| |
| /* |
| ** This file contains the implementation of a log file used in |
| ** "journal_mode=wal" mode. |
| */ |
| |
| /* |
| ** LOG FILE FORMAT |
| ** |
| ** A log file consists of a header followed by zero or more log frames. |
| ** The log header is 12 bytes in size and consists of the following three |
| ** big-endian 32-bit unsigned integer values: |
| ** |
| ** 0: Database page size, |
| ** 4: Randomly selected salt value 1, |
| ** 8: Randomly selected salt value 2. |
| ** |
| ** Immediately following the log header are zero or more log frames. Each |
| ** frame itself consists of a 16-byte header followed by a <page-size> bytes |
| ** of page data. The header is broken into 4 big-endian 32-bit unsigned |
| ** integer values, as follows: |
| ** |
| ** 0: Page number. |
| ** 4: For commit records, the size of the database image in pages |
| ** after the commit. For all other records, zero. |
| ** 8: Checksum value 1. |
| ** 12: Checksum value 2. |
| */ |
| |
| /* |
| ** LOG SUMMARY FILE FORMAT |
| ** |
| ** The log-summary file consists of a header region, followed by an |
| ** region that contains no useful data (used to apply byte-range locks |
| ** to), followed by the data region. |
| ** |
| ** The contents of both the header and data region are specified in terms |
| ** of 1, 2 and 4 byte unsigned integers. All integers are stored in |
| ** machine-endian order. |
| ** |
| ** A log-summary file is essentially a shadow-pager map. It contains a |
| ** mapping from database page number to the set of locations in the log |
| ** file that contain versions of the database page. When a database |
| ** client needs to read a page of data, it first queries the log-summary |
| ** file to determine if the required version of the page is stored in |
| ** the log. If so, it is read from the log file. If not, it is read from |
| ** the database file. |
| ** |
| ** Whenever a transaction is appended to the log or a checkpoint transfers |
| ** data from the log file into the database file, the log-summary is |
| ** updated accordingly. |
| ** |
| ** The fields in the log-summary file header are described in the comment |
| ** directly above the definition of struct LogSummaryHdr (see below). |
| ** Immediately following the fields in the LogSummaryHdr structure is |
| ** an 8 byte checksum based on the contents of the header. This field is |
| ** not the same as the iCheck1 and iCheck2 fields of the LogSummaryHdr. |
| */ |
| |
| #include "wal.h" |
| |
| #include <unistd.h> |
| #include <fcntl.h> |
| #include <sys/mman.h> |
| |
| typedef struct LogSummaryHdr LogSummaryHdr; |
| typedef struct LogSummary LogSummary; |
| typedef struct LogIterator LogIterator; |
| typedef struct LogLock LogLock; |
| |
| |
| /* |
| ** The following structure may be used to store the same data that |
| ** is stored in the log-summary header. |
| ** |
| ** Member variables iCheck1 and iCheck2 contain the checksum for the |
| ** last frame written to the log, or 2 and 3 respectively if the log |
| ** is currently empty. |
| */ |
| struct LogSummaryHdr { |
| u32 iChange; /* Counter incremented each transaction */ |
| u32 pgsz; /* Database page size in bytes */ |
| u32 iLastPg; /* Address of last valid frame in log */ |
| u32 nPage; /* Size of database in pages */ |
| u32 iCheck1; /* Checkpoint value 1 */ |
| u32 iCheck2; /* Checkpoint value 2 */ |
| }; |
| |
| /* Size of serialized LogSummaryHdr object. */ |
| #define LOGSUMMARY_HDR_NFIELD (sizeof(LogSummaryHdr) / sizeof(u32)) |
| |
| /* A block of 16 bytes beginning at LOGSUMMARY_LOCK_OFFSET is reserved |
| ** for locks. Since some systems only feature mandatory file-locks, we |
| ** do not read or write data from the region of the file on which locks |
| ** are applied. |
| */ |
| #define LOGSUMMARY_LOCK_OFFSET ((sizeof(LogSummaryHdr))+2*sizeof(u32)) |
| #define LOGSUMMARY_LOCK_RESERVED 16 |
| |
| /* Size of header before each frame in log file */ |
| #define LOG_FRAME_HDRSIZE 16 |
| |
| /* Size of log header */ |
| #define LOG_HDRSIZE 12 |
| |
| /* |
| ** Return the offset of frame iFrame in the log file, assuming a database |
| ** page size of pgsz bytes. The offset returned is to the start of the |
| ** log frame-header. |
| */ |
| #define logFrameOffset(iFrame, pgsz) ( \ |
| LOG_HDRSIZE + ((iFrame)-1)*((pgsz)+LOG_FRAME_HDRSIZE) \ |
| ) |
| |
| /* |
| ** If using mmap() to access a shared (or otherwise) log-summary file, then |
| ** the mapping size is incremented in units of the following size. |
| ** |
| ** A 64 KB log-summary mapping corresponds to a log file containing over |
| ** 13000 frames, so the mapping size does not need to be increased often. |
| */ |
| #define LOGSUMMARY_MMAP_INCREMENT (64*1024) |
| |
| /* |
| ** There is one instance of this structure for each log-summary object |
| ** that this process has a connection to. They are stored in a linked |
| ** list starting at pLogSummary (global variable). |
| ** |
| ** TODO: LogSummary.fd is a unix file descriptor. Unix APIs are used |
| ** directly in this implementation because the VFS does not support |
| ** the required blocking file-locks. |
| */ |
| struct LogSummary { |
| sqlite3_mutex *mutex; /* Mutex used to protect this object */ |
| int nRef; /* Number of pointers to this structure */ |
| int fd; /* File descriptor open on log-summary */ |
| char *zPath; /* Path to associated WAL file */ |
| LogLock *pLock; /* Linked list of locks on this object */ |
| LogSummary *pNext; /* Next in global list */ |
| |
| int nData; /* Size of aData allocation/mapping */ |
| u32 *aData; /* File body */ |
| }; |
| |
| /* |
| ** This module uses three different types of file-locks. All are taken |
| ** on the log-summary file. The three types of locks are as follows: |
| ** |
| ** MUTEX: The MUTEX lock is used as a robust inter-process mutex. It |
| ** is held while the log-summary header is modified, and |
| ** sometimes when it is read. It is also held while a new client |
| ** obtains the DMH lock (see below), and while log recovery is |
| ** being run. |
| ** |
| ** DMH: The DMH (Dead Mans Hand mechanism) lock is used to ensure |
| ** that log-recovery is always run following a system restart. |
| ** When it first opens a log-summary file, a process takes a |
| ** SHARED lock on the DMH region. This lock is not released until |
| ** the log-summary file is closed. |
| ** |
| ** The process then attempts to upgrade to an EXCLUSIVE lock. If |
| ** successful, then the contents of the log-summary file are deemed |
| ** suspect and the log-summary header zeroed. This forces the |
| ** first process that reads the log-summary file to run log |
| ** recovery. After zeroing the log-summary header, the process |
| ** downgrades to a SHARED lock on the DMH region. |
| ** |
| ** If the attempt to obtain the EXCLUSIVE lock fails, then the |
| ** process concludes that some other process is already using the |
| ** log-summary file, and it can therefore be trusted. |
| ** |
| ** The procedure described in the previous three paragraphs (taking |
| ** a SHARED lock and then upgrading to an EXCLUSIVE lock to check |
| ** if the process is the only one to have an open connection to the |
| ** log file) is protected by holding the MUTEX lock. This avoids the |
| ** race condition wherein the first two clients connect almost |
| ** simultaneously following a system restart and each prevents |
| ** the other from obtaining the EXCLUSIVE lock. |
| ** |
| ** |
| ** REGION: There are 4 different region locks, regions A, B, C and D. |
| ** Various EXCLUSIVE and SHARED locks on these regions are obtained |
| ** when a client reads, writes or checkpoints the database. |
| ** |
| ** To obtain a reader lock: |
| ** |
| ** 1. Attempt a SHARED lock on regions A and B. |
| ** 2. If step 1 is successful, drop the lock on region B. Or, if |
| ** it is unsuccessful, attempt a SHARED lock on region D. |
| ** 3. Repeat the above until the lock attempt in step 1 or 2 is |
| ** successful. |
| ** |
| ** The reader lock is released when the read transaction is finished. |
| ** |
| ** To obtain a writer lock: |
| ** |
| ** 1. Take (wait for) an EXCLUSIVE lock on regions C and D. |
| ** |
| ** The locks are released after the write transaction is finished |
| ** and, if any frames were committed to the log, the log-summary |
| ** file updated. |
| ** |
| ** To obtain a checkpointer lock: |
| ** |
| ** 1. Take (wait for) an EXCLUSIVE lock on regions B and C. |
| ** 2. Take (wait for) an EXCLUSIVE lock on region A. |
| ** |
| ** Step 1 waits until any existing writer has finished. And forces |
| ** all new readers to become "region D" readers. |
| ** |
| ** Step 2 causes the checkpointer to wait until all existing region A |
| ** readers have finished their transactions. Once the exclusive lock |
| ** on region A has been obtained, only "region D" readers exist. |
| ** These readers are operating on the snapshot at the head of the |
| ** log. As such, the log can be safely copied into the database file |
| ** without interfering with the readers. |
| ** |
| ** Once the checkpoint has finished and the log-summary header |
| ** updated (to indicate the log contents can now be ignored), all |
| ** locks are released. |
| ** |
| ** However, there may still exist region D readers using data in |
| ** the body of the log file, so the log file itself cannot be |
| ** truncated or overwritten until all region D readers have finished. |
| ** That requirement is satisfied, because writers (the clients that |
| ** write to the log file) require an exclusive lock on region D. |
| ** Which they cannot get until all region D readers have finished. |
| */ |
| #define LOG_LOCK_MUTEX (LOGSUMMARY_LOCK_OFFSET) |
| #define LOG_LOCK_DMH (LOG_LOCK_MUTEX+1) |
| #define LOG_LOCK_REGION (LOG_LOCK_DMH+1) |
| |
| /* |
| ** The four lockable regions associated with each log-summary. A connection |
| ** may take either a SHARED or EXCLUSIVE lock on each. An ORed combination |
| ** of the following bitmasks is passed as the second argument to the |
| ** logLockRegion() function. |
| */ |
| #define LOG_REGION_A 0x01 |
| #define LOG_REGION_B 0x02 |
| #define LOG_REGION_C 0x04 |
| #define LOG_REGION_D 0x08 |
| |
| /* |
| ** Values for the third parameter to logLockRegion(). |
| */ |
| #define LOG_UNLOCK 0 /* Unlock a range of bytes */ |
| #define LOG_RDLOCK 1 /* Put a SHARED lock on a range of bytes */ |
| #define LOG_WRLOCK 2 /* Put an EXCLUSIVE lock on a byte-range */ |
| #define LOG_WRLOCKW 3 /* Block on EXCLUSIVE lock on a byte-range */ |
| |
| /* |
| ** A single instance of this structure is allocated as part of each |
| ** connection to a database log. All structures associated with the |
| ** same log file are linked together into a list using LogLock.pNext |
| ** starting at LogSummary.pLock. |
| ** |
| ** The mLock field of the structure describes the locks (if any) |
| ** currently held by the connection. If a SHARED lock is held on |
| ** any of the four locking regions, then the associated LOG_REGION_X |
| ** bit (see above) is set. If an EXCLUSIVE lock is held on the region, |
| ** then the (LOG_REGION_X << 8) bit is set. |
| */ |
| struct LogLock { |
| LogLock *pNext; /* Next lock on the same log */ |
| u32 mLock; /* Mask of locks */ |
| }; |
| |
| struct Log { |
| LogSummary *pSummary; /* Log file summary data */ |
| sqlite3_vfs *pVfs; /* The VFS used to create pFd */ |
| sqlite3_file *pFd; /* File handle for log file */ |
| int isLocked; /* Non-zero if a snapshot is held open */ |
| int isWriteLocked; /* True if this is the writer connection */ |
| u32 iCallback; /* Value to pass to log callback (or 0) */ |
| LogSummaryHdr hdr; /* Log summary header for current snapshot */ |
| LogLock lock; /* Lock held by this connection (if any) */ |
| }; |
| |
| |
| /* |
| ** This structure is used to implement an iterator that iterates through |
| ** all frames in the log in database page order. Where two or more frames |
| ** correspond to the same database page, the iterator visits only the |
| ** frame most recently written to the log. |
| ** |
| ** The internals of this structure are only accessed by: |
| ** |
| ** logIteratorInit() - Create a new iterator, |
| ** logIteratorNext() - Step an iterator, |
| ** logIteratorFree() - Free an iterator. |
| ** |
| ** This functionality is used by the checkpoint code (see logCheckpoint()). |
| */ |
| struct LogIterator { |
| int nSegment; /* Size of LogIterator.aSegment[] array */ |
| int nFinal; /* Elements in segment nSegment-1 */ |
| struct LogSegment { |
| int iNext; /* Next aIndex index */ |
| u8 *aIndex; /* Pointer to index array */ |
| u32 *aDbPage; /* Pointer to db page array */ |
| } aSegment[1]; |
| }; |
| |
| |
| |
| /* |
| ** List of all LogSummary objects created by this process. Protected by |
| ** static mutex LOG_SUMMARY_MUTEX. TODO: Should have a dedicated mutex |
| ** here instead of borrowing the LRU mutex. |
| */ |
| #define LOG_SUMMARY_MUTEX SQLITE_MUTEX_STATIC_LRU |
| static LogSummary *pLogSummary = 0; |
| |
| /* |
| ** Generate an 8 byte checksum based on the data in array aByte[] and the |
| ** initial values of aCksum[0] and aCksum[1]. The checksum is written into |
| ** aCksum[] before returning. |
| ** |
| ** The range of bytes to checksum is treated as an array of 32-bit |
| ** little-endian unsigned integers. For each integer X in the array, from |
| ** start to finish, do the following: |
| ** |
| ** aCksum[0] += X; |
| ** aCksum[1] += aCksum[0]; |
| ** |
| ** For the calculation above, use 64-bit unsigned accumulators. Before |
| ** returning, truncate the values to 32-bits as follows: |
| ** |
| ** aCksum[0] = (u32)(aCksum[0] + (aCksum[0]>>24)); |
| ** aCksum[1] = (u32)(aCksum[1] + (aCksum[1]>>24)); |
| */ |
| static void logChecksumBytes(u8 *aByte, int nByte, u32 *aCksum){ |
| u64 sum1 = aCksum[0]; |
| u64 sum2 = aCksum[1]; |
| u32 *a32 = (u32 *)aByte; |
| u32 *aEnd = (u32 *)&aByte[nByte]; |
| |
| assert( (nByte&0x00000003)==0 ); |
| |
| if( SQLITE_LITTLEENDIAN ){ |
| #ifdef SQLITE_DEBUG |
| u8 *a = (u8 *)a32; |
| assert( *a32==(a[0] + (a[1]<<8) + (a[2]<<16) + (a[3]<<24)) ); |
| #endif |
| do { |
| sum1 += *a32; |
| sum2 += sum1; |
| } while( ++a32<aEnd ); |
| }else{ |
| do { |
| u8 *a = (u8*)a32; |
| sum1 += a[0] + (a[1]<<8) + (a[2]<<16) + (a[3]<<24); |
| sum2 += sum1; |
| } while( ++a32<aEnd ); |
| } |
| |
| aCksum[0] = sum1 + (sum1>>24); |
| aCksum[1] = sum2 + (sum2>>24); |
| } |
| |
| /* |
| ** Argument zPath must be a nul-terminated string containing a path-name. |
| ** This function modifies the string in-place by removing any "./" or "../" |
| ** elements in the path. For example, the following input: |
| ** |
| ** "/home/user/plans/good/../evil/./world_domination.txt" |
| ** |
| ** is overwritten with the 'normalized' version: |
| ** |
| ** "/home/user/plans/evil/world_domination.txt" |
| */ |
| static void logNormalizePath(char *zPath){ |
| int i, j; |
| char *z = zPath; |
| int n = strlen(z); |
| |
| while( n>1 && z[n-1]=='/' ){ n--; } |
| for(i=j=0; i<n; i++){ |
| if( z[i]=='/' ){ |
| if( z[i+1]=='/' ) continue; |
| if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ |
| i += 1; |
| continue; |
| } |
| if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ |
| while( j>0 && z[j-1]!='/' ){ j--; } |
| if( j>0 ){ j--; } |
| i += 2; |
| continue; |
| } |
| } |
| z[j++] = z[i]; |
| } |
| z[j] = 0; |
| } |
| |
| /* |
| ** Unmap the log-summary mapping and close the file-descriptor. If |
| ** the isTruncate argument is non-zero, truncate the log-summary file |
| ** region to zero bytes. |
| ** |
| ** Regardless of the value of isTruncate, close the file-descriptor |
| ** opened on the log-summary file. |
| */ |
| static int logSummaryUnmap(LogSummary *pSummary, int isUnlink){ |
| int rc = SQLITE_OK; |
| if( pSummary->aData ){ |
| assert( pSummary->fd>0 ); |
| munmap(pSummary->aData, pSummary->nData); |
| pSummary->aData = 0; |
| if( isUnlink ){ |
| char *zFile = sqlite3_mprintf("%s-summary", pSummary->zPath); |
| if( !zFile ){ |
| rc = SQLITE_NOMEM; |
| } |
| unlink(zFile); |
| sqlite3_free(zFile); |
| } |
| } |
| if( pSummary->fd>0 ){ |
| close(pSummary->fd); |
| pSummary->fd = -1; |
| } |
| return rc; |
| } |
| |
| static void logSummaryWriteHdr(LogSummary *pSummary, LogSummaryHdr *pHdr){ |
| u32 *aHdr = pSummary->aData; /* Write header here */ |
| u32 *aCksum = &aHdr[LOGSUMMARY_HDR_NFIELD]; /* Write header cksum here */ |
| |
| assert( LOGSUMMARY_HDR_NFIELD==sizeof(LogSummaryHdr)/4 ); |
| memcpy(aHdr, pHdr, sizeof(LogSummaryHdr)); |
| aCksum[0] = aCksum[1] = 1; |
| logChecksumBytes((u8 *)aHdr, sizeof(LogSummaryHdr), aCksum); |
| } |
| |
| /* |
| ** This function encodes a single frame header and writes it to a buffer |
| ** supplied by the caller. A log frame-header is made up of a series of |
| ** 4-byte big-endian integers, as follows: |
| ** |
| ** 0: Database page size in bytes. |
| ** 4: Page number. |
| ** 8: New database size (for commit frames, otherwise zero). |
| ** 12: Frame checksum 1. |
| ** 16: Frame checksum 2. |
| */ |
| static void logEncodeFrame( |
| u32 *aCksum, /* IN/OUT: Checksum values */ |
| u32 iPage, /* Database page number for frame */ |
| u32 nTruncate, /* New db size (or 0 for non-commit frames) */ |
| int nData, /* Database page size (size of aData[]) */ |
| u8 *aData, /* Pointer to page data (for checksum) */ |
| u8 *aFrame /* OUT: Write encoded frame here */ |
| ){ |
| assert( LOG_FRAME_HDRSIZE==16 ); |
| |
| sqlite3Put4byte(&aFrame[0], iPage); |
| sqlite3Put4byte(&aFrame[4], nTruncate); |
| |
| logChecksumBytes(aFrame, 8, aCksum); |
| logChecksumBytes(aData, nData, aCksum); |
| |
| sqlite3Put4byte(&aFrame[8], aCksum[0]); |
| sqlite3Put4byte(&aFrame[12], aCksum[1]); |
| } |
| |
| /* |
| ** Return 1 and populate *piPage, *pnTruncate and aCksum if the |
| ** frame checksum looks Ok. Otherwise return 0. |
| */ |
| static int logDecodeFrame( |
| u32 *aCksum, /* IN/OUT: Checksum values */ |
| u32 *piPage, /* OUT: Database page number for frame */ |
| u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ |
| int nData, /* Database page size (size of aData[]) */ |
| u8 *aData, /* Pointer to page data (for checksum) */ |
| u8 *aFrame /* Frame data */ |
| ){ |
| assert( LOG_FRAME_HDRSIZE==16 ); |
| |
| logChecksumBytes(aFrame, 8, aCksum); |
| logChecksumBytes(aData, nData, aCksum); |
| |
| if( aCksum[0]!=sqlite3Get4byte(&aFrame[8]) |
| || aCksum[1]!=sqlite3Get4byte(&aFrame[12]) |
| ){ |
| /* Checksum failed. */ |
| return 0; |
| } |
| |
| *piPage = sqlite3Get4byte(&aFrame[0]); |
| *pnTruncate = sqlite3Get4byte(&aFrame[4]); |
| return 1; |
| } |
| |
| static void logMergesort8( |
| Pgno *aContent, /* Pages in log */ |
| u8 *aBuffer, /* Buffer of at least *pnList items to use */ |
| u8 *aList, /* IN/OUT: List to sort */ |
| int *pnList /* IN/OUT: Number of elements in aList[] */ |
| ){ |
| int nList = *pnList; |
| if( nList>1 ){ |
| int nLeft = nList / 2; /* Elements in left list */ |
| int nRight = nList - nLeft; /* Elements in right list */ |
| u8 *aLeft = aList; /* Left list */ |
| u8 *aRight = &aList[nLeft]; /* Right list */ |
| int iLeft = 0; /* Current index in aLeft */ |
| int iRight = 0; /* Current index in aright */ |
| int iOut = 0; /* Current index in output buffer */ |
| |
| /* TODO: Change to non-recursive version. */ |
| logMergesort8(aContent, aBuffer, aLeft, &nLeft); |
| logMergesort8(aContent, aBuffer, aRight, &nRight); |
| |
| while( iRight<nRight || iLeft<nLeft ){ |
| u8 logpage; |
| Pgno dbpage; |
| |
| if( (iLeft<nLeft) |
| && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) |
| ){ |
| logpage = aLeft[iLeft++]; |
| }else{ |
| logpage = aRight[iRight++]; |
| } |
| dbpage = aContent[logpage]; |
| |
| aBuffer[iOut++] = logpage; |
| if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; |
| |
| assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); |
| assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); |
| } |
| memcpy(aList, aBuffer, sizeof(aList[0])*iOut); |
| *pnList = iOut; |
| } |
| |
| #ifdef SQLITE_DEBUG |
| { |
| int i; |
| for(i=1; i<*pnList; i++){ |
| assert( aContent[aList[i]] > aContent[aList[i-1]] ); |
| } |
| } |
| #endif |
| } |
| |
| |
| /* |
| ** Memory map the first nByte bytes of the summary file opened with |
| ** pSummary->fd at pSummary->aData. If the summary file is smaller than |
| ** nByte bytes in size when this function is called, ftruncate() is |
| ** used to expand it before it is mapped. |
| ** |
| ** It is assumed that an exclusive lock is held on the summary file |
| ** by the caller (to protect the ftruncate()). |
| */ |
| static int logSummaryMap(LogSummary *pSummary, int nByte){ |
| struct stat sStat; |
| int rc; |
| int fd = pSummary->fd; |
| void *pMap; |
| |
| assert( pSummary->aData==0 ); |
| |
| /* If the file is less than nByte bytes in size, cause it to grow. */ |
| rc = fstat(fd, &sStat); |
| if( rc!=0 ) return SQLITE_IOERR; |
| if( sStat.st_size<nByte ){ |
| rc = ftruncate(fd, nByte); |
| if( rc!=0 ) return SQLITE_IOERR; |
| }else{ |
| nByte = sStat.st_size; |
| } |
| |
| /* Map the file. */ |
| pMap = mmap(0, nByte, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); |
| if( pMap==MAP_FAILED ){ |
| return SQLITE_IOERR; |
| } |
| pSummary->aData = (u32 *)pMap; |
| pSummary->nData = nByte/4; |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Return the index in the LogSummary.aData array that corresponds to |
| ** frame iFrame. The log-summary file consists of a header, followed by |
| ** alternating "map" and "index" blocks. |
| */ |
| static int logSummaryEntry(u32 iFrame){ |
| return ( |
| (LOGSUMMARY_LOCK_OFFSET+LOGSUMMARY_LOCK_RESERVED)/sizeof(u32) |
| + (((iFrame-1)>>8)<<6) /* Indexes that occur before iFrame */ |
| + iFrame-1 /* Db page numbers that occur before iFrame */ |
| ); |
| } |
| |
| |
| /* |
| ** Set an entry in the log-summary map to map log frame iFrame to db |
| ** page iPage. Values are always appended to the log-summary (i.e. the |
| ** value of iFrame is always exactly one more than the value passed to |
| ** the previous call), but that restriction is not enforced or asserted |
| ** here. |
| */ |
| static void logSummaryAppend(LogSummary *pSummary, u32 iFrame, u32 iPage){ |
| u32 iSlot = logSummaryEntry(iFrame); |
| |
| if( (iSlot+128)>=pSummary->nData ){ |
| int nByte = pSummary->nData*4 + LOGSUMMARY_MMAP_INCREMENT; |
| |
| sqlite3_mutex_enter(pSummary->mutex); |
| munmap(pSummary->aData, pSummary->nData*4); |
| pSummary->aData = 0; |
| logSummaryMap(pSummary, nByte); |
| sqlite3_mutex_leave(pSummary->mutex); |
| } |
| |
| /* Set the log-summary entry itself */ |
| pSummary->aData[iSlot] = iPage; |
| |
| /* If the frame number is a multiple of 256 (frames are numbered starting |
| ** at 1), build an index of the most recently added 256 frames. |
| */ |
| if( (iFrame&0x000000FF)==0 ){ |
| int i; /* Iterator used while initializing aIndex */ |
| u32 *aFrame; /* Pointer to array of 256 frames */ |
| int nIndex; /* Number of entries in index */ |
| u8 *aIndex; /* 256 bytes to build index in */ |
| u8 *aTmp; /* Scratch space to use while sorting */ |
| |
| aFrame = &pSummary->aData[iSlot-255]; |
| aIndex = (u8 *)&pSummary->aData[iSlot+1]; |
| aTmp = &aIndex[256]; |
| |
| nIndex = 256; |
| for(i=0; i<256; i++) aIndex[i] = (u8)i; |
| logMergesort8(aFrame, aTmp, aIndex, &nIndex); |
| memset(&aIndex[nIndex], aIndex[nIndex-1], 256-nIndex); |
| } |
| } |
| |
| |
| /* |
| ** Recover the log-summary by reading the log file. The caller must hold |
| ** an exclusive lock on the log-summary file. |
| */ |
| static int logSummaryRecover(LogSummary *pSummary, sqlite3_file *pFd){ |
| int rc; /* Return Code */ |
| i64 nSize; /* Size of log file */ |
| LogSummaryHdr hdr; /* Recovered log-summary header */ |
| |
| memset(&hdr, 0, sizeof(hdr)); |
| |
| rc = sqlite3OsFileSize(pFd, &nSize); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| if( nSize>LOG_FRAME_HDRSIZE ){ |
| u8 aBuf[LOG_FRAME_HDRSIZE]; /* Buffer to load first frame header into */ |
| u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ |
| int nFrame; /* Number of bytes at aFrame */ |
| u8 *aData; /* Pointer to data part of aFrame buffer */ |
| int iFrame; /* Index of last frame read */ |
| i64 iOffset; /* Next offset to read from log file */ |
| int nPgsz; /* Page size according to the log */ |
| u32 aCksum[2]; /* Running checksum */ |
| |
| /* Read in the first frame header in the file (to determine the |
| ** database page size). |
| */ |
| rc = sqlite3OsRead(pFd, aBuf, LOG_HDRSIZE, 0); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| /* If the database page size is not a power of two, or is greater than |
| ** SQLITE_MAX_PAGE_SIZE, conclude that the log file contains no valid data. |
| */ |
| nPgsz = sqlite3Get4byte(&aBuf[0]); |
| if( nPgsz&(nPgsz-1) || nPgsz>SQLITE_MAX_PAGE_SIZE || nPgsz<512 ){ |
| goto finished; |
| } |
| aCksum[0] = sqlite3Get4byte(&aBuf[4]); |
| aCksum[1] = sqlite3Get4byte(&aBuf[8]); |
| |
| /* Malloc a buffer to read frames into. */ |
| nFrame = nPgsz + LOG_FRAME_HDRSIZE; |
| aFrame = (u8 *)sqlite3_malloc(nFrame); |
| if( !aFrame ){ |
| return SQLITE_NOMEM; |
| } |
| aData = &aFrame[LOG_FRAME_HDRSIZE]; |
| |
| /* Read all frames from the log file. */ |
| iFrame = 0; |
| for(iOffset=LOG_HDRSIZE; (iOffset+nFrame)<=nSize; iOffset+=nFrame){ |
| u32 pgno; /* Database page number for frame */ |
| u32 nTruncate; /* dbsize field from frame header */ |
| int isValid; /* True if this frame is valid */ |
| |
| /* Read and decode the next log frame. */ |
| rc = sqlite3OsRead(pFd, aFrame, nFrame, iOffset); |
| if( rc!=SQLITE_OK ) break; |
| isValid = logDecodeFrame(aCksum, &pgno, &nTruncate, nPgsz, aData, aFrame); |
| if( !isValid ) break; |
| logSummaryAppend(pSummary, ++iFrame, pgno); |
| |
| /* If nTruncate is non-zero, this is a commit record. */ |
| if( nTruncate ){ |
| hdr.iCheck1 = aCksum[0]; |
| hdr.iCheck2 = aCksum[1]; |
| hdr.iLastPg = iFrame; |
| hdr.nPage = nTruncate; |
| hdr.pgsz = nPgsz; |
| } |
| } |
| |
| sqlite3_free(aFrame); |
| }else{ |
| hdr.iCheck1 = 2; |
| hdr.iCheck2 = 3; |
| } |
| |
| finished: |
| logSummaryWriteHdr(pSummary, &hdr); |
| return rc; |
| } |
| |
| /* |
| ** Place, modify or remove a lock on the log-summary file associated |
| ** with pSummary. |
| ** |
| ** The locked byte-range should be inside the region dedicated to |
| ** locking. This region of the log-summary file is never read or written. |
| */ |
| static int logLockFd( |
| LogSummary *pSummary, /* The log-summary object to lock */ |
| int iStart, /* First byte to lock */ |
| int nByte, /* Number of bytes to lock */ |
| int op /* LOG_UNLOCK, RDLOCK, WRLOCK or WRLOCKW */ |
| ){ |
| int aType[4] = { |
| F_UNLCK, /* LOG_UNLOCK */ |
| F_RDLCK, /* LOG_RDLOCK */ |
| F_WRLCK, /* LOG_WRLOCK */ |
| F_WRLCK /* LOG_WRLOCKW */ |
| }; |
| int aOp[4] = { |
| F_SETLK, /* LOG_UNLOCK */ |
| F_SETLK, /* LOG_RDLOCK */ |
| F_SETLK, /* LOG_WRLOCK */ |
| F_SETLKW /* LOG_WRLOCKW */ |
| }; |
| struct flock f; /* Locking operation */ |
| int rc; /* Value returned by fcntl() */ |
| |
| assert( ArraySize(aType)==ArraySize(aOp) ); |
| assert( op>=0 && op<ArraySize(aType) ); |
| assert( nByte>0 ); |
| assert( iStart>=LOGSUMMARY_LOCK_OFFSET |
| && iStart+nByte<=LOGSUMMARY_LOCK_OFFSET+LOGSUMMARY_LOCK_RESERVED |
| ); |
| #if defined(SQLITE_DEBUG) && defined(SQLITE_OS_UNIX) |
| if( pSummary->aData ) memset(&((u8*)pSummary->aData)[iStart], op, nByte); |
| #endif |
| |
| memset(&f, 0, sizeof(f)); |
| f.l_type = aType[op]; |
| f.l_whence = SEEK_SET; |
| f.l_start = iStart; |
| f.l_len = nByte; |
| rc = fcntl(pSummary->fd, aOp[op], &f); |
| return (rc==0) ? SQLITE_OK : SQLITE_BUSY; |
| } |
| |
| static int logLockRegion(Log *pLog, u32 mRegion, int op){ |
| LogSummary *pSummary = pLog->pSummary; |
| LogLock *p; /* Used to iterate through in-process locks */ |
| u32 mOther; /* Locks held by other connections */ |
| u32 mNew; /* New mask for pLog */ |
| |
| assert( |
| /* Writer lock operations */ |
| (op==LOG_WRLOCK && mRegion==(LOG_REGION_C|LOG_REGION_D)) |
| || (op==LOG_UNLOCK && mRegion==(LOG_REGION_C|LOG_REGION_D)) |
| |
| /* Normal reader lock operations */ |
| || (op==LOG_RDLOCK && mRegion==(LOG_REGION_A|LOG_REGION_B)) |
| || (op==LOG_UNLOCK && mRegion==(LOG_REGION_A)) |
| || (op==LOG_UNLOCK && mRegion==(LOG_REGION_B)) |
| |
| /* Region D reader lock operations */ |
| || (op==LOG_RDLOCK && mRegion==(LOG_REGION_D)) |
| || (op==LOG_RDLOCK && mRegion==(LOG_REGION_A)) |
| || (op==LOG_UNLOCK && mRegion==(LOG_REGION_D)) |
| |
| /* Checkpointer lock operations */ |
| || (op==LOG_WRLOCK && mRegion==(LOG_REGION_B|LOG_REGION_C)) |
| || (op==LOG_WRLOCK && mRegion==(LOG_REGION_A)) |
| || (op==LOG_UNLOCK && mRegion==(LOG_REGION_B|LOG_REGION_C)) |
| || (op==LOG_UNLOCK && mRegion==(LOG_REGION_A|LOG_REGION_B|LOG_REGION_C)) |
| ); |
| |
| /* Assert that a connection never tries to go from an EXCLUSIVE to a |
| ** SHARED lock on a region. Moving from SHARED to EXCLUSIVE sometimes |
| ** happens though (when a region D reader upgrades to a writer). |
| */ |
| assert( op!=LOG_RDLOCK || 0==(pLog->lock.mLock & (mRegion<<8)) ); |
| |
| sqlite3_mutex_enter(pSummary->mutex); |
| |
| /* Calculate a mask of logs held by all connections in this process apart |
| ** from this one. The least significant byte of the mask contains a mask |
| ** of the SHARED logs held. The next least significant byte of the mask |
| ** indicates the EXCLUSIVE locks held. For example, to test if some other |
| ** connection is holding a SHARED lock on region A, or an EXCLUSIVE lock |
| ** on region C, do: |
| ** |
| ** hasSharedOnA = (mOther & (LOG_REGION_A<<0)); |
| ** hasExclusiveOnC = (mOther & (LOG_REGION_C<<8)); |
| ** |
| ** In all masks, if the bit in the EXCLUSIVE byte mask is set, so is the |
| ** corresponding bit in the SHARED mask. |
| */ |
| mOther = 0; |
| for(p=pSummary->pLock; p; p=p->pNext){ |
| assert( (p->mLock & (p->mLock<<8))==(p->mLock&0x0000FF00) ); |
| if( p!=&pLog->lock ){ |
| mOther |= p->mLock; |
| } |
| } |
| |
| /* If this call is to lock a region (not to unlock one), test if locks held |
| ** by any other connection in this process prevent the new locks from |
| ** begin granted. If so, exit the summary mutex and return SQLITE_BUSY. |
| */ |
| if( op && (mOther & (mRegion << (op==LOG_RDLOCK ? 8 : 0))) ){ |
| sqlite3_mutex_leave(pSummary->mutex); |
| return SQLITE_BUSY; |
| } |
| |
| /* Figure out the new log mask for this connection. */ |
| switch( op ){ |
| case LOG_UNLOCK: |
| mNew = (pLog->lock.mLock & ~(mRegion|(mRegion<<8))); |
| break; |
| case LOG_RDLOCK: |
| mNew = (pLog->lock.mLock | mRegion); |
| break; |
| default: |
| assert( op==LOG_WRLOCK ); |
| mNew = (pLog->lock.mLock | (mRegion<<8) | mRegion); |
| break; |
| } |
| |
| /* Now modify the locks held on the log-summary file descriptor. This |
| ** file descriptor is shared by all log connections in this process. |
| ** Therefore: |
| ** |
| ** + If one or more log connections in this process hold a SHARED lock |
| ** on a region, the file-descriptor should hold a SHARED lock on |
| ** the file region. |
| ** |
| ** + If a log connection in this process holds an EXCLUSIVE lock on a |
| ** region, the file-descriptor should also hold an EXCLUSIVE lock on |
| ** the region in question. |
| ** |
| ** If this is an LOG_UNLOCK operation, only regions for which no other |
| ** connection holds a lock should actually be unlocked. And if this |
| ** is a LOG_RDLOCK operation and other connections already hold all |
| ** the required SHARED locks, then no system call is required. |
| */ |
| if( op==LOG_UNLOCK ){ |
| mRegion = (mRegion & ~mOther); |
| } |
| if( (op==LOG_WRLOCK) |
| || (op==LOG_UNLOCK && mRegion) |
| || (op==LOG_RDLOCK && (mOther&mRegion)!=mRegion) |
| ){ |
| struct LockMap { |
| int iStart; /* Byte offset to start locking operation */ |
| int iLen; /* Length field for locking operation */ |
| } aMap[] = { |
| /* 0000 */ {0, 0}, /* 0001 */ {3+LOG_LOCK_REGION, 1}, |
| /* 0010 */ {2+LOG_LOCK_REGION, 1}, /* 0011 */ {2+LOG_LOCK_REGION, 2}, |
| /* 0100 */ {1+LOG_LOCK_REGION, 1}, /* 0101 */ {0, 0}, |
| /* 0110 */ {1+LOG_LOCK_REGION, 2}, /* 0111 */ {1+LOG_LOCK_REGION, 3}, |
| /* 1000 */ {0+LOG_LOCK_REGION, 1}, /* 1001 */ {0, 0}, |
| /* 1010 */ {0, 0}, /* 1011 */ {0, 0}, |
| /* 1100 */ {0+LOG_LOCK_REGION, 2}, /* 1101 */ {0, 0}, |
| /* 1110 */ {0, 0}, /* 1111 */ {0, 0} |
| }; |
| int rc; /* Return code of logLockFd() */ |
| |
| assert( mRegion<ArraySize(aMap) && aMap[mRegion].iStart!=0 ); |
| |
| rc = logLockFd(pSummary, aMap[mRegion].iStart, aMap[mRegion].iLen, op); |
| if( rc!=0 ){ |
| sqlite3_mutex_leave(pSummary->mutex); |
| return rc; |
| } |
| } |
| |
| pLog->lock.mLock = mNew; |
| sqlite3_mutex_leave(pSummary->mutex); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Lock the DMH region, either with an EXCLUSIVE or SHARED lock. This |
| ** function is never called with LOG_UNLOCK - the only way the DMH region |
| ** is every completely unlocked is by by closing the file descriptor. |
| */ |
| static int logLockDMH(LogSummary *pSummary, int eLock){ |
| assert( sqlite3_mutex_held(pSummary->mutex) ); |
| assert( eLock==LOG_RDLOCK || eLock==LOG_WRLOCK ); |
| return logLockFd(pSummary, LOG_LOCK_DMH, 1, eLock); |
| } |
| |
| /* |
| ** Lock (or unlock) the MUTEX region. It is always locked using an |
| ** EXCLUSIVE, blocking lock. |
| */ |
| static int logLockMutex(LogSummary *pSummary, int eLock){ |
| assert( sqlite3_mutex_held(pSummary->mutex) ); |
| assert( eLock==LOG_WRLOCKW || eLock==LOG_UNLOCK ); |
| logLockFd(pSummary, LOG_LOCK_MUTEX, 1, eLock); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** This function intializes the connection to the log-summary identified |
| ** by struct pSummary. |
| */ |
| static int logSummaryInit( |
| LogSummary *pSummary, /* Log summary object to initialize */ |
| sqlite3_file *pFd /* File descriptor open on log file */ |
| ){ |
| int rc; /* Return Code */ |
| char *zFile; /* File name for summary file */ |
| |
| assert( pSummary->fd<0 ); |
| assert( pSummary->aData==0 ); |
| assert( pSummary->nRef>0 ); |
| assert( pSummary->zPath ); |
| |
| /* Open a file descriptor on the summary file. */ |
| zFile = sqlite3_mprintf("%s-summary", pSummary->zPath); |
| if( !zFile ){ |
| return SQLITE_NOMEM; |
| } |
| pSummary->fd = open(zFile, O_RDWR|O_CREAT, S_IWUSR|S_IRUSR); |
| sqlite3_free(zFile); |
| if( pSummary->fd<0 ){ |
| return SQLITE_IOERR; |
| } |
| |
| /* Grab an exclusive lock the summary file. Then mmap() it. |
| ** |
| ** TODO: This code needs to be enhanced to support a growable mapping. |
| ** For now, just make the mapping very large to start with. The |
| ** pages should not be allocated until they are first accessed anyhow, |
| ** so using a large mapping consumes no more resources than a smaller |
| ** one would. |
| */ |
| assert( sqlite3_mutex_held(pSummary->mutex) ); |
| rc = logLockMutex(pSummary, LOG_WRLOCKW); |
| if( rc!=SQLITE_OK ) return rc; |
| rc = logSummaryMap(pSummary, LOGSUMMARY_MMAP_INCREMENT); |
| if( rc!=SQLITE_OK ) goto out; |
| |
| /* Try to obtain an EXCLUSIVE lock on the dead-mans-hand region. If this |
| ** is possible, the contents of the log-summary file (if any) may not |
| ** be trusted. Zero the log-summary header before continuing. |
| */ |
| rc = logLockDMH(pSummary, LOG_WRLOCK); |
| if( rc==SQLITE_OK ){ |
| memset(pSummary->aData, 0, (LOGSUMMARY_HDR_NFIELD+2)*sizeof(u32) ); |
| } |
| rc = logLockDMH(pSummary, LOG_RDLOCK); |
| if( rc!=SQLITE_OK ){ |
| rc = SQLITE_IOERR; |
| } |
| |
| out: |
| logLockMutex(pSummary, LOG_UNLOCK); |
| return rc; |
| } |
| |
| /* |
| ** Open a connection to the log file associated with database zDb. The |
| ** database file does not actually have to exist. zDb is used only to |
| ** figure out the name of the log file to open. If the log file does not |
| ** exist it is created by this call. |
| ** |
| ** A SHARED lock should be held on the database file when this function |
| ** is called. The purpose of this SHARED lock is to prevent any other |
| ** client from unlinking the log or log-summary file. If another process |
| ** were to do this just after this client opened one of these files, the |
| ** system would be badly broken. |
| */ |
| int sqlite3WalOpen( |
| sqlite3_vfs *pVfs, /* vfs module to open log file with */ |
| const char *zDb, /* Name of database file */ |
| Log **ppLog /* OUT: Allocated Log handle */ |
| ){ |
| int rc = SQLITE_OK; /* Return Code */ |
| Log *pRet; /* Object to allocate and return */ |
| LogSummary *pSummary = 0; /* Summary object */ |
| sqlite3_mutex *mutex = 0; /* LOG_SUMMARY_MUTEX mutex */ |
| int flags; /* Flags passed to OsOpen() */ |
| char *zWal = 0; /* Path to WAL file */ |
| int nWal; /* Length of zWal in bytes */ |
| |
| assert( zDb ); |
| |
| /* Allocate an instance of struct Log to return. */ |
| *ppLog = 0; |
| pRet = (Log *)sqlite3MallocZero(sizeof(Log) + pVfs->szOsFile); |
| if( !pRet ) goto out; |
| pRet->pVfs = pVfs; |
| pRet->pFd = (sqlite3_file *)&pRet[1]; |
| |
| /* Normalize the path name. */ |
| zWal = sqlite3_mprintf("%s-wal", zDb); |
| if( !zWal ) goto out; |
| logNormalizePath(zWal); |
| flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_JOURNAL); |
| nWal = sqlite3Strlen30(zWal); |
| |
| /* Enter the mutex that protects the linked-list of LogSummary structures */ |
| if( sqlite3GlobalConfig.bCoreMutex ){ |
| mutex = sqlite3_mutex_alloc(LOG_SUMMARY_MUTEX); |
| } |
| sqlite3_mutex_enter(mutex); |
| |
| /* Search for an existing log summary object in the linked list. If one |
| ** cannot be found, allocate and initialize a new object. |
| */ |
| for(pSummary=pLogSummary; pSummary; pSummary=pSummary->pNext){ |
| int nPath = sqlite3Strlen30(pSummary->zPath); |
| if( nWal==nPath && 0==memcmp(pSummary->zPath, zWal, nPath) ) break; |
| } |
| if( !pSummary ){ |
| int nByte = sizeof(LogSummary) + nWal + 1; |
| pSummary = (LogSummary *)sqlite3MallocZero(nByte); |
| if( !pSummary ){ |
| rc = SQLITE_NOMEM; |
| goto out; |
| } |
| if( sqlite3GlobalConfig.bCoreMutex ){ |
| pSummary->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE); |
| } |
| pSummary->zPath = (char *)&pSummary[1]; |
| pSummary->fd = -1; |
| memcpy(pSummary->zPath, zWal, nWal); |
| pSummary->pNext = pLogSummary; |
| pLogSummary = pSummary; |
| } |
| pSummary->nRef++; |
| pRet->pSummary = pSummary; |
| |
| /* Exit the mutex protecting the linked-list of LogSummary objects. */ |
| sqlite3_mutex_leave(mutex); |
| mutex = 0; |
| |
| /* Open file handle on the log file. */ |
| rc = sqlite3OsOpen(pVfs, pSummary->zPath, pRet->pFd, flags, &flags); |
| if( rc!=SQLITE_OK ) goto out; |
| |
| /* Object pSummary is shared between all connections to the database made |
| ** by this process. So at this point it may or may not be connected to |
| ** the log-summary. If it is not, connect it. |
| */ |
| sqlite3_mutex_enter(pSummary->mutex); |
| mutex = pSummary->mutex; |
| if( pSummary->fd<0 ){ |
| rc = logSummaryInit(pSummary, pRet->pFd); |
| } |
| |
| pRet->lock.pNext = pSummary->pLock; |
| pSummary->pLock = &pRet->lock; |
| |
| out: |
| sqlite3_mutex_leave(mutex); |
| sqlite3_free(zWal); |
| if( rc!=SQLITE_OK ){ |
| assert(0); |
| if( pRet ){ |
| sqlite3OsClose(pRet->pFd); |
| sqlite3_free(pRet); |
| } |
| assert( !pSummary || pSummary->nRef==0 ); |
| sqlite3_free(pSummary); |
| } |
| *ppLog = pRet; |
| return rc; |
| } |
| |
| static int logIteratorNext( |
| LogIterator *p, /* Iterator */ |
| u32 *piPage, /* OUT: Next db page to write */ |
| u32 *piFrame /* OUT: Log frame to read from */ |
| ){ |
| u32 iMin = *piPage; |
| u32 iRet = 0xFFFFFFFF; |
| int i; |
| int nBlock = p->nFinal; |
| |
| for(i=p->nSegment-1; i>=0; i--){ |
| struct LogSegment *pSegment = &p->aSegment[i]; |
| while( pSegment->iNext<nBlock ){ |
| u32 iPg = pSegment->aDbPage[pSegment->aIndex[pSegment->iNext]]; |
| if( iPg>iMin ){ |
| if( iPg<iRet ){ |
| iRet = iPg; |
| *piFrame = i*256 + 1 + pSegment->aIndex[pSegment->iNext]; |
| } |
| break; |
| } |
| pSegment->iNext++; |
| } |
| |
| nBlock = 256; |
| } |
| |
| *piPage = iRet; |
| return (iRet==0xFFFFFFFF); |
| } |
| |
| static LogIterator *logIteratorInit(Log *pLog){ |
| u32 *aData = pLog->pSummary->aData; |
| LogIterator *p; /* Return value */ |
| int nSegment; /* Number of segments to merge */ |
| u32 iLast; /* Last frame in log */ |
| int nByte; /* Number of bytes to allocate */ |
| int i; /* Iterator variable */ |
| int nFinal; /* Number of unindexed entries */ |
| struct LogSegment *pFinal; /* Final (unindexed) segment */ |
| u8 *aTmp; /* Temp space used by merge-sort */ |
| |
| iLast = pLog->hdr.iLastPg; |
| nSegment = (iLast >> 8) + 1; |
| nFinal = (iLast & 0x000000FF); |
| |
| nByte = sizeof(LogIterator) + (nSegment-1)*sizeof(struct LogSegment) + 512; |
| p = (LogIterator *)sqlite3_malloc(nByte); |
| if( p ){ |
| memset(p, 0, nByte); |
| p->nSegment = nSegment; |
| p->nFinal = nFinal; |
| } |
| |
| for(i=0; i<nSegment-1; i++){ |
| p->aSegment[i].aDbPage = &aData[logSummaryEntry(i*256+1)]; |
| p->aSegment[i].aIndex = (u8 *)&aData[logSummaryEntry(i*256+1)+256]; |
| } |
| pFinal = &p->aSegment[nSegment-1]; |
| |
| pFinal->aDbPage = &aData[logSummaryEntry((nSegment-1)*256+1)]; |
| pFinal->aIndex = (u8 *)&pFinal[1]; |
| aTmp = &pFinal->aIndex[256]; |
| for(i=0; i<nFinal; i++){ |
| pFinal->aIndex[i] = i; |
| } |
| logMergesort8(pFinal->aDbPage, aTmp, pFinal->aIndex, &nFinal); |
| p->nFinal = nFinal; |
| |
| return p; |
| } |
| |
| /* |
| ** Free a log iterator allocated by logIteratorInit(). |
| */ |
| static void logIteratorFree(LogIterator *p){ |
| sqlite3_free(p); |
| } |
| |
| /* |
| ** Checkpoint the contents of the log file. |
| */ |
| static int logCheckpoint( |
| Log *pLog, /* Log connection */ |
| sqlite3_file *pFd, /* File descriptor open on db file */ |
| int sync_flags, /* Flags for OsSync() (or 0) */ |
| u8 *zBuf /* Temporary buffer to use */ |
| ){ |
| int rc; /* Return code */ |
| int pgsz = pLog->hdr.pgsz; /* Database page-size */ |
| LogIterator *pIter = 0; /* Log iterator context */ |
| u32 iDbpage = 0; /* Next database page to write */ |
| u32 iFrame = 0; /* Log frame containing data for iDbpage */ |
| |
| if( pLog->hdr.iLastPg==0 ){ |
| return SQLITE_OK; |
| } |
| |
| /* Allocate the iterator */ |
| pIter = logIteratorInit(pLog); |
| if( !pIter ) return SQLITE_NOMEM; |
| |
| /* Sync the log file to disk */ |
| if( sync_flags ){ |
| rc = sqlite3OsSync(pLog->pFd, sync_flags); |
| if( rc!=SQLITE_OK ) goto out; |
| } |
| |
| /* Iterate through the contents of the log, copying data to the db file. */ |
| while( 0==logIteratorNext(pIter, &iDbpage, &iFrame) ){ |
| rc = sqlite3OsRead(pLog->pFd, zBuf, pgsz, |
| logFrameOffset(iFrame, pgsz) + LOG_FRAME_HDRSIZE |
| ); |
| if( rc!=SQLITE_OK ) goto out; |
| rc = sqlite3OsWrite(pFd, zBuf, pgsz, (iDbpage-1)*pgsz); |
| if( rc!=SQLITE_OK ) goto out; |
| } |
| |
| /* Truncate the database file */ |
| rc = sqlite3OsTruncate(pFd, ((i64)pLog->hdr.nPage*(i64)pgsz)); |
| if( rc!=SQLITE_OK ) goto out; |
| |
| /* Sync the database file. If successful, update the log-summary. */ |
| if( sync_flags ){ |
| rc = sqlite3OsSync(pFd, sync_flags); |
| if( rc!=SQLITE_OK ) goto out; |
| } |
| pLog->hdr.iLastPg = 0; |
| pLog->hdr.iCheck1 = 2; |
| pLog->hdr.iCheck2 = 3; |
| logSummaryWriteHdr(pLog->pSummary, &pLog->hdr); |
| |
| /* TODO: If a crash occurs and the current log is copied into the |
| ** database there is no problem. However, if a crash occurs while |
| ** writing the next transaction into the start of the log, such that: |
| ** |
| ** * The first transaction currently in the log is left intact, but |
| ** * The second (or subsequent) transaction is damaged, |
| ** |
| ** then the database could become corrupt. |
| ** |
| ** The easiest thing to do would be to write and sync a dummy header |
| ** into the log at this point. Unfortunately, that turns out to be |
| ** an unwelcome performance hit. Alternatives are... |
| */ |
| #if 0 |
| memset(zBuf, 0, LOG_FRAME_HDRSIZE); |
| rc = sqlite3OsWrite(pLog->pFd, zBuf, LOG_FRAME_HDRSIZE, 0); |
| if( rc!=SQLITE_OK ) goto out; |
| rc = sqlite3OsSync(pLog->pFd, pLog->sync_flags); |
| #endif |
| |
| out: |
| logIteratorFree(pIter); |
| return rc; |
| } |
| |
| /* |
| ** Close a connection to a log file. |
| */ |
| int sqlite3WalClose( |
| Log *pLog, /* Log to close */ |
| sqlite3_file *pFd, /* Database file */ |
| int sync_flags, /* Flags to pass to OsSync() (or 0) */ |
| u8 *zBuf /* Buffer of at least page-size bytes */ |
| ){ |
| int rc = SQLITE_OK; |
| if( pLog ){ |
| LogLock **ppL; |
| LogSummary *pSummary = pLog->pSummary; |
| sqlite3_mutex *mutex = 0; |
| |
| sqlite3_mutex_enter(pSummary->mutex); |
| for(ppL=&pSummary->pLock; *ppL!=&pLog->lock; ppL=&(*ppL)->pNext); |
| *ppL = pLog->lock.pNext; |
| sqlite3_mutex_leave(pSummary->mutex); |
| |
| if( sqlite3GlobalConfig.bCoreMutex ){ |
| mutex = sqlite3_mutex_alloc(LOG_SUMMARY_MUTEX); |
| } |
| sqlite3_mutex_enter(mutex); |
| |
| /* Decrement the reference count on the log summary. If this is the last |
| ** reference to the log summary object in this process, the object will |
| ** be freed. If this is also the last connection to the database, then |
| ** checkpoint the database and truncate the log and log-summary files |
| ** to zero bytes in size. |
| **/ |
| pSummary->nRef--; |
| if( pSummary->nRef==0 ){ |
| int rc; |
| LogSummary **pp; |
| for(pp=&pLogSummary; *pp!=pSummary; pp=&(*pp)->pNext); |
| *pp = (*pp)->pNext; |
| |
| sqlite3_mutex_leave(mutex); |
| |
| rc = sqlite3OsLock(pFd, SQLITE_LOCK_EXCLUSIVE); |
| if( rc==SQLITE_OK ){ |
| |
| /* This is the last connection to the database (including other |
| ** processes). Do three things: |
| ** |
| ** 1. Checkpoint the db. |
| ** 2. Truncate the log file. |
| ** 3. Unlink the log-summary file. |
| */ |
| rc = logCheckpoint(pLog, pFd, sync_flags, zBuf); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3OsDelete(pLog->pVfs, pSummary->zPath, 0); |
| } |
| |
| logSummaryUnmap(pSummary, 1); |
| }else{ |
| if( rc==SQLITE_BUSY ){ |
| rc = SQLITE_OK; |
| } |
| logSummaryUnmap(pSummary, 0); |
| } |
| |
| sqlite3_mutex_free(pSummary->mutex); |
| sqlite3_free(pSummary); |
| }else{ |
| sqlite3_mutex_leave(mutex); |
| } |
| |
| /* Close the connection to the log file and free the Log handle. */ |
| sqlite3OsClose(pLog->pFd); |
| sqlite3_free(pLog); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Enter and leave the log-summary mutex. In this context, entering the |
| ** log-summary mutex means: |
| ** |
| ** 1. Obtaining mutex pLog->pSummary->mutex, and |
| ** 2. Taking an exclusive lock on the log-summary file. |
| ** |
| ** i.e. this mutex locks out other processes as well as other threads |
| ** hosted in this address space. |
| */ |
| static int logEnterMutex(Log *pLog){ |
| LogSummary *pSummary = pLog->pSummary; |
| int rc; |
| |
| sqlite3_mutex_enter(pSummary->mutex); |
| rc = logLockMutex(pSummary, LOG_WRLOCKW); |
| if( rc!=SQLITE_OK ){ |
| sqlite3_mutex_leave(pSummary->mutex); |
| } |
| return rc; |
| } |
| static void logLeaveMutex(Log *pLog){ |
| LogSummary *pSummary = pLog->pSummary; |
| logLockMutex(pSummary, LOG_UNLOCK); |
| sqlite3_mutex_leave(pSummary->mutex); |
| } |
| |
| /* |
| ** Try to read the log-summary header. Attempt to verify the header |
| ** checksum. If the checksum can be verified, copy the log-summary |
| ** header into structure pLog->hdr. If the contents of pLog->hdr are |
| ** modified by this and pChanged is not NULL, set *pChanged to 1. |
| ** Otherwise leave *pChanged unmodified. |
| ** |
| ** If the checksum cannot be verified return SQLITE_ERROR. |
| */ |
| int logSummaryTryHdr(Log *pLog, int *pChanged){ |
| u32 aCksum[2] = {1, 1}; |
| u32 aHdr[LOGSUMMARY_HDR_NFIELD+2]; |
| |
| /* First try to read the header without a lock. Verify the checksum |
| ** before returning. This will almost always work. |
| */ |
| memcpy(aHdr, pLog->pSummary->aData, sizeof(aHdr)); |
| logChecksumBytes((u8*)aHdr, sizeof(u32)*LOGSUMMARY_HDR_NFIELD, aCksum); |
| if( aCksum[0]!=aHdr[LOGSUMMARY_HDR_NFIELD] |
| || aCksum[1]!=aHdr[LOGSUMMARY_HDR_NFIELD+1] |
| ){ |
| return SQLITE_ERROR; |
| } |
| |
| if( memcmp(&pLog->hdr, aHdr, sizeof(LogSummaryHdr)) ){ |
| if( pChanged ){ |
| *pChanged = 1; |
| } |
| memcpy(&pLog->hdr, aHdr, sizeof(LogSummaryHdr)); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Read the log-summary header from the log-summary file into structure |
| ** pLog->hdr. If attempting to verify the header checksum fails, try |
| ** to recover the log before returning. |
| ** |
| ** If the log-summary header is successfully read, return SQLITE_OK. |
| ** Otherwise an SQLite error code. |
| */ |
| int logSummaryReadHdr(Log *pLog, int *pChanged){ |
| int rc; |
| |
| /* First try to read the header without a lock. Verify the checksum |
| ** before returning. This will almost always work. |
| */ |
| if( SQLITE_OK==logSummaryTryHdr(pLog, pChanged) ){ |
| return SQLITE_OK; |
| } |
| |
| /* If the first attempt to read the header failed, lock the log-summary |
| ** file and try again. If the header checksum verification fails this |
| ** time as well, run log recovery. |
| */ |
| if( SQLITE_OK==(rc = logEnterMutex(pLog)) ){ |
| if( SQLITE_OK!=logSummaryTryHdr(pLog, pChanged) ){ |
| if( pChanged ){ |
| *pChanged = 1; |
| } |
| rc = logSummaryRecover(pLog->pSummary, pLog->pFd); |
| if( rc==SQLITE_OK ){ |
| rc = logSummaryTryHdr(pLog, 0); |
| } |
| } |
| logLeaveMutex(pLog); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Lock a snapshot. |
| ** |
| ** If this call obtains a new read-lock and the database contents have been |
| ** modified since the most recent call to LogCloseSnapshot() on this Log |
| ** connection, then *pChanged is set to 1 before returning. Otherwise, it |
| ** is left unmodified. This is used by the pager layer to determine whether |
| ** or not any cached pages may be safely reused. |
| */ |
| int sqlite3WalOpenSnapshot(Log *pLog, int *pChanged){ |
| int rc = SQLITE_OK; |
| if( pLog->isLocked==0 ){ |
| int nAttempt; |
| |
| /* Obtain a snapshot-lock on the log-summary file. The procedure |
| ** for obtaining the snapshot log is: |
| ** |
| ** 1. Attempt a SHARED lock on regions A and B. |
| ** 2a. If step 1 is successful, drop the lock on region B. |
| ** 2b. If step 1 is unsuccessful, attempt a SHARED lock on region D. |
| ** 3. Repeat the above until the lock attempt in step 1 or 2b is |
| ** successful. |
| ** |
| ** If neither of the locks can be obtained after 5 tries, presumably |
| ** something is wrong (i.e. a process not following the locking protocol). |
| ** Return an error code in this case. |
| */ |
| rc = SQLITE_BUSY; |
| for(nAttempt=0; nAttempt<5 && rc==SQLITE_BUSY; nAttempt++){ |
| rc = logLockRegion(pLog, LOG_REGION_A|LOG_REGION_B, LOG_RDLOCK); |
| if( rc==SQLITE_BUSY ){ |
| rc = logLockRegion(pLog, LOG_REGION_D, LOG_RDLOCK); |
| if( rc==SQLITE_OK ) pLog->isLocked = LOG_REGION_D; |
| }else{ |
| logLockRegion(pLog, LOG_REGION_B, LOG_UNLOCK); |
| pLog->isLocked = LOG_REGION_A; |
| } |
| } |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| rc = logSummaryReadHdr(pLog, pChanged); |
| if( rc!=SQLITE_OK ){ |
| /* An error occured while attempting log recovery. */ |
| sqlite3WalCloseSnapshot(pLog); |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Unlock the current snapshot. |
| */ |
| void sqlite3WalCloseSnapshot(Log *pLog){ |
| if( pLog->isLocked ){ |
| assert( pLog->isLocked==LOG_REGION_A || pLog->isLocked==LOG_REGION_D ); |
| logLockRegion(pLog, pLog->isLocked, LOG_UNLOCK); |
| } |
| pLog->isLocked = 0; |
| } |
| |
| /* |
| ** Read a page from the log, if it is present. |
| */ |
| int sqlite3WalRead(Log *pLog, Pgno pgno, int *pInLog, u8 *pOut){ |
| u32 iRead = 0; |
| u32 *aData = pLog->pSummary->aData; |
| int iFrame = (pLog->hdr.iLastPg & 0xFFFFFF00); |
| |
| assert( pLog->isLocked ); |
| |
| /* Do a linear search of the unindexed block of page-numbers (if any) |
| ** at the end of the log-summary. An alternative to this would be to |
| ** build an index in private memory each time a read transaction is |
| ** opened on a new snapshot. |
| */ |
| if( pLog->hdr.iLastPg ){ |
| u32 *pi = &aData[logSummaryEntry(pLog->hdr.iLastPg)]; |
| u32 *piStop = pi - (pLog->hdr.iLastPg & 0xFF); |
| while( *pi!=pgno && pi!=piStop ) pi--; |
| if( pi!=piStop ){ |
| iRead = (pi-piStop) + iFrame; |
| } |
| } |
| assert( iRead==0 || aData[logSummaryEntry(iRead)]==pgno ); |
| |
| while( iRead==0 && iFrame>0 ){ |
| int iLow = 0; |
| int iHigh = 255; |
| u32 *aFrame; |
| u8 *aIndex; |
| |
| iFrame -= 256; |
| aFrame = &aData[logSummaryEntry(iFrame+1)]; |
| aIndex = (u8 *)&aFrame[256]; |
| |
| while( iLow<=iHigh ){ |
| int iTest = (iLow+iHigh)>>1; |
| u32 iPg = aFrame[aIndex[iTest]]; |
| |
| if( iPg==pgno ){ |
| iRead = iFrame + 1 + aIndex[iTest]; |
| break; |
| } |
| else if( iPg<pgno ){ |
| iLow = iTest+1; |
| }else{ |
| iHigh = iTest-1; |
| } |
| } |
| } |
| assert( iRead==0 || aData[logSummaryEntry(iRead)]==pgno ); |
| |
| /* If iRead is non-zero, then it is the log frame number that contains the |
| ** required page. Read and return data from the log file. |
| */ |
| if( iRead ){ |
| i64 iOffset = logFrameOffset(iRead, pLog->hdr.pgsz) + LOG_FRAME_HDRSIZE; |
| *pInLog = 1; |
| return sqlite3OsRead(pLog->pFd, pOut, pLog->hdr.pgsz, iOffset); |
| } |
| |
| *pInLog = 0; |
| return SQLITE_OK; |
| } |
| |
| |
| /* |
| ** Set *pPgno to the size of the database file (or zero, if unknown). |
| */ |
| void sqlite3WalDbsize(Log *pLog, Pgno *pPgno){ |
| assert( pLog->isLocked ); |
| *pPgno = pLog->hdr.nPage; |
| } |
| |
| /* |
| ** This function returns SQLITE_OK if the caller may write to the database. |
| ** Otherwise, if the caller is operating on a snapshot that has already |
| ** been overwritten by another writer, SQLITE_BUSY is returned. |
| */ |
| int sqlite3WalWriteLock(Log *pLog, int op){ |
| assert( pLog->isLocked ); |
| if( op ){ |
| |
| /* Obtain the writer lock */ |
| int rc = logLockRegion(pLog, LOG_REGION_C|LOG_REGION_D, LOG_WRLOCK); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| /* If this is connection is a region D reader, then the SHARED lock on |
| ** region D has just been upgraded to EXCLUSIVE. But no lock at all is |
| ** held on region A. This means that if the write-transaction is committed |
| ** and this connection downgrades to a reader, it will be left with no |
| ** lock at all. And so its snapshot could get clobbered by a checkpoint |
| ** operation. |
| ** |
| ** To stop this from happening, grab a SHARED lock on region A now. |
| ** This should always be successful, as the only time a client holds |
| ** an EXCLUSIVE lock on region A, it must also be holding an EXCLUSIVE |
| ** lock on region C (a checkpointer does this). This is not possible, |
| ** as this connection currently has the EXCLUSIVE lock on region C. |
| */ |
| if( pLog->isLocked==LOG_REGION_D ){ |
| logLockRegion(pLog, LOG_REGION_A, LOG_RDLOCK); |
| pLog->isLocked = LOG_REGION_A; |
| } |
| |
| /* If this connection is not reading the most recent database snapshot, |
| ** it is not possible to write to the database. In this case release |
| ** the write locks and return SQLITE_BUSY. |
| */ |
| if( memcmp(&pLog->hdr, pLog->pSummary->aData, sizeof(pLog->hdr)) ){ |
| logLockRegion(pLog, LOG_REGION_C|LOG_REGION_D, LOG_UNLOCK); |
| return SQLITE_BUSY; |
| } |
| pLog->isWriteLocked = 1; |
| |
| }else if( pLog->isWriteLocked ){ |
| logLockRegion(pLog, LOG_REGION_C|LOG_REGION_D, LOG_UNLOCK); |
| memcpy(&pLog->hdr, pLog->pSummary->aData, sizeof(pLog->hdr)); |
| pLog->isWriteLocked = 0; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** The log handle passed to this function must be holding the write-lock. |
| ** |
| ** If any data has been written (but not committed) to the log file, this |
| ** function moves the write-pointer back to the start of the transaction. |
| ** |
| ** Additionally, the callback function is invoked for each frame written |
| ** to the log since the start of the transaction. If the callback returns |
| ** other than SQLITE_OK, it is not invoked again and the error code is |
| ** returned to the caller. |
| ** |
| ** Otherwise, if the callback function does not return an error, this |
| ** function returns SQLITE_OK. |
| */ |
| int sqlite3WalUndo(Log *pLog, int (*xUndo)(void *, Pgno), void *pUndoCtx){ |
| int rc = SQLITE_OK; |
| Pgno iMax = pLog->hdr.iLastPg; |
| Pgno iFrame; |
| |
| assert( pLog->isWriteLocked ); |
| logSummaryReadHdr(pLog, 0); |
| for(iFrame=pLog->hdr.iLastPg+1; iFrame<=iMax && rc==SQLITE_OK; iFrame++){ |
| rc = xUndo(pUndoCtx, pLog->pSummary->aData[logSummaryEntry(iFrame)]); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Return true if data has been written but not committed to the log file. |
| */ |
| int sqlite3WalDirty(Log *pLog){ |
| assert( pLog->isWriteLocked ); |
| return( pLog->hdr.iLastPg!=((LogSummaryHdr*)pLog->pSummary->aData)->iLastPg ); |
| } |
| |
| /* |
| ** Write a set of frames to the log. The caller must hold at least a |
| ** RESERVED lock on the database file. |
| */ |
| int sqlite3WalFrames( |
| Log *pLog, /* Log handle to write to */ |
| int nPgsz, /* Database page-size in bytes */ |
| PgHdr *pList, /* List of dirty pages to write */ |
| Pgno nTruncate, /* Database size after this commit */ |
| int isCommit, /* True if this is a commit */ |
| int sync_flags /* Flags to pass to OsSync() (or 0) */ |
| ){ |
| int rc; /* Used to catch return codes */ |
| u32 iFrame; /* Next frame address */ |
| u8 aFrame[LOG_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ |
| PgHdr *p; /* Iterator to run through pList with. */ |
| u32 aCksum[2]; /* Checksums */ |
| PgHdr *pLast; /* Last frame in list */ |
| int nLast = 0; /* Number of extra copies of last page */ |
| |
| assert( LOG_FRAME_HDRSIZE==(4 * 2 + 2*sizeof(u32)) ); |
| assert( pList ); |
| |
| /* If this is the first frame written into the log, write the log |
| ** header to the start of the log file. See comments at the top of |
| ** this file for a description of the log-header format. |
| */ |
| assert( LOG_FRAME_HDRSIZE>=LOG_HDRSIZE ); |
| iFrame = pLog->hdr.iLastPg; |
| if( iFrame==0 ){ |
| sqlite3Put4byte(aFrame, nPgsz); |
| sqlite3_randomness(8, &aFrame[4]); |
| pLog->hdr.iCheck1 = sqlite3Get4byte(&aFrame[4]); |
| pLog->hdr.iCheck2 = sqlite3Get4byte(&aFrame[8]); |
| rc = sqlite3OsWrite(pLog->pFd, aFrame, LOG_HDRSIZE, 0); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| } |
| |
| aCksum[0] = pLog->hdr.iCheck1; |
| aCksum[1] = pLog->hdr.iCheck2; |
| |
| /* Write the log file. */ |
| for(p=pList; p; p=p->pDirty){ |
| u32 nDbsize; /* Db-size field for frame header */ |
| i64 iOffset; /* Write offset in log file */ |
| |
| iOffset = logFrameOffset(++iFrame, nPgsz); |
| |
| /* Populate and write the frame header */ |
| nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0; |
| logEncodeFrame(aCksum, p->pgno, nDbsize, nPgsz, p->pData, aFrame); |
| rc = sqlite3OsWrite(pLog->pFd, aFrame, sizeof(aFrame), iOffset); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| /* Write the page data */ |
| rc = sqlite3OsWrite(pLog->pFd, p->pData, nPgsz, iOffset + sizeof(aFrame)); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| pLast = p; |
| } |
| |
| /* Sync the log file if the 'isSync' flag was specified. */ |
| if( sync_flags ){ |
| i64 iSegment = sqlite3OsSectorSize(pLog->pFd); |
| i64 iOffset = logFrameOffset(iFrame+1, nPgsz); |
| |
| assert( isCommit ); |
| |
| if( iSegment<SQLITE_DEFAULT_SECTOR_SIZE ){ |
| iSegment = SQLITE_DEFAULT_SECTOR_SIZE; |
| } |
| iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment); |
| while( iOffset<iSegment ){ |
| logEncodeFrame(aCksum,pLast->pgno,nTruncate,nPgsz,pLast->pData,aFrame); |
| rc = sqlite3OsWrite(pLog->pFd, aFrame, sizeof(aFrame), iOffset); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| iOffset += LOG_FRAME_HDRSIZE; |
| rc = sqlite3OsWrite(pLog->pFd, pLast->pData, nPgsz, iOffset); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| nLast++; |
| iOffset += nPgsz; |
| } |
| |
| rc = sqlite3OsSync(pLog->pFd, sync_flags); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| } |
| |
| /* Append data to the log summary. It is not necessary to lock the |
| ** log-summary to do this as the RESERVED lock held on the db file |
| ** guarantees that there are no other writers, and no data that may |
| ** be in use by existing readers is being overwritten. |
| */ |
| iFrame = pLog->hdr.iLastPg; |
| for(p=pList; p; p=p->pDirty){ |
| iFrame++; |
| logSummaryAppend(pLog->pSummary, iFrame, p->pgno); |
| } |
| while( nLast>0 ){ |
| iFrame++; |
| nLast--; |
| logSummaryAppend(pLog->pSummary, iFrame, pLast->pgno); |
| } |
| |
| /* Update the private copy of the header. */ |
| pLog->hdr.pgsz = nPgsz; |
| pLog->hdr.iLastPg = iFrame; |
| if( isCommit ){ |
| pLog->hdr.iChange++; |
| pLog->hdr.nPage = nTruncate; |
| } |
| pLog->hdr.iCheck1 = aCksum[0]; |
| pLog->hdr.iCheck2 = aCksum[1]; |
| |
| /* If this is a commit, update the log-summary header too. */ |
| if( isCommit && SQLITE_OK==(rc = logEnterMutex(pLog)) ){ |
| logSummaryWriteHdr(pLog->pSummary, &pLog->hdr); |
| logLeaveMutex(pLog); |
| pLog->iCallback = iFrame; |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Checkpoint the database: |
| ** |
| ** 1. Wait for an EXCLUSIVE lock on regions B and C. |
| ** 2. Wait for an EXCLUSIVE lock on region A. |
| ** 3. Copy the contents of the log into the database file. |
| ** 4. Zero the log-summary header (so new readers will ignore the log). |
| ** 5. Drop the locks obtained in steps 1 and 2. |
| */ |
| int sqlite3WalCheckpoint( |
| Log *pLog, /* Log connection */ |
| sqlite3_file *pFd, /* File descriptor open on db file */ |
| int sync_flags, /* Flags to sync db file with (or 0) */ |
| u8 *zBuf, /* Temporary buffer to use */ |
| int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ |
| void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ |
| ){ |
| int rc; /* Return code */ |
| |
| assert( !pLog->isLocked ); |
| |
| /* Wait for an EXCLUSIVE lock on regions B and C. */ |
| do { |
| rc = logLockRegion(pLog, LOG_REGION_B|LOG_REGION_C, LOG_WRLOCK); |
| }while( rc==SQLITE_BUSY && xBusyHandler(pBusyHandlerArg) ); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* Wait for an EXCLUSIVE lock on region A. */ |
| do { |
| rc = logLockRegion(pLog, LOG_REGION_A, LOG_WRLOCK); |
| }while( rc==SQLITE_BUSY && xBusyHandler(pBusyHandlerArg) ); |
| if( rc!=SQLITE_OK ){ |
| logLockRegion(pLog, LOG_REGION_B|LOG_REGION_C, LOG_UNLOCK); |
| return rc; |
| } |
| |
| /* Copy data from the log to the database file. */ |
| rc = logSummaryReadHdr(pLog, 0); |
| if( rc==SQLITE_OK ){ |
| rc = logCheckpoint(pLog, pFd, sync_flags, zBuf); |
| } |
| |
| /* Release the locks. */ |
| logLockRegion(pLog, LOG_REGION_A|LOG_REGION_B|LOG_REGION_C, LOG_UNLOCK); |
| return rc; |
| } |
| |
| int sqlite3WalCallback(Log *pLog){ |
| u32 ret = 0; |
| if( pLog ){ |
| ret = pLog->iCallback; |
| pLog->iCallback = 0; |
| } |
| return (int)ret; |
| } |