Or, equivalently, the number of equality constraints
2321** optimized by the proposed index scan. For example, assuming index p is
2322** on t1(a, b), and the SQL query is:
2323**
2324** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
2325**
2326** then nEq should be passed the value 1 (as the range restricted column,
2327** b, is the second left-most column of the index). Or, if the query is:
2328**
2329** ... FROM t1 WHERE a > ? AND a < ? ...
2330**
2331** then nEq should be passed 0.
2332**
drh98cdf622009-08-20 18:14:42 +00002333** The returned value is an integer between 1 and 100, inclusive. A return
dan02fa4692009-08-17 17:06:58 +00002334** value of 1 indicates that the proposed range scan is expected to visit
drh98cdf622009-08-20 18:14:42 +00002335** approximately 1/100th (1%) of the rows selected by the nEq equality
2336** constraints (if any). A return value of 100 indicates that it is expected
2337** that the range scan will visit every row (100%) selected by the equality
dan02fa4692009-08-17 17:06:58 +00002338** constraints.
drh98cdf622009-08-20 18:14:42 +00002339**
2340** In the absence of sqlite_stat2 ANALYZE data, each range inequality
2341** reduces the search space by 2/3rds. Hence a single constraint (x>?)
2342** results in a return of 33 and a range constraint (x>? AND x<?) results
2343** in a return of 11.
dan02fa4692009-08-17 17:06:58 +00002344*/
2345static int whereRangeScanEst(
drhcdaca552009-08-20 13:45:07 +00002346 Parse *pParse, /* Parsing & code generating context */
2347 Index *p, /* The index containing the range-compared column; "x" */
2348 int nEq, /* index into p->aCol[] of the range-compared column */
2349 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
2350 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
2351 int *piEst /* OUT: Return value */
dan02fa4692009-08-17 17:06:58 +00002352){
dan69188d92009-08-19 08:18:32 +00002353 int rc = SQLITE_OK;
2354
2355#ifdef SQLITE_ENABLE_STAT2
dan02fa4692009-08-17 17:06:58 +00002356
2357 if( nEq==0 && p->aSample ){
dan937d0de2009-10-15 18:35:38 +00002358 sqlite3_value *pLowerVal = 0;
2359 sqlite3_value *pUpperVal = 0;
dan02fa4692009-08-17 17:06:58 +00002360 int iEst;
drh011cfca2009-08-25 15:56:51 +00002361 int iLower = 0;
2362 int iUpper = SQLITE_INDEX_SAMPLES;
dan937d0de2009-10-15 18:35:38 +00002363 u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
drh98cdf622009-08-20 18:14:42 +00002364
dan02fa4692009-08-17 17:06:58 +00002365 if( pLower ){
2366 Expr *pExpr = pLower->pExpr->pRight;
dan937d0de2009-10-15 18:35:38 +00002367 rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal);
dan02fa4692009-08-17 17:06:58 +00002368 }
drh98cdf622009-08-20 18:14:42 +00002369 if( rc==SQLITE_OK && pUpper ){
dan02fa4692009-08-17 17:06:58 +00002370 Expr *pExpr = pUpper->pExpr->pRight;
dan937d0de2009-10-15 18:35:38 +00002371 rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal);
drh98cdf622009-08-20 18:14:42 +00002372 }
2373
2374 if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){
2375 sqlite3ValueFree(pLowerVal);
2376 sqlite3ValueFree(pUpperVal);
2377 goto range_est_fallback;
2378 }else if( pLowerVal==0 ){
2379 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
drh011cfca2009-08-25 15:56:51 +00002380 if( pLower ) iLower = iUpper/2;
drh98cdf622009-08-20 18:14:42 +00002381 }else if( pUpperVal==0 ){
2382 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
drh011cfca2009-08-25 15:56:51 +00002383 if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2;
drh98cdf622009-08-20 18:14:42 +00002384 }else{
2385 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
2386 if( rc==SQLITE_OK ){
2387 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
dan02fa4692009-08-17 17:06:58 +00002388 }
2389 }
2390
dan02fa4692009-08-17 17:06:58 +00002391 iEst = iUpper - iLower;
drha8f57612009-08-25 16:28:14 +00002392 testcase( iEst==SQLITE_INDEX_SAMPLES );
2393 assert( iEst<=SQLITE_INDEX_SAMPLES );
2394 if( iEst<1 ){
drh98cdf622009-08-20 18:14:42 +00002395 iEst = 1;
2396 }
dan02fa4692009-08-17 17:06:58 +00002397
2398 sqlite3ValueFree(pLowerVal);
2399 sqlite3ValueFree(pUpperVal);
drh98cdf622009-08-20 18:14:42 +00002400 *piEst = (iEst * 100)/SQLITE_INDEX_SAMPLES;
dan02fa4692009-08-17 17:06:58 +00002401 return rc;
2402 }
drh98cdf622009-08-20 18:14:42 +00002403range_est_fallback:
drh3f022182009-09-09 16:10:50 +00002404#else
2405 UNUSED_PARAMETER(pParse);
2406 UNUSED_PARAMETER(p);
2407 UNUSED_PARAMETER(nEq);
dan69188d92009-08-19 08:18:32 +00002408#endif
dan02fa4692009-08-17 17:06:58 +00002409 assert( pLower || pUpper );
drh98cdf622009-08-20 18:14:42 +00002410 if( pLower && pUpper ){
2411 *piEst = 11;
2412 }else{
2413 *piEst = 33;
2414 }
dan02fa4692009-08-17 17:06:58 +00002415 return rc;
2416}
2417
2418
2419/*
drh111a6a72008-12-21 03:51:16 +00002420** Find the query plan for accessing a particular table. Write the
2421** best query plan and its cost into the WhereCost object supplied as the
2422** last parameter.
drh51147ba2005-07-23 22:59:55 +00002423**
drh111a6a72008-12-21 03:51:16 +00002424** The lowest cost plan wins. The cost is an estimate of the amount of
2425** CPU and disk I/O need to process the request using the selected plan.
drh51147ba2005-07-23 22:59:55 +00002426** Factors that influence cost include:
2427**
2428** * The estimated number of rows that will be retrieved. (The
2429** fewer the better.)
2430**
2431** * Whether or not sorting must occur.
2432**
2433** * Whether or not there must be separate lookups in the
2434** index and in the main table.
2435**
danielk1977e2d7b242009-02-23 17:33:49 +00002436** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
2437** the SQL statement, then this function only considers plans using the
drh296a4832009-03-22 20:36:18 +00002438** named index. If no such plan is found, then the returned cost is
2439** SQLITE_BIG_DBL. If a plan is found that uses the named index,
danielk197785574e32008-10-06 05:32:18 +00002440** then the cost is calculated in the usual way.
2441**
danielk1977e2d7b242009-02-23 17:33:49 +00002442** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
2443** in the SELECT statement, then no indexes are considered. However, the
2444** selected plan may still take advantage of the tables built-in rowid
danielk197785574e32008-10-06 05:32:18 +00002445** index.
drhfe05af82005-07-21 03:14:59 +00002446*/
danielk19771d461462009-04-21 09:02:45 +00002447static void bestBtreeIndex(
drhfe05af82005-07-21 03:14:59 +00002448 Parse *pParse, /* The parsing context */
2449 WhereClause *pWC, /* The WHERE clause */
2450 struct SrcList_item *pSrc, /* The FROM clause term to search */
2451 Bitmask notReady, /* Mask of cursors that are not available */
drh111a6a72008-12-21 03:51:16 +00002452 ExprList *pOrderBy, /* The ORDER BY clause */
2453 WhereCost *pCost /* Lowest cost query plan */
drhfe05af82005-07-21 03:14:59 +00002454){
drh51147ba2005-07-23 22:59:55 +00002455 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
2456 Index *pProbe; /* An index we are evaluating */
dan5236ac12009-08-13 07:09:33 +00002457 Index *pIdx; /* Copy of pProbe, or zero for IPK index */
2458 int eqTermMask; /* Current mask of valid equality operators */
2459 int idxEqTermMask; /* Index mask of valid equality operators */
drhcdaca552009-08-20 13:45:07 +00002460 Index sPk; /* A fake index object for the primary key */
2461 unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
2462 int aiColumnPk = -1; /* The aColumn[] value for the sPk index */
2463 int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */
drhfe05af82005-07-21 03:14:59 +00002464
drhcdaca552009-08-20 13:45:07 +00002465 /* Initialize the cost to a worst-case value */
drh111a6a72008-12-21 03:51:16 +00002466 memset(pCost, 0, sizeof(*pCost));
drh111a6a72008-12-21 03:51:16 +00002467 pCost->rCost = SQLITE_BIG_DBL;
drh51147ba2005-07-23 22:59:55 +00002468
drhc49de5d2007-01-19 01:06:01 +00002469 /* If the pSrc table is the right table of a LEFT JOIN then we may not
2470 ** use an index to satisfy IS NULL constraints on that table. This is
2471 ** because columns might end up being NULL if the table does not match -
2472 ** a circumstance which the index cannot help us discover. Ticket #2177.
2473 */
dan5236ac12009-08-13 07:09:33 +00002474 if( pSrc->jointype & JT_LEFT ){
2475 idxEqTermMask = WO_EQ|WO_IN;
drhc49de5d2007-01-19 01:06:01 +00002476 }else{
dan5236ac12009-08-13 07:09:33 +00002477 idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
drhc49de5d2007-01-19 01:06:01 +00002478 }
2479
danielk197785574e32008-10-06 05:32:18 +00002480 if( pSrc->pIndex ){
drhcdaca552009-08-20 13:45:07 +00002481 /* An INDEXED BY clause specifies a particular index to use */
dan5236ac12009-08-13 07:09:33 +00002482 pIdx = pProbe = pSrc->pIndex;
2483 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2484 eqTermMask = idxEqTermMask;
2485 }else{
drhcdaca552009-08-20 13:45:07 +00002486 /* There is no INDEXED BY clause. Create a fake Index object to
2487 ** represent the primary key */
2488 Index *pFirst; /* Any other index on the table */
2489 memset(&sPk, 0, sizeof(Index));
2490 sPk.nColumn = 1;
2491 sPk.aiColumn = &aiColumnPk;
2492 sPk.aiRowEst = aiRowEstPk;
2493 aiRowEstPk[1] = 1;
2494 sPk.onError = OE_Replace;
2495 sPk.pTable = pSrc->pTab;
2496 pFirst = pSrc->pTab->pIndex;
dan5236ac12009-08-13 07:09:33 +00002497 if( pSrc->notIndexed==0 ){
drhcdaca552009-08-20 13:45:07 +00002498 sPk.pNext = pFirst;
dan5236ac12009-08-13 07:09:33 +00002499 }
drhcdaca552009-08-20 13:45:07 +00002500 /* The aiRowEstPk[0] is an estimate of the total number of rows in the
2501 ** table. Get this information from the ANALYZE information if it is
2502 ** available. If not available, assume the table 1 million rows in size.
2503 */
2504 if( pFirst ){
2505 assert( pFirst->aiRowEst!=0 ); /* Allocated together with pFirst */
2506 aiRowEstPk[0] = pFirst->aiRowEst[0];
2507 }else{
2508 aiRowEstPk[0] = 1000000;
dan5236ac12009-08-13 07:09:33 +00002509 }
drhcdaca552009-08-20 13:45:07 +00002510 pProbe = &sPk;
dan5236ac12009-08-13 07:09:33 +00002511 wsFlagMask = ~(
2512 WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
2513 );
2514 eqTermMask = WO_EQ|WO_IN;
2515 pIdx = 0;
danielk197785574e32008-10-06 05:32:18 +00002516 }
drh51147ba2005-07-23 22:59:55 +00002517
drhcdaca552009-08-20 13:45:07 +00002518 /* Loop over all indices looking for the best one to use
2519 */
dan5236ac12009-08-13 07:09:33 +00002520 for(; pProbe; pIdx=pProbe=pProbe->pNext){
2521 const unsigned int * const aiRowEst = pProbe->aiRowEst;
2522 double cost; /* Cost of using pProbe */
2523 double nRow; /* Estimated number of rows in result set */
2524 int rev; /* True to scan in reverse order */
2525 int wsFlags = 0;
2526 Bitmask used = 0;
2527
2528 /* The following variables are populated based on the properties of
2529 ** scan being evaluated. They are then used to determine the expected
2530 ** cost and number of rows returned.
2531 **
2532 ** nEq:
2533 ** Number of equality terms that can be implemented using the index.
2534 **
2535 ** nInMul:
2536 ** The "in-multiplier". This is an estimate of how many seek operations
2537 ** SQLite must perform on the index in question. For example, if the
2538 ** WHERE clause is:
2539 **
2540 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
2541 **
2542 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
2543 ** set to 9. Given the same schema and either of the following WHERE
2544 ** clauses:
2545 **
2546 ** WHERE a = 1
2547 ** WHERE a >= 2
2548 **
2549 ** nInMul is set to 1.
2550 **
2551 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
2552 ** the sub-select is assumed to return 25 rows for the purposes of
2553 ** determining nInMul.
2554 **
2555 ** bInEst:
2556 ** Set to true if there was at least one "x IN (SELECT ...)" term used
2557 ** in determining the value of nInMul.
2558 **
drhcdaca552009-08-20 13:45:07 +00002559 ** nBound:
drh98cdf622009-08-20 18:14:42 +00002560 ** An estimate on the amount of the table that must be searched. A
2561 ** value of 100 means the entire table is searched. Range constraints
2562 ** might reduce this to a value less than 100 to indicate that only
2563 ** a fraction of the table needs searching. In the absence of
2564 ** sqlite_stat2 ANALYZE data, a single inequality reduces the search
2565 ** space to 1/3rd its original size. So an x>? constraint reduces
2566 ** nBound to 33. Two constraints (x>? AND x<?) reduce nBound to 11.
dan5236ac12009-08-13 07:09:33 +00002567 **
2568 ** bSort:
2569 ** Boolean. True if there is an ORDER BY clause that will require an
2570 ** external sort (i.e. scanning the index being evaluated will not
2571 ** correctly order records).
2572 **
2573 ** bLookup:
2574 ** Boolean. True if for each index entry visited a lookup on the
2575 ** corresponding table b-tree is required. This is always false
2576 ** for the rowid index. For other indexes, it is true unless all the
2577 ** columns of the table used by the SELECT statement are present in
2578 ** the index (such an index is sometimes described as a covering index).
2579 ** For example, given the index on (a, b), the second of the following
2580 ** two queries requires table b-tree lookups, but the first does not.
2581 **
2582 ** SELECT a, b FROM tbl WHERE a = 1;
2583 ** SELECT a, b, c FROM tbl WHERE a = 1;
drhfe05af82005-07-21 03:14:59 +00002584 */
dan5236ac12009-08-13 07:09:33 +00002585 int nEq;
2586 int bInEst = 0;
2587 int nInMul = 1;
drh98cdf622009-08-20 18:14:42 +00002588 int nBound = 100;
dan5236ac12009-08-13 07:09:33 +00002589 int bSort = 0;
2590 int bLookup = 0;
2591
2592 /* Determine the values of nEq and nInMul */
2593 for(nEq=0; nEq<pProbe->nColumn; nEq++){
2594 WhereTerm *pTerm; /* A single term of the WHERE clause */
2595 int j = pProbe->aiColumn[nEq];
2596 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
drhfe05af82005-07-21 03:14:59 +00002597 if( pTerm==0 ) break;
dan5236ac12009-08-13 07:09:33 +00002598 wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
drhb52076c2006-01-23 13:22:09 +00002599 if( pTerm->eOperator & WO_IN ){
drha6110402005-07-28 20:51:19 +00002600 Expr *pExpr = pTerm->pExpr;
drh165be382008-12-05 02:36:33 +00002601 wsFlags |= WHERE_COLUMN_IN;
danielk19776ab3a2e2009-02-19 14:39:25 +00002602 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
dan5236ac12009-08-13 07:09:33 +00002603 nInMul *= 25;
2604 bInEst = 1;
danielk19776ab3a2e2009-02-19 14:39:25 +00002605 }else if( pExpr->x.pList ){
dan5236ac12009-08-13 07:09:33 +00002606 nInMul *= pExpr->x.pList->nExpr + 1;
drhfe05af82005-07-21 03:14:59 +00002607 }
drh46619d62009-04-24 14:51:42 +00002608 }else if( pTerm->eOperator & WO_ISNULL ){
2609 wsFlags |= WHERE_COLUMN_NULL;
drhfe05af82005-07-21 03:14:59 +00002610 }
dan5236ac12009-08-13 07:09:33 +00002611 used |= pTerm->prereqRight;
drhfe05af82005-07-21 03:14:59 +00002612 }
dan5236ac12009-08-13 07:09:33 +00002613
2614 /* Determine the value of nBound. */
2615 if( nEq<pProbe->nColumn ){
2616 int j = pProbe->aiColumn[nEq];
2617 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
2618 WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
2619 WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
dane275dc32009-08-18 16:24:58 +00002620 whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &nBound);
dan5236ac12009-08-13 07:09:33 +00002621 if( pTop ){
2622 wsFlags |= WHERE_TOP_LIMIT;
dan5236ac12009-08-13 07:09:33 +00002623 used |= pTop->prereqRight;
2624 }
2625 if( pBtm ){
2626 wsFlags |= WHERE_BTM_LIMIT;
dan5236ac12009-08-13 07:09:33 +00002627 used |= pBtm->prereqRight;
2628 }
2629 wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
2630 }
2631 }else if( pProbe->onError!=OE_None ){
drh46619d62009-04-24 14:51:42 +00002632 testcase( wsFlags & WHERE_COLUMN_IN );
2633 testcase( wsFlags & WHERE_COLUMN_NULL );
2634 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
2635 wsFlags |= WHERE_UNIQUE;
2636 }
drh943af3c2005-07-29 19:43:58 +00002637 }
drhfe05af82005-07-21 03:14:59 +00002638
dan5236ac12009-08-13 07:09:33 +00002639 /* If there is an ORDER BY clause and the index being considered will
2640 ** naturally scan rows in the required order, set the appropriate flags
2641 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
2642 ** will scan rows in a different order, set the bSort variable. */
drh28c4cf42005-07-27 20:41:43 +00002643 if( pOrderBy ){
drh46619d62009-04-24 14:51:42 +00002644 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0
dan5236ac12009-08-13 07:09:33 +00002645 && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev)
drh46619d62009-04-24 14:51:42 +00002646 ){
dan5236ac12009-08-13 07:09:33 +00002647 wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
2648 wsFlags |= (rev ? WHERE_REVERSE : 0);
drh28c4cf42005-07-27 20:41:43 +00002649 }else{
dan5236ac12009-08-13 07:09:33 +00002650 bSort = 1;
drh51147ba2005-07-23 22:59:55 +00002651 }
drhfe05af82005-07-21 03:14:59 +00002652 }
2653
dan5236ac12009-08-13 07:09:33 +00002654 /* If currently calculating the cost of using an index (not the IPK
2655 ** index), determine if all required column data may be obtained without
drh4139c992010-04-07 14:59:45 +00002656 ** using the main table (i.e. if the index is a covering
dan5236ac12009-08-13 07:09:33 +00002657 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
2658 ** wsFlags. Otherwise, set the bLookup variable to true. */
2659 if( pIdx && wsFlags ){
drhfe05af82005-07-21 03:14:59 +00002660 Bitmask m = pSrc->colUsed;
2661 int j;
dan5236ac12009-08-13 07:09:33 +00002662 for(j=0; j<pIdx->nColumn; j++){
2663 int x = pIdx->aiColumn[j];
drhfe05af82005-07-21 03:14:59 +00002664 if( x<BMS-1 ){
2665 m &= ~(((Bitmask)1)<<x);
2666 }
2667 }
2668 if( m==0 ){
drh165be382008-12-05 02:36:33 +00002669 wsFlags |= WHERE_IDX_ONLY;
dan5236ac12009-08-13 07:09:33 +00002670 }else{
2671 bLookup = 1;
drhfe05af82005-07-21 03:14:59 +00002672 }
2673 }
2674
drhcdaca552009-08-20 13:45:07 +00002675 /**** Begin adding up the cost of using this index (Needs improvements)
2676 **
2677 ** Estimate the number of rows of output. For an IN operator,
2678 ** do not let the estimate exceed half the rows in the table.
2679 */
dan5236ac12009-08-13 07:09:33 +00002680 nRow = (double)(aiRowEst[nEq] * nInMul);
2681 if( bInEst && nRow*2>aiRowEst[0] ){
2682 nRow = aiRowEst[0]/2;
shanecea72b22009-09-07 04:38:36 +00002683 nInMul = (int)(nRow / aiRowEst[nEq]);
dan5236ac12009-08-13 07:09:33 +00002684 }
drhcdaca552009-08-20 13:45:07 +00002685
2686 /* Assume constant cost to access a row and logarithmic cost to
2687 ** do a binary search. Hence, the initial cost is the number of output
2688 ** rows plus log2(table-size) times the number of binary searches.
2689 */
dan5236ac12009-08-13 07:09:33 +00002690 cost = nRow + nInMul*estLog(aiRowEst[0]);
drhcdaca552009-08-20 13:45:07 +00002691
2692 /* Adjust the number of rows and the cost downward to reflect rows
2693 ** that are excluded by range constraints.
2694 */
drh98cdf622009-08-20 18:14:42 +00002695 nRow = (nRow * (double)nBound) / (double)100;
2696 cost = (cost * (double)nBound) / (double)100;
drhcdaca552009-08-20 13:45:07 +00002697
2698 /* Add in the estimated cost of sorting the result
2699 */
dan5236ac12009-08-13 07:09:33 +00002700 if( bSort ){
2701 cost += cost*estLog(cost);
2702 }
drhcdaca552009-08-20 13:45:07 +00002703
2704 /* If all information can be taken directly from the index, we avoid
2705 ** doing table lookups. This reduces the cost by half. (Not really -
2706 ** this needs to be fixed.)
2707 */
dan5236ac12009-08-13 07:09:33 +00002708 if( pIdx && bLookup==0 ){
drhcdaca552009-08-20 13:45:07 +00002709 cost /= (double)2;
dan5236ac12009-08-13 07:09:33 +00002710 }
drhcdaca552009-08-20 13:45:07 +00002711 /**** Cost of using this index has now been computed ****/
dan5236ac12009-08-13 07:09:33 +00002712
2713 WHERETRACE((
drh8b307fb2010-04-06 15:57:05 +00002714 "%s(%s): nEq=%d nInMul=%d nBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
2715 " notReady=0x%llx nRow=%.2f cost=%.2f used=0x%llx\n",
dan5236ac12009-08-13 07:09:33 +00002716 pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"),
drh8b307fb2010-04-06 15:57:05 +00002717 nEq, nInMul, nBound, bSort, bLookup, wsFlags, notReady, nRow, cost, used
dan5236ac12009-08-13 07:09:33 +00002718 ));
2719
drhcdaca552009-08-20 13:45:07 +00002720 /* If this index is the best we have seen so far, then record this
2721 ** index and its cost in the pCost structure.
2722 */
dan5236ac12009-08-13 07:09:33 +00002723 if( (!pIdx || wsFlags) && cost<pCost->rCost ){
drh111a6a72008-12-21 03:51:16 +00002724 pCost->rCost = cost;
2725 pCost->nRow = nRow;
dan5236ac12009-08-13 07:09:33 +00002726 pCost->used = used;
2727 pCost->plan.wsFlags = (wsFlags&wsFlagMask);
drh111a6a72008-12-21 03:51:16 +00002728 pCost->plan.nEq = nEq;
dan5236ac12009-08-13 07:09:33 +00002729 pCost->plan.u.pIdx = pIdx;
drhfe05af82005-07-21 03:14:59 +00002730 }
dan5236ac12009-08-13 07:09:33 +00002731
drhcdaca552009-08-20 13:45:07 +00002732 /* If there was an INDEXED BY clause, then only that one index is
2733 ** considered. */
dan5236ac12009-08-13 07:09:33 +00002734 if( pSrc->pIndex ) break;
drhcdaca552009-08-20 13:45:07 +00002735
2736 /* Reset masks for the next index in the loop */
dan5236ac12009-08-13 07:09:33 +00002737 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2738 eqTermMask = idxEqTermMask;
drhfe05af82005-07-21 03:14:59 +00002739 }
2740
dan5236ac12009-08-13 07:09:33 +00002741 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
2742 ** is set, then reverse the order that the index will be scanned
2743 ** in. This is used for application testing, to help find cases
2744 ** where application behaviour depends on the (undefined) order that
2745 ** SQLite outputs rows in in the absence of an ORDER BY clause. */
2746 if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
2747 pCost->plan.wsFlags |= WHERE_REVERSE;
2748 }
2749
2750 assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
2751 assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
2752 assert( pSrc->pIndex==0
2753 || pCost->plan.u.pIdx==0
2754 || pCost->plan.u.pIdx==pSrc->pIndex
2755 );
2756
2757 WHERETRACE(("best index is: %s\n",
2758 (pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
2759 ));
2760
2761 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
drhc6339082010-04-07 16:54:58 +00002762 bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost);
drh111a6a72008-12-21 03:51:16 +00002763 pCost->plan.wsFlags |= eqTermMask;
drhfe05af82005-07-21 03:14:59 +00002764}
2765
danielk19771d461462009-04-21 09:02:45 +00002766/*
2767** Find the query plan for accessing table pSrc->pTab. Write the
2768** best query plan and its cost into the WhereCost object supplied
2769** as the last parameter. This function may calculate the cost of
2770** both real and virtual table scans.
2771*/
2772static void bestIndex(
2773 Parse *pParse, /* The parsing context */
2774 WhereClause *pWC, /* The WHERE clause */
2775 struct SrcList_item *pSrc, /* The FROM clause term to search */
2776 Bitmask notReady, /* Mask of cursors that are not available */
2777 ExprList *pOrderBy, /* The ORDER BY clause */
2778 WhereCost *pCost /* Lowest cost query plan */
2779){
shanee26fa4c2009-06-16 14:15:22 +00002780#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19771d461462009-04-21 09:02:45 +00002781 if( IsVirtual(pSrc->pTab) ){
2782 sqlite3_index_info *p = 0;
2783 bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p);
2784 if( p->needToFreeIdxStr ){
2785 sqlite3_free(p->idxStr);
2786 }
2787 sqlite3DbFree(pParse->db, p);
shanee26fa4c2009-06-16 14:15:22 +00002788 }else
2789#endif
2790 {
danielk19771d461462009-04-21 09:02:45 +00002791 bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
2792 }
2793}
drhb6c29892004-11-22 19:12:19 +00002794
2795/*
drh2ffb1182004-07-19 19:14:01 +00002796** Disable a term in the WHERE clause. Except, do not disable the term
2797** if it controls a LEFT OUTER JOIN and it did not originate in the ON
2798** or USING clause of that join.
2799**
2800** Consider the term t2.z='ok' in the following queries:
2801**
2802** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
2803** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
2804** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
2805**
drh23bf66d2004-12-14 03:34:34 +00002806** The t2.z='ok' is disabled in the in (2) because it originates
drh2ffb1182004-07-19 19:14:01 +00002807** in the ON clause. The term is disabled in (3) because it is not part
2808** of a LEFT OUTER JOIN. In (1), the term is not disabled.
2809**
2810** Disabling a term causes that term to not be tested in the inner loop
drhb6fb62d2005-09-20 08:47:20 +00002811** of the join. Disabling is an optimization. When terms are satisfied
2812** by indices, we disable them to prevent redundant tests in the inner
2813** loop. We would get the correct results if nothing were ever disabled,
2814** but joins might run a little slower. The trick is to disable as much
2815** as we can without disabling too much. If we disabled in (1), we'd get
2816** the wrong answer. See ticket #813.
drh2ffb1182004-07-19 19:14:01 +00002817*/
drh0fcef5e2005-07-19 17:38:22 +00002818static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
2819 if( pTerm
drh165be382008-12-05 02:36:33 +00002820 && ALWAYS((pTerm->wtFlags & TERM_CODED)==0)
drh0fcef5e2005-07-19 17:38:22 +00002821 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
2822 ){
drh165be382008-12-05 02:36:33 +00002823 pTerm->wtFlags |= TERM_CODED;
drh45b1ee42005-08-02 17:48:22 +00002824 if( pTerm->iParent>=0 ){
2825 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
2826 if( (--pOther->nChild)==0 ){
drhed378002005-07-28 23:12:08 +00002827 disableTerm(pLevel, pOther);
2828 }
drh0fcef5e2005-07-19 17:38:22 +00002829 }
drh2ffb1182004-07-19 19:14:01 +00002830 }
2831}
2832
2833/*
dan69f8bb92009-08-13 19:21:16 +00002834** Code an OP_Affinity opcode to apply the column affinity string zAff
2835** to the n registers starting at base.
2836**
drh039fc322009-11-17 18:31:47 +00002837** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
2838** beginning and end of zAff are ignored. If all entries in zAff are
2839** SQLITE_AFF_NONE, then no code gets generated.
2840**
2841** This routine makes its own copy of zAff so that the caller is free
2842** to modify zAff after this routine returns.
drh94a11212004-09-25 13:12:14 +00002843*/
dan69f8bb92009-08-13 19:21:16 +00002844static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
2845 Vdbe *v = pParse->pVdbe;
drh039fc322009-11-17 18:31:47 +00002846 if( zAff==0 ){
2847 assert( pParse->db->mallocFailed );
2848 return;
2849 }
dan69f8bb92009-08-13 19:21:16 +00002850 assert( v!=0 );
drh039fc322009-11-17 18:31:47 +00002851
2852 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
2853 ** and end of the affinity string.
2854 */
2855 while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
2856 n--;
2857 base++;
2858 zAff++;
2859 }
2860 while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
2861 n--;
2862 }
2863
2864 /* Code the OP_Affinity opcode if there is anything left to do. */
2865 if( n>0 ){
2866 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
2867 sqlite3VdbeChangeP4(v, -1, zAff, n);
2868 sqlite3ExprCacheAffinityChange(pParse, base, n);
2869 }
drh94a11212004-09-25 13:12:14 +00002870}
2871
drhe8b97272005-07-19 22:22:12 +00002872
2873/*
drh51147ba2005-07-23 22:59:55 +00002874** Generate code for a single equality term of the WHERE clause. An equality
2875** term can be either X=expr or X IN (...). pTerm is the term to be
2876** coded.
2877**
drh1db639c2008-01-17 02:36:28 +00002878** The current value for the constraint is left in register iReg.
drh51147ba2005-07-23 22:59:55 +00002879**
2880** For a constraint of the form X=expr, the expression is evaluated and its
2881** result is left on the stack. For constraints of the form X IN (...)
2882** this routine sets up a loop that will iterate over all values of X.
drh94a11212004-09-25 13:12:14 +00002883*/
drh678ccce2008-03-31 18:19:54 +00002884static int codeEqualityTerm(
drh94a11212004-09-25 13:12:14 +00002885 Parse *pParse, /* The parsing context */
drhe23399f2005-07-22 00:31:39 +00002886 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
drh1db639c2008-01-17 02:36:28 +00002887 WhereLevel *pLevel, /* When level of the FROM clause we are working on */
drh678ccce2008-03-31 18:19:54 +00002888 int iTarget /* Attempt to leave results in this register */
drh94a11212004-09-25 13:12:14 +00002889){
drh0fcef5e2005-07-19 17:38:22 +00002890 Expr *pX = pTerm->pExpr;
drh50b39962006-10-28 00:28:09 +00002891 Vdbe *v = pParse->pVdbe;
drh678ccce2008-03-31 18:19:54 +00002892 int iReg; /* Register holding results */
drh1db639c2008-01-17 02:36:28 +00002893
danielk19772d605492008-10-01 08:43:03 +00002894 assert( iTarget>0 );
drh50b39962006-10-28 00:28:09 +00002895 if( pX->op==TK_EQ ){
drh678ccce2008-03-31 18:19:54 +00002896 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
drh50b39962006-10-28 00:28:09 +00002897 }else if( pX->op==TK_ISNULL ){
drh678ccce2008-03-31 18:19:54 +00002898 iReg = iTarget;
drh1db639c2008-01-17 02:36:28 +00002899 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
danielk1977b3bce662005-01-29 08:32:43 +00002900#ifndef SQLITE_OMIT_SUBQUERY
drh94a11212004-09-25 13:12:14 +00002901 }else{
danielk19779a96b662007-11-29 17:05:18 +00002902 int eType;
danielk1977b3bce662005-01-29 08:32:43 +00002903 int iTab;
drh72e8fa42007-03-28 14:30:06 +00002904 struct InLoop *pIn;
danielk1977b3bce662005-01-29 08:32:43 +00002905
drh50b39962006-10-28 00:28:09 +00002906 assert( pX->op==TK_IN );
drh678ccce2008-03-31 18:19:54 +00002907 iReg = iTarget;
danielk19770cdc0222008-06-26 18:04:03 +00002908 eType = sqlite3FindInIndex(pParse, pX, 0);
danielk1977b3bce662005-01-29 08:32:43 +00002909 iTab = pX->iTable;
drh66a51672008-01-03 00:01:23 +00002910 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
drh111a6a72008-12-21 03:51:16 +00002911 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
2912 if( pLevel->u.in.nIn==0 ){
drhb3190c12008-12-08 21:37:14 +00002913 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
drh72e8fa42007-03-28 14:30:06 +00002914 }
drh111a6a72008-12-21 03:51:16 +00002915 pLevel->u.in.nIn++;
2916 pLevel->u.in.aInLoop =
2917 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
2918 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
2919 pIn = pLevel->u.in.aInLoop;
drh72e8fa42007-03-28 14:30:06 +00002920 if( pIn ){
drh111a6a72008-12-21 03:51:16 +00002921 pIn += pLevel->u.in.nIn - 1;
drh72e8fa42007-03-28 14:30:06 +00002922 pIn->iCur = iTab;
drh1db639c2008-01-17 02:36:28 +00002923 if( eType==IN_INDEX_ROWID ){
drhb3190c12008-12-08 21:37:14 +00002924 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
drh1db639c2008-01-17 02:36:28 +00002925 }else{
drhb3190c12008-12-08 21:37:14 +00002926 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
drh1db639c2008-01-17 02:36:28 +00002927 }
2928 sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
drha6110402005-07-28 20:51:19 +00002929 }else{
drh111a6a72008-12-21 03:51:16 +00002930 pLevel->u.in.nIn = 0;
drhe23399f2005-07-22 00:31:39 +00002931 }
danielk1977b3bce662005-01-29 08:32:43 +00002932#endif
drh94a11212004-09-25 13:12:14 +00002933 }
drh0fcef5e2005-07-19 17:38:22 +00002934 disableTerm(pLevel, pTerm);
drh678ccce2008-03-31 18:19:54 +00002935 return iReg;
drh94a11212004-09-25 13:12:14 +00002936}
2937
drh51147ba2005-07-23 22:59:55 +00002938/*
2939** Generate code that will evaluate all == and IN constraints for an
drh039fc322009-11-17 18:31:47 +00002940** index.
drh51147ba2005-07-23 22:59:55 +00002941**
2942** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
2943** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
2944** The index has as many as three equality constraints, but in this
2945** example, the third "c" value is an inequality. So only two
2946** constraints are coded. This routine will generate code to evaluate
drh6df2acd2008-12-28 16:55:25 +00002947** a==5 and b IN (1,2,3). The current values for a and b will be stored
2948** in consecutive registers and the index of the first register is returned.
drh51147ba2005-07-23 22:59:55 +00002949**
2950** In the example above nEq==2. But this subroutine works for any value
2951** of nEq including 0. If nEq==0, this routine is nearly a no-op.
drh039fc322009-11-17 18:31:47 +00002952** The only thing it does is allocate the pLevel->iMem memory cell and
2953** compute the affinity string.
drh51147ba2005-07-23 22:59:55 +00002954**
drh700a2262008-12-17 19:22:15 +00002955** This routine always allocates at least one memory cell and returns
2956** the index of that memory cell. The code that
2957** calls this routine will use that memory cell to store the termination
drh51147ba2005-07-23 22:59:55 +00002958** key value of the loop. If one or more IN operators appear, then
2959** this routine allocates an additional nEq memory cells for internal
2960** use.
dan69f8bb92009-08-13 19:21:16 +00002961**
2962** Before returning, *pzAff is set to point to a buffer containing a
2963** copy of the column affinity string of the index allocated using
2964** sqlite3DbMalloc(). Except, entries in the copy of the string associated
2965** with equality constraints that use NONE affinity are set to
2966** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
2967**
2968** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
2969** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
2970**
2971** In the example above, the index on t1(a) has TEXT affinity. But since
2972** the right hand side of the equality constraint (t2.b) has NONE affinity,
2973** no conversion should be attempted before using a t2.b value as part of
2974** a key to search the index. Hence the first byte in the returned affinity
2975** string in this example would be set to SQLITE_AFF_NONE.
drh51147ba2005-07-23 22:59:55 +00002976*/
drh1db639c2008-01-17 02:36:28 +00002977static int codeAllEqualityTerms(
drh51147ba2005-07-23 22:59:55 +00002978 Parse *pParse, /* Parsing context */
2979 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
2980 WhereClause *pWC, /* The WHERE clause */
drh1db639c2008-01-17 02:36:28 +00002981 Bitmask notReady, /* Which parts of FROM have not yet been coded */
dan69f8bb92009-08-13 19:21:16 +00002982 int nExtraReg, /* Number of extra registers to allocate */
2983 char **pzAff /* OUT: Set to point to affinity string */
drh51147ba2005-07-23 22:59:55 +00002984){
drh111a6a72008-12-21 03:51:16 +00002985 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */
2986 Vdbe *v = pParse->pVdbe; /* The vm under construction */
2987 Index *pIdx; /* The index being used for this loop */
drh51147ba2005-07-23 22:59:55 +00002988 int iCur = pLevel->iTabCur; /* The cursor of the table */
2989 WhereTerm *pTerm; /* A single constraint term */
2990 int j; /* Loop counter */
drh1db639c2008-01-17 02:36:28 +00002991 int regBase; /* Base register */
drh6df2acd2008-12-28 16:55:25 +00002992 int nReg; /* Number of registers to allocate */
dan69f8bb92009-08-13 19:21:16 +00002993 char *zAff; /* Affinity string to return */
drh51147ba2005-07-23 22:59:55 +00002994
drh111a6a72008-12-21 03:51:16 +00002995 /* This module is only called on query plans that use an index. */
2996 assert( pLevel->plan.wsFlags & WHERE_INDEXED );
2997 pIdx = pLevel->plan.u.pIdx;
2998
drh51147ba2005-07-23 22:59:55 +00002999 /* Figure out how many memory cells we will need then allocate them.
drh51147ba2005-07-23 22:59:55 +00003000 */
drh700a2262008-12-17 19:22:15 +00003001 regBase = pParse->nMem + 1;
drh6df2acd2008-12-28 16:55:25 +00003002 nReg = pLevel->plan.nEq + nExtraReg;
3003 pParse->nMem += nReg;
drh51147ba2005-07-23 22:59:55 +00003004
dan69f8bb92009-08-13 19:21:16 +00003005 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
3006 if( !zAff ){
3007 pParse->db->mallocFailed = 1;
3008 }
3009
drh51147ba2005-07-23 22:59:55 +00003010 /* Evaluate the equality constraints
3011 */
drhc49de5d2007-01-19 01:06:01 +00003012 assert( pIdx->nColumn>=nEq );
3013 for(j=0; j<nEq; j++){
drh678ccce2008-03-31 18:19:54 +00003014 int r1;
drh51147ba2005-07-23 22:59:55 +00003015 int k = pIdx->aiColumn[j];
drh111a6a72008-12-21 03:51:16 +00003016 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
drh34004ce2008-07-11 16:15:17 +00003017 if( NEVER(pTerm==0) ) break;
drh165be382008-12-05 02:36:33 +00003018 assert( (pTerm->wtFlags & TERM_CODED)==0 );
drh678ccce2008-03-31 18:19:54 +00003019 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
3020 if( r1!=regBase+j ){
drh6df2acd2008-12-28 16:55:25 +00003021 if( nReg==1 ){
3022 sqlite3ReleaseTempReg(pParse, regBase);
3023 regBase = r1;
3024 }else{
3025 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
3026 }
drh678ccce2008-03-31 18:19:54 +00003027 }
drh981642f2008-04-19 14:40:43 +00003028 testcase( pTerm->eOperator & WO_ISNULL );
3029 testcase( pTerm->eOperator & WO_IN );
drh72e8fa42007-03-28 14:30:06 +00003030 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
drh039fc322009-11-17 18:31:47 +00003031 Expr *pRight = pTerm->pExpr->pRight;
drh2f2855b2009-11-18 01:25:26 +00003032 sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk);
drh039fc322009-11-17 18:31:47 +00003033 if( zAff ){
3034 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
3035 zAff[j] = SQLITE_AFF_NONE;
3036 }
3037 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
3038 zAff[j] = SQLITE_AFF_NONE;
3039 }
dan69f8bb92009-08-13 19:21:16 +00003040 }
drh51147ba2005-07-23 22:59:55 +00003041 }
3042 }
dan69f8bb92009-08-13 19:21:16 +00003043 *pzAff = zAff;
drh1db639c2008-01-17 02:36:28 +00003044 return regBase;
drh51147ba2005-07-23 22:59:55 +00003045}
3046
drh111a6a72008-12-21 03:51:16 +00003047/*
3048** Generate code for the start of the iLevel-th loop in the WHERE clause
3049** implementation described by pWInfo.
3050*/
3051static Bitmask codeOneLoopStart(
3052 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
3053 int iLevel, /* Which level of pWInfo->a[] should be coded */
drh336a5302009-04-24 15:46:21 +00003054 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */
drh111a6a72008-12-21 03:51:16 +00003055 Bitmask notReady /* Which tables are currently available */
3056){
3057 int j, k; /* Loop counters */
3058 int iCur; /* The VDBE cursor for the table */
3059 int addrNxt; /* Where to jump to continue with the next IN case */
3060 int omitTable; /* True if we use the index only */
3061 int bRev; /* True if we need to scan in reverse order */
3062 WhereLevel *pLevel; /* The where level to be coded */
3063 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
3064 WhereTerm *pTerm; /* A WHERE clause term */
3065 Parse *pParse; /* Parsing context */
3066 Vdbe *v; /* The prepared stmt under constructions */
3067 struct SrcList_item *pTabItem; /* FROM clause term being coded */
drh23d04d52008-12-23 23:56:22 +00003068 int addrBrk; /* Jump here to break out of the loop */
3069 int addrCont; /* Jump here to continue with next cycle */
drh61495262009-04-22 15:32:59 +00003070 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
3071 int iReleaseReg = 0; /* Temp register to free before returning */
drh111a6a72008-12-21 03:51:16 +00003072
3073 pParse = pWInfo->pParse;
3074 v = pParse->pVdbe;
3075 pWC = pWInfo->pWC;
3076 pLevel = &pWInfo->a[iLevel];
3077 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
3078 iCur = pTabItem->iCursor;
3079 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
danielk19771d461462009-04-21 09:02:45 +00003080 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
drh336a5302009-04-24 15:46:21 +00003081 && (wctrlFlags & WHERE_FORCE_TABLE)==0;
drh111a6a72008-12-21 03:51:16 +00003082
3083 /* Create labels for the "break" and "continue" instructions
3084 ** for the current loop. Jump to addrBrk to break out of a loop.
3085 ** Jump to cont to go immediately to the next iteration of the
3086 ** loop.
3087 **
3088 ** When there is an IN operator, we also have a "addrNxt" label that
3089 ** means to continue with the next IN value combination. When
3090 ** there are no IN operators in the constraints, the "addrNxt" label
3091 ** is the same as "addrBrk".
3092 */
3093 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
3094 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
3095
3096 /* If this is the right table of a LEFT OUTER JOIN, allocate and
3097 ** initialize a memory cell that records if this table matches any
3098 ** row of the left table of the join.
3099 */
3100 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
3101 pLevel->iLeftJoin = ++pParse->nMem;
3102 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
3103 VdbeComment((v, "init LEFT JOIN no-match flag"));
3104 }
3105
3106#ifndef SQLITE_OMIT_VIRTUALTABLE
3107 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
3108 /* Case 0: The table is a virtual-table. Use the VFilter and VNext
3109 ** to access the data.
3110 */
3111 int iReg; /* P3 Value for OP_VFilter */
3112 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
3113 int nConstraint = pVtabIdx->nConstraint;
3114 struct sqlite3_index_constraint_usage *aUsage =
3115 pVtabIdx->aConstraintUsage;
3116 const struct sqlite3_index_constraint *aConstraint =
3117 pVtabIdx->aConstraint;
3118
drha62bb8d2009-11-23 21:23:45 +00003119 sqlite3ExprCachePush(pParse);
drh111a6a72008-12-21 03:51:16 +00003120 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
drh111a6a72008-12-21 03:51:16 +00003121 for(j=1; j<=nConstraint; j++){
3122 for(k=0; k<nConstraint; k++){
3123 if( aUsage[k].argvIndex==j ){
3124 int iTerm = aConstraint[k].iTermOffset;
drh111a6a72008-12-21 03:51:16 +00003125 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
3126 break;
3127 }
3128 }
3129 if( k==nConstraint ) break;
3130 }
drh111a6a72008-12-21 03:51:16 +00003131 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
3132 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
3133 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
3134 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
drh111a6a72008-12-21 03:51:16 +00003135 pVtabIdx->needToFreeIdxStr = 0;
3136 for(j=0; j<nConstraint; j++){
3137 if( aUsage[j].omit ){
3138 int iTerm = aConstraint[j].iTermOffset;
3139 disableTerm(pLevel, &pWC->a[iTerm]);
3140 }
3141 }
3142 pLevel->op = OP_VNext;
3143 pLevel->p1 = iCur;
3144 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
drh23d04d52008-12-23 23:56:22 +00003145 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
drha62bb8d2009-11-23 21:23:45 +00003146 sqlite3ExprCachePop(pParse, 1);
drh111a6a72008-12-21 03:51:16 +00003147 }else
3148#endif /* SQLITE_OMIT_VIRTUALTABLE */
3149
3150 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
3151 /* Case 1: We can directly reference a single row using an
3152 ** equality comparison against the ROWID field. Or
3153 ** we reference multiple rows using a "rowid IN (...)"
3154 ** construct.
3155 */
danielk19771d461462009-04-21 09:02:45 +00003156 iReleaseReg = sqlite3GetTempReg(pParse);
drh111a6a72008-12-21 03:51:16 +00003157 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
3158 assert( pTerm!=0 );
3159 assert( pTerm->pExpr!=0 );
3160 assert( pTerm->leftCursor==iCur );
3161 assert( omitTable==0 );
danielk19771d461462009-04-21 09:02:45 +00003162 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
drh111a6a72008-12-21 03:51:16 +00003163 addrNxt = pLevel->addrNxt;
danielk19771d461462009-04-21 09:02:45 +00003164 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
3165 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
drhceea3322009-04-23 13:22:42 +00003166 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
drh111a6a72008-12-21 03:51:16 +00003167 VdbeComment((v, "pk"));
3168 pLevel->op = OP_Noop;
3169 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
3170 /* Case 2: We have an inequality comparison against the ROWID field.
3171 */
3172 int testOp = OP_Noop;
3173 int start;
3174 int memEndValue = 0;
3175 WhereTerm *pStart, *pEnd;
3176
3177 assert( omitTable==0 );
3178 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
3179 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
3180 if( bRev ){
3181 pTerm = pStart;
3182 pStart = pEnd;
3183 pEnd = pTerm;
3184 }
3185 if( pStart ){
3186 Expr *pX; /* The expression that defines the start bound */
3187 int r1, rTemp; /* Registers for holding the start boundary */
3188
3189 /* The following constant maps TK_xx codes into corresponding
3190 ** seek opcodes. It depends on a particular ordering of TK_xx
3191 */
3192 const u8 aMoveOp[] = {
3193 /* TK_GT */ OP_SeekGt,
3194 /* TK_LE */ OP_SeekLe,
3195 /* TK_LT */ OP_SeekLt,
3196 /* TK_GE */ OP_SeekGe
3197 };
3198 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
3199 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
3200 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
3201
3202 pX = pStart->pExpr;
3203 assert( pX!=0 );
3204 assert( pStart->leftCursor==iCur );
3205 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
3206 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
3207 VdbeComment((v, "pk"));
3208 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
3209 sqlite3ReleaseTempReg(pParse, rTemp);
3210 disableTerm(pLevel, pStart);
3211 }else{
3212 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
3213 }
3214 if( pEnd ){
3215 Expr *pX;
3216 pX = pEnd->pExpr;
3217 assert( pX!=0 );
3218 assert( pEnd->leftCursor==iCur );
3219 memEndValue = ++pParse->nMem;
3220 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
3221 if( pX->op==TK_LT || pX->op==TK_GT ){
3222 testOp = bRev ? OP_Le : OP_Ge;
3223 }else{
3224 testOp = bRev ? OP_Lt : OP_Gt;
3225 }
3226 disableTerm(pLevel, pEnd);
3227 }
3228 start = sqlite3VdbeCurrentAddr(v);
3229 pLevel->op = bRev ? OP_Prev : OP_Next;
3230 pLevel->p1 = iCur;
3231 pLevel->p2 = start;
drhafc266a2010-03-31 17:47:44 +00003232 if( pStart==0 && pEnd==0 ){
3233 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3234 }else{
3235 assert( pLevel->p5==0 );
3236 }
danielk19771d461462009-04-21 09:02:45 +00003237 if( testOp!=OP_Noop ){
3238 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
3239 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
drhceea3322009-04-23 13:22:42 +00003240 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danielk19771d461462009-04-21 09:02:45 +00003241 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
3242 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
drh111a6a72008-12-21 03:51:16 +00003243 }
3244 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
3245 /* Case 3: A scan using an index.
3246 **
3247 ** The WHERE clause may contain zero or more equality
3248 ** terms ("==" or "IN" operators) that refer to the N
3249 ** left-most columns of the index. It may also contain
3250 ** inequality constraints (>, <, >= or <=) on the indexed
3251 ** column that immediately follows the N equalities. Only
3252 ** the right-most column can be an inequality - the rest must
3253 ** use the "==" and "IN" operators. For example, if the
3254 ** index is on (x,y,z), then the following clauses are all
3255 ** optimized:
3256 **
3257 ** x=5
3258 ** x=5 AND y=10
3259 ** x=5 AND y<10
3260 ** x=5 AND y>5 AND y<10
3261 ** x=5 AND y=5 AND z<=10
3262 **
3263 ** The z<10 term of the following cannot be used, only
3264 ** the x=5 term:
3265 **
3266 ** x=5 AND z<10
3267 **
3268 ** N may be zero if there are inequality constraints.
3269 ** If there are no inequality constraints, then N is at
3270 ** least one.
3271 **
3272 ** This case is also used when there are no WHERE clause
3273 ** constraints but an index is selected anyway, in order
3274 ** to force the output order to conform to an ORDER BY.
3275 */
3276 int aStartOp[] = {
3277 0,
3278 0,
3279 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
3280 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
3281 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */
3282 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */
3283 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */
3284 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */
3285 };
3286 int aEndOp[] = {
3287 OP_Noop, /* 0: (!end_constraints) */
3288 OP_IdxGE, /* 1: (end_constraints && !bRev) */
3289 OP_IdxLT /* 2: (end_constraints && bRev) */
3290 };
3291 int nEq = pLevel->plan.nEq;
3292 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
3293 int regBase; /* Base register holding constraint values */
3294 int r1; /* Temp register */
3295 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
3296 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
3297 int startEq; /* True if range start uses ==, >= or <= */
3298 int endEq; /* True if range end uses ==, >= or <= */
3299 int start_constraints; /* Start of range is constrained */
3300 int nConstraint; /* Number of constraint terms */
3301 Index *pIdx; /* The index we will be using */
3302 int iIdxCur; /* The VDBE cursor for the index */
drh6df2acd2008-12-28 16:55:25 +00003303 int nExtraReg = 0; /* Number of extra registers needed */
3304 int op; /* Instruction opcode */
dan69f8bb92009-08-13 19:21:16 +00003305 char *zAff;
drh111a6a72008-12-21 03:51:16 +00003306
3307 pIdx = pLevel->plan.u.pIdx;
3308 iIdxCur = pLevel->iIdxCur;
3309 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
3310
drh111a6a72008-12-21 03:51:16 +00003311 /* If this loop satisfies a sort order (pOrderBy) request that
3312 ** was passed to this function to implement a "SELECT min(x) ..."
3313 ** query, then the caller will only allow the loop to run for
3314 ** a single iteration. This means that the first row returned
3315 ** should not have a NULL value stored in 'x'. If column 'x' is
3316 ** the first one after the nEq equality constraints in the index,
3317 ** this requires some special handling.
3318 */
3319 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
3320 && (pLevel->plan.wsFlags&WHERE_ORDERBY)
3321 && (pIdx->nColumn>nEq)
3322 ){
3323 /* assert( pOrderBy->nExpr==1 ); */
3324 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
3325 isMinQuery = 1;
drh6df2acd2008-12-28 16:55:25 +00003326 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003327 }
3328
3329 /* Find any inequality constraint terms for the start and end
3330 ** of the range.
3331 */
3332 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
3333 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
drh6df2acd2008-12-28 16:55:25 +00003334 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003335 }
3336 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
3337 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
drh6df2acd2008-12-28 16:55:25 +00003338 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003339 }
3340
drh6df2acd2008-12-28 16:55:25 +00003341 /* Generate code to evaluate all constraint terms using == or IN
3342 ** and store the values of those terms in an array of registers
3343 ** starting at regBase.
3344 */
dan69f8bb92009-08-13 19:21:16 +00003345 regBase = codeAllEqualityTerms(
3346 pParse, pLevel, pWC, notReady, nExtraReg, &zAff
3347 );
drh6df2acd2008-12-28 16:55:25 +00003348 addrNxt = pLevel->addrNxt;
3349
drh111a6a72008-12-21 03:51:16 +00003350 /* If we are doing a reverse order scan on an ascending index, or
3351 ** a forward order scan on a descending index, interchange the
3352 ** start and end terms (pRangeStart and pRangeEnd).
3353 */
3354 if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
3355 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
3356 }
3357
3358 testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
3359 testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
3360 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
3361 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
3362 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
3363 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
3364 start_constraints = pRangeStart || nEq>0;
3365
3366 /* Seek the index cursor to the start of the range. */
3367 nConstraint = nEq;
3368 if( pRangeStart ){
dan69f8bb92009-08-13 19:21:16 +00003369 Expr *pRight = pRangeStart->pExpr->pRight;
3370 sqlite3ExprCode(pParse, pRight, regBase+nEq);
drh2f2855b2009-11-18 01:25:26 +00003371 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
drh039fc322009-11-17 18:31:47 +00003372 if( zAff ){
3373 if( sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE){
3374 /* Since the comparison is to be performed with no conversions
3375 ** applied to the operands, set the affinity to apply to pRight to
3376 ** SQLITE_AFF_NONE. */
3377 zAff[nConstraint] = SQLITE_AFF_NONE;
3378 }
3379 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[nConstraint]) ){
3380 zAff[nConstraint] = SQLITE_AFF_NONE;
3381 }
3382 }
drh111a6a72008-12-21 03:51:16 +00003383 nConstraint++;
3384 }else if( isMinQuery ){
3385 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
3386 nConstraint++;
3387 startEq = 0;
3388 start_constraints = 1;
3389 }
dan69f8bb92009-08-13 19:21:16 +00003390 codeApplyAffinity(pParse, regBase, nConstraint, zAff);
drh111a6a72008-12-21 03:51:16 +00003391 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
3392 assert( op!=0 );
3393 testcase( op==OP_Rewind );
3394 testcase( op==OP_Last );
3395 testcase( op==OP_SeekGt );
3396 testcase( op==OP_SeekGe );
3397 testcase( op==OP_SeekLe );
3398 testcase( op==OP_SeekLt );
drh8cff69d2009-11-12 19:59:44 +00003399 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
drh111a6a72008-12-21 03:51:16 +00003400
3401 /* Load the value for the inequality constraint at the end of the
3402 ** range (if any).
3403 */
3404 nConstraint = nEq;
3405 if( pRangeEnd ){
dan69f8bb92009-08-13 19:21:16 +00003406 Expr *pRight = pRangeEnd->pExpr->pRight;
drhf49f3522009-12-30 14:12:38 +00003407 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
dan69f8bb92009-08-13 19:21:16 +00003408 sqlite3ExprCode(pParse, pRight, regBase+nEq);
drh2f2855b2009-11-18 01:25:26 +00003409 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
drh039fc322009-11-17 18:31:47 +00003410 if( zAff ){
3411 if( sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE){
3412 /* Since the comparison is to be performed with no conversions
3413 ** applied to the operands, set the affinity to apply to pRight to
3414 ** SQLITE_AFF_NONE. */
3415 zAff[nConstraint] = SQLITE_AFF_NONE;
3416 }
3417 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[nConstraint]) ){
3418 zAff[nConstraint] = SQLITE_AFF_NONE;
3419 }
3420 }
dan69f8bb92009-08-13 19:21:16 +00003421 codeApplyAffinity(pParse, regBase, nEq+1, zAff);
drh111a6a72008-12-21 03:51:16 +00003422 nConstraint++;
3423 }
drhf6a82032009-11-16 22:54:50 +00003424 sqlite3DbFree(pParse->db, zAff);
drh111a6a72008-12-21 03:51:16 +00003425
3426 /* Top of the loop body */
3427 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
3428
3429 /* Check if the index cursor is past the end of the range. */
3430 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
3431 testcase( op==OP_Noop );
3432 testcase( op==OP_IdxGE );
3433 testcase( op==OP_IdxLT );
drh6df2acd2008-12-28 16:55:25 +00003434 if( op!=OP_Noop ){
drh8cff69d2009-11-12 19:59:44 +00003435 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
drh6df2acd2008-12-28 16:55:25 +00003436 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
3437 }
drh111a6a72008-12-21 03:51:16 +00003438
3439 /* If there are inequality constraints, check that the value
3440 ** of the table column that the inequality contrains is not NULL.
3441 ** If it is, jump to the next iteration of the loop.
3442 */
3443 r1 = sqlite3GetTempReg(pParse);
3444 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
3445 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
3446 if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
3447 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
3448 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
3449 }
danielk19771d461462009-04-21 09:02:45 +00003450 sqlite3ReleaseTempReg(pParse, r1);
drh111a6a72008-12-21 03:51:16 +00003451
3452 /* Seek the table cursor, if required */
drh23d04d52008-12-23 23:56:22 +00003453 disableTerm(pLevel, pRangeStart);
3454 disableTerm(pLevel, pRangeEnd);
danielk19771d461462009-04-21 09:02:45 +00003455 if( !omitTable ){
3456 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
3457 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
drhceea3322009-04-23 13:22:42 +00003458 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danielk19771d461462009-04-21 09:02:45 +00003459 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
drh111a6a72008-12-21 03:51:16 +00003460 }
drh111a6a72008-12-21 03:51:16 +00003461
3462 /* Record the instruction used to terminate the loop. Disable
3463 ** WHERE clause terms made redundant by the index range scan.
3464 */
3465 pLevel->op = bRev ? OP_Prev : OP_Next;
3466 pLevel->p1 = iIdxCur;
drhdd5f5a62008-12-23 13:35:23 +00003467 }else
3468
drh23d04d52008-12-23 23:56:22 +00003469#ifndef SQLITE_OMIT_OR_OPTIMIZATION
drhdd5f5a62008-12-23 13:35:23 +00003470 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
drh111a6a72008-12-21 03:51:16 +00003471 /* Case 4: Two or more separately indexed terms connected by OR
3472 **
3473 ** Example:
3474 **
3475 ** CREATE TABLE t1(a,b,c,d);
3476 ** CREATE INDEX i1 ON t1(a);
3477 ** CREATE INDEX i2 ON t1(b);
3478 ** CREATE INDEX i3 ON t1(c);
3479 **
3480 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
3481 **
3482 ** In the example, there are three indexed terms connected by OR.
danielk19771d461462009-04-21 09:02:45 +00003483 ** The top of the loop looks like this:
drh111a6a72008-12-21 03:51:16 +00003484 **
drh1b26c7c2009-04-22 02:15:47 +00003485 ** Null 1 # Zero the rowset in reg 1
drh111a6a72008-12-21 03:51:16 +00003486 **
danielk19771d461462009-04-21 09:02:45 +00003487 ** Then, for each indexed term, the following. The arguments to
drh1b26c7c2009-04-22 02:15:47 +00003488 ** RowSetTest are such that the rowid of the current row is inserted
3489 ** into the RowSet. If it is already present, control skips the
danielk19771d461462009-04-21 09:02:45 +00003490 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
drh111a6a72008-12-21 03:51:16 +00003491 **
danielk19771d461462009-04-21 09:02:45 +00003492 ** sqlite3WhereBegin(<term>)
drh1b26c7c2009-04-22 02:15:47 +00003493 ** RowSetTest # Insert rowid into rowset
danielk19771d461462009-04-21 09:02:45 +00003494 ** Gosub 2 A
3495 ** sqlite3WhereEnd()
3496 **
3497 ** Following the above, code to terminate the loop. Label A, the target
3498 ** of the Gosub above, jumps to the instruction right after the Goto.
3499 **
drh1b26c7c2009-04-22 02:15:47 +00003500 ** Null 1 # Zero the rowset in reg 1
danielk19771d461462009-04-21 09:02:45 +00003501 ** Goto B # The loop is finished.
3502 **
3503 ** A: <loop body> # Return data, whatever.
3504 **
3505 ** Return 2 # Jump back to the Gosub
3506 **
3507 ** B: <after the loop>
3508 **
drh111a6a72008-12-21 03:51:16 +00003509 */
drh111a6a72008-12-21 03:51:16 +00003510 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
danielk19771d461462009-04-21 09:02:45 +00003511 WhereTerm *pFinal; /* Final subterm within the OR-clause. */
drhc01a3c12009-12-16 22:10:49 +00003512 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
danielk19771d461462009-04-21 09:02:45 +00003513
3514 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
shane85095702009-06-15 16:27:08 +00003515 int regRowset = 0; /* Register for RowSet object */
3516 int regRowid = 0; /* Register holding rowid */
danielk19771d461462009-04-21 09:02:45 +00003517 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
3518 int iRetInit; /* Address of regReturn init */
drhc01a3c12009-12-16 22:10:49 +00003519 int untestedTerms = 0; /* Some terms not completely tested */
danielk19771d461462009-04-21 09:02:45 +00003520 int ii;
drh111a6a72008-12-21 03:51:16 +00003521
3522 pTerm = pLevel->plan.u.pTerm;
3523 assert( pTerm!=0 );
3524 assert( pTerm->eOperator==WO_OR );
3525 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
3526 pOrWc = &pTerm->u.pOrInfo->wc;
danielk19771d461462009-04-21 09:02:45 +00003527 pFinal = &pOrWc->a[pOrWc->nTerm-1];
drhc01a3c12009-12-16 22:10:49 +00003528 pLevel->op = OP_Return;
3529 pLevel->p1 = regReturn;
drh23d04d52008-12-23 23:56:22 +00003530
drhc01a3c12009-12-16 22:10:49 +00003531 /* Set up a new SrcList ni pOrTab containing the table being scanned
3532 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
3533 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
3534 */
3535 if( pWInfo->nLevel>1 ){
3536 int nNotReady; /* The number of notReady tables */
3537 struct SrcList_item *origSrc; /* Original list of tables */
3538 nNotReady = pWInfo->nLevel - iLevel - 1;
3539 pOrTab = sqlite3StackAllocRaw(pParse->db,
3540 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
3541 if( pOrTab==0 ) return notReady;
shaneh46aae3c2009-12-31 19:06:23 +00003542 pOrTab->nAlloc = (i16)(nNotReady + 1);
3543 pOrTab->nSrc = pOrTab->nAlloc;
drhc01a3c12009-12-16 22:10:49 +00003544 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
3545 origSrc = pWInfo->pTabList->a;
3546 for(k=1; k<=nNotReady; k++){
3547 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
3548 }
3549 }else{
3550 pOrTab = pWInfo->pTabList;
3551 }
danielk19771d461462009-04-21 09:02:45 +00003552
drh1b26c7c2009-04-22 02:15:47 +00003553 /* Initialize the rowset register to contain NULL. An SQL NULL is
3554 ** equivalent to an empty rowset.
danielk19771d461462009-04-21 09:02:45 +00003555 **
3556 ** Also initialize regReturn to contain the address of the instruction
3557 ** immediately following the OP_Return at the bottom of the loop. This
3558 ** is required in a few obscure LEFT JOIN cases where control jumps
3559 ** over the top of the loop into the body of it. In this case the
3560 ** correct response for the end-of-loop code (the OP_Return) is to
3561 ** fall through to the next instruction, just as an OP_Next does if
3562 ** called on an uninitialized cursor.
3563 */
drh336a5302009-04-24 15:46:21 +00003564 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3565 regRowset = ++pParse->nMem;
3566 regRowid = ++pParse->nMem;
3567 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
3568 }
danielk19771d461462009-04-21 09:02:45 +00003569 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
3570
danielk19771d461462009-04-21 09:02:45 +00003571 for(ii=0; ii<pOrWc->nTerm; ii++){
3572 WhereTerm *pOrTerm = &pOrWc->a[ii];
3573 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
3574 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
danielk19771d461462009-04-21 09:02:45 +00003575 /* Loop through table entries that match term pOrTerm. */
drhc01a3c12009-12-16 22:10:49 +00003576 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0,
3577 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE |
3578 WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
danielk19771d461462009-04-21 09:02:45 +00003579 if( pSubWInfo ){
drh336a5302009-04-24 15:46:21 +00003580 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3581 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
3582 int r;
3583 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
drhb6da74e2009-12-24 16:00:28 +00003584 regRowid);
drh8cff69d2009-11-12 19:59:44 +00003585 sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
3586 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
drh336a5302009-04-24 15:46:21 +00003587 }
danielk19771d461462009-04-21 09:02:45 +00003588 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
3589
drhc01a3c12009-12-16 22:10:49 +00003590 /* The pSubWInfo->untestedTerms flag means that this OR term
3591 ** contained one or more AND term from a notReady table. The
3592 ** terms from the notReady table could not be tested and will
3593 ** need to be tested later.
3594 */
3595 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
3596
danielk19771d461462009-04-21 09:02:45 +00003597 /* Finish the loop through table entries that match term pOrTerm. */
3598 sqlite3WhereEnd(pSubWInfo);
3599 }
drhdd5f5a62008-12-23 13:35:23 +00003600 }
3601 }
danielk19771d461462009-04-21 09:02:45 +00003602 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
danielk19771d461462009-04-21 09:02:45 +00003603 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
3604 sqlite3VdbeResolveLabel(v, iLoopBody);
3605
drhc01a3c12009-12-16 22:10:49 +00003606 if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
3607 if( !untestedTerms ) disableTerm(pLevel, pTerm);
drhdd5f5a62008-12-23 13:35:23 +00003608 }else
drh23d04d52008-12-23 23:56:22 +00003609#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
drhdd5f5a62008-12-23 13:35:23 +00003610
3611 {
drh111a6a72008-12-21 03:51:16 +00003612 /* Case 5: There is no usable index. We must do a complete
3613 ** scan of the entire table.
3614 */
drh699b3d42009-02-23 16:52:07 +00003615 static const u8 aStep[] = { OP_Next, OP_Prev };
3616 static const u8 aStart[] = { OP_Rewind, OP_Last };
3617 assert( bRev==0 || bRev==1 );
drh111a6a72008-12-21 03:51:16 +00003618 assert( omitTable==0 );
drh699b3d42009-02-23 16:52:07 +00003619 pLevel->op = aStep[bRev];
drh111a6a72008-12-21 03:51:16 +00003620 pLevel->p1 = iCur;
drh699b3d42009-02-23 16:52:07 +00003621 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
drh111a6a72008-12-21 03:51:16 +00003622 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3623 }
3624 notReady &= ~getMask(pWC->pMaskSet, iCur);
3625
3626 /* Insert code to test every subexpression that can be completely
3627 ** computed using the current set of tables.
3628 */
3629 k = 0;
3630 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
3631 Expr *pE;
3632 testcase( pTerm->wtFlags & TERM_VIRTUAL );
3633 testcase( pTerm->wtFlags & TERM_CODED );
3634 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
drhc01a3c12009-12-16 22:10:49 +00003635 if( (pTerm->prereqAll & notReady)!=0 ){
3636 testcase( pWInfo->untestedTerms==0
3637 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
3638 pWInfo->untestedTerms = 1;
3639 continue;
3640 }
drh111a6a72008-12-21 03:51:16 +00003641 pE = pTerm->pExpr;
3642 assert( pE!=0 );
3643 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
3644 continue;
3645 }
drh111a6a72008-12-21 03:51:16 +00003646 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
drh111a6a72008-12-21 03:51:16 +00003647 k = 1;
3648 pTerm->wtFlags |= TERM_CODED;
3649 }
3650
3651 /* For a LEFT OUTER JOIN, generate code that will record the fact that
3652 ** at least one row of the right table has matched the left table.
3653 */
3654 if( pLevel->iLeftJoin ){
3655 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
3656 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
3657 VdbeComment((v, "record LEFT JOIN hit"));
drhceea3322009-04-23 13:22:42 +00003658 sqlite3ExprCacheClear(pParse);
drh111a6a72008-12-21 03:51:16 +00003659 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
3660 testcase( pTerm->wtFlags & TERM_VIRTUAL );
3661 testcase( pTerm->wtFlags & TERM_CODED );
3662 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
drhc01a3c12009-12-16 22:10:49 +00003663 if( (pTerm->prereqAll & notReady)!=0 ){
drhb057e562009-12-16 23:43:55 +00003664 assert( pWInfo->untestedTerms );
drhc01a3c12009-12-16 22:10:49 +00003665 continue;
3666 }
drh111a6a72008-12-21 03:51:16 +00003667 assert( pTerm->pExpr );
3668 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
3669 pTerm->wtFlags |= TERM_CODED;
3670 }
3671 }
danielk19771d461462009-04-21 09:02:45 +00003672 sqlite3ReleaseTempReg(pParse, iReleaseReg);
drh23d04d52008-12-23 23:56:22 +00003673
drh111a6a72008-12-21 03:51:16 +00003674 return notReady;
3675}
3676
drh549c8b62005-09-19 13:15:23 +00003677#if defined(SQLITE_TEST)
drh84bfda42005-07-15 13:05:21 +00003678/*
3679** The following variable holds a text description of query plan generated
3680** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
3681** overwrites the previous. This information is used for testing and
3682** analysis only.
3683*/
3684char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
3685static int nQPlan = 0; /* Next free slow in _query_plan[] */
3686
3687#endif /* SQLITE_TEST */
3688
3689
drh9eff6162006-06-12 21:59:13 +00003690/*
3691** Free a WhereInfo structure
3692*/
drh10fe8402008-10-11 16:47:35 +00003693static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
drh9eff6162006-06-12 21:59:13 +00003694 if( pWInfo ){
3695 int i;
3696 for(i=0; i<pWInfo->nLevel; i++){
drh4be8b512006-06-13 23:51:34 +00003697 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
3698 if( pInfo ){
danielk19771d461462009-04-21 09:02:45 +00003699 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
danielk197780442942008-12-24 11:25:39 +00003700 if( pInfo->needToFreeIdxStr ){
3701 sqlite3_free(pInfo->idxStr);
danielk1977be229652009-03-20 14:18:51 +00003702 }
drh633e6d52008-07-28 19:34:53 +00003703 sqlite3DbFree(db, pInfo);
danielk1977be8a7832006-06-13 15:00:54 +00003704 }
drh8b307fb2010-04-06 15:57:05 +00003705 if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
drha21a64d2010-04-06 22:33:55 +00003706 Index *pIdx = pWInfo->a[i].plan.u.pIdx;
3707 if( pIdx ){
3708 sqlite3DbFree(db, pIdx->zColAff);
3709 sqlite3DbFree(db, pIdx);
3710 }
drh8b307fb2010-04-06 15:57:05 +00003711 }
drh9eff6162006-06-12 21:59:13 +00003712 }
drh111a6a72008-12-21 03:51:16 +00003713 whereClauseClear(pWInfo->pWC);
drh633e6d52008-07-28 19:34:53 +00003714 sqlite3DbFree(db, pWInfo);
drh9eff6162006-06-12 21:59:13 +00003715 }
3716}
3717
drh94a11212004-09-25 13:12:14 +00003718
3719/*
drhe3184742002-06-19 14:27:05 +00003720** Generate the beginning of the loop used for WHERE clause processing.
drhacf3b982005-01-03 01:27:18 +00003721** The return value is a pointer to an opaque structure that contains
drh75897232000-05-29 14:26:00 +00003722** information needed to terminate the loop. Later, the calling routine
danielk19774adee202004-05-08 08:23:19 +00003723** should invoke sqlite3WhereEnd() with the return value of this function
drh75897232000-05-29 14:26:00 +00003724** in order to complete the WHERE clause processing.
3725**
3726** If an error occurs, this routine returns NULL.
drhc27a1ce2002-06-14 20:58:45 +00003727**
3728** The basic idea is to do a nested loop, one loop for each table in
3729** the FROM clause of a select. (INSERT and UPDATE statements are the
3730** same as a SELECT with only a single table in the FROM clause.) For
3731** example, if the SQL is this:
3732**
3733** SELECT * FROM t1, t2, t3 WHERE ...;
3734**
3735** Then the code generated is conceptually like the following:
3736**
3737** foreach row1 in t1 do \ Code generated
danielk19774adee202004-05-08 08:23:19 +00003738** foreach row2 in t2 do |-- by sqlite3WhereBegin()
drhc27a1ce2002-06-14 20:58:45 +00003739** foreach row3 in t3 do /
3740** ...
3741** end \ Code generated
danielk19774adee202004-05-08 08:23:19 +00003742** end |-- by sqlite3WhereEnd()
drhc27a1ce2002-06-14 20:58:45 +00003743** end /
3744**
drh29dda4a2005-07-21 18:23:20 +00003745** Note that the loops might not be nested in the order in which they
3746** appear in the FROM clause if a different order is better able to make
drh51147ba2005-07-23 22:59:55 +00003747** use of indices. Note also that when the IN operator appears in
3748** the WHERE clause, it might result in additional nested loops for
3749** scanning through all values on the right-hand side of the IN.
drh29dda4a2005-07-21 18:23:20 +00003750**
drhc27a1ce2002-06-14 20:58:45 +00003751** There are Btree cursors associated with each table. t1 uses cursor
drh6a3ea0e2003-05-02 14:32:12 +00003752** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
3753** And so forth. This routine generates code to open those VDBE cursors
danielk19774adee202004-05-08 08:23:19 +00003754** and sqlite3WhereEnd() generates the code to close them.
drhc27a1ce2002-06-14 20:58:45 +00003755**
drhe6f85e72004-12-25 01:03:13 +00003756** The code that sqlite3WhereBegin() generates leaves the cursors named
3757** in pTabList pointing at their appropriate entries. The [...] code
drhf0863fe2005-06-12 21:35:51 +00003758** can use OP_Column and OP_Rowid opcodes on these cursors to extract
drhe6f85e72004-12-25 01:03:13 +00003759** data from the various tables of the loop.
3760**
drhc27a1ce2002-06-14 20:58:45 +00003761** If the WHERE clause is empty, the foreach loops must each scan their
3762** entire tables. Thus a three-way join is an O(N^3) operation. But if
3763** the tables have indices and there are terms in the WHERE clause that
3764** refer to those indices, a complete table scan can be avoided and the
3765** code will run much faster. Most of the work of this routine is checking
3766** to see if there are indices that can be used to speed up the loop.
3767**
3768** Terms of the WHERE clause are also used to limit which rows actually
3769** make it to the "..." in the middle of the loop. After each "foreach",
3770** terms of the WHERE clause that use only terms in that loop and outer
3771** loops are evaluated and if false a jump is made around all subsequent
3772** inner loops (or around the "..." if the test occurs within the inner-
3773** most loop)
3774**
3775** OUTER JOINS
3776**
3777** An outer join of tables t1 and t2 is conceptally coded as follows:
3778**
3779** foreach row1 in t1 do
3780** flag = 0
3781** foreach row2 in t2 do
3782** start:
3783** ...
3784** flag = 1
3785** end
drhe3184742002-06-19 14:27:05 +00003786** if flag==0 then
3787** move the row2 cursor to a null row
3788** goto start
3789** fi
drhc27a1ce2002-06-14 20:58:45 +00003790** end
3791**
drhe3184742002-06-19 14:27:05 +00003792** ORDER BY CLAUSE PROCESSING
3793**
3794** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
3795** if there is one. If there is no ORDER BY clause or if this routine
3796** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
3797**
3798** If an index can be used so that the natural output order of the table
3799** scan is correct for the ORDER BY clause, then that index is used and
3800** *ppOrderBy is set to NULL. This is an optimization that prevents an
3801** unnecessary sort of the result set if an index appropriate for the
3802** ORDER BY clause already exists.
3803**
3804** If the where clause loops cannot be arranged to provide the correct
3805** output order, then the *ppOrderBy is unchanged.
drh75897232000-05-29 14:26:00 +00003806*/
danielk19774adee202004-05-08 08:23:19 +00003807WhereInfo *sqlite3WhereBegin(
danielk1977ed326d72004-11-16 15:50:19 +00003808 Parse *pParse, /* The parser context */
3809 SrcList *pTabList, /* A list of all tables to be scanned */
3810 Expr *pWhere, /* The WHERE clause */
danielk1977a9d1ccb2008-01-05 17:39:29 +00003811 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
drh336a5302009-04-24 15:46:21 +00003812 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */
drh75897232000-05-29 14:26:00 +00003813){
3814 int i; /* Loop counter */
danielk1977be229652009-03-20 14:18:51 +00003815 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
drhc01a3c12009-12-16 22:10:49 +00003816 int nTabList; /* Number of elements in pTabList */
drh75897232000-05-29 14:26:00 +00003817 WhereInfo *pWInfo; /* Will become the return value of this function */
3818 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
drhfe05af82005-07-21 03:14:59 +00003819 Bitmask notReady; /* Cursors that are not yet positioned */
drh111a6a72008-12-21 03:51:16 +00003820 WhereMaskSet *pMaskSet; /* The expression mask set */
drh111a6a72008-12-21 03:51:16 +00003821 WhereClause *pWC; /* Decomposition of the WHERE clause */
drh9012bcb2004-12-19 00:11:35 +00003822 struct SrcList_item *pTabItem; /* A single entry from pTabList */
3823 WhereLevel *pLevel; /* A single level in the pWInfo list */
drh29dda4a2005-07-21 18:23:20 +00003824 int iFrom; /* First unused FROM clause element */
drh111a6a72008-12-21 03:51:16 +00003825 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */
drh17435752007-08-16 04:30:38 +00003826 sqlite3 *db; /* Database connection */
drh75897232000-05-29 14:26:00 +00003827
drh29dda4a2005-07-21 18:23:20 +00003828 /* The number of tables in the FROM clause is limited by the number of
drh1398ad32005-01-19 23:24:50 +00003829 ** bits in a Bitmask
3830 */
drh29dda4a2005-07-21 18:23:20 +00003831 if( pTabList->nSrc>BMS ){
3832 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
drh1398ad32005-01-19 23:24:50 +00003833 return 0;
3834 }
3835
drhc01a3c12009-12-16 22:10:49 +00003836 /* This function normally generates a nested loop for all tables in
3837 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should
3838 ** only generate code for the first table in pTabList and assume that
3839 ** any cursors associated with subsequent tables are uninitialized.
3840 */
3841 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
3842
drh75897232000-05-29 14:26:00 +00003843 /* Allocate and initialize the WhereInfo structure that will become the
danielk1977be229652009-03-20 14:18:51 +00003844 ** return value. A single allocation is used to store the WhereInfo
3845 ** struct, the contents of WhereInfo.a[], the WhereClause structure
3846 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
3847 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
3848 ** some architectures. Hence the ROUND8() below.
drh75897232000-05-29 14:26:00 +00003849 */
drh17435752007-08-16 04:30:38 +00003850 db = pParse->db;
drhc01a3c12009-12-16 22:10:49 +00003851 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
danielk1977be229652009-03-20 14:18:51 +00003852 pWInfo = sqlite3DbMallocZero(db,
3853 nByteWInfo +
3854 sizeof(WhereClause) +
3855 sizeof(WhereMaskSet)
3856 );
drh17435752007-08-16 04:30:38 +00003857 if( db->mallocFailed ){
drh8b307fb2010-04-06 15:57:05 +00003858 sqlite3DbFree(db, pWInfo);
3859 pWInfo = 0;
danielk197785574e32008-10-06 05:32:18 +00003860 goto whereBeginError;
drh75897232000-05-29 14:26:00 +00003861 }
drhc01a3c12009-12-16 22:10:49 +00003862 pWInfo->nLevel = nTabList;
drh75897232000-05-29 14:26:00 +00003863 pWInfo->pParse = pParse;
3864 pWInfo->pTabList = pTabList;
danielk19774adee202004-05-08 08:23:19 +00003865 pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
danielk1977be229652009-03-20 14:18:51 +00003866 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
drh6df2acd2008-12-28 16:55:25 +00003867 pWInfo->wctrlFlags = wctrlFlags;
drh8b307fb2010-04-06 15:57:05 +00003868 pWInfo->savedNQueryLoop = pParse->nQueryLoop;
drh111a6a72008-12-21 03:51:16 +00003869 pMaskSet = (WhereMaskSet*)&pWC[1];
drh08192d52002-04-30 19:20:28 +00003870
drh111a6a72008-12-21 03:51:16 +00003871 /* Split the WHERE clause into separate subexpressions where each
3872 ** subexpression is separated by an AND operator.
3873 */
3874 initMaskSet(pMaskSet);
3875 whereClauseInit(pWC, pParse, pMaskSet);
3876 sqlite3ExprCodeConstants(pParse, pWhere);
3877 whereSplit(pWC, pWhere, TK_AND);
3878
drh08192d52002-04-30 19:20:28 +00003879 /* Special case: a WHERE clause that is constant. Evaluate the
3880 ** expression and either jump over all of the code or fall thru.
3881 */
drhc01a3c12009-12-16 22:10:49 +00003882 if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
drh35573352008-01-08 23:54:25 +00003883 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
drhdf199a22002-06-14 22:38:41 +00003884 pWhere = 0;
drh08192d52002-04-30 19:20:28 +00003885 }
drh75897232000-05-29 14:26:00 +00003886
drh42165be2008-03-26 14:56:34 +00003887 /* Assign a bit from the bitmask to every term in the FROM clause.
3888 **
3889 ** When assigning bitmask values to FROM clause cursors, it must be
3890 ** the case that if X is the bitmask for the N-th FROM clause term then
3891 ** the bitmask for all FROM clause terms to the left of the N-th term
3892 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
3893 ** its Expr.iRightJoinTable value to find the bitmask of the right table
3894 ** of the join. Subtracting one from the right table bitmask gives a
3895 ** bitmask for all tables to the left of the join. Knowing the bitmask
3896 ** for all tables to the left of a left join is important. Ticket #3015.
danielk1977e672c8e2009-05-22 15:43:26 +00003897 **
3898 ** Configure the WhereClause.vmask variable so that bits that correspond
3899 ** to virtual table cursors are set. This is used to selectively disable
3900 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
3901 ** with virtual tables.
drhc01a3c12009-12-16 22:10:49 +00003902 **
3903 ** Note that bitmasks are created for all pTabList->nSrc tables in
3904 ** pTabList, not just the first nTabList tables. nTabList is normally
3905 ** equal to pTabList->nSrc but might be shortened to 1 if the
3906 ** WHERE_ONETABLE_ONLY flag is set.
drh42165be2008-03-26 14:56:34 +00003907 */
danielk1977e672c8e2009-05-22 15:43:26 +00003908 assert( pWC->vmask==0 && pMaskSet->n==0 );
drh42165be2008-03-26 14:56:34 +00003909 for(i=0; i<pTabList->nSrc; i++){
drh111a6a72008-12-21 03:51:16 +00003910 createMask(pMaskSet, pTabList->a[i].iCursor);
shanee26fa4c2009-06-16 14:15:22 +00003911#ifndef SQLITE_OMIT_VIRTUALTABLE
drh2c1a0c52009-06-11 17:04:28 +00003912 if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
danielk1977e672c8e2009-05-22 15:43:26 +00003913 pWC->vmask |= ((Bitmask)1 << i);
3914 }
shanee26fa4c2009-06-16 14:15:22 +00003915#endif
drh42165be2008-03-26 14:56:34 +00003916 }
3917#ifndef NDEBUG
3918 {
3919 Bitmask toTheLeft = 0;
3920 for(i=0; i<pTabList->nSrc; i++){
drh111a6a72008-12-21 03:51:16 +00003921 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
drh42165be2008-03-26 14:56:34 +00003922 assert( (m-1)==toTheLeft );
3923 toTheLeft |= m;
3924 }
3925 }
3926#endif
3927
drh29dda4a2005-07-21 18:23:20 +00003928 /* Analyze all of the subexpressions. Note that exprAnalyze() might
3929 ** add new virtual terms onto the end of the WHERE clause. We do not
3930 ** want to analyze these virtual terms, so start analyzing at the end
drhb6fb62d2005-09-20 08:47:20 +00003931 ** and work forward so that the added virtual terms are never processed.
drh75897232000-05-29 14:26:00 +00003932 */
drh111a6a72008-12-21 03:51:16 +00003933 exprAnalyzeAll(pTabList, pWC);
drh17435752007-08-16 04:30:38 +00003934 if( db->mallocFailed ){
danielk197785574e32008-10-06 05:32:18 +00003935 goto whereBeginError;
drh0bbaa1b2005-08-19 19:14:12 +00003936 }
drh75897232000-05-29 14:26:00 +00003937
drh29dda4a2005-07-21 18:23:20 +00003938 /* Chose the best index to use for each table in the FROM clause.
3939 **
drh51147ba2005-07-23 22:59:55 +00003940 ** This loop fills in the following fields:
3941 **
3942 ** pWInfo->a[].pIdx The index to use for this level of the loop.
drh165be382008-12-05 02:36:33 +00003943 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
drh51147ba2005-07-23 22:59:55 +00003944 ** pWInfo->a[].nEq The number of == and IN constraints
danielk197785574e32008-10-06 05:32:18 +00003945 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
drh51147ba2005-07-23 22:59:55 +00003946 ** pWInfo->a[].iTabCur The VDBE cursor for the database table
3947 ** pWInfo->a[].iIdxCur The VDBE cursor for the index
drh111a6a72008-12-21 03:51:16 +00003948 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
drh51147ba2005-07-23 22:59:55 +00003949 **
3950 ** This loop also figures out the nesting order of tables in the FROM
3951 ** clause.
drh75897232000-05-29 14:26:00 +00003952 */
drhfe05af82005-07-21 03:14:59 +00003953 notReady = ~(Bitmask)0;
drh9012bcb2004-12-19 00:11:35 +00003954 pTabItem = pTabList->a;
3955 pLevel = pWInfo->a;
drh943af3c2005-07-29 19:43:58 +00003956 andFlags = ~0;
drh4f0c5872007-03-26 22:05:01 +00003957 WHERETRACE(("*** Optimizer Start ***\n"));
drhc01a3c12009-12-16 22:10:49 +00003958 for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
drh111a6a72008-12-21 03:51:16 +00003959 WhereCost bestPlan; /* Most efficient plan seen so far */
drh29dda4a2005-07-21 18:23:20 +00003960 Index *pIdx; /* Index for FROM table at pTabItem */
drh29dda4a2005-07-21 18:23:20 +00003961 int j; /* For looping over FROM tables */
dan5236ac12009-08-13 07:09:33 +00003962 int bestJ = -1; /* The value of j */
drh29dda4a2005-07-21 18:23:20 +00003963 Bitmask m; /* Bitmask value for j or bestJ */
dan5236ac12009-08-13 07:09:33 +00003964 int isOptimal; /* Iterator for optimal/non-optimal search */
drh29dda4a2005-07-21 18:23:20 +00003965
drh111a6a72008-12-21 03:51:16 +00003966 memset(&bestPlan, 0, sizeof(bestPlan));
3967 bestPlan.rCost = SQLITE_BIG_DBL;
drhdf26fd52006-06-06 11:45:54 +00003968
dan5236ac12009-08-13 07:09:33 +00003969 /* Loop through the remaining entries in the FROM clause to find the
3970 ** next nested loop. The FROM clause entries may be iterated through
3971 ** either once or twice.
3972 **
3973 ** The first iteration, which is always performed, searches for the
3974 ** FROM clause entry that permits the lowest-cost, "optimal" scan. In
3975 ** this context an optimal scan is one that uses the same strategy
3976 ** for the given FROM clause entry as would be selected if the entry
drhd0015162009-08-21 13:22:25 +00003977 ** were used as the innermost nested loop. In other words, a table
3978 ** is chosen such that the cost of running that table cannot be reduced
3979 ** by waiting for other tables to run first.
dan5236ac12009-08-13 07:09:33 +00003980 **
3981 ** The second iteration is only performed if no optimal scan strategies
3982 ** were found by the first. This iteration is used to search for the
3983 ** lowest cost scan overall.
3984 **
3985 ** Previous versions of SQLite performed only the second iteration -
3986 ** the next outermost loop was always that with the lowest overall
3987 ** cost. However, this meant that SQLite could select the wrong plan
3988 ** for scripts such as the following:
3989 **
3990 ** CREATE TABLE t1(a, b);
3991 ** CREATE TABLE t2(c, d);
3992 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
3993 **
3994 ** The best strategy is to iterate through table t1 first. However it
3995 ** is not possible to determine this with a simple greedy algorithm.
3996 ** However, since the cost of a linear scan through table t2 is the same
3997 ** as the cost of a linear scan through table t1, a simple greedy
3998 ** algorithm may choose to use t2 for the outer loop, which is a much
3999 ** costlier approach.
4000 */
4001 for(isOptimal=1; isOptimal>=0 && bestJ<0; isOptimal--){
4002 Bitmask mask = (isOptimal ? 0 : notReady);
drhc01a3c12009-12-16 22:10:49 +00004003 assert( (nTabList-iFrom)>1 || isOptimal );
4004 for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
dan5236ac12009-08-13 07:09:33 +00004005 int doNotReorder; /* True if this table should not be reordered */
4006 WhereCost sCost; /* Cost information from best[Virtual]Index() */
4007 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */
4008
4009 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
4010 if( j!=iFrom && doNotReorder ) break;
4011 m = getMask(pMaskSet, pTabItem->iCursor);
4012 if( (m & notReady)==0 ){
4013 if( j==iFrom ) iFrom++;
4014 continue;
4015 }
4016 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
4017
4018 assert( pTabItem->pTab );
drh9eff6162006-06-12 21:59:13 +00004019#ifndef SQLITE_OMIT_VIRTUALTABLE
dan5236ac12009-08-13 07:09:33 +00004020 if( IsVirtual(pTabItem->pTab) ){
4021 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
4022 bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp);
4023 }else
drh9eff6162006-06-12 21:59:13 +00004024#endif
dan5236ac12009-08-13 07:09:33 +00004025 {
4026 bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost);
4027 }
4028 assert( isOptimal || (sCost.used&notReady)==0 );
4029
4030 if( (sCost.used&notReady)==0
4031 && (j==iFrom || sCost.rCost<bestPlan.rCost)
4032 ){
4033 bestPlan = sCost;
4034 bestJ = j;
4035 }
4036 if( doNotReorder ) break;
drh9eff6162006-06-12 21:59:13 +00004037 }
drh29dda4a2005-07-21 18:23:20 +00004038 }
dan5236ac12009-08-13 07:09:33 +00004039 assert( bestJ>=0 );
danielk1977992347f2008-12-30 09:45:45 +00004040 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
drhcb041342008-06-12 00:07:29 +00004041 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
drh3dec2232005-09-10 15:28:09 +00004042 pLevel-pWInfo->a));
drh111a6a72008-12-21 03:51:16 +00004043 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
drhfe05af82005-07-21 03:14:59 +00004044 *ppOrderBy = 0;
drhc4a3c772001-04-04 11:48:57 +00004045 }
drh111a6a72008-12-21 03:51:16 +00004046 andFlags &= bestPlan.plan.wsFlags;
4047 pLevel->plan = bestPlan.plan;
drh8b307fb2010-04-06 15:57:05 +00004048 testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
4049 testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
4050 if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
drh9012bcb2004-12-19 00:11:35 +00004051 pLevel->iIdxCur = pParse->nTab++;
drhfe05af82005-07-21 03:14:59 +00004052 }else{
4053 pLevel->iIdxCur = -1;
drh6b563442001-11-07 16:48:26 +00004054 }
drh111a6a72008-12-21 03:51:16 +00004055 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
shaned87897d2009-01-30 05:40:27 +00004056 pLevel->iFrom = (u8)bestJ;
drh8b307fb2010-04-06 15:57:05 +00004057 if( bestPlan.nRow>=(double)1 ) pParse->nQueryLoop *= bestPlan.nRow;
danielk197785574e32008-10-06 05:32:18 +00004058
4059 /* Check that if the table scanned by this loop iteration had an
4060 ** INDEXED BY clause attached to it, that the named index is being
4061 ** used for the scan. If not, then query compilation has failed.
4062 ** Return an error.
4063 */
4064 pIdx = pTabList->a[bestJ].pIndex;
drh171256c2009-01-08 03:11:19 +00004065 if( pIdx ){
4066 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
4067 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
4068 goto whereBeginError;
4069 }else{
4070 /* If an INDEXED BY clause is used, the bestIndex() function is
4071 ** guaranteed to find the index specified in the INDEXED BY clause
4072 ** if it find an index at all. */
4073 assert( bestPlan.plan.u.pIdx==pIdx );
4074 }
danielk197785574e32008-10-06 05:32:18 +00004075 }
drh75897232000-05-29 14:26:00 +00004076 }
drh4f0c5872007-03-26 22:05:01 +00004077 WHERETRACE(("*** Optimizer Finished ***\n"));
danielk19771d461462009-04-21 09:02:45 +00004078 if( pParse->nErr || db->mallocFailed ){
danielk197780442942008-12-24 11:25:39 +00004079 goto whereBeginError;
4080 }
drh75897232000-05-29 14:26:00 +00004081
drh943af3c2005-07-29 19:43:58 +00004082 /* If the total query only selects a single row, then the ORDER BY
4083 ** clause is irrelevant.
4084 */
4085 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
4086 *ppOrderBy = 0;
4087 }
4088
drh08c88eb2008-04-10 13:33:18 +00004089 /* If the caller is an UPDATE or DELETE statement that is requesting
4090 ** to use a one-pass algorithm, determine if this is appropriate.
4091 ** The one-pass algorithm only works if the WHERE clause constraints
4092 ** the statement to update a single row.
4093 */
drh165be382008-12-05 02:36:33 +00004094 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4095 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
drh08c88eb2008-04-10 13:33:18 +00004096 pWInfo->okOnePass = 1;
drh111a6a72008-12-21 03:51:16 +00004097 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
drh08c88eb2008-04-10 13:33:18 +00004098 }
4099
drh9012bcb2004-12-19 00:11:35 +00004100 /* Open all tables in the pTabList and any indices selected for
4101 ** searching those tables.
4102 */
4103 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
drh8b307fb2010-04-06 15:57:05 +00004104 notReady = ~(Bitmask)0;
drhc01a3c12009-12-16 22:10:49 +00004105 for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
danielk1977da184232006-01-05 11:34:32 +00004106 Table *pTab; /* Table to open */
danielk1977da184232006-01-05 11:34:32 +00004107 int iDb; /* Index of database containing table/index */
drh9012bcb2004-12-19 00:11:35 +00004108
drhecc92422005-09-10 16:46:12 +00004109#ifndef SQLITE_OMIT_EXPLAIN
4110 if( pParse->explain==2 ){
4111 char *zMsg;
4112 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
danielk19771e536952007-08-16 10:09:01 +00004113 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
drhecc92422005-09-10 16:46:12 +00004114 if( pItem->zAlias ){
drh633e6d52008-07-28 19:34:53 +00004115 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
drhecc92422005-09-10 16:46:12 +00004116 }
drh8b307fb2010-04-06 15:57:05 +00004117 if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
4118 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH AUTOMATIC INDEX", zMsg);
4119 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
drh111a6a72008-12-21 03:51:16 +00004120 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s",
4121 zMsg, pLevel->plan.u.pIdx->zName);
drh46129af2008-12-30 16:18:47 +00004122 }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
4123 zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg);
drh111a6a72008-12-21 03:51:16 +00004124 }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
drh633e6d52008-07-28 19:34:53 +00004125 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg);
drhecc92422005-09-10 16:46:12 +00004126 }
drh9eff6162006-06-12 21:59:13 +00004127#ifndef SQLITE_OMIT_VIRTUALTABLE
drh111a6a72008-12-21 03:51:16 +00004128 else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4129 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
drh633e6d52008-07-28 19:34:53 +00004130 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
drh111a6a72008-12-21 03:51:16 +00004131 pVtabIdx->idxNum, pVtabIdx->idxStr);
drh9eff6162006-06-12 21:59:13 +00004132 }
4133#endif
drh111a6a72008-12-21 03:51:16 +00004134 if( pLevel->plan.wsFlags & WHERE_ORDERBY ){
drh633e6d52008-07-28 19:34:53 +00004135 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg);
drhe2b39092006-04-21 09:38:36 +00004136 }
drh66a51672008-01-03 00:01:23 +00004137 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
drhecc92422005-09-10 16:46:12 +00004138 }
4139#endif /* SQLITE_OMIT_EXPLAIN */
drh29dda4a2005-07-21 18:23:20 +00004140 pTabItem = &pTabList->a[pLevel->iFrom];
drh9012bcb2004-12-19 00:11:35 +00004141 pTab = pTabItem->pTab;
drh424aab82010-04-06 18:28:20 +00004142 pLevel->iTabCur = pTabItem->iCursor;
danielk1977595a5232009-07-24 17:58:53 +00004143 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
drh424aab82010-04-06 18:28:20 +00004144 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
drh75bb9f52010-04-06 18:51:42 +00004145 /* Do nothing */
4146 }else
drh9eff6162006-06-12 21:59:13 +00004147#ifndef SQLITE_OMIT_VIRTUALTABLE
drh111a6a72008-12-21 03:51:16 +00004148 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
danielk1977595a5232009-07-24 17:58:53 +00004149 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
danielk197793626f42006-06-20 13:07:27 +00004150 int iCur = pTabItem->iCursor;
danielk1977595a5232009-07-24 17:58:53 +00004151 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
drh9eff6162006-06-12 21:59:13 +00004152 }else
4153#endif
drh6df2acd2008-12-28 16:55:25 +00004154 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4155 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){
drh08c88eb2008-04-10 13:33:18 +00004156 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
4157 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
danielk197723432972008-11-17 16:42:00 +00004158 if( !pWInfo->okOnePass && pTab->nCol<BMS ){
danielk19779792eef2006-01-13 15:58:43 +00004159 Bitmask b = pTabItem->colUsed;
4160 int n = 0;
drh74161702006-02-24 02:53:49 +00004161 for(; b; b=b>>1, n++){}
drh8cff69d2009-11-12 19:59:44 +00004162 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
4163 SQLITE_INT_TO_PTR(n), P4_INT32);
danielk19779792eef2006-01-13 15:58:43 +00004164 assert( n<=pTab->nCol );
4165 }
danielk1977c00da102006-01-07 13:21:04 +00004166 }else{
4167 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
drh9012bcb2004-12-19 00:11:35 +00004168 }
drhc6339082010-04-07 16:54:58 +00004169#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
drh8b307fb2010-04-06 15:57:05 +00004170 if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
drhc6339082010-04-07 16:54:58 +00004171 constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel);
4172 }else
4173#endif
4174 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
drh111a6a72008-12-21 03:51:16 +00004175 Index *pIx = pLevel->plan.u.pIdx;
danielk1977b3bf5562006-01-10 17:58:23 +00004176 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
drh111a6a72008-12-21 03:51:16 +00004177 int iIdxCur = pLevel->iIdxCur;
danielk1977da184232006-01-05 11:34:32 +00004178 assert( pIx->pSchema==pTab->pSchema );
drh111a6a72008-12-21 03:51:16 +00004179 assert( iIdxCur>=0 );
danielk1977207872a2008-01-03 07:54:23 +00004180 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
drh66a51672008-01-03 00:01:23 +00004181 (char*)pKey, P4_KEYINFO_HANDOFF);
danielk1977207872a2008-01-03 07:54:23 +00004182 VdbeComment((v, "%s", pIx->zName));
drh9012bcb2004-12-19 00:11:35 +00004183 }
danielk1977da184232006-01-05 11:34:32 +00004184 sqlite3CodeVerifySchema(pParse, iDb);
drh8b307fb2010-04-06 15:57:05 +00004185 notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor);
drh9012bcb2004-12-19 00:11:35 +00004186 }
4187 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
drha21a64d2010-04-06 22:33:55 +00004188 if( db->mallocFailed ) goto whereBeginError;
drh9012bcb2004-12-19 00:11:35 +00004189
drh29dda4a2005-07-21 18:23:20 +00004190 /* Generate the code to do the search. Each iteration of the for
4191 ** loop below generates code for a single nested loop of the VM
4192 ** program.
drh75897232000-05-29 14:26:00 +00004193 */
drhfe05af82005-07-21 03:14:59 +00004194 notReady = ~(Bitmask)0;
drhc01a3c12009-12-16 22:10:49 +00004195 for(i=0; i<nTabList; i++){
drh111a6a72008-12-21 03:51:16 +00004196 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
drh813f31e2009-01-06 00:08:02 +00004197 pWInfo->iContinue = pWInfo->a[i].addrCont;
drh75897232000-05-29 14:26:00 +00004198 }
drh7ec764a2005-07-21 03:48:20 +00004199
4200#ifdef SQLITE_TEST /* For testing and debugging use only */
4201 /* Record in the query plan information about the current table
4202 ** and the index used to access it (if any). If the table itself
4203 ** is not used, its name is just '{}'. If no index is used
4204 ** the index is listed as "{}". If the primary key is used the
4205 ** index name is '*'.
4206 */
drhc01a3c12009-12-16 22:10:49 +00004207 for(i=0; i<nTabList; i++){
drh7ec764a2005-07-21 03:48:20 +00004208 char *z;
4209 int n;
drh7ec764a2005-07-21 03:48:20 +00004210 pLevel = &pWInfo->a[i];
drh29dda4a2005-07-21 18:23:20 +00004211 pTabItem = &pTabList->a[pLevel->iFrom];
drh7ec764a2005-07-21 03:48:20 +00004212 z = pTabItem->zAlias;
4213 if( z==0 ) z = pTabItem->pTab->zName;
drhea678832008-12-10 19:26:22 +00004214 n = sqlite3Strlen30(z);
drh7ec764a2005-07-21 03:48:20 +00004215 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
drh111a6a72008-12-21 03:51:16 +00004216 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
drh5bb3eb92007-05-04 13:15:55 +00004217 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
drh7ec764a2005-07-21 03:48:20 +00004218 nQPlan += 2;
4219 }else{
drh5bb3eb92007-05-04 13:15:55 +00004220 memcpy(&sqlite3_query_plan[nQPlan], z, n);
drh7ec764a2005-07-21 03:48:20 +00004221 nQPlan += n;
4222 }
4223 sqlite3_query_plan[nQPlan++] = ' ';
4224 }
drh111a6a72008-12-21 03:51:16 +00004225 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
4226 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
4227 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
drh5bb3eb92007-05-04 13:15:55 +00004228 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
drh7ec764a2005-07-21 03:48:20 +00004229 nQPlan += 2;
drh111a6a72008-12-21 03:51:16 +00004230 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
4231 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
drh7ec764a2005-07-21 03:48:20 +00004232 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
drh111a6a72008-12-21 03:51:16 +00004233 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
drh7ec764a2005-07-21 03:48:20 +00004234 nQPlan += n;
4235 sqlite3_query_plan[nQPlan++] = ' ';
4236 }
drh111a6a72008-12-21 03:51:16 +00004237 }else{
4238 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
4239 nQPlan += 3;
drh7ec764a2005-07-21 03:48:20 +00004240 }
4241 }
4242 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
4243 sqlite3_query_plan[--nQPlan] = 0;
4244 }
4245 sqlite3_query_plan[nQPlan] = 0;
4246 nQPlan = 0;
4247#endif /* SQLITE_TEST // Testing and debugging use only */
4248
drh29dda4a2005-07-21 18:23:20 +00004249 /* Record the continuation address in the WhereInfo structure. Then
4250 ** clean up and return.
4251 */
drh75897232000-05-29 14:26:00 +00004252 return pWInfo;
drhe23399f2005-07-22 00:31:39 +00004253
4254 /* Jump here if malloc fails */
danielk197785574e32008-10-06 05:32:18 +00004255whereBeginError:
drh8b307fb2010-04-06 15:57:05 +00004256 if( pWInfo ){
4257 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4258 whereInfoFree(db, pWInfo);
4259 }
drhe23399f2005-07-22 00:31:39 +00004260 return 0;
drh75897232000-05-29 14:26:00 +00004261}
4262
4263/*
drhc27a1ce2002-06-14 20:58:45 +00004264** Generate the end of the WHERE loop. See comments on
danielk19774adee202004-05-08 08:23:19 +00004265** sqlite3WhereBegin() for additional information.
drh75897232000-05-29 14:26:00 +00004266*/
danielk19774adee202004-05-08 08:23:19 +00004267void sqlite3WhereEnd(WhereInfo *pWInfo){
drh633e6d52008-07-28 19:34:53 +00004268 Parse *pParse = pWInfo->pParse;
4269 Vdbe *v = pParse->pVdbe;
drh19a775c2000-06-05 18:54:46 +00004270 int i;
drh6b563442001-11-07 16:48:26 +00004271 WhereLevel *pLevel;
drhad3cab52002-05-24 02:04:32 +00004272 SrcList *pTabList = pWInfo->pTabList;
drh633e6d52008-07-28 19:34:53 +00004273 sqlite3 *db = pParse->db;
drh19a775c2000-06-05 18:54:46 +00004274
drh9012bcb2004-12-19 00:11:35 +00004275 /* Generate loop termination code.
4276 */
drhceea3322009-04-23 13:22:42 +00004277 sqlite3ExprCacheClear(pParse);
drhc01a3c12009-12-16 22:10:49 +00004278 for(i=pWInfo->nLevel-1; i>=0; i--){
drh6b563442001-11-07 16:48:26 +00004279 pLevel = &pWInfo->a[i];
drhb3190c12008-12-08 21:37:14 +00004280 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
drh6b563442001-11-07 16:48:26 +00004281 if( pLevel->op!=OP_Noop ){
drh66a51672008-01-03 00:01:23 +00004282 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
drhd1d38482008-10-07 23:46:38 +00004283 sqlite3VdbeChangeP5(v, pLevel->p5);
drh19a775c2000-06-05 18:54:46 +00004284 }
drh111a6a72008-12-21 03:51:16 +00004285 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
drh72e8fa42007-03-28 14:30:06 +00004286 struct InLoop *pIn;
drhe23399f2005-07-22 00:31:39 +00004287 int j;
drhb3190c12008-12-08 21:37:14 +00004288 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
drh111a6a72008-12-21 03:51:16 +00004289 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
drhb3190c12008-12-08 21:37:14 +00004290 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4291 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
4292 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
drhe23399f2005-07-22 00:31:39 +00004293 }
drh111a6a72008-12-21 03:51:16 +00004294 sqlite3DbFree(db, pLevel->u.in.aInLoop);
drhd99f7062002-06-08 23:25:08 +00004295 }
drhb3190c12008-12-08 21:37:14 +00004296 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
drhad2d8302002-05-24 20:31:36 +00004297 if( pLevel->iLeftJoin ){
4298 int addr;
drh3c84ddf2008-01-09 02:15:38 +00004299 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
drh35451c62009-11-12 04:26:39 +00004300 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4301 || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
4302 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
4303 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
4304 }
drh9012bcb2004-12-19 00:11:35 +00004305 if( pLevel->iIdxCur>=0 ){
drh3c84ddf2008-01-09 02:15:38 +00004306 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
drh7f09b3e2002-08-13 13:15:49 +00004307 }
drh336a5302009-04-24 15:46:21 +00004308 if( pLevel->op==OP_Return ){
4309 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
4310 }else{
4311 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
4312 }
drhd654be82005-09-20 17:42:23 +00004313 sqlite3VdbeJumpHere(v, addr);
drhad2d8302002-05-24 20:31:36 +00004314 }
drh19a775c2000-06-05 18:54:46 +00004315 }
drh9012bcb2004-12-19 00:11:35 +00004316
4317 /* The "break" point is here, just past the end of the outer loop.
4318 ** Set it.
4319 */
danielk19774adee202004-05-08 08:23:19 +00004320 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
drh9012bcb2004-12-19 00:11:35 +00004321
drh29dda4a2005-07-21 18:23:20 +00004322 /* Close all of the cursors that were opened by sqlite3WhereBegin.
drh9012bcb2004-12-19 00:11:35 +00004323 */
drhc01a3c12009-12-16 22:10:49 +00004324 assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
4325 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
drh29dda4a2005-07-21 18:23:20 +00004326 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
drh9012bcb2004-12-19 00:11:35 +00004327 Table *pTab = pTabItem->pTab;
drh5cf590c2003-04-24 01:45:04 +00004328 assert( pTab!=0 );
drh4139c992010-04-07 14:59:45 +00004329 if( (pTab->tabFlags & TF_Ephemeral)==0
4330 && pTab->pSelect==0
4331 && (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0
4332 ){
drh8b307fb2010-04-06 15:57:05 +00004333 int ws = pLevel->plan.wsFlags;
4334 if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
drh6df2acd2008-12-28 16:55:25 +00004335 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
4336 }
drh8b307fb2010-04-06 15:57:05 +00004337 if( (ws & (WHERE_INDEXED|WHERE_TEMP_INDEX)) == WHERE_INDEXED ){
drh6df2acd2008-12-28 16:55:25 +00004338 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
4339 }
drh9012bcb2004-12-19 00:11:35 +00004340 }
4341
danielk197721de2e72007-11-29 17:43:27 +00004342 /* If this scan uses an index, make code substitutions to read data
4343 ** from the index in preference to the table. Sometimes, this means
4344 ** the table need never be read from. This is a performance boost,
4345 ** as the vdbe level waits until the table is read before actually
4346 ** seeking the table cursor to the record corresponding to the current
4347 ** position in the index.
drh9012bcb2004-12-19 00:11:35 +00004348 **
4349 ** Calls to the code generator in between sqlite3WhereBegin and
4350 ** sqlite3WhereEnd will have created code that references the table
4351 ** directly. This loop scans all that code looking for opcodes
4352 ** that reference the table and converts them into opcodes that
4353 ** reference the index.
4354 */
drh125feff2009-06-06 15:17:27 +00004355 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
danielk1977f0113002006-01-24 12:09:17 +00004356 int k, j, last;
drh9012bcb2004-12-19 00:11:35 +00004357 VdbeOp *pOp;
drh111a6a72008-12-21 03:51:16 +00004358 Index *pIdx = pLevel->plan.u.pIdx;
drh9012bcb2004-12-19 00:11:35 +00004359
4360 assert( pIdx!=0 );
4361 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
4362 last = sqlite3VdbeCurrentAddr(v);
danielk1977f0113002006-01-24 12:09:17 +00004363 for(k=pWInfo->iTop; k<last; k++, pOp++){
drh9012bcb2004-12-19 00:11:35 +00004364 if( pOp->p1!=pLevel->iTabCur ) continue;
4365 if( pOp->opcode==OP_Column ){
drh9012bcb2004-12-19 00:11:35 +00004366 for(j=0; j<pIdx->nColumn; j++){
4367 if( pOp->p2==pIdx->aiColumn[j] ){
4368 pOp->p2 = j;
danielk197721de2e72007-11-29 17:43:27 +00004369 pOp->p1 = pLevel->iIdxCur;
drh9012bcb2004-12-19 00:11:35 +00004370 break;
4371 }
4372 }
drh35451c62009-11-12 04:26:39 +00004373 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4374 || j<pIdx->nColumn );
drhf0863fe2005-06-12 21:35:51 +00004375 }else if( pOp->opcode==OP_Rowid ){
drh9012bcb2004-12-19 00:11:35 +00004376 pOp->p1 = pLevel->iIdxCur;
drhf0863fe2005-06-12 21:35:51 +00004377 pOp->opcode = OP_IdxRowid;
drh9012bcb2004-12-19 00:11:35 +00004378 }
4379 }
drh6b563442001-11-07 16:48:26 +00004380 }
drh19a775c2000-06-05 18:54:46 +00004381 }
drh9012bcb2004-12-19 00:11:35 +00004382
4383 /* Final cleanup
4384 */
drh8b307fb2010-04-06 15:57:05 +00004385 if( pWInfo ){
4386 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4387 whereInfoFree(db, pWInfo);
4388 }
drh75897232000-05-29 14:26:00 +00004389 return;
4390}