| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains C code routines that are called by the parser |
| ** to handle SELECT statements in SQLite. |
| */ |
| #include "sqliteInt.h" |
| |
| /* |
| ** An instance of the following object is used to record information about |
| ** how to process the DISTINCT keyword, to simplify passing that information |
| ** into the selectInnerLoop() routine. |
| */ |
| typedef struct DistinctCtx DistinctCtx; |
| struct DistinctCtx { |
| u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */ |
| u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ |
| int tabTnct; /* Ephemeral table used for DISTINCT processing */ |
| int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ |
| }; |
| |
| /* |
| ** An instance of the following object is used to record information about |
| ** the ORDER BY (or GROUP BY) clause of query is being coded. |
| ** |
| ** The aDefer[] array is used by the sorter-references optimization. For |
| ** example, assuming there is no index that can be used for the ORDER BY, |
| ** for the query: |
| ** |
| ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; |
| ** |
| ** it may be more efficient to add just the "a" values to the sorter, and |
| ** retrieve the associated "bigblob" values directly from table t1 as the |
| ** 10 smallest "a" values are extracted from the sorter. |
| ** |
| ** When the sorter-reference optimization is used, there is one entry in the |
| ** aDefer[] array for each database table that may be read as values are |
| ** extracted from the sorter. |
| */ |
| typedef struct SortCtx SortCtx; |
| struct SortCtx { |
| ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ |
| int nOBSat; /* Number of ORDER BY terms satisfied by indices */ |
| int iECursor; /* Cursor number for the sorter */ |
| int regReturn; /* Register holding block-output return address */ |
| int labelBkOut; /* Start label for the block-output subroutine */ |
| int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ |
| int labelDone; /* Jump here when done, ex: LIMIT reached */ |
| int labelOBLopt; /* Jump here when sorter is full */ |
| u8 sortFlags; /* Zero or more SORTFLAG_* bits */ |
| #ifdef SQLITE_ENABLE_SORTER_REFERENCES |
| u8 nDefer; /* Number of valid entries in aDefer[] */ |
| struct DeferredCsr { |
| Table *pTab; /* Table definition */ |
| int iCsr; /* Cursor number for table */ |
| int nKey; /* Number of PK columns for table pTab (>=1) */ |
| } aDefer[4]; |
| #endif |
| struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| int addrPush; /* First instruction to push data into sorter */ |
| int addrPushEnd; /* Last instruction that pushes data into sorter */ |
| #endif |
| }; |
| #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ |
| |
| /* |
| ** Delete all the content of a Select structure. Deallocate the structure |
| ** itself depending on the value of bFree |
| ** |
| ** If bFree==1, call sqlite3DbFree() on the p object. |
| ** If bFree==0, Leave the first Select object unfreed |
| */ |
| static void clearSelect(sqlite3 *db, Select *p, int bFree){ |
| assert( db!=0 ); |
| while( p ){ |
| Select *pPrior = p->pPrior; |
| sqlite3ExprListDelete(db, p->pEList); |
| sqlite3SrcListDelete(db, p->pSrc); |
| sqlite3ExprDelete(db, p->pWhere); |
| sqlite3ExprListDelete(db, p->pGroupBy); |
| sqlite3ExprDelete(db, p->pHaving); |
| sqlite3ExprListDelete(db, p->pOrderBy); |
| sqlite3ExprDelete(db, p->pLimit); |
| if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ |
| sqlite3WindowListDelete(db, p->pWinDefn); |
| } |
| while( p->pWin ){ |
| assert( p->pWin->ppThis==&p->pWin ); |
| sqlite3WindowUnlinkFromSelect(p->pWin); |
| } |
| #endif |
| if( bFree ) sqlite3DbNNFreeNN(db, p); |
| p = pPrior; |
| bFree = 1; |
| } |
| } |
| |
| /* |
| ** Initialize a SelectDest structure. |
| */ |
| void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ |
| pDest->eDest = (u8)eDest; |
| pDest->iSDParm = iParm; |
| pDest->iSDParm2 = 0; |
| pDest->zAffSdst = 0; |
| pDest->iSdst = 0; |
| pDest->nSdst = 0; |
| } |
| |
| |
| /* |
| ** Allocate a new Select structure and return a pointer to that |
| ** structure. |
| */ |
| Select *sqlite3SelectNew( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pEList, /* which columns to include in the result */ |
| SrcList *pSrc, /* the FROM clause -- which tables to scan */ |
| Expr *pWhere, /* the WHERE clause */ |
| ExprList *pGroupBy, /* the GROUP BY clause */ |
| Expr *pHaving, /* the HAVING clause */ |
| ExprList *pOrderBy, /* the ORDER BY clause */ |
| u32 selFlags, /* Flag parameters, such as SF_Distinct */ |
| Expr *pLimit /* LIMIT value. NULL means not used */ |
| ){ |
| Select *pNew, *pAllocated; |
| Select standin; |
| pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); |
| if( pNew==0 ){ |
| assert( pParse->db->mallocFailed ); |
| pNew = &standin; |
| } |
| if( pEList==0 ){ |
| pEList = sqlite3ExprListAppend(pParse, 0, |
| sqlite3Expr(pParse->db,TK_ASTERISK,0)); |
| } |
| pNew->pEList = pEList; |
| pNew->op = TK_SELECT; |
| pNew->selFlags = selFlags; |
| pNew->iLimit = 0; |
| pNew->iOffset = 0; |
| pNew->selId = ++pParse->nSelect; |
| pNew->addrOpenEphm[0] = -1; |
| pNew->addrOpenEphm[1] = -1; |
| pNew->nSelectRow = 0; |
| if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); |
| pNew->pSrc = pSrc; |
| pNew->pWhere = pWhere; |
| pNew->pGroupBy = pGroupBy; |
| pNew->pHaving = pHaving; |
| pNew->pOrderBy = pOrderBy; |
| pNew->pPrior = 0; |
| pNew->pNext = 0; |
| pNew->pLimit = pLimit; |
| pNew->pWith = 0; |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| pNew->pWin = 0; |
| pNew->pWinDefn = 0; |
| #endif |
| if( pParse->db->mallocFailed ) { |
| clearSelect(pParse->db, pNew, pNew!=&standin); |
| pAllocated = 0; |
| }else{ |
| assert( pNew->pSrc!=0 || pParse->nErr>0 ); |
| } |
| return pAllocated; |
| } |
| |
| |
| /* |
| ** Delete the given Select structure and all of its substructures. |
| */ |
| void sqlite3SelectDelete(sqlite3 *db, Select *p){ |
| if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); |
| } |
| |
| /* |
| ** Return a pointer to the right-most SELECT statement in a compound. |
| */ |
| static Select *findRightmost(Select *p){ |
| while( p->pNext ) p = p->pNext; |
| return p; |
| } |
| |
| /* |
| ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the |
| ** type of join. Return an integer constant that expresses that type |
| ** in terms of the following bit values: |
| ** |
| ** JT_INNER |
| ** JT_CROSS |
| ** JT_OUTER |
| ** JT_NATURAL |
| ** JT_LEFT |
| ** JT_RIGHT |
| ** |
| ** A full outer join is the combination of JT_LEFT and JT_RIGHT. |
| ** |
| ** If an illegal or unsupported join type is seen, then still return |
| ** a join type, but put an error in the pParse structure. |
| ** |
| ** These are the valid join types: |
| ** |
| ** |
| ** pA pB pC Return Value |
| ** ------- ----- ----- ------------ |
| ** CROSS - - JT_CROSS |
| ** INNER - - JT_INNER |
| ** LEFT - - JT_LEFT|JT_OUTER |
| ** LEFT OUTER - JT_LEFT|JT_OUTER |
| ** RIGHT - - JT_RIGHT|JT_OUTER |
| ** RIGHT OUTER - JT_RIGHT|JT_OUTER |
| ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER |
| ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER |
| ** NATURAL INNER - JT_NATURAL|JT_INNER |
| ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER |
| ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER |
| ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER |
| ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER |
| ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT |
| ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT |
| ** |
| ** To preserve historical compatibly, SQLite also accepts a variety |
| ** of other non-standard and in many cases non-sensical join types. |
| ** This routine makes as much sense at it can from the nonsense join |
| ** type and returns a result. Examples of accepted nonsense join types |
| ** include but are not limited to: |
| ** |
| ** INNER CROSS JOIN -> same as JOIN |
| ** NATURAL CROSS JOIN -> same as NATURAL JOIN |
| ** OUTER LEFT JOIN -> same as LEFT JOIN |
| ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN |
| ** LEFT RIGHT JOIN -> same as FULL JOIN |
| ** RIGHT OUTER FULL JOIN -> same as FULL JOIN |
| ** CROSS CROSS CROSS JOIN -> same as JOIN |
| ** |
| ** The only restrictions on the join type name are: |
| ** |
| ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT", |
| ** or "FULL". |
| ** |
| ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT, |
| ** or "FULL". |
| ** |
| ** * If "OUTER" is present then there must also be one of |
| ** "LEFT", "RIGHT", or "FULL" |
| */ |
| int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ |
| int jointype = 0; |
| Token *apAll[3]; |
| Token *p; |
| /* 0123456789 123456789 123456789 123 */ |
| static const char zKeyText[] = "naturaleftouterightfullinnercross"; |
| static const struct { |
| u8 i; /* Beginning of keyword text in zKeyText[] */ |
| u8 nChar; /* Length of the keyword in characters */ |
| u8 code; /* Join type mask */ |
| } aKeyword[] = { |
| /* (0) natural */ { 0, 7, JT_NATURAL }, |
| /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER }, |
| /* (2) outer */ { 10, 5, JT_OUTER }, |
| /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER }, |
| /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, |
| /* (5) inner */ { 23, 5, JT_INNER }, |
| /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS }, |
| }; |
| int i, j; |
| apAll[0] = pA; |
| apAll[1] = pB; |
| apAll[2] = pC; |
| for(i=0; i<3 && apAll[i]; i++){ |
| p = apAll[i]; |
| for(j=0; j<ArraySize(aKeyword); j++){ |
| if( p->n==aKeyword[j].nChar |
| && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ |
| jointype |= aKeyword[j].code; |
| break; |
| } |
| } |
| testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); |
| if( j>=ArraySize(aKeyword) ){ |
| jointype |= JT_ERROR; |
| break; |
| } |
| } |
| if( |
| (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || |
| (jointype & JT_ERROR)!=0 || |
| (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER |
| ){ |
| const char *zSp1 = " "; |
| const char *zSp2 = " "; |
| if( pB==0 ){ zSp1++; } |
| if( pC==0 ){ zSp2++; } |
| sqlite3ErrorMsg(pParse, "unknown join type: " |
| "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); |
| jointype = JT_INNER; |
| } |
| return jointype; |
| } |
| |
| /* |
| ** Return the index of a column in a table. Return -1 if the column |
| ** is not contained in the table. |
| */ |
| int sqlite3ColumnIndex(Table *pTab, const char *zCol){ |
| int i; |
| u8 h = sqlite3StrIHash(zCol); |
| Column *pCol; |
| for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ |
| if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; |
| } |
| return -1; |
| } |
| |
| /* |
| ** Mark a subquery result column as having been used. |
| */ |
| void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){ |
| assert( pItem!=0 ); |
| assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); |
| if( pItem->fg.isNestedFrom ){ |
| ExprList *pResults; |
| assert( pItem->pSelect!=0 ); |
| pResults = pItem->pSelect->pEList; |
| assert( pResults!=0 ); |
| assert( iCol>=0 && iCol<pResults->nExpr ); |
| pResults->a[iCol].fg.bUsed = 1; |
| } |
| } |
| |
| /* |
| ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a |
| ** table that has a column named zCol. The search is left-to-right. |
| ** The first match found is returned. |
| ** |
| ** When found, set *piTab and *piCol to the table index and column index |
| ** of the matching column and return TRUE. |
| ** |
| ** If not found, return FALSE. |
| */ |
| static int tableAndColumnIndex( |
| SrcList *pSrc, /* Array of tables to search */ |
| int iStart, /* First member of pSrc->a[] to check */ |
| int iEnd, /* Last member of pSrc->a[] to check */ |
| const char *zCol, /* Name of the column we are looking for */ |
| int *piTab, /* Write index of pSrc->a[] here */ |
| int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ |
| int bIgnoreHidden /* Ignore hidden columns */ |
| ){ |
| int i; /* For looping over tables in pSrc */ |
| int iCol; /* Index of column matching zCol */ |
| |
| assert( iEnd<pSrc->nSrc ); |
| assert( iStart>=0 ); |
| assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ |
| |
| for(i=iStart; i<=iEnd; i++){ |
| iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); |
| if( iCol>=0 |
| && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) |
| ){ |
| if( piTab ){ |
| sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol); |
| *piTab = i; |
| *piCol = iCol; |
| } |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** Set the EP_OuterON property on all terms of the given expression. |
| ** And set the Expr.w.iJoin to iTable for every term in the |
| ** expression. |
| ** |
| ** The EP_OuterON property is used on terms of an expression to tell |
| ** the OUTER JOIN processing logic that this term is part of the |
| ** join restriction specified in the ON or USING clause and not a part |
| ** of the more general WHERE clause. These terms are moved over to the |
| ** WHERE clause during join processing but we need to remember that they |
| ** originated in the ON or USING clause. |
| ** |
| ** The Expr.w.iJoin tells the WHERE clause processing that the |
| ** expression depends on table w.iJoin even if that table is not |
| ** explicitly mentioned in the expression. That information is needed |
| ** for cases like this: |
| ** |
| ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 |
| ** |
| ** The where clause needs to defer the handling of the t1.x=5 |
| ** term until after the t2 loop of the join. In that way, a |
| ** NULL t2 row will be inserted whenever t1.x!=5. If we do not |
| ** defer the handling of t1.x=5, it will be processed immediately |
| ** after the t1 loop and rows with t1.x!=5 will never appear in |
| ** the output, which is incorrect. |
| */ |
| void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){ |
| assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON ); |
| while( p ){ |
| ExprSetProperty(p, joinFlag); |
| assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); |
| ExprSetVVAProperty(p, EP_NoReduce); |
| p->w.iJoin = iTable; |
| if( p->op==TK_FUNCTION ){ |
| assert( ExprUseXList(p) ); |
| if( p->x.pList ){ |
| int i; |
| for(i=0; i<p->x.pList->nExpr; i++){ |
| sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag); |
| } |
| } |
| } |
| sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag); |
| p = p->pRight; |
| } |
| } |
| |
| /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN |
| ** is simplified into an ordinary JOIN, and when an ON expression is |
| ** "pushed down" into the WHERE clause of a subquery. |
| ** |
| ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into |
| ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then |
| ** just clear every EP_OuterON and EP_InnerON mark from the expression tree. |
| ** |
| ** If nullable is true, that means that Expr p might evaluate to NULL even |
| ** if it is a reference to a NOT NULL column. This can happen, for example, |
| ** if the table that p references is on the left side of a RIGHT JOIN. |
| ** If nullable is true, then take care to not remove the EP_CanBeNull bit. |
| ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c |
| */ |
| static void unsetJoinExpr(Expr *p, int iTable, int nullable){ |
| while( p ){ |
| if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){ |
| ExprClearProperty(p, EP_OuterON|EP_InnerON); |
| if( iTable>=0 ) ExprSetProperty(p, EP_InnerON); |
| } |
| if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){ |
| ExprClearProperty(p, EP_CanBeNull); |
| } |
| if( p->op==TK_FUNCTION ){ |
| assert( ExprUseXList(p) ); |
| if( p->x.pList ){ |
| int i; |
| for(i=0; i<p->x.pList->nExpr; i++){ |
| unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable); |
| } |
| } |
| } |
| unsetJoinExpr(p->pLeft, iTable, nullable); |
| p = p->pRight; |
| } |
| } |
| |
| /* |
| ** This routine processes the join information for a SELECT statement. |
| ** |
| ** * A NATURAL join is converted into a USING join. After that, we |
| ** do not need to be concerned with NATURAL joins and we only have |
| ** think about USING joins. |
| ** |
| ** * ON and USING clauses result in extra terms being added to the |
| ** WHERE clause to enforce the specified constraints. The extra |
| ** WHERE clause terms will be tagged with EP_OuterON or |
| ** EP_InnerON so that we know that they originated in ON/USING. |
| ** |
| ** The terms of a FROM clause are contained in the Select.pSrc structure. |
| ** The left most table is the first entry in Select.pSrc. The right-most |
| ** table is the last entry. The join operator is held in the entry to |
| ** the right. Thus entry 1 contains the join operator for the join between |
| ** entries 0 and 1. Any ON or USING clauses associated with the join are |
| ** also attached to the right entry. |
| ** |
| ** This routine returns the number of errors encountered. |
| */ |
| static int sqlite3ProcessJoin(Parse *pParse, Select *p){ |
| SrcList *pSrc; /* All tables in the FROM clause */ |
| int i, j; /* Loop counters */ |
| SrcItem *pLeft; /* Left table being joined */ |
| SrcItem *pRight; /* Right table being joined */ |
| |
| pSrc = p->pSrc; |
| pLeft = &pSrc->a[0]; |
| pRight = &pLeft[1]; |
| for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ |
| Table *pRightTab = pRight->pTab; |
| u32 joinType; |
| |
| if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; |
| joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON; |
| |
| /* If this is a NATURAL join, synthesize an approprate USING clause |
| ** to specify which columns should be joined. |
| */ |
| if( pRight->fg.jointype & JT_NATURAL ){ |
| IdList *pUsing = 0; |
| if( pRight->fg.isUsing || pRight->u3.pOn ){ |
| sqlite3ErrorMsg(pParse, "a NATURAL join may not have " |
| "an ON or USING clause", 0); |
| return 1; |
| } |
| for(j=0; j<pRightTab->nCol; j++){ |
| char *zName; /* Name of column in the right table */ |
| |
| if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; |
| zName = pRightTab->aCol[j].zCnName; |
| if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){ |
| pUsing = sqlite3IdListAppend(pParse, pUsing, 0); |
| if( pUsing ){ |
| assert( pUsing->nId>0 ); |
| assert( pUsing->a[pUsing->nId-1].zName==0 ); |
| pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName); |
| } |
| } |
| } |
| if( pUsing ){ |
| pRight->fg.isUsing = 1; |
| pRight->fg.isSynthUsing = 1; |
| pRight->u3.pUsing = pUsing; |
| } |
| if( pParse->nErr ) return 1; |
| } |
| |
| /* Create extra terms on the WHERE clause for each column named |
| ** in the USING clause. Example: If the two tables to be joined are |
| ** A and B and the USING clause names X, Y, and Z, then add this |
| ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z |
| ** Report an error if any column mentioned in the USING clause is |
| ** not contained in both tables to be joined. |
| */ |
| if( pRight->fg.isUsing ){ |
| IdList *pList = pRight->u3.pUsing; |
| sqlite3 *db = pParse->db; |
| assert( pList!=0 ); |
| for(j=0; j<pList->nId; j++){ |
| char *zName; /* Name of the term in the USING clause */ |
| int iLeft; /* Table on the left with matching column name */ |
| int iLeftCol; /* Column number of matching column on the left */ |
| int iRightCol; /* Column number of matching column on the right */ |
| Expr *pE1; /* Reference to the column on the LEFT of the join */ |
| Expr *pE2; /* Reference to the column on the RIGHT of the join */ |
| Expr *pEq; /* Equality constraint. pE1 == pE2 */ |
| |
| zName = pList->a[j].zName; |
| iRightCol = sqlite3ColumnIndex(pRightTab, zName); |
| if( iRightCol<0 |
| || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol, |
| pRight->fg.isSynthUsing)==0 |
| ){ |
| sqlite3ErrorMsg(pParse, "cannot join using column %s - column " |
| "not present in both tables", zName); |
| return 1; |
| } |
| pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); |
| sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); |
| if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ |
| /* This branch runs if the query contains one or more RIGHT or FULL |
| ** JOINs. If only a single table on the left side of this join |
| ** contains the zName column, then this branch is a no-op. |
| ** But if there are two or more tables on the left side |
| ** of the join, construct a coalesce() function that gathers all |
| ** such tables. Raise an error if more than one of those references |
| ** to zName is not also within a prior USING clause. |
| ** |
| ** We really ought to raise an error if there are two or more |
| ** non-USING references to zName on the left of an INNER or LEFT |
| ** JOIN. But older versions of SQLite do not do that, so we avoid |
| ** adding a new error so as to not break legacy applications. |
| */ |
| ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */ |
| static const Token tkCoalesce = { "coalesce", 8 }; |
| while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol, |
| pRight->fg.isSynthUsing)!=0 ){ |
| if( pSrc->a[iLeft].fg.isUsing==0 |
| || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0 |
| ){ |
| sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()", |
| zName); |
| break; |
| } |
| pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); |
| pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); |
| sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); |
| } |
| if( pFuncArgs ){ |
| pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); |
| pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0); |
| } |
| } |
| pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol); |
| sqlite3SrcItemColumnUsed(pRight, iRightCol); |
| pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); |
| assert( pE2!=0 || pEq==0 ); |
| if( pEq ){ |
| ExprSetProperty(pEq, joinType); |
| assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); |
| ExprSetVVAProperty(pEq, EP_NoReduce); |
| pEq->w.iJoin = pE2->iTable; |
| } |
| p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq); |
| } |
| } |
| |
| /* Add the ON clause to the end of the WHERE clause, connected by |
| ** an AND operator. |
| */ |
| else if( pRight->u3.pOn ){ |
| sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType); |
| p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn); |
| pRight->u3.pOn = 0; |
| pRight->fg.isOn = 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** An instance of this object holds information (beyond pParse and pSelect) |
| ** needed to load the next result row that is to be added to the sorter. |
| */ |
| typedef struct RowLoadInfo RowLoadInfo; |
| struct RowLoadInfo { |
| int regResult; /* Store results in array of registers here */ |
| u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ |
| #ifdef SQLITE_ENABLE_SORTER_REFERENCES |
| ExprList *pExtra; /* Extra columns needed by sorter refs */ |
| int regExtraResult; /* Where to load the extra columns */ |
| #endif |
| }; |
| |
| /* |
| ** This routine does the work of loading query data into an array of |
| ** registers so that it can be added to the sorter. |
| */ |
| static void innerLoopLoadRow( |
| Parse *pParse, /* Statement under construction */ |
| Select *pSelect, /* The query being coded */ |
| RowLoadInfo *pInfo /* Info needed to complete the row load */ |
| ){ |
| sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, |
| 0, pInfo->ecelFlags); |
| #ifdef SQLITE_ENABLE_SORTER_REFERENCES |
| if( pInfo->pExtra ){ |
| sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); |
| sqlite3ExprListDelete(pParse->db, pInfo->pExtra); |
| } |
| #endif |
| } |
| |
| /* |
| ** Code the OP_MakeRecord instruction that generates the entry to be |
| ** added into the sorter. |
| ** |
| ** Return the register in which the result is stored. |
| */ |
| static int makeSorterRecord( |
| Parse *pParse, |
| SortCtx *pSort, |
| Select *pSelect, |
| int regBase, |
| int nBase |
| ){ |
| int nOBSat = pSort->nOBSat; |
| Vdbe *v = pParse->pVdbe; |
| int regOut = ++pParse->nMem; |
| if( pSort->pDeferredRowLoad ){ |
| innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); |
| } |
| sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); |
| return regOut; |
| } |
| |
| /* |
| ** Generate code that will push the record in registers regData |
| ** through regData+nData-1 onto the sorter. |
| */ |
| static void pushOntoSorter( |
| Parse *pParse, /* Parser context */ |
| SortCtx *pSort, /* Information about the ORDER BY clause */ |
| Select *pSelect, /* The whole SELECT statement */ |
| int regData, /* First register holding data to be sorted */ |
| int regOrigData, /* First register holding data before packing */ |
| int nData, /* Number of elements in the regData data array */ |
| int nPrefixReg /* No. of reg prior to regData available for use */ |
| ){ |
| Vdbe *v = pParse->pVdbe; /* Stmt under construction */ |
| int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); |
| int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ |
| int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ |
| int regBase; /* Regs for sorter record */ |
| int regRecord = 0; /* Assembled sorter record */ |
| int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ |
| int op; /* Opcode to add sorter record to sorter */ |
| int iLimit; /* LIMIT counter */ |
| int iSkip = 0; /* End of the sorter insert loop */ |
| |
| assert( bSeq==0 || bSeq==1 ); |
| |
| /* Three cases: |
| ** (1) The data to be sorted has already been packed into a Record |
| ** by a prior OP_MakeRecord. In this case nData==1 and regData |
| ** will be completely unrelated to regOrigData. |
| ** (2) All output columns are included in the sort record. In that |
| ** case regData==regOrigData. |
| ** (3) Some output columns are omitted from the sort record due to |
| ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the |
| ** SQLITE_ECEL_OMITREF optimization, or due to the |
| ** SortCtx.pDeferredRowLoad optimiation. In any of these cases |
| ** regOrigData is 0 to prevent this routine from trying to copy |
| ** values that might not yet exist. |
| */ |
| assert( nData==1 || regData==regOrigData || regOrigData==0 ); |
| |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| pSort->addrPush = sqlite3VdbeCurrentAddr(v); |
| #endif |
| |
| if( nPrefixReg ){ |
| assert( nPrefixReg==nExpr+bSeq ); |
| regBase = regData - nPrefixReg; |
| }else{ |
| regBase = pParse->nMem + 1; |
| pParse->nMem += nBase; |
| } |
| assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); |
| iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; |
| pSort->labelDone = sqlite3VdbeMakeLabel(pParse); |
| sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, |
| SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); |
| if( bSeq ){ |
| sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); |
| } |
| if( nPrefixReg==0 && nData>0 ){ |
| sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); |
| } |
| if( nOBSat>0 ){ |
| int regPrevKey; /* The first nOBSat columns of the previous row */ |
| int addrFirst; /* Address of the OP_IfNot opcode */ |
| int addrJmp; /* Address of the OP_Jump opcode */ |
| VdbeOp *pOp; /* Opcode that opens the sorter */ |
| int nKey; /* Number of sorting key columns, including OP_Sequence */ |
| KeyInfo *pKI; /* Original KeyInfo on the sorter table */ |
| |
| regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); |
| regPrevKey = pParse->nMem+1; |
| pParse->nMem += pSort->nOBSat; |
| nKey = nExpr - pSort->nOBSat + bSeq; |
| if( bSeq ){ |
| addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); |
| }else{ |
| addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); |
| } |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); |
| pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); |
| if( pParse->db->mallocFailed ) return; |
| pOp->p2 = nKey + nData; |
| pKI = pOp->p4.pKeyInfo; |
| memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ |
| sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); |
| testcase( pKI->nAllField > pKI->nKeyField+2 ); |
| pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, |
| pKI->nAllField-pKI->nKeyField-1); |
| pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ |
| addrJmp = sqlite3VdbeCurrentAddr(v); |
| sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); |
| pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); |
| pSort->regReturn = ++pParse->nMem; |
| sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); |
| sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); |
| if( iLimit ){ |
| sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); |
| VdbeCoverage(v); |
| } |
| sqlite3VdbeJumpHere(v, addrFirst); |
| sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); |
| sqlite3VdbeJumpHere(v, addrJmp); |
| } |
| if( iLimit ){ |
| /* At this point the values for the new sorter entry are stored |
| ** in an array of registers. They need to be composed into a record |
| ** and inserted into the sorter if either (a) there are currently |
| ** less than LIMIT+OFFSET items or (b) the new record is smaller than |
| ** the largest record currently in the sorter. If (b) is true and there |
| ** are already LIMIT+OFFSET items in the sorter, delete the largest |
| ** entry before inserting the new one. This way there are never more |
| ** than LIMIT+OFFSET items in the sorter. |
| ** |
| ** If the new record does not need to be inserted into the sorter, |
| ** jump to the next iteration of the loop. If the pSort->labelOBLopt |
| ** value is not zero, then it is a label of where to jump. Otherwise, |
| ** just bypass the row insert logic. See the header comment on the |
| ** sqlite3WhereOrderByLimitOptLabel() function for additional info. |
| */ |
| int iCsr = pSort->iECursor; |
| sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); |
| iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, |
| iCsr, 0, regBase+nOBSat, nExpr-nOBSat); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp1(v, OP_Delete, iCsr); |
| } |
| if( regRecord==0 ){ |
| regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); |
| } |
| if( pSort->sortFlags & SORTFLAG_UseSorter ){ |
| op = OP_SorterInsert; |
| }else{ |
| op = OP_IdxInsert; |
| } |
| sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, |
| regBase+nOBSat, nBase-nOBSat); |
| if( iSkip ){ |
| sqlite3VdbeChangeP2(v, iSkip, |
| pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); |
| } |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| pSort->addrPushEnd = sqlite3VdbeCurrentAddr(v)-1; |
| #endif |
| } |
| |
| /* |
| ** Add code to implement the OFFSET |
| */ |
| static void codeOffset( |
| Vdbe *v, /* Generate code into this VM */ |
| int iOffset, /* Register holding the offset counter */ |
| int iContinue /* Jump here to skip the current record */ |
| ){ |
| if( iOffset>0 ){ |
| sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); |
| VdbeComment((v, "OFFSET")); |
| } |
| } |
| |
| /* |
| ** Add code that will check to make sure the array of registers starting at |
| ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and |
| ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies |
| ** are available. Which is used depends on the value of parameter eTnctType, |
| ** as follows: |
| ** |
| ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: |
| ** Build an ephemeral table that contains all entries seen before and |
| ** skip entries which have been seen before. |
| ** |
| ** Parameter iTab is the cursor number of an ephemeral table that must |
| ** be opened before the VM code generated by this routine is executed. |
| ** The ephemeral cursor table is queried for a record identical to the |
| ** record formed by the current array of registers. If one is found, |
| ** jump to VM address addrRepeat. Otherwise, insert a new record into |
| ** the ephemeral cursor and proceed. |
| ** |
| ** The returned value in this case is a copy of parameter iTab. |
| ** |
| ** WHERE_DISTINCT_ORDERED: |
| ** In this case rows are being delivered sorted order. The ephermal |
| ** table is not required. Instead, the current set of values |
| ** is compared against previous row. If they match, the new row |
| ** is not distinct and control jumps to VM address addrRepeat. Otherwise, |
| ** the VM program proceeds with processing the new row. |
| ** |
| ** The returned value in this case is the register number of the first |
| ** in an array of registers used to store the previous result row so that |
| ** it can be compared to the next. The caller must ensure that this |
| ** register is initialized to NULL. (The fixDistinctOpenEph() routine |
| ** will take care of this initialization.) |
| ** |
| ** WHERE_DISTINCT_UNIQUE: |
| ** In this case it has already been determined that the rows are distinct. |
| ** No special action is required. The return value is zero. |
| ** |
| ** Parameter pEList is the list of expressions used to generated the |
| ** contents of each row. It is used by this routine to determine (a) |
| ** how many elements there are in the array of registers and (b) the |
| ** collation sequences that should be used for the comparisons if |
| ** eTnctType is WHERE_DISTINCT_ORDERED. |
| */ |
| static int codeDistinct( |
| Parse *pParse, /* Parsing and code generating context */ |
| int eTnctType, /* WHERE_DISTINCT_* value */ |
| int iTab, /* A sorting index used to test for distinctness */ |
| int addrRepeat, /* Jump to here if not distinct */ |
| ExprList *pEList, /* Expression for each element */ |
| int regElem /* First element */ |
| ){ |
| int iRet = 0; |
| int nResultCol = pEList->nExpr; |
| Vdbe *v = pParse->pVdbe; |
| |
| switch( eTnctType ){ |
| case WHERE_DISTINCT_ORDERED: { |
| int i; |
| int iJump; /* Jump destination */ |
| int regPrev; /* Previous row content */ |
| |
| /* Allocate space for the previous row */ |
| iRet = regPrev = pParse->nMem+1; |
| pParse->nMem += nResultCol; |
| |
| iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; |
| for(i=0; i<nResultCol; i++){ |
| CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); |
| if( i<nResultCol-1 ){ |
| sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); |
| VdbeCoverage(v); |
| }else{ |
| sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); |
| VdbeCoverage(v); |
| } |
| sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); |
| sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); |
| } |
| assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); |
| sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); |
| break; |
| } |
| |
| case WHERE_DISTINCT_UNIQUE: { |
| /* nothing to do */ |
| break; |
| } |
| |
| default: { |
| int r1 = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); |
| sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); |
| sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
| sqlite3ReleaseTempReg(pParse, r1); |
| iRet = iTab; |
| break; |
| } |
| } |
| |
| return iRet; |
| } |
| |
| /* |
| ** This routine runs after codeDistinct(). It makes necessary |
| ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() |
| ** routine made use of. This processing must be done separately since |
| ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually |
| ** laid down. |
| ** |
| ** WHERE_DISTINCT_NOOP: |
| ** WHERE_DISTINCT_UNORDERED: |
| ** |
| ** No adjustments necessary. This function is a no-op. |
| ** |
| ** WHERE_DISTINCT_UNIQUE: |
| ** |
| ** The ephemeral table is not needed. So change the |
| ** OP_OpenEphemeral opcode into an OP_Noop. |
| ** |
| ** WHERE_DISTINCT_ORDERED: |
| ** |
| ** The ephemeral table is not needed. But we do need register |
| ** iVal to be initialized to NULL. So change the OP_OpenEphemeral |
| ** into an OP_Null on the iVal register. |
| */ |
| static void fixDistinctOpenEph( |
| Parse *pParse, /* Parsing and code generating context */ |
| int eTnctType, /* WHERE_DISTINCT_* value */ |
| int iVal, /* Value returned by codeDistinct() */ |
| int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ |
| ){ |
| if( pParse->nErr==0 |
| && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) |
| ){ |
| Vdbe *v = pParse->pVdbe; |
| sqlite3VdbeChangeToNoop(v, iOpenEphAddr); |
| if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ |
| sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); |
| } |
| if( eTnctType==WHERE_DISTINCT_ORDERED ){ |
| /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared |
| ** bit on the first register of the previous value. This will cause the |
| ** OP_Ne added in codeDistinct() to always fail on the first iteration of |
| ** the loop even if the first row is all NULLs. */ |
| VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); |
| pOp->opcode = OP_Null; |
| pOp->p1 = 1; |
| pOp->p2 = iVal; |
| } |
| } |
| } |
| |
| #ifdef SQLITE_ENABLE_SORTER_REFERENCES |
| /* |
| ** This function is called as part of inner-loop generation for a SELECT |
| ** statement with an ORDER BY that is not optimized by an index. It |
| ** determines the expressions, if any, that the sorter-reference |
| ** optimization should be used for. The sorter-reference optimization |
| ** is used for SELECT queries like: |
| ** |
| ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 |
| ** |
| ** If the optimization is used for expression "bigblob", then instead of |
| ** storing values read from that column in the sorter records, the PK of |
| ** the row from table t1 is stored instead. Then, as records are extracted from |
| ** the sorter to return to the user, the required value of bigblob is |
| ** retrieved directly from table t1. If the values are very large, this |
| ** can be more efficient than storing them directly in the sorter records. |
| ** |
| ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList |
| ** for which the sorter-reference optimization should be enabled. |
| ** Additionally, the pSort->aDefer[] array is populated with entries |
| ** for all cursors required to evaluate all selected expressions. Finally. |
| ** output variable (*ppExtra) is set to an expression list containing |
| ** expressions for all extra PK values that should be stored in the |
| ** sorter records. |
| */ |
| static void selectExprDefer( |
| Parse *pParse, /* Leave any error here */ |
| SortCtx *pSort, /* Sorter context */ |
| ExprList *pEList, /* Expressions destined for sorter */ |
| ExprList **ppExtra /* Expressions to append to sorter record */ |
| ){ |
| int i; |
| int nDefer = 0; |
| ExprList *pExtra = 0; |
| for(i=0; i<pEList->nExpr; i++){ |
| struct ExprList_item *pItem = &pEList->a[i]; |
| if( pItem->u.x.iOrderByCol==0 ){ |
| Expr *pExpr = pItem->pExpr; |
| Table *pTab; |
| if( pExpr->op==TK_COLUMN |
| && pExpr->iColumn>=0 |
| && ALWAYS( ExprUseYTab(pExpr) ) |
| && (pTab = pExpr->y.pTab)!=0 |
| && IsOrdinaryTable(pTab) |
| && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 |
| ){ |
| int j; |
| for(j=0; j<nDefer; j++){ |
| if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; |
| } |
| if( j==nDefer ){ |
| if( nDefer==ArraySize(pSort->aDefer) ){ |
| continue; |
| }else{ |
| int nKey = 1; |
| int k; |
| Index *pPk = 0; |
| if( !HasRowid(pTab) ){ |
| pPk = sqlite3PrimaryKeyIndex(pTab); |
| nKey = pPk->nKeyCol; |
| } |
| for(k=0; k<nKey; k++){ |
| Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); |
| if( pNew ){ |
| pNew->iTable = pExpr->iTable; |
| assert( ExprUseYTab(pNew) ); |
| pNew->y.pTab = pExpr->y.pTab; |
| pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; |
| pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); |
| } |
| } |
| pSort->aDefer[nDefer].pTab = pExpr->y.pTab; |
| pSort->aDefer[nDefer].iCsr = pExpr->iTable; |
| pSort->aDefer[nDefer].nKey = nKey; |
| nDefer++; |
| } |
| } |
| pItem->fg.bSorterRef = 1; |
| } |
| } |
| } |
| pSort->nDefer = (u8)nDefer; |
| *ppExtra = pExtra; |
| } |
| #endif |
| |
| /* |
| ** This routine generates the code for the inside of the inner loop |
| ** of a SELECT. |
| ** |
| ** If srcTab is negative, then the p->pEList expressions |
| ** are evaluated in order to get the data for this row. If srcTab is |
| ** zero or more, then data is pulled from srcTab and p->pEList is used only |
| ** to get the number of columns and the collation sequence for each column. |
| */ |
| static void selectInnerLoop( |
| Parse *pParse, /* The parser context */ |
| Select *p, /* The complete select statement being coded */ |
| int srcTab, /* Pull data from this table if non-negative */ |
| SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ |
| DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ |
| SelectDest *pDest, /* How to dispose of the results */ |
| int iContinue, /* Jump here to continue with next row */ |
| int iBreak /* Jump here to break out of the inner loop */ |
| ){ |
| Vdbe *v = pParse->pVdbe; |
| int i; |
| int hasDistinct; /* True if the DISTINCT keyword is present */ |
| int eDest = pDest->eDest; /* How to dispose of results */ |
| int iParm = pDest->iSDParm; /* First argument to disposal method */ |
| int nResultCol; /* Number of result columns */ |
| int nPrefixReg = 0; /* Number of extra registers before regResult */ |
| RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ |
| |
| /* Usually, regResult is the first cell in an array of memory cells |
| ** containing the current result row. In this case regOrig is set to the |
| ** same value. However, if the results are being sent to the sorter, the |
| ** values for any expressions that are also part of the sort-key are omitted |
| ** from this array. In this case regOrig is set to zero. */ |
| int regResult; /* Start of memory holding current results */ |
| int regOrig; /* Start of memory holding full result (or 0) */ |
| |
| assert( v ); |
| assert( p->pEList!=0 ); |
| hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; |
| if( pSort && pSort->pOrderBy==0 ) pSort = 0; |
| if( pSort==0 && !hasDistinct ){ |
| assert( iContinue!=0 ); |
| codeOffset(v, p->iOffset, iContinue); |
| } |
| |
| /* Pull the requested columns. |
| */ |
| nResultCol = p->pEList->nExpr; |
| |
| if( pDest->iSdst==0 ){ |
| if( pSort ){ |
| nPrefixReg = pSort->pOrderBy->nExpr; |
| if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; |
| pParse->nMem += nPrefixReg; |
| } |
| pDest->iSdst = pParse->nMem+1; |
| pParse->nMem += nResultCol; |
| }else if( pDest->iSdst+nResultCol > pParse->nMem ){ |
| /* This is an error condition that can result, for example, when a SELECT |
| ** on the right-hand side of an INSERT contains more result columns than |
| ** there are columns in the table on the left. The error will be caught |
| ** and reported later. But we need to make sure enough memory is allocated |
| ** to avoid other spurious errors in the meantime. */ |
| pParse->nMem += nResultCol; |
| } |
| pDest->nSdst = nResultCol; |
| regOrig = regResult = pDest->iSdst; |
| if( srcTab>=0 ){ |
| for(i=0; i<nResultCol; i++){ |
| sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); |
| VdbeComment((v, "%s", p->pEList->a[i].zEName)); |
| } |
| }else if( eDest!=SRT_Exists ){ |
| #ifdef SQLITE_ENABLE_SORTER_REFERENCES |
| ExprList *pExtra = 0; |
| #endif |
| /* If the destination is an EXISTS(...) expression, the actual |
| ** values returned by the SELECT are not required. |
| */ |
| u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ |
| ExprList *pEList; |
| if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ |
| ecelFlags = SQLITE_ECEL_DUP; |
| }else{ |
| ecelFlags = 0; |
| } |
| if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ |
| /* For each expression in p->pEList that is a copy of an expression in |
| ** the ORDER BY clause (pSort->pOrderBy), set the associated |
| ** iOrderByCol value to one more than the index of the ORDER BY |
| ** expression within the sort-key that pushOntoSorter() will generate. |
| ** This allows the p->pEList field to be omitted from the sorted record, |
| ** saving space and CPU cycles. */ |
| ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); |
| |
| for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ |
| int j; |
| if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ |
| p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; |
| } |
| } |
| #ifdef SQLITE_ENABLE_SORTER_REFERENCES |
| selectExprDefer(pParse, pSort, p->pEList, &pExtra); |
| if( pExtra && pParse->db->mallocFailed==0 ){ |
| /* If there are any extra PK columns to add to the sorter records, |
| ** allocate extra memory cells and adjust the OpenEphemeral |
| ** instruction to account for the larger records. This is only |
| ** required if there are one or more WITHOUT ROWID tables with |
| ** composite primary keys in the SortCtx.aDefer[] array. */ |
| VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); |
| pOp->p2 += (pExtra->nExpr - pSort->nDefer); |
| pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); |
| pParse->nMem += pExtra->nExpr; |
| } |
| #endif |
| |
| /* Adjust nResultCol to account for columns that are omitted |
| ** from the sorter by the optimizations in this branch */ |
| pEList = p->pEList; |
| for(i=0; i<pEList->nExpr; i++){ |
| if( pEList->a[i].u.x.iOrderByCol>0 |
| #ifdef SQLITE_ENABLE_SORTER_REFERENCES |
| || pEList->a[i].fg.bSorterRef |
| #endif |
| ){ |
| nResultCol--; |
| regOrig = 0; |
| } |
| } |
| |
| testcase( regOrig ); |
| testcase( eDest==SRT_Set ); |
| testcase( eDest==SRT_Mem ); |
| testcase( eDest==SRT_Coroutine ); |
| testcase( eDest==SRT_Output ); |
| assert( eDest==SRT_Set || eDest==SRT_Mem |
| || eDest==SRT_Coroutine || eDest==SRT_Output |
| || eDest==SRT_Upfrom ); |
| } |
| sRowLoadInfo.regResult = regResult; |
| sRowLoadInfo.ecelFlags = ecelFlags; |
| #ifdef SQLITE_ENABLE_SORTER_REFERENCES |
| sRowLoadInfo.pExtra = pExtra; |
| sRowLoadInfo.regExtraResult = regResult + nResultCol; |
| if( pExtra ) nResultCol += pExtra->nExpr; |
| #endif |
| if( p->iLimit |
| && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 |
| && nPrefixReg>0 |
| ){ |
| assert( pSort!=0 ); |
| assert( hasDistinct==0 ); |
| pSort->pDeferredRowLoad = &sRowLoadInfo; |
| regOrig = 0; |
| }else{ |
| innerLoopLoadRow(pParse, p, &sRowLoadInfo); |
| } |
| } |
| |
| /* If the DISTINCT keyword was present on the SELECT statement |
| ** and this row has been seen before, then do not make this row |
| ** part of the result. |
| */ |
| if( hasDistinct ){ |
| int eType = pDistinct->eTnctType; |
| int iTab = pDistinct->tabTnct; |
| assert( nResultCol==p->pEList->nExpr ); |
| iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); |
| fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); |
| if( pSort==0 ){ |
| codeOffset(v, p->iOffset, iContinue); |
| } |
| } |
| |
| switch( eDest ){ |
| /* In this mode, write each query result to the key of the temporary |
| ** table iParm. |
| */ |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT |
| case SRT_Union: { |
| int r1; |
| r1 = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); |
| sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); |
| sqlite3ReleaseTempReg(pParse, r1); |
| break; |
| } |
| |
| /* Construct a record from the query result, but instead of |
| ** saving that record, use it as a key to delete elements from |
| ** the temporary table iParm. |
| */ |
| case SRT_Except: { |
| sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); |
| break; |
| } |
| #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
| |
| /* Store the result as data using a unique key. |
| */ |
| case SRT_Fifo: |
| case SRT_DistFifo: |
| case SRT_Table: |
| case SRT_EphemTab: { |
| int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); |
| testcase( eDest==SRT_Table ); |
| testcase( eDest==SRT_EphemTab ); |
| testcase( eDest==SRT_Fifo ); |
| testcase( eDest==SRT_DistFifo ); |
| sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); |
| #ifndef SQLITE_OMIT_CTE |
| if( eDest==SRT_DistFifo ){ |
| /* If the destination is DistFifo, then cursor (iParm+1) is open |
| ** on an ephemeral index. If the current row is already present |
| ** in the index, do not write it to the output. If not, add the |
| ** current row to the index and proceed with writing it to the |
| ** output table as well. */ |
| int addr = sqlite3VdbeCurrentAddr(v) + 4; |
| sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); |
| assert( pSort==0 ); |
| } |
| #endif |
| if( pSort ){ |
| assert( regResult==regOrig ); |
| pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); |
| }else{ |
| int r2 = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); |
| sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); |
| sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
| sqlite3ReleaseTempReg(pParse, r2); |
| } |
| sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); |
| break; |
| } |
| |
| case SRT_Upfrom: { |
| if( pSort ){ |
| pushOntoSorter( |
| pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); |
| }else{ |
| int i2 = pDest->iSDParm2; |
| int r1 = sqlite3GetTempReg(pParse); |
| |
| /* If the UPDATE FROM join is an aggregate that matches no rows, it |
| ** might still be trying to return one row, because that is what |
| ** aggregates do. Don't record that empty row in the output table. */ |
| sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); |
| |
| sqlite3VdbeAddOp3(v, OP_MakeRecord, |
| regResult+(i2<0), nResultCol-(i2<0), r1); |
| if( i2<0 ){ |
| sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); |
| }else{ |
| sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); |
| } |
| } |
| break; |
| } |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
| ** then there should be a single item on the stack. Write this |
| ** item into the set table with bogus data. |
| */ |
| case SRT_Set: { |
| if( pSort ){ |
| /* At first glance you would think we could optimize out the |
| ** ORDER BY in this case since the order of entries in the set |
| ** does not matter. But there might be a LIMIT clause, in which |
| ** case the order does matter */ |
| pushOntoSorter( |
| pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); |
| }else{ |
| int r1 = sqlite3GetTempReg(pParse); |
| assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); |
| sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, |
| r1, pDest->zAffSdst, nResultCol); |
| sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); |
| sqlite3ReleaseTempReg(pParse, r1); |
| } |
| break; |
| } |
| |
| |
| /* If any row exist in the result set, record that fact and abort. |
| */ |
| case SRT_Exists: { |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); |
| /* The LIMIT clause will terminate the loop for us */ |
| break; |
| } |
| |
| /* If this is a scalar select that is part of an expression, then |
| ** store the results in the appropriate memory cell or array of |
| ** memory cells and break out of the scan loop. |
| */ |
| case SRT_Mem: { |
| if( pSort ){ |
| assert( nResultCol<=pDest->nSdst ); |
| pushOntoSorter( |
| pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); |
| }else{ |
| assert( nResultCol==pDest->nSdst ); |
| assert( regResult==iParm ); |
| /* The LIMIT clause will jump out of the loop for us */ |
| } |
| break; |
| } |
| #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ |
| |
| case SRT_Coroutine: /* Send data to a co-routine */ |
| case SRT_Output: { /* Return the results */ |
| testcase( eDest==SRT_Coroutine ); |
| testcase( eDest==SRT_Output ); |
| if( pSort ){ |
| pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, |
| nPrefixReg); |
| }else if( eDest==SRT_Coroutine ){ |
| sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); |
| }else{ |
| sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); |
| } |
| break; |
| } |
| |
| #ifndef SQLITE_OMIT_CTE |
| /* Write the results into a priority queue that is order according to |
| ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an |
| ** index with pSO->nExpr+2 columns. Build a key using pSO for the first |
| ** pSO->nExpr columns, then make sure all keys are unique by adding a |
| ** final OP_Sequence column. The last column is the record as a blob. |
| */ |
| case SRT_DistQueue: |
| case SRT_Queue: { |
| int nKey; |
| int r1, r2, r3; |
| int addrTest = 0; |
| ExprList *pSO; |
| pSO = pDest->pOrderBy; |
| assert( pSO ); |
| nKey = pSO->nExpr; |
| r1 = sqlite3GetTempReg(pParse); |
| r2 = sqlite3GetTempRange(pParse, nKey+2); |
| r3 = r2+nKey+1; |
| if( eDest==SRT_DistQueue ){ |
| /* If the destination is DistQueue, then cursor (iParm+1) is open |
| ** on a second ephemeral index that holds all values every previously |
| ** added to the queue. */ |
| addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, |
| regResult, nResultCol); |
| VdbeCoverage(v); |
| } |
| sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); |
| if( eDest==SRT_DistQueue ){ |
| sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); |
| sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
| } |
| for(i=0; i<nKey; i++){ |
| sqlite3VdbeAddOp2(v, OP_SCopy, |
| regResult + pSO->a[i].u.x.iOrderByCol - 1, |
| r2+i); |
| } |
| sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); |
| sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); |
| sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); |
| if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); |
| sqlite3ReleaseTempReg(pParse, r1); |
| sqlite3ReleaseTempRange(pParse, r2, nKey+2); |
| break; |
| } |
| #endif /* SQLITE_OMIT_CTE */ |
| |
| |
| |
| #if !defined(SQLITE_OMIT_TRIGGER) |
| /* Discard the results. This is used for SELECT statements inside |
| ** the body of a TRIGGER. The purpose of such selects is to call |
| ** user-defined functions that have side effects. We do not care |
| ** about the actual results of the select. |
| */ |
| default: { |
| assert( eDest==SRT_Discard ); |
| break; |
| } |
| #endif |
| } |
| |
| /* Jump to the end of the loop if the LIMIT is reached. Except, if |
| ** there is a sorter, in which case the sorter has already limited |
| ** the output for us. |
| */ |
| if( pSort==0 && p->iLimit ){ |
| sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); |
| } |
| } |
| |
| /* |
| ** Allocate a KeyInfo object sufficient for an index of N key columns and |
| ** X extra columns. |
| */ |
| KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ |
| int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); |
| KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); |
| if( p ){ |
| p->aSortFlags = (u8*)&p->aColl[N+X]; |
| p->nKeyField = (u16)N; |
| p->nAllField = (u16)(N+X); |
| p->enc = ENC(db); |
| p->db = db; |
| p->nRef = 1; |
| memset(&p[1], 0, nExtra); |
| }else{ |
| return (KeyInfo*)sqlite3OomFault(db); |
| } |
| return p; |
| } |
| |
| /* |
| ** Deallocate a KeyInfo object |
| */ |
| void sqlite3KeyInfoUnref(KeyInfo *p){ |
| if( p ){ |
| assert( p->db!=0 ); |
| assert( p->nRef>0 ); |
| p->nRef--; |
| if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p); |
| } |
| } |
| |
| /* |
| ** Make a new pointer to a KeyInfo object |
| */ |
| KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ |
| if( p ){ |
| assert( p->nRef>0 ); |
| p->nRef++; |
| } |
| return p; |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Return TRUE if a KeyInfo object can be change. The KeyInfo object |
| ** can only be changed if this is just a single reference to the object. |
| ** |
| ** This routine is used only inside of assert() statements. |
| */ |
| int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } |
| #endif /* SQLITE_DEBUG */ |
| |
| /* |
| ** Given an expression list, generate a KeyInfo structure that records |
| ** the collating sequence for each expression in that expression list. |
| ** |
| ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting |
| ** KeyInfo structure is appropriate for initializing a virtual index to |
| ** implement that clause. If the ExprList is the result set of a SELECT |
| ** then the KeyInfo structure is appropriate for initializing a virtual |
| ** index to implement a DISTINCT test. |
| ** |
| ** Space to hold the KeyInfo structure is obtained from malloc. The calling |
| ** function is responsible for seeing that this structure is eventually |
| ** freed. |
| */ |
| KeyInfo *sqlite3KeyInfoFromExprList( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* Form the KeyInfo object from this ExprList */ |
| int iStart, /* Begin with this column of pList */ |
| int nExtra /* Add this many extra columns to the end */ |
| ){ |
| int nExpr; |
| KeyInfo *pInfo; |
| struct ExprList_item *pItem; |
| sqlite3 *db = pParse->db; |
| int i; |
| |
| nExpr = pList->nExpr; |
| pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); |
| if( pInfo ){ |
| assert( sqlite3KeyInfoIsWriteable(pInfo) ); |
| for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ |
| pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); |
| pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags; |
| } |
| } |
| return pInfo; |
| } |
| |
| /* |
| ** Name of the connection operator, used for error messages. |
| */ |
| const char *sqlite3SelectOpName(int id){ |
| char *z; |
| switch( id ){ |
| case TK_ALL: z = "UNION ALL"; break; |
| case TK_INTERSECT: z = "INTERSECT"; break; |
| case TK_EXCEPT: z = "EXCEPT"; break; |
| default: z = "UNION"; break; |
| } |
| return z; |
| } |
| |
| #ifndef SQLITE_OMIT_EXPLAIN |
| /* |
| ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function |
| ** is a no-op. Otherwise, it adds a single row of output to the EQP result, |
| ** where the caption is of the form: |
| ** |
| ** "USE TEMP B-TREE FOR xxx" |
| ** |
| ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which |
| ** is determined by the zUsage argument. |
| */ |
| static void explainTempTable(Parse *pParse, const char *zUsage){ |
| ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); |
| } |
| |
| /* |
| ** Assign expression b to lvalue a. A second, no-op, version of this macro |
| ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code |
| ** in sqlite3Select() to assign values to structure member variables that |
| ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the |
| ** code with #ifndef directives. |
| */ |
| # define explainSetInteger(a, b) a = b |
| |
| #else |
| /* No-op versions of the explainXXX() functions and macros. */ |
| # define explainTempTable(y,z) |
| # define explainSetInteger(y,z) |
| #endif |
| |
| |
| /* |
| ** If the inner loop was generated using a non-null pOrderBy argument, |
| ** then the results were placed in a sorter. After the loop is terminated |
| ** we need to run the sorter and output the results. The following |
| ** routine generates the code needed to do that. |
| */ |
| static void generateSortTail( |
| Parse *pParse, /* Parsing context */ |
| Select *p, /* The SELECT statement */ |
| SortCtx *pSort, /* Information on the ORDER BY clause */ |
| int nColumn, /* Number of columns of data */ |
| SelectDest *pDest /* Write the sorted results here */ |
| ){ |
| Vdbe *v = pParse->pVdbe; /* The prepared statement */ |
| int addrBreak = pSort->labelDone; /* Jump here to exit loop */ |
| int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ |
| int addr; /* Top of output loop. Jump for Next. */ |
| int addrOnce = 0; |
| int iTab; |
| ExprList *pOrderBy = pSort->pOrderBy; |
| int eDest = pDest->eDest; |
| int iParm = pDest->iSDParm; |
| int regRow; |
| int regRowid; |
| int iCol; |
| int nKey; /* Number of key columns in sorter record */ |
| int iSortTab; /* Sorter cursor to read from */ |
| int i; |
| int bSeq; /* True if sorter record includes seq. no. */ |
| int nRefKey = 0; |
| struct ExprList_item *aOutEx = p->pEList->a; |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| int addrExplain; /* Address of OP_Explain instruction */ |
| #endif |
| |
| ExplainQueryPlan2(addrExplain, (pParse, 0, |
| "USE TEMP B-TREE FOR %sORDER BY", pSort->nOBSat>0?"RIGHT PART OF ":"") |
| ); |
| sqlite3VdbeScanStatusRange(v, addrExplain,pSort->addrPush,pSort->addrPushEnd); |
| sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, pSort->addrPush); |
| |
| |
| assert( addrBreak<0 ); |
| if( pSort->labelBkOut ){ |
| sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); |
| sqlite3VdbeGoto(v, addrBreak); |
| sqlite3VdbeResolveLabel(v, pSort->labelBkOut); |
| } |
| |
| #ifdef SQLITE_ENABLE_SORTER_REFERENCES |
| /* Open any cursors needed for sorter-reference expressions */ |
| for(i=0; i<pSort->nDefer; i++){ |
| Table *pTab = pSort->aDefer[i].pTab; |
| int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); |
| nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); |
| } |
| #endif |
| |
| iTab = pSort->iECursor; |
| if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ |
| if( eDest==SRT_Mem && p->iOffset ){ |
| sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst); |
| } |
| regRowid = 0; |
| regRow = pDest->iSdst; |
| }else{ |
| regRowid = sqlite3GetTempReg(pParse); |
| if( eDest==SRT_EphemTab || eDest==SRT_Table ){ |
| regRow = sqlite3GetTempReg(pParse); |
| nColumn = 0; |
| }else{ |
| regRow = sqlite3GetTempRange(pParse, nColumn); |
| } |
| } |
| nKey = pOrderBy->nExpr - pSort->nOBSat; |
| if( pSort->sortFlags & SORTFLAG_UseSorter ){ |
| int regSortOut = ++pParse->nMem; |
| iSortTab = pParse->nTab++; |
| if( pSort->labelBkOut ){ |
| addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
| } |
| sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, |
| nKey+1+nColumn+nRefKey); |
| if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); |
| addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); |
| VdbeCoverage(v); |
| assert( p->iLimit==0 && p->iOffset==0 ); |
| sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); |
| bSeq = 0; |
| }else{ |
| addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); |
| codeOffset(v, p->iOffset, addrContinue); |
| iSortTab = iTab; |
| bSeq = 1; |
| if( p->iOffset>0 ){ |
| sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); |
| } |
| } |
| for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ |
| #ifdef SQLITE_ENABLE_SORTER_REFERENCES |
| if( aOutEx[i].fg.bSorterRef ) continue; |
| #endif |
| if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; |
| } |
| #ifdef SQLITE_ENABLE_SORTER_REFERENCES |
| if( pSort->nDefer ){ |
| int iKey = iCol+1; |
| int regKey = sqlite3GetTempRange(pParse, nRefKey); |
| |
| for(i=0; i<pSort->nDefer; i++){ |
| int iCsr = pSort->aDefer[i].iCsr; |
| Table *pTab = pSort->aDefer[i].pTab; |
| int nKey = pSort->aDefer[i].nKey; |
| |
| sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); |
| if( HasRowid(pTab) ){ |
| sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); |
| sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, |
| sqlite3VdbeCurrentAddr(v)+1, regKey); |
| }else{ |
| int k; |
| int iJmp; |
| assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); |
| for(k=0; k<nKey; k++){ |
| sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); |
| } |
| iJmp = sqlite3VdbeCurrentAddr(v); |
| sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); |
| sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); |
| sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); |
| } |
| } |
| sqlite3ReleaseTempRange(pParse, regKey, nRefKey); |
| } |
| #endif |
| for(i=nColumn-1; i>=0; i--){ |
| #ifdef SQLITE_ENABLE_SORTER_REFERENCES |
| if( aOutEx[i].fg.bSorterRef ){ |
| sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); |
| }else |
| #endif |
| { |
| int iRead; |
| if( aOutEx[i].u.x.iOrderByCol ){ |
| iRead = aOutEx[i].u.x.iOrderByCol-1; |
| }else{ |
| iRead = iCol--; |
| } |
| sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); |
| VdbeComment((v, "%s", aOutEx[i].zEName)); |
| } |
| } |
| sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1); |
| switch( eDest ){ |
| case SRT_Table: |
| case SRT_EphemTab: { |
| sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); |
| sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); |
| sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); |
| sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
| break; |
| } |
| #ifndef SQLITE_OMIT_SUBQUERY |
| case SRT_Set: { |
| assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); |
| sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, |
| pDest->zAffSdst, nColumn); |
| sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); |
| break; |
| } |
| case SRT_Mem: { |
| /* The LIMIT clause will terminate the loop for us */ |
| break; |
| } |
| #endif |
| case SRT_Upfrom: { |
| int i2 = pDest->iSDParm2; |
| int r1 = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); |
| if( i2<0 ){ |
| sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); |
| }else{ |
| sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); |
| } |
| break; |
| } |
| default: { |
| assert( eDest==SRT_Output || eDest==SRT_Coroutine ); |
| testcase( eDest==SRT_Output ); |
| testcase( eDest==SRT_Coroutine ); |
| if( eDest==SRT_Output ){ |
| sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); |
| }else{ |
| sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); |
| } |
| break; |
| } |
| } |
| if( regRowid ){ |
| if( eDest==SRT_Set ){ |
| sqlite3ReleaseTempRange(pParse, regRow, nColumn); |
| }else{ |
| sqlite3ReleaseTempReg(pParse, regRow); |
| } |
| sqlite3ReleaseTempReg(pParse, regRowid); |
| } |
| /* The bottom of the loop |
| */ |
| sqlite3VdbeResolveLabel(v, addrContinue); |
| if( pSort->sortFlags & SORTFLAG_UseSorter ){ |
| sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); |
| }else{ |
| sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); |
| } |
| sqlite3VdbeScanStatusRange(v, addrExplain, sqlite3VdbeCurrentAddr(v)-1, -1); |
| if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); |
| sqlite3VdbeResolveLabel(v, addrBreak); |
| } |
| |
| /* |
| ** Return a pointer to a string containing the 'declaration type' of the |
| ** expression pExpr. The string may be treated as static by the caller. |
| ** |
| ** The declaration type is the exact datatype definition extracted from the |
| ** original CREATE TABLE statement if the expression is a column. The |
| ** declaration type for a ROWID field is INTEGER. Exactly when an expression |
| ** is considered a column can be complex in the presence of subqueries. The |
| ** result-set expression in all of the following SELECT statements is |
| ** considered a column by this function. |
| ** |
| ** SELECT col FROM tbl; |
| ** SELECT (SELECT col FROM tbl; |
| ** SELECT (SELECT col FROM tbl); |
| ** SELECT abc FROM (SELECT col AS abc FROM tbl); |
| ** |
| ** The declaration type for any expression other than a column is NULL. |
| ** |
| ** This routine has either 3 or 6 parameters depending on whether or not |
| ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. |
| */ |
| #ifdef SQLITE_ENABLE_COLUMN_METADATA |
| # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) |
| #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ |
| # define columnType(A,B,C,D,E) columnTypeImpl(A,B) |
| #endif |
| static const char *columnTypeImpl( |
| NameContext *pNC, |
| #ifndef SQLITE_ENABLE_COLUMN_METADATA |
| Expr *pExpr |
| #else |
| Expr *pExpr, |
| const char **pzOrigDb, |
| const char **pzOrigTab, |
| const char **pzOrigCol |
| #endif |
| ){ |
| char const *zType = 0; |
| int j; |
| #ifdef SQLITE_ENABLE_COLUMN_METADATA |
| char const *zOrigDb = 0; |
| char const *zOrigTab = 0; |
| char const *zOrigCol = 0; |
| #endif |
| |
| assert( pExpr!=0 ); |
| assert( pNC->pSrcList!=0 ); |
| switch( pExpr->op ){ |
| case TK_COLUMN: { |
| /* The expression is a column. Locate the table the column is being |
| ** extracted from in NameContext.pSrcList. This table may be real |
| ** database table or a subquery. |
| */ |
| Table *pTab = 0; /* Table structure column is extracted from */ |
| Select *pS = 0; /* Select the column is extracted from */ |
| int iCol = pExpr->iColumn; /* Index of column in pTab */ |
| while( pNC && !pTab ){ |
| SrcList *pTabList = pNC->pSrcList; |
| for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); |
| if( j<pTabList->nSrc ){ |
| pTab = pTabList->a[j].pTab; |
| pS = pTabList->a[j].pSelect; |
| }else{ |
| pNC = pNC->pNext; |
| } |
| } |
| |
| if( pTab==0 ){ |
| /* At one time, code such as "SELECT new.x" within a trigger would |
| ** cause this condition to run. Since then, we have restructured how |
| ** trigger code is generated and so this condition is no longer |
| ** possible. However, it can still be true for statements like |
| ** the following: |
| ** |
| ** CREATE TABLE t1(col INTEGER); |
| ** SELECT (SELECT t1.col) FROM FROM t1; |
| ** |
| ** when columnType() is called on the expression "t1.col" in the |
| ** sub-select. In this case, set the column type to NULL, even |
| ** though it should really be "INTEGER". |
| ** |
| ** This is not a problem, as the column type of "t1.col" is never |
| ** used. When columnType() is called on the expression |
| ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT |
| ** branch below. */ |
| break; |
| } |
| |
| assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); |
| if( pS ){ |
| /* The "table" is actually a sub-select or a view in the FROM clause |
| ** of the SELECT statement. Return the declaration type and origin |
| ** data for the result-set column of the sub-select. |
| */ |
| if( iCol<pS->pEList->nExpr |
| #ifdef SQLITE_ALLOW_ROWID_IN_VIEW |
| && iCol>=0 |
| #else |
| && ALWAYS(iCol>=0) |
| #endif |
| ){ |
| /* If iCol is less than zero, then the expression requests the |
| ** rowid of the sub-select or view. This expression is legal (see |
| ** test case misc2.2.2) - it always evaluates to NULL. |
| */ |
| NameContext sNC; |
| Expr *p = pS->pEList->a[iCol].pExpr; |
| sNC.pSrcList = pS->pSrc; |
| sNC.pNext = pNC; |
| sNC.pParse = pNC->pParse; |
| zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); |
| } |
| }else{ |
| /* A real table or a CTE table */ |
| assert( !pS ); |
| #ifdef SQLITE_ENABLE_COLUMN_METADATA |
| if( iCol<0 ) iCol = pTab->iPKey; |
| assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); |
| if( iCol<0 ){ |
| zType = "INTEGER"; |
| zOrigCol = "rowid"; |
| }else{ |
| zOrigCol = pTab->aCol[iCol].zCnName; |
| zType = sqlite3ColumnType(&pTab->aCol[iCol],0); |
| } |
| zOrigTab = pTab->zName; |
| if( pNC->pParse && pTab->pSchema ){ |
| int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); |
| zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; |
| } |
| #else |
| assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); |
| if( iCol<0 ){ |
| zType = "INTEGER"; |
| }else{ |
| zType = sqlite3ColumnType(&pTab->aCol[iCol],0); |
| } |
| #endif |
| } |
| break; |
| } |
| #ifndef SQLITE_OMIT_SUBQUERY |
| case TK_SELECT: { |
| /* The expression is a sub-select. Return the declaration type and |
| ** origin info for the single column in the result set of the SELECT |
| ** statement. |
| */ |
| NameContext sNC; |
| Select *pS; |
| Expr *p; |
| assert( ExprUseXSelect(pExpr) ); |
| pS = pExpr->x.pSelect; |
| p = pS->pEList->a[0].pExpr; |
| sNC.pSrcList = pS->pSrc; |
| sNC.pNext = pNC; |
| sNC.pParse = pNC->pParse; |
| zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); |
| break; |
| } |
| #endif |
| } |
| |
| #ifdef SQLITE_ENABLE_COLUMN_METADATA |
| if( pzOrigDb ){ |
| assert( pzOrigTab && pzOrigCol ); |
| *pzOrigDb = zOrigDb; |
| *pzOrigTab = zOrigTab; |
| *pzOrigCol = zOrigCol; |
| } |
| #endif |
| return zType; |
| } |
| |
| /* |
| ** Generate code that will tell the VDBE the declaration types of columns |
| ** in the result set. |
| */ |
| static void generateColumnTypes( |
| Parse *pParse, /* Parser context */ |
| SrcList *pTabList, /* List of tables */ |
| ExprList *pEList /* Expressions defining the result set */ |
| ){ |
| #ifndef SQLITE_OMIT_DECLTYPE |
| Vdbe *v = pParse->pVdbe; |
| int i; |
| NameContext sNC; |
| sNC.pSrcList = pTabList; |
| sNC.pParse = pParse; |
| sNC.pNext = 0; |
| for(i=0; i<pEList->nExpr; i++){ |
| Expr *p = pEList->a[i].pExpr; |
| const char *zType; |
| #ifdef SQLITE_ENABLE_COLUMN_METADATA |
| const char *zOrigDb = 0; |
| const char *zOrigTab = 0; |
| const char *zOrigCol = 0; |
| zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); |
| |
| /* The vdbe must make its own copy of the column-type and other |
| ** column specific strings, in case the schema is reset before this |
| ** virtual machine is deleted. |
| */ |
| sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); |
| sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); |
| sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); |
| #else |
| zType = columnType(&sNC, p, 0, 0, 0); |
| #endif |
| sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); |
| } |
| #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ |
| } |
| |
| |
| /* |
| ** Compute the column names for a SELECT statement. |
| ** |
| ** The only guarantee that SQLite makes about column names is that if the |
| ** column has an AS clause assigning it a name, that will be the name used. |
| ** That is the only documented guarantee. However, countless applications |
| ** developed over the years have made baseless assumptions about column names |
| ** and will break if those assumptions changes. Hence, use extreme caution |
| ** when modifying this routine to avoid breaking legacy. |
| ** |
| ** See Also: sqlite3ColumnsFromExprList() |
| ** |
| ** The PRAGMA short_column_names and PRAGMA full_column_names settings are |
| ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all |
| ** applications should operate this way. Nevertheless, we need to support the |
| ** other modes for legacy: |
| ** |
| ** short=OFF, full=OFF: Column name is the text of the expression has it |
| ** originally appears in the SELECT statement. In |
| ** other words, the zSpan of the result expression. |
| ** |
| ** short=ON, full=OFF: (This is the default setting). If the result |
| ** refers directly to a table column, then the |
| ** result column name is just the table column |
| ** name: COLUMN. Otherwise use zSpan. |
| ** |
| ** full=ON, short=ANY: If the result refers directly to a table column, |
| ** then the result column name with the table name |
| ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. |
| */ |
| void sqlite3GenerateColumnNames( |
| Parse *pParse, /* Parser context */ |
| Select *pSelect /* Generate column names for this SELECT statement */ |
| ){ |
| Vdbe *v = pParse->pVdbe; |
| int i; |
| Table *pTab; |
| SrcList *pTabList; |
| ExprList *pEList; |
| sqlite3 *db = pParse->db; |
| int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ |
| int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ |
| |
| #ifndef SQLITE_OMIT_EXPLAIN |
| /* If this is an EXPLAIN, skip this step */ |
| if( pParse->explain ){ |
| return; |
| } |
| #endif |
| |
| if( pParse->colNamesSet ) return; |
| /* Column names are determined by the left-most term of a compound select */ |
| while( pSelect->pPrior ) pSelect = pSelect->pPrior; |
| TREETRACE(0x80,pParse,pSelect,("generating column names\n")); |
| pTabList = pSelect->pSrc; |
| pEList = pSelect->pEList; |
| assert( v!=0 ); |
| assert( pTabList!=0 ); |
| pParse->colNamesSet = 1; |
| fullName = (db->flags & SQLITE_FullColNames)!=0; |
| srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; |
| sqlite3VdbeSetNumCols(v, pEList->nExpr); |
| for(i=0; i<pEList->nExpr; i++){ |
| Expr *p = pEList->a[i].pExpr; |
| |
| assert( p!=0 ); |
| assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ |
| assert( p->op!=TK_COLUMN |
| || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ |
| if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){ |
| /* An AS clause always takes first priority */ |
| char *zName = pEList->a[i].zEName; |
| sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); |
| }else if( srcName && p->op==TK_COLUMN ){ |
| char *zCol; |
| int iCol = p->iColumn; |
| pTab = p->y.pTab; |
| assert( pTab!=0 ); |
| if( iCol<0 ) iCol = pTab->iPKey; |
| assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
| if( iCol<0 ){ |
| zCol = "rowid"; |
| }else{ |
| zCol = pTab->aCol[iCol].zCnName; |
| } |
| if( fullName ){ |
| char *zName = 0; |
| zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); |
| sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); |
| }else{ |
| sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); |
| } |
| }else{ |
| const char *z = pEList->a[i].zEName; |
| z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); |
| sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); |
| } |
| } |
| generateColumnTypes(pParse, pTabList, pEList); |
| } |
| |
| /* |
| ** Given an expression list (which is really the list of expressions |
| ** that form the result set of a SELECT statement) compute appropriate |
| ** column names for a table that would hold the expression list. |
| ** |
| ** All column names will be unique. |
| ** |
| ** Only the column names are computed. Column.zType, Column.zColl, |
| ** and other fields of Column are zeroed. |
| ** |
| ** Return SQLITE_OK on success. If a memory allocation error occurs, |
| ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. |
| ** |
| ** The only guarantee that SQLite makes about column names is that if the |
| ** column has an AS clause assigning it a name, that will be the name used. |
| ** That is the only documented guarantee. However, countless applications |
| ** developed over the years have made baseless assumptions about column names |
| ** and will break if those assumptions changes. Hence, use extreme caution |
| ** when modifying this routine to avoid breaking legacy. |
| ** |
| ** See Also: sqlite3GenerateColumnNames() |
| */ |
| int sqlite3ColumnsFromExprList( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pEList, /* Expr list from which to derive column names */ |
| i16 *pnCol, /* Write the number of columns here */ |
| Column **paCol /* Write the new column list here */ |
| ){ |
| sqlite3 *db = pParse->db; /* Database connection */ |
| int i, j; /* Loop counters */ |
| u32 cnt; /* Index added to make the name unique */ |
| Column *aCol, *pCol; /* For looping over result columns */ |
| int nCol; /* Number of columns in the result set */ |
| char *zName; /* Column name */ |
| int nName; /* Size of name in zName[] */ |
| Hash ht; /* Hash table of column names */ |
| Table *pTab; |
| |
| sqlite3HashInit(&ht); |
| if( pEList ){ |
| nCol = pEList->nExpr; |
| aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); |
| testcase( aCol==0 ); |
| if( NEVER(nCol>32767) ) nCol = 32767; |
| }else{ |
| nCol = 0; |
| aCol = 0; |
| } |
| assert( nCol==(i16)nCol ); |
| *pnCol = nCol; |
| *paCol = aCol; |
| |
| for(i=0, pCol=aCol; i<nCol && !pParse->nErr; i++, pCol++){ |
| struct ExprList_item *pX = &pEList->a[i]; |
| struct ExprList_item *pCollide; |
| /* Get an appropriate name for the column |
| */ |
| if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){ |
| /* If the column contains an "AS <name>" phrase, use <name> as the name */ |
| }else{ |
| Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr); |
| while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ |
| pColExpr = pColExpr->pRight; |
| assert( pColExpr!=0 ); |
| } |
| if( pColExpr->op==TK_COLUMN |
| && ALWAYS( ExprUseYTab(pColExpr) ) |
| && ALWAYS( pColExpr->y.pTab!=0 ) |
| ){ |
| /* For columns use the column name name */ |
| int iCol = pColExpr->iColumn; |
| pTab = pColExpr->y.pTab; |
| if( iCol<0 ) iCol = pTab->iPKey; |
| zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; |
| }else if( pColExpr->op==TK_ID ){ |
| assert( !ExprHasProperty(pColExpr, EP_IntValue) ); |
| zName = pColExpr->u.zToken; |
| }else{ |
| /* Use the original text of the column expression as its name */ |
| assert( zName==pX->zEName ); /* pointer comparison intended */ |
| } |
| } |
| if( zName && !sqlite3IsTrueOrFalse(zName) ){ |
| zName = sqlite3DbStrDup(db, zName); |
| }else{ |
| zName = sqlite3MPrintf(db,"column%d",i+1); |
| } |
| |
| /* Make sure the column name is unique. If the name is not unique, |
| ** append an integer to the name so that it becomes unique. |
| */ |
| cnt = 0; |
| while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){ |
| if( pCollide->fg.bUsingTerm ){ |
| pCol->colFlags |= COLFLAG_NOEXPAND; |
| } |
| nName = sqlite3Strlen30(zName); |
| if( nName>0 ){ |
| for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} |
| if( zName[j]==':' ) nName = j; |
| } |
| zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); |
| sqlite3ProgressCheck(pParse); |
| if( cnt>3 ){ |
| sqlite3_randomness(sizeof(cnt), &cnt); |
| } |
| } |
| pCol->zCnName = zName; |
| pCol->hName = sqlite3StrIHash(zName); |
| if( pX->fg.bNoExpand ){ |
| pCol->colFlags |= COLFLAG_NOEXPAND; |
| } |
| sqlite3ColumnPropertiesFromName(0, pCol); |
| if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){ |
| sqlite3OomFault(db); |
| } |
| } |
| sqlite3HashClear(&ht); |
| if( pParse->nErr ){ |
| for(j=0; j<i; j++){ |
| sqlite3DbFree(db, aCol[j].zCnName); |
| } |
| sqlite3DbFree(db, aCol); |
| *paCol = 0; |
| *pnCol = 0; |
| return pParse->rc; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** pTab is a transient Table object that represents a subquery of some |
| ** kind (maybe a parenthesized subquery in the FROM clause of a larger |
| ** query, or a VIEW, or a CTE). This routine computes type information |
| ** for that Table object based on the Select object that implements the |
| ** subquery. For the purposes of this routine, "type infomation" means: |
| ** |
| ** * The datatype name, as it might appear in a CREATE TABLE statement |
| ** * Which collating sequence to use for the column |
| ** * The affinity of the column |
| */ |
| void sqlite3SubqueryColumnTypes( |
| Parse *pParse, /* Parsing contexts */ |
| Table *pTab, /* Add column type information to this table */ |
| Select *pSelect, /* SELECT used to determine types and collations */ |
| char aff /* Default affinity. */ |
| ){ |
| sqlite3 *db = pParse->db; |
| Column *pCol; |
| CollSeq *pColl; |
| int i,j; |
| Expr *p; |
| struct ExprList_item *a; |
| NameContext sNC; |
| |
| assert( pSelect!=0 ); |
| assert( (pSelect->selFlags & SF_Resolved)!=0 ); |
| assert( pTab->nCol==pSelect->pEList->nExpr || pParse->nErr>0 ); |
| assert( aff==SQLITE_AFF_NONE || aff==SQLITE_AFF_BLOB ); |
| if( db->mallocFailed ) return; |
| while( pSelect->pPrior ) pSelect = pSelect->pPrior; |
| a = pSelect->pEList->a; |
| memset(&sNC, 0, sizeof(sNC)); |
| sNC.pSrcList = pSelect->pSrc; |
| for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ |
| const char *zType; |
| i64 n; |
| pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); |
| p = a[i].pExpr; |
| /* pCol->szEst = ... // Column size est for SELECT tables never used */ |
| pCol->affinity = sqlite3ExprAffinity(p); |
| if( pCol->affinity<=SQLITE_AFF_NONE ){ |
| pCol->affinity = aff; |
| }else if( pCol->affinity>=SQLITE_AFF_NUMERIC && p->op==TK_CAST ){ |
| pCol->affinity = SQLITE_AFF_FLEXNUM; |
| } |
| if( pCol->affinity>=SQLITE_AFF_TEXT && pSelect->pNext ){ |
| int m = 0; |
| Select *pS2; |
| for(m=0, pS2=pSelect->pNext; pS2; pS2=pS2->pNext){ |
| m |= sqlite3ExprDataType(pS2->pEList->a[i].pExpr); |
| } |
| if( pCol->affinity==SQLITE_AFF_TEXT && (m&0x01)!=0 ){ |
| pCol->affinity = SQLITE_AFF_BLOB; |
| }else |
| if( pCol->affinity>=SQLITE_AFF_NUMERIC && (m&0x02)!=0 ){ |
| pCol->affinity = SQLITE_AFF_BLOB; |
| } |
| } |
| zType = columnType(&sNC, p, 0, 0, 0); |
| if( zType==0 || pCol->affinity!=sqlite3AffinityType(zType, 0) ){ |
| if( pCol->affinity==SQLITE_AFF_NUMERIC |
| || pCol->affinity==SQLITE_AFF_FLEXNUM |
| ){ |
| zType = "NUM"; |
| }else{ |
| zType = 0; |
| for(j=1; j<SQLITE_N_STDTYPE; j++){ |
| if( sqlite3StdTypeAffinity[j]==pCol->affinity ){ |
| zType = sqlite3StdType[j]; |
| break; |
| } |
| } |
| } |
| } |
| if( zType ){ |
| i64 m = sqlite3Strlen30(zType); |
| n = sqlite3Strlen30(pCol->zCnName); |
| pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); |
| if( pCol->zCnName ){ |
| memcpy(&pCol->zCnName[n+1], zType, m+1); |
| pCol->colFlags |= COLFLAG_HASTYPE; |
| }else{ |
| testcase( pCol->colFlags & COLFLAG_HASTYPE ); |
| pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL); |
| } |
| } |
| pColl = sqlite3ExprCollSeq(pParse, p); |
| if( pColl ){ |
| assert( pTab->pIndex==0 ); |
| sqlite3ColumnSetColl(db, pCol, pColl->zName); |
| } |
| } |
| pTab->szTabRow = 1; /* Any non-zero value works */ |
| } |
| |
| /* |
| ** Given a SELECT statement, generate a Table structure that describes |
| ** the result set of that SELECT. |
| */ |
| Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ |
| Table *pTab; |
| sqlite3 *db = pParse->db; |
| u64 savedFlags; |
| |
| savedFlags = db->flags; |
| db->flags &= ~(u64)SQLITE_FullColNames; |
| db->flags |= SQLITE_ShortColNames; |
| sqlite3SelectPrep(pParse, pSelect, 0); |
| db->flags = savedFlags; |
| if( pParse->nErr ) return 0; |
| while( pSelect->pPrior ) pSelect = pSelect->pPrior; |
| pTab = sqlite3DbMallocZero(db, sizeof(Table) ); |
| if( pTab==0 ){ |
| return 0; |
| } |
| pTab->nTabRef = 1; |
| pTab->zName = 0; |
| pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
| sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); |
| sqlite3SubqueryColumnTypes(pParse, pTab, pSelect, aff); |
| pTab->iPKey = -1; |
| if( db->mallocFailed ){ |
| sqlite3DeleteTable(db, pTab); |
| return 0; |
| } |
| return pTab; |
| } |
| |
| /* |
| ** Get a VDBE for the given parser context. Create a new one if necessary. |
| ** If an error occurs, return NULL and leave a message in pParse. |
| */ |
| Vdbe *sqlite3GetVdbe(Parse *pParse){ |
| if( pParse->pVdbe ){ |
| return pParse->pVdbe; |
| } |
| if( pParse->pToplevel==0 |
| && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) |
| ){ |
| pParse->okConstFactor = 1; |
| } |
| return sqlite3VdbeCreate(pParse); |
| } |
| |
| |
| /* |
| ** Compute the iLimit and iOffset fields of the SELECT based on the |
| ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions |
| ** that appear in the original SQL statement after the LIMIT and OFFSET |
| ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset |
| ** are the integer memory register numbers for counters used to compute |
| ** the limit and offset. If there is no limit and/or offset, then |
| ** iLimit and iOffset are negative. |
| ** |
| ** This routine changes the values of iLimit and iOffset only if |
| ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit |
| ** and iOffset should have been preset to appropriate default values (zero) |
| ** prior to calling this routine. |
| ** |
| ** The iOffset register (if it exists) is initialized to the value |
| ** of the OFFSET. The iLimit register is initialized to LIMIT. Register |
| ** iOffset+1 is initialized to LIMIT+OFFSET. |
| ** |
| ** Only if pLimit->pLeft!=0 do the limit registers get |
| ** redefined. The UNION ALL operator uses this property to force |
| ** the reuse of the same limit and offset registers across multiple |
| ** SELECT statements. |
| */ |
| static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ |
| Vdbe *v = 0; |
| int iLimit = 0; |
| int iOffset; |
| int n; |
| Expr *pLimit = p->pLimit; |
| |
| if( p->iLimit ) return; |
| |
| /* |
| ** "LIMIT -1" always shows all rows. There is some |
| ** controversy about what the correct behavior should be. |
| ** The current implementation interprets "LIMIT 0" to mean |
| ** no rows. |
| */ |
| if( pLimit ){ |
| assert( pLimit->op==TK_LIMIT ); |
| assert( pLimit->pLeft!=0 ); |
| p->iLimit = iLimit = ++pParse->nMem; |
| v = sqlite3GetVdbe(pParse); |
| assert( v!=0 ); |
| if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ |
| sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); |
| VdbeComment((v, "LIMIT counter")); |
| if( n==0 ){ |
| sqlite3VdbeGoto(v, iBreak); |
| }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ |
| p->nSelectRow = sqlite3LogEst((u64)n); |
| p->selFlags |= SF_FixedLimit; |
| } |
| }else{ |
| sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); |
| sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); |
| VdbeComment((v, "LIMIT counter")); |
| sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); |
| } |
| if( pLimit->pRight ){ |
| p->iOffset = iOffset = ++pParse->nMem; |
| pParse->nMem++; /* Allocate an extra register for limit+offset */ |
| sqlite3ExprCode(pParse, pLimit->pRight, iOffset); |
| sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); |
| VdbeComment((v, "OFFSET counter")); |
| sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); |
| VdbeComment((v, "LIMIT+OFFSET")); |
| } |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT |
| /* |
| ** Return the appropriate collating sequence for the iCol-th column of |
| ** the result set for the compound-select statement "p". Return NULL if |
| ** the column has no default collating sequence. |
| ** |
| ** The collating sequence for the compound select is taken from the |
| ** left-most term of the select that has a collating sequence. |
| */ |
| static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ |
| CollSeq *pRet; |
| if( p->pPrior ){ |
| pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); |
| }else{ |
| pRet = 0; |
| } |
| assert( iCol>=0 ); |
| /* iCol must be less than p->pEList->nExpr. Otherwise an error would |
| ** have been thrown during name resolution and we would not have gotten |
| ** this far */ |
| if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ |
| pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); |
| } |
| return pRet; |
| } |
| |
| /* |
| ** The select statement passed as the second parameter is a compound SELECT |
| ** with an ORDER BY clause. This function allocates and returns a KeyInfo |
| ** structure suitable for implementing the ORDER BY. |
| ** |
| ** Space to hold the KeyInfo structure is obtained from malloc. The calling |
| ** function is responsible for ensuring that this structure is eventually |
| ** freed. |
| */ |
| static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ |
| ExprList *pOrderBy = p->pOrderBy; |
| int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; |
| sqlite3 *db = pParse->db; |
| KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); |
| if( pRet ){ |
| int i; |
| for(i=0; i<nOrderBy; i++){ |
| struct ExprList_item *pItem = &pOrderBy->a[i]; |
| Expr *pTerm = pItem->pExpr; |
| CollSeq *pColl; |
| |
| if( pTerm->flags & EP_Collate ){ |
| pColl = sqlite3ExprCollSeq(pParse, pTerm); |
| }else{ |
| pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); |
| if( pColl==0 ) pColl = db->pDfltColl; |
| pOrderBy->a[i].pExpr = |
| sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); |
| } |
| assert( sqlite3KeyInfoIsWriteable(pRet) ); |
| pRet->aColl[i] = pColl; |
| pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags; |
| } |
| } |
| |
| return pRet; |
| } |
| |
| #ifndef SQLITE_OMIT_CTE |
| /* |
| ** This routine generates VDBE code to compute the content of a WITH RECURSIVE |
| ** query of the form: |
| ** |
| ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) |
| ** \___________/ \_______________/ |
| ** p->pPrior p |
| ** |
| ** |
| ** There is exactly one reference to the recursive-table in the FROM clause |
| ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. |
| ** |
| ** The setup-query runs once to generate an initial set of rows that go |
| ** into a Queue table. Rows are extracted from the Queue table one by |
| ** one. Each row extracted from Queue is output to pDest. Then the single |
| ** extracted row (now in the iCurrent table) becomes the content of the |
| ** recursive-table for a recursive-query run. The output of the recursive-query |
| ** is added back into the Queue table. Then another row is extracted from Queue |
| ** and the iteration continues until the Queue table is empty. |
| ** |
| ** If the compound query operator is UNION then no duplicate rows are ever |
| ** inserted into the Queue table. The iDistinct table keeps a copy of all rows |
| ** that have ever been inserted into Queue and causes duplicates to be |
| ** discarded. If the operator is UNION ALL, then duplicates are allowed. |
| ** |
| ** If the query has an ORDER BY, then entries in the Queue table are kept in |
| ** ORDER BY order and the first entry is extracted for each cycle. Without |
| ** an ORDER BY, the Queue table is just a FIFO. |
| ** |
| ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows |
| ** have been output to pDest. A LIMIT of zero means to output no rows and a |
| ** negative LIMIT means to output all rows. If there is also an OFFSET clause |
| ** with a positive value, then the first OFFSET outputs are discarded rather |
| ** than being sent to pDest. The LIMIT count does not begin until after OFFSET |
| ** rows have been skipped. |
| */ |
| static void generateWithRecursiveQuery( |
| Parse *pParse, /* Parsing context */ |
| Select *p, /* The recursive SELECT to be coded */ |
| SelectDest *pDest /* What to do with query results */ |
| ){ |
| SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ |
| int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ |
| Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ |
| Select *pSetup; /* The setup query */ |
| Select *pFirstRec; /* Left-most recursive term */ |
| int addrTop; /* Top of the loop */ |
| int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ |
| int iCurrent = 0; /* The Current table */ |
| int regCurrent; /* Register holding Current table */ |
| int iQueue; /* The Queue table */ |
| int iDistinct = 0; /* To ensure unique results if UNION */ |
| int eDest = SRT_Fifo; /* How to write to Queue */ |
| SelectDest destQueue; /* SelectDest targetting the Queue table */ |
| int i; /* Loop counter */ |
| int rc; /* Result code */ |
| ExprList *pOrderBy; /* The ORDER BY clause */ |
| Expr *pLimit; /* Saved LIMIT and OFFSET */ |
| int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ |
| |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( p->pWin ){ |
| sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); |
| return; |
| } |
| #endif |
| |
| /* Obtain authorization to do a recursive query */ |
| if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; |
| |
| /* Process the LIMIT and OFFSET clauses, if they exist */ |
| addrBreak = sqlite3VdbeMakeLabel(pParse); |
| p->nSelectRow = 320; /* 4 billion rows */ |
| computeLimitRegisters(pParse, p, addrBreak); |
| pLimit = p->pLimit; |
| regLimit = p->iLimit; |
| regOffset = p->iOffset; |
| p->pLimit = 0; |
| p->iLimit = p->iOffset = 0; |
| pOrderBy = p->pOrderBy; |
| |
| /* Locate the cursor number of the Current table */ |
| for(i=0; ALWAYS(i<pSrc->nSrc); i++){ |
| if( pSrc->a[i].fg.isRecursive ){ |
| iCurrent = pSrc->a[i].iCursor; |
| break; |
| } |
| } |
| |
| /* Allocate cursors numbers for Queue and Distinct. The cursor number for |
| ** the Distinct table must be exactly one greater than Queue in order |
| ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ |
| iQueue = pParse->nTab++; |
| if( p->op==TK_UNION ){ |
| eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; |
| iDistinct = pParse->nTab++; |
| }else{ |
| eDest = pOrderBy ? SRT_Queue : SRT_Fifo; |
| } |
| sqlite3SelectDestInit(&destQueue, eDest, iQueue); |
| |
| /* Allocate cursors for Current, Queue, and Distinct. */ |
| regCurrent = ++pParse->nMem; |
| sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); |
| if( pOrderBy ){ |
| KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); |
| sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, |
| (char*)pKeyInfo, P4_KEYINFO); |
| destQueue.pOrderBy = pOrderBy; |
| }else{ |
| sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); |
| } |
| VdbeComment((v, "Queue table")); |
| if( iDistinct ){ |
| p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); |
| p->selFlags |= SF_UsesEphemeral; |
| } |
| |
| /* Detach the ORDER BY clause from the compound SELECT */ |
| p->pOrderBy = 0; |
| |
| /* Figure out how many elements of the compound SELECT are part of the |
| ** recursive query. Make sure no recursive elements use aggregate |
| ** functions. Mark the recursive elements as UNION ALL even if they |
| ** are really UNION because the distinctness will be enforced by the |
| ** iDistinct table. pFirstRec is left pointing to the left-most |
| ** recursive term of the CTE. |
| */ |
| for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ |
| if( pFirstRec->selFlags & SF_Aggregate ){ |
| sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); |
| goto end_of_recursive_query; |
| } |
| pFirstRec->op = TK_ALL; |
| if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; |
| } |
| |
| /* Store the results of the setup-query in Queue. */ |
| pSetup = pFirstRec->pPrior; |
| pSetup->pNext = 0; |
| ExplainQueryPlan((pParse, 1, "SETUP")); |
| rc = sqlite3Select(pParse, pSetup, &destQueue); |
| pSetup->pNext = p; |
| if( rc ) goto end_of_recursive_query; |
| |
| /* Find the next row in the Queue and output that row */ |
| addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); |
| |
| /* Transfer the next row in Queue over to Current */ |
| sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ |
| if( pOrderBy ){ |
| sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); |
| }else{ |
| sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); |
| } |
| sqlite3VdbeAddOp1(v, OP_Delete, iQueue); |
| |
| /* Output the single row in Current */ |
| addrCont = sqlite3VdbeMakeLabel(pParse); |
| codeOffset(v, regOffset, addrCont); |
| selectInnerLoop(pParse, p, iCurrent, |
| 0, 0, pDest, addrCont, addrBreak); |
| if( regLimit ){ |
| sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); |
| VdbeCoverage(v); |
| } |
| sqlite3VdbeResolveLabel(v, addrCont); |
| |
| /* Execute the recursive SELECT taking the single row in Current as |
| ** the value for the recursive-table. Store the results in the Queue. |
| */ |
| pFirstRec->pPrior = 0; |
| ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); |
| sqlite3Select(pParse, p, &destQueue); |
| assert( pFirstRec->pPrior==0 ); |
| pFirstRec->pPrior = pSetup; |
| |
| /* Keep running the loop until the Queue is empty */ |
| sqlite3VdbeGoto(v, addrTop); |
| sqlite3VdbeResolveLabel(v, addrBreak); |
| |
| end_of_recursive_query: |
| sqlite3ExprListDelete(pParse->db, p->pOrderBy); |
| p->pOrderBy = pOrderBy; |
| p->pLimit = pLimit; |
| return; |
| } |
| #endif /* SQLITE_OMIT_CTE */ |
| |
| /* Forward references */ |
| static int multiSelectOrderBy( |
| Parse *pParse, /* Parsing context */ |
| Select *p, /* The right-most of SELECTs to be coded */ |
| SelectDest *pDest /* What to do with query results */ |
| ); |
| |
| /* |
| ** Handle the special case of a compound-select that originates from a |
| ** VALUES clause. By handling this as a special case, we avoid deep |
| ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT |
| ** on a VALUES clause. |
| ** |
| ** Because the Select object originates from a VALUES clause: |
| ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 |
| ** (2) All terms are UNION ALL |
| ** (3) There is no ORDER BY clause |
| ** |
| ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES |
| ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). |
| ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. |
| ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES. |
| */ |
| static int multiSelectValues( |
| Parse *pParse, /* Parsing context */ |
| Select *p, /* The right-most of SELECTs to be coded */ |
| SelectDest *pDest /* What to do with query results */ |
| ){ |
| int nRow = 1; |
| int rc = 0; |
| int bShowAll = p->pLimit==0; |
| assert( p->selFlags & SF_MultiValue ); |
| do{ |
| assert( p->selFlags & SF_Values ); |
| assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); |
| assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( p->pWin ) return -1; |
| #endif |
| if( p->pPrior==0 ) break; |
| assert( p->pPrior->pNext==p ); |
| p = p->pPrior; |
| nRow += bShowAll; |
| }while(1); |
| ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, |
| nRow==1 ? "" : "S")); |
| while( p ){ |
| selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); |
| if( !bShowAll ) break; |
| p->nSelectRow = nRow; |
| p = p->pNext; |
| } |
| return rc; |
| } |
| |
| /* |
| ** Return true if the SELECT statement which is known to be the recursive |
| ** part of a recursive CTE still has its anchor terms attached. If the |
| ** anchor terms have already been removed, then return false. |
| */ |
| static int hasAnchor(Select *p){ |
| while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } |
| return p!=0; |
| } |
| |
| /* |
| ** This routine is called to process a compound query form from |
| ** two or more separate queries using UNION, UNION ALL, EXCEPT, or |
| ** INTERSECT |
| ** |
| ** "p" points to the right-most of the two queries. the query on the |
| ** left is p->pPrior. The left query could also be a compound query |
| ** in which case this routine will be called recursively. |
| ** |
| ** The results of the total query are to be written into a destination |
| ** of type eDest with parameter iParm. |
| ** |
| ** Example 1: Consider a three-way compound SQL statement. |
| ** |
| ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 |
| ** |
| ** This statement is parsed up as follows: |
| ** |
| ** SELECT c FROM t3 |
| ** | |
| ** `-----> SELECT b FROM t2 |
| ** | |
| ** `------> SELECT a FROM t1 |
| ** |
| ** The arrows in the diagram above represent the Select.pPrior pointer. |
| ** So if this routine is called with p equal to the t3 query, then |
| ** pPrior will be the t2 query. p->op will be TK_UNION in this case. |
| ** |
| ** Notice that because of the way SQLite parses compound SELECTs, the |
| ** individual selects always group from left to right. |
| */ |
| static int multiSelect( |
| Parse *pParse, /* Parsing context */ |
| Select *p, /* The right-most of SELECTs to be coded */ |
| SelectDest *pDest /* What to do with query results */ |
| ){ |
| int rc = SQLITE_OK; /* Success code from a subroutine */ |
| Select *pPrior; /* Another SELECT immediately to our left */ |
| Vdbe *v; /* Generate code to this VDBE */ |
| SelectDest dest; /* Alternative data destination */ |
| Select *pDelete = 0; /* Chain of simple selects to delete */ |
| sqlite3 *db; /* Database connection */ |
| |
| /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only |
| ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. |
| */ |
| assert( p && p->pPrior ); /* Calling function guarantees this much */ |
| assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); |
| assert( p->selFlags & SF_Compound ); |
| db = pParse->db; |
| pPrior = p->pPrior; |
| dest = *pDest; |
| assert( pPrior->pOrderBy==0 ); |
| assert( pPrior->pLimit==0 ); |
| |
| v = sqlite3GetVdbe(pParse); |
| assert( v!=0 ); /* The VDBE already created by calling function */ |
| |
| /* Create the destination temporary table if necessary |
| */ |
| if( dest.eDest==SRT_EphemTab ){ |
| assert( p->pEList ); |
| sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); |
| dest.eDest = SRT_Table; |
| } |
| |
| /* Special handling for a compound-select that originates as a VALUES clause. |
| */ |
| if( p->selFlags & SF_MultiValue ){ |
| rc = multiSelectValues(pParse, p, &dest); |
| if( rc>=0 ) goto multi_select_end; |
| rc = SQLITE_OK; |
| } |
| |
| /* Make sure all SELECTs in the statement have the same number of elements |
| ** in their result sets. |
| */ |
| assert( p->pEList && pPrior->pEList ); |
| assert( p->pEList->nExpr==pPrior->pEList->nExpr ); |
| |
| #ifndef SQLITE_OMIT_CTE |
| if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ |
| generateWithRecursiveQuery(pParse, p, &dest); |
| }else |
| #endif |
| |
| /* Compound SELECTs that have an ORDER BY clause are handled separately. |
| */ |
| if( p->pOrderBy ){ |
| return multiSelectOrderBy(pParse, p, pDest); |
| }else{ |
| |
| #ifndef SQLITE_OMIT_EXPLAIN |
| if( pPrior->pPrior==0 ){ |
| ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); |
| ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); |
| } |
| #endif |
| |
| /* Generate code for the left and right SELECT statements. |
| */ |
| switch( p->op ){ |
| case TK_ALL: { |
| int addr = 0; |
| int nLimit = 0; /* Initialize to suppress harmless compiler warning */ |
| assert( !pPrior->pLimit ); |
| pPrior->iLimit = p->iLimit; |
| pPrior->iOffset = p->iOffset; |
| pPrior->pLimit = p->pLimit; |
| TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL left...\n")); |
| rc = sqlite3Select(pParse, pPrior, &dest); |
| pPrior->pLimit = 0; |
| if( rc ){ |
| goto multi_select_end; |
| } |
| p->pPrior = 0; |
| p->iLimit = pPrior->iLimit; |
| p->iOffset = pPrior->iOffset; |
| if( p->iLimit ){ |
| addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); |
| VdbeComment((v, "Jump ahead if LIMIT reached")); |
| if( p->iOffset ){ |
| sqlite3VdbeAddOp3(v, OP_OffsetLimit, |
| p->iLimit, p->iOffset+1, p->iOffset); |
| } |
| } |
| ExplainQueryPlan((pParse, 1, "UNION ALL")); |
| TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL right...\n")); |
| rc = sqlite3Select(pParse, p, &dest); |
| testcase( rc!=SQLITE_OK ); |
| pDelete = p->pPrior; |
| p->pPrior = pPrior; |
| p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); |
| if( p->pLimit |
| && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) |
| && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) |
| ){ |
| p->nSelectRow = sqlite3LogEst((u64)nLimit); |
| } |
| if( addr ){ |
| sqlite3VdbeJumpHere(v, addr); |
| } |
| break; |
| } |
| case TK_EXCEPT: |
| case TK_UNION: { |
| int unionTab; /* Cursor number of the temp table holding result */ |
| u8 op = 0; /* One of the SRT_ operations to apply to self */ |
| int priorOp; /* The SRT_ operation to apply to prior selects */ |
| Expr *pLimit; /* Saved values of p->nLimit */ |
| int addr; |
| SelectDest uniondest; |
| |
| testcase( p->op==TK_EXCEPT ); |
| testcase( p->op==TK_UNION ); |
| priorOp = SRT_Union; |
| if( dest.eDest==priorOp ){ |
| /* We can reuse a temporary table generated by a SELECT to our |
| ** right. |
| */ |
| assert( p->pLimit==0 ); /* Not allowed on leftward elements */ |
| unionTab = dest.iSDParm; |
| }else{ |
| /* We will need to create our own temporary table to hold the |
| ** intermediate results. |
| */ |
| unionTab = pParse->nTab++; |
| assert( p->pOrderBy==0 ); |
| addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); |
| assert( p->addrOpenEphm[0] == -1 ); |
| p->addrOpenEphm[0] = addr; |
| findRightmost(p)->selFlags |= SF_UsesEphemeral; |
| assert( p->pEList ); |
| } |
| |
| |
| /* Code the SELECT statements to our left |
| */ |
| assert( !pPrior->pOrderBy ); |
| sqlite3SelectDestInit(&uniondest, priorOp, unionTab); |
| TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); |
| rc = sqlite3Select(pParse, pPrior, &uniondest); |
| if( rc ){ |
| goto multi_select_end; |
| } |
| |
| /* Code the current SELECT statement |
| */ |
| if( p->op==TK_EXCEPT ){ |
| op = SRT_Except; |
| }else{ |
| assert( p->op==TK_UNION ); |
| op = SRT_Union; |
| } |
| p->pPrior = 0; |
| pLimit = p->pLimit; |
| p->pLimit = 0; |
| uniondest.eDest = op; |
| ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", |
| sqlite3SelectOpName(p->op))); |
| TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); |
| rc = sqlite3Select(pParse, p, &uniondest); |
| testcase( rc!=SQLITE_OK ); |
| assert( p->pOrderBy==0 ); |
| pDelete = p->pPrior; |
| p->pPrior = pPrior; |
| p->pOrderBy = 0; |
| if( p->op==TK_UNION ){ |
| p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); |
| } |
| sqlite3ExprDelete(db, p->pLimit); |
| p->pLimit = pLimit; |
| p->iLimit = 0; |
| p->iOffset = 0; |
| |
| /* Convert the data in the temporary table into whatever form |
| ** it is that we currently need. |
| */ |
| assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); |
| assert( p->pEList || db->mallocFailed ); |
| if( dest.eDest!=priorOp && db->mallocFailed==0 ){ |
| int iCont, iBreak, iStart; |
| iBreak = sqlite3VdbeMakeLabel(pParse); |
| iCont = sqlite3VdbeMakeLabel(pParse); |
| computeLimitRegisters(pParse, p, iBreak); |
| sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); |
| iStart = sqlite3VdbeCurrentAddr(v); |
| selectInnerLoop(pParse, p, unionTab, |
| 0, 0, &dest, iCont, iBreak); |
| sqlite3VdbeResolveLabel(v, iCont); |
| sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); |
| sqlite3VdbeResolveLabel(v, iBreak); |
| sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); |
| } |
| break; |
| } |
| default: assert( p->op==TK_INTERSECT ); { |
| int tab1, tab2; |
| int iCont, iBreak, iStart; |
| Expr *pLimit; |
| int addr; |
| SelectDest intersectdest; |
| int r1; |
| |
| /* INTERSECT is different from the others since it requires |
| ** two temporary tables. Hence it has its own case. Begin |
| ** by allocating the tables we will need. |
| */ |
| tab1 = pParse->nTab++; |
| tab2 = pParse->nTab++; |
| assert( p->pOrderBy==0 ); |
| |
| addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); |
| assert( p->addrOpenEphm[0] == -1 ); |
| p->addrOpenEphm[0] = addr; |
| findRightmost(p)->selFlags |= SF_UsesEphemeral; |
| assert( p->pEList ); |
| |
| /* Code the SELECTs to our left into temporary table "tab1". |
| */ |
| sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); |
| TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT left...\n")); |
| rc = sqlite3Select(pParse, pPrior, &intersectdest); |
| if( rc ){ |
| goto multi_select_end; |
| } |
| |
| /* Code the current SELECT into temporary table "tab2" |
| */ |
| addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); |
| assert( p->addrOpenEphm[1] == -1 ); |
| p->addrOpenEphm[1] = addr; |
| p->pPrior = 0; |
| pLimit = p->pLimit; |
| p->pLimit = 0; |
| intersectdest.iSDParm = tab2; |
| ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", |
| sqlite3SelectOpName(p->op))); |
| TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT right...\n")); |
| rc = sqlite3Select(pParse, p, &intersectdest); |
| testcase( rc!=SQLITE_OK ); |
| pDelete = p->pPrior; |
| p->pPrior = pPrior; |
| if( p->nSelectRow>pPrior->nSelectRow ){ |
| p->nSelectRow = pPrior->nSelectRow; |
| } |
| sqlite3ExprDelete(db, p->pLimit); |
| p->pLimit = pLimit; |
| |
| /* Generate code to take the intersection of the two temporary |
| ** tables. |
| */ |
| if( rc ) break; |
| assert( p->pEList ); |
| iBreak = sqlite3VdbeMakeLabel(pParse); |
| iCont = sqlite3VdbeMakeLabel(pParse); |
| computeLimitRegisters(pParse, p, iBreak); |
| sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); |
| r1 = sqlite3GetTempReg(pParse); |
| iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); |
| sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); |
| VdbeCoverage(v); |
| sqlite3ReleaseTempReg(pParse, r1); |
| selectInnerLoop(pParse, p, tab1, |
| 0, 0, &dest, iCont, iBreak); |
| sqlite3VdbeResolveLabel(v, iCont); |
| sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); |
| sqlite3VdbeResolveLabel(v, iBreak); |
| sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); |
| sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); |
| break; |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_EXPLAIN |
| if( p->pNext==0 ){ |
| ExplainQueryPlanPop(pParse); |
| } |
| #endif |
| } |
| if( pParse->nErr ) goto multi_select_end; |
| |
| /* Compute collating sequences used by |
| ** temporary tables needed to implement the compound select. |
| ** Attach the KeyInfo structure to all temporary tables. |
| ** |
| ** This section is run by the right-most SELECT statement only. |
| ** SELECT statements to the left always skip this part. The right-most |
| ** SELECT might also skip this part if it has no ORDER BY clause and |
| ** no temp tables are required. |
| */ |
| if( p->selFlags & SF_UsesEphemeral ){ |
| int i; /* Loop counter */ |
| KeyInfo *pKeyInfo; /* Collating sequence for the result set */ |
| Select *pLoop; /* For looping through SELECT statements */ |
| CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ |
| int nCol; /* Number of columns in result set */ |
| |
| assert( p->pNext==0 ); |
| assert( p->pEList!=0 ); |
| nCol = p->pEList->nExpr; |
| pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); |
| if( !pKeyInfo ){ |
| rc = SQLITE_NOMEM_BKPT; |
| goto multi_select_end; |
| } |
| for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ |
| *apColl = multiSelectCollSeq(pParse, p, i); |
| if( 0==*apColl ){ |
| *apColl = db->pDfltColl; |
| } |
| } |
| |
| for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ |
| for(i=0; i<2; i++){ |
| int addr = pLoop->addrOpenEphm[i]; |
| if( addr<0 ){ |
| /* If [0] is unused then [1] is also unused. So we can |
| ** always safely abort as soon as the first unused slot is found */ |
| assert( pLoop->addrOpenEphm[1]<0 ); |
| break; |
| } |
| sqlite3VdbeChangeP2(v, addr, nCol); |
| sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), |
| P4_KEYINFO); |
| pLoop->addrOpenEphm[i] = -1; |
| } |
| } |
| sqlite3KeyInfoUnref(pKeyInfo); |
| } |
| |
| multi_select_end: |
| pDest->iSdst = dest.iSdst; |
| pDest->nSdst = dest.nSdst; |
| if( pDelete ){ |
| sqlite3ParserAddCleanup(pParse, |
| (void(*)(sqlite3*,void*))sqlite3SelectDelete, |
| pDelete); |
| } |
| return rc; |
| } |
| #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
| |
| /* |
| ** Error message for when two or more terms of a compound select have different |
| ** size result sets. |
| */ |
| void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ |
| if( p->selFlags & SF_Values ){ |
| sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); |
| }else{ |
| sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" |
| " do not have the same number of result columns", |
| sqlite3SelectOpName(p->op)); |
| } |
| } |
| |
| /* |
| ** Code an output subroutine for a coroutine implementation of a |
| ** SELECT statment. |
| ** |
| ** The data to be output is contained in pIn->iSdst. There are |
| ** pIn->nSdst columns to be output. pDest is where the output should |
| ** be sent. |
| ** |
| ** regReturn is the number of the register holding the subroutine |
| ** return address. |
| ** |
| ** If regPrev>0 then it is the first register in a vector that |
| ** records the previous output. mem[regPrev] is a flag that is false |
| ** if there has been no previous output. If regPrev>0 then code is |
| ** generated to suppress duplicates. pKeyInfo is used for comparing |
| ** keys. |
| ** |
| ** If the LIMIT found in p->iLimit is reached, jump immediately to |
| ** iBreak. |
| */ |
| static int generateOutputSubroutine( |
| Parse *pParse, /* Parsing context */ |
| Select *p, /* The SELECT statement */ |
| SelectDest *pIn, /* Coroutine supplying data */ |
| SelectDest *pDest, /* Where to send the data */ |
| int regReturn, /* The return address register */ |
| int regPrev, /* Previous result register. No uniqueness if 0 */ |
| KeyInfo *pKeyInfo, /* For comparing with previous entry */ |
| int iBreak /* Jump here if we hit the LIMIT */ |
| ){ |
| Vdbe *v = pParse->pVdbe; |
| int iContinue; |
| int addr; |
| |
| addr = sqlite3VdbeCurrentAddr(v); |
| iContinue = sqlite3VdbeMakeLabel(pParse); |
| |
| /* Suppress duplicates for UNION, EXCEPT, and INTERSECT |
| */ |
| if( regPrev ){ |
| int addr1, addr2; |
| addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); |
| addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, |
| (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); |
| sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); |
| sqlite3VdbeJumpHere(v, addr1); |
| sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); |
| } |
| if( pParse->db->mallocFailed ) return 0; |
| |
| /* Suppress the first OFFSET entries if there is an OFFSET clause |
| */ |
| codeOffset(v, p->iOffset, iContinue); |
| |
| assert( pDest->eDest!=SRT_Exists ); |
| assert( pDest->eDest!=SRT_Table ); |
| switch( pDest->eDest ){ |
| /* Store the result as data using a unique key. |
| */ |
| case SRT_EphemTab: { |
| int r1 = sqlite3GetTempReg(pParse); |
| int r2 = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); |
| sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); |
| sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); |
| sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
| sqlite3ReleaseTempReg(pParse, r2); |
| sqlite3ReleaseTempReg(pParse, r1); |
| break; |
| } |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* If we are creating a set for an "expr IN (SELECT ...)". |
| */ |
| case SRT_Set: { |
| int r1; |
| testcase( pIn->nSdst>1 ); |
| r1 = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, |
| r1, pDest->zAffSdst, pIn->nSdst); |
| sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, |
| pIn->iSdst, pIn->nSdst); |
| sqlite3ReleaseTempReg(pParse, r1); |
| break; |
| } |
| |
| /* If this is a scalar select that is part of an expression, then |
| ** store the results in the appropriate memory cell and break out |
| ** of the scan loop. Note that the select might return multiple columns |
| ** if it is the RHS of a row-value IN operator. |
| */ |
| case SRT_Mem: { |
| testcase( pIn->nSdst>1 ); |
| sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); |
| /* The LIMIT clause will jump out of the loop for us */ |
| break; |
| } |
| #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ |
| |
| /* The results are stored in a sequence of registers |
| ** starting at pDest->iSdst. Then the co-routine yields. |
| */ |
| case SRT_Coroutine: { |
| if( pDest->iSdst==0 ){ |
| pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); |
| pDest->nSdst = pIn->nSdst; |
| } |
| sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); |
| sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); |
| break; |
| } |
| |
| /* If none of the above, then the result destination must be |
| ** SRT_Output. This routine is never called with any other |
| ** destination other than the ones handled above or SRT_Output. |
| ** |
| ** For SRT_Output, results are stored in a sequence of registers. |
| ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to |
| ** return the next row of result. |
| */ |
| default: { |
| assert( pDest->eDest==SRT_Output ); |
| sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); |
| break; |
| } |
| } |
| |
| /* Jump to the end of the loop if the LIMIT is reached. |
| */ |
| if( p->iLimit ){ |
| sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); |
| } |
| |
| /* Generate the subroutine return |
| */ |
| sqlite3VdbeResolveLabel(v, iContinue); |
| sqlite3VdbeAddOp1(v, OP_Return, regReturn); |
| |
| return addr; |
| } |
| |
| /* |
| ** Alternative compound select code generator for cases when there |
| ** is an ORDER BY clause. |
| ** |
| ** We assume a query of the following form: |
| ** |
| ** <selectA> <operator> <selectB> ORDER BY <orderbylist> |
| ** |
| ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea |
| ** is to code both <selectA> and <selectB> with the ORDER BY clause as |
| ** co-routines. Then run the co-routines in parallel and merge the results |
| ** into the output. In addition to the two coroutines (called selectA and |
| ** selectB) there are 7 subroutines: |
| ** |
| ** outA: Move the output of the selectA coroutine into the output |
| ** of the compound query. |
| ** |
| ** outB: Move the output of the selectB coroutine into the output |
| ** of the compound query. (Only generated for UNION and |
| ** UNION ALL. EXCEPT and INSERTSECT never output a row that |
| ** appears only in B.) |
| ** |
| ** AltB: Called when there is data from both coroutines and A<B. |
| ** |
| ** AeqB: Called when there is data from both coroutines and A==B. |
| ** |
| ** AgtB: Called when there is data from both coroutines and A>B. |
| ** |
| ** EofA: Called when data is exhausted from selectA. |
| ** |
| ** EofB: Called when data is exhausted from selectB. |
| ** |
| ** The implementation of the latter five subroutines depend on which |
| ** <operator> is used: |
| ** |
| ** |
| ** UNION ALL UNION EXCEPT INTERSECT |
| ** ------------- ----------------- -------------- ----------------- |
| ** AltB: outA, nextA outA, nextA outA, nextA nextA |
| ** |
| ** AeqB: outA, nextA nextA nextA outA, nextA |
| ** |
| ** AgtB: outB, nextB outB, nextB nextB nextB |
| ** |
| ** EofA: outB, nextB outB, nextB halt halt |
| ** |
| ** EofB: outA, nextA outA, nextA outA, nextA halt |
| ** |
| ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA |
| ** causes an immediate jump to EofA and an EOF on B following nextB causes |
| ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or |
| ** following nextX causes a jump to the end of the select processing. |
| ** |
| ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled |
| ** within the output subroutine. The regPrev register set holds the previously |
| ** output value. A comparison is made against this value and the output |
| ** is skipped if the next results would be the same as the previous. |
| ** |
| ** The implementation plan is to implement the two coroutines and seven |
| ** subroutines first, then put the control logic at the bottom. Like this: |
| ** |
| ** goto Init |
| ** coA: coroutine for left query (A) |
| ** coB: coroutine for right query (B) |
| ** outA: output one row of A |
| ** outB: output one row of B (UNION and UNION ALL only) |
| ** EofA: ... |
| ** EofB: ... |
| ** AltB: ... |
| ** AeqB: ... |
| ** AgtB: ... |
| ** Init: initialize coroutine registers |
| ** yield coA |
| ** if eof(A) goto EofA |
| ** yield coB |
| ** if eof(B) goto EofB |
| ** Cmpr: Compare A, B |
| ** Jump AltB, AeqB, AgtB |
| ** End: ... |
| ** |
| ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not |
| ** actually called using Gosub and they do not Return. EofA and EofB loop |
| ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, |
| ** and AgtB jump to either L2 or to one of EofA or EofB. |
| */ |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT |
| static int multiSelectOrderBy( |
| Parse *pParse, /* Parsing context */ |
| Select *p, /* The right-most of SELECTs to be coded */ |
| SelectDest *pDest /* What to do with query results */ |
| ){ |
| int i, j; /* Loop counters */ |
| Select *pPrior; /* Another SELECT immediately to our left */ |
| Select *pSplit; /* Left-most SELECT in the right-hand group */ |
| int nSelect; /* Number of SELECT statements in the compound */ |
| Vdbe *v; /* Generate code to this VDBE */ |
| SelectDest destA; /* Destination for coroutine A */ |
| SelectDest destB; /* Destination for coroutine B */ |
| int regAddrA; /* Address register for select-A coroutine */ |
| int regAddrB; /* Address register for select-B coroutine */ |
| int addrSelectA; /* Address of the select-A coroutine */ |
| int addrSelectB; /* Address of the select-B coroutine */ |
| int regOutA; /* Address register for the output-A subroutine */ |
| int regOutB; /* Address register for the output-B subroutine */ |
| int addrOutA; /* Address of the output-A subroutine */ |
| int addrOutB = 0; /* Address of the output-B subroutine */ |
| int addrEofA; /* Address of the select-A-exhausted subroutine */ |
| int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ |
| int addrEofB; /* Address of the select-B-exhausted subroutine */ |
| int addrAltB; /* Address of the A<B subroutine */ |
| int addrAeqB; /* Address of the A==B subroutine */ |
| int addrAgtB; /* Address of the A>B subroutine */ |
| int regLimitA; /* Limit register for select-A */ |
| int regLimitB; /* Limit register for select-A */ |
| int regPrev; /* A range of registers to hold previous output */ |
| int savedLimit; /* Saved value of p->iLimit */ |
| int savedOffset; /* Saved value of p->iOffset */ |
| int labelCmpr; /* Label for the start of the merge algorithm */ |
| int labelEnd; /* Label for the end of the overall SELECT stmt */ |
| int addr1; /* Jump instructions that get retargetted */ |
| int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ |
| KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ |
| KeyInfo *pKeyMerge; /* Comparison information for merging rows */ |
| sqlite3 *db; /* Database connection */ |
| ExprList *pOrderBy; /* The ORDER BY clause */ |
| int nOrderBy; /* Number of terms in the ORDER BY clause */ |
| u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ |
| |
| assert( p->pOrderBy!=0 ); |
| assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ |
| db = pParse->db; |
| v = pParse->pVdbe; |
| assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ |
| labelEnd = sqlite3VdbeMakeLabel(pParse); |
| labelCmpr = sqlite3VdbeMakeLabel(pParse); |
| |
| |
| /* Patch up the ORDER BY clause |
| */ |
| op = p->op; |
| assert( p->pPrior->pOrderBy==0 ); |
| pOrderBy = p->pOrderBy; |
| assert( pOrderBy ); |
| nOrderBy = pOrderBy->nExpr; |
| |
| /* For operators other than UNION ALL we have to make sure that |
| ** the ORDER BY clause covers every term of the result set. Add |
| ** terms to the ORDER BY clause as necessary. |
| */ |
| if( op!=TK_ALL ){ |
| for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ |
| struct ExprList_item *pItem; |
| for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ |
| assert( pItem!=0 ); |
| assert( pItem->u.x.iOrderByCol>0 ); |
| if( pItem->u.x.iOrderByCol==i ) break; |
| } |
| if( j==nOrderBy ){ |
| Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); |
| if( pNew==0 ) return SQLITE_NOMEM_BKPT; |
| pNew->flags |= EP_IntValue; |
| pNew->u.iValue = i; |
| p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); |
| if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; |
| } |
| } |
| } |
| |
| /* Compute the comparison permutation and keyinfo that is used with |
| ** the permutation used to determine if the next |
| ** row of results comes from selectA or selectB. Also add explicit |
| ** collations to the ORDER BY clause terms so that when the subqueries |
| ** to the right and the left are evaluated, they use the correct |
| ** collation. |
| */ |
| aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); |
| if( aPermute ){ |
| struct ExprList_item *pItem; |
| aPermute[0] = nOrderBy; |
| for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ |
| assert( pItem!=0 ); |
| assert( pItem->u.x.iOrderByCol>0 ); |
| assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); |
| aPermute[i] = pItem->u.x.iOrderByCol - 1; |
| } |
| pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); |
| }else{ |
| pKeyMerge = 0; |
| } |
| |
| /* Allocate a range of temporary registers and the KeyInfo needed |
| ** for the logic that removes duplicate result rows when the |
| ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). |
| */ |
| if( op==TK_ALL ){ |
| regPrev = 0; |
| }else{ |
| int nExpr = p->pEList->nExpr; |
| assert( nOrderBy>=nExpr || db->mallocFailed ); |
| regPrev = pParse->nMem+1; |
| pParse->nMem += nExpr+1; |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); |
| pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); |
| if( pKeyDup ){ |
| assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); |
| for(i=0; i<nExpr; i++){ |
| pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); |
| pKeyDup->aSortFlags[i] = 0; |
| } |
| } |
| } |
| |
| /* Separate the left and the right query from one another |
| */ |
| nSelect = 1; |
| if( (op==TK_ALL || op==TK_UNION) |
| && OptimizationEnabled(db, SQLITE_BalancedMerge) |
| ){ |
| for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){ |
| nSelect++; |
| assert( pSplit->pPrior->pNext==pSplit ); |
| } |
| } |
| if( nSelect<=3 ){ |
| pSplit = p; |
| }else{ |
| pSplit = p; |
| for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; } |
| } |
| pPrior = pSplit->pPrior; |
| assert( pPrior!=0 ); |
| pSplit->pPrior = 0; |
| pPrior->pNext = 0; |
| assert( p->pOrderBy == pOrderBy ); |
| assert( pOrderBy!=0 || db->mallocFailed ); |
| pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); |
| sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); |
| sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); |
| |
| /* Compute the limit registers */ |
| computeLimitRegisters(pParse, p, labelEnd); |
| if( p->iLimit && op==TK_ALL ){ |
| regLimitA = ++pParse->nMem; |
| regLimitB = ++pParse->nMem; |
| sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, |
| regLimitA); |
| sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); |
| }else{ |
| regLimitA = regLimitB = 0; |
| } |
| sqlite3ExprDelete(db, p->pLimit); |
| p->pLimit = 0; |
| |
| regAddrA = ++pParse->nMem; |
| regAddrB = ++pParse->nMem; |
| regOutA = ++pParse->nMem; |
| regOutB = ++pParse->nMem; |
| sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); |
| sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); |
| |
| ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); |
| |
| /* Generate a coroutine to evaluate the SELECT statement to the |
| ** left of the compound operator - the "A" select. |
| */ |
| addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; |
| addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); |
| VdbeComment((v, "left SELECT")); |
| pPrior->iLimit = regLimitA; |
| ExplainQueryPlan((pParse, 1, "LEFT")); |
| sqlite3Select(pParse, pPrior, &destA); |
| sqlite3VdbeEndCoroutine(v, regAddrA); |
| sqlite3VdbeJumpHere(v, addr1); |
| |
| /* Generate a coroutine to evaluate the SELECT statement on |
| ** the right - the "B" select |
| */ |
| addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; |
| addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); |
| VdbeComment((v, "right SELECT")); |
| savedLimit = p->iLimit; |
| savedOffset = p->iOffset; |
| p->iLimit = regLimitB; |
| p->iOffset = 0; |
| ExplainQueryPlan((pParse, 1, "RIGHT")); |
| sqlite3Select(pParse, p, &destB); |
| p->iLimit = savedLimit; |
| p->iOffset = savedOffset; |
| sqlite3VdbeEndCoroutine(v, regAddrB); |
| |
| /* Generate a subroutine that outputs the current row of the A |
| ** select as the next output row of the compound select. |
| */ |
| VdbeNoopComment((v, "Output routine for A")); |
| addrOutA = generateOutputSubroutine(pParse, |
| p, &destA, pDest, regOutA, |
| regPrev, pKeyDup, labelEnd); |
| |
| /* Generate a subroutine that outputs the current row of the B |
| ** select as the next output row of the compound select. |
| */ |
| if( op==TK_ALL || op==TK_UNION ){ |
| VdbeNoopComment((v, "Output routine for B")); |
| addrOutB = generateOutputSubroutine(pParse, |
| p, &destB, pDest, regOutB, |
| regPrev, pKeyDup, labelEnd); |
| } |
| sqlite3KeyInfoUnref(pKeyDup); |
| |
| /* Generate a subroutine to run when the results from select A |
| ** are exhausted and only data in select B remains. |
| */ |
| if( op==TK_EXCEPT || op==TK_INTERSECT ){ |
| addrEofA_noB = addrEofA = labelEnd; |
| }else{ |
| VdbeNoopComment((v, "eof-A subroutine")); |
| addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); |
| addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); |
| VdbeCoverage(v); |
| sqlite3VdbeGoto(v, addrEofA); |
| p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); |
| } |
| |
| /* Generate a subroutine to run when the results from select B |
| ** are exhausted and only data in select A remains. |
| */ |
| if( op==TK_INTERSECT ){ |
| addrEofB = addrEofA; |
| if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; |
| }else{ |
| VdbeNoopComment((v, "eof-B subroutine")); |
| addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); |
| sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); |
| sqlite3VdbeGoto(v, addrEofB); |
| } |
| |
| /* Generate code to handle the case of A<B |
| */ |
| VdbeNoopComment((v, "A-lt-B subroutine")); |
| addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); |
| sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); |
| sqlite3VdbeGoto(v, labelCmpr); |
| |
| /* Generate code to handle the case of A==B |
| */ |
| if( op==TK_ALL ){ |
| addrAeqB = addrAltB; |
| }else if( op==TK_INTERSECT ){ |
| addrAeqB = addrAltB; |
| addrAltB++; |
| }else{ |
| VdbeNoopComment((v, "A-eq-B subroutine")); |
| addrAeqB = |
| sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); |
| sqlite3VdbeGoto(v, labelCmpr); |
| } |
| |
| /* Generate code to handle the case of A>B |
| */ |
| VdbeNoopComment((v, "A-gt-B subroutine")); |
| addrAgtB = sqlite3VdbeCurrentAddr(v); |
| if( op==TK_ALL || op==TK_UNION ){ |
| sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); |
| } |
| sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); |
| sqlite3VdbeGoto(v, labelCmpr); |
| |
| /* This code runs once to initialize everything. |
| */ |
| sqlite3VdbeJumpHere(v, addr1); |
| sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); |
| sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); |
| |
| /* Implement the main merge loop |
| */ |
| sqlite3VdbeResolveLabel(v, labelCmpr); |
| sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); |
| sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, |
| (char*)pKeyMerge, P4_KEYINFO); |
| sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); |
| sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); |
| |
| /* Jump to the this point in order to terminate the query. |
| */ |
| sqlite3VdbeResolveLabel(v, labelEnd); |
| |
| /* Make arrangements to free the 2nd and subsequent arms of the compound |
| ** after the parse has finished */ |
| if( pSplit->pPrior ){ |
| sqlite3ParserAddCleanup(pParse, |
| (void(*)(sqlite3*,void*))sqlite3SelectDelete, pSplit->pPrior); |
| } |
| pSplit->pPrior = pPrior; |
| pPrior->pNext = pSplit; |
| sqlite3ExprListDelete(db, pPrior->pOrderBy); |
| pPrior->pOrderBy = 0; |
| |
| /*** TBD: Insert subroutine calls to close cursors on incomplete |
| **** subqueries ****/ |
| ExplainQueryPlanPop(pParse); |
| return pParse->nErr!=0; |
| } |
| #endif |
| |
| #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
| |
| /* An instance of the SubstContext object describes an substitution edit |
| ** to be performed on a parse tree. |
| ** |
| ** All references to columns in table iTable are to be replaced by corresponding |
| ** expressions in pEList. |
| ** |
| ** ## About "isOuterJoin": |
| ** |
| ** The isOuterJoin column indicates that the replacement will occur into a |
| ** position in the parent that NULL-able due to an OUTER JOIN. Either the |
| ** target slot in the parent is the right operand of a LEFT JOIN, or one of |
| ** the left operands of a RIGHT JOIN. In either case, we need to potentially |
| ** bypass the substituted expression with OP_IfNullRow. |
| ** |
| ** Suppose the original expression is an integer constant. Even though the table |
| ** has the nullRow flag set, because the expression is an integer constant, |
| ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode |
| ** that checks to see if the nullRow flag is set on the table. If the nullRow |
| ** flag is set, then the value in the register is set to NULL and the original |
| ** expression is bypassed. If the nullRow flag is not set, then the original |
| ** expression runs to populate the register. |
| ** |
| ** Example where this is needed: |
| ** |
| ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT); |
| ** CREATE TABLE t2(x INT UNIQUE); |
| ** |
| ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x; |
| ** |
| ** When the subquery on the right side of the LEFT JOIN is flattened, we |
| ** have to add OP_IfNullRow in front of the OP_Integer that implements the |
| ** "m" value of the subquery so that a NULL will be loaded instead of 59 |
| ** when processing a non-matched row of the left. |
| */ |
| typedef struct SubstContext { |
| Parse *pParse; /* The parsing context */ |
| int iTable; /* Replace references to this table */ |
| int iNewTable; /* New table number */ |
| int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ |
| ExprList *pEList; /* Replacement expressions */ |
| ExprList *pCList; /* Collation sequences for replacement expr */ |
| } SubstContext; |
| |
| /* Forward Declarations */ |
| static void substExprList(SubstContext*, ExprList*); |
| static void substSelect(SubstContext*, Select*, int); |
| |
| /* |
| ** Scan through the expression pExpr. Replace every reference to |
| ** a column in table number iTable with a copy of the iColumn-th |
| ** entry in pEList. (But leave references to the ROWID column |
| ** unchanged.) |
| ** |
| ** This routine is part of the flattening procedure. A subquery |
| ** whose result set is defined by pEList appears as entry in the |
| ** FROM clause of a SELECT such that the VDBE cursor assigned to that |
| ** FORM clause entry is iTable. This routine makes the necessary |
| ** changes to pExpr so that it refers directly to the source table |
| ** of the subquery rather the result set of the subquery. |
| */ |
| static Expr *substExpr( |
| SubstContext *pSubst, /* Description of the substitution */ |
| Expr *pExpr /* Expr in which substitution occurs */ |
| ){ |
| if( pExpr==0 ) return 0; |
| if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) |
| && pExpr->w.iJoin==pSubst->iTable |
| ){ |
| testcase( ExprHasProperty(pExpr, EP_InnerON) ); |
| pExpr->w.iJoin = pSubst->iNewTable; |
| } |
| if( pExpr->op==TK_COLUMN |
| && pExpr->iTable==pSubst->iTable |
| && !ExprHasProperty(pExpr, EP_FixedCol) |
| ){ |
| #ifdef SQLITE_ALLOW_ROWID_IN_VIEW |
| if( pExpr->iColumn<0 ){ |
| pExpr->op = TK_NULL; |
| }else |
| #endif |
| { |
| Expr *pNew; |
| int iColumn = pExpr->iColumn; |
| Expr *pCopy = pSubst->pEList->a[iColumn].pExpr; |
| Expr ifNullRow; |
| assert( pSubst->pEList!=0 && iColumn<pSubst->pEList->nExpr ); |
| assert( pExpr->pRight==0 ); |
| if( sqlite3ExprIsVector(pCopy) ){ |
| sqlite3VectorErrorMsg(pSubst->pParse, pCopy); |
| }else{ |
| sqlite3 *db = pSubst->pParse->db; |
| if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){ |
| memset(&ifNullRow, 0, sizeof(ifNullRow)); |
| ifNullRow.op = TK_IF_NULL_ROW; |
| ifNullRow.pLeft = pCopy; |
| ifNullRow.iTable = pSubst->iNewTable; |
| ifNullRow.iColumn = -99; |
| ifNullRow.flags = EP_IfNullRow; |
| pCopy = &ifNullRow; |
| } |
| testcase( ExprHasProperty(pCopy, EP_Subquery) ); |
| pNew = sqlite3ExprDup(db, pCopy, 0); |
| if( db->mallocFailed ){ |
| sqlite3ExprDelete(db, pNew); |
| return pExpr; |
| } |
| if( pSubst->isOuterJoin ){ |
| ExprSetProperty(pNew, EP_CanBeNull); |
| } |
| if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){ |
| sqlite3SetJoinExpr(pNew, pExpr->w.iJoin, |
| pExpr->flags & (EP_OuterON|EP_InnerON)); |
| } |
| sqlite3ExprDelete(db, pExpr); |
| pExpr = pNew; |
| if( pExpr->op==TK_TRUEFALSE ){ |
| pExpr->u.iValue = sqlite3ExprTruthValue(pExpr); |
| pExpr->op = TK_INTEGER; |
| ExprSetProperty(pExpr, EP_IntValue); |
| } |
| |
| /* Ensure that the expression now has an implicit collation sequence, |
| ** just as it did when it was a column of a view or sub-query. */ |
| { |
| CollSeq *pNat = sqlite3ExprCollSeq(pSubst->pParse, pExpr); |
| CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, |
| pSubst->pCList->a[iColumn].pExpr |
| ); |
| if( pNat!=pColl || (pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE) ){ |
| pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, |
| (pColl ? pColl->zName : "BINARY") |
| ); |
| } |
| } |
| ExprClearProperty(pExpr, EP_Collate); |
| } |
| } |
| }else{ |
| if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ |
| pExpr->iTable = pSubst->iNewTable; |
| } |
| pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); |
| pExpr->pRight = substExpr(pSubst, pExpr->pRight); |
| if( ExprUseXSelect(pExpr) ){ |
| substSelect(pSubst, pExpr->x.pSelect, 1); |
| }else{ |
| substExprList(pSubst, pExpr->x.pList); |
| } |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( ExprHasProperty(pExpr, EP_WinFunc) ){ |
| Window *pWin = pExpr->y.pWin; |
| pWin->pFilter = substExpr(pSubst, pWin->pFilter); |
| substExprList(pSubst, pWin->pPartition); |
| substExprList(pSubst, pWin->pOrderBy); |
| } |
| #endif |
| } |
| return pExpr; |
| } |
| static void substExprList( |
| SubstContext *pSubst, /* Description of the substitution */ |
| ExprList *pList /* List to scan and in which to make substitutes */ |
| ){ |
| int i; |
| if( pList==0 ) return; |
| for(i=0; i<pList->nExpr; i++){ |
| pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); |
| } |
| } |
| static void substSelect( |
| SubstContext *pSubst, /* Description of the substitution */ |
| Select *p, /* SELECT statement in which to make substitutions */ |
| int doPrior /* Do substitutes on p->pPrior too */ |
| ){ |
| SrcList *pSrc; |
| SrcItem *pItem; |
| int i; |
| if( !p ) return; |
| do{ |
| substExprList(pSubst, p->pEList); |
| substExprList(pSubst, p->pGroupBy); |
| substExprList(pSubst, p->pOrderBy); |
| p->pHaving = substExpr(pSubst, p->pHaving); |
| p->pWhere = substExpr(pSubst, p->pWhere); |
| pSrc = p->pSrc; |
| assert( pSrc!=0 ); |
| for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ |
| substSelect(pSubst, pItem->pSelect, 1); |
| if( pItem->fg.isTabFunc ){ |
| substExprList(pSubst, pItem->u1.pFuncArg); |
| } |
| } |
| }while( doPrior && (p = p->pPrior)!=0 ); |
| } |
| #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
| |
| #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
| /* |
| ** pSelect is a SELECT statement and pSrcItem is one item in the FROM |
| ** clause of that SELECT. |
| ** |
| ** This routine scans the entire SELECT statement and recomputes the |
| ** pSrcItem->colUsed mask. |
| */ |
| static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ |
| SrcItem *pItem; |
| if( pExpr->op!=TK_COLUMN ) return WRC_Continue; |
| pItem = pWalker->u.pSrcItem; |
| if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; |
| if( pExpr->iColumn<0 ) return WRC_Continue; |
| pItem->colUsed |= sqlite3ExprColUsed(pExpr); |
| return WRC_Continue; |
| } |
| static void recomputeColumnsUsed( |
| Select *pSelect, /* The complete SELECT statement */ |
| SrcItem *pSrcItem /* Which FROM clause item to recompute */ |
| ){ |
| Walker w; |
| if( NEVER(pSrcItem->pTab==0) ) return; |
| memset(&w, 0, sizeof(w)); |
| w.xExprCallback = recomputeColumnsUsedExpr; |
| w.xSelectCallback = sqlite3SelectWalkNoop; |
| w.u.pSrcItem = pSrcItem; |
| pSrcItem->colUsed = 0; |
| sqlite3WalkSelect(&w, pSelect); |
| } |
| #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
| |
| #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
| /* |
| ** Assign new cursor numbers to each of the items in pSrc. For each |
| ** new cursor number assigned, set an entry in the aCsrMap[] array |
| ** to map the old cursor number to the new: |
| ** |
| ** aCsrMap[iOld+1] = iNew; |
| ** |
| ** The array is guaranteed by the caller to be large enough for all |
| ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. |
| ** |
| ** If pSrc contains any sub-selects, call this routine recursively |
| ** on the FROM clause of each such sub-select, with iExcept set to -1. |
| */ |
| static void srclistRenumberCursors( |
| Parse *pParse, /* Parse context */ |
| int *aCsrMap, /* Array to store cursor mappings in */ |
| SrcList *pSrc, /* FROM clause to renumber */ |
| int iExcept /* FROM clause item to skip */ |
| ){ |
| int i; |
| SrcItem *pItem; |
| for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ |
| if( i!=iExcept ){ |
| Select *p; |
| assert( pItem->iCursor < aCsrMap[0] ); |
| if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ |
| aCsrMap[pItem->iCursor+1] = pParse->nTab++; |
| } |
| pItem->iCursor = aCsrMap[pItem->iCursor+1]; |
| for(p=pItem->pSelect; p; p=p->pPrior){ |
| srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); |
| } |
| } |
| } |
| } |
| |
| /* |
| ** *piCursor is a cursor number. Change it if it needs to be mapped. |
| */ |
| static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ |
| int *aCsrMap = pWalker->u.aiCol; |
| int iCsr = *piCursor; |
| if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ |
| *piCursor = aCsrMap[iCsr+1]; |
| } |
| } |
| |
| /* |
| ** Expression walker callback used by renumberCursors() to update |
| ** Expr objects to match newly assigned cursor numbers. |
| */ |
| static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ |
| int op = pExpr->op; |
| if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ |
| renumberCursorDoMapping(pWalker, &pExpr->iTable); |
| } |
| if( ExprHasProperty(pExpr, EP_OuterON) ){ |
| renumberCursorDoMapping(pWalker, &pExpr->w.iJoin); |
| } |
| return WRC_Continue; |
| } |
| |
| /* |
| ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) |
| ** of the SELECT statement passed as the second argument, and to each |
| ** cursor in the FROM clause of any FROM clause sub-selects, recursively. |
| ** Except, do not assign a new cursor number to the iExcept'th element in |
| ** the FROM clause of (*p). Update all expressions and other references |
| ** to refer to the new cursor numbers. |
| ** |
| ** Argument aCsrMap is an array that may be used for temporary working |
| ** space. Two guarantees are made by the caller: |
| ** |
| ** * the array is larger than the largest cursor number used within the |
| ** select statement passed as an argument, and |
| ** |
| ** * the array entries for all cursor numbers that do *not* appear in |
| ** FROM clauses of the select statement as described above are |
| ** initialized to zero. |
| */ |
| static void renumberCursors( |
| Parse *pParse, /* Parse context */ |
| Select *p, /* Select to renumber cursors within */ |
| int iExcept, /* FROM clause item to skip */ |
| int *aCsrMap /* Working space */ |
| ){ |
| Walker w; |
| srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); |
| memset(&w, 0, sizeof(w)); |
| w.u.aiCol = aCsrMap; |
| w.xExprCallback = renumberCursorsCb; |
| w.xSelectCallback = sqlite3SelectWalkNoop; |
| sqlite3WalkSelect(&w, p); |
| } |
| #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
| |
| /* |
| ** If pSel is not part of a compound SELECT, return a pointer to its |
| ** expression list. Otherwise, return a pointer to the expression list |
| ** of the leftmost SELECT in the compound. |
| */ |
| static ExprList *findLeftmostExprlist(Select *pSel){ |
| while( pSel->pPrior ){ |
| pSel = pSel->pPrior; |
| } |
| return pSel->pEList; |
| } |
| |
| /* |
| ** Return true if any of the result-set columns in the compound query |
| ** have incompatible affinities on one or more arms of the compound. |
| */ |
| static int compoundHasDifferentAffinities(Select *p){ |
| int ii; |
| ExprList *pList; |
| assert( p!=0 ); |
| assert( p->pEList!=0 ); |
| assert( p->pPrior!=0 ); |
| pList = p->pEList; |
| for(ii=0; ii<pList->nExpr; ii++){ |
| char aff; |
| Select *pSub1; |
| assert( pList->a[ii].pExpr!=0 ); |
| aff = sqlite3ExprAffinity(pList->a[ii].pExpr); |
| for(pSub1=p->pPrior; pSub1; pSub1=pSub1->pPrior){ |
| assert( pSub1->pEList!=0 ); |
| assert( pSub1->pEList->nExpr>ii ); |
| assert( pSub1->pEList->a[ii].pExpr!=0 ); |
| if( sqlite3ExprAffinity(pSub1->pEList->a[ii].pExpr)!=aff ){ |
| return 1; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
| /* |
| ** This routine attempts to flatten subqueries as a performance optimization. |
| ** This routine returns 1 if it makes changes and 0 if no flattening occurs. |
| ** |
| ** To understand the concept of flattening, consider the following |
| ** query: |
| ** |
| ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 |
| ** |
| ** The default way of implementing this query is to execute the |
| ** subquery first and store the results in a temporary table, then |
| ** run the outer query on that temporary table. This requires two |
| ** passes over the data. Furthermore, because the temporary table |
| ** has no indices, the WHERE clause on the outer query cannot be |
| ** optimized. |
| ** |
| ** This routine attempts to rewrite queries such as the above into |
| ** a single flat select, like this: |
| ** |
| ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 |
| ** |
| ** The code generated for this simplification gives the same result |
| ** but only has to scan the data once. And because indices might |
| ** exist on the table t1, a complete scan of the data might be |
| ** avoided. |
| ** |
| ** Flattening is subject to the following constraints: |
| ** |
| ** (**) We no longer attempt to flatten aggregate subqueries. Was: |
| ** The subquery and the outer query cannot both be aggregates. |
| ** |
| ** (**) We no longer attempt to flatten aggregate subqueries. Was: |
| ** (2) If the subquery is an aggregate then |
| ** (2a) the outer query must not be a join and |
| ** (2b) the outer query must not use subqueries |
| ** other than the one FROM-clause subquery that is a candidate |
| ** for flattening. (This is due to ticket [2f7170d73bf9abf80] |
| ** from 2015-02-09.) |
| ** |
| ** (3) If the subquery is the right operand of a LEFT JOIN then |
| ** (3a) the subquery may not be a join and |
| ** (3b) the FROM clause of the subquery may not contain a virtual |
| ** table and |
| ** (**) Was: "The outer query may not have a GROUP BY." This case |
| ** is now managed correctly |
| ** (3d) the outer query may not be DISTINCT. |
| ** See also (26) for restrictions on RIGHT JOIN. |
| ** |
| ** (4) The subquery can not be DISTINCT. |
| ** |
| ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT |
| ** sub-queries that were excluded from this optimization. Restriction |
| ** (4) has since been expanded to exclude all DISTINCT subqueries. |
| ** |
| ** (**) We no longer attempt to flatten aggregate subqueries. Was: |
| ** If the subquery is aggregate, the outer query may not be DISTINCT. |
| ** |
| ** (7) The subquery must have a FROM clause. TODO: For subqueries without |
| ** A FROM clause, consider adding a FROM clause with the special |
| ** table sqlite_once that consists of a single row containing a |
| ** single NULL. |
| ** |
| ** (8) If the subquery uses LIMIT then the outer query may not be a join. |
| ** |
| ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. |
| ** |
| ** (**) Restriction (10) was removed from the code on 2005-02-05 but we |
| ** accidently carried the comment forward until 2014-09-15. Original |
| ** constraint: "If the subquery is aggregate then the outer query |
| ** may not use LIMIT." |
| ** |
| ** (11) The subquery and the outer query may not both have ORDER BY clauses. |
| ** |
| ** (**) Not implemented. Subsumed into restriction (3). Was previously |
| ** a separate restriction deriving from ticket #350. |
| ** |
| ** (13) The subquery and outer query may not both use LIMIT. |
| ** |
| ** (14) The subquery may not use OFFSET. |
| ** |
| ** (15) If the outer query is part of a compound select, then the |
| ** subquery may not use LIMIT. |
| ** (See ticket #2339 and ticket [02a8e81d44]). |
| ** |
| ** (16) If the outer query is aggregate, then the subquery may not |
| ** use ORDER BY. (Ticket #2942) This used to not matter |
| ** until we introduced the group_concat() function. |
| ** |
| ** (17) If the subquery is a compound select, then |
| ** (17a) all compound operators must be a UNION ALL, and |
| ** (17b) no terms within the subquery compound may be aggregate |
| ** or DISTINCT, and |
| ** (17c) every term within the subquery compound must have a FROM clause |
| ** (17d) the outer query may not be |
| ** (17d1) aggregate, or |
| ** (17d2) DISTINCT |
| ** (17e) the subquery may not contain window functions, and |
| ** (17f) the subquery must not be the RHS of a LEFT JOIN. |
| ** (17g) either the subquery is the first element of the outer |
| ** query or there are no RIGHT or FULL JOINs in any arm |
| ** of the subquery. (This is a duplicate of condition (27b).) |
| ** (17h) The corresponding result set expressions in all arms of the |
| ** compound must have the same affinity. (See restriction (9) |
| ** on the push-down optimization.) |
| ** |
| ** The parent and sub-query may contain WHERE clauses. Subject to |
| ** rules (11), (13) and (14), they may also contain ORDER BY, |
| ** LIMIT and OFFSET clauses. The subquery cannot use any compound |
| ** operator other than UNION ALL because all the other compound |
| ** operators have an implied DISTINCT which is disallowed by |
| ** restriction (4). |
| ** |
| ** Also, each component of the sub-query must return the same number |
| ** of result columns. This is actually a requirement for any compound |
| ** SELECT statement, but all the code here does is make sure that no |
| ** such (illegal) sub-query is flattened. The caller will detect the |
| ** syntax error and return a detailed message. |
| ** |
| ** (18) If the sub-query is a compound select, then all terms of the |
| ** ORDER BY clause of the parent must be copies of a term returned |
| ** by the parent query. |
| ** |
| ** (19) If the subquery uses LIMIT then the outer query may not |
| ** have a WHERE clause. |
| ** |
| ** (20) If the sub-query is a compound select, then it must not use |
| ** an ORDER BY clause. Ticket #3773. We could relax this constraint |
| ** somewhat by saying that the terms of the ORDER BY clause must |
| ** appear as unmodified result columns in the outer query. But we |
| ** have other optimizations in mind to deal with that case. |
| ** |
| ** (21) If the subquery uses LIMIT then the outer query may not be |
| ** DISTINCT. (See ticket [752e1646fc]). |
| ** |
| ** (22) The subquery may not be a recursive CTE. |
| ** |
| ** (23) If the outer query is a recursive CTE, then the sub-query may not be |
| ** a compound query. This restriction is because transforming the |
| ** parent to a compound query confuses the code that handles |
| ** recursive queries in multiSelect(). |
| ** |
| ** (**) We no longer attempt to flatten aggregate subqueries. Was: |
| ** The subquery may not be an aggregate that uses the built-in min() or |
| ** or max() functions. (Without this restriction, a query like: |
| ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily |
| ** return the value X for which Y was maximal.) |
| ** |
| ** (25) If either the subquery or the parent query contains a window |
| ** function in the select list or ORDER BY clause, flattening |
| ** is not attempted. |
| ** |
| ** (26) The subquery may not be the right operand of a RIGHT JOIN. |
| ** See also (3) for restrictions on LEFT JOIN. |
| ** |
| ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it |
| ** is the first element of the parent query. Two subcases: |
| ** (27a) the subquery is not a compound query. |
| ** (27b) the subquery is a compound query and the RIGHT JOIN occurs |
| ** in any arm of the compound query. (See also (17g).) |
| ** |
| ** (28) The subquery is not a MATERIALIZED CTE. |
| ** |
| ** |
| ** In this routine, the "p" parameter is a pointer to the outer query. |
| ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query |
| ** uses aggregates. |
| ** |
| ** If flattening is not attempted, this routine is a no-op and returns 0. |
| ** If flattening is attempted this routine returns 1. |
| ** |
| ** All of the expression analysis must occur on both the outer query and |
| ** the subquery before this routine runs. |
| */ |
| static int flattenSubquery( |
| Parse *pParse, /* Parsing context */ |
| Select *p, /* The parent or outer SELECT statement */ |
| int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ |
| int isAgg /* True if outer SELECT uses aggregate functions */ |
| ){ |
| const char *zSavedAuthContext = pParse->zAuthContext; |
| Select *pParent; /* Current UNION ALL term of the other query */ |
| Select *pSub; /* The inner query or "subquery" */ |
| Select *pSub1; /* Pointer to the rightmost select in sub-query */ |
| SrcList *pSrc; /* The FROM clause of the outer query */ |
| SrcList *pSubSrc; /* The FROM clause of the subquery */ |
| int iParent; /* VDBE cursor number of the pSub result set temp table */ |
| int iNewParent = -1;/* Replacement table for iParent */ |
| int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ |
| int i; /* Loop counter */ |
| Expr *pWhere; /* The WHERE clause */ |
| SrcItem *pSubitem; /* The subquery */ |
| sqlite3 *db = pParse->db; |
| Walker w; /* Walker to persist agginfo data */ |
| int *aCsrMap = 0; |
| |
| /* Check to see if flattening is permitted. Return 0 if not. |
| */ |
| assert( p!=0 ); |
| assert( p->pPrior==0 ); |
| if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; |
| pSrc = p->pSrc; |
| assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); |
| pSubitem = &pSrc->a[iFrom]; |
| iParent = pSubitem->iCursor; |
| pSub = pSubitem->pSelect; |
| assert( pSub!=0 ); |
| |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ |
| #endif |
| |
| pSubSrc = pSub->pSrc; |
| assert( pSubSrc ); |
| /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, |
| ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET |
| ** because they could be computed at compile-time. But when LIMIT and OFFSET |
| ** became arbitrary expressions, we were forced to add restrictions (13) |
| ** and (14). */ |
| if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ |
| if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ |
| if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ |
| return 0; /* Restriction (15) */ |
| } |
| if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ |
| if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ |
| if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ |
| return 0; /* Restrictions (8)(9) */ |
| } |
| if( p->pOrderBy && pSub->pOrderBy ){ |
| return 0; /* Restriction (11) */ |
| } |
| if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ |
| if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ |
| if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ |
| return 0; /* Restriction (21) */ |
| } |
| if( pSub->selFlags & (SF_Recursive) ){ |
| return 0; /* Restrictions (22) */ |
| } |
| |
| /* |
| ** If the subquery is the right operand of a LEFT JOIN, then the |
| ** subquery may not be a join itself (3a). Example of why this is not |
| ** allowed: |
| ** |
| ** t1 LEFT OUTER JOIN (t2 JOIN t3) |
| ** |
| ** If we flatten the above, we would get |
| ** |
| ** (t1 LEFT OUTER JOIN t2) JOIN t3 |
| ** |
| ** which is not at all the same thing. |
| ** |
| ** See also tickets #306, #350, and #3300. |
| */ |
| if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){ |
| if( pSubSrc->nSrc>1 /* (3a) */ |
| || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */ |
| || (p->selFlags & SF_Distinct)!=0 /* (3d) */ |
| || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */ |
| ){ |
| return 0; |
| } |
| isOuterJoin = 1; |
| } |
| |
| assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */ |
| if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ |
| return 0; /* Restriction (27a) */ |
| } |
| if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){ |
| return 0; /* (28) */ |
| } |
| |
| /* Restriction (17): If the sub-query is a compound SELECT, then it must |
| ** use only the UNION ALL operator. And none of the simple select queries |
| ** that make up the compound SELECT are allowed to be aggregate or distinct |
| ** queries. |
| */ |
| if( pSub->pPrior ){ |
| int ii; |
| if( pSub->pOrderBy ){ |
| return 0; /* Restriction (20) */ |
| } |
| if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){ |
| return 0; /* (17d1), (17d2), or (17f) */ |
| } |
| for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ |
| testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); |
| testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); |
| assert( pSub->pSrc!=0 ); |
| assert( (pSub->selFlags & SF_Recursive)==0 ); |
| assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); |
| if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ |
| || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ |
| || pSub1->pSrc->nSrc<1 /* (17c) */ |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| || pSub1->pWin /* (17e) */ |
| #endif |
| ){ |
| return 0; |
| } |
| if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ |
| /* Without this restriction, the JT_LTORJ flag would end up being |
| ** omitted on left-hand tables of the right join that is being |
| ** flattened. */ |
| return 0; /* Restrictions (17g), (27b) */ |
| } |
| testcase( pSub1->pSrc->nSrc>1 ); |
| } |
| |
| /* Restriction (18). */ |
| if( p->pOrderBy ){ |
| for(ii=0; ii<p->pOrderBy->nExpr; ii++){ |
| if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; |
| } |
| } |
| |
| /* Restriction (23) */ |
| if( (p->selFlags & SF_Recursive) ) return 0; |
| |
| /* Restriction (17h) */ |
| if( compoundHasDifferentAffinities(pSub) ) return 0; |
| |
| if( pSrc->nSrc>1 ){ |
| if( pParse->nSelect>500 ) return 0; |
| if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0; |
| aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int)); |
| if( aCsrMap ) aCsrMap[0] = pParse->nTab; |
| } |
| } |
| |
| /***** If we reach this point, flattening is permitted. *****/ |
| TREETRACE(0x4,pParse,p,("flatten %u.%p from term %d\n", |
| pSub->selId, pSub, iFrom)); |
| |
| /* Authorize the subquery */ |
| pParse->zAuthContext = pSubitem->zName; |
| TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); |
| testcase( i==SQLITE_DENY ); |
| pParse->zAuthContext = zSavedAuthContext; |
| |
| /* Delete the transient structures associated with thesubquery */ |
| pSub1 = pSubitem->pSelect; |
| sqlite3DbFree(db, pSubitem->zDatabase); |
| sqlite3DbFree(db, pSubitem->zName); |
| sqlite3DbFree(db, pSubitem->zAlias); |
| pSubitem->zDatabase = 0; |
| pSubitem->zName = 0; |
| pSubitem->zAlias = 0; |
| pSubitem->pSelect = 0; |
| assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 ); |
| |
| /* If the sub-query is a compound SELECT statement, then (by restrictions |
| ** 17 and 18 above) it must be a UNION ALL and the parent query must |
| ** be of the form: |
| ** |
| ** SELECT <expr-list> FROM (<sub-query>) <where-clause> |
| ** |
| ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block |
| ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or |
| ** OFFSET clauses and joins them to the left-hand-side of the original |
| ** using UNION ALL operators. In this case N is the number of simple |
| ** select statements in the compound sub-query. |
| ** |
| ** Example: |
| ** |
| ** SELECT a+1 FROM ( |
| ** SELECT x FROM tab |
| ** UNION ALL |
| ** SELECT y FROM tab |
| ** UNION ALL |
| ** SELECT abs(z*2) FROM tab2 |
| ** ) WHERE a!=5 ORDER BY 1 |
| ** |
| ** Transformed into: |
| ** |
| ** SELECT x+1 FROM tab WHERE x+1!=5 |
| ** UNION ALL |
| ** SELECT y+1 FROM tab WHERE y+1!=5 |
| ** UNION ALL |
| ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 |
| ** ORDER BY 1 |
| ** |
| ** We call this the "compound-subquery flattening". |
| */ |
| for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ |
| Select *pNew; |
| ExprList *pOrderBy = p->pOrderBy; |
| Expr *pLimit = p->pLimit; |
| Select *pPrior = p->pPrior; |
| Table *pItemTab = pSubitem->pTab; |
| pSubitem->pTab = 0; |
| p->pOrderBy = 0; |
| p->pPrior = 0; |
| p->pLimit = 0; |
| pNew = sqlite3SelectDup(db, p, 0); |
| p->pLimit = pLimit; |
| p->pOrderBy = pOrderBy; |
| p->op = TK_ALL; |
| pSubitem->pTab = pItemTab; |
| if( pNew==0 ){ |
| p->pPrior = pPrior; |
| }else{ |
| pNew->selId = ++pParse->nSelect; |
| if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ |
| renumberCursors(pParse, pNew, iFrom, aCsrMap); |
| } |
| pNew->pPrior = pPrior; |
| if( pPrior ) pPrior->pNext = pNew; |
| pNew->pNext = p; |
| p->pPrior = pNew; |
| TREETRACE(0x4,pParse,p,("compound-subquery flattener" |
| " creates %u as peer\n",pNew->selId)); |
| } |
| assert( pSubitem->pSelect==0 ); |
| } |
| sqlite3DbFree(db, aCsrMap); |
| if( db->mallocFailed ){ |
| pSubitem->pSelect = pSub1; |
| return 1; |
| } |
| |
| /* Defer deleting the Table object associated with the |
| ** subquery until code generation is |
| ** complete, since there may still exist Expr.pTab entries that |
| ** refer to the subquery even after flattening. Ticket #3346. |
| ** |
| ** pSubitem->pTab is always non-NULL by test restrictions and tests above. |
| */ |
| if( ALWAYS(pSubitem->pTab!=0) ){ |
| Table *pTabToDel = pSubitem->pTab; |
| if( pTabToDel->nTabRef==1 ){ |
| Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| sqlite3ParserAddCleanup(pToplevel, |
| (void(*)(sqlite3*,void*))sqlite3DeleteTable, |
| pTabToDel); |
| testcase( pToplevel->earlyCleanup ); |
| }else{ |
| pTabToDel->nTabRef--; |
| } |
| pSubitem->pTab = 0; |
| } |
| |
| /* The following loop runs once for each term in a compound-subquery |
| ** flattening (as described above). If we are doing a different kind |
| ** of flattening - a flattening other than a compound-subquery flattening - |
| ** then this loop only runs once. |
| ** |
| ** This loop moves all of the FROM elements of the subquery into the |
| ** the FROM clause of the outer query. Before doing this, remember |
| ** the cursor number for the original outer query FROM element in |
| ** iParent. The iParent cursor will never be used. Subsequent code |
| ** will scan expressions looking for iParent references and replace |
| ** those references with expressions that resolve to the subquery FROM |
| ** elements we are now copying in. |
| */ |
| pSub = pSub1; |
| for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ |
| int nSubSrc; |
| u8 jointype = 0; |
| u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ; |
| assert( pSub!=0 ); |
| pSubSrc = pSub->pSrc; /* FROM clause of subquery */ |
| nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ |
| pSrc = pParent->pSrc; /* FROM clause of the outer query */ |
| |
| if( pParent==p ){ |
| jointype = pSubitem->fg.jointype; /* First time through the loop */ |
| } |
| |
| /* The subquery uses a single slot of the FROM clause of the outer |
| ** query. If the subquery has more than one element in its FROM clause, |
| ** then expand the outer query to make space for it to hold all elements |
| ** of the subquery. |
| ** |
| ** Example: |
| ** |
| ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; |
| ** |
| ** The outer query has 3 slots in its FROM clause. One slot of the |
| ** outer query (the middle slot) is used by the subquery. The next |
| ** block of code will expand the outer query FROM clause to 4 slots. |
| ** The middle slot is expanded to two slots in order to make space |
| ** for the two elements in the FROM clause of the subquery. |
| */ |
| if( nSubSrc>1 ){ |
| pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); |
| if( pSrc==0 ) break; |
| pParent->pSrc = pSrc; |
| } |
| |
| /* Transfer the FROM clause terms from the subquery into the |
| ** outer query. |
| */ |
| for(i=0; i<nSubSrc; i++){ |
| SrcItem *pItem = &pSrc->a[i+iFrom]; |
| if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing); |
| assert( pItem->fg.isTabFunc==0 ); |
| *pItem = pSubSrc->a[i]; |
| pItem->fg.jointype |= ltorj; |
| iNewParent = pSubSrc->a[i].iCursor; |
| memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); |
| } |
| pSrc->a[iFrom].fg.jointype &= JT_LTORJ; |
| pSrc->a[iFrom].fg.jointype |= jointype | ltorj; |
| |
| /* Now begin substituting subquery result set expressions for |
| ** references to the iParent in the outer query. |
| ** |
| ** Example: |
| ** |
| ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; |
| ** \ \_____________ subquery __________/ / |
| ** \_____________________ outer query ______________________________/ |
| ** |
| ** We look at every expression in the outer query and every place we see |
| ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". |
| */ |
| if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ |
| /* At this point, any non-zero iOrderByCol values indicate that the |
| ** ORDER BY column expression is identical to the iOrderByCol'th |
| ** expression returned by SELECT statement pSub. Since these values |
| ** do not necessarily correspond to columns in SELECT statement pParent, |
| ** zero them before transfering the ORDER BY clause. |
| ** |
| ** Not doing this may cause an error if a subsequent call to this |
| ** function attempts to flatten a compound sub-query into pParent |
| ** (the only way this can happen is if the compound sub-query is |
| ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ |
| ExprList *pOrderBy = pSub->pOrderBy; |
| for(i=0; i<pOrderBy->nExpr; i++){ |
| pOrderBy->a[i].u.x.iOrderByCol = 0; |
| } |
| assert( pParent->pOrderBy==0 ); |
| pParent->pOrderBy = pOrderBy; |
| pSub->pOrderBy = 0; |
| } |
| pWhere = pSub->pWhere; |
| pSub->pWhere = 0; |
| if( isOuterJoin>0 ){ |
| sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON); |
| } |
| if( pWhere ){ |
| if( pParent->pWhere ){ |
| pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); |
| }else{ |
| pParent->pWhere = pWhere; |
| } |
| } |
| if( db->mallocFailed==0 ){ |
| SubstContext x; |
| x.pParse = pParse; |
| x.iTable = iParent; |
| x.iNewTable = iNewParent; |
| x.isOuterJoin = isOuterJoin; |
| x.pEList = pSub->pEList; |
| x.pCList = findLeftmostExprlist(pSub); |
| substSelect(&x, pParent, 0); |
| } |
| |
| /* The flattened query is a compound if either the inner or the |
| ** outer query is a compound. */ |
| pParent->selFlags |= pSub->selFlags & SF_Compound; |
| assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ |
| |
| /* |
| ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; |
| ** |
| ** One is tempted to try to add a and b to combine the limits. But this |
| ** does not work if either limit is negative. |
| */ |
| if( pSub->pLimit ){ |
| pParent->pLimit = pSub->pLimit; |
| pSub->pLimit = 0; |
| } |
| |
| /* Recompute the SrcItem.colUsed masks for the flattened |
| ** tables. */ |
| for(i=0; i<nSubSrc; i++){ |
| recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); |
| } |
| } |
| |
| /* Finially, delete what is left of the subquery and return |
| ** success. |
| */ |
| sqlite3AggInfoPersistWalkerInit(&w, pParse); |
| sqlite3WalkSelect(&w,pSub1); |
| sqlite3SelectDelete(db, pSub1); |
| |
| #if TREETRACE_ENABLED |
| if( sqlite3TreeTrace & 0x4 ){ |
| TREETRACE(0x4,pParse,p,("After flattening:\n")); |
| sqlite3TreeViewSelect(0, p, 0); |
| } |
| #endif |
| |
| return 1; |
| } |
| #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
| |
| /* |
| ** A structure to keep track of all of the column values that are fixed to |
| ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. |
| */ |
| typedef struct WhereConst WhereConst; |
| struct WhereConst { |
| Parse *pParse; /* Parsing context */ |
| u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ |
| int nConst; /* Number for COLUMN=CONSTANT terms */ |
| int nChng; /* Number of times a constant is propagated */ |
| int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ |
| u32 mExcludeOn; /* Which ON expressions to exclude from considertion. |
| ** Either EP_OuterON or EP_InnerON|EP_OuterON */ |
| Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ |
| }; |
| |
| /* |
| ** Add a new entry to the pConst object. Except, do not add duplicate |
| ** pColumn entires. Also, do not add if doing so would not be appropriate. |
| ** |
| ** The caller guarantees the pColumn is a column and pValue is a constant. |
| ** This routine has to do some additional checks before completing the |
| ** insert. |
| */ |
| static void constInsert( |
| WhereConst *pConst, /* The WhereConst into which we are inserting */ |
| Expr *pColumn, /* The COLUMN part of the constraint */ |
| Expr *pValue, /* The VALUE part of the constraint */ |
| Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ |
| ){ |
| int i; |
| assert( pColumn->op==TK_COLUMN ); |
| assert( sqlite3ExprIsConstant(pValue) ); |
| |
| if( ExprHasProperty(pColumn, EP_FixedCol) ) return; |
| if( sqlite3ExprAffinity(pValue)!=0 ) return; |
| if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ |
| return; |
| } |
| |
| /* 2018-10-25 ticket [cf5ed20f] |
| ** Make sure the same pColumn is not inserted more than once */ |
| for(i=0; i<pConst->nConst; i++){ |
| const Expr *pE2 = pConst->apExpr[i*2]; |
| assert( pE2->op==TK_COLUMN ); |
| if( pE2->iTable==pColumn->iTable |
| && pE2->iColumn==pColumn->iColumn |
| ){ |
| return; /* Already present. Return without doing anything. */ |
| } |
| } |
| if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ |
| pConst->bHasAffBlob = 1; |
| } |
| |
| pConst->nConst++; |
| pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, |
| pConst->nConst*2*sizeof(Expr*)); |
| if( pConst->apExpr==0 ){ |
| pConst->nConst = 0; |
| }else{ |
| pConst->apExpr[pConst->nConst*2-2] = pColumn; |
| pConst->apExpr[pConst->nConst*2-1] = pValue; |
| } |
| } |
| |
| /* |
| ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE |
| ** is a constant expression and where the term must be true because it |
| ** is part of the AND-connected terms of the expression. For each term |
| ** found, add it to the pConst structure. |
| */ |
| static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ |
| Expr *pRight, *pLeft; |
| if( NEVER(pExpr==0) ) return; |
| if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){ |
| testcase( ExprHasProperty(pExpr, EP_OuterON) ); |
| testcase( ExprHasProperty(pExpr, EP_InnerON) ); |
| return; |
| } |
| if( pExpr->op==TK_AND ){ |
| findConstInWhere(pConst, pExpr->pRight); |
| findConstInWhere(pConst, pExpr->pLeft); |
| return; |
| } |
| if( pExpr->op!=TK_EQ ) return; |
| pRight = pExpr->pRight; |
| pLeft = pExpr->pLeft; |
| assert( pRight!=0 ); |
| assert( pLeft!=0 ); |
| if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ |
| constInsert(pConst,pRight,pLeft,pExpr); |
| } |
| if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ |
| constInsert(pConst,pLeft,pRight,pExpr); |
| } |
| } |
| |
| /* |
| ** This is a helper function for Walker callback propagateConstantExprRewrite(). |
| ** |
| ** Argument pExpr is a candidate expression to be replaced by a value. If |
| ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, |
| ** then overwrite it with the corresponding value. Except, do not do so |
| ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr |
| ** is SQLITE_AFF_BLOB. |
| */ |
| static int propagateConstantExprRewriteOne( |
| WhereConst *pConst, |
| Expr *pExpr, |
| int bIgnoreAffBlob |
| ){ |
| int i; |
| if( pConst->pOomFault[0] ) return WRC_Prune; |
| if( pExpr->op!=TK_COLUMN ) return WRC_Continue; |
| if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){ |
| testcase( ExprHasProperty(pExpr, EP_FixedCol) ); |
| testcase( ExprHasProperty(pExpr, EP_OuterON) ); |
| testcase( ExprHasProperty(pExpr, EP_InnerON) ); |
| return WRC_Continue; |
| } |
| for(i=0; i<pConst->nConst; i++){ |
| Expr *pColumn = pConst->apExpr[i*2]; |
| if( pColumn==pExpr ) continue; |
| if( pColumn->iTable!=pExpr->iTable ) continue; |
| if( pColumn->iColumn!=pExpr->iColumn ) continue; |
| if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ |
| break; |
| } |
| /* A match is found. Add the EP_FixedCol property */ |
| pConst->nChng++; |
| ExprClearProperty(pExpr, EP_Leaf); |
| ExprSetProperty(pExpr, EP_FixedCol); |
| assert( pExpr->pLeft==0 ); |
| pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); |
| if( pConst->pParse->db->mallocFailed ) return WRC_Prune; |
| break; |
| } |
| return WRC_Prune; |
| } |
| |
| /* |
| ** This is a Walker expression callback. pExpr is a node from the WHERE |
| ** clause of a SELECT statement. This function examines pExpr to see if |
| ** any substitutions based on the contents of pWalker->u.pConst should |
| ** be made to pExpr or its immediate children. |
| ** |
| ** A substitution is made if: |
| ** |
| ** + pExpr is a column with an affinity other than BLOB that matches |
| ** one of the columns in pWalker->u.pConst, or |
| ** |
| ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that |
| ** uses an affinity other than TEXT and one of its immediate |
| ** children is a column that matches one of the columns in |
| ** pWalker->u.pConst. |
| */ |
| static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ |
| WhereConst *pConst = pWalker->u.pConst; |
| assert( TK_GT==TK_EQ+1 ); |
| assert( TK_LE==TK_EQ+2 ); |
| assert( TK_LT==TK_EQ+3 ); |
| assert( TK_GE==TK_EQ+4 ); |
| if( pConst->bHasAffBlob ){ |
| if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) |
| || pExpr->op==TK_IS |
| ){ |
| propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); |
| if( pConst->pOomFault[0] ) return WRC_Prune; |
| if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ |
| propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); |
| } |
| } |
| } |
| return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); |
| } |
| |
| /* |
| ** The WHERE-clause constant propagation optimization. |
| ** |
| ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or |
| ** CONSTANT=COLUMN that are top-level AND-connected terms that are not |
| ** part of a ON clause from a LEFT JOIN, then throughout the query |
| ** replace all other occurrences of COLUMN with CONSTANT. |
| ** |
| ** For example, the query: |
| ** |
| ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b |
| ** |
| ** Is transformed into |
| ** |
| ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 |
| ** |
| ** Return true if any transformations where made and false if not. |
| ** |
| ** Implementation note: Constant propagation is tricky due to affinity |
| ** and collating sequence interactions. Consider this example: |
| ** |
| ** CREATE TABLE t1(a INT,b TEXT); |
| ** INSERT INTO t1 VALUES(123,'0123'); |
| ** SELECT * FROM t1 WHERE a=123 AND b=a; |
| ** SELECT * FROM t1 WHERE a=123 AND b=123; |
| ** |
| ** The two SELECT statements above should return different answers. b=a |
| ** is alway true because the comparison uses numeric affinity, but b=123 |
| ** is false because it uses text affinity and '0123' is not the same as '123'. |
| ** To work around this, the expression tree is not actually changed from |
| ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol |
| ** and the "123" value is hung off of the pLeft pointer. Code generator |
| ** routines know to generate the constant "123" instead of looking up the |
| ** column value. Also, to avoid collation problems, this optimization is |
| ** only attempted if the "a=123" term uses the default BINARY collation. |
| ** |
| ** 2021-05-25 forum post 6a06202608: Another troublesome case is... |
| ** |
| ** CREATE TABLE t1(x); |
| ** INSERT INTO t1 VALUES(10.0); |
| ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; |
| ** |
| ** The query should return no rows, because the t1.x value is '10.0' not '10' |
| ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE |
| ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", |
| ** resulting in a false positive. To avoid this, constant propagation for |
| ** columns with BLOB affinity is only allowed if the constant is used with |
| ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct |
| ** type conversions to occur. See logic associated with the bHasAffBlob flag |
| ** for details. |
| */ |
| static int propagateConstants( |
| Parse *pParse, /* The parsing context */ |
| Select *p /* The query in which to propagate constants */ |
| ){ |
| WhereConst x; |
| Walker w; |
| int nChng = 0; |
| x.pParse = pParse; |
| x.pOomFault = &pParse->db->mallocFailed; |
| do{ |
| x.nConst = 0; |
| x.nChng = 0; |
| x.apExpr = 0; |
| x.bHasAffBlob = 0; |
| if( ALWAYS(p->pSrc!=0) |
| && p->pSrc->nSrc>0 |
| && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 |
| ){ |
| /* Do not propagate constants on any ON clause if there is a |
| ** RIGHT JOIN anywhere in the query */ |
| x.mExcludeOn = EP_InnerON | EP_OuterON; |
| }else{ |
| /* Do not propagate constants through the ON clause of a LEFT JOIN */ |
| x.mExcludeOn = EP_OuterON; |
| } |
| findConstInWhere(&x, p->pWhere); |
| if( x.nConst ){ |
| memset(&w, 0, sizeof(w)); |
| w.pParse = pParse; |
| w.xExprCallback = propagateConstantExprRewrite; |
| w.xSelectCallback = sqlite3SelectWalkNoop; |
| w.xSelectCallback2 = 0; |
| w.walkerDepth = 0; |
| w.u.pConst = &x; |
| sqlite3WalkExpr(&w, p->pWhere); |
| sqlite3DbFree(x.pParse->db, x.apExpr); |
| nChng += x.nChng; |
| } |
| }while( x.nChng ); |
| return nChng; |
| } |
| |
| #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
| # if !defined(SQLITE_OMIT_WINDOWFUNC) |
| /* |
| ** This function is called to determine whether or not it is safe to |
| ** push WHERE clause expression pExpr down to FROM clause sub-query |
| ** pSubq, which contains at least one window function. Return 1 |
| ** if it is safe and the expression should be pushed down, or 0 |
| ** otherwise. |
| ** |
| ** It is only safe to push the expression down if it consists only |
| ** of constants and copies of expressions that appear in the PARTITION |
| ** BY clause of all window function used by the sub-query. It is safe |
| ** to filter out entire partitions, but not rows within partitions, as |
| ** this may change the results of the window functions. |
| ** |
| ** At the time this function is called it is guaranteed that |
| ** |
| ** * the sub-query uses only one distinct window frame, and |
| ** * that the window frame has a PARTITION BY clase. |
| */ |
| static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ |
| assert( pSubq->pWin->pPartition ); |
| assert( (pSubq->selFlags & SF_MultiPart)==0 ); |
| assert( pSubq->pPrior==0 ); |
| return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); |
| } |
| # endif /* SQLITE_OMIT_WINDOWFUNC */ |
| #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
| |
| #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
| /* |
| ** Make copies of relevant WHERE clause terms of the outer query into |
| ** the WHERE clause of subquery. Example: |
| ** |
| ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; |
| ** |
| ** Transformed into: |
| ** |
| ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) |
| ** WHERE x=5 AND y=10; |
| ** |
| ** The hope is that the terms added to the inner query will make it more |
| ** efficient. |
| ** |
| ** Do not attempt this optimization if: |
| ** |
| ** (1) (** This restriction was removed on 2017-09-29. We used to |
| ** disallow this optimization for aggregate subqueries, but now |
| ** it is allowed by putting the extra terms on the HAVING clause. |
| ** The added HAVING clause is pointless if the subquery lacks |
| ** a GROUP BY clause. But such a HAVING clause is also harmless |
| ** so there does not appear to be any reason to add extra logic |
| ** to suppress it. **) |
| ** |
| ** (2) The inner query is the recursive part of a common table expression. |
| ** |
| ** (3) The inner query has a LIMIT clause (since the changes to the WHERE |
| ** clause would change the meaning of the LIMIT). |
| ** |
| ** (4) The inner query is the right operand of a LEFT JOIN and the |
| ** expression to be pushed down does not come from the ON clause |
| ** on that LEFT JOIN. |
| ** |
| ** (5) The WHERE clause expression originates in the ON or USING clause |
| ** of a LEFT JOIN where iCursor is not the right-hand table of that |
| ** left join. An example: |
| ** |
| ** SELECT * |
| ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa |
| ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) |
| ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); |
| ** |
| ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). |
| ** But if the (b2=2) term were to be pushed down into the bb subquery, |
| ** then the (1,1,NULL) row would be suppressed. |
| ** |
| ** (6) Window functions make things tricky as changes to the WHERE clause |
| ** of the inner query could change the window over which window |
| ** functions are calculated. Therefore, do not attempt the optimization |
| ** if: |
| ** |
| ** (6a) The inner query uses multiple incompatible window partitions. |
| ** |
| ** (6b) The inner query is a compound and uses window-functions. |
| ** |
| ** (6c) The WHERE clause does not consist entirely of constants and |
| ** copies of expressions found in the PARTITION BY clause of |
| ** all window-functions used by the sub-query. It is safe to |
| ** filter out entire partitions, as this does not change the |
| ** window over which any window-function is calculated. |
| ** |
| ** (7) The inner query is a Common Table Expression (CTE) that should |
| ** be materialized. (This restriction is implemented in the calling |
| ** routine.) |
| ** |
| ** (8) If the subquery is a compound that uses UNION, INTERSECT, |
| ** or EXCEPT, then all of the result set columns for all arms of |
| ** the compound must use the BINARY collating sequence. |
| ** |
| ** (9) If the subquery is a compound, then all arms of the compound must |
| ** have the same affinity. (This is the same as restriction (17h) |
| ** for query flattening.) |
| ** |
| ** |
| ** Return 0 if no changes are made and non-zero if one or more WHERE clause |
| ** terms are duplicated into the subquery. |
| */ |
| static int pushDownWhereTerms( |
| Parse *pParse, /* Parse context (for malloc() and error reporting) */ |
| Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ |
| Expr *pWhere, /* The WHERE clause of the outer query */ |
| SrcItem *pSrc /* The subquery term of the outer FROM clause */ |
| ){ |
| Expr *pNew; |
| int nChng = 0; |
| if( pWhere==0 ) return 0; |
| if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; |
| if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0; |
| |
| if( pSubq->pPrior ){ |
| Select *pSel; |
| int notUnionAll = 0; |
| for(pSel=pSubq; pSel; pSel=pSel->pPrior){ |
| u8 op = pSel->op; |
| assert( op==TK_ALL || op==TK_SELECT |
| || op==TK_UNION || op==TK_INTERSECT || op==TK_EXCEPT ); |
| if( op!=TK_ALL && op!=TK_SELECT ){ |
| notUnionAll = 1; |
| } |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( pSel->pWin ) return 0; /* restriction (6b) */ |
| #endif |
| } |
| if( compoundHasDifferentAffinities(pSubq) ){ |
| return 0; /* restriction (9) */ |
| } |
| if( notUnionAll ){ |
| /* If any of the compound arms are connected using UNION, INTERSECT, |
| ** or EXCEPT, then we must ensure that none of the columns use a |
| ** non-BINARY collating sequence. */ |
| for(pSel=pSubq; pSel; pSel=pSel->pPrior){ |
| int ii; |
| const ExprList *pList = pSel->pEList; |
| assert( pList!=0 ); |
| for(ii=0; ii<pList->nExpr; ii++){ |
| CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[ii].pExpr); |
| if( !sqlite3IsBinary(pColl) ){ |
| return 0; /* Restriction (8) */ |
| } |
| } |
| } |
| } |
| }else{ |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; |
| #endif |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* Only the first term of a compound can have a WITH clause. But make |
| ** sure no other terms are marked SF_Recursive in case something changes |
| ** in the future. |
| */ |
| { |
| Select *pX; |
| for(pX=pSubq; pX; pX=pX->pPrior){ |
| assert( (pX->selFlags & (SF_Recursive))==0 ); |
| } |
| } |
| #endif |
| |
| if( pSubq->pLimit!=0 ){ |
| return 0; /* restriction (3) */ |
| } |
| while( pWhere->op==TK_AND ){ |
| nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc); |
| pWhere = pWhere->pLeft; |
| } |
| |
| #if 0 /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */ |
| if( isLeftJoin |
| && (ExprHasProperty(pWhere,EP_OuterON)==0 |
| || pWhere->w.iJoin!=iCursor) |
| ){ |
| return 0; /* restriction (4) */ |
| } |
| if( ExprHasProperty(pWhere,EP_OuterON) |
| && pWhere->w.iJoin!=iCursor |
| ){ |
| return 0; /* restriction (5) */ |
| } |
| #endif |
| |
| if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){ |
| nChng++; |
| pSubq->selFlags |= SF_PushDown; |
| while( pSubq ){ |
| SubstContext x; |
| pNew = sqlite3ExprDup(pParse->db, pWhere, 0); |
| unsetJoinExpr(pNew, -1, 1); |
| x.pParse = pParse; |
| x.iTable = pSrc->iCursor; |
| x.iNewTable = pSrc->iCursor; |
| x.isOuterJoin = 0; |
| x.pEList = pSubq->pEList; |
| x.pCList = findLeftmostExprlist(pSubq); |
| pNew = substExpr(&x, pNew); |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ |
| /* Restriction 6c has prevented push-down in this case */ |
| sqlite3ExprDelete(pParse->db, pNew); |
| nChng--; |
| break; |
| } |
| #endif |
| if( pSubq->selFlags & SF_Aggregate ){ |
| pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); |
| }else{ |
| pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); |
| } |
| pSubq = pSubq->pPrior; |
| } |
| } |
| return nChng; |
| } |
| #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
| |
| /* |
| ** The pFunc is the only aggregate function in the query. Check to see |
| ** if the query is a candidate for the min/max optimization. |
| ** |
| ** If the query is a candidate for the min/max optimization, then set |
| ** *ppMinMax to be an ORDER BY clause to be used for the optimization |
| ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on |
| ** whether pFunc is a min() or max() function. |
| ** |
| ** If the query is not a candidate for the min/max optimization, return |
| ** WHERE_ORDERBY_NORMAL (which must be zero). |
| ** |
| ** This routine must be called after aggregate functions have been |
| ** located but before their arguments have been subjected to aggregate |
| ** analysis. |
| */ |
| static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ |
| int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ |
| ExprList *pEList; /* Arguments to agg function */ |
| const char *zFunc; /* Name of aggregate function pFunc */ |
| ExprList *pOrderBy; |
| u8 sortFlags = 0; |
| |
| assert( *ppMinMax==0 ); |
| assert( pFunc->op==TK_AGG_FUNCTION ); |
| assert( !IsWindowFunc(pFunc) ); |
| assert( ExprUseXList(pFunc) ); |
| pEList = pFunc->x.pList; |
| if( pEList==0 |
| || pEList->nExpr!=1 |
| || ExprHasProperty(pFunc, EP_WinFunc) |
| || OptimizationDisabled(db, SQLITE_MinMaxOpt) |
| ){ |
| return eRet; |
| } |
| assert( !ExprHasProperty(pFunc, EP_IntValue) ); |
| zFunc = pFunc->u.zToken; |
| if( sqlite3StrICmp(zFunc, "min")==0 ){ |
| eRet = WHERE_ORDERBY_MIN; |
| if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ |
| sortFlags = KEYINFO_ORDER_BIGNULL; |
| } |
| }else if( sqlite3StrICmp(zFunc, "max")==0 ){ |
| eRet = WHERE_ORDERBY_MAX; |
| sortFlags = KEYINFO_ORDER_DESC; |
| }else{ |
| return eRet; |
| } |
| *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); |
| assert( pOrderBy!=0 || db->mallocFailed ); |
| if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags; |
| return eRet; |
| } |
| |
| /* |
| ** The select statement passed as the first argument is an aggregate query. |
| ** The second argument is the associated aggregate-info object. This |
| ** function tests if the SELECT is of the form: |
| ** |
| ** SELECT count(*) FROM <tbl> |
| ** |
| ** where table is a database table, not a sub-select or view. If the query |
| ** does match this pattern, then a pointer to the Table object representing |
| ** <tbl> is returned. Otherwise, NULL is returned. |
| ** |
| ** This routine checks to see if it is safe to use the count optimization. |
| ** A correct answer is still obtained (though perhaps more slowly) if |
| ** this routine returns NULL when it could have returned a table pointer. |
| ** But returning the pointer when NULL should have been returned can |
| ** result in incorrect answers and/or crashes. So, when in doubt, return NULL. |
| */ |
| static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ |
| Table *pTab; |
| Expr *pExpr; |
| |
| assert( !p->pGroupBy ); |
| |
| if( p->pWhere |
| || p->pEList->nExpr!=1 |
| || p->pSrc->nSrc!=1 |
| || p->pSrc->a[0].pSelect |
| || pAggInfo->nFunc!=1 |
| || p->pHaving |
| ){ |
| return 0; |
| } |
| pTab = p->pSrc->a[0].pTab; |
| assert( pTab!=0 ); |
| assert( !IsView(pTab) ); |
| if( !IsOrdinaryTable(pTab) ) return 0; |
| pExpr = p->pEList->a[0].pExpr; |
| assert( pExpr!=0 ); |
| if( pExpr->op!=TK_AGG_FUNCTION ) return 0; |
| if( pExpr->pAggInfo!=pAggInfo ) return 0; |
| if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; |
| assert( pAggInfo->aFunc[0].pFExpr==pExpr ); |
| testcase( ExprHasProperty(pExpr, EP_Distinct) ); |
| testcase( ExprHasProperty(pExpr, EP_WinFunc) ); |
| if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; |
| |
| return pTab; |
| } |
| |
| /* |
| ** If the source-list item passed as an argument was augmented with an |
| ** INDEXED BY clause, then try to locate the specified index. If there |
| ** was such a clause and the named index cannot be found, return |
| ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate |
| ** pFrom->pIndex and return SQLITE_OK. |
| */ |
| int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ |
| Table *pTab = pFrom->pTab; |
| char *zIndexedBy = pFrom->u1.zIndexedBy; |
| Index *pIdx; |
| assert( pTab!=0 ); |
| assert( pFrom->fg.isIndexedBy!=0 ); |
| |
| for(pIdx=pTab->pIndex; |
| pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); |
| pIdx=pIdx->pNext |
| ); |
| if( !pIdx ){ |
| sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); |
| pParse->checkSchema = 1; |
| return SQLITE_ERROR; |
| } |
| assert( pFrom->fg.isCte==0 ); |
| pFrom->u2.pIBIndex = pIdx; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Detect compound SELECT statements that use an ORDER BY clause with |
| ** an alternative collating sequence. |
| ** |
| ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... |
| ** |
| ** These are rewritten as a subquery: |
| ** |
| ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) |
| ** ORDER BY ... COLLATE ... |
| ** |
| ** This transformation is necessary because the multiSelectOrderBy() routine |
| ** above that generates the code for a compound SELECT with an ORDER BY clause |
| ** uses a merge algorithm that requires the same collating sequence on the |
| ** result columns as on the ORDER BY clause. See ticket |
| ** http://www.sqlite.org/src/info/6709574d2a |
| ** |
| ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. |
| ** The UNION ALL operator works fine with multiSelectOrderBy() even when |
| ** there are COLLATE terms in the ORDER BY. |
| */ |
| static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ |
| int i; |
| Select *pNew; |
| Select *pX; |
| sqlite3 *db; |
| struct ExprList_item *a; |
| SrcList *pNewSrc; |
| Parse *pParse; |
| Token dummy; |
| |
| if( p->pPrior==0 ) return WRC_Continue; |
| if( p->pOrderBy==0 ) return WRC_Continue; |
| for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} |
| if( pX==0 ) return WRC_Continue; |
| a = p->pOrderBy->a; |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| /* If iOrderByCol is already non-zero, then it has already been matched |
| ** to a result column of the SELECT statement. This occurs when the |
| ** SELECT is rewritten for window-functions processing and then passed |
| ** to sqlite3SelectPrep() and similar a second time. The rewriting done |
| ** by this function is not required in this case. */ |
| if( a[0].u.x.iOrderByCol ) return WRC_Continue; |
| #endif |
| for(i=p->pOrderBy->nExpr-1; i>=0; i--){ |
| if( a[i].pExpr->flags & EP_Collate ) break; |
| } |
| if( i<0 ) return WRC_Continue; |
| |
| /* If we reach this point, that means the transformation is required. */ |
| |
| pParse = pWalker->pParse; |
| db = pParse->db; |
| pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); |
| if( pNew==0 ) return WRC_Abort; |
| memset(&dummy, 0, sizeof(dummy)); |
| pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0); |
| if( pNewSrc==0 ) return WRC_Abort; |
| *pNew = *p; |
| p->pSrc = pNewSrc; |
| p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); |
| p->op = TK_SELECT; |
| p->pWhere = 0; |
| pNew->pGroupBy = 0; |
| pNew->pHaving = 0; |
| pNew->pOrderBy = 0; |
| p->pPrior = 0; |
| p->pNext = 0; |
| p->pWith = 0; |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| p->pWinDefn = 0; |
| #endif |
| p->selFlags &= ~SF_Compound; |
| assert( (p->selFlags & SF_Converted)==0 ); |
| p->selFlags |= SF_Converted; |
| assert( pNew->pPrior!=0 ); |
| pNew->pPrior->pNext = pNew; |
| pNew->pLimit = 0; |
| return WRC_Continue; |
| } |
| |
| /* |
| ** Check to see if the FROM clause term pFrom has table-valued function |
| ** arguments. If it does, leave an error message in pParse and return |
| ** non-zero, since pFrom is not allowed to be a table-valued function. |
| */ |
| static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ |
| if( pFrom->fg.isTabFunc ){ |
| sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); |
| return 1; |
| } |
| return 0; |
| } |
| |
| #ifndef SQLITE_OMIT_CTE |
| /* |
| ** Argument pWith (which may be NULL) points to a linked list of nested |
| ** WITH contexts, from inner to outermost. If the table identified by |
| ** FROM clause element pItem is really a common-table-expression (CTE) |
| ** then return a pointer to the CTE definition for that table. Otherwise |
| ** return NULL. |
| ** |
| ** If a non-NULL value is returned, set *ppContext to point to the With |
| ** object that the returned CTE belongs to. |
| */ |
| static struct Cte *searchWith( |
| With *pWith, /* Current innermost WITH clause */ |
| SrcItem *pItem, /* FROM clause element to resolve */ |
| With **ppContext /* OUT: WITH clause return value belongs to */ |
| ){ |
| const char *zName = pItem->zName; |
| With *p; |
| assert( pItem->zDatabase==0 ); |
| assert( zName!=0 ); |
| for(p=pWith; p; p=p->pOuter){ |
| int i; |
| for(i=0; i<p->nCte; i++){ |
| if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ |
| *ppContext = p; |
| return &p->a[i]; |
| } |
| } |
| if( p->bView ) break; |
| } |
| return 0; |
| } |
| |
| /* The code generator maintains a stack of active WITH clauses |
| ** with the inner-most WITH clause being at the top of the stack. |
| ** |
| ** This routine pushes the WITH clause passed as the second argument |
| ** onto the top of the stack. If argument bFree is true, then this |
| ** WITH clause will never be popped from the stack but should instead |
| ** be freed along with the Parse object. In other cases, when |
| ** bFree==0, the With object will be freed along with the SELECT |
| ** statement with which it is associated. |
| ** |
| ** This routine returns a copy of pWith. Or, if bFree is true and |
| ** the pWith object is destroyed immediately due to an OOM condition, |
| ** then this routine return NULL. |
| ** |
| ** If bFree is true, do not continue to use the pWith pointer after |
| ** calling this routine, Instead, use only the return value. |
| */ |
| With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ |
| if( pWith ){ |
| if( bFree ){ |
| pWith = (With*)sqlite3ParserAddCleanup(pParse, |
| (void(*)(sqlite3*,void*))sqlite3WithDelete, |
| pWith); |
| if( pWith==0 ) return 0; |
| } |
| if( pParse->nErr==0 ){ |
| assert( pParse->pWith!=pWith ); |
| pWith->pOuter = pParse->pWith; |
| pParse->pWith = pWith; |
| } |
| } |
| return pWith; |
| } |
| |
| /* |
| ** This function checks if argument pFrom refers to a CTE declared by |
| ** a WITH clause on the stack currently maintained by the parser (on the |
| ** pParse->pWith linked list). And if currently processing a CTE |
| ** CTE expression, through routine checks to see if the reference is |
| ** a recursive reference to the CTE. |
| ** |
| ** If pFrom matches a CTE according to either of these two above, pFrom->pTab |
| ** and other fields are populated accordingly. |
| ** |
| ** Return 0 if no match is found. |
| ** Return 1 if a match is found. |
| ** Return 2 if an error condition is detected. |
| */ |
| static int resolveFromTermToCte( |
| Parse *pParse, /* The parsing context */ |
| Walker *pWalker, /* Current tree walker */ |
| SrcItem *pFrom /* The FROM clause term to check */ |
| ){ |
| Cte *pCte; /* Matched CTE (or NULL if no match) */ |
| With *pWith; /* The matching WITH */ |
| |
| assert( pFrom->pTab==0 ); |
| if( pParse->pWith==0 ){ |
| /* There are no WITH clauses in the stack. No match is possible */ |
| return 0; |
| } |
| if( pParse->nErr ){ |
| /* Prior errors might have left pParse->pWith in a goofy state, so |
| ** go no further. */ |
| return 0; |
| } |
| if( pFrom->zDatabase!=0 ){ |
| /* The FROM term contains a schema qualifier (ex: main.t1) and so |
| ** it cannot possibly be a CTE reference. */ |
| return 0; |
| } |
| if( pFrom->fg.notCte ){ |
| /* The FROM term is specifically excluded from matching a CTE. |
| ** (1) It is part of a trigger that used to have zDatabase but had |
| ** zDatabase removed by sqlite3FixTriggerStep(). |
| ** (2) This is the first term in the FROM clause of an UPDATE. |
| */ |
| return 0; |
| } |
| pCte = searchWith(pParse->pWith, pFrom, &pWith); |
| if( pCte ){ |
| sqlite3 *db = pParse->db; |
| Table *pTab; |
| ExprList *pEList; |
| Select *pSel; |
| Select *pLeft; /* Left-most SELECT statement */ |
| Select *pRecTerm; /* Left-most recursive term */ |
| int bMayRecursive; /* True if compound joined by UNION [ALL] */ |
| With *pSavedWith; /* Initial value of pParse->pWith */ |
| int iRecTab = -1; /* Cursor for recursive table */ |
| CteUse *pCteUse; |
| |
| /* If pCte->zCteErr is non-NULL at this point, then this is an illegal |
| ** recursive reference to CTE pCte. Leave an error in pParse and return |
| ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. |
| ** In this case, proceed. */ |
| if( pCte->zCteErr ){ |
| sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); |
| return 2; |
| } |
| if( cannotBeFunction(pParse, pFrom) ) return 2; |
| |
| assert( pFrom->pTab==0 ); |
| pTab = sqlite3DbMallocZero(db, sizeof(Table)); |
| if( pTab==0 ) return 2; |
| pCteUse = pCte->pUse; |
| if( pCteUse==0 ){ |
| pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); |
| if( pCteUse==0 |
| || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 |
| ){ |
| sqlite3DbFree(db, pTab); |
| return 2; |
| } |
| pCteUse->eM10d = pCte->eM10d; |
| } |
| pFrom->pTab = pTab; |
| pTab->nTabRef = 1; |
| pTab->zName = sqlite3DbStrDup(db, pCte->zName); |
| pTab->iPKey = -1; |
| pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
| pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; |
| pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); |
| if( db->mallocFailed ) return 2; |
| pFrom->pSelect->selFlags |= SF_CopyCte; |
| assert( pFrom->pSelect ); |
| if( pFrom->fg.isIndexedBy ){ |
| sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); |
| return 2; |
| } |
| pFrom->fg.isCte = 1; |
| pFrom->u2.pCteUse = pCteUse; |
| pCteUse->nUse++; |
| if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ |
| pCteUse->eM10d = M10d_Yes; |
| } |
| |
| /* Check if this is a recursive CTE. */ |
| pRecTerm = pSel = pFrom->pSelect; |
| bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); |
| while( bMayRecursive && pRecTerm->op==pSel->op ){ |
| int i; |
| SrcList *pSrc = pRecTerm->pSrc; |
| assert( pRecTerm->pPrior!=0 ); |
| for(i=0; i<pSrc->nSrc; i++){ |
| SrcItem *pItem = &pSrc->a[i]; |
| if( pItem->zDatabase==0 |
| && pItem->zName!=0 |
| && 0==sqlite3StrICmp(pItem->zName, pCte->zName) |
| ){ |
| pItem->pTab = pTab; |
| pTab->nTabRef++; |
| pItem->fg.isRecursive = 1; |
| if( pRecTerm->selFlags & SF_Recursive ){ |
| sqlite3ErrorMsg(pParse, |
| "multiple references to recursive table: %s", pCte->zName |
| ); |
| return 2; |
| } |
| pRecTerm->selFlags |= SF_Recursive; |
| if( iRecTab<0 ) iRecTab = pParse->nTab++; |
| pItem->iCursor = iRecTab; |
| } |
| } |
| if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; |
| pRecTerm = pRecTerm->pPrior; |
| } |
| |
| pCte->zCteErr = "circular reference: %s"; |
| pSavedWith = pParse->pWith; |
| pParse->pWith = pWith; |
| if( pSel->selFlags & SF_Recursive ){ |
| int rc; |
| assert( pRecTerm!=0 ); |
| assert( (pRecTerm->selFlags & SF_Recursive)==0 ); |
| assert( pRecTerm->pNext!=0 ); |
| assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); |
| assert( pRecTerm->pWith==0 ); |
| pRecTerm->pWith = pSel->pWith; |
| rc = sqlite3WalkSelect(pWalker, pRecTerm); |
| pRecTerm->pWith = 0; |
| if( rc ){ |
| pParse->pWith = pSavedWith; |
| return 2; |
| } |
| }else{ |
| if( sqlite3WalkSelect(pWalker, pSel) ){ |
| pParse->pWith = pSavedWith; |
| return 2; |
| } |
| } |
| pParse->pWith = pWith; |
| |
| for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); |
| pEList = pLeft->pEList; |
| if( pCte->pCols ){ |
| if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ |
| sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", |
| pCte->zName, pEList->nExpr, pCte->pCols->nExpr |
| ); |
| pParse->pWith = pSavedWith; |
| return 2; |
| } |
| pEList = pCte->pCols; |
| } |
| |
| sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); |
| if( bMayRecursive ){ |
| if( pSel->selFlags & SF_Recursive ){ |
| pCte->zCteErr = "multiple recursive references: %s"; |
| }else{ |
| pCte->zCteErr = "recursive reference in a subquery: %s"; |
| } |
| sqlite3WalkSelect(pWalker, pSel); |
| } |
| pCte->zCteErr = 0; |
| pParse->pWith = pSavedWith; |
| return 1; /* Success */ |
| } |
| return 0; /* No match */ |
| } |
| #endif |
| |
| #ifndef SQLITE_OMIT_CTE |
| /* |
| ** If the SELECT passed as the second argument has an associated WITH |
| ** clause, pop it from the stack stored as part of the Parse object. |
| ** |
| ** This function is used as the xSelectCallback2() callback by |
| ** sqlite3SelectExpand() when walking a SELECT tree to resolve table |
| ** names and other FROM clause elements. |
| */ |
| void sqlite3SelectPopWith(Walker *pWalker, Select *p){ |
| Parse *pParse = pWalker->pParse; |
| if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ |
| With *pWith = findRightmost(p)->pWith; |
| if( pWith!=0 ){ |
| assert( pParse->pWith==pWith || pParse->nErr ); |
| pParse->pWith = pWith->pOuter; |
| } |
| } |
| } |
| #endif |
| |
| /* |
| ** The SrcItem structure passed as the second argument represents a |
| ** sub-query in the FROM clause of a SELECT statement. This function |
| ** allocates and populates the SrcItem.pTab object. If successful, |
| ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, |
| ** SQLITE_NOMEM. |
| */ |
| int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ |
| Select *pSel = pFrom->pSelect; |
| Table *pTab; |
| |
| assert( pSel ); |
| pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); |
| if( pTab==0 ) return SQLITE_NOMEM; |
| pTab->nTabRef = 1; |
| if( pFrom->zAlias ){ |
| pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); |
| }else{ |
| pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom); |
| } |
| while( pSel->pPrior ){ pSel = pSel->pPrior; } |
| sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); |
| pTab->iPKey = -1; |
| pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
| #ifndef SQLITE_ALLOW_ROWID_IN_VIEW |
| /* The usual case - do not allow ROWID on a subquery */ |
| pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; |
| #else |
| pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ |
| #endif |
| return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; |
| } |
| |
| |
| /* |
| ** Check the N SrcItem objects to the right of pBase. (N might be zero!) |
| ** If any of those SrcItem objects have a USING clause containing zName |
| ** then return true. |
| ** |
| ** If N is zero, or none of the N SrcItem objects to the right of pBase |
| ** contains a USING clause, or if none of the USING clauses contain zName, |
| ** then return false. |
| */ |
| static int inAnyUsingClause( |
| const char *zName, /* Name we are looking for */ |
| SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */ |
| int N /* How many SrcItems to check */ |
| ){ |
| while( N>0 ){ |
| N--; |
| pBase++; |
| if( pBase->fg.isUsing==0 ) continue; |
| if( NEVER(pBase->u3.pUsing==0) ) continue; |
| if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1; |
| } |
| return 0; |
| } |
| |
| |
| /* |
| ** This routine is a Walker callback for "expanding" a SELECT statement. |
| ** "Expanding" means to do the following: |
| ** |
| ** (1) Make sure VDBE cursor numbers have been assigned to every |
| ** element of the FROM clause. |
| ** |
| ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that |
| ** defines FROM clause. When views appear in the FROM clause, |
| ** fill pTabList->a[].pSelect with a copy of the SELECT statement |
| ** that implements the view. A copy is made of the view's SELECT |
| ** statement so that we can freely modify or delete that statement |
| ** without worrying about messing up the persistent representation |
| ** of the view. |
| ** |
| ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword |
| ** on joins and the ON and USING clause of joins. |
| ** |
| ** (4) Scan the list of columns in the result set (pEList) looking |
| ** for instances of the "*" operator or the TABLE.* operator. |
| ** If found, expand each "*" to be every column in every table |
| ** and TABLE.* to be every column in TABLE. |
| ** |
| */ |
| static int selectExpander(Walker *pWalker, Select *p){ |
| Parse *pParse = pWalker->pParse; |
| int i, j, k, rc; |
| SrcList *pTabList; |
| ExprList *pEList; |
| SrcItem *pFrom; |
| sqlite3 *db = pParse->db; |
| Expr *pE, *pRight, *pExpr; |
| u16 selFlags = p->selFlags; |
| u32 elistFlags = 0; |
| |
| p->selFlags |= SF_Expanded; |
| if( db->mallocFailed ){ |
| return WRC_Abort; |
| } |
| assert( p->pSrc!=0 ); |
| if( (selFlags & SF_Expanded)!=0 ){ |
| return WRC_Prune; |
| } |
| if( pWalker->eCode ){ |
| /* Renumber selId because it has been copied from a view */ |
| p->selId = ++pParse->nSelect; |
| } |
| pTabList = p->pSrc; |
| pEList = p->pEList; |
| if( pParse->pWith && (p->selFlags & SF_View) ){ |
| if( p->pWith==0 ){ |
| p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); |
| if( p->pWith==0 ){ |
| return WRC_Abort; |
| } |
| } |
| p->pWith->bView = 1; |
| } |
| sqlite3WithPush(pParse, p->pWith, 0); |
| |
| /* Make sure cursor numbers have been assigned to all entries in |
| ** the FROM clause of the SELECT statement. |
| */ |
| sqlite3SrcListAssignCursors(pParse, pTabList); |
| |
| /* Look up every table named in the FROM clause of the select. If |
| ** an entry of the FROM clause is a subquery instead of a table or view, |
| ** then create a transient table structure to describe the subquery. |
| */ |
| for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
| Table *pTab; |
| assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); |
| if( pFrom->pTab ) continue; |
| assert( pFrom->fg.isRecursive==0 ); |
| if( pFrom->zName==0 ){ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| Select *pSel = pFrom->pSelect; |
| /* A sub-query in the FROM clause of a SELECT */ |
| assert( pSel!=0 ); |
| assert( pFrom->pTab==0 ); |
| if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; |
| if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; |
| #endif |
| #ifndef SQLITE_OMIT_CTE |
| }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ |
| if( rc>1 ) return WRC_Abort; |
| pTab = pFrom->pTab; |
| assert( pTab!=0 ); |
| #endif |
| }else{ |
| /* An ordinary table or view name in the FROM clause */ |
| assert( pFrom->pTab==0 ); |
| pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); |
| if( pTab==0 ) return WRC_Abort; |
| if( pTab->nTabRef>=0xffff ){ |
| sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", |
| pTab->zName); |
| pFrom->pTab = 0; |
| return WRC_Abort; |
| } |
| pTab->nTabRef++; |
| if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ |
| return WRC_Abort; |
| } |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) |
| if( !IsOrdinaryTable(pTab) ){ |
| i16 nCol; |
| u8 eCodeOrig = pWalker->eCode; |
| if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; |
| assert( pFrom->pSelect==0 ); |
| if( IsView(pTab) ){ |
| if( (db->flags & SQLITE_EnableView)==0 |
| && pTab->pSchema!=db->aDb[1].pSchema |
| ){ |
| sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", |
| pTab->zName); |
| } |
| pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); |
| } |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| else if( ALWAYS(IsVirtual(pTab)) |
| && pFrom->fg.fromDDL |
| && ALWAYS(pTab->u.vtab.p!=0) |
| && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) |
| ){ |
| sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", |
| pTab->zName); |
| } |
| assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); |
| #endif |
| nCol = pTab->nCol; |
| pTab->nCol = -1; |
| pWalker->eCode = 1; /* Turn on Select.selId renumbering */ |
| sqlite3WalkSelect(pWalker, pFrom->pSelect); |
| pWalker->eCode = eCodeOrig; |
| pTab->nCol = nCol; |
| } |
| #endif |
| } |
| |
| /* Locate the index named by the INDEXED BY clause, if any. */ |
| if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ |
| return WRC_Abort; |
| } |
| } |
| |
| /* Process NATURAL keywords, and ON and USING clauses of joins. |
| */ |
| assert( db->mallocFailed==0 || pParse->nErr!=0 ); |
| if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){ |
| return WRC_Abort; |
| } |
| |
| /* For every "*" that occurs in the column list, insert the names of |
| ** all columns in all tables. And for every TABLE.* insert the names |
| ** of all columns in TABLE. The parser inserted a special expression |
| ** with the TK_ASTERISK operator for each "*" that it found in the column |
| ** list. The following code just has to locate the TK_ASTERISK |
| ** expressions and expand each one to the list of all columns in |
| ** all tables. |
| ** |
| ** The first loop just checks to see if there are any "*" operators |
| ** that need expanding. |
| */ |
| for(k=0; k<pEList->nExpr; k++){ |
| pE = pEList->a[k].pExpr; |
| if( pE->op==TK_ASTERISK ) break; |
| assert( pE->op!=TK_DOT || pE->pRight!=0 ); |
| assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); |
| if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; |
| elistFlags |= pE->flags; |
| } |
| if( k<pEList->nExpr ){ |
| /* |
| ** If we get here it means the result set contains one or more "*" |
| ** operators that need to be expanded. Loop through each expression |
| ** in the result set and expand them one by one. |
| */ |
| struct ExprList_item *a = pEList->a; |
| ExprList *pNew = 0; |
| int flags = pParse->db->flags; |
| int longNames = (flags & SQLITE_FullColNames)!=0 |
| && (flags & SQLITE_ShortColNames)==0; |
| |
| for(k=0; k<pEList->nExpr; k++){ |
| pE = a[k].pExpr; |
| elistFlags |= pE->flags; |
| pRight = pE->pRight; |
| assert( pE->op!=TK_DOT || pRight!=0 ); |
| if( pE->op!=TK_ASTERISK |
| && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) |
| ){ |
| /* This particular expression does not need to be expanded. |
| */ |
| pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); |
| if( pNew ){ |
| pNew->a[pNew->nExpr-1].zEName = a[k].zEName; |
| pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName; |
| a[k].zEName = 0; |
| } |
| a[k].pExpr = 0; |
| }else{ |
| /* This expression is a "*" or a "TABLE.*" and needs to be |
| ** expanded. */ |
| int tableSeen = 0; /* Set to 1 when TABLE matches */ |
| char *zTName = 0; /* text of name of TABLE */ |
| if( pE->op==TK_DOT ){ |
| assert( pE->pLeft!=0 ); |
| assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); |
| zTName = pE->pLeft->u.zToken; |
| } |
| for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
| Table *pTab = pFrom->pTab; /* Table for this data source */ |
| ExprList *pNestedFrom; /* Result-set of a nested FROM clause */ |
| char *zTabName; /* AS name for this data source */ |
| const char *zSchemaName = 0; /* Schema name for this data source */ |
| int iDb; /* Schema index for this data src */ |
| IdList *pUsing; /* USING clause for pFrom[1] */ |
| |
| if( (zTabName = pFrom->zAlias)==0 ){ |
| zTabName = pTab->zName; |
| } |
| if( db->mallocFailed ) break; |
| assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) ); |
| if( pFrom->fg.isNestedFrom ){ |
| assert( pFrom->pSelect!=0 ); |
| pNestedFrom = pFrom->pSelect->pEList; |
| assert( pNestedFrom!=0 ); |
| assert( pNestedFrom->nExpr==pTab->nCol ); |
| }else{ |
| if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ |
| continue; |
| } |
| pNestedFrom = 0; |
| iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; |
| } |
| if( i+1<pTabList->nSrc |
| && pFrom[1].fg.isUsing |
| && (selFlags & SF_NestedFrom)!=0 |
| ){ |
| int ii; |
| pUsing = pFrom[1].u3.pUsing; |
| for(ii=0; ii<pUsing->nId; ii++){ |
| const char *zUName = pUsing->a[ii].zName; |
| pRight = sqlite3Expr(db, TK_ID, zUName); |
| pNew = sqlite3ExprListAppend(pParse, pNew, pRight); |
| if( pNew ){ |
| struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; |
| assert( pX->zEName==0 ); |
| pX->zEName = sqlite3MPrintf(db,"..%s", zUName); |
| pX->fg.eEName = ENAME_TAB; |
| pX->fg.bUsingTerm = 1; |
| } |
| } |
| }else{ |
| pUsing = 0; |
| } |
| for(j=0; j<pTab->nCol; j++){ |
| char *zName = pTab->aCol[j].zCnName; |
| struct ExprList_item *pX; /* Newly added ExprList term */ |
| |
| assert( zName ); |
| if( zTName |
| && pNestedFrom |
| && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0 |
| ){ |
| continue; |
| } |
| |
| /* If a column is marked as 'hidden', omit it from the expanded |
| ** result-set list unless the SELECT has the SF_IncludeHidden |
| ** bit set. |
| */ |
| if( (p->selFlags & SF_IncludeHidden)==0 |
| && IsHiddenColumn(&pTab->aCol[j]) |
| ){ |
| continue; |
| } |
| if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 |
| && zTName==0 |
| && (selFlags & (SF_NestedFrom))==0 |
| ){ |
| continue; |
| } |
| tableSeen = 1; |
| |
| if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){ |
| if( pFrom->fg.isUsing |
| && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0 |
| ){ |
| /* In a join with a USING clause, omit columns in the |
| ** using clause from the table on the right. */ |
| continue; |
| } |
| } |
| pRight = sqlite3Expr(db, TK_ID, zName); |
| if( (pTabList->nSrc>1 |
| && ( (pFrom->fg.jointype & JT_LTORJ)==0 |
| || (selFlags & SF_NestedFrom)!=0 |
| || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1) |
| ) |
| ) |
| || IN_RENAME_OBJECT |
| ){ |
| Expr *pLeft; |
| pLeft = sqlite3Expr(db, TK_ID, zTabName); |
| pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); |
| if( IN_RENAME_OBJECT && pE->pLeft ){ |
| sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft); |
| } |
| if( zSchemaName ){ |
| pLeft = sqlite3Expr(db, TK_ID, zSchemaName); |
| pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); |
| } |
| }else{ |
| pExpr = pRight; |
| } |
| pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); |
| if( pNew==0 ){ |
| break; /* OOM */ |
| } |
| pX = &pNew->a[pNew->nExpr-1]; |
| assert( pX->zEName==0 ); |
| if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ |
| if( pNestedFrom ){ |
| pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName); |
| testcase( pX->zEName==0 ); |
| }else{ |
| pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", |
| zSchemaName, zTabName, zName); |
| testcase( pX->zEName==0 ); |
| } |
| pX->fg.eEName = ENAME_TAB; |
| if( (pFrom->fg.isUsing |
| && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0) |
| || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0) |
| || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 |
| ){ |
| pX->fg.bNoExpand = 1; |
| } |
| }else if( longNames ){ |
| pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName); |
| pX->fg.eEName = ENAME_NAME; |
| }else{ |
| pX->zEName = sqlite3DbStrDup(db, zName); |
| pX->fg.eEName = ENAME_NAME; |
| } |
| } |
| } |
| if( !tableSeen ){ |
| if( zTName ){ |
| sqlite3ErrorMsg(pParse, "no such table: %s", zTName); |
| }else{ |
| sqlite3ErrorMsg(pParse, "no tables specified"); |
| } |
| } |
| } |
| } |
| sqlite3ExprListDelete(db, pEList); |
| p->pEList = pNew; |
| } |
| if( p->pEList ){ |
| if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ |
| sqlite3ErrorMsg(pParse, "too many columns in result set"); |
| return WRC_Abort; |
| } |
| if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ |
| p->selFlags |= SF_ComplexResult; |
| } |
| } |
| #if TREETRACE_ENABLED |
| if( sqlite3TreeTrace & 0x8 ){ |
| TREETRACE(0x8,pParse,p,("After result-set wildcard expansion:\n")); |
| sqlite3TreeViewSelect(0, p, 0); |
| } |
| #endif |
| return WRC_Continue; |
| } |
| |
| #if SQLITE_DEBUG |
| /* |
| ** Always assert. This xSelectCallback2 implementation proves that the |
| ** xSelectCallback2 is never invoked. |
| */ |
| void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ |
| UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| assert( 0 ); |
| } |
| #endif |
| /* |
| ** This routine "expands" a SELECT statement and all of its subqueries. |
| ** For additional information on what it means to "expand" a SELECT |
| ** statement, see the comment on the selectExpand worker callback above. |
| ** |
| ** Expanding a SELECT statement is the first step in processing a |
| ** SELECT statement. The SELECT statement must be expanded before |
| ** name resolution is performed. |
| ** |
| ** If anything goes wrong, an error message is written into pParse. |
| ** The calling function can detect the problem by looking at pParse->nErr |
| ** and/or pParse->db->mallocFailed. |
| */ |
| static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ |
| Walker w; |
| w.xExprCallback = sqlite3ExprWalkNoop; |
| w.pParse = pParse; |
| if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ |
| w.xSelectCallback = convertCompoundSelectToSubquery; |
| w.xSelectCallback2 = 0; |
| sqlite3WalkSelect(&w, pSelect); |
| } |
| w.xSelectCallback = selectExpander; |
| w.xSelectCallback2 = sqlite3SelectPopWith; |
| w.eCode = 0; |
| sqlite3WalkSelect(&w, pSelect); |
| } |
| |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* |
| ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() |
| ** interface. |
| ** |
| ** For each FROM-clause subquery, add Column.zType, Column.zColl, and |
| ** Column.affinity information to the Table structure that represents |
| ** the result set of that subquery. |
| ** |
| ** The Table structure that represents the result set was constructed |
| ** by selectExpander() but the type and collation and affinity information |
| ** was omitted at that point because identifiers had not yet been resolved. |
| ** This routine is called after identifier resolution. |
| */ |
| static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ |
| Parse *pParse; |
| int i; |
| SrcList *pTabList; |
| SrcItem *pFrom; |
| |
| assert( p->selFlags & SF_Resolved ); |
| if( p->selFlags & SF_HasTypeInfo ) return; |
| p->selFlags |= SF_HasTypeInfo; |
| pParse = pWalker->pParse; |
| pTabList = p->pSrc; |
| for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
| Table *pTab = pFrom->pTab; |
| assert( pTab!=0 ); |
| if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ |
| /* A sub-query in the FROM clause of a SELECT */ |
| Select *pSel = pFrom->pSelect; |
| if( pSel ){ |
| sqlite3SubqueryColumnTypes(pParse, pTab, pSel, SQLITE_AFF_NONE); |
| } |
| } |
| } |
| } |
| #endif |
| |
| |
| /* |
| ** This routine adds datatype and collating sequence information to |
| ** the Table structures of all FROM-clause subqueries in a |
| ** SELECT statement. |
| ** |
| ** Use this routine after name resolution. |
| */ |
| static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| Walker w; |
| w.xSelectCallback = sqlite3SelectWalkNoop; |
| w.xSelectCallback2 = selectAddSubqueryTypeInfo; |
| w.xExprCallback = sqlite3ExprWalkNoop; |
| w.pParse = pParse; |
| sqlite3WalkSelect(&w, pSelect); |
| #endif |
| } |
| |
| |
| /* |
| ** This routine sets up a SELECT statement for processing. The |
| ** following is accomplished: |
| ** |
| ** * VDBE Cursor numbers are assigned to all FROM-clause terms. |
| ** * Ephemeral Table objects are created for all FROM-clause subqueries. |
| ** * ON and USING clauses are shifted into WHERE statements |
| ** * Wildcards "*" and "TABLE.*" in result sets are expanded. |
| ** * Identifiers in expression are matched to tables. |
| ** |
| ** This routine acts recursively on all subqueries within the SELECT. |
| */ |
| void sqlite3SelectPrep( |
| Parse *pParse, /* The parser context */ |
| Select *p, /* The SELECT statement being coded. */ |
| NameContext *pOuterNC /* Name context for container */ |
| ){ |
| assert( p!=0 || pParse->db->mallocFailed ); |
| assert( pParse->db->pParse==pParse ); |
| if( pParse->db->mallocFailed ) return; |
| if( p->selFlags & SF_HasTypeInfo ) return; |
| sqlite3SelectExpand(pParse, p); |
| if( pParse->nErr ) return; |
| sqlite3ResolveSelectNames(pParse, p, pOuterNC); |
| if( pParse->nErr ) return; |
| sqlite3SelectAddTypeInfo(pParse, p); |
| } |
| |
| #if TREETRACE_ENABLED |
| /* |
| ** Display all information about an AggInfo object |
| */ |
| static void printAggInfo(AggInfo *pAggInfo){ |
| int ii; |
| for(ii=0; ii<pAggInfo->nColumn; ii++){ |
| struct AggInfo_col *pCol = &pAggInfo->aCol[ii]; |
| sqlite3DebugPrintf( |
| "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d" |
| " iSorterColumn=%d %s\n", |
| ii, pCol->pTab ? pCol->pTab->zName : "NULL", |
| pCol->iTable, pCol->iColumn, pAggInfo->iFirstReg+ii, |
| pCol->iSorterColumn, |
| ii>=pAggInfo->nAccumulator ? "" : " Accumulator"); |
| sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); |
| } |
| for(ii=0; ii<pAggInfo->nFunc; ii++){ |
| sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", |
| ii, pAggInfo->iFirstReg+pAggInfo->nColumn+ii); |
| sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); |
| } |
| } |
| #endif /* TREETRACE_ENABLED */ |
| |
| /* |
| ** Analyze the arguments to aggregate functions. Create new pAggInfo->aCol[] |
| ** entries for columns that are arguments to aggregate functions but which |
| ** are not otherwise used. |
| ** |
| ** The aCol[] entries in AggInfo prior to nAccumulator are columns that |
| ** are referenced outside of aggregate functions. These might be columns |
| ** that are part of the GROUP by clause, for example. Other database engines |
| ** would throw an error if there is a column reference that is not in the |
| ** GROUP BY clause and that is not part of an aggregate function argument. |
| ** But SQLite allows this. |
| ** |
| ** The aCol[] entries beginning with the aCol[nAccumulator] and following |
| ** are column references that are used exclusively as arguments to |
| ** aggregate functions. This routine is responsible for computing |
| ** (or recomputing) those aCol[] entries. |
| */ |
| static void analyzeAggFuncArgs( |
| AggInfo *pAggInfo, |
| NameContext *pNC |
| ){ |
| int i; |
| assert( pAggInfo!=0 ); |
| assert( pAggInfo->iFirstReg==0 ); |
| pNC->ncFlags |= NC_InAggFunc; |
| for(i=0; i<pAggInfo->nFunc; i++){ |
| Expr *pExpr = pAggInfo->aFunc[i].pFExpr; |
| assert( ExprUseXList(pExpr) ); |
| sqlite3ExprAnalyzeAggList(pNC, pExpr->x.pList); |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| assert( !IsWindowFunc(pExpr) ); |
| if( ExprHasProperty(pExpr, EP_WinFunc) ){ |
| sqlite3ExprAnalyzeAggregates(pNC, pExpr->y.pWin->pFilter); |
| } |
| #endif |
| } |
| pNC->ncFlags &= ~NC_InAggFunc; |
| } |
| |
| /* |
| ** An index on expressions is being used in the inner loop of an |
| ** aggregate query with a GROUP BY clause. This routine attempts |
| ** to adjust the AggInfo object to take advantage of index and to |
| ** perhaps use the index as a covering index. |
| ** |
| */ |
| static void optimizeAggregateUseOfIndexedExpr( |
| Parse *pParse, /* Parsing context */ |
| Select *pSelect, /* The SELECT statement being processed */ |
| AggInfo *pAggInfo, /* The aggregate info */ |
| NameContext *pNC /* Name context used to resolve agg-func args */ |
| ){ |
| assert( pAggInfo->iFirstReg==0 ); |
| pAggInfo->nColumn = pAggInfo->nAccumulator; |
| if( ALWAYS(pAggInfo->nSortingColumn>0) ){ |
| if( pAggInfo->nColumn==0 ){ |
| pAggInfo->nSortingColumn = 0; |
| }else{ |
| pAggInfo->nSortingColumn = |
| pAggInfo->aCol[pAggInfo->nColumn-1].iSorterColumn+1; |
| } |
| } |
| analyzeAggFuncArgs(pAggInfo, pNC); |
| #if TREETRACE_ENABLED |
| if( sqlite3TreeTrace & 0x20 ){ |
| IndexedExpr *pIEpr; |
| TREETRACE(0x20, pParse, pSelect, |
| ("AggInfo (possibly) adjusted for Indexed Exprs\n")); |
| sqlite3TreeViewSelect(0, pSelect, 0); |
| for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){ |
| printf("data-cursor=%d index={%d,%d}\n", |
| pIEpr->iDataCur, pIEpr->iIdxCur, pIEpr->iIdxCol); |
| sqlite3TreeViewExpr(0, pIEpr->pExpr, 0); |
| } |
| printAggInfo(pAggInfo); |
| } |
| #else |
| UNUSED_PARAMETER(pSelect); |
| UNUSED_PARAMETER(pParse); |
| #endif |
| } |
| |
| /* |
| ** Walker callback for aggregateConvertIndexedExprRefToColumn(). |
| */ |
| static int aggregateIdxEprRefToColCallback(Walker *pWalker, Expr *pExpr){ |
| AggInfo *pAggInfo; |
| struct AggInfo_col *pCol; |
| UNUSED_PARAMETER(pWalker); |
| if( pExpr->pAggInfo==0 ) return WRC_Continue; |
| if( pExpr->op==TK_AGG_COLUMN ) return WRC_Continue; |
| if( pExpr->op==TK_AGG_FUNCTION ) return WRC_Continue; |
| if( pExpr->op==TK_IF_NULL_ROW ) return WRC_Continue; |
| pAggInfo = pExpr->pAggInfo; |
| assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); |
| pCol = &pAggInfo->aCol[pExpr->iAgg]; |
| pExpr->op = TK_AGG_COLUMN; |
| pExpr->iTable = pCol->iTable; |
| pExpr->iColumn = pCol->iColumn; |
| return WRC_Prune; |
| } |
| |
| /* |
| ** Convert every pAggInfo->aFunc[].pExpr such that any node within |
| ** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN |
| ** opcode. |
| */ |
| static void aggregateConvertIndexedExprRefToColumn(AggInfo *pAggInfo){ |
| int i; |
| Walker w; |
| memset(&w, 0, sizeof(w)); |
| w.xExprCallback = aggregateIdxEprRefToColCallback; |
| for(i=0; i<pAggInfo->nFunc; i++){ |
| sqlite3WalkExpr(&w, pAggInfo->aFunc[i].pFExpr); |
| } |
| } |
| |
| |
| /* |
| ** Allocate a block of registers so that there is one register for each |
| ** pAggInfo->aCol[] and pAggInfo->aFunc[] entry in pAggInfo. The first |
| ** register in this block is stored in pAggInfo->iFirstReg. |
| ** |
| ** This routine may only be called once for each AggInfo object. Prior |
| ** to calling this routine: |
| ** |
| ** * The aCol[] and aFunc[] arrays may be modified |
| ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used |
| ** |
| ** After clling this routine: |
| ** |
| ** * The aCol[] and aFunc[] arrays are fixed |
| ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used |
| ** |
| */ |
| static void assignAggregateRegisters(Parse *pParse, AggInfo *pAggInfo){ |
| assert( pAggInfo!=0 ); |
| assert( pAggInfo->iFirstReg==0 ); |
| pAggInfo->iFirstReg = pParse->nMem + 1; |
| pParse->nMem += pAggInfo->nColumn + pAggInfo->nFunc; |
| } |
| |
| /* |
| ** Reset the aggregate accumulator. |
| ** |
| ** The aggregate accumulator is a set of memory cells that hold |
| ** intermediate results while calculating an aggregate. This |
| ** routine generates code that stores NULLs in all of those memory |
| ** cells. |
| */ |
| static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
| Vdbe *v = pParse->pVdbe; |
| int i; |
| struct AggInfo_func *pFunc; |
| int nReg = pAggInfo->nFunc + pAggInfo->nColumn; |
| assert( pAggInfo->iFirstReg>0 ); |
| assert( pParse->db->pParse==pParse ); |
| assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); |
| if( nReg==0 ) return; |
| if( pParse->nErr ) return; |
| sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->iFirstReg, |
| pAggInfo->iFirstReg+nReg-1); |
| for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ |
| if( pFunc->iDistinct>=0 ){ |
| Expr *pE = pFunc->pFExpr; |
| assert( ExprUseXList(pE) ); |
| if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ |
| sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " |
| "argument"); |
| pFunc->iDistinct = -1; |
| }else{ |
| KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); |
| pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, |
| pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); |
| ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", |
| pFunc->pFunc->zName)); |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Invoke the OP_AggFinalize opcode for every aggregate function |
| ** in the AggInfo structure. |
| */ |
| static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ |
| Vdbe *v = pParse->pVdbe; |
| int i; |
| struct AggInfo_func *pF; |
| for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
| ExprList *pList; |
| assert( ExprUseXList(pF->pFExpr) ); |
| pList = pF->pFExpr->x.pList; |
| sqlite3VdbeAddOp2(v, OP_AggFinal, AggInfoFuncReg(pAggInfo,i), |
| pList ? pList->nExpr : 0); |
| sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); |
| } |
| } |
| |
| |
| /* |
| ** Generate code that will update the accumulator memory cells for an |
| ** aggregate based on the current cursor position. |
| ** |
| ** If regAcc is non-zero and there are no min() or max() aggregates |
| ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator |
| ** registers if register regAcc contains 0. The caller will take care |
| ** of setting and clearing regAcc. |
| */ |
| static void updateAccumulator( |
| Parse *pParse, |
| int regAcc, |
| AggInfo *pAggInfo, |
| int eDistinctType |
| ){ |
| Vdbe *v = pParse->pVdbe; |
| int i; |
| int regHit = 0; |
| int addrHitTest = 0; |
| struct AggInfo_func *pF; |
| struct AggInfo_col *pC; |
| |
| assert( pAggInfo->iFirstReg>0 ); |
| if( pParse->nErr ) return; |
| pAggInfo->directMode = 1; |
| for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
| int nArg; |
| int addrNext = 0; |
| int regAgg; |
| ExprList *pList; |
| assert( ExprUseXList(pF->pFExpr) ); |
| assert( !IsWindowFunc(pF->pFExpr) ); |
| pList = pF->pFExpr->x.pList; |
| if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ |
| Expr *pFilter = pF->pFExpr->y.pWin->pFilter; |
| if( pAggInfo->nAccumulator |
| && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) |
| && regAcc |
| ){ |
| /* If regAcc==0, there there exists some min() or max() function |
| ** without a FILTER clause that will ensure the magnet registers |
| ** are populated. */ |
| if( regHit==0 ) regHit = ++pParse->nMem; |
| /* If this is the first row of the group (regAcc contains 0), clear the |
| ** "magnet" register regHit so that the accumulator registers |
| ** are populated if the FILTER clause jumps over the the |
| ** invocation of min() or max() altogether. Or, if this is not |
| ** the first row (regAcc contains 1), set the magnet register so that |
| ** the accumulators are not populated unless the min()/max() is invoked |
| ** and indicates that they should be. */ |
| sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); |
| } |
| addrNext = sqlite3VdbeMakeLabel(pParse); |
| sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); |
| } |
| if( pList ){ |
| nArg = pList->nExpr; |
| regAgg = sqlite3GetTempRange(pParse, nArg); |
| sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); |
| }else{ |
| nArg = 0; |
| regAgg = 0; |
| } |
| if( pF->iDistinct>=0 && pList ){ |
| if( addrNext==0 ){ |
| addrNext = sqlite3VdbeMakeLabel(pParse); |
| } |
| pF->iDistinct = codeDistinct(pParse, eDistinctType, |
| pF->iDistinct, addrNext, pList, regAgg); |
| } |
| if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ |
| CollSeq *pColl = 0; |
| struct ExprList_item *pItem; |
| int j; |
| assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ |
| for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ |
| pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
| } |
| if( !pColl ){ |
| pColl = pParse->db->pDfltColl; |
| } |
| if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; |
| sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); |
| } |
| sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i)); |
| sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); |
| sqlite3VdbeChangeP5(v, (u8)nArg); |
| sqlite3ReleaseTempRange(pParse, regAgg, nArg); |
| if( addrNext ){ |
| sqlite3VdbeResolveLabel(v, addrNext); |
| } |
| } |
| if( regHit==0 && pAggInfo->nAccumulator ){ |
| regHit = regAcc; |
| } |
| if( regHit ){ |
| addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); |
| } |
| for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ |
| sqlite3ExprCode(pParse, pC->pCExpr, AggInfoColumnReg(pAggInfo,i)); |
| } |
| |
| pAggInfo->directMode = 0; |
| if( addrHitTest ){ |
| sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); |
| } |
| } |
| |
| /* |
| ** Add a single OP_Explain instruction to the VDBE to explain a simple |
| ** count(*) query ("SELECT count(*) FROM pTab"). |
| */ |
| #ifndef SQLITE_OMIT_EXPLAIN |
| static void explainSimpleCount( |
| Parse *pParse, /* Parse context */ |
| Table *pTab, /* Table being queried */ |
| Index *pIdx /* Index used to optimize scan, or NULL */ |
| ){ |
| if( pParse->explain==2 ){ |
| int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); |
| sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", |
| pTab->zName, |
| bCover ? " USING COVERING INDEX " : "", |
| bCover ? pIdx->zName : "" |
| ); |
| } |
| } |
| #else |
| # define explainSimpleCount(a,b,c) |
| #endif |
| |
| /* |
| ** sqlite3WalkExpr() callback used by havingToWhere(). |
| ** |
| ** If the node passed to the callback is a TK_AND node, return |
| ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. |
| ** |
| ** Otherwise, return WRC_Prune. In this case, also check if the |
| ** sub-expression matches the criteria for being moved to the WHERE |
| ** clause. If so, add it to the WHERE clause and replace the sub-expression |
| ** within the HAVING expression with a constant "1". |
| */ |
| static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ |
| if( pExpr->op!=TK_AND ){ |
| Select *pS = pWalker->u.pSelect; |
| /* This routine is called before the HAVING clause of the current |
| ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set |
| ** here, it indicates that the expression is a correlated reference to a |
| ** column from an outer aggregate query, or an aggregate function that |
| ** belongs to an outer query. Do not move the expression to the WHERE |
| ** clause in this obscure case, as doing so may corrupt the outer Select |
| ** statements AggInfo structure. */ |
| if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) |
| && ExprAlwaysFalse(pExpr)==0 |
| && pExpr->pAggInfo==0 |
| ){ |
| sqlite3 *db = pWalker->pParse->db; |
| Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); |
| if( pNew ){ |
| Expr *pWhere = pS->pWhere; |
| SWAP(Expr, *pNew, *pExpr); |
| pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); |
| pS->pWhere = pNew; |
| pWalker->eCode = 1; |
| } |
| } |
| return WRC_Prune; |
| } |
| return WRC_Continue; |
| } |
| |
| /* |
| ** Transfer eligible terms from the HAVING clause of a query, which is |
| ** processed after grouping, to the WHERE clause, which is processed before |
| ** grouping. For example, the query: |
| ** |
| ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? |
| ** |
| ** can be rewritten as: |
| ** |
| ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? |
| ** |
| ** A term of the HAVING expression is eligible for transfer if it consists |
| ** entirely of constants and expressions that are also GROUP BY terms that |
| ** use the "BINARY" collation sequence. |
| */ |
| static void havingToWhere(Parse *pParse, Select *p){ |
| Walker sWalker; |
| memset(&sWalker, 0, sizeof(sWalker)); |
| sWalker.pParse = pParse; |
| sWalker.xExprCallback = havingToWhereExprCb; |
| sWalker.u.pSelect = p; |
| sqlite3WalkExpr(&sWalker, p->pHaving); |
| #if TREETRACE_ENABLED |
| if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){ |
| TREETRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); |
| sqlite3TreeViewSelect(0, p, 0); |
| } |
| #endif |
| } |
| |
| /* |
| ** Check to see if the pThis entry of pTabList is a self-join of another view. |
| ** Search FROM-clause entries in the range of iFirst..iEnd, including iFirst |
| ** but stopping before iEnd. |
| ** |
| ** If pThis is a self-join, then return the SrcItem for the first other |
| ** instance of that view found. If pThis is not a self-join then return 0. |
| */ |
| static SrcItem *isSelfJoinView( |
| SrcList *pTabList, /* Search for self-joins in this FROM clause */ |
| SrcItem *pThis, /* Search for prior reference to this subquery */ |
| int iFirst, int iEnd /* Range of FROM-clause entries to search. */ |
| ){ |
| SrcItem *pItem; |
| assert( pThis->pSelect!=0 ); |
| if( pThis->pSelect->selFlags & SF_PushDown ) return 0; |
| while( iFirst<iEnd ){ |
| Select *pS1; |
| pItem = &pTabList->a[iFirst++]; |
| if( pItem->pSelect==0 ) continue; |
| if( pItem->fg.viaCoroutine ) continue; |
| if( pItem->zName==0 ) continue; |
| assert( pItem->pTab!=0 ); |
| assert( pThis->pTab!=0 ); |
| if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; |
| if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; |
| pS1 = pItem->pSelect; |
| if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ |
| /* The query flattener left two different CTE tables with identical |
| ** names in the same FROM clause. */ |
| continue; |
| } |
| if( pItem->pSelect->selFlags & SF_PushDown ){ |
| /* The view was modified by some other optimization such as |
| ** pushDownWhereTerms() */ |
| continue; |
| } |
| return pItem; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Deallocate a single AggInfo object |
| */ |
| static void agginfoFree(sqlite3 *db, AggInfo *p){ |
| sqlite3DbFree(db, p->aCol); |
| sqlite3DbFree(db, p->aFunc); |
| sqlite3DbFreeNN(db, p); |
| } |
| |
| #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION |
| /* |
| ** Attempt to transform a query of the form |
| ** |
| ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) |
| ** |
| ** Into this: |
| ** |
| ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) |
| ** |
| ** The transformation only works if all of the following are true: |
| ** |
| ** * The subquery is a UNION ALL of two or more terms |
| ** * The subquery does not have a LIMIT clause |
| ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries |
| ** * The outer query is a simple count(*) with no WHERE clause or other |
| ** extraneous syntax. |
| ** |
| ** Return TRUE if the optimization is undertaken. |
| */ |
| static int countOfViewOptimization(Parse *pParse, Select *p){ |
| Select *pSub, *pPrior; |
| Expr *pExpr; |
| Expr *pCount; |
| sqlite3 *db; |
| if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ |
| if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ |
| if( p->pWhere ) return 0; |
| if( p->pGroupBy ) return 0; |
| pExpr = p->pEList->a[0].pExpr; |
| if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ |
| assert( ExprUseUToken(pExpr) ); |
| if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ |
| assert( ExprUseXList(pExpr) ); |
| if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ |
| if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ |
| pSub = p->pSrc->a[0].pSelect; |
| if( pSub==0 ) return 0; /* The FROM is a subquery */ |
| if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ |
| do{ |
| if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ |
| if( pSub->pWhere ) return 0; /* No WHERE clause */ |
| if( pSub->pLimit ) return 0; /* No LIMIT clause */ |
| if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ |
| pSub = pSub->pPrior; /* Repeat over compound */ |
| }while( pSub ); |
| |
| /* If we reach this point then it is OK to perform the transformation */ |
| |
| db = pParse->db; |
| pCount = pExpr; |
| pExpr = 0; |
| pSub = p->pSrc->a[0].pSelect; |
| p->pSrc->a[0].pSelect = 0; |
| sqlite3SrcListDelete(db, p->pSrc); |
| p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); |
| while( pSub ){ |
| Expr *pTerm; |
| pPrior = pSub->pPrior; |
| pSub->pPrior = 0; |
| pSub->pNext = 0; |
| pSub->selFlags |= SF_Aggregate; |
| pSub->selFlags &= ~SF_Compound; |
| pSub->nSelectRow = 0; |
| sqlite3ExprListDelete(db, pSub->pEList); |
| pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; |
| pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); |
| pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); |
| sqlite3PExprAddSelect(pParse, pTerm, pSub); |
| if( pExpr==0 ){ |
| pExpr = pTerm; |
| }else{ |
| pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); |
| } |
| pSub = pPrior; |
| } |
| p->pEList->a[0].pExpr = pExpr; |
| p->selFlags &= ~SF_Aggregate; |
| |
| #if TREETRACE_ENABLED |
| if( sqlite3TreeTrace & 0x200 ){ |
| TREETRACE(0x200,pParse,p,("After count-of-view optimization:\n")); |
| sqlite3TreeViewSelect(0, p, 0); |
| } |
| #endif |
| return 1; |
| } |
| #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ |
| |
| /* |
| ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same |
| ** as pSrcItem but has the same alias as p0, then return true. |
| ** Otherwise return false. |
| */ |
| static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){ |
| int i; |
| for(i=0; i<pSrc->nSrc; i++){ |
| SrcItem *p1 = &pSrc->a[i]; |
| if( p1==p0 ) continue; |
| if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ |
| return 1; |
| } |
| if( p1->pSelect |
| && (p1->pSelect->selFlags & SF_NestedFrom)!=0 |
| && sameSrcAlias(p0, p1->pSelect->pSrc) |
| ){ |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** Return TRUE (non-zero) if the i-th entry in the pTabList SrcList can |
| ** be implemented as a co-routine. The i-th entry is guaranteed to be |
| ** a subquery. |
| ** |
| ** The subquery is implemented as a co-routine if all of the following are |
| ** true: |
| ** |
| ** (1) The subquery will likely be implemented in the outer loop of |
| ** the query. This will be the case if any one of the following |
| ** conditions hold: |
| ** (a) The subquery is the only term in the FROM clause |
| ** (b) The subquery is the left-most term and a CROSS JOIN or similar |
| ** requires it to be the outer loop |
| ** (c) All of the following are true: |
| ** (i) The subquery is the left-most subquery in the FROM clause |
| ** (ii) There is nothing that would prevent the subquery from |
| ** being used as the outer loop if the sqlite3WhereBegin() |
| ** routine nominates it to that position. |
| ** (iii) The query is not a UPDATE ... FROM |
| ** (2) The subquery is not a CTE that should be materialized because of |
| ** the AS MATERIALIZED keywords |
| ** (3) The subquery is not part of a left operand for a RIGHT JOIN |
| ** (4) The SQLITE_Coroutine optimization disable flag is not set |
| ** (5) The subquery is not self-joined |
| */ |
| static int fromClauseTermCanBeCoroutine( |
| Parse *pParse, /* Parsing context */ |
| SrcList *pTabList, /* FROM clause */ |
| int i, /* Which term of the FROM clause holds the subquery */ |
| int selFlags /* Flags on the SELECT statement */ |
| ){ |
| SrcItem *pItem = &pTabList->a[i]; |
| if( pItem->fg.isCte && pItem->u2.pCteUse->eM10d==M10d_Yes ) return 0;/* (2) */ |
| if( pTabList->a[0].fg.jointype & JT_LTORJ ) return 0; /* (3) */ |
| if( OptimizationDisabled(pParse->db, SQLITE_Coroutines) ) return 0; /* (4) */ |
| if( isSelfJoinView(pTabList, pItem, i+1, pTabList->nSrc)!=0 ){ |
| return 0; /* (5) */ |
| } |
| if( i==0 ){ |
| if( pTabList->nSrc==1 ) return 1; /* (1a) */ |
| if( pTabList->a[1].fg.jointype & JT_CROSS ) return 1; /* (1b) */ |
| if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */ |
| return 1; |
| } |
| if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */ |
| while( 1 /*exit-by-break*/ ){ |
| if( pItem->fg.jointype & (JT_OUTER|JT_CROSS) ) return 0; /* (1c-ii) */ |
| if( i==0 ) break; |
| i--; |
| pItem--; |
| if( pItem->pSelect!=0 ) return 0; /* (1c-i) */ |
| } |
| return 1; |
| } |
| |
| /* |
| ** Generate code for the SELECT statement given in the p argument. |
| ** |
| ** The results are returned according to the SelectDest structure. |
| ** See comments in sqliteInt.h for further information. |
| ** |
| ** This routine returns the number of errors. If any errors are |
| ** encountered, then an appropriate error message is left in |
| ** pParse->zErrMsg. |
| ** |
| ** This routine does NOT free the Select structure passed in. The |
| ** calling function needs to do that. |
| */ |
| int sqlite3Select( |
| Parse *pParse, /* The parser context */ |
| Select *p, /* The SELECT statement being coded. */ |
| SelectDest *pDest /* What to do with the query results */ |
| ){ |
| int i, j; /* Loop counters */ |
| WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ |
| Vdbe *v; /* The virtual machine under construction */ |
| int isAgg; /* True for select lists like "count(*)" */ |
| ExprList *pEList = 0; /* List of columns to extract. */ |
| SrcList *pTabList; /* List of tables to select from */ |
| Expr *pWhere; /* The WHERE clause. May be NULL */ |
| ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ |
| Expr *pHaving; /* The HAVING clause. May be NULL */ |
| AggInfo *pAggInfo = 0; /* Aggregate information */ |
| int rc = 1; /* Value to return from this function */ |
| DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ |
| SortCtx sSort; /* Info on how to code the ORDER BY clause */ |
| int iEnd; /* Address of the end of the query */ |
| sqlite3 *db; /* The database connection */ |
| ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ |
| u8 minMaxFlag; /* Flag for min/max queries */ |
| |
| db = pParse->db; |
| assert( pParse==db->pParse ); |
| v = sqlite3GetVdbe(pParse); |
| if( p==0 || pParse->nErr ){ |
| return 1; |
| } |
| assert( db->mallocFailed==0 ); |
| if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; |
| #if TREETRACE_ENABLED |
| TREETRACE(0x1,pParse,p, ("begin processing:\n", pParse->addrExplain)); |
| if( sqlite3TreeTrace & 0x10000 ){ |
| if( (sqlite3TreeTrace & 0x10001)==0x10000 ){ |
| sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d", |
| __FILE__, __LINE__); |
| } |
| sqlite3ShowSelect(p); |
| } |
| #endif |
| |
| assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); |
| assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); |
| assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); |
| assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); |
| if( IgnorableDistinct(pDest) ){ |
| assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || |
| pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || |
| pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); |
| /* All of these destinations are also able to ignore the ORDER BY clause */ |
| if( p->pOrderBy ){ |
| #if TREETRACE_ENABLED |
| TREETRACE(0x800,pParse,p, ("dropping superfluous ORDER BY:\n")); |
| if( sqlite3TreeTrace & 0x800 ){ |
| sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); |
| } |
| #endif |
| sqlite3ParserAddCleanup(pParse, |
| (void(*)(sqlite3*,void*))sqlite3ExprListDelete, |
| p->pOrderBy); |
| testcase( pParse->earlyCleanup ); |
| p->pOrderBy = 0; |
| } |
| p->selFlags &= ~SF_Distinct; |
| p->selFlags |= SF_NoopOrderBy; |
| } |
| sqlite3SelectPrep(pParse, p, 0); |
| if( pParse->nErr ){ |
| goto select_end; |
| } |
| assert( db->mallocFailed==0 ); |
| assert( p->pEList!=0 ); |
| #if TREETRACE_ENABLED |
| if( sqlite3TreeTrace & 0x10 ){ |
| TREETRACE(0x10,pParse,p, ("after name resolution:\n")); |
| sqlite3TreeViewSelect(0, p, 0); |
| } |
| #endif |
| |
| /* If the SF_UFSrcCheck flag is set, then this function is being called |
| ** as part of populating the temp table for an UPDATE...FROM statement. |
| ** In this case, it is an error if the target object (pSrc->a[0]) name |
| ** or alias is duplicated within FROM clause (pSrc->a[1..n]). |
| ** |
| ** Postgres disallows this case too. The reason is that some other |
| ** systems handle this case differently, and not all the same way, |
| ** which is just confusing. To avoid this, we follow PG's lead and |
| ** disallow it altogether. */ |
| if( p->selFlags & SF_UFSrcCheck ){ |
| SrcItem *p0 = &p->pSrc->a[0]; |
| if( sameSrcAlias(p0, p->pSrc) ){ |
| sqlite3ErrorMsg(pParse, |
| "target object/alias may not appear in FROM clause: %s", |
| p0->zAlias ? p0->zAlias : p0->pTab->zName |
| ); |
| goto select_end; |
| } |
| |
| /* Clear the SF_UFSrcCheck flag. The check has already been performed, |
| ** and leaving this flag set can cause errors if a compound sub-query |
| ** in p->pSrc is flattened into this query and this function called |
| ** again as part of compound SELECT processing. */ |
| p->selFlags &= ~SF_UFSrcCheck; |
| } |
| |
| if( pDest->eDest==SRT_Output ){ |
| sqlite3GenerateColumnNames(pParse, p); |
| } |
| |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( sqlite3WindowRewrite(pParse, p) ){ |
| assert( pParse->nErr ); |
| goto select_end; |
| } |
| #if TREETRACE_ENABLED |
| if( p->pWin && (sqlite3TreeTrace & 0x40)!=0 ){ |
| TREETRACE(0x40,pParse,p, ("after window rewrite:\n")); |
| sqlite3TreeViewSelect(0, p, 0); |
| } |
| #endif |
| #endif /* SQLITE_OMIT_WINDOWFUNC */ |
| pTabList = p->pSrc; |
| isAgg = (p->selFlags & SF_Aggregate)!=0; |
| memset(&sSort, 0, sizeof(sSort)); |
| sSort.pOrderBy = p->pOrderBy; |
| |
| /* Try to do various optimizations (flattening subqueries, and strength |
| ** reduction of join operators) in the FROM clause up into the main query |
| */ |
| #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
| for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ |
| SrcItem *pItem = &pTabList->a[i]; |
| Select *pSub = pItem->pSelect; |
| Table *pTab = pItem->pTab; |
| |
| /* The expander should have already created transient Table objects |
| ** even for FROM clause elements such as subqueries that do not correspond |
| ** to a real table */ |
| assert( pTab!=0 ); |
| |
| /* Convert LEFT JOIN into JOIN if there are terms of the right table |
| ** of the LEFT JOIN used in the WHERE clause. |
| */ |
| if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT |
| && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) |
| && OptimizationEnabled(db, SQLITE_SimplifyJoin) |
| ){ |
| TREETRACE(0x1000,pParse,p, |
| ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); |
| pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); |
| assert( pItem->iCursor>=0 ); |
| unsetJoinExpr(p->pWhere, pItem->iCursor, |
| pTabList->a[0].fg.jointype & JT_LTORJ); |
| } |
| |
| /* No futher action if this term of the FROM clause is no a subquery */ |
| if( pSub==0 ) continue; |
| |
| /* Catch mismatch in the declared columns of a view and the number of |
| ** columns in the SELECT on the RHS */ |
| if( pTab->nCol!=pSub->pEList->nExpr ){ |
| sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", |
| pTab->nCol, pTab->zName, pSub->pEList->nExpr); |
| goto select_end; |
| } |
| |
| /* Do not try to flatten an aggregate subquery. |
| ** |
| ** Flattening an aggregate subquery is only possible if the outer query |
| ** is not a join. But if the outer query is not a join, then the subquery |
| ** will be implemented as a co-routine and there is no advantage to |
| ** flattening in that case. |
| */ |
| if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; |
| assert( pSub->pGroupBy==0 ); |
| |
| /* If a FROM-clause subquery has an ORDER BY clause that is not |
| ** really doing anything, then delete it now so that it does not |
| ** interfere with query flattening. See the discussion at |
| ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a |
| ** |
| ** Beware of these cases where the ORDER BY clause may not be safely |
| ** omitted: |
| ** |
| ** (1) There is also a LIMIT clause |
| ** (2) The subquery was added to help with window-function |
| ** processing |
| ** (3) The subquery is in the FROM clause of an UPDATE |
| ** (4) The outer query uses an aggregate function other than |
| ** the built-in count(), min(), or max(). |
| ** (5) The ORDER BY isn't going to accomplish anything because |
| ** one of: |
| ** (a) The outer query has a different ORDER BY clause |
| ** (b) The subquery is part of a join |
| ** See forum post 062d576715d277c8 |
| */ |
| if( pSub->pOrderBy!=0 |
| && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ |
| && pSub->pLimit==0 /* Condition (1) */ |
| && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ |
| && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ |
| && OptimizationEnabled(db, SQLITE_OmitOrderBy) |
| ){ |
| TREETRACE(0x800,pParse,p, |
| ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); |
| sqlite3ParserAddCleanup(pParse, |
| (void(*)(sqlite3*,void*))sqlite3ExprListDelete, |
| pSub->pOrderBy); |
| pSub->pOrderBy = 0; |
| } |
| |
| /* If the outer query contains a "complex" result set (that is, |
| ** if the result set of the outer query uses functions or subqueries) |
| ** and if the subquery contains an ORDER BY clause and if |
| ** it will be implemented as a co-routine, then do not flatten. This |
| ** restriction allows SQL constructs like this: |
| ** |
| ** SELECT expensive_function(x) |
| ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); |
| ** |
| ** The expensive_function() is only computed on the 10 rows that |
| ** are output, rather than every row of the table. |
| ** |
| ** The requirement that the outer query have a complex result set |
| ** means that flattening does occur on simpler SQL constraints without |
| ** the expensive_function() like: |
| ** |
| ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); |
| */ |
| if( pSub->pOrderBy!=0 |
| && i==0 |
| && (p->selFlags & SF_ComplexResult)!=0 |
| && (pTabList->nSrc==1 |
| || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) |
| ){ |
| continue; |
| } |
| |
| if( flattenSubquery(pParse, p, i, isAgg) ){ |
| if( pParse->nErr ) goto select_end; |
| /* This subquery can be absorbed into its parent. */ |
| i = -1; |
| } |
| pTabList = p->pSrc; |
| if( db->mallocFailed ) goto select_end; |
| if( !IgnorableOrderby(pDest) ){ |
| sSort.pOrderBy = p->pOrderBy; |
| } |
| } |
| #endif |
| |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT |
| /* Handle compound SELECT statements using the separate multiSelect() |
| ** procedure. |
| */ |
| if( p->pPrior ){ |
| rc = multiSelect(pParse, p, pDest); |
| #if TREETRACE_ENABLED |
| TREETRACE(0x400,pParse,p,("end compound-select processing\n")); |
| if( (sqlite3TreeTrace & 0x400)!=0 && ExplainQueryPlanParent(pParse)==0 ){ |
| sqlite3TreeViewSelect(0, p, 0); |
| } |
| #endif |
| if( p->pNext==0 ) ExplainQueryPlanPop(pParse); |
| return rc; |
| } |
| #endif |
| |
| /* Do the WHERE-clause constant propagation optimization if this is |
| ** a join. No need to speed time on this operation for non-join queries |
| ** as the equivalent optimization will be handled by query planner in |
| ** sqlite3WhereBegin(). |
| */ |
| if( p->pWhere!=0 |
| && p->pWhere->op==TK_AND |
| && OptimizationEnabled(db, SQLITE_PropagateConst) |
| && propagateConstants(pParse, p) |
| ){ |
| #if TREETRACE_ENABLED |
| if( sqlite3TreeTrace & 0x2000 ){ |
| TREETRACE(0x2000,pParse,p,("After constant propagation:\n")); |
| sqlite3TreeViewSelect(0, p, 0); |
| } |
| #endif |
| }else{ |
| TREETRACE(0x2000,pParse,p,("Constant propagation not helpful\n")); |
| } |
| |
| #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION |
| if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) |
| && countOfViewOptimization(pParse, p) |
| ){ |
| if( db->mallocFailed ) goto select_end; |
| pEList = p->pEList; |
| pTabList = p->pSrc; |
| } |
| #endif |
| |
| /* For each term in the FROM clause, do two things: |
| ** (1) Authorized unreferenced tables |
| ** (2) Generate code for all sub-queries |
| */ |
| for(i=0; i<pTabList->nSrc; i++){ |
| SrcItem *pItem = &pTabList->a[i]; |
| SrcItem *pPrior; |
| SelectDest dest; |
| Select *pSub; |
| #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
| const char *zSavedAuthContext; |
| #endif |
| |
| /* Issue SQLITE_READ authorizations with a fake column name for any |
| ** tables that are referenced but from which no values are extracted. |
| ** Examples of where these kinds of null SQLITE_READ authorizations |
| ** would occur: |
| ** |
| ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" |
| ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" |
| ** |
| ** The fake column name is an empty string. It is possible for a table to |
| ** have a column named by the empty string, in which case there is no way to |
| ** distinguish between an unreferenced table and an actual reference to the |
| ** "" column. The original design was for the fake column name to be a NULL, |
| ** which would be unambiguous. But legacy authorization callbacks might |
| ** assume the column name is non-NULL and segfault. The use of an empty |
| ** string for the fake column name seems safer. |
| */ |
| if( pItem->colUsed==0 && pItem->zName!=0 ){ |
| sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); |
| } |
| |
| #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
| /* Generate code for all sub-queries in the FROM clause |
| */ |
| pSub = pItem->pSelect; |
| if( pSub==0 ) continue; |
| |
| /* The code for a subquery should only be generated once. */ |
| assert( pItem->addrFillSub==0 ); |
| |
| /* Increment Parse.nHeight by the height of the largest expression |
| ** tree referred to by this, the parent select. The child select |
| ** may contain expression trees of at most |
| ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit |
| ** more conservative than necessary, but much easier than enforcing |
| ** an exact limit. |
| */ |
| pParse->nHeight += sqlite3SelectExprHeight(p); |
| |
| /* Make copies of constant WHERE-clause terms in the outer query down |
| ** inside the subquery. This can help the subquery to run more efficiently. |
| */ |
| if( OptimizationEnabled(db, SQLITE_PushDown) |
| && (pItem->fg.isCte==0 |
| || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) |
| && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem) |
| ){ |
| #if TREETRACE_ENABLED |
| if( sqlite3TreeTrace & 0x4000 ){ |
| TREETRACE(0x4000,pParse,p, |
| ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); |
| sqlite3TreeViewSelect(0, p, 0); |
| } |
| #endif |
| assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); |
| }else{ |
| TREETRACE(0x4000,pParse,p,("Push-down not possible\n")); |
| } |
| |
| zSavedAuthContext = pParse->zAuthContext; |
| pParse->zAuthContext = pItem->zName; |
| |
| /* Generate code to implement the subquery |
| */ |
| if( fromClauseTermCanBeCoroutine(pParse, pTabList, i, p->selFlags) ){ |
| /* Implement a co-routine that will return a single row of the result |
| ** set on each invocation. |
| */ |
| int addrTop = sqlite3VdbeCurrentAddr(v)+1; |
| |
| pItem->regReturn = ++pParse->nMem; |
| sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); |
| VdbeComment((v, "%!S", pItem)); |
| pItem->addrFillSub = addrTop; |
| sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); |
| ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); |
| sqlite3Select(pParse, pSub, &dest); |
| pItem->pTab->nRowLogEst = pSub->nSelectRow; |
| pItem->fg.viaCoroutine = 1; |
| pItem->regResult = dest.iSdst; |
| sqlite3VdbeEndCoroutine(v, pItem->regReturn); |
| sqlite3VdbeJumpHere(v, addrTop-1); |
| sqlite3ClearTempRegCache(pParse); |
| }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ |
| /* This is a CTE for which materialization code has already been |
| ** generated. Invoke the subroutine to compute the materialization, |
| ** the make the pItem->iCursor be a copy of the ephemerial table that |
| ** holds the result of the materialization. */ |
| CteUse *pCteUse = pItem->u2.pCteUse; |
| sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); |
| if( pItem->iCursor!=pCteUse->iCur ){ |
| sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); |
| VdbeComment((v, "%!S", pItem)); |
| } |
| pSub->nSelectRow = pCteUse->nRowEst; |
| }else if( (pPrior = isSelfJoinView(pTabList, pItem, 0, i))!=0 ){ |
| /* This view has already been materialized by a prior entry in |
| ** this same FROM clause. Reuse it. */ |
| if( pPrior->addrFillSub ){ |
| sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); |
| } |
| sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); |
| pSub->nSelectRow = pPrior->pSelect->nSelectRow; |
| }else{ |
| /* Materialize the view. If the view is not correlated, generate a |
| ** subroutine to do the materialization so that subsequent uses of |
| ** the same view can reuse the materialization. */ |
| int topAddr; |
| int onceAddr = 0; |
| #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| int addrExplain; |
| #endif |
| |
| pItem->regReturn = ++pParse->nMem; |
| topAddr = sqlite3VdbeAddOp0(v, OP_Goto); |
| pItem->addrFillSub = topAddr+1; |
| pItem->fg.isMaterialized = 1; |
| if( pItem->fg.isCorrelated==0 ){ |
| /* If the subquery is not correlated and if we are not inside of |
| ** a trigger, then we only need to compute the value of the subquery |
| ** once. */ |
| onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
| VdbeComment((v, "materialize %!S", pItem)); |
| }else{ |
| VdbeNoopComment((v, "materialize %!S", pItem)); |
| } |
| sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); |
| |
| ExplainQueryPlan2(addrExplain, (pParse, 1, "MATERIALIZE %!S", pItem)); |
| sqlite3Select(pParse, pSub, &dest); |
| pItem->pTab->nRowLogEst = pSub->nSelectRow; |
| if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); |
| sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1); |
| VdbeComment((v, "end %!S", pItem)); |
| sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1); |
| sqlite3VdbeJumpHere(v, topAddr); |
| sqlite3ClearTempRegCache(pParse); |
| if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ |
| CteUse *pCteUse = pItem->u2.pCteUse; |
| pCteUse->addrM9e = pItem->addrFillSub; |
| pCteUse->regRtn = pItem->regReturn; |
| pCteUse->iCur = pItem->iCursor; |
| pCteUse->nRowEst = pSub->nSelectRow; |
| } |
| } |
| if( db->mallocFailed ) goto select_end; |
| pParse->nHeight -= sqlite3SelectExprHeight(p); |
| pParse->zAuthContext = zSavedAuthContext; |
| #endif |
| } |
| |
| /* Various elements of the SELECT copied into local variables for |
| ** convenience */ |
| pEList = p->pEList; |
| pWhere = p->pWhere; |
| pGroupBy = p->pGroupBy; |
| pHaving = p->pHaving; |
| sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; |
| |
| #if TREETRACE_ENABLED |
| if( sqlite3TreeTrace & 0x8000 ){ |
| TREETRACE(0x8000,pParse,p,("After all FROM-clause analysis:\n")); |
| sqlite3TreeViewSelect(0, p, 0); |
| } |
| #endif |
| |
| /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and |
| ** if the select-list is the same as the ORDER BY list, then this query |
| ** can be rewritten as a GROUP BY. In other words, this: |
| ** |
| ** SELECT DISTINCT xyz FROM ... ORDER BY xyz |
| ** |
| ** is transformed to: |
| ** |
| ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz |
| ** |
| ** The second form is preferred as a single index (or temp-table) may be |
| ** used for both the ORDER BY and DISTINCT processing. As originally |
| ** written the query must use a temp-table for at least one of the ORDER |
| ** BY and DISTINCT, and an index or separate temp-table for the other. |
| */ |
| if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct |
| && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| && p->pWin==0 |
| #endif |
| ){ |
| p->selFlags &= ~SF_Distinct; |
| pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); |
| p->selFlags |= SF_Aggregate; |
| /* Notice that even thought SF_Distinct has been cleared from p->selFlags, |
| ** the sDistinct.isTnct is still set. Hence, isTnct represents the |
| ** original setting of the SF_Distinct flag, not the current setting */ |
| assert( sDistinct.isTnct ); |
| sDistinct.isTnct = 2; |
| |
| #if TREETRACE_ENABLED |
| if( sqlite3TreeTrace & 0x20000 ){ |
| TREETRACE(0x20000,pParse,p,("Transform DISTINCT into GROUP BY:\n")); |
| sqlite3TreeViewSelect(0, p, 0); |
| } |
| #endif |
| } |
| |
| /* If there is an ORDER BY clause, then create an ephemeral index to |
| ** do the sorting. But this sorting ephemeral index might end up |
| ** being unused if the data can be extracted in pre-sorted order. |
| ** If that is the case, then the OP_OpenEphemeral instruction will be |
| ** changed to an OP_Noop once we figure out that the sorting index is |
| ** not needed. The sSort.addrSortIndex variable is used to facilitate |
| ** that change. |
| */ |
| if( sSort.pOrderBy ){ |
| KeyInfo *pKeyInfo; |
| pKeyInfo = sqlite3KeyInfoFromExprList( |
| pParse, sSort.pOrderBy, 0, pEList->nExpr); |
| sSort.iECursor = pParse->nTab++; |
| sSort.addrSortIndex = |
| sqlite3VdbeAddOp4(v, OP_OpenEphemeral, |
| sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, |
| (char*)pKeyInfo, P4_KEYINFO |
| ); |
| }else{ |
| sSort.addrSortIndex = -1; |
| } |
| |
| /* If the output is destined for a temporary table, open that table. |
| */ |
| if( pDest->eDest==SRT_EphemTab ){ |
| sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); |
| if( p->selFlags & SF_NestedFrom ){ |
| /* Delete or NULL-out result columns that will never be used */ |
| int ii; |
| for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){ |
| sqlite3ExprDelete(db, pEList->a[ii].pExpr); |
| sqlite3DbFree(db, pEList->a[ii].zEName); |
| pEList->nExpr--; |
| } |
| for(ii=0; ii<pEList->nExpr; ii++){ |
| if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL; |
| } |
| } |
| } |
| |
| /* Set the limiter. |
| */ |
| iEnd = sqlite3VdbeMakeLabel(pParse); |
| if( (p->selFlags & SF_FixedLimit)==0 ){ |
| p->nSelectRow = 320; /* 4 billion rows */ |
| } |
| if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd); |
| if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ |
| sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); |
| sSort.sortFlags |= SORTFLAG_UseSorter; |
| } |
| |
| /* Open an ephemeral index to use for the distinct set. |
| */ |
| if( p->selFlags & SF_Distinct ){ |
| sDistinct.tabTnct = pParse->nTab++; |
| sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, |
| sDistinct.tabTnct, 0, 0, |
| (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), |
| P4_KEYINFO); |
| sqlite3VdbeChangeP5(v, BTREE_UNORDERED); |
| sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; |
| }else{ |
| sDistinct.eTnctType = WHERE_DISTINCT_NOOP; |
| } |
| |
| if( !isAgg && pGroupBy==0 ){ |
| /* No aggregate functions and no GROUP BY clause */ |
| u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) |
| | (p->selFlags & SF_FixedLimit); |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| Window *pWin = p->pWin; /* Main window object (or NULL) */ |
| if( pWin ){ |
| sqlite3WindowCodeInit(pParse, p); |
| } |
| #endif |
| assert( WHERE_USE_LIMIT==SF_FixedLimit ); |
| |
| |
| /* Begin the database scan. */ |
| TREETRACE(0x2,pParse,p,("WhereBegin\n")); |
| pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, |
| p->pEList, p, wctrlFlags, p->nSelectRow); |
| if( pWInfo==0 ) goto select_end; |
| if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ |
| p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); |
| } |
| if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ |
| sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); |
| } |
| if( sSort.pOrderBy ){ |
| sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); |
| sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); |
| if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ |
| sSort.pOrderBy = 0; |
| } |
| } |
| TREETRACE(0x2,pParse,p,("WhereBegin returns\n")); |
| |
| /* If sorting index that was created by a prior OP_OpenEphemeral |
| ** instruction ended up not being needed, then change the OP_OpenEphemeral |
| ** into an OP_Noop. |
| */ |
| if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ |
| sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); |
| } |
| |
| assert( p->pEList==pEList ); |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( pWin ){ |
| int addrGosub = sqlite3VdbeMakeLabel(pParse); |
| int iCont = sqlite3VdbeMakeLabel(pParse); |
| int iBreak = sqlite3VdbeMakeLabel(pParse); |
| int regGosub = ++pParse->nMem; |
| |
| sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); |
| |
| sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); |
| sqlite3VdbeResolveLabel(v, addrGosub); |
| VdbeNoopComment((v, "inner-loop subroutine")); |
| sSort.labelOBLopt = 0; |
| selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); |
| sqlite3VdbeResolveLabel(v, iCont); |
| sqlite3VdbeAddOp1(v, OP_Return, regGosub); |
| VdbeComment((v, "end inner-loop subroutine")); |
| sqlite3VdbeResolveLabel(v, iBreak); |
| }else |
| #endif /* SQLITE_OMIT_WINDOWFUNC */ |
| { |
| /* Use the standard inner loop. */ |
| selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, |
| sqlite3WhereContinueLabel(pWInfo), |
| sqlite3WhereBreakLabel(pWInfo)); |
| |
| /* End the database scan loop. |
| */ |
| TREETRACE(0x2,pParse,p,("WhereEnd\n")); |
| sqlite3WhereEnd(pWInfo); |
| } |
| }else{ |
| /* This case when there exist aggregate functions or a GROUP BY clause |
| ** or both */ |
| NameContext sNC; /* Name context for processing aggregate information */ |
| int iAMem; /* First Mem address for storing current GROUP BY */ |
| int iBMem; /* First Mem address for previous GROUP BY */ |
| int iUseFlag; /* Mem address holding flag indicating that at least |
| ** one row of the input to the aggregator has been |
| ** processed */ |
| int iAbortFlag; /* Mem address which causes query abort if positive */ |
| int groupBySort; /* Rows come from source in GROUP BY order */ |
| int addrEnd; /* End of processing for this SELECT */ |
| int sortPTab = 0; /* Pseudotable used to decode sorting results */ |
| int sortOut = 0; /* Output register from the sorter */ |
| int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ |
| |
| /* Remove any and all aliases between the result set and the |
| ** GROUP BY clause. |
| */ |
| if( pGroupBy ){ |
| int k; /* Loop counter */ |
| struct ExprList_item *pItem; /* For looping over expression in a list */ |
| |
| for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ |
| pItem->u.x.iAlias = 0; |
| } |
| for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ |
| pItem->u.x.iAlias = 0; |
| } |
| assert( 66==sqlite3LogEst(100) ); |
| if( p->nSelectRow>66 ) p->nSelectRow = 66; |
| |
| /* If there is both a GROUP BY and an ORDER BY clause and they are |
| ** identical, then it may be possible to disable the ORDER BY clause |
| ** on the grounds that the GROUP BY will cause elements to come out |
| ** in the correct order. It also may not - the GROUP BY might use a |
| ** database index that causes rows to be grouped together as required |
| ** but not actually sorted. Either way, record the fact that the |
| ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp |
| ** variable. */ |
| if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ |
| int ii; |
| /* The GROUP BY processing doesn't care whether rows are delivered in |
| ** ASC or DESC order - only that each group is returned contiguously. |
| ** So set the ASC/DESC flags in the GROUP BY to match those in the |
| ** ORDER BY to maximize the chances of rows being delivered in an |
| ** order that makes the ORDER BY redundant. */ |
| for(ii=0; ii<pGroupBy->nExpr; ii++){ |
| u8 sortFlags; |
| sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC; |
| pGroupBy->a[ii].fg.sortFlags = sortFlags; |
| } |
| if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ |
| orderByGrp = 1; |
| } |
| } |
| }else{ |
| assert( 0==sqlite3LogEst(1) ); |
| p->nSelectRow = 0; |
| } |
| |
| /* Create a label to jump to when we want to abort the query */ |
| addrEnd = sqlite3VdbeMakeLabel(pParse); |
| |
| /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in |
| ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the |
| ** SELECT statement. |
| */ |
| pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); |
| if( pAggInfo ){ |
| sqlite3ParserAddCleanup(pParse, |
| (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); |
| testcase( pParse->earlyCleanup ); |
| } |
| if( db->mallocFailed ){ |
| goto select_end; |
| } |
| pAggInfo->selId = p->selId; |
| #ifdef SQLITE_DEBUG |
| pAggInfo->pSelect = p; |
| #endif |
| memset(&sNC, 0, sizeof(sNC)); |
| sNC.pParse = pParse; |
| sNC.pSrcList = pTabList; |
| sNC.uNC.pAggInfo = pAggInfo; |
| VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) |
| pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; |
| pAggInfo->pGroupBy = pGroupBy; |
| sqlite3ExprAnalyzeAggList(&sNC, pEList); |
| sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); |
| if( pHaving ){ |
| if( pGroupBy ){ |
| assert( pWhere==p->pWhere ); |
| assert( pHaving==p->pHaving ); |
| assert( pGroupBy==p->pGroupBy ); |
| havingToWhere(pParse, p); |
| pWhere = p->pWhere; |
| } |
| sqlite3ExprAnalyzeAggregates(&sNC, pHaving); |
| } |
| pAggInfo->nAccumulator = pAggInfo->nColumn; |
| if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ |
| minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); |
| }else{ |
| minMaxFlag = WHERE_ORDERBY_NORMAL; |
| } |
| analyzeAggFuncArgs(pAggInfo, &sNC); |
| if( db->mallocFailed ) goto select_end; |
| #if TREETRACE_ENABLED |
| if( sqlite3TreeTrace & 0x20 ){ |
| TREETRACE(0x20,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); |
| sqlite3TreeViewSelect(0, p, 0); |
| if( minMaxFlag ){ |
| sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); |
| sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); |
| } |
| printAggInfo(pAggInfo); |
| } |
| #endif |
| |
| |
| /* Processing for aggregates with GROUP BY is very different and |
| ** much more complex than aggregates without a GROUP BY. |
| */ |
| if( pGroupBy ){ |
| KeyInfo *pKeyInfo; /* Keying information for the group by clause */ |
| int addr1; /* A-vs-B comparision jump */ |
| int addrOutputRow; /* Start of subroutine that outputs a result row */ |
| int regOutputRow; /* Return address register for output subroutine */ |
| int addrSetAbort; /* Set the abort flag and return */ |
| int addrTopOfLoop; /* Top of the input loop */ |
| int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ |
| int addrReset; /* Subroutine for resetting the accumulator */ |
| int regReset; /* Return address register for reset subroutine */ |
| ExprList *pDistinct = 0; |
| u16 distFlag = 0; |
| int eDist = WHERE_DISTINCT_NOOP; |
| |
| if( pAggInfo->nFunc==1 |
| && pAggInfo->aFunc[0].iDistinct>=0 |
| && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) |
| && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) |
| && pAggInfo->aFunc[0].pFExpr->x.pList!=0 |
| ){ |
| Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; |
| pExpr = sqlite3ExprDup(db, pExpr, 0); |
| pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); |
| pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); |
| distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; |
| } |
| |
| /* If there is a GROUP BY clause we might need a sorting index to |
| ** implement it. Allocate that sorting index now. If it turns out |
| ** that we do not need it after all, the OP_SorterOpen instruction |
| ** will be converted into a Noop. |
| */ |
| pAggInfo->sortingIdx = pParse->nTab++; |
| pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, |
| 0, pAggInfo->nColumn); |
| addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, |
| pAggInfo->sortingIdx, pAggInfo->nSortingColumn, |
| 0, (char*)pKeyInfo, P4_KEYINFO); |
| |
| /* Initialize memory locations used by GROUP BY aggregate processing |
| */ |
| iUseFlag = ++pParse->nMem; |
| iAbortFlag = ++pParse->nMem; |
| regOutputRow = ++pParse->nMem; |
| addrOutputRow = sqlite3VdbeMakeLabel(pParse); |
| regReset = ++pParse->nMem; |
| addrReset = sqlite3VdbeMakeLabel(pParse); |
| iAMem = pParse->nMem + 1; |
| pParse->nMem += pGroupBy->nExpr; |
| iBMem = pParse->nMem + 1; |
| pParse->nMem += pGroupBy->nExpr; |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); |
| VdbeComment((v, "clear abort flag")); |
| sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); |
| |
| /* Begin a loop that will extract all source rows in GROUP BY order. |
| ** This might involve two separate loops with an OP_Sort in between, or |
| ** it might be a single loop that uses an index to extract information |
| ** in the right order to begin with. |
| */ |
| sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); |
| TREETRACE(0x2,pParse,p,("WhereBegin\n")); |
| pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, |
| p, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY) |
| | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 |
| ); |
| if( pWInfo==0 ){ |
| sqlite3ExprListDelete(db, pDistinct); |
| goto select_end; |
| } |
| if( pParse->pIdxEpr ){ |
| optimizeAggregateUseOfIndexedExpr(pParse, p, pAggInfo, &sNC); |
| } |
| assignAggregateRegisters(pParse, pAggInfo); |
| eDist = sqlite3WhereIsDistinct(pWInfo); |
| TREETRACE(0x2,pParse,p,("WhereBegin returns\n")); |
| if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ |
| /* The optimizer is able to deliver rows in group by order so |
| ** we do not have to sort. The OP_OpenEphemeral table will be |
| ** cancelled later because we still need to use the pKeyInfo |
| */ |
| groupBySort = 0; |
| }else{ |
| /* Rows are coming out in undetermined order. We have to push |
| ** each row into a sorting index, terminate the first loop, |
| ** then loop over the sorting index in order to get the output |
| ** in sorted order |
| */ |
| int regBase; |
| int regRecord; |
| int nCol; |
| int nGroupBy; |
| |
| explainTempTable(pParse, |
| (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? |
| "DISTINCT" : "GROUP BY"); |
| |
| groupBySort = 1; |
| nGroupBy = pGroupBy->nExpr; |
| nCol = nGroupBy; |
| j = nGroupBy; |
| for(i=0; i<pAggInfo->nColumn; i++){ |
| if( pAggInfo->aCol[i].iSorterColumn>=j ){ |
| nCol++; |
| j++; |
| } |
| } |
| regBase = sqlite3GetTempRange(pParse, nCol); |
| sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); |
| j = nGroupBy; |
| pAggInfo->directMode = 1; |
| for(i=0; i<pAggInfo->nColumn; i++){ |
| struct AggInfo_col *pCol = &pAggInfo->aCol[i]; |
| if( pCol->iSorterColumn>=j ){ |
| sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase); |
| j++; |
| } |
| } |
| pAggInfo->directMode = 0; |
| regRecord = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); |
| sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); |
| sqlite3ReleaseTempReg(pParse, regRecord); |
| sqlite3ReleaseTempRange(pParse, regBase, nCol); |
| TREETRACE(0x2,pParse,p,("WhereEnd\n")); |
| sqlite3WhereEnd(pWInfo); |
| pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; |
| sortOut = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); |
| sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); |
| VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); |
| pAggInfo->useSortingIdx = 1; |
| } |
| |
| /* If there entries in pAgggInfo->aFunc[] that contain subexpressions |
| ** that are indexed (and that were previously identified and tagged |
| ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions |
| ** must now be converted into a TK_AGG_COLUMN node so that the value |
| ** is correctly pulled from the index rather than being recomputed. */ |
| if( pParse->pIdxEpr ){ |
| aggregateConvertIndexedExprRefToColumn(pAggInfo); |
| #if TREETRACE_ENABLED |
| if( sqlite3TreeTrace & 0x20 ){ |
| TREETRACE(0x20, pParse, p, |
| ("AggInfo function expressions converted to reference index\n")); |
| sqlite3TreeViewSelect(0, p, 0); |
| printAggInfo(pAggInfo); |
| } |
| #endif |
| } |
| |
| /* If the index or temporary table used by the GROUP BY sort |
| ** will naturally deliver rows in the order required by the ORDER BY |
| ** clause, cancel the ephemeral table open coded earlier. |
| ** |
| ** This is an optimization - the correct answer should result regardless. |
| ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to |
| ** disable this optimization for testing purposes. */ |
| if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) |
| && (groupBySort || sqlite3WhereIsSorted(pWInfo)) |
| ){ |
| sSort.pOrderBy = 0; |
| sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); |
| } |
| |
| /* Evaluate the current GROUP BY terms and store in b0, b1, b2... |
| ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) |
| ** Then compare the current GROUP BY terms against the GROUP BY terms |
| ** from the previous row currently stored in a0, a1, a2... |
| */ |
| addrTopOfLoop = sqlite3VdbeCurrentAddr(v); |
| if( groupBySort ){ |
| sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, |
| sortOut, sortPTab); |
| } |
| for(j=0; j<pGroupBy->nExpr; j++){ |
| if( groupBySort ){ |
| sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); |
| }else{ |
| pAggInfo->directMode = 1; |
| sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); |
| } |
| } |
| sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, |
| (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); |
| addr1 = sqlite3VdbeCurrentAddr(v); |
| sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); |
| |
| /* Generate code that runs whenever the GROUP BY changes. |
| ** Changes in the GROUP BY are detected by the previous code |
| ** block. If there were no changes, this block is skipped. |
| ** |
| ** This code copies current group by terms in b0,b1,b2,... |
| ** over to a0,a1,a2. It then calls the output subroutine |
| ** and resets the aggregate accumulator registers in preparation |
| ** for the next GROUP BY batch. |
| */ |
| sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); |
| sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); |
| VdbeComment((v, "output one row")); |
| sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); |
| VdbeComment((v, "check abort flag")); |
| sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); |
| VdbeComment((v, "reset accumulator")); |
| |
| /* Update the aggregate accumulators based on the content of |
| ** the current row |
| */ |
| sqlite3VdbeJumpHere(v, addr1); |
| updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); |
| VdbeComment((v, "indicate data in accumulator")); |
| |
| /* End of the loop |
| */ |
| if( groupBySort ){ |
| sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); |
| VdbeCoverage(v); |
| }else{ |
| TREETRACE(0x2,pParse,p,("WhereEnd\n")); |
| sqlite3WhereEnd(pWInfo); |
| sqlite3VdbeChangeToNoop(v, addrSortingIdx); |
| } |
| sqlite3ExprListDelete(db, pDistinct); |
| |
| /* Output the final row of result |
| */ |
| sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); |
| VdbeComment((v, "output final row")); |
| |
| /* Jump over the subroutines |
| */ |
| sqlite3VdbeGoto(v, addrEnd); |
| |
| /* Generate a subroutine that outputs a single row of the result |
| ** set. This subroutine first looks at the iUseFlag. If iUseFlag |
| ** is less than or equal to zero, the subroutine is a no-op. If |
| ** the processing calls for the query to abort, this subroutine |
| ** increments the iAbortFlag memory location before returning in |
| ** order to signal the caller to abort. |
| */ |
| addrSetAbort = sqlite3VdbeCurrentAddr(v); |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); |
| VdbeComment((v, "set abort flag")); |
| sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
| sqlite3VdbeResolveLabel(v, addrOutputRow); |
| addrOutputRow = sqlite3VdbeCurrentAddr(v); |
| sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); |
| VdbeCoverage(v); |
| VdbeComment((v, "Groupby result generator entry point")); |
| sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
| finalizeAggFunctions(pParse, pAggInfo); |
| sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); |
| selectInnerLoop(pParse, p, -1, &sSort, |
| &sDistinct, pDest, |
| addrOutputRow+1, addrSetAbort); |
| sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
| VdbeComment((v, "end groupby result generator")); |
| |
| /* Generate a subroutine that will reset the group-by accumulator |
| */ |
| sqlite3VdbeResolveLabel(v, addrReset); |
| resetAccumulator(pParse, pAggInfo); |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); |
| VdbeComment((v, "indicate accumulator empty")); |
| sqlite3VdbeAddOp1(v, OP_Return, regReset); |
| |
| if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){ |
| struct AggInfo_func *pF = &pAggInfo->aFunc[0]; |
| fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); |
| } |
| } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ |
| else { |
| Table *pTab; |
| if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ |
| /* If isSimpleCount() returns a pointer to a Table structure, then |
| ** the SQL statement is of the form: |
| ** |
| ** SELECT count(*) FROM <tbl> |
| ** |
| ** where the Table structure returned represents table <tbl>. |
| ** |
| ** This statement is so common that it is optimized specially. The |
| ** OP_Count instruction is executed either on the intkey table that |
| ** contains the data for table <tbl> or on one of its indexes. It |
| ** is better to execute the op on an index, as indexes are almost |
| ** always spread across less pages than their corresponding tables. |
| */ |
| const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ |
| Index *pIdx; /* Iterator variable */ |
| KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ |
| Index *pBest = 0; /* Best index found so far */ |
| Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ |
| |
| sqlite3CodeVerifySchema(pParse, iDb); |
| sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
| |
| /* Search for the index that has the lowest scan cost. |
| ** |
| ** (2011-04-15) Do not do a full scan of an unordered index. |
| ** |
| ** (2013-10-03) Do not count the entries in a partial index. |
| ** |
| ** In practice the KeyInfo structure will not be used. It is only |
| ** passed to keep OP_OpenRead happy. |
| */ |
| if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); |
| if( !p->pSrc->a[0].fg.notIndexed ){ |
| for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| if( pIdx->bUnordered==0 |
| && pIdx->szIdxRow<pTab->szTabRow |
| && pIdx->pPartIdxWhere==0 |
| && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) |
| ){ |
| pBest = pIdx; |
| } |
| } |
| } |
| if( pBest ){ |
| iRoot = pBest->tnum; |
| pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); |
| } |
| |
| /* Open a read-only cursor, execute the OP_Count, close the cursor. */ |
| sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); |
| if( pKeyInfo ){ |
| sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); |
| } |
| assignAggregateRegisters(pParse, pAggInfo); |
| sqlite3VdbeAddOp2(v, OP_Count, iCsr, AggInfoFuncReg(pAggInfo,0)); |
| sqlite3VdbeAddOp1(v, OP_Close, iCsr); |
| explainSimpleCount(pParse, pTab, pBest); |
| }else{ |
| int regAcc = 0; /* "populate accumulators" flag */ |
| ExprList *pDistinct = 0; |
| u16 distFlag = 0; |
| int eDist; |
| |
| /* If there are accumulator registers but no min() or max() functions |
| ** without FILTER clauses, allocate register regAcc. Register regAcc |
| ** will contain 0 the first time the inner loop runs, and 1 thereafter. |
| ** The code generated by updateAccumulator() uses this to ensure |
| ** that the accumulator registers are (a) updated only once if |
| ** there are no min() or max functions or (b) always updated for the |
| ** first row visited by the aggregate, so that they are updated at |
| ** least once even if the FILTER clause means the min() or max() |
| ** function visits zero rows. */ |
| if( pAggInfo->nAccumulator ){ |
| for(i=0; i<pAggInfo->nFunc; i++){ |
| if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ |
| continue; |
| } |
| if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ |
| break; |
| } |
| } |
| if( i==pAggInfo->nFunc ){ |
| regAcc = ++pParse->nMem; |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); |
| } |
| }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ |
| assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); |
| pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; |
| distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; |
| } |
| assignAggregateRegisters(pParse, pAggInfo); |
| |
| /* This case runs if the aggregate has no GROUP BY clause. The |
| ** processing is much simpler since there is only a single row |
| ** of output. |
| */ |
| assert( p->pGroupBy==0 ); |
| resetAccumulator(pParse, pAggInfo); |
| |
| /* If this query is a candidate for the min/max optimization, then |
| ** minMaxFlag will have been previously set to either |
| ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will |
| ** be an appropriate ORDER BY expression for the optimization. |
| */ |
| assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); |
| assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); |
| |
| TREETRACE(0x2,pParse,p,("WhereBegin\n")); |
| pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, |
| pDistinct, p, minMaxFlag|distFlag, 0); |
| if( pWInfo==0 ){ |
| goto select_end; |
| } |
| TREETRACE(0x2,pParse,p,("WhereBegin returns\n")); |
| eDist = sqlite3WhereIsDistinct(pWInfo); |
| updateAccumulator(pParse, regAcc, pAggInfo, eDist); |
| if( eDist!=WHERE_DISTINCT_NOOP ){ |
| struct AggInfo_func *pF = pAggInfo->aFunc; |
| if( pF ){ |
| fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); |
| } |
| } |
| |
| if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); |
| if( minMaxFlag ){ |
| sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); |
| } |
| TREETRACE(0x2,pParse,p,("WhereEnd\n")); |
| sqlite3WhereEnd(pWInfo); |
| finalizeAggFunctions(pParse, pAggInfo); |
| } |
| |
| sSort.pOrderBy = 0; |
| sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); |
| selectInnerLoop(pParse, p, -1, 0, 0, |
| pDest, addrEnd, addrEnd); |
| } |
| sqlite3VdbeResolveLabel(v, addrEnd); |
| |
| } /* endif aggregate query */ |
| |
| if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ |
| explainTempTable(pParse, "DISTINCT"); |
| } |
| |
| /* If there is an ORDER BY clause, then we need to sort the results |
| ** and send them to the callback one by one. |
| */ |
| if( sSort.pOrderBy ){ |
| assert( p->pEList==pEList ); |
| generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); |
| } |
| |
| /* Jump here to skip this query |
| */ |
| sqlite3VdbeResolveLabel(v, iEnd); |
| |
| /* The SELECT has been coded. If there is an error in the Parse structure, |
| ** set the return code to 1. Otherwise 0. */ |
| rc = (pParse->nErr>0); |
| |
| /* Control jumps to here if an error is encountered above, or upon |
| ** successful coding of the SELECT. |
| */ |
| select_end: |
| assert( db->mallocFailed==0 || db->mallocFailed==1 ); |
| assert( db->mallocFailed==0 || pParse->nErr!=0 ); |
| sqlite3ExprListDelete(db, pMinMaxOrderBy); |
| #ifdef SQLITE_DEBUG |
| if( pAggInfo && !db->mallocFailed ){ |
| for(i=0; i<pAggInfo->nColumn; i++){ |
| Expr *pExpr = pAggInfo->aCol[i].pCExpr; |
| if( pExpr==0 ) continue; |
| assert( pExpr->pAggInfo==pAggInfo ); |
| assert( pExpr->iAgg==i ); |
| } |
| for(i=0; i<pAggInfo->nFunc; i++){ |
| Expr *pExpr = pAggInfo->aFunc[i].pFExpr; |
| assert( pExpr!=0 ); |
| assert( pExpr->pAggInfo==pAggInfo ); |
| assert( pExpr->iAgg==i ); |
| } |
| } |
| #endif |
| |
| #if TREETRACE_ENABLED |
| TREETRACE(0x1,pParse,p,("end processing\n")); |
| if( (sqlite3TreeTrace & 0x40000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ |
| sqlite3TreeViewSelect(0, p, 0); |
| } |
| #endif |
| ExplainQueryPlanPop(pParse); |
| return rc; |
| } |