| /* |
| ** 2018 May 08 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| */ |
| #include "sqliteInt.h" |
| |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| |
| /* |
| ** SELECT REWRITING |
| ** |
| ** Any SELECT statement that contains one or more window functions in |
| ** either the select list or ORDER BY clause (the only two places window |
| ** functions may be used) is transformed by function sqlite3WindowRewrite() |
| ** in order to support window function processing. For example, with the |
| ** schema: |
| ** |
| ** CREATE TABLE t1(a, b, c, d, e, f, g); |
| ** |
| ** the statement: |
| ** |
| ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e; |
| ** |
| ** is transformed to: |
| ** |
| ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM ( |
| ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d |
| ** ) ORDER BY e; |
| ** |
| ** The flattening optimization is disabled when processing this transformed |
| ** SELECT statement. This allows the implementation of the window function |
| ** (in this case max()) to process rows sorted in order of (c, d), which |
| ** makes things easier for obvious reasons. More generally: |
| ** |
| ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to |
| ** the sub-query. |
| ** |
| ** * ORDER BY, LIMIT and OFFSET remain part of the parent query. |
| ** |
| ** * Terminals from each of the expression trees that make up the |
| ** select-list and ORDER BY expressions in the parent query are |
| ** selected by the sub-query. For the purposes of the transformation, |
| ** terminals are column references and aggregate functions. |
| ** |
| ** If there is more than one window function in the SELECT that uses |
| ** the same window declaration (the OVER bit), then a single scan may |
| ** be used to process more than one window function. For example: |
| ** |
| ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), |
| ** min(e) OVER (PARTITION BY c ORDER BY d) |
| ** FROM t1; |
| ** |
| ** is transformed in the same way as the example above. However: |
| ** |
| ** SELECT max(b) OVER (PARTITION BY c ORDER BY d), |
| ** min(e) OVER (PARTITION BY a ORDER BY b) |
| ** FROM t1; |
| ** |
| ** Must be transformed to: |
| ** |
| ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM ( |
| ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM |
| ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b |
| ** ) ORDER BY c, d |
| ** ) ORDER BY e; |
| ** |
| ** so that both min() and max() may process rows in the order defined by |
| ** their respective window declarations. |
| ** |
| ** INTERFACE WITH SELECT.C |
| ** |
| ** When processing the rewritten SELECT statement, code in select.c calls |
| ** sqlite3WhereBegin() to begin iterating through the results of the |
| ** sub-query, which is always implemented as a co-routine. It then calls |
| ** sqlite3WindowCodeStep() to process rows and finish the scan by calling |
| ** sqlite3WhereEnd(). |
| ** |
| ** sqlite3WindowCodeStep() generates VM code so that, for each row returned |
| ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked. |
| ** When the sub-routine is invoked: |
| ** |
| ** * The results of all window-functions for the row are stored |
| ** in the associated Window.regResult registers. |
| ** |
| ** * The required terminal values are stored in the current row of |
| ** temp table Window.iEphCsr. |
| ** |
| ** In some cases, depending on the window frame and the specific window |
| ** functions invoked, sqlite3WindowCodeStep() caches each entire partition |
| ** in a temp table before returning any rows. In other cases it does not. |
| ** This detail is encapsulated within this file, the code generated by |
| ** select.c is the same in either case. |
| ** |
| ** BUILT-IN WINDOW FUNCTIONS |
| ** |
| ** This implementation features the following built-in window functions: |
| ** |
| ** row_number() |
| ** rank() |
| ** dense_rank() |
| ** percent_rank() |
| ** cume_dist() |
| ** ntile(N) |
| ** lead(expr [, offset [, default]]) |
| ** lag(expr [, offset [, default]]) |
| ** first_value(expr) |
| ** last_value(expr) |
| ** nth_value(expr, N) |
| ** |
| ** These are the same built-in window functions supported by Postgres. |
| ** Although the behaviour of aggregate window functions (functions that |
| ** can be used as either aggregates or window funtions) allows them to |
| ** be implemented using an API, built-in window functions are much more |
| ** esoteric. Additionally, some window functions (e.g. nth_value()) |
| ** may only be implemented by caching the entire partition in memory. |
| ** As such, some built-in window functions use the same API as aggregate |
| ** window functions and some are implemented directly using VDBE |
| ** instructions. Additionally, for those functions that use the API, the |
| ** window frame is sometimes modified before the SELECT statement is |
| ** rewritten. For example, regardless of the specified window frame, the |
| ** row_number() function always uses: |
| ** |
| ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| ** |
| ** See sqlite3WindowUpdate() for details. |
| ** |
| ** As well as some of the built-in window functions, aggregate window |
| ** functions min() and max() are implemented using VDBE instructions if |
| ** the start of the window frame is declared as anything other than |
| ** UNBOUNDED PRECEDING. |
| */ |
| |
| /* |
| ** Implementation of built-in window function row_number(). Assumes that the |
| ** window frame has been coerced to: |
| ** |
| ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| */ |
| static void row_numberStepFunc( |
| sqlite3_context *pCtx, |
| int nArg, |
| sqlite3_value **apArg |
| ){ |
| i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p ) (*p)++; |
| UNUSED_PARAMETER(nArg); |
| UNUSED_PARAMETER(apArg); |
| } |
| static void row_numberValueFunc(sqlite3_context *pCtx){ |
| i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| sqlite3_result_int64(pCtx, (p ? *p : 0)); |
| } |
| |
| /* |
| ** Context object type used by rank(), dense_rank(), percent_rank() and |
| ** cume_dist(). |
| */ |
| struct CallCount { |
| i64 nValue; |
| i64 nStep; |
| i64 nTotal; |
| }; |
| |
| /* |
| ** Implementation of built-in window function dense_rank(). Assumes that |
| ** the window frame has been set to: |
| ** |
| ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| */ |
| static void dense_rankStepFunc( |
| sqlite3_context *pCtx, |
| int nArg, |
| sqlite3_value **apArg |
| ){ |
| struct CallCount *p; |
| p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p ) p->nStep = 1; |
| UNUSED_PARAMETER(nArg); |
| UNUSED_PARAMETER(apArg); |
| } |
| static void dense_rankValueFunc(sqlite3_context *pCtx){ |
| struct CallCount *p; |
| p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p ){ |
| if( p->nStep ){ |
| p->nValue++; |
| p->nStep = 0; |
| } |
| sqlite3_result_int64(pCtx, p->nValue); |
| } |
| } |
| |
| /* |
| ** Implementation of built-in window function rank(). Assumes that |
| ** the window frame has been set to: |
| ** |
| ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| */ |
| static void rankStepFunc( |
| sqlite3_context *pCtx, |
| int nArg, |
| sqlite3_value **apArg |
| ){ |
| struct CallCount *p; |
| p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p ){ |
| p->nStep++; |
| if( p->nValue==0 ){ |
| p->nValue = p->nStep; |
| } |
| } |
| UNUSED_PARAMETER(nArg); |
| UNUSED_PARAMETER(apArg); |
| } |
| static void rankValueFunc(sqlite3_context *pCtx){ |
| struct CallCount *p; |
| p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p ){ |
| sqlite3_result_int64(pCtx, p->nValue); |
| p->nValue = 0; |
| } |
| } |
| |
| /* |
| ** Implementation of built-in window function percent_rank(). Assumes that |
| ** the window frame has been set to: |
| ** |
| ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| */ |
| static void percent_rankStepFunc( |
| sqlite3_context *pCtx, |
| int nArg, |
| sqlite3_value **apArg |
| ){ |
| struct CallCount *p; |
| UNUSED_PARAMETER(nArg); assert( nArg==1 ); |
| |
| p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p ){ |
| if( p->nTotal==0 ){ |
| p->nTotal = sqlite3_value_int64(apArg[0]); |
| } |
| p->nStep++; |
| if( p->nValue==0 ){ |
| p->nValue = p->nStep; |
| } |
| } |
| } |
| static void percent_rankValueFunc(sqlite3_context *pCtx){ |
| struct CallCount *p; |
| p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p ){ |
| if( p->nTotal>1 ){ |
| double r = (double)(p->nValue-1) / (double)(p->nTotal-1); |
| sqlite3_result_double(pCtx, r); |
| }else{ |
| sqlite3_result_double(pCtx, 0.0); |
| } |
| p->nValue = 0; |
| } |
| } |
| |
| /* |
| ** Implementation of built-in window function cume_dist(). Assumes that |
| ** the window frame has been set to: |
| ** |
| ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| */ |
| static void cume_distStepFunc( |
| sqlite3_context *pCtx, |
| int nArg, |
| sqlite3_value **apArg |
| ){ |
| struct CallCount *p; |
| assert( nArg==1 ); UNUSED_PARAMETER(nArg); |
| |
| p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p ){ |
| if( p->nTotal==0 ){ |
| p->nTotal = sqlite3_value_int64(apArg[0]); |
| } |
| p->nStep++; |
| } |
| } |
| static void cume_distValueFunc(sqlite3_context *pCtx){ |
| struct CallCount *p; |
| p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p && p->nTotal ){ |
| double r = (double)(p->nStep) / (double)(p->nTotal); |
| sqlite3_result_double(pCtx, r); |
| } |
| } |
| |
| /* |
| ** Context object for ntile() window function. |
| */ |
| struct NtileCtx { |
| i64 nTotal; /* Total rows in partition */ |
| i64 nParam; /* Parameter passed to ntile(N) */ |
| i64 iRow; /* Current row */ |
| }; |
| |
| /* |
| ** Implementation of ntile(). This assumes that the window frame has |
| ** been coerced to: |
| ** |
| ** ROWS UNBOUNDED PRECEDING AND CURRENT ROW |
| */ |
| static void ntileStepFunc( |
| sqlite3_context *pCtx, |
| int nArg, |
| sqlite3_value **apArg |
| ){ |
| struct NtileCtx *p; |
| assert( nArg==2 ); UNUSED_PARAMETER(nArg); |
| p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p ){ |
| if( p->nTotal==0 ){ |
| p->nParam = sqlite3_value_int64(apArg[0]); |
| p->nTotal = sqlite3_value_int64(apArg[1]); |
| if( p->nParam<=0 ){ |
| sqlite3_result_error( |
| pCtx, "argument of ntile must be a positive integer", -1 |
| ); |
| } |
| } |
| p->iRow++; |
| } |
| } |
| static void ntileValueFunc(sqlite3_context *pCtx){ |
| struct NtileCtx *p; |
| p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p && p->nParam>0 ){ |
| int nSize = (p->nTotal / p->nParam); |
| if( nSize==0 ){ |
| sqlite3_result_int64(pCtx, p->iRow); |
| }else{ |
| i64 nLarge = p->nTotal - p->nParam*nSize; |
| i64 iSmall = nLarge*(nSize+1); |
| i64 iRow = p->iRow-1; |
| |
| assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal ); |
| |
| if( iRow<iSmall ){ |
| sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1)); |
| }else{ |
| sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize); |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Context object for last_value() window function. |
| */ |
| struct LastValueCtx { |
| sqlite3_value *pVal; |
| int nVal; |
| }; |
| |
| /* |
| ** Implementation of last_value(). |
| */ |
| static void last_valueStepFunc( |
| sqlite3_context *pCtx, |
| int nArg, |
| sqlite3_value **apArg |
| ){ |
| struct LastValueCtx *p; |
| UNUSED_PARAMETER(nArg); |
| p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p ){ |
| sqlite3_value_free(p->pVal); |
| p->pVal = sqlite3_value_dup(apArg[0]); |
| if( p->pVal==0 ){ |
| sqlite3_result_error_nomem(pCtx); |
| }else{ |
| p->nVal++; |
| } |
| } |
| } |
| static void last_valueInvFunc( |
| sqlite3_context *pCtx, |
| int nArg, |
| sqlite3_value **apArg |
| ){ |
| struct LastValueCtx *p; |
| UNUSED_PARAMETER(nArg); |
| UNUSED_PARAMETER(apArg); |
| p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( ALWAYS(p) ){ |
| p->nVal--; |
| if( p->nVal==0 ){ |
| sqlite3_value_free(p->pVal); |
| p->pVal = 0; |
| } |
| } |
| } |
| static void last_valueValueFunc(sqlite3_context *pCtx){ |
| struct LastValueCtx *p; |
| p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p && p->pVal ){ |
| sqlite3_result_value(pCtx, p->pVal); |
| } |
| } |
| static void last_valueFinalizeFunc(sqlite3_context *pCtx){ |
| struct LastValueCtx *p; |
| p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p)); |
| if( p && p->pVal ){ |
| sqlite3_result_value(pCtx, p->pVal); |
| sqlite3_value_free(p->pVal); |
| p->pVal = 0; |
| } |
| } |
| |
| /* |
| ** Static names for the built-in window function names. These static |
| ** names are used, rather than string literals, so that FuncDef objects |
| ** can be associated with a particular window function by direct |
| ** comparison of the zName pointer. Example: |
| ** |
| ** if( pFuncDef->zName==row_valueName ){ ... } |
| */ |
| static const char row_numberName[] = "row_number"; |
| static const char dense_rankName[] = "dense_rank"; |
| static const char rankName[] = "rank"; |
| static const char percent_rankName[] = "percent_rank"; |
| static const char cume_distName[] = "cume_dist"; |
| static const char ntileName[] = "ntile"; |
| static const char last_valueName[] = "last_value"; |
| static const char nth_valueName[] = "nth_value"; |
| static const char first_valueName[] = "first_value"; |
| static const char leadName[] = "lead"; |
| static const char lagName[] = "lag"; |
| |
| /* |
| ** No-op implementations of xStep() and xFinalize(). Used as place-holders |
| ** for built-in window functions that never call those interfaces. |
| ** |
| ** The noopValueFunc() is called but is expected to do nothing. The |
| ** noopStepFunc() is never called, and so it is marked with NO_TEST to |
| ** let the test coverage routine know not to expect this function to be |
| ** invoked. |
| */ |
| static void noopStepFunc( /*NO_TEST*/ |
| sqlite3_context *p, /*NO_TEST*/ |
| int n, /*NO_TEST*/ |
| sqlite3_value **a /*NO_TEST*/ |
| ){ /*NO_TEST*/ |
| UNUSED_PARAMETER(p); /*NO_TEST*/ |
| UNUSED_PARAMETER(n); /*NO_TEST*/ |
| UNUSED_PARAMETER(a); /*NO_TEST*/ |
| assert(0); /*NO_TEST*/ |
| } /*NO_TEST*/ |
| static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ } |
| |
| /* Window functions that use all window interfaces: xStep, xFinal, |
| ** xValue, and xInverse */ |
| #define WINDOWFUNCALL(name,nArg,extra) { \ |
| nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ |
| name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \ |
| name ## InvFunc, name ## Name, {0} \ |
| } |
| |
| /* Window functions that are implemented using bytecode and thus have |
| ** no-op routines for their methods */ |
| #define WINDOWFUNCNOOP(name,nArg,extra) { \ |
| nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ |
| noopStepFunc, noopValueFunc, noopValueFunc, \ |
| noopStepFunc, name ## Name, {0} \ |
| } |
| |
| /* Window functions that use all window interfaces: xStep, the |
| ** same routine for xFinalize and xValue and which never call |
| ** xInverse. */ |
| #define WINDOWFUNCX(name,nArg,extra) { \ |
| nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \ |
| name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \ |
| noopStepFunc, name ## Name, {0} \ |
| } |
| |
| |
| /* |
| ** Register those built-in window functions that are not also aggregates. |
| */ |
| void sqlite3WindowFunctions(void){ |
| static FuncDef aWindowFuncs[] = { |
| WINDOWFUNCX(row_number, 0, 0), |
| WINDOWFUNCX(dense_rank, 0, 0), |
| WINDOWFUNCX(rank, 0, 0), |
| WINDOWFUNCX(percent_rank, 0, SQLITE_FUNC_WINDOW_SIZE), |
| WINDOWFUNCX(cume_dist, 0, SQLITE_FUNC_WINDOW_SIZE), |
| WINDOWFUNCX(ntile, 1, SQLITE_FUNC_WINDOW_SIZE), |
| WINDOWFUNCALL(last_value, 1, 0), |
| WINDOWFUNCNOOP(nth_value, 2, 0), |
| WINDOWFUNCNOOP(first_value, 1, 0), |
| WINDOWFUNCNOOP(lead, 1, 0), |
| WINDOWFUNCNOOP(lead, 2, 0), |
| WINDOWFUNCNOOP(lead, 3, 0), |
| WINDOWFUNCNOOP(lag, 1, 0), |
| WINDOWFUNCNOOP(lag, 2, 0), |
| WINDOWFUNCNOOP(lag, 3, 0), |
| }; |
| sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs)); |
| } |
| |
| /* |
| ** This function is called immediately after resolving the function name |
| ** for a window function within a SELECT statement. Argument pList is a |
| ** linked list of WINDOW definitions for the current SELECT statement. |
| ** Argument pFunc is the function definition just resolved and pWin |
| ** is the Window object representing the associated OVER clause. This |
| ** function updates the contents of pWin as follows: |
| ** |
| ** * If the OVER clause refered to a named window (as in "max(x) OVER win"), |
| ** search list pList for a matching WINDOW definition, and update pWin |
| ** accordingly. If no such WINDOW clause can be found, leave an error |
| ** in pParse. |
| ** |
| ** * If the function is a built-in window function that requires the |
| ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top |
| ** of this file), pWin is updated here. |
| */ |
| void sqlite3WindowUpdate( |
| Parse *pParse, |
| Window *pList, /* List of named windows for this SELECT */ |
| Window *pWin, /* Window frame to update */ |
| FuncDef *pFunc /* Window function definition */ |
| ){ |
| if( pWin->zName && pWin->eType==0 ){ |
| Window *p; |
| for(p=pList; p; p=p->pNextWin){ |
| if( sqlite3StrICmp(p->zName, pWin->zName)==0 ) break; |
| } |
| if( p==0 ){ |
| sqlite3ErrorMsg(pParse, "no such window: %s", pWin->zName); |
| return; |
| } |
| pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0); |
| pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0); |
| pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0); |
| pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0); |
| pWin->eStart = p->eStart; |
| pWin->eEnd = p->eEnd; |
| pWin->eType = p->eType; |
| } |
| if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){ |
| sqlite3 *db = pParse->db; |
| if( pWin->pFilter ){ |
| sqlite3ErrorMsg(pParse, |
| "FILTER clause may only be used with aggregate window functions" |
| ); |
| }else |
| if( pFunc->zName==row_numberName || pFunc->zName==ntileName ){ |
| sqlite3ExprDelete(db, pWin->pStart); |
| sqlite3ExprDelete(db, pWin->pEnd); |
| pWin->pStart = pWin->pEnd = 0; |
| pWin->eType = TK_ROWS; |
| pWin->eStart = TK_UNBOUNDED; |
| pWin->eEnd = TK_CURRENT; |
| }else |
| |
| if( pFunc->zName==dense_rankName || pFunc->zName==rankName |
| || pFunc->zName==percent_rankName || pFunc->zName==cume_distName |
| ){ |
| sqlite3ExprDelete(db, pWin->pStart); |
| sqlite3ExprDelete(db, pWin->pEnd); |
| pWin->pStart = pWin->pEnd = 0; |
| pWin->eType = TK_RANGE; |
| pWin->eStart = TK_UNBOUNDED; |
| pWin->eEnd = TK_CURRENT; |
| } |
| } |
| pWin->pFunc = pFunc; |
| } |
| |
| /* |
| ** Context object passed through sqlite3WalkExprList() to |
| ** selectWindowRewriteExprCb() by selectWindowRewriteEList(). |
| */ |
| typedef struct WindowRewrite WindowRewrite; |
| struct WindowRewrite { |
| Window *pWin; |
| SrcList *pSrc; |
| ExprList *pSub; |
| Select *pSubSelect; /* Current sub-select, if any */ |
| }; |
| |
| /* |
| ** Callback function used by selectWindowRewriteEList(). If necessary, |
| ** this function appends to the output expression-list and updates |
| ** expression (*ppExpr) in place. |
| */ |
| static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){ |
| struct WindowRewrite *p = pWalker->u.pRewrite; |
| Parse *pParse = pWalker->pParse; |
| |
| /* If this function is being called from within a scalar sub-select |
| ** that used by the SELECT statement being processed, only process |
| ** TK_COLUMN expressions that refer to it (the outer SELECT). Do |
| ** not process aggregates or window functions at all, as they belong |
| ** to the scalar sub-select. */ |
| if( p->pSubSelect ){ |
| if( pExpr->op!=TK_COLUMN ){ |
| return WRC_Continue; |
| }else{ |
| int nSrc = p->pSrc->nSrc; |
| int i; |
| for(i=0; i<nSrc; i++){ |
| if( pExpr->iTable==p->pSrc->a[i].iCursor ) break; |
| } |
| if( i==nSrc ) return WRC_Continue; |
| } |
| } |
| |
| switch( pExpr->op ){ |
| |
| case TK_FUNCTION: |
| if( !ExprHasProperty(pExpr, EP_WinFunc) ){ |
| break; |
| }else{ |
| Window *pWin; |
| for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ |
| if( pExpr->y.pWin==pWin ){ |
| assert( pWin->pOwner==pExpr ); |
| return WRC_Prune; |
| } |
| } |
| } |
| /* Fall through. */ |
| |
| case TK_AGG_FUNCTION: |
| case TK_COLUMN: { |
| Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0); |
| p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup); |
| if( p->pSub ){ |
| assert( ExprHasProperty(pExpr, EP_Static)==0 ); |
| ExprSetProperty(pExpr, EP_Static); |
| sqlite3ExprDelete(pParse->db, pExpr); |
| ExprClearProperty(pExpr, EP_Static); |
| memset(pExpr, 0, sizeof(Expr)); |
| |
| pExpr->op = TK_COLUMN; |
| pExpr->iColumn = p->pSub->nExpr-1; |
| pExpr->iTable = p->pWin->iEphCsr; |
| } |
| |
| break; |
| } |
| |
| default: /* no-op */ |
| break; |
| } |
| |
| return WRC_Continue; |
| } |
| static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){ |
| struct WindowRewrite *p = pWalker->u.pRewrite; |
| Select *pSave = p->pSubSelect; |
| if( pSave==pSelect ){ |
| return WRC_Continue; |
| }else{ |
| p->pSubSelect = pSelect; |
| sqlite3WalkSelect(pWalker, pSelect); |
| p->pSubSelect = pSave; |
| } |
| return WRC_Prune; |
| } |
| |
| |
| /* |
| ** Iterate through each expression in expression-list pEList. For each: |
| ** |
| ** * TK_COLUMN, |
| ** * aggregate function, or |
| ** * window function with a Window object that is not a member of the |
| ** Window list passed as the second argument (pWin). |
| ** |
| ** Append the node to output expression-list (*ppSub). And replace it |
| ** with a TK_COLUMN that reads the (N-1)th element of table |
| ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after |
| ** appending the new one. |
| */ |
| static void selectWindowRewriteEList( |
| Parse *pParse, |
| Window *pWin, |
| SrcList *pSrc, |
| ExprList *pEList, /* Rewrite expressions in this list */ |
| ExprList **ppSub /* IN/OUT: Sub-select expression-list */ |
| ){ |
| Walker sWalker; |
| WindowRewrite sRewrite; |
| |
| memset(&sWalker, 0, sizeof(Walker)); |
| memset(&sRewrite, 0, sizeof(WindowRewrite)); |
| |
| sRewrite.pSub = *ppSub; |
| sRewrite.pWin = pWin; |
| sRewrite.pSrc = pSrc; |
| |
| sWalker.pParse = pParse; |
| sWalker.xExprCallback = selectWindowRewriteExprCb; |
| sWalker.xSelectCallback = selectWindowRewriteSelectCb; |
| sWalker.u.pRewrite = &sRewrite; |
| |
| (void)sqlite3WalkExprList(&sWalker, pEList); |
| |
| *ppSub = sRewrite.pSub; |
| } |
| |
| /* |
| ** Append a copy of each expression in expression-list pAppend to |
| ** expression list pList. Return a pointer to the result list. |
| */ |
| static ExprList *exprListAppendList( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* List to which to append. Might be NULL */ |
| ExprList *pAppend /* List of values to append. Might be NULL */ |
| ){ |
| if( pAppend ){ |
| int i; |
| int nInit = pList ? pList->nExpr : 0; |
| for(i=0; i<pAppend->nExpr; i++){ |
| Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0); |
| pList = sqlite3ExprListAppend(pParse, pList, pDup); |
| if( pList ) pList->a[nInit+i].sortOrder = pAppend->a[i].sortOrder; |
| } |
| } |
| return pList; |
| } |
| |
| /* |
| ** If the SELECT statement passed as the second argument does not invoke |
| ** any SQL window functions, this function is a no-op. Otherwise, it |
| ** rewrites the SELECT statement so that window function xStep functions |
| ** are invoked in the correct order as described under "SELECT REWRITING" |
| ** at the top of this file. |
| */ |
| int sqlite3WindowRewrite(Parse *pParse, Select *p){ |
| int rc = SQLITE_OK; |
| if( p->pWin && p->pPrior==0 ){ |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| sqlite3 *db = pParse->db; |
| Select *pSub = 0; /* The subquery */ |
| SrcList *pSrc = p->pSrc; |
| Expr *pWhere = p->pWhere; |
| ExprList *pGroupBy = p->pGroupBy; |
| Expr *pHaving = p->pHaving; |
| ExprList *pSort = 0; |
| |
| ExprList *pSublist = 0; /* Expression list for sub-query */ |
| Window *pMWin = p->pWin; /* Master window object */ |
| Window *pWin; /* Window object iterator */ |
| |
| p->pSrc = 0; |
| p->pWhere = 0; |
| p->pGroupBy = 0; |
| p->pHaving = 0; |
| |
| /* Create the ORDER BY clause for the sub-select. This is the concatenation |
| ** of the window PARTITION and ORDER BY clauses. Then, if this makes it |
| ** redundant, remove the ORDER BY from the parent SELECT. */ |
| pSort = sqlite3ExprListDup(db, pMWin->pPartition, 0); |
| pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy); |
| if( pSort && p->pOrderBy ){ |
| if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){ |
| sqlite3ExprListDelete(db, p->pOrderBy); |
| p->pOrderBy = 0; |
| } |
| } |
| |
| /* Assign a cursor number for the ephemeral table used to buffer rows. |
| ** The OpenEphemeral instruction is coded later, after it is known how |
| ** many columns the table will have. */ |
| pMWin->iEphCsr = pParse->nTab++; |
| |
| selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, &pSublist); |
| selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, &pSublist); |
| pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0); |
| |
| /* Append the PARTITION BY and ORDER BY expressions to the to the |
| ** sub-select expression list. They are required to figure out where |
| ** boundaries for partitions and sets of peer rows lie. */ |
| pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition); |
| pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy); |
| |
| /* Append the arguments passed to each window function to the |
| ** sub-select expression list. Also allocate two registers for each |
| ** window function - one for the accumulator, another for interim |
| ** results. */ |
| for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ |
| pWin->iArgCol = (pSublist ? pSublist->nExpr : 0); |
| pSublist = exprListAppendList(pParse, pSublist, pWin->pOwner->x.pList); |
| if( pWin->pFilter ){ |
| Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0); |
| pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter); |
| } |
| pWin->regAccum = ++pParse->nMem; |
| pWin->regResult = ++pParse->nMem; |
| sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); |
| } |
| |
| /* If there is no ORDER BY or PARTITION BY clause, and the window |
| ** function accepts zero arguments, and there are no other columns |
| ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible |
| ** that pSublist is still NULL here. Add a constant expression here to |
| ** keep everything legal in this case. |
| */ |
| if( pSublist==0 ){ |
| pSublist = sqlite3ExprListAppend(pParse, 0, |
| sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0) |
| ); |
| } |
| |
| pSub = sqlite3SelectNew( |
| pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0 |
| ); |
| p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); |
| if( p->pSrc ){ |
| p->pSrc->a[0].pSelect = pSub; |
| sqlite3SrcListAssignCursors(pParse, p->pSrc); |
| if( sqlite3ExpandSubquery(pParse, &p->pSrc->a[0]) ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| pSub->selFlags |= SF_Expanded; |
| p->selFlags &= ~SF_Aggregate; |
| sqlite3SelectPrep(pParse, pSub, 0); |
| } |
| |
| sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, pSublist->nExpr); |
| }else{ |
| sqlite3SelectDelete(db, pSub); |
| } |
| if( db->mallocFailed ) rc = SQLITE_NOMEM; |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Free the Window object passed as the second argument. |
| */ |
| void sqlite3WindowDelete(sqlite3 *db, Window *p){ |
| if( p ){ |
| sqlite3ExprDelete(db, p->pFilter); |
| sqlite3ExprListDelete(db, p->pPartition); |
| sqlite3ExprListDelete(db, p->pOrderBy); |
| sqlite3ExprDelete(db, p->pEnd); |
| sqlite3ExprDelete(db, p->pStart); |
| sqlite3DbFree(db, p->zName); |
| sqlite3DbFree(db, p); |
| } |
| } |
| |
| /* |
| ** Free the linked list of Window objects starting at the second argument. |
| */ |
| void sqlite3WindowListDelete(sqlite3 *db, Window *p){ |
| while( p ){ |
| Window *pNext = p->pNextWin; |
| sqlite3WindowDelete(db, p); |
| p = pNext; |
| } |
| } |
| |
| /* |
| ** The argument expression is an PRECEDING or FOLLOWING offset. The |
| ** value should be a non-negative integer. If the value is not a |
| ** constant, change it to NULL. The fact that it is then a non-negative |
| ** integer will be caught later. But it is important not to leave |
| ** variable values in the expression tree. |
| */ |
| static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){ |
| if( 0==sqlite3ExprIsConstant(pExpr) ){ |
| if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr); |
| sqlite3ExprDelete(pParse->db, pExpr); |
| pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0); |
| } |
| return pExpr; |
| } |
| |
| /* |
| ** Allocate and return a new Window object describing a Window Definition. |
| */ |
| Window *sqlite3WindowAlloc( |
| Parse *pParse, /* Parsing context */ |
| int eType, /* Frame type. TK_RANGE or TK_ROWS */ |
| int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */ |
| Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */ |
| int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */ |
| Expr *pEnd /* End window size if TK_FOLLOWING or PRECEDING */ |
| ){ |
| Window *pWin = 0; |
| |
| /* Parser assures the following: */ |
| assert( eType==TK_RANGE || eType==TK_ROWS ); |
| assert( eStart==TK_CURRENT || eStart==TK_PRECEDING |
| || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING ); |
| assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING |
| || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING ); |
| assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) ); |
| assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) ); |
| |
| |
| /* If a frame is declared "RANGE" (not "ROWS"), then it may not use |
| ** either "<expr> PRECEDING" or "<expr> FOLLOWING". |
| */ |
| if( eType==TK_RANGE && (pStart!=0 || pEnd!=0) ){ |
| sqlite3ErrorMsg(pParse, "RANGE must use only UNBOUNDED or CURRENT ROW"); |
| goto windowAllocErr; |
| } |
| |
| /* Additionally, the |
| ** starting boundary type may not occur earlier in the following list than |
| ** the ending boundary type: |
| ** |
| ** UNBOUNDED PRECEDING |
| ** <expr> PRECEDING |
| ** CURRENT ROW |
| ** <expr> FOLLOWING |
| ** UNBOUNDED FOLLOWING |
| ** |
| ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending |
| ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting |
| ** frame boundary. |
| */ |
| if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING) |
| || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT)) |
| ){ |
| sqlite3ErrorMsg(pParse, "unsupported frame delimiter for ROWS"); |
| goto windowAllocErr; |
| } |
| |
| pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); |
| if( pWin==0 ) goto windowAllocErr; |
| pWin->eType = eType; |
| pWin->eStart = eStart; |
| pWin->eEnd = eEnd; |
| pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd); |
| pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart); |
| return pWin; |
| |
| windowAllocErr: |
| sqlite3ExprDelete(pParse->db, pEnd); |
| sqlite3ExprDelete(pParse->db, pStart); |
| return 0; |
| } |
| |
| /* |
| ** Attach window object pWin to expression p. |
| */ |
| void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ |
| if( p ){ |
| assert( p->op==TK_FUNCTION ); |
| /* This routine is only called for the parser. If pWin was not |
| ** allocated due to an OOM, then the parser would fail before ever |
| ** invoking this routine */ |
| if( ALWAYS(pWin) ){ |
| p->y.pWin = pWin; |
| ExprSetProperty(p, EP_WinFunc); |
| pWin->pOwner = p; |
| if( p->flags & EP_Distinct ){ |
| sqlite3ErrorMsg(pParse, |
| "DISTINCT is not supported for window functions"); |
| } |
| } |
| }else{ |
| sqlite3WindowDelete(pParse->db, pWin); |
| } |
| } |
| |
| /* |
| ** Return 0 if the two window objects are identical, or non-zero otherwise. |
| ** Identical window objects can be processed in a single scan. |
| */ |
| int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2){ |
| if( p1->eType!=p2->eType ) return 1; |
| if( p1->eStart!=p2->eStart ) return 1; |
| if( p1->eEnd!=p2->eEnd ) return 1; |
| if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1; |
| if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1; |
| if( sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1) ) return 1; |
| if( sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1) ) return 1; |
| return 0; |
| } |
| |
| |
| /* |
| ** This is called by code in select.c before it calls sqlite3WhereBegin() |
| ** to begin iterating through the sub-query results. It is used to allocate |
| ** and initialize registers and cursors used by sqlite3WindowCodeStep(). |
| */ |
| void sqlite3WindowCodeInit(Parse *pParse, Window *pMWin){ |
| Window *pWin; |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| int nPart = (pMWin->pPartition ? pMWin->pPartition->nExpr : 0); |
| nPart += (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0); |
| if( nPart ){ |
| pMWin->regPart = pParse->nMem+1; |
| pParse->nMem += nPart; |
| sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nPart-1); |
| } |
| |
| for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ |
| FuncDef *p = pWin->pFunc; |
| if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){ |
| /* The inline versions of min() and max() require a single ephemeral |
| ** table and 3 registers. The registers are used as follows: |
| ** |
| ** regApp+0: slot to copy min()/max() argument to for MakeRecord |
| ** regApp+1: integer value used to ensure keys are unique |
| ** regApp+2: output of MakeRecord |
| */ |
| ExprList *pList = pWin->pOwner->x.pList; |
| KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0); |
| pWin->csrApp = pParse->nTab++; |
| pWin->regApp = pParse->nMem+1; |
| pParse->nMem += 3; |
| if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){ |
| assert( pKeyInfo->aSortOrder[0]==0 ); |
| pKeyInfo->aSortOrder[0] = 1; |
| } |
| sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2); |
| sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); |
| } |
| else if( p->zName==nth_valueName || p->zName==first_valueName ){ |
| /* Allocate two registers at pWin->regApp. These will be used to |
| ** store the start and end index of the current frame. */ |
| assert( pMWin->iEphCsr ); |
| pWin->regApp = pParse->nMem+1; |
| pWin->csrApp = pParse->nTab++; |
| pParse->nMem += 2; |
| sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); |
| } |
| else if( p->zName==leadName || p->zName==lagName ){ |
| assert( pMWin->iEphCsr ); |
| pWin->csrApp = pParse->nTab++; |
| sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr); |
| } |
| } |
| } |
| |
| /* |
| ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the |
| ** value of the second argument to nth_value() (eCond==2) has just been |
| ** evaluated and the result left in register reg. This function generates VM |
| ** code to check that the value is a non-negative integer and throws an |
| ** exception if it is not. |
| */ |
| static void windowCheckIntValue(Parse *pParse, int reg, int eCond){ |
| static const char *azErr[] = { |
| "frame starting offset must be a non-negative integer", |
| "frame ending offset must be a non-negative integer", |
| "second argument to nth_value must be a positive integer" |
| }; |
| static int aOp[] = { OP_Ge, OP_Ge, OP_Gt }; |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| int regZero = sqlite3GetTempReg(pParse); |
| assert( eCond==0 || eCond==1 || eCond==2 ); |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero); |
| sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2); |
| VdbeCoverageIf(v, eCond==0); |
| VdbeCoverageIf(v, eCond==1); |
| VdbeCoverageIf(v, eCond==2); |
| sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg); |
| VdbeCoverageNeverNullIf(v, eCond==0); |
| VdbeCoverageNeverNullIf(v, eCond==1); |
| VdbeCoverageNeverNullIf(v, eCond==2); |
| sqlite3MayAbort(pParse); |
| sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort); |
| sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC); |
| sqlite3ReleaseTempReg(pParse, regZero); |
| } |
| |
| /* |
| ** Return the number of arguments passed to the window-function associated |
| ** with the object passed as the only argument to this function. |
| */ |
| static int windowArgCount(Window *pWin){ |
| ExprList *pList = pWin->pOwner->x.pList; |
| return (pList ? pList->nExpr : 0); |
| } |
| |
| /* |
| ** Generate VM code to invoke either xStep() (if bInverse is 0) or |
| ** xInverse (if bInverse is non-zero) for each window function in the |
| ** linked list starting at pMWin. Or, for built-in window functions |
| ** that do not use the standard function API, generate the required |
| ** inline VM code. |
| ** |
| ** If argument csr is greater than or equal to 0, then argument reg is |
| ** the first register in an array of registers guaranteed to be large |
| ** enough to hold the array of arguments for each function. In this case |
| ** the arguments are extracted from the current row of csr into the |
| ** array of registers before invoking OP_AggStep or OP_AggInverse |
| ** |
| ** Or, if csr is less than zero, then the array of registers at reg is |
| ** already populated with all columns from the current row of the sub-query. |
| ** |
| ** If argument regPartSize is non-zero, then it is a register containing the |
| ** number of rows in the current partition. |
| */ |
| static void windowAggStep( |
| Parse *pParse, |
| Window *pMWin, /* Linked list of window functions */ |
| int csr, /* Read arguments from this cursor */ |
| int bInverse, /* True to invoke xInverse instead of xStep */ |
| int reg, /* Array of registers */ |
| int regPartSize /* Register containing size of partition */ |
| ){ |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| Window *pWin; |
| for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ |
| int flags = pWin->pFunc->funcFlags; |
| int regArg; |
| int nArg = windowArgCount(pWin); |
| |
| if( csr>=0 ){ |
| int i; |
| for(i=0; i<nArg; i++){ |
| sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i); |
| } |
| regArg = reg; |
| if( flags & SQLITE_FUNC_WINDOW_SIZE ){ |
| if( nArg==0 ){ |
| regArg = regPartSize; |
| }else{ |
| sqlite3VdbeAddOp2(v, OP_SCopy, regPartSize, reg+nArg); |
| } |
| nArg++; |
| } |
| }else{ |
| assert( !(flags & SQLITE_FUNC_WINDOW_SIZE) ); |
| regArg = reg + pWin->iArgCol; |
| } |
| |
| if( (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) |
| && pWin->eStart!=TK_UNBOUNDED |
| ){ |
| int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg); |
| VdbeCoverage(v); |
| if( bInverse==0 ){ |
| sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1); |
| sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp); |
| sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2); |
| sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2); |
| }else{ |
| sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1); |
| VdbeCoverageNeverTaken(v); |
| sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp); |
| sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); |
| } |
| sqlite3VdbeJumpHere(v, addrIsNull); |
| }else if( pWin->regApp ){ |
| assert( pWin->pFunc->zName==nth_valueName |
| || pWin->pFunc->zName==first_valueName |
| ); |
| assert( bInverse==0 || bInverse==1 ); |
| sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1); |
| }else if( pWin->pFunc->zName==leadName |
| || pWin->pFunc->zName==lagName |
| ){ |
| /* no-op */ |
| }else{ |
| int addrIf = 0; |
| if( pWin->pFilter ){ |
| int regTmp; |
| assert( nArg==0 || nArg==pWin->pOwner->x.pList->nExpr ); |
| assert( nArg || pWin->pOwner->x.pList==0 ); |
| if( csr>0 ){ |
| regTmp = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp); |
| }else{ |
| regTmp = regArg + nArg; |
| } |
| addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1); |
| VdbeCoverage(v); |
| if( csr>0 ){ |
| sqlite3ReleaseTempReg(pParse, regTmp); |
| } |
| } |
| if( pWin->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ |
| CollSeq *pColl; |
| assert( nArg>0 ); |
| pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr); |
| sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ); |
| } |
| sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep, |
| bInverse, regArg, pWin->regAccum); |
| sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); |
| sqlite3VdbeChangeP5(v, (u8)nArg); |
| if( addrIf ) sqlite3VdbeJumpHere(v, addrIf); |
| } |
| } |
| } |
| |
| /* |
| ** Generate VM code to invoke either xValue() (bFinal==0) or xFinalize() |
| ** (bFinal==1) for each window function in the linked list starting at |
| ** pMWin. Or, for built-in window-functions that do not use the standard |
| ** API, generate the equivalent VM code. |
| */ |
| static void windowAggFinal(Parse *pParse, Window *pMWin, int bFinal){ |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| Window *pWin; |
| |
| for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ |
| if( (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX) |
| && pWin->eStart!=TK_UNBOUNDED |
| ){ |
| sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); |
| sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult); |
| sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); |
| if( bFinal ){ |
| sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); |
| } |
| }else if( pWin->regApp ){ |
| }else{ |
| if( bFinal ){ |
| sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, windowArgCount(pWin)); |
| sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); |
| sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult); |
| sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); |
| }else{ |
| sqlite3VdbeAddOp3(v, OP_AggValue, pWin->regAccum, windowArgCount(pWin), |
| pWin->regResult); |
| sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF); |
| } |
| } |
| } |
| } |
| |
| /* |
| ** This function generates VM code to invoke the sub-routine at address |
| ** lblFlushPart once for each partition with the entire partition cached in |
| ** the Window.iEphCsr temp table. |
| */ |
| static void windowPartitionCache( |
| Parse *pParse, |
| Select *p, /* The rewritten SELECT statement */ |
| WhereInfo *pWInfo, /* WhereInfo to call WhereEnd() on */ |
| int regFlushPart, /* Register to use with Gosub lblFlushPart */ |
| int lblFlushPart, /* Subroutine to Gosub to */ |
| int *pRegSize /* OUT: Register containing partition size */ |
| ){ |
| Window *pMWin = p->pWin; |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| int iSubCsr = p->pSrc->a[0].iCursor; |
| int nSub = p->pSrc->a[0].pTab->nCol; |
| int k; |
| |
| int reg = pParse->nMem+1; |
| int regRecord = reg+nSub; |
| int regRowid = regRecord+1; |
| |
| *pRegSize = regRowid; |
| pParse->nMem += nSub + 2; |
| |
| /* Load the column values for the row returned by the sub-select |
| ** into an array of registers starting at reg. */ |
| for(k=0; k<nSub; k++){ |
| sqlite3VdbeAddOp3(v, OP_Column, iSubCsr, k, reg+k); |
| } |
| sqlite3VdbeAddOp3(v, OP_MakeRecord, reg, nSub, regRecord); |
| |
| /* Check if this is the start of a new partition. If so, call the |
| ** flush_partition sub-routine. */ |
| if( pMWin->pPartition ){ |
| int addr; |
| ExprList *pPart = pMWin->pPartition; |
| int nPart = pPart->nExpr; |
| int regNewPart = reg + pMWin->nBufferCol; |
| KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); |
| |
| addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart,nPart); |
| sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); |
| sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2); |
| VdbeCoverageEqNe(v); |
| sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1); |
| sqlite3VdbeAddOp2(v, OP_Gosub, regFlushPart, lblFlushPart); |
| VdbeComment((v, "call flush_partition")); |
| } |
| |
| /* Buffer the current row in the ephemeral table. */ |
| sqlite3VdbeAddOp2(v, OP_NewRowid, pMWin->iEphCsr, regRowid); |
| sqlite3VdbeAddOp3(v, OP_Insert, pMWin->iEphCsr, regRecord, regRowid); |
| |
| /* End of the input loop */ |
| sqlite3WhereEnd(pWInfo); |
| |
| /* Invoke "flush_partition" to deal with the final (or only) partition */ |
| sqlite3VdbeAddOp2(v, OP_Gosub, regFlushPart, lblFlushPart); |
| VdbeComment((v, "call flush_partition")); |
| } |
| |
| /* |
| ** Invoke the sub-routine at regGosub (generated by code in select.c) to |
| ** return the current row of Window.iEphCsr. If all window functions are |
| ** aggregate window functions that use the standard API, a single |
| ** OP_Gosub instruction is all that this routine generates. Extra VM code |
| ** for per-row processing is only generated for the following built-in window |
| ** functions: |
| ** |
| ** nth_value() |
| ** first_value() |
| ** lag() |
| ** lead() |
| */ |
| static void windowReturnOneRow( |
| Parse *pParse, |
| Window *pMWin, |
| int regGosub, |
| int addrGosub |
| ){ |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| Window *pWin; |
| for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ |
| FuncDef *pFunc = pWin->pFunc; |
| if( pFunc->zName==nth_valueName |
| || pFunc->zName==first_valueName |
| ){ |
| int csr = pWin->csrApp; |
| int lbl = sqlite3VdbeMakeLabel(pParse); |
| int tmpReg = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); |
| |
| if( pFunc->zName==nth_valueName ){ |
| sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+1,tmpReg); |
| windowCheckIntValue(pParse, tmpReg, 2); |
| }else{ |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg); |
| } |
| sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg); |
| sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg); |
| VdbeCoverageNeverNull(v); |
| sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg); |
| VdbeCoverageNeverTaken(v); |
| sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); |
| sqlite3VdbeResolveLabel(v, lbl); |
| sqlite3ReleaseTempReg(pParse, tmpReg); |
| } |
| else if( pFunc->zName==leadName || pFunc->zName==lagName ){ |
| int nArg = pWin->pOwner->x.pList->nExpr; |
| int iEph = pMWin->iEphCsr; |
| int csr = pWin->csrApp; |
| int lbl = sqlite3VdbeMakeLabel(pParse); |
| int tmpReg = sqlite3GetTempReg(pParse); |
| |
| if( nArg<3 ){ |
| sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult); |
| }else{ |
| sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+2, pWin->regResult); |
| } |
| sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg); |
| if( nArg<2 ){ |
| int val = (pFunc->zName==leadName ? 1 : -1); |
| sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val); |
| }else{ |
| int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract); |
| int tmpReg2 = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2); |
| sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg); |
| sqlite3ReleaseTempReg(pParse, tmpReg2); |
| } |
| |
| sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult); |
| sqlite3VdbeResolveLabel(v, lbl); |
| sqlite3ReleaseTempReg(pParse, tmpReg); |
| } |
| } |
| sqlite3VdbeAddOp2(v, OP_Gosub, regGosub, addrGosub); |
| } |
| |
| /* |
| ** Invoke the code generated by windowReturnOneRow() and, optionally, the |
| ** xInverse() function for each window function, for one or more rows |
| ** from the Window.iEphCsr temp table. This routine generates VM code |
| ** similar to: |
| ** |
| ** while( regCtr>0 ){ |
| ** regCtr--; |
| ** windowReturnOneRow() |
| ** if( bInverse ){ |
| ** AggInverse |
| ** } |
| ** Next (Window.iEphCsr) |
| ** } |
| */ |
| static void windowReturnRows( |
| Parse *pParse, |
| Window *pMWin, /* List of window functions */ |
| int regCtr, /* Register containing number of rows */ |
| int regGosub, /* Register for Gosub addrGosub */ |
| int addrGosub, /* Address of sub-routine for ReturnOneRow */ |
| int regInvArg, /* Array of registers for xInverse args */ |
| int regInvSize /* Register containing size of partition */ |
| ){ |
| int addr; |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| windowAggFinal(pParse, pMWin, 0); |
| addr = sqlite3VdbeAddOp3(v, OP_IfPos, regCtr, sqlite3VdbeCurrentAddr(v)+2 ,1); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); |
| windowReturnOneRow(pParse, pMWin, regGosub, addrGosub); |
| if( regInvArg ){ |
| windowAggStep(pParse, pMWin, pMWin->iEphCsr, 1, regInvArg, regInvSize); |
| } |
| sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, addr); |
| VdbeCoverage(v); |
| sqlite3VdbeJumpHere(v, addr+1); /* The OP_Goto */ |
| } |
| |
| /* |
| ** Generate code to set the accumulator register for each window function |
| ** in the linked list passed as the second argument to NULL. And perform |
| ** any equivalent initialization required by any built-in window functions |
| ** in the list. |
| */ |
| static int windowInitAccum(Parse *pParse, Window *pMWin){ |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| int regArg; |
| int nArg = 0; |
| Window *pWin; |
| for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ |
| FuncDef *pFunc = pWin->pFunc; |
| sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum); |
| nArg = MAX(nArg, windowArgCount(pWin)); |
| if( pFunc->zName==nth_valueName |
| || pFunc->zName==first_valueName |
| ){ |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp); |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); |
| } |
| |
| if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){ |
| assert( pWin->eStart!=TK_UNBOUNDED ); |
| sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp); |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1); |
| } |
| } |
| regArg = pParse->nMem+1; |
| pParse->nMem += nArg; |
| return regArg; |
| } |
| |
| |
| /* |
| ** This function does the work of sqlite3WindowCodeStep() for all "ROWS" |
| ** window frame types except for "BETWEEN UNBOUNDED PRECEDING AND CURRENT |
| ** ROW". Pseudo-code for each follows. |
| ** |
| ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING |
| ** |
| ** ... |
| ** if( new partition ){ |
| ** Gosub flush_partition |
| ** } |
| ** Insert (record in eph-table) |
| ** sqlite3WhereEnd() |
| ** Gosub flush_partition |
| ** |
| ** flush_partition: |
| ** Once { |
| ** OpenDup (iEphCsr -> csrStart) |
| ** OpenDup (iEphCsr -> csrEnd) |
| ** } |
| ** regStart = <expr1> // PRECEDING expression |
| ** regEnd = <expr2> // FOLLOWING expression |
| ** if( regStart<0 || regEnd<0 ){ error! } |
| ** Rewind (csr,csrStart,csrEnd) // if EOF goto flush_partition_done |
| ** Next(csrEnd) // if EOF skip Aggstep |
| ** Aggstep (csrEnd) |
| ** if( (regEnd--)<=0 ){ |
| ** AggFinal (xValue) |
| ** Gosub addrGosub |
| ** Next(csr) // if EOF goto flush_partition_done |
| ** if( (regStart--)<=0 ){ |
| ** AggInverse (csrStart) |
| ** Next(csrStart) |
| ** } |
| ** } |
| ** flush_partition_done: |
| ** ResetSorter (csr) |
| ** Return |
| ** |
| ** ROWS BETWEEN <expr> PRECEDING AND CURRENT ROW |
| ** ROWS BETWEEN CURRENT ROW AND <expr> FOLLOWING |
| ** ROWS BETWEEN UNBOUNDED PRECEDING AND <expr> FOLLOWING |
| ** |
| ** These are similar to the above. For "CURRENT ROW", intialize the |
| ** register to 0. For "UNBOUNDED PRECEDING" to infinity. |
| ** |
| ** ROWS BETWEEN <expr> PRECEDING AND UNBOUNDED FOLLOWING |
| ** ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING |
| ** |
| ** Rewind (csr,csrStart,csrEnd) // if EOF goto flush_partition_done |
| ** while( 1 ){ |
| ** Next(csrEnd) // Exit while(1) at EOF |
| ** Aggstep (csrEnd) |
| ** } |
| ** while( 1 ){ |
| ** AggFinal (xValue) |
| ** Gosub addrGosub |
| ** Next(csr) // if EOF goto flush_partition_done |
| ** if( (regStart--)<=0 ){ |
| ** AggInverse (csrStart) |
| ** Next(csrStart) |
| ** } |
| ** } |
| ** |
| ** For the "CURRENT ROW AND UNBOUNDED FOLLOWING" case, the final if() |
| ** condition is always true (as if regStart were initialized to 0). |
| ** |
| ** RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING |
| ** |
| ** This is the only RANGE case handled by this routine. It modifies the |
| ** second while( 1 ) loop in "ROWS BETWEEN CURRENT ... UNBOUNDED..." to |
| ** be: |
| ** |
| ** while( 1 ){ |
| ** AggFinal (xValue) |
| ** while( 1 ){ |
| ** regPeer++ |
| ** Gosub addrGosub |
| ** Next(csr) // if EOF goto flush_partition_done |
| ** if( new peer ) break; |
| ** } |
| ** while( (regPeer--)>0 ){ |
| ** AggInverse (csrStart) |
| ** Next(csrStart) |
| ** } |
| ** } |
| ** |
| ** ROWS BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING |
| ** |
| ** regEnd = regEnd - regStart |
| ** Rewind (csr,csrStart,csrEnd) // if EOF goto flush_partition_done |
| ** Aggstep (csrEnd) |
| ** Next(csrEnd) // if EOF fall-through |
| ** if( (regEnd--)<=0 ){ |
| ** if( (regStart--)<=0 ){ |
| ** AggFinal (xValue) |
| ** Gosub addrGosub |
| ** Next(csr) // if EOF goto flush_partition_done |
| ** } |
| ** AggInverse (csrStart) |
| ** Next (csrStart) |
| ** } |
| ** |
| ** ROWS BETWEEN <expr> PRECEDING AND <expr> PRECEDING |
| ** |
| ** Replace the bit after "Rewind" in the above with: |
| ** |
| ** if( (regEnd--)<=0 ){ |
| ** AggStep (csrEnd) |
| ** Next (csrEnd) |
| ** } |
| ** AggFinal (xValue) |
| ** Gosub addrGosub |
| ** Next(csr) // if EOF goto flush_partition_done |
| ** if( (regStart--)<=0 ){ |
| ** AggInverse (csr2) |
| ** Next (csr2) |
| ** } |
| ** |
| */ |
| static void windowCodeRowExprStep( |
| Parse *pParse, |
| Select *p, |
| WhereInfo *pWInfo, |
| int regGosub, |
| int addrGosub |
| ){ |
| Window *pMWin = p->pWin; |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| int regFlushPart; /* Register for "Gosub flush_partition" */ |
| int lblFlushPart; /* Label for "Gosub flush_partition" */ |
| int lblFlushDone; /* Label for "Gosub flush_partition_done" */ |
| |
| int regArg; |
| int addr; |
| int csrStart = pParse->nTab++; |
| int csrEnd = pParse->nTab++; |
| int regStart; /* Value of <expr> PRECEDING */ |
| int regEnd; /* Value of <expr> FOLLOWING */ |
| int addrGoto; |
| int addrTop; |
| int addrIfPos1 = 0; |
| int addrIfPos2 = 0; |
| int regSize = 0; |
| |
| assert( pMWin->eStart==TK_PRECEDING |
| || pMWin->eStart==TK_CURRENT |
| || pMWin->eStart==TK_FOLLOWING |
| || pMWin->eStart==TK_UNBOUNDED |
| ); |
| assert( pMWin->eEnd==TK_FOLLOWING |
| || pMWin->eEnd==TK_CURRENT |
| || pMWin->eEnd==TK_UNBOUNDED |
| || pMWin->eEnd==TK_PRECEDING |
| ); |
| |
| /* Allocate register and label for the "flush_partition" sub-routine. */ |
| regFlushPart = ++pParse->nMem; |
| lblFlushPart = sqlite3VdbeMakeLabel(pParse); |
| lblFlushDone = sqlite3VdbeMakeLabel(pParse); |
| |
| regStart = ++pParse->nMem; |
| regEnd = ++pParse->nMem; |
| |
| windowPartitionCache(pParse, p, pWInfo, regFlushPart, lblFlushPart, ®Size); |
| |
| addrGoto = sqlite3VdbeAddOp0(v, OP_Goto); |
| |
| /* Start of "flush_partition" */ |
| sqlite3VdbeResolveLabel(v, lblFlushPart); |
| sqlite3VdbeAddOp2(v, OP_Once, 0, sqlite3VdbeCurrentAddr(v)+3); |
| VdbeCoverage(v); |
| VdbeComment((v, "Flush_partition subroutine")); |
| sqlite3VdbeAddOp2(v, OP_OpenDup, csrStart, pMWin->iEphCsr); |
| sqlite3VdbeAddOp2(v, OP_OpenDup, csrEnd, pMWin->iEphCsr); |
| |
| /* If either regStart or regEnd are not non-negative integers, throw |
| ** an exception. */ |
| if( pMWin->pStart ){ |
| sqlite3ExprCode(pParse, pMWin->pStart, regStart); |
| windowCheckIntValue(pParse, regStart, 0); |
| } |
| if( pMWin->pEnd ){ |
| sqlite3ExprCode(pParse, pMWin->pEnd, regEnd); |
| windowCheckIntValue(pParse, regEnd, 1); |
| } |
| |
| /* If this is "ROWS <expr1> FOLLOWING AND ROWS <expr2> FOLLOWING", do: |
| ** |
| ** if( regEnd<regStart ){ |
| ** // The frame always consists of 0 rows |
| ** regStart = regSize; |
| ** } |
| ** regEnd = regEnd - regStart; |
| */ |
| if( pMWin->pEnd && pMWin->eStart==TK_FOLLOWING ){ |
| assert( pMWin->pStart!=0 ); |
| assert( pMWin->eEnd==TK_FOLLOWING ); |
| sqlite3VdbeAddOp3(v, OP_Ge, regStart, sqlite3VdbeCurrentAddr(v)+2, regEnd); |
| VdbeCoverageNeverNull(v); |
| sqlite3VdbeAddOp2(v, OP_Copy, regSize, regStart); |
| sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regEnd); |
| } |
| |
| if( pMWin->pStart && pMWin->eEnd==TK_PRECEDING ){ |
| assert( pMWin->pEnd!=0 ); |
| assert( pMWin->eStart==TK_PRECEDING ); |
| sqlite3VdbeAddOp3(v, OP_Le, regStart, sqlite3VdbeCurrentAddr(v)+3, regEnd); |
| VdbeCoverageNeverNull(v); |
| sqlite3VdbeAddOp2(v, OP_Copy, regSize, regStart); |
| sqlite3VdbeAddOp2(v, OP_Copy, regSize, regEnd); |
| } |
| |
| /* Initialize the accumulator register for each window function to NULL */ |
| regArg = windowInitAccum(pParse, pMWin); |
| |
| sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr, lblFlushDone); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp2(v, OP_Rewind, csrStart, lblFlushDone); |
| VdbeCoverageNeverTaken(v); |
| sqlite3VdbeChangeP5(v, 1); |
| sqlite3VdbeAddOp2(v, OP_Rewind, csrEnd, lblFlushDone); |
| VdbeCoverageNeverTaken(v); |
| sqlite3VdbeChangeP5(v, 1); |
| |
| /* Invoke AggStep function for each window function using the row that |
| ** csrEnd currently points to. Or, if csrEnd is already at EOF, |
| ** do nothing. */ |
| addrTop = sqlite3VdbeCurrentAddr(v); |
| if( pMWin->eEnd==TK_PRECEDING ){ |
| addrIfPos1 = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0 , 1); |
| VdbeCoverage(v); |
| } |
| sqlite3VdbeAddOp2(v, OP_Next, csrEnd, sqlite3VdbeCurrentAddr(v)+2); |
| VdbeCoverage(v); |
| addr = sqlite3VdbeAddOp0(v, OP_Goto); |
| windowAggStep(pParse, pMWin, csrEnd, 0, regArg, regSize); |
| if( pMWin->eEnd==TK_UNBOUNDED ){ |
| sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); |
| sqlite3VdbeJumpHere(v, addr); |
| addrTop = sqlite3VdbeCurrentAddr(v); |
| }else{ |
| sqlite3VdbeJumpHere(v, addr); |
| if( pMWin->eEnd==TK_PRECEDING ){ |
| sqlite3VdbeJumpHere(v, addrIfPos1); |
| } |
| } |
| |
| if( pMWin->eEnd==TK_FOLLOWING ){ |
| addrIfPos1 = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0 , 1); |
| VdbeCoverage(v); |
| } |
| if( pMWin->eStart==TK_FOLLOWING ){ |
| addrIfPos2 = sqlite3VdbeAddOp3(v, OP_IfPos, regStart, 0 , 1); |
| VdbeCoverage(v); |
| } |
| windowAggFinal(pParse, pMWin, 0); |
| windowReturnOneRow(pParse, pMWin, regGosub, addrGosub); |
| sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, sqlite3VdbeCurrentAddr(v)+2); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp2(v, OP_Goto, 0, lblFlushDone); |
| if( pMWin->eStart==TK_FOLLOWING ){ |
| sqlite3VdbeJumpHere(v, addrIfPos2); |
| } |
| |
| if( pMWin->eStart==TK_CURRENT |
| || pMWin->eStart==TK_PRECEDING |
| || pMWin->eStart==TK_FOLLOWING |
| ){ |
| int lblSkipInverse = sqlite3VdbeMakeLabel(pParse);; |
| if( pMWin->eStart==TK_PRECEDING ){ |
| sqlite3VdbeAddOp3(v, OP_IfPos, regStart, lblSkipInverse, 1); |
| VdbeCoverage(v); |
| } |
| if( pMWin->eStart==TK_FOLLOWING ){ |
| sqlite3VdbeAddOp2(v, OP_Next, csrStart, sqlite3VdbeCurrentAddr(v)+2); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp2(v, OP_Goto, 0, lblSkipInverse); |
| }else{ |
| sqlite3VdbeAddOp2(v, OP_Next, csrStart, sqlite3VdbeCurrentAddr(v)+1); |
| VdbeCoverageAlwaysTaken(v); |
| } |
| windowAggStep(pParse, pMWin, csrStart, 1, regArg, regSize); |
| sqlite3VdbeResolveLabel(v, lblSkipInverse); |
| } |
| if( pMWin->eEnd==TK_FOLLOWING ){ |
| sqlite3VdbeJumpHere(v, addrIfPos1); |
| } |
| sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); |
| |
| /* flush_partition_done: */ |
| sqlite3VdbeResolveLabel(v, lblFlushDone); |
| sqlite3VdbeAddOp1(v, OP_ResetSorter, pMWin->iEphCsr); |
| sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); |
| VdbeComment((v, "end flush_partition subroutine")); |
| |
| /* Jump to here to skip over flush_partition */ |
| sqlite3VdbeJumpHere(v, addrGoto); |
| } |
| |
| /* |
| ** This function does the work of sqlite3WindowCodeStep() for cases that |
| ** would normally be handled by windowCodeDefaultStep() when there are |
| ** one or more built-in window-functions that require the entire partition |
| ** to be cached in a temp table before any rows can be returned. Additionally. |
| ** "RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING" is always handled by |
| ** this function. |
| ** |
| ** Pseudo-code corresponding to the VM code generated by this function |
| ** for each type of window follows. |
| ** |
| ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| ** |
| ** flush_partition: |
| ** Once { |
| ** OpenDup (iEphCsr -> csrLead) |
| ** } |
| ** Integer ctr 0 |
| ** foreach row (csrLead){ |
| ** if( new peer ){ |
| ** AggFinal (xValue) |
| ** for(i=0; i<ctr; i++){ |
| ** Gosub addrGosub |
| ** Next iEphCsr |
| ** } |
| ** Integer ctr 0 |
| ** } |
| ** AggStep (csrLead) |
| ** Incr ctr |
| ** } |
| ** |
| ** AggFinal (xFinalize) |
| ** for(i=0; i<ctr; i++){ |
| ** Gosub addrGosub |
| ** Next iEphCsr |
| ** } |
| ** |
| ** ResetSorter (csr) |
| ** Return |
| ** |
| ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| ** |
| ** As above, except that the "if( new peer )" branch is always taken. |
| ** |
| ** RANGE BETWEEN CURRENT ROW AND CURRENT ROW |
| ** |
| ** As above, except that each of the for() loops becomes: |
| ** |
| ** for(i=0; i<ctr; i++){ |
| ** Gosub addrGosub |
| ** AggInverse (iEphCsr) |
| ** Next iEphCsr |
| ** } |
| ** |
| ** RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING |
| ** |
| ** flush_partition: |
| ** Once { |
| ** OpenDup (iEphCsr -> csrLead) |
| ** } |
| ** foreach row (csrLead) { |
| ** AggStep (csrLead) |
| ** } |
| ** foreach row (iEphCsr) { |
| ** Gosub addrGosub |
| ** } |
| ** |
| ** RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING |
| ** |
| ** flush_partition: |
| ** Once { |
| ** OpenDup (iEphCsr -> csrLead) |
| ** } |
| ** foreach row (csrLead){ |
| ** AggStep (csrLead) |
| ** } |
| ** Rewind (csrLead) |
| ** Integer ctr 0 |
| ** foreach row (csrLead){ |
| ** if( new peer ){ |
| ** AggFinal (xValue) |
| ** for(i=0; i<ctr; i++){ |
| ** Gosub addrGosub |
| ** AggInverse (iEphCsr) |
| ** Next iEphCsr |
| ** } |
| ** Integer ctr 0 |
| ** } |
| ** Incr ctr |
| ** } |
| ** |
| ** AggFinal (xFinalize) |
| ** for(i=0; i<ctr; i++){ |
| ** Gosub addrGosub |
| ** Next iEphCsr |
| ** } |
| ** |
| ** ResetSorter (csr) |
| ** Return |
| */ |
| static void windowCodeCacheStep( |
| Parse *pParse, |
| Select *p, |
| WhereInfo *pWInfo, |
| int regGosub, |
| int addrGosub |
| ){ |
| Window *pMWin = p->pWin; |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| int k; |
| int addr; |
| ExprList *pPart = pMWin->pPartition; |
| ExprList *pOrderBy = pMWin->pOrderBy; |
| int nPeer = pOrderBy ? pOrderBy->nExpr : 0; |
| int regNewPeer; |
| |
| int addrGoto; /* Address of Goto used to jump flush_par.. */ |
| int addrNext; /* Jump here for next iteration of loop */ |
| int regFlushPart; |
| int lblFlushPart; |
| int csrLead; |
| int regCtr; |
| int regArg; /* Register array to martial function args */ |
| int regSize; |
| int lblEmpty; |
| int bReverse = pMWin->pOrderBy && pMWin->eStart==TK_CURRENT |
| && pMWin->eEnd==TK_UNBOUNDED; |
| |
| assert( (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_CURRENT) |
| || (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_UNBOUNDED) |
| || (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_CURRENT) |
| || (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_UNBOUNDED) |
| ); |
| |
| lblEmpty = sqlite3VdbeMakeLabel(pParse); |
| regNewPeer = pParse->nMem+1; |
| pParse->nMem += nPeer; |
| |
| /* Allocate register and label for the "flush_partition" sub-routine. */ |
| regFlushPart = ++pParse->nMem; |
| lblFlushPart = sqlite3VdbeMakeLabel(pParse); |
| |
| csrLead = pParse->nTab++; |
| regCtr = ++pParse->nMem; |
| |
| windowPartitionCache(pParse, p, pWInfo, regFlushPart, lblFlushPart, ®Size); |
| addrGoto = sqlite3VdbeAddOp0(v, OP_Goto); |
| |
| /* Start of "flush_partition" */ |
| sqlite3VdbeResolveLabel(v, lblFlushPart); |
| sqlite3VdbeAddOp2(v, OP_Once, 0, sqlite3VdbeCurrentAddr(v)+2); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp2(v, OP_OpenDup, csrLead, pMWin->iEphCsr); |
| |
| /* Initialize the accumulator register for each window function to NULL */ |
| regArg = windowInitAccum(pParse, pMWin); |
| |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, regCtr); |
| sqlite3VdbeAddOp2(v, OP_Rewind, csrLead, lblEmpty); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr, lblEmpty); |
| VdbeCoverageNeverTaken(v); |
| |
| if( bReverse ){ |
| int addr2 = sqlite3VdbeCurrentAddr(v); |
| windowAggStep(pParse, pMWin, csrLead, 0, regArg, regSize); |
| sqlite3VdbeAddOp2(v, OP_Next, csrLead, addr2); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp2(v, OP_Rewind, csrLead, lblEmpty); |
| VdbeCoverageNeverTaken(v); |
| } |
| addrNext = sqlite3VdbeCurrentAddr(v); |
| |
| if( pOrderBy && (pMWin->eEnd==TK_CURRENT || pMWin->eStart==TK_CURRENT) ){ |
| int bCurrent = (pMWin->eStart==TK_CURRENT); |
| int addrJump = 0; /* Address of OP_Jump below */ |
| if( pMWin->eType==TK_RANGE ){ |
| int iOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0); |
| int regPeer = pMWin->regPart + (pPart ? pPart->nExpr : 0); |
| KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); |
| for(k=0; k<nPeer; k++){ |
| sqlite3VdbeAddOp3(v, OP_Column, csrLead, iOff+k, regNewPeer+k); |
| } |
| addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPeer, regPeer, nPeer); |
| sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); |
| addrJump = sqlite3VdbeAddOp3(v, OP_Jump, addr+2, 0, addr+2); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, nPeer-1); |
| } |
| |
| windowReturnRows(pParse, pMWin, regCtr, regGosub, addrGosub, |
| (bCurrent ? regArg : 0), (bCurrent ? regSize : 0) |
| ); |
| if( addrJump ) sqlite3VdbeJumpHere(v, addrJump); |
| } |
| |
| if( bReverse==0 ){ |
| windowAggStep(pParse, pMWin, csrLead, 0, regArg, regSize); |
| } |
| sqlite3VdbeAddOp2(v, OP_AddImm, regCtr, 1); |
| sqlite3VdbeAddOp2(v, OP_Next, csrLead, addrNext); |
| VdbeCoverage(v); |
| |
| windowReturnRows(pParse, pMWin, regCtr, regGosub, addrGosub, 0, 0); |
| |
| sqlite3VdbeResolveLabel(v, lblEmpty); |
| sqlite3VdbeAddOp1(v, OP_ResetSorter, pMWin->iEphCsr); |
| sqlite3VdbeAddOp1(v, OP_Return, regFlushPart); |
| |
| /* Jump to here to skip over flush_partition */ |
| sqlite3VdbeJumpHere(v, addrGoto); |
| } |
| |
| |
| /* |
| ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| ** |
| ** ... |
| ** if( new partition ){ |
| ** AggFinal (xFinalize) |
| ** Gosub addrGosub |
| ** ResetSorter eph-table |
| ** } |
| ** else if( new peer ){ |
| ** AggFinal (xValue) |
| ** Gosub addrGosub |
| ** ResetSorter eph-table |
| ** } |
| ** AggStep |
| ** Insert (record into eph-table) |
| ** sqlite3WhereEnd() |
| ** AggFinal (xFinalize) |
| ** Gosub addrGosub |
| ** |
| ** RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING |
| ** |
| ** As above, except take no action for a "new peer". Invoke |
| ** the sub-routine once only for each partition. |
| ** |
| ** RANGE BETWEEN CURRENT ROW AND CURRENT ROW |
| ** |
| ** As above, except that the "new peer" condition is handled in the |
| ** same way as "new partition" (so there is no "else if" block). |
| ** |
| ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| ** |
| ** As above, except assume every row is a "new peer". |
| */ |
| static void windowCodeDefaultStep( |
| Parse *pParse, |
| Select *p, |
| WhereInfo *pWInfo, |
| int regGosub, |
| int addrGosub |
| ){ |
| Window *pMWin = p->pWin; |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| int k; |
| int iSubCsr = p->pSrc->a[0].iCursor; |
| int nSub = p->pSrc->a[0].pTab->nCol; |
| int reg = pParse->nMem+1; |
| int regRecord = reg+nSub; |
| int regRowid = regRecord+1; |
| int addr; |
| ExprList *pPart = pMWin->pPartition; |
| ExprList *pOrderBy = pMWin->pOrderBy; |
| |
| assert( pMWin->eType==TK_RANGE |
| || (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_CURRENT) |
| ); |
| |
| assert( (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_CURRENT) |
| || (pMWin->eStart==TK_UNBOUNDED && pMWin->eEnd==TK_UNBOUNDED) |
| || (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_CURRENT) |
| || (pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_UNBOUNDED && !pOrderBy) |
| ); |
| |
| if( pMWin->eEnd==TK_UNBOUNDED ){ |
| pOrderBy = 0; |
| } |
| |
| pParse->nMem += nSub + 2; |
| |
| /* Load the individual column values of the row returned by |
| ** the sub-select into an array of registers. */ |
| for(k=0; k<nSub; k++){ |
| sqlite3VdbeAddOp3(v, OP_Column, iSubCsr, k, reg+k); |
| } |
| |
| /* Check if this is the start of a new partition or peer group. */ |
| if( pPart || pOrderBy ){ |
| int nPart = (pPart ? pPart->nExpr : 0); |
| int addrGoto = 0; |
| int addrJump = 0; |
| int nPeer = (pOrderBy ? pOrderBy->nExpr : 0); |
| |
| if( pPart ){ |
| int regNewPart = reg + pMWin->nBufferCol; |
| KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0); |
| addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart,nPart); |
| sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); |
| addrJump = sqlite3VdbeAddOp3(v, OP_Jump, addr+2, 0, addr+2); |
| VdbeCoverageEqNe(v); |
| windowAggFinal(pParse, pMWin, 1); |
| if( pOrderBy ){ |
| addrGoto = sqlite3VdbeAddOp0(v, OP_Goto); |
| } |
| } |
| |
| if( pOrderBy ){ |
| int regNewPeer = reg + pMWin->nBufferCol + nPart; |
| int regPeer = pMWin->regPart + nPart; |
| |
| if( addrJump ) sqlite3VdbeJumpHere(v, addrJump); |
| if( pMWin->eType==TK_RANGE ){ |
| KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0); |
| addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPeer, regPeer, nPeer); |
| sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO); |
| addrJump = sqlite3VdbeAddOp3(v, OP_Jump, addr+2, 0, addr+2); |
| VdbeCoverage(v); |
| }else{ |
| addrJump = 0; |
| } |
| windowAggFinal(pParse, pMWin, pMWin->eStart==TK_CURRENT); |
| if( addrGoto ) sqlite3VdbeJumpHere(v, addrGoto); |
| } |
| |
| sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr,sqlite3VdbeCurrentAddr(v)+3); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp2(v, OP_Gosub, regGosub, addrGosub); |
| sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, sqlite3VdbeCurrentAddr(v)-1); |
| VdbeCoverage(v); |
| |
| sqlite3VdbeAddOp1(v, OP_ResetSorter, pMWin->iEphCsr); |
| sqlite3VdbeAddOp3( |
| v, OP_Copy, reg+pMWin->nBufferCol, pMWin->regPart, nPart+nPeer-1 |
| ); |
| |
| if( addrJump ) sqlite3VdbeJumpHere(v, addrJump); |
| } |
| |
| /* Invoke step function for window functions */ |
| windowAggStep(pParse, pMWin, -1, 0, reg, 0); |
| |
| /* Buffer the current row in the ephemeral table. */ |
| if( pMWin->nBufferCol>0 ){ |
| sqlite3VdbeAddOp3(v, OP_MakeRecord, reg, pMWin->nBufferCol, regRecord); |
| }else{ |
| sqlite3VdbeAddOp2(v, OP_Blob, 0, regRecord); |
| sqlite3VdbeAppendP4(v, (void*)"", 0); |
| } |
| sqlite3VdbeAddOp2(v, OP_NewRowid, pMWin->iEphCsr, regRowid); |
| sqlite3VdbeAddOp3(v, OP_Insert, pMWin->iEphCsr, regRecord, regRowid); |
| |
| /* End the database scan loop. */ |
| sqlite3WhereEnd(pWInfo); |
| |
| windowAggFinal(pParse, pMWin, 1); |
| sqlite3VdbeAddOp2(v, OP_Rewind, pMWin->iEphCsr,sqlite3VdbeCurrentAddr(v)+3); |
| VdbeCoverage(v); |
| sqlite3VdbeAddOp2(v, OP_Gosub, regGosub, addrGosub); |
| sqlite3VdbeAddOp2(v, OP_Next, pMWin->iEphCsr, sqlite3VdbeCurrentAddr(v)-1); |
| VdbeCoverage(v); |
| } |
| |
| /* |
| ** Allocate and return a duplicate of the Window object indicated by the |
| ** third argument. Set the Window.pOwner field of the new object to |
| ** pOwner. |
| */ |
| Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ |
| Window *pNew = 0; |
| if( ALWAYS(p) ){ |
| pNew = sqlite3DbMallocZero(db, sizeof(Window)); |
| if( pNew ){ |
| pNew->zName = sqlite3DbStrDup(db, p->zName); |
| pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); |
| pNew->pFunc = p->pFunc; |
| pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); |
| pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); |
| pNew->eType = p->eType; |
| pNew->eEnd = p->eEnd; |
| pNew->eStart = p->eStart; |
| pNew->pStart = sqlite3ExprDup(db, p->pStart, 0); |
| pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0); |
| pNew->pOwner = pOwner; |
| } |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Return a copy of the linked list of Window objects passed as the |
| ** second argument. |
| */ |
| Window *sqlite3WindowListDup(sqlite3 *db, Window *p){ |
| Window *pWin; |
| Window *pRet = 0; |
| Window **pp = &pRet; |
| |
| for(pWin=p; pWin; pWin=pWin->pNextWin){ |
| *pp = sqlite3WindowDup(db, 0, pWin); |
| if( *pp==0 ) break; |
| pp = &((*pp)->pNextWin); |
| } |
| |
| return pRet; |
| } |
| |
| /* |
| ** sqlite3WhereBegin() has already been called for the SELECT statement |
| ** passed as the second argument when this function is invoked. It generates |
| ** code to populate the Window.regResult register for each window function and |
| ** invoke the sub-routine at instruction addrGosub once for each row. |
| ** This function calls sqlite3WhereEnd() before returning. |
| */ |
| void sqlite3WindowCodeStep( |
| Parse *pParse, /* Parse context */ |
| Select *p, /* Rewritten SELECT statement */ |
| WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */ |
| int regGosub, /* Register for OP_Gosub */ |
| int addrGosub /* OP_Gosub here to return each row */ |
| ){ |
| Window *pMWin = p->pWin; |
| |
| /* There are three different functions that may be used to do the work |
| ** of this one, depending on the window frame and the specific built-in |
| ** window functions used (if any). |
| ** |
| ** windowCodeRowExprStep() handles all "ROWS" window frames, except for: |
| ** |
| ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| ** |
| ** The exception is because windowCodeRowExprStep() implements all window |
| ** frame types by caching the entire partition in a temp table, and |
| ** "ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW" is easy enough to |
| ** implement without such a cache. |
| ** |
| ** windowCodeCacheStep() is used for: |
| ** |
| ** RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING |
| ** |
| ** It is also used for anything not handled by windowCodeRowExprStep() |
| ** that invokes a built-in window function that requires the entire |
| ** partition to be cached in a temp table before any rows are returned |
| ** (e.g. nth_value() or percent_rank()). |
| ** |
| ** Finally, assuming there is no built-in window function that requires |
| ** the partition to be cached, windowCodeDefaultStep() is used for: |
| ** |
| ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| ** RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING |
| ** RANGE BETWEEN CURRENT ROW AND CURRENT ROW |
| ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW |
| ** |
| ** windowCodeDefaultStep() is the only one of the three functions that |
| ** does not cache each partition in a temp table before beginning to |
| ** return rows. |
| */ |
| if( pMWin->eType==TK_ROWS |
| && (pMWin->eStart!=TK_UNBOUNDED||pMWin->eEnd!=TK_CURRENT||!pMWin->pOrderBy) |
| ){ |
| VdbeModuleComment((pParse->pVdbe, "Begin RowExprStep()")); |
| windowCodeRowExprStep(pParse, p, pWInfo, regGosub, addrGosub); |
| }else{ |
| Window *pWin; |
| int bCache = 0; /* True to use CacheStep() */ |
| |
| if( pMWin->eStart==TK_CURRENT && pMWin->eEnd==TK_UNBOUNDED ){ |
| bCache = 1; |
| }else{ |
| for(pWin=pMWin; pWin; pWin=pWin->pNextWin){ |
| FuncDef *pFunc = pWin->pFunc; |
| if( (pFunc->funcFlags & SQLITE_FUNC_WINDOW_SIZE) |
| || (pFunc->zName==nth_valueName) |
| || (pFunc->zName==first_valueName) |
| || (pFunc->zName==leadName) |
| || (pFunc->zName==lagName) |
| ){ |
| bCache = 1; |
| break; |
| } |
| } |
| } |
| |
| /* Otherwise, call windowCodeDefaultStep(). */ |
| if( bCache ){ |
| VdbeModuleComment((pParse->pVdbe, "Begin CacheStep()")); |
| windowCodeCacheStep(pParse, p, pWInfo, regGosub, addrGosub); |
| }else{ |
| VdbeModuleComment((pParse->pVdbe, "Begin DefaultStep()")); |
| windowCodeDefaultStep(pParse, p, pWInfo, regGosub, addrGosub); |
| } |
| } |
| } |
| |
| #endif /* SQLITE_OMIT_WINDOWFUNC */ |