| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** |
| ** Memory allocation functions used throughout sqlite. |
| */ |
| #include "sqliteInt.h" |
| #include <stdarg.h> |
| |
| /* |
| ** This routine runs when the memory allocator sees that the |
| ** total memory allocation is about to exceed the soft heap |
| ** limit. |
| */ |
| static void softHeapLimitEnforcer( |
| void *NotUsed, |
| sqlite3_int64 NotUsed2, |
| int allocSize |
| ){ |
| UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| sqlite3_release_memory(allocSize); |
| } |
| |
| /* |
| ** Set the soft heap-size limit for the library. Passing a zero or |
| ** negative value indicates no limit. |
| */ |
| void sqlite3_soft_heap_limit(int n){ |
| sqlite3_uint64 iLimit; |
| int overage; |
| if( n<0 ){ |
| iLimit = 0; |
| }else{ |
| iLimit = n; |
| } |
| #ifndef SQLITE_OMIT_AUTOINIT |
| sqlite3_initialize(); |
| #endif |
| if( iLimit>0 ){ |
| sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit); |
| }else{ |
| sqlite3MemoryAlarm(0, 0, 0); |
| } |
| overage = (int)(sqlite3_memory_used() - (i64)n); |
| if( overage>0 ){ |
| sqlite3_release_memory(overage); |
| } |
| } |
| |
| /* |
| ** Attempt to release up to n bytes of non-essential memory currently |
| ** held by SQLite. An example of non-essential memory is memory used to |
| ** cache database pages that are not currently in use. |
| */ |
| int sqlite3_release_memory(int n){ |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| int nRet = 0; |
| nRet += sqlite3PcacheReleaseMemory(n-nRet); |
| return nRet; |
| #else |
| UNUSED_PARAMETER(n); |
| return SQLITE_OK; |
| #endif |
| } |
| |
| /* |
| ** State information local to the memory allocation subsystem. |
| */ |
| static SQLITE_WSD struct Mem0Global { |
| /* Number of free pages for scratch and page-cache memory */ |
| u32 nScratchFree; |
| u32 nPageFree; |
| |
| sqlite3_mutex *mutex; /* Mutex to serialize access */ |
| |
| /* |
| ** The alarm callback and its arguments. The mem0.mutex lock will |
| ** be held while the callback is running. Recursive calls into |
| ** the memory subsystem are allowed, but no new callbacks will be |
| ** issued. |
| */ |
| sqlite3_int64 alarmThreshold; |
| void (*alarmCallback)(void*, sqlite3_int64,int); |
| void *alarmArg; |
| |
| /* |
| ** Pointers to the end of sqlite3GlobalConfig.pScratch and |
| ** sqlite3GlobalConfig.pPage to a block of memory that records |
| ** which pages are available. |
| */ |
| u32 *aScratchFree; |
| u32 *aPageFree; |
| } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; |
| |
| #define mem0 GLOBAL(struct Mem0Global, mem0) |
| |
| /* |
| ** Initialize the memory allocation subsystem. |
| */ |
| int sqlite3MallocInit(void){ |
| if( sqlite3GlobalConfig.m.xMalloc==0 ){ |
| sqlite3MemSetDefault(); |
| } |
| memset(&mem0, 0, sizeof(mem0)); |
| if( sqlite3GlobalConfig.bCoreMutex ){ |
| mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); |
| } |
| if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 |
| && sqlite3GlobalConfig.nScratch>=0 ){ |
| int i; |
| sqlite3GlobalConfig.szScratch = ROUNDDOWN8(sqlite3GlobalConfig.szScratch-4); |
| mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch) |
| [sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch]; |
| for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; } |
| mem0.nScratchFree = sqlite3GlobalConfig.nScratch; |
| }else{ |
| sqlite3GlobalConfig.pScratch = 0; |
| sqlite3GlobalConfig.szScratch = 0; |
| } |
| if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512 |
| && sqlite3GlobalConfig.nPage>=1 ){ |
| int i; |
| int overhead; |
| int sz = ROUNDDOWN8(sqlite3GlobalConfig.szPage); |
| int n = sqlite3GlobalConfig.nPage; |
| overhead = (4*n + sz - 1)/sz; |
| sqlite3GlobalConfig.nPage -= overhead; |
| mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage) |
| [sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage]; |
| for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; } |
| mem0.nPageFree = sqlite3GlobalConfig.nPage; |
| }else{ |
| sqlite3GlobalConfig.pPage = 0; |
| sqlite3GlobalConfig.szPage = 0; |
| } |
| return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); |
| } |
| |
| /* |
| ** Deinitialize the memory allocation subsystem. |
| */ |
| void sqlite3MallocEnd(void){ |
| if( sqlite3GlobalConfig.m.xShutdown ){ |
| sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); |
| } |
| memset(&mem0, 0, sizeof(mem0)); |
| } |
| |
| /* |
| ** Return the amount of memory currently checked out. |
| */ |
| sqlite3_int64 sqlite3_memory_used(void){ |
| int n, mx; |
| sqlite3_int64 res; |
| sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); |
| res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ |
| return res; |
| } |
| |
| /* |
| ** Return the maximum amount of memory that has ever been |
| ** checked out since either the beginning of this process |
| ** or since the most recent reset. |
| */ |
| sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ |
| int n, mx; |
| sqlite3_int64 res; |
| sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); |
| res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ |
| return res; |
| } |
| |
| /* |
| ** Change the alarm callback |
| */ |
| int sqlite3MemoryAlarm( |
| void(*xCallback)(void *pArg, sqlite3_int64 used,int N), |
| void *pArg, |
| sqlite3_int64 iThreshold |
| ){ |
| sqlite3_mutex_enter(mem0.mutex); |
| mem0.alarmCallback = xCallback; |
| mem0.alarmArg = pArg; |
| mem0.alarmThreshold = iThreshold; |
| sqlite3_mutex_leave(mem0.mutex); |
| return SQLITE_OK; |
| } |
| |
| #ifndef SQLITE_OMIT_DEPRECATED |
| /* |
| ** Deprecated external interface. Internal/core SQLite code |
| ** should call sqlite3MemoryAlarm. |
| */ |
| int sqlite3_memory_alarm( |
| void(*xCallback)(void *pArg, sqlite3_int64 used,int N), |
| void *pArg, |
| sqlite3_int64 iThreshold |
| ){ |
| return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); |
| } |
| #endif |
| |
| /* |
| ** Trigger the alarm |
| */ |
| static void sqlite3MallocAlarm(int nByte){ |
| void (*xCallback)(void*,sqlite3_int64,int); |
| sqlite3_int64 nowUsed; |
| void *pArg; |
| if( mem0.alarmCallback==0 ) return; |
| xCallback = mem0.alarmCallback; |
| nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
| pArg = mem0.alarmArg; |
| mem0.alarmCallback = 0; |
| sqlite3_mutex_leave(mem0.mutex); |
| xCallback(pArg, nowUsed, nByte); |
| sqlite3_mutex_enter(mem0.mutex); |
| mem0.alarmCallback = xCallback; |
| mem0.alarmArg = pArg; |
| } |
| |
| /* |
| ** Do a memory allocation with statistics and alarms. Assume the |
| ** lock is already held. |
| */ |
| static int mallocWithAlarm(int n, void **pp){ |
| int nFull; |
| void *p; |
| assert( sqlite3_mutex_held(mem0.mutex) ); |
| nFull = sqlite3GlobalConfig.m.xRoundup(n); |
| sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); |
| if( mem0.alarmCallback!=0 ){ |
| int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
| if( nUsed+nFull >= mem0.alarmThreshold ){ |
| sqlite3MallocAlarm(nFull); |
| } |
| } |
| p = sqlite3GlobalConfig.m.xMalloc(nFull); |
| if( p==0 && mem0.alarmCallback ){ |
| sqlite3MallocAlarm(nFull); |
| p = sqlite3GlobalConfig.m.xMalloc(nFull); |
| } |
| if( p ){ |
| nFull = sqlite3MallocSize(p); |
| sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); |
| } |
| *pp = p; |
| return nFull; |
| } |
| |
| /* |
| ** Allocate memory. This routine is like sqlite3_malloc() except that it |
| ** assumes the memory subsystem has already been initialized. |
| */ |
| void *sqlite3Malloc(int n){ |
| void *p; |
| if( n<=0 || n>=0x7fffff00 ){ |
| /* A memory allocation of a number of bytes which is near the maximum |
| ** signed integer value might cause an integer overflow inside of the |
| ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving |
| ** 255 bytes of overhead. SQLite itself will never use anything near |
| ** this amount. The only way to reach the limit is with sqlite3_malloc() */ |
| p = 0; |
| }else if( sqlite3GlobalConfig.bMemstat ){ |
| sqlite3_mutex_enter(mem0.mutex); |
| mallocWithAlarm(n, &p); |
| sqlite3_mutex_leave(mem0.mutex); |
| }else{ |
| p = sqlite3GlobalConfig.m.xMalloc(n); |
| } |
| return p; |
| } |
| |
| /* |
| ** This version of the memory allocation is for use by the application. |
| ** First make sure the memory subsystem is initialized, then do the |
| ** allocation. |
| */ |
| void *sqlite3_malloc(int n){ |
| #ifndef SQLITE_OMIT_AUTOINIT |
| if( sqlite3_initialize() ) return 0; |
| #endif |
| return sqlite3Malloc(n); |
| } |
| |
| /* |
| ** Each thread may only have a single outstanding allocation from |
| ** xScratchMalloc(). We verify this constraint in the single-threaded |
| ** case by setting scratchAllocOut to 1 when an allocation |
| ** is outstanding clearing it when the allocation is freed. |
| */ |
| #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
| static int scratchAllocOut = 0; |
| #endif |
| |
| |
| /* |
| ** Allocate memory that is to be used and released right away. |
| ** This routine is similar to alloca() in that it is not intended |
| ** for situations where the memory might be held long-term. This |
| ** routine is intended to get memory to old large transient data |
| ** structures that would not normally fit on the stack of an |
| ** embedded processor. |
| */ |
| void *sqlite3ScratchMalloc(int n){ |
| void *p; |
| assert( n>0 ); |
| |
| #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
| /* Verify that no more than one scratch allocation per thread |
| ** is outstanding at one time. (This is only checked in the |
| ** single-threaded case since checking in the multi-threaded case |
| ** would be much more complicated.) */ |
| assert( scratchAllocOut==0 ); |
| #endif |
| |
| if( sqlite3GlobalConfig.szScratch<n ){ |
| goto scratch_overflow; |
| }else{ |
| sqlite3_mutex_enter(mem0.mutex); |
| if( mem0.nScratchFree==0 ){ |
| sqlite3_mutex_leave(mem0.mutex); |
| goto scratch_overflow; |
| }else{ |
| int i; |
| i = mem0.aScratchFree[--mem0.nScratchFree]; |
| i *= sqlite3GlobalConfig.szScratch; |
| sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); |
| sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); |
| sqlite3_mutex_leave(mem0.mutex); |
| p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i]; |
| assert( (((u8*)p - (u8*)0) & 7)==0 ); |
| } |
| } |
| #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
| scratchAllocOut = p!=0; |
| #endif |
| |
| return p; |
| |
| scratch_overflow: |
| if( sqlite3GlobalConfig.bMemstat ){ |
| sqlite3_mutex_enter(mem0.mutex); |
| sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); |
| n = mallocWithAlarm(n, &p); |
| if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n); |
| sqlite3_mutex_leave(mem0.mutex); |
| }else{ |
| p = sqlite3GlobalConfig.m.xMalloc(n); |
| } |
| sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); |
| #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
| scratchAllocOut = p!=0; |
| #endif |
| return p; |
| } |
| void sqlite3ScratchFree(void *p){ |
| if( p ){ |
| |
| #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
| /* Verify that no more than one scratch allocation per thread |
| ** is outstanding at one time. (This is only checked in the |
| ** single-threaded case since checking in the multi-threaded case |
| ** would be much more complicated.) */ |
| assert( scratchAllocOut==1 ); |
| scratchAllocOut = 0; |
| #endif |
| |
| if( sqlite3GlobalConfig.pScratch==0 |
| || p<sqlite3GlobalConfig.pScratch |
| || p>=(void*)mem0.aScratchFree ){ |
| assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); |
| sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| if( sqlite3GlobalConfig.bMemstat ){ |
| int iSize = sqlite3MallocSize(p); |
| sqlite3_mutex_enter(mem0.mutex); |
| sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); |
| sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); |
| sqlite3GlobalConfig.m.xFree(p); |
| sqlite3_mutex_leave(mem0.mutex); |
| }else{ |
| sqlite3GlobalConfig.m.xFree(p); |
| } |
| }else{ |
| int i; |
| i = (int)((u8*)p - (u8*)sqlite3GlobalConfig.pScratch); |
| i /= sqlite3GlobalConfig.szScratch; |
| assert( i>=0 && i<sqlite3GlobalConfig.nScratch ); |
| sqlite3_mutex_enter(mem0.mutex); |
| assert( mem0.nScratchFree<(u32)sqlite3GlobalConfig.nScratch ); |
| mem0.aScratchFree[mem0.nScratchFree++] = i; |
| sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); |
| sqlite3_mutex_leave(mem0.mutex); |
| } |
| } |
| } |
| |
| /* |
| ** TRUE if p is a lookaside memory allocation from db |
| */ |
| #ifndef SQLITE_OMIT_LOOKASIDE |
| static int isLookaside(sqlite3 *db, void *p){ |
| return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd; |
| } |
| #else |
| #define isLookaside(A,B) 0 |
| #endif |
| |
| /* |
| ** Return the size of a memory allocation previously obtained from |
| ** sqlite3Malloc() or sqlite3_malloc(). |
| */ |
| int sqlite3MallocSize(void *p){ |
| assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
| return sqlite3GlobalConfig.m.xSize(p); |
| } |
| int sqlite3DbMallocSize(sqlite3 *db, void *p){ |
| assert( db==0 || sqlite3_mutex_held(db->mutex) ); |
| if( isLookaside(db, p) ){ |
| return db->lookaside.sz; |
| }else{ |
| assert( sqlite3MemdebugHasType(p, |
| db ? (MEMTYPE_DB|MEMTYPE_HEAP) : MEMTYPE_HEAP) ); |
| return sqlite3GlobalConfig.m.xSize(p); |
| } |
| } |
| |
| /* |
| ** Free memory previously obtained from sqlite3Malloc(). |
| */ |
| void sqlite3_free(void *p){ |
| if( p==0 ) return; |
| assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
| if( sqlite3GlobalConfig.bMemstat ){ |
| sqlite3_mutex_enter(mem0.mutex); |
| sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); |
| sqlite3GlobalConfig.m.xFree(p); |
| sqlite3_mutex_leave(mem0.mutex); |
| }else{ |
| sqlite3GlobalConfig.m.xFree(p); |
| } |
| } |
| |
| /* |
| ** Free memory that might be associated with a particular database |
| ** connection. |
| */ |
| void sqlite3DbFree(sqlite3 *db, void *p){ |
| assert( db==0 || sqlite3_mutex_held(db->mutex) ); |
| if( isLookaside(db, p) ){ |
| LookasideSlot *pBuf = (LookasideSlot*)p; |
| pBuf->pNext = db->lookaside.pFree; |
| db->lookaside.pFree = pBuf; |
| db->lookaside.nOut--; |
| }else{ |
| assert( sqlite3MemdebugHasType(p, MEMTYPE_DB|MEMTYPE_HEAP) ); |
| sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| sqlite3_free(p); |
| } |
| } |
| |
| /* |
| ** Change the size of an existing memory allocation |
| */ |
| void *sqlite3Realloc(void *pOld, int nBytes){ |
| int nOld, nNew; |
| void *pNew; |
| if( pOld==0 ){ |
| return sqlite3Malloc(nBytes); |
| } |
| if( nBytes<=0 ){ |
| sqlite3_free(pOld); |
| return 0; |
| } |
| if( nBytes>=0x7fffff00 ){ |
| /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ |
| return 0; |
| } |
| nOld = sqlite3MallocSize(pOld); |
| nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); |
| if( nOld==nNew ){ |
| pNew = pOld; |
| }else if( sqlite3GlobalConfig.bMemstat ){ |
| sqlite3_mutex_enter(mem0.mutex); |
| sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); |
| if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= |
| mem0.alarmThreshold ){ |
| sqlite3MallocAlarm(nNew-nOld); |
| } |
| assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); |
| pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
| if( pNew==0 && mem0.alarmCallback ){ |
| sqlite3MallocAlarm(nBytes); |
| pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
| } |
| if( pNew ){ |
| nNew = sqlite3MallocSize(pNew); |
| sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); |
| } |
| sqlite3_mutex_leave(mem0.mutex); |
| }else{ |
| pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
| } |
| return pNew; |
| } |
| |
| /* |
| ** The public interface to sqlite3Realloc. Make sure that the memory |
| ** subsystem is initialized prior to invoking sqliteRealloc. |
| */ |
| void *sqlite3_realloc(void *pOld, int n){ |
| #ifndef SQLITE_OMIT_AUTOINIT |
| if( sqlite3_initialize() ) return 0; |
| #endif |
| return sqlite3Realloc(pOld, n); |
| } |
| |
| |
| /* |
| ** Allocate and zero memory. |
| */ |
| void *sqlite3MallocZero(int n){ |
| void *p = sqlite3Malloc(n); |
| if( p ){ |
| memset(p, 0, n); |
| } |
| return p; |
| } |
| |
| /* |
| ** Allocate and zero memory. If the allocation fails, make |
| ** the mallocFailed flag in the connection pointer. |
| */ |
| void *sqlite3DbMallocZero(sqlite3 *db, int n){ |
| void *p = sqlite3DbMallocRaw(db, n); |
| if( p ){ |
| memset(p, 0, n); |
| } |
| return p; |
| } |
| |
| /* |
| ** Allocate and zero memory. If the allocation fails, make |
| ** the mallocFailed flag in the connection pointer. |
| ** |
| ** If db!=0 and db->mallocFailed is true (indicating a prior malloc |
| ** failure on the same database connection) then always return 0. |
| ** Hence for a particular database connection, once malloc starts |
| ** failing, it fails consistently until mallocFailed is reset. |
| ** This is an important assumption. There are many places in the |
| ** code that do things like this: |
| ** |
| ** int *a = (int*)sqlite3DbMallocRaw(db, 100); |
| ** int *b = (int*)sqlite3DbMallocRaw(db, 200); |
| ** if( b ) a[10] = 9; |
| ** |
| ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed |
| ** that all prior mallocs (ex: "a") worked too. |
| */ |
| void *sqlite3DbMallocRaw(sqlite3 *db, int n){ |
| void *p; |
| assert( db==0 || sqlite3_mutex_held(db->mutex) ); |
| #ifndef SQLITE_OMIT_LOOKASIDE |
| if( db ){ |
| LookasideSlot *pBuf; |
| if( db->mallocFailed ){ |
| return 0; |
| } |
| if( db->lookaside.bEnabled && n<=db->lookaside.sz |
| && (pBuf = db->lookaside.pFree)!=0 ){ |
| db->lookaside.pFree = pBuf->pNext; |
| db->lookaside.nOut++; |
| if( db->lookaside.nOut>db->lookaside.mxOut ){ |
| db->lookaside.mxOut = db->lookaside.nOut; |
| } |
| return (void*)pBuf; |
| } |
| } |
| #else |
| if( db && db->mallocFailed ){ |
| return 0; |
| } |
| #endif |
| p = sqlite3Malloc(n); |
| if( !p && db ){ |
| db->mallocFailed = 1; |
| } |
| sqlite3MemdebugSetType(p, |
| (db && db->lookaside.bEnabled) ? MEMTYPE_DB : MEMTYPE_HEAP); |
| return p; |
| } |
| |
| /* |
| ** Resize the block of memory pointed to by p to n bytes. If the |
| ** resize fails, set the mallocFailed flag in the connection object. |
| */ |
| void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ |
| void *pNew = 0; |
| assert( db!=0 ); |
| assert( sqlite3_mutex_held(db->mutex) ); |
| if( db->mallocFailed==0 ){ |
| if( p==0 ){ |
| return sqlite3DbMallocRaw(db, n); |
| } |
| if( isLookaside(db, p) ){ |
| if( n<=db->lookaside.sz ){ |
| return p; |
| } |
| pNew = sqlite3DbMallocRaw(db, n); |
| if( pNew ){ |
| memcpy(pNew, p, db->lookaside.sz); |
| sqlite3DbFree(db, p); |
| } |
| }else{ |
| assert( sqlite3MemdebugHasType(p, MEMTYPE_DB|MEMTYPE_HEAP) ); |
| sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| pNew = sqlite3_realloc(p, n); |
| if( !pNew ){ |
| db->mallocFailed = 1; |
| } |
| sqlite3MemdebugSetType(pNew, |
| db->lookaside.bEnabled ? MEMTYPE_DB : MEMTYPE_HEAP); |
| } |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Attempt to reallocate p. If the reallocation fails, then free p |
| ** and set the mallocFailed flag in the database connection. |
| */ |
| void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ |
| void *pNew; |
| pNew = sqlite3DbRealloc(db, p, n); |
| if( !pNew ){ |
| sqlite3DbFree(db, p); |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Make a copy of a string in memory obtained from sqliteMalloc(). These |
| ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This |
| ** is because when memory debugging is turned on, these two functions are |
| ** called via macros that record the current file and line number in the |
| ** ThreadData structure. |
| */ |
| char *sqlite3DbStrDup(sqlite3 *db, const char *z){ |
| char *zNew; |
| size_t n; |
| if( z==0 ){ |
| return 0; |
| } |
| n = sqlite3Strlen30(z) + 1; |
| assert( (n&0x7fffffff)==n ); |
| zNew = sqlite3DbMallocRaw(db, (int)n); |
| if( zNew ){ |
| memcpy(zNew, z, n); |
| } |
| return zNew; |
| } |
| char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ |
| char *zNew; |
| if( z==0 ){ |
| return 0; |
| } |
| assert( (n&0x7fffffff)==n ); |
| zNew = sqlite3DbMallocRaw(db, n+1); |
| if( zNew ){ |
| memcpy(zNew, z, n); |
| zNew[n] = 0; |
| } |
| return zNew; |
| } |
| |
| /* |
| ** Create a string from the zFromat argument and the va_list that follows. |
| ** Store the string in memory obtained from sqliteMalloc() and make *pz |
| ** point to that string. |
| */ |
| void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ |
| va_list ap; |
| char *z; |
| |
| va_start(ap, zFormat); |
| z = sqlite3VMPrintf(db, zFormat, ap); |
| va_end(ap); |
| sqlite3DbFree(db, *pz); |
| *pz = z; |
| } |
| |
| |
| /* |
| ** This function must be called before exiting any API function (i.e. |
| ** returning control to the user) that has called sqlite3_malloc or |
| ** sqlite3_realloc. |
| ** |
| ** The returned value is normally a copy of the second argument to this |
| ** function. However, if a malloc() failure has occurred since the previous |
| ** invocation SQLITE_NOMEM is returned instead. |
| ** |
| ** If the first argument, db, is not NULL and a malloc() error has occurred, |
| ** then the connection error-code (the value returned by sqlite3_errcode()) |
| ** is set to SQLITE_NOMEM. |
| */ |
| int sqlite3ApiExit(sqlite3* db, int rc){ |
| /* If the db handle is not NULL, then we must hold the connection handle |
| ** mutex here. Otherwise the read (and possible write) of db->mallocFailed |
| ** is unsafe, as is the call to sqlite3Error(). |
| */ |
| assert( !db || sqlite3_mutex_held(db->mutex) ); |
| if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){ |
| sqlite3Error(db, SQLITE_NOMEM, 0); |
| db->mallocFailed = 0; |
| rc = SQLITE_NOMEM; |
| } |
| return rc & (db ? db->errMask : 0xff); |
| } |