| /* |
| ** 2005 May 25 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains the implementation of the sqlite3_prepare() |
| ** interface, and routines that contribute to loading the database schema |
| ** from disk. |
| */ |
| #include "sqliteInt.h" |
| |
| /* |
| ** Fill the InitData structure with an error message that indicates |
| ** that the database is corrupt. |
| */ |
| static void corruptSchema( |
| InitData *pData, /* Initialization context */ |
| char **azObj, /* Type and name of object being parsed */ |
| const char *zExtra /* Error information */ |
| ){ |
| sqlite3 *db = pData->db; |
| if( db->mallocFailed ){ |
| pData->rc = SQLITE_NOMEM_BKPT; |
| }else if( pData->pzErrMsg[0]!=0 ){ |
| /* A error message has already been generated. Do not overwrite it */ |
| }else if( pData->mInitFlags & (INITFLAG_AlterMask) ){ |
| static const char *azAlterType[] = { |
| "rename", |
| "drop column", |
| "add column" |
| }; |
| *pData->pzErrMsg = sqlite3MPrintf(db, |
| "error in %s %s after %s: %s", azObj[0], azObj[1], |
| azAlterType[(pData->mInitFlags&INITFLAG_AlterMask)-1], |
| zExtra |
| ); |
| pData->rc = SQLITE_ERROR; |
| }else if( db->flags & SQLITE_WriteSchema ){ |
| pData->rc = SQLITE_CORRUPT_BKPT; |
| }else{ |
| char *z; |
| const char *zObj = azObj[1] ? azObj[1] : "?"; |
| z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj); |
| if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra); |
| *pData->pzErrMsg = z; |
| pData->rc = SQLITE_CORRUPT_BKPT; |
| } |
| } |
| |
| /* |
| ** Check to see if any sibling index (another index on the same table) |
| ** of pIndex has the same root page number, and if it does, return true. |
| ** This would indicate a corrupt schema. |
| */ |
| int sqlite3IndexHasDuplicateRootPage(Index *pIndex){ |
| Index *p; |
| for(p=pIndex->pTable->pIndex; p; p=p->pNext){ |
| if( p->tnum==pIndex->tnum && p!=pIndex ) return 1; |
| } |
| return 0; |
| } |
| |
| /* forward declaration */ |
| static int sqlite3Prepare( |
| sqlite3 *db, /* Database handle. */ |
| const char *zSql, /* UTF-8 encoded SQL statement. */ |
| int nBytes, /* Length of zSql in bytes. */ |
| u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ |
| Vdbe *pReprepare, /* VM being reprepared */ |
| sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ |
| const char **pzTail /* OUT: End of parsed string */ |
| ); |
| |
| |
| /* |
| ** This is the callback routine for the code that initializes the |
| ** database. See sqlite3Init() below for additional information. |
| ** This routine is also called from the OP_ParseSchema opcode of the VDBE. |
| ** |
| ** Each callback contains the following information: |
| ** |
| ** argv[0] = type of object: "table", "index", "trigger", or "view". |
| ** argv[1] = name of thing being created |
| ** argv[2] = associated table if an index or trigger |
| ** argv[3] = root page number for table or index. 0 for trigger or view. |
| ** argv[4] = SQL text for the CREATE statement. |
| ** |
| */ |
| int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){ |
| InitData *pData = (InitData*)pInit; |
| sqlite3 *db = pData->db; |
| int iDb = pData->iDb; |
| |
| assert( argc==5 ); |
| UNUSED_PARAMETER2(NotUsed, argc); |
| assert( sqlite3_mutex_held(db->mutex) ); |
| db->mDbFlags |= DBFLAG_EncodingFixed; |
| if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ |
| pData->nInitRow++; |
| if( db->mallocFailed ){ |
| corruptSchema(pData, argv, 0); |
| return 1; |
| } |
| |
| assert( iDb>=0 && iDb<db->nDb ); |
| if( argv[3]==0 ){ |
| corruptSchema(pData, argv, 0); |
| }else if( argv[4] |
| && 'c'==sqlite3UpperToLower[(unsigned char)argv[4][0]] |
| && 'r'==sqlite3UpperToLower[(unsigned char)argv[4][1]] ){ |
| /* Call the parser to process a CREATE TABLE, INDEX or VIEW. |
| ** But because db->init.busy is set to 1, no VDBE code is generated |
| ** or executed. All the parser does is build the internal data |
| ** structures that describe the table, index, or view. |
| ** |
| ** No other valid SQL statement, other than the variable CREATE statements, |
| ** can begin with the letters "C" and "R". Thus, it is not possible run |
| ** any other kind of statement while parsing the schema, even a corrupt |
| ** schema. |
| */ |
| int rc; |
| u8 saved_iDb = db->init.iDb; |
| sqlite3_stmt *pStmt; |
| TESTONLY(int rcp); /* Return code from sqlite3_prepare() */ |
| |
| assert( db->init.busy ); |
| db->init.iDb = iDb; |
| if( sqlite3GetUInt32(argv[3], &db->init.newTnum)==0 |
| || (db->init.newTnum>pData->mxPage && pData->mxPage>0) |
| ){ |
| if( sqlite3Config.bExtraSchemaChecks ){ |
| corruptSchema(pData, argv, "invalid rootpage"); |
| } |
| } |
| db->init.orphanTrigger = 0; |
| db->init.azInit = (const char**)argv; |
| pStmt = 0; |
| TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0); |
| rc = db->errCode; |
| assert( (rc&0xFF)==(rcp&0xFF) ); |
| db->init.iDb = saved_iDb; |
| /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */ |
| if( SQLITE_OK!=rc ){ |
| if( db->init.orphanTrigger ){ |
| assert( iDb==1 ); |
| }else{ |
| if( rc > pData->rc ) pData->rc = rc; |
| if( rc==SQLITE_NOMEM ){ |
| sqlite3OomFault(db); |
| }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ |
| corruptSchema(pData, argv, sqlite3_errmsg(db)); |
| } |
| } |
| } |
| db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */ |
| sqlite3_finalize(pStmt); |
| }else if( argv[1]==0 || (argv[4]!=0 && argv[4][0]!=0) ){ |
| corruptSchema(pData, argv, 0); |
| }else{ |
| /* If the SQL column is blank it means this is an index that |
| ** was created to be the PRIMARY KEY or to fulfill a UNIQUE |
| ** constraint for a CREATE TABLE. The index should have already |
| ** been created when we processed the CREATE TABLE. All we have |
| ** to do here is record the root page number for that index. |
| */ |
| Index *pIndex; |
| pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName); |
| if( pIndex==0 ){ |
| corruptSchema(pData, argv, "orphan index"); |
| }else |
| if( sqlite3GetUInt32(argv[3],&pIndex->tnum)==0 |
| || pIndex->tnum<2 |
| || pIndex->tnum>pData->mxPage |
| || sqlite3IndexHasDuplicateRootPage(pIndex) |
| ){ |
| if( sqlite3Config.bExtraSchemaChecks ){ |
| corruptSchema(pData, argv, "invalid rootpage"); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** Attempt to read the database schema and initialize internal |
| ** data structures for a single database file. The index of the |
| ** database file is given by iDb. iDb==0 is used for the main |
| ** database. iDb==1 should never be used. iDb>=2 is used for |
| ** auxiliary databases. Return one of the SQLITE_ error codes to |
| ** indicate success or failure. |
| */ |
| int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){ |
| int rc; |
| int i; |
| #ifndef SQLITE_OMIT_DEPRECATED |
| int size; |
| #endif |
| Db *pDb; |
| char const *azArg[6]; |
| int meta[5]; |
| InitData initData; |
| const char *zSchemaTabName; |
| int openedTransaction = 0; |
| int mask = ((db->mDbFlags & DBFLAG_EncodingFixed) | ~DBFLAG_EncodingFixed); |
| |
| assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ); |
| assert( iDb>=0 && iDb<db->nDb ); |
| assert( db->aDb[iDb].pSchema ); |
| assert( sqlite3_mutex_held(db->mutex) ); |
| assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); |
| |
| db->init.busy = 1; |
| |
| /* Construct the in-memory representation schema tables (sqlite_schema or |
| ** sqlite_temp_schema) by invoking the parser directly. The appropriate |
| ** table name will be inserted automatically by the parser so we can just |
| ** use the abbreviation "x" here. The parser will also automatically tag |
| ** the schema table as read-only. */ |
| azArg[0] = "table"; |
| azArg[1] = zSchemaTabName = SCHEMA_TABLE(iDb); |
| azArg[2] = azArg[1]; |
| azArg[3] = "1"; |
| azArg[4] = "CREATE TABLE x(type text,name text,tbl_name text," |
| "rootpage int,sql text)"; |
| azArg[5] = 0; |
| initData.db = db; |
| initData.iDb = iDb; |
| initData.rc = SQLITE_OK; |
| initData.pzErrMsg = pzErrMsg; |
| initData.mInitFlags = mFlags; |
| initData.nInitRow = 0; |
| initData.mxPage = 0; |
| sqlite3InitCallback(&initData, 5, (char **)azArg, 0); |
| db->mDbFlags &= mask; |
| if( initData.rc ){ |
| rc = initData.rc; |
| goto error_out; |
| } |
| |
| /* Create a cursor to hold the database open |
| */ |
| pDb = &db->aDb[iDb]; |
| if( pDb->pBt==0 ){ |
| assert( iDb==1 ); |
| DbSetProperty(db, 1, DB_SchemaLoaded); |
| rc = SQLITE_OK; |
| goto error_out; |
| } |
| |
| /* If there is not already a read-only (or read-write) transaction opened |
| ** on the b-tree database, open one now. If a transaction is opened, it |
| ** will be closed before this function returns. */ |
| sqlite3BtreeEnter(pDb->pBt); |
| if( sqlite3BtreeTxnState(pDb->pBt)==SQLITE_TXN_NONE ){ |
| rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0); |
| if( rc!=SQLITE_OK ){ |
| sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc)); |
| goto initone_error_out; |
| } |
| openedTransaction = 1; |
| } |
| |
| /* Get the database meta information. |
| ** |
| ** Meta values are as follows: |
| ** meta[0] Schema cookie. Changes with each schema change. |
| ** meta[1] File format of schema layer. |
| ** meta[2] Size of the page cache. |
| ** meta[3] Largest rootpage (auto/incr_vacuum mode) |
| ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE |
| ** meta[5] User version |
| ** meta[6] Incremental vacuum mode |
| ** meta[7] unused |
| ** meta[8] unused |
| ** meta[9] unused |
| ** |
| ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to |
| ** the possible values of meta[4]. |
| */ |
| for(i=0; i<ArraySize(meta); i++){ |
| sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); |
| } |
| if( (db->flags & SQLITE_ResetDatabase)!=0 ){ |
| memset(meta, 0, sizeof(meta)); |
| } |
| pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; |
| |
| /* If opening a non-empty database, check the text encoding. For the |
| ** main database, set sqlite3.enc to the encoding of the main database. |
| ** For an attached db, it is an error if the encoding is not the same |
| ** as sqlite3.enc. |
| */ |
| if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */ |
| if( iDb==0 && (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){ |
| u8 encoding; |
| #ifndef SQLITE_OMIT_UTF16 |
| /* If opening the main database, set ENC(db). */ |
| encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3; |
| if( encoding==0 ) encoding = SQLITE_UTF8; |
| #else |
| encoding = SQLITE_UTF8; |
| #endif |
| sqlite3SetTextEncoding(db, encoding); |
| }else{ |
| /* If opening an attached database, the encoding much match ENC(db) */ |
| if( (meta[BTREE_TEXT_ENCODING-1] & 3)!=ENC(db) ){ |
| sqlite3SetString(pzErrMsg, db, "attached databases must use the same" |
| " text encoding as main database"); |
| rc = SQLITE_ERROR; |
| goto initone_error_out; |
| } |
| } |
| } |
| pDb->pSchema->enc = ENC(db); |
| |
| if( pDb->pSchema->cache_size==0 ){ |
| #ifndef SQLITE_OMIT_DEPRECATED |
| size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); |
| if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } |
| pDb->pSchema->cache_size = size; |
| #else |
| pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE; |
| #endif |
| sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); |
| } |
| |
| /* |
| ** file_format==1 Version 3.0.0. |
| ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN |
| ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults |
| ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants |
| */ |
| pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1]; |
| if( pDb->pSchema->file_format==0 ){ |
| pDb->pSchema->file_format = 1; |
| } |
| if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ |
| sqlite3SetString(pzErrMsg, db, "unsupported file format"); |
| rc = SQLITE_ERROR; |
| goto initone_error_out; |
| } |
| |
| /* Ticket #2804: When we open a database in the newer file format, |
| ** clear the legacy_file_format pragma flag so that a VACUUM will |
| ** not downgrade the database and thus invalidate any descending |
| ** indices that the user might have created. |
| */ |
| if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){ |
| db->flags &= ~(u64)SQLITE_LegacyFileFmt; |
| } |
| |
| /* Read the schema information out of the schema tables |
| */ |
| assert( db->init.busy ); |
| initData.mxPage = sqlite3BtreeLastPage(pDb->pBt); |
| { |
| char *zSql; |
| zSql = sqlite3MPrintf(db, |
| "SELECT*FROM\"%w\".%s ORDER BY rowid", |
| db->aDb[iDb].zDbSName, zSchemaTabName); |
| #ifndef SQLITE_OMIT_AUTHORIZATION |
| { |
| sqlite3_xauth xAuth; |
| xAuth = db->xAuth; |
| db->xAuth = 0; |
| #endif |
| rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); |
| #ifndef SQLITE_OMIT_AUTHORIZATION |
| db->xAuth = xAuth; |
| } |
| #endif |
| if( rc==SQLITE_OK ) rc = initData.rc; |
| sqlite3DbFree(db, zSql); |
| #ifndef SQLITE_OMIT_ANALYZE |
| if( rc==SQLITE_OK ){ |
| sqlite3AnalysisLoad(db, iDb); |
| } |
| #endif |
| } |
| assert( pDb == &(db->aDb[iDb]) ); |
| if( db->mallocFailed ){ |
| rc = SQLITE_NOMEM_BKPT; |
| sqlite3ResetAllSchemasOfConnection(db); |
| pDb = &db->aDb[iDb]; |
| }else |
| if( rc==SQLITE_OK || ((db->flags&SQLITE_NoSchemaError) && rc!=SQLITE_NOMEM)){ |
| /* Hack: If the SQLITE_NoSchemaError flag is set, then consider |
| ** the schema loaded, even if errors (other than OOM) occurred. In |
| ** this situation the current sqlite3_prepare() operation will fail, |
| ** but the following one will attempt to compile the supplied statement |
| ** against whatever subset of the schema was loaded before the error |
| ** occurred. |
| ** |
| ** The primary purpose of this is to allow access to the sqlite_schema |
| ** table even when its contents have been corrupted. |
| */ |
| DbSetProperty(db, iDb, DB_SchemaLoaded); |
| rc = SQLITE_OK; |
| } |
| |
| /* Jump here for an error that occurs after successfully allocating |
| ** curMain and calling sqlite3BtreeEnter(). For an error that occurs |
| ** before that point, jump to error_out. |
| */ |
| initone_error_out: |
| if( openedTransaction ){ |
| sqlite3BtreeCommit(pDb->pBt); |
| } |
| sqlite3BtreeLeave(pDb->pBt); |
| |
| error_out: |
| if( rc ){ |
| if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ |
| sqlite3OomFault(db); |
| } |
| sqlite3ResetOneSchema(db, iDb); |
| } |
| db->init.busy = 0; |
| return rc; |
| } |
| |
| /* |
| ** Initialize all database files - the main database file, the file |
| ** used to store temporary tables, and any additional database files |
| ** created using ATTACH statements. Return a success code. If an |
| ** error occurs, write an error message into *pzErrMsg. |
| ** |
| ** After a database is initialized, the DB_SchemaLoaded bit is set |
| ** bit is set in the flags field of the Db structure. |
| */ |
| int sqlite3Init(sqlite3 *db, char **pzErrMsg){ |
| int i, rc; |
| int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange); |
| |
| assert( sqlite3_mutex_held(db->mutex) ); |
| assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) ); |
| assert( db->init.busy==0 ); |
| ENC(db) = SCHEMA_ENC(db); |
| assert( db->nDb>0 ); |
| /* Do the main schema first */ |
| if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){ |
| rc = sqlite3InitOne(db, 0, pzErrMsg, 0); |
| if( rc ) return rc; |
| } |
| /* All other schemas after the main schema. The "temp" schema must be last */ |
| for(i=db->nDb-1; i>0; i--){ |
| assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) ); |
| if( !DbHasProperty(db, i, DB_SchemaLoaded) ){ |
| rc = sqlite3InitOne(db, i, pzErrMsg, 0); |
| if( rc ) return rc; |
| } |
| } |
| if( commit_internal ){ |
| sqlite3CommitInternalChanges(db); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** This routine is a no-op if the database schema is already initialized. |
| ** Otherwise, the schema is loaded. An error code is returned. |
| */ |
| int sqlite3ReadSchema(Parse *pParse){ |
| int rc = SQLITE_OK; |
| sqlite3 *db = pParse->db; |
| assert( sqlite3_mutex_held(db->mutex) ); |
| if( !db->init.busy ){ |
| rc = sqlite3Init(db, &pParse->zErrMsg); |
| if( rc!=SQLITE_OK ){ |
| pParse->rc = rc; |
| pParse->nErr++; |
| }else if( db->noSharedCache ){ |
| db->mDbFlags |= DBFLAG_SchemaKnownOk; |
| } |
| } |
| return rc; |
| } |
| |
| |
| /* |
| ** Check schema cookies in all databases. If any cookie is out |
| ** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies |
| ** make no changes to pParse->rc. |
| */ |
| static void schemaIsValid(Parse *pParse){ |
| sqlite3 *db = pParse->db; |
| int iDb; |
| int rc; |
| int cookie; |
| |
| assert( pParse->checkSchema ); |
| assert( sqlite3_mutex_held(db->mutex) ); |
| for(iDb=0; iDb<db->nDb; iDb++){ |
| int openedTransaction = 0; /* True if a transaction is opened */ |
| Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ |
| if( pBt==0 ) continue; |
| |
| /* If there is not already a read-only (or read-write) transaction opened |
| ** on the b-tree database, open one now. If a transaction is opened, it |
| ** will be closed immediately after reading the meta-value. */ |
| if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_NONE ){ |
| rc = sqlite3BtreeBeginTrans(pBt, 0, 0); |
| if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ |
| sqlite3OomFault(db); |
| pParse->rc = SQLITE_NOMEM; |
| } |
| if( rc!=SQLITE_OK ) return; |
| openedTransaction = 1; |
| } |
| |
| /* Read the schema cookie from the database. If it does not match the |
| ** value stored as part of the in-memory schema representation, |
| ** set Parse.rc to SQLITE_SCHEMA. */ |
| sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); |
| assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ |
| if( DbHasProperty(db, iDb, DB_SchemaLoaded) ) pParse->rc = SQLITE_SCHEMA; |
| sqlite3ResetOneSchema(db, iDb); |
| } |
| |
| /* Close the transaction, if one was opened. */ |
| if( openedTransaction ){ |
| sqlite3BtreeCommit(pBt); |
| } |
| } |
| } |
| |
| /* |
| ** Convert a schema pointer into the iDb index that indicates |
| ** which database file in db->aDb[] the schema refers to. |
| ** |
| ** If the same database is attached more than once, the first |
| ** attached database is returned. |
| */ |
| int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ |
| int i = -32768; |
| |
| /* If pSchema is NULL, then return -32768. This happens when code in |
| ** expr.c is trying to resolve a reference to a transient table (i.e. one |
| ** created by a sub-select). In this case the return value of this |
| ** function should never be used. |
| ** |
| ** We return -32768 instead of the more usual -1 simply because using |
| ** -32768 as the incorrect index into db->aDb[] is much |
| ** more likely to cause a segfault than -1 (of course there are assert() |
| ** statements too, but it never hurts to play the odds) and |
| ** -32768 will still fit into a 16-bit signed integer. |
| */ |
| assert( sqlite3_mutex_held(db->mutex) ); |
| if( pSchema ){ |
| for(i=0; 1; i++){ |
| assert( i<db->nDb ); |
| if( db->aDb[i].pSchema==pSchema ){ |
| break; |
| } |
| } |
| assert( i>=0 && i<db->nDb ); |
| } |
| return i; |
| } |
| |
| /* |
| ** Free all memory allocations in the pParse object |
| */ |
| void sqlite3ParseObjectReset(Parse *pParse){ |
| sqlite3 *db = pParse->db; |
| assert( db!=0 ); |
| assert( db->pParse==pParse ); |
| assert( pParse->nested==0 ); |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| if( pParse->aTableLock ) sqlite3DbNNFreeNN(db, pParse->aTableLock); |
| #endif |
| while( pParse->pCleanup ){ |
| ParseCleanup *pCleanup = pParse->pCleanup; |
| pParse->pCleanup = pCleanup->pNext; |
| pCleanup->xCleanup(db, pCleanup->pPtr); |
| sqlite3DbNNFreeNN(db, pCleanup); |
| } |
| if( pParse->aLabel ) sqlite3DbNNFreeNN(db, pParse->aLabel); |
| if( pParse->pConstExpr ){ |
| sqlite3ExprListDelete(db, pParse->pConstExpr); |
| } |
| assert( db->lookaside.bDisable >= pParse->disableLookaside ); |
| db->lookaside.bDisable -= pParse->disableLookaside; |
| db->lookaside.sz = db->lookaside.bDisable ? 0 : db->lookaside.szTrue; |
| assert( pParse->db->pParse==pParse ); |
| db->pParse = pParse->pOuterParse; |
| pParse->db = 0; |
| pParse->disableLookaside = 0; |
| } |
| |
| /* |
| ** Add a new cleanup operation to a Parser. The cleanup should happen when |
| ** the parser object is destroyed. But, beware: the cleanup might happen |
| ** immediately. |
| ** |
| ** Use this mechanism for uncommon cleanups. There is a higher setup |
| ** cost for this mechansim (an extra malloc), so it should not be used |
| ** for common cleanups that happen on most calls. But for less |
| ** common cleanups, we save a single NULL-pointer comparison in |
| ** sqlite3ParseObjectReset(), which reduces the total CPU cycle count. |
| ** |
| ** If a memory allocation error occurs, then the cleanup happens immediately. |
| ** When either SQLITE_DEBUG or SQLITE_COVERAGE_TEST are defined, the |
| ** pParse->earlyCleanup flag is set in that case. Calling code show verify |
| ** that test cases exist for which this happens, to guard against possible |
| ** use-after-free errors following an OOM. The preferred way to do this is |
| ** to immediately follow the call to this routine with: |
| ** |
| ** testcase( pParse->earlyCleanup ); |
| ** |
| ** This routine returns a copy of its pPtr input (the third parameter) |
| ** except if an early cleanup occurs, in which case it returns NULL. So |
| ** another way to check for early cleanup is to check the return value. |
| ** Or, stop using the pPtr parameter with this call and use only its |
| ** return value thereafter. Something like this: |
| ** |
| ** pObj = sqlite3ParserAddCleanup(pParse, destructor, pObj); |
| */ |
| void *sqlite3ParserAddCleanup( |
| Parse *pParse, /* Destroy when this Parser finishes */ |
| void (*xCleanup)(sqlite3*,void*), /* The cleanup routine */ |
| void *pPtr /* Pointer to object to be cleaned up */ |
| ){ |
| ParseCleanup *pCleanup = sqlite3DbMallocRaw(pParse->db, sizeof(*pCleanup)); |
| if( pCleanup ){ |
| pCleanup->pNext = pParse->pCleanup; |
| pParse->pCleanup = pCleanup; |
| pCleanup->pPtr = pPtr; |
| pCleanup->xCleanup = xCleanup; |
| }else{ |
| xCleanup(pParse->db, pPtr); |
| pPtr = 0; |
| #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) |
| pParse->earlyCleanup = 1; |
| #endif |
| } |
| return pPtr; |
| } |
| |
| /* |
| ** Turn bulk memory into a valid Parse object and link that Parse object |
| ** into database connection db. |
| ** |
| ** Call sqlite3ParseObjectReset() to undo this operation. |
| ** |
| ** Caution: Do not confuse this routine with sqlite3ParseObjectInit() which |
| ** is generated by Lemon. |
| */ |
| void sqlite3ParseObjectInit(Parse *pParse, sqlite3 *db){ |
| memset(PARSE_HDR(pParse), 0, PARSE_HDR_SZ); |
| memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); |
| assert( db->pParse!=pParse ); |
| pParse->pOuterParse = db->pParse; |
| db->pParse = pParse; |
| pParse->db = db; |
| if( db->mallocFailed ) sqlite3ErrorMsg(pParse, "out of memory"); |
| } |
| |
| /* |
| ** Maximum number of times that we will try again to prepare a statement |
| ** that returns SQLITE_ERROR_RETRY. |
| */ |
| #ifndef SQLITE_MAX_PREPARE_RETRY |
| # define SQLITE_MAX_PREPARE_RETRY 25 |
| #endif |
| |
| /* |
| ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. |
| */ |
| static int sqlite3Prepare( |
| sqlite3 *db, /* Database handle. */ |
| const char *zSql, /* UTF-8 encoded SQL statement. */ |
| int nBytes, /* Length of zSql in bytes. */ |
| u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ |
| Vdbe *pReprepare, /* VM being reprepared */ |
| sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ |
| const char **pzTail /* OUT: End of parsed string */ |
| ){ |
| int rc = SQLITE_OK; /* Result code */ |
| int i; /* Loop counter */ |
| Parse sParse; /* Parsing context */ |
| |
| /* sqlite3ParseObjectInit(&sParse, db); // inlined for performance */ |
| memset(PARSE_HDR(&sParse), 0, PARSE_HDR_SZ); |
| memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ); |
| sParse.pOuterParse = db->pParse; |
| db->pParse = &sParse; |
| sParse.db = db; |
| sParse.pReprepare = pReprepare; |
| assert( ppStmt && *ppStmt==0 ); |
| if( db->mallocFailed ) sqlite3ErrorMsg(&sParse, "out of memory"); |
| assert( sqlite3_mutex_held(db->mutex) ); |
| |
| /* For a long-term use prepared statement avoid the use of |
| ** lookaside memory. |
| */ |
| if( prepFlags & SQLITE_PREPARE_PERSISTENT ){ |
| sParse.disableLookaside++; |
| DisableLookaside; |
| } |
| sParse.prepFlags = prepFlags & 0xff; |
| |
| /* Check to verify that it is possible to get a read lock on all |
| ** database schemas. The inability to get a read lock indicates that |
| ** some other database connection is holding a write-lock, which in |
| ** turn means that the other connection has made uncommitted changes |
| ** to the schema. |
| ** |
| ** Were we to proceed and prepare the statement against the uncommitted |
| ** schema changes and if those schema changes are subsequently rolled |
| ** back and different changes are made in their place, then when this |
| ** prepared statement goes to run the schema cookie would fail to detect |
| ** the schema change. Disaster would follow. |
| ** |
| ** This thread is currently holding mutexes on all Btrees (because |
| ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it |
| ** is not possible for another thread to start a new schema change |
| ** while this routine is running. Hence, we do not need to hold |
| ** locks on the schema, we just need to make sure nobody else is |
| ** holding them. |
| ** |
| ** Note that setting READ_UNCOMMITTED overrides most lock detection, |
| ** but it does *not* override schema lock detection, so this all still |
| ** works even if READ_UNCOMMITTED is set. |
| */ |
| if( !db->noSharedCache ){ |
| for(i=0; i<db->nDb; i++) { |
| Btree *pBt = db->aDb[i].pBt; |
| if( pBt ){ |
| assert( sqlite3BtreeHoldsMutex(pBt) ); |
| rc = sqlite3BtreeSchemaLocked(pBt); |
| if( rc ){ |
| const char *zDb = db->aDb[i].zDbSName; |
| sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb); |
| testcase( db->flags & SQLITE_ReadUncommit ); |
| goto end_prepare; |
| } |
| } |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| if( db->pDisconnect ) sqlite3VtabUnlockList(db); |
| #endif |
| |
| if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ |
| char *zSqlCopy; |
| int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; |
| testcase( nBytes==mxLen ); |
| testcase( nBytes==mxLen+1 ); |
| if( nBytes>mxLen ){ |
| sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long"); |
| rc = sqlite3ApiExit(db, SQLITE_TOOBIG); |
| goto end_prepare; |
| } |
| zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); |
| if( zSqlCopy ){ |
| sqlite3RunParser(&sParse, zSqlCopy); |
| sParse.zTail = &zSql[sParse.zTail-zSqlCopy]; |
| sqlite3DbFree(db, zSqlCopy); |
| }else{ |
| sParse.zTail = &zSql[nBytes]; |
| } |
| }else{ |
| sqlite3RunParser(&sParse, zSql); |
| } |
| assert( 0==sParse.nQueryLoop ); |
| |
| if( pzTail ){ |
| *pzTail = sParse.zTail; |
| } |
| |
| if( db->init.busy==0 ){ |
| sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags); |
| } |
| if( db->mallocFailed ){ |
| sParse.rc = SQLITE_NOMEM_BKPT; |
| sParse.checkSchema = 0; |
| } |
| if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){ |
| if( sParse.checkSchema && db->init.busy==0 ){ |
| schemaIsValid(&sParse); |
| } |
| if( sParse.pVdbe ){ |
| sqlite3VdbeFinalize(sParse.pVdbe); |
| } |
| assert( 0==(*ppStmt) ); |
| rc = sParse.rc; |
| if( sParse.zErrMsg ){ |
| sqlite3ErrorWithMsg(db, rc, "%s", sParse.zErrMsg); |
| sqlite3DbFree(db, sParse.zErrMsg); |
| }else{ |
| sqlite3Error(db, rc); |
| } |
| }else{ |
| assert( sParse.zErrMsg==0 ); |
| *ppStmt = (sqlite3_stmt*)sParse.pVdbe; |
| rc = SQLITE_OK; |
| sqlite3ErrorClear(db); |
| } |
| |
| |
| /* Delete any TriggerPrg structures allocated while parsing this statement. */ |
| while( sParse.pTriggerPrg ){ |
| TriggerPrg *pT = sParse.pTriggerPrg; |
| sParse.pTriggerPrg = pT->pNext; |
| sqlite3DbFree(db, pT); |
| } |
| |
| end_prepare: |
| |
| sqlite3ParseObjectReset(&sParse); |
| return rc; |
| } |
| static int sqlite3LockAndPrepare( |
| sqlite3 *db, /* Database handle. */ |
| const char *zSql, /* UTF-8 encoded SQL statement. */ |
| int nBytes, /* Length of zSql in bytes. */ |
| u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ |
| Vdbe *pOld, /* VM being reprepared */ |
| sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ |
| const char **pzTail /* OUT: End of parsed string */ |
| ){ |
| int rc; |
| int cnt = 0; |
| |
| #ifdef SQLITE_ENABLE_API_ARMOR |
| if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; |
| #endif |
| *ppStmt = 0; |
| if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ |
| return SQLITE_MISUSE_BKPT; |
| } |
| sqlite3_mutex_enter(db->mutex); |
| sqlite3BtreeEnterAll(db); |
| do{ |
| /* Make multiple attempts to compile the SQL, until it either succeeds |
| ** or encounters a permanent error. A schema problem after one schema |
| ** reset is considered a permanent error. */ |
| rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail); |
| assert( rc==SQLITE_OK || *ppStmt==0 ); |
| if( rc==SQLITE_OK || db->mallocFailed ) break; |
| }while( (rc==SQLITE_ERROR_RETRY && (cnt++)<SQLITE_MAX_PREPARE_RETRY) |
| || (rc==SQLITE_SCHEMA && (sqlite3ResetOneSchema(db,-1), cnt++)==0) ); |
| sqlite3BtreeLeaveAll(db); |
| rc = sqlite3ApiExit(db, rc); |
| assert( (rc&db->errMask)==rc ); |
| db->busyHandler.nBusy = 0; |
| sqlite3_mutex_leave(db->mutex); |
| return rc; |
| } |
| |
| |
| /* |
| ** Rerun the compilation of a statement after a schema change. |
| ** |
| ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, |
| ** if the statement cannot be recompiled because another connection has |
| ** locked the sqlite3_schema table, return SQLITE_LOCKED. If any other error |
| ** occurs, return SQLITE_SCHEMA. |
| */ |
| int sqlite3Reprepare(Vdbe *p){ |
| int rc; |
| sqlite3_stmt *pNew; |
| const char *zSql; |
| sqlite3 *db; |
| u8 prepFlags; |
| |
| assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); |
| zSql = sqlite3_sql((sqlite3_stmt *)p); |
| assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ |
| db = sqlite3VdbeDb(p); |
| assert( sqlite3_mutex_held(db->mutex) ); |
| prepFlags = sqlite3VdbePrepareFlags(p); |
| rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0); |
| if( rc ){ |
| if( rc==SQLITE_NOMEM ){ |
| sqlite3OomFault(db); |
| } |
| assert( pNew==0 ); |
| return rc; |
| }else{ |
| assert( pNew!=0 ); |
| } |
| sqlite3VdbeSwap((Vdbe*)pNew, p); |
| sqlite3TransferBindings(pNew, (sqlite3_stmt*)p); |
| sqlite3VdbeResetStepResult((Vdbe*)pNew); |
| sqlite3VdbeFinalize((Vdbe*)pNew); |
| return SQLITE_OK; |
| } |
| |
| |
| /* |
| ** Two versions of the official API. Legacy and new use. In the legacy |
| ** version, the original SQL text is not saved in the prepared statement |
| ** and so if a schema change occurs, SQLITE_SCHEMA is returned by |
| ** sqlite3_step(). In the new version, the original SQL text is retained |
| ** and the statement is automatically recompiled if an schema change |
| ** occurs. |
| */ |
| int sqlite3_prepare( |
| sqlite3 *db, /* Database handle. */ |
| const char *zSql, /* UTF-8 encoded SQL statement. */ |
| int nBytes, /* Length of zSql in bytes. */ |
| sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ |
| const char **pzTail /* OUT: End of parsed string */ |
| ){ |
| int rc; |
| rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); |
| assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ |
| return rc; |
| } |
| int sqlite3_prepare_v2( |
| sqlite3 *db, /* Database handle. */ |
| const char *zSql, /* UTF-8 encoded SQL statement. */ |
| int nBytes, /* Length of zSql in bytes. */ |
| sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ |
| const char **pzTail /* OUT: End of parsed string */ |
| ){ |
| int rc; |
| /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works |
| ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags |
| ** parameter. |
| ** |
| ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */ |
| rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0, |
| ppStmt,pzTail); |
| assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); |
| return rc; |
| } |
| int sqlite3_prepare_v3( |
| sqlite3 *db, /* Database handle. */ |
| const char *zSql, /* UTF-8 encoded SQL statement. */ |
| int nBytes, /* Length of zSql in bytes. */ |
| unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ |
| sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ |
| const char **pzTail /* OUT: End of parsed string */ |
| ){ |
| int rc; |
| /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from |
| ** sqlite3_prepare_v2() only in having the extra prepFlags parameter, |
| ** which is a bit array consisting of zero or more of the |
| ** SQLITE_PREPARE_* flags. |
| ** |
| ** Proof by comparison to the implementation of sqlite3_prepare_v2() |
| ** directly above. */ |
| rc = sqlite3LockAndPrepare(db,zSql,nBytes, |
| SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), |
| 0,ppStmt,pzTail); |
| assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); |
| return rc; |
| } |
| |
| |
| #ifndef SQLITE_OMIT_UTF16 |
| /* |
| ** Compile the UTF-16 encoded SQL statement zSql into a statement handle. |
| */ |
| static int sqlite3Prepare16( |
| sqlite3 *db, /* Database handle. */ |
| const void *zSql, /* UTF-16 encoded SQL statement. */ |
| int nBytes, /* Length of zSql in bytes. */ |
| u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ |
| sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ |
| const void **pzTail /* OUT: End of parsed string */ |
| ){ |
| /* This function currently works by first transforming the UTF-16 |
| ** encoded string to UTF-8, then invoking sqlite3_prepare(). The |
| ** tricky bit is figuring out the pointer to return in *pzTail. |
| */ |
| char *zSql8; |
| const char *zTail8 = 0; |
| int rc = SQLITE_OK; |
| |
| #ifdef SQLITE_ENABLE_API_ARMOR |
| if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; |
| #endif |
| *ppStmt = 0; |
| if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ |
| return SQLITE_MISUSE_BKPT; |
| } |
| if( nBytes>=0 ){ |
| int sz; |
| const char *z = (const char*)zSql; |
| for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){} |
| nBytes = sz; |
| } |
| sqlite3_mutex_enter(db->mutex); |
| zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); |
| if( zSql8 ){ |
| rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8); |
| } |
| |
| if( zTail8 && pzTail ){ |
| /* If sqlite3_prepare returns a tail pointer, we calculate the |
| ** equivalent pointer into the UTF-16 string by counting the unicode |
| ** characters between zSql8 and zTail8, and then returning a pointer |
| ** the same number of characters into the UTF-16 string. |
| */ |
| int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8)); |
| *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); |
| } |
| sqlite3DbFree(db, zSql8); |
| rc = sqlite3ApiExit(db, rc); |
| sqlite3_mutex_leave(db->mutex); |
| return rc; |
| } |
| |
| /* |
| ** Two versions of the official API. Legacy and new use. In the legacy |
| ** version, the original SQL text is not saved in the prepared statement |
| ** and so if a schema change occurs, SQLITE_SCHEMA is returned by |
| ** sqlite3_step(). In the new version, the original SQL text is retained |
| ** and the statement is automatically recompiled if an schema change |
| ** occurs. |
| */ |
| int sqlite3_prepare16( |
| sqlite3 *db, /* Database handle. */ |
| const void *zSql, /* UTF-16 encoded SQL statement. */ |
| int nBytes, /* Length of zSql in bytes. */ |
| sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ |
| const void **pzTail /* OUT: End of parsed string */ |
| ){ |
| int rc; |
| rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); |
| assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ |
| return rc; |
| } |
| int sqlite3_prepare16_v2( |
| sqlite3 *db, /* Database handle. */ |
| const void *zSql, /* UTF-16 encoded SQL statement. */ |
| int nBytes, /* Length of zSql in bytes. */ |
| sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ |
| const void **pzTail /* OUT: End of parsed string */ |
| ){ |
| int rc; |
| rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail); |
| assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ |
| return rc; |
| } |
| int sqlite3_prepare16_v3( |
| sqlite3 *db, /* Database handle. */ |
| const void *zSql, /* UTF-16 encoded SQL statement. */ |
| int nBytes, /* Length of zSql in bytes. */ |
| unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ |
| sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ |
| const void **pzTail /* OUT: End of parsed string */ |
| ){ |
| int rc; |
| rc = sqlite3Prepare16(db,zSql,nBytes, |
| SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), |
| ppStmt,pzTail); |
| assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ |
| return rc; |
| } |
| |
| #endif /* SQLITE_OMIT_UTF16 */ |