| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains C code routines that are called by the SQLite parser |
| ** when syntax rules are reduced. The routines in this file handle the |
| ** following kinds of SQL syntax: |
| ** |
| ** CREATE TABLE |
| ** DROP TABLE |
| ** CREATE INDEX |
| ** DROP INDEX |
| ** creating ID lists |
| ** BEGIN TRANSACTION |
| ** COMMIT |
| ** ROLLBACK |
| ** |
| ** $Id: build.c,v 1.376 2006/01/11 14:09:32 danielk1977 Exp $ |
| */ |
| #include "sqliteInt.h" |
| #include <ctype.h> |
| |
| /* |
| ** This routine is called when a new SQL statement is beginning to |
| ** be parsed. Initialize the pParse structure as needed. |
| */ |
| void sqlite3BeginParse(Parse *pParse, int explainFlag){ |
| pParse->explain = explainFlag; |
| pParse->nVar = 0; |
| } |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| /* |
| ** The TableLock structure is only used by the sqlite3TableLock() and |
| ** codeTableLocks() functions. |
| */ |
| struct TableLock { |
| int iDb; |
| int iTab; |
| u8 isWriteLock; |
| const char *zName; |
| }; |
| |
| /* |
| ** Have the compiled statement lock the table with rootpage iTab in database |
| ** iDb at the shared-cache level when executed. The isWriteLock argument |
| ** is zero for a read-lock, or non-zero for a write-lock. |
| ** |
| ** The zName parameter should point to the unqualified table name. This is |
| ** used to provide a more informative error message should the lock fail. |
| */ |
| void sqlite3TableLock( |
| Parse *pParse, |
| int iDb, |
| int iTab, |
| u8 isWriteLock, |
| const char *zName |
| ){ |
| int i; |
| int nBytes; |
| TableLock *p; |
| ThreadData *pTsd = sqlite3ThreadData(); |
| |
| if( 0==pTsd->useSharedData || iDb<0 ){ |
| return; |
| } |
| |
| for(i=0; i<pParse->nTableLock; i++){ |
| p = &pParse->aTableLock[i]; |
| if( p->iDb==iDb && p->iTab==iTab ){ |
| p->isWriteLock = (p->isWriteLock || isWriteLock); |
| return; |
| } |
| } |
| |
| nBytes = sizeof(TableLock) * (pParse->nTableLock+1); |
| sqliteReallocOrFree((void **)&pParse->aTableLock, nBytes); |
| if( pParse->aTableLock ){ |
| p = &pParse->aTableLock[pParse->nTableLock++]; |
| p->iDb = iDb; |
| p->iTab = iTab; |
| p->isWriteLock = isWriteLock; |
| p->zName = zName; |
| } |
| } |
| |
| /* |
| ** Code an OP_TableLock instruction for each table locked by the |
| ** statement (configured by calls to sqlite3TableLock()). |
| */ |
| static void codeTableLocks(Parse *pParse){ |
| int i; |
| Vdbe *pVdbe; |
| assert( sqlite3ThreadData()->useSharedData || pParse->nTableLock==0 ); |
| |
| if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){ |
| return; |
| } |
| |
| for(i=0; i<pParse->nTableLock; i++){ |
| TableLock *p = &pParse->aTableLock[i]; |
| int p1 = p->iDb; |
| if( p->isWriteLock ){ |
| p1 = -1*(p1+1); |
| } |
| sqlite3VdbeOp3(pVdbe, OP_TableLock, p1, p->iTab, p->zName, P3_STATIC); |
| } |
| } |
| #else |
| #define codeTableLocks(x) |
| #endif |
| |
| /* |
| ** This routine is called after a single SQL statement has been |
| ** parsed and a VDBE program to execute that statement has been |
| ** prepared. This routine puts the finishing touches on the |
| ** VDBE program and resets the pParse structure for the next |
| ** parse. |
| ** |
| ** Note that if an error occurred, it might be the case that |
| ** no VDBE code was generated. |
| */ |
| void sqlite3FinishCoding(Parse *pParse){ |
| sqlite3 *db; |
| Vdbe *v; |
| |
| if( sqlite3ThreadData()->mallocFailed ) return; |
| if( pParse->nested ) return; |
| if( !pParse->pVdbe ){ |
| if( pParse->rc==SQLITE_OK && pParse->nErr ){ |
| pParse->rc = SQLITE_ERROR; |
| } |
| return; |
| } |
| |
| /* Begin by generating some termination code at the end of the |
| ** vdbe program |
| */ |
| db = pParse->db; |
| v = sqlite3GetVdbe(pParse); |
| if( v ){ |
| sqlite3VdbeAddOp(v, OP_Halt, 0, 0); |
| |
| /* The cookie mask contains one bit for each database file open. |
| ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are |
| ** set for each database that is used. Generate code to start a |
| ** transaction on each used database and to verify the schema cookie |
| ** on each used database. |
| */ |
| if( pParse->cookieGoto>0 ){ |
| u32 mask; |
| int iDb; |
| sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); |
| for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ |
| if( (mask & pParse->cookieMask)==0 ) continue; |
| sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0); |
| sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]); |
| } |
| |
| /* Once all the cookies have been verified and transactions opened, |
| ** obtain the required table-locks. This is a no-op unless the |
| ** shared-cache feature is enabled. |
| */ |
| codeTableLocks(pParse); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto); |
| } |
| |
| #ifndef SQLITE_OMIT_TRACE |
| /* Add a No-op that contains the complete text of the compiled SQL |
| ** statement as its P3 argument. This does not change the functionality |
| ** of the program. |
| ** |
| ** This is used to implement sqlite3_trace(). |
| */ |
| sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql); |
| #endif /* SQLITE_OMIT_TRACE */ |
| } |
| |
| |
| /* Get the VDBE program ready for execution |
| */ |
| if( v && pParse->nErr==0 ){ |
| FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; |
| sqlite3VdbeTrace(v, trace); |
| sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3, |
| pParse->nTab+3, pParse->explain); |
| pParse->rc = SQLITE_DONE; |
| pParse->colNamesSet = 0; |
| }else if( pParse->rc==SQLITE_OK ){ |
| pParse->rc = SQLITE_ERROR; |
| } |
| pParse->nTab = 0; |
| pParse->nMem = 0; |
| pParse->nSet = 0; |
| pParse->nVar = 0; |
| pParse->cookieMask = 0; |
| pParse->cookieGoto = 0; |
| } |
| |
| /* |
| ** Run the parser and code generator recursively in order to generate |
| ** code for the SQL statement given onto the end of the pParse context |
| ** currently under construction. When the parser is run recursively |
| ** this way, the final OP_Halt is not appended and other initialization |
| ** and finalization steps are omitted because those are handling by the |
| ** outermost parser. |
| ** |
| ** Not everything is nestable. This facility is designed to permit |
| ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use |
| ** care if you decide to try to use this routine for some other purposes. |
| */ |
| void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ |
| va_list ap; |
| char *zSql; |
| # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) |
| char saveBuf[SAVE_SZ]; |
| |
| if( pParse->nErr ) return; |
| assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ |
| va_start(ap, zFormat); |
| zSql = sqlite3VMPrintf(zFormat, ap); |
| va_end(ap); |
| if( zSql==0 ){ |
| return; /* A malloc must have failed */ |
| } |
| pParse->nested++; |
| memcpy(saveBuf, &pParse->nVar, SAVE_SZ); |
| memset(&pParse->nVar, 0, SAVE_SZ); |
| sqlite3RunParser(pParse, zSql, 0); |
| sqliteFree(zSql); |
| memcpy(&pParse->nVar, saveBuf, SAVE_SZ); |
| pParse->nested--; |
| } |
| |
| /* |
| ** Locate the in-memory structure that describes a particular database |
| ** table given the name of that table and (optionally) the name of the |
| ** database containing the table. Return NULL if not found. |
| ** |
| ** If zDatabase is 0, all databases are searched for the table and the |
| ** first matching table is returned. (No checking for duplicate table |
| ** names is done.) The search order is TEMP first, then MAIN, then any |
| ** auxiliary databases added using the ATTACH command. |
| ** |
| ** See also sqlite3LocateTable(). |
| */ |
| Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ |
| Table *p = 0; |
| int i; |
| assert( zName!=0 ); |
| for(i=OMIT_TEMPDB; i<db->nDb; i++){ |
| int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ |
| if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; |
| p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1); |
| if( p ) break; |
| } |
| return p; |
| } |
| |
| /* |
| ** Locate the in-memory structure that describes a particular database |
| ** table given the name of that table and (optionally) the name of the |
| ** database containing the table. Return NULL if not found. Also leave an |
| ** error message in pParse->zErrMsg. |
| ** |
| ** The difference between this routine and sqlite3FindTable() is that this |
| ** routine leaves an error message in pParse->zErrMsg where |
| ** sqlite3FindTable() does not. |
| */ |
| Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){ |
| Table *p; |
| |
| /* Read the database schema. If an error occurs, leave an error message |
| ** and code in pParse and return NULL. */ |
| if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| return 0; |
| } |
| |
| p = sqlite3FindTable(pParse->db, zName, zDbase); |
| if( p==0 ){ |
| if( zDbase ){ |
| sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName); |
| }else{ |
| sqlite3ErrorMsg(pParse, "no such table: %s", zName); |
| } |
| pParse->checkSchema = 1; |
| } |
| return p; |
| } |
| |
| /* |
| ** Locate the in-memory structure that describes |
| ** a particular index given the name of that index |
| ** and the name of the database that contains the index. |
| ** Return NULL if not found. |
| ** |
| ** If zDatabase is 0, all databases are searched for the |
| ** table and the first matching index is returned. (No checking |
| ** for duplicate index names is done.) The search order is |
| ** TEMP first, then MAIN, then any auxiliary databases added |
| ** using the ATTACH command. |
| */ |
| Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ |
| Index *p = 0; |
| int i; |
| for(i=OMIT_TEMPDB; i<db->nDb; i++){ |
| int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ |
| Schema *pSchema = db->aDb[j].pSchema; |
| if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; |
| assert( pSchema || (j==1 && !db->aDb[1].pBt) ); |
| if( pSchema ){ |
| p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1); |
| } |
| if( p ) break; |
| } |
| return p; |
| } |
| |
| /* |
| ** Reclaim the memory used by an index |
| */ |
| static void freeIndex(Index *p){ |
| sqliteFree(p->zColAff); |
| sqliteFree(p); |
| } |
| |
| /* |
| ** Remove the given index from the index hash table, and free |
| ** its memory structures. |
| ** |
| ** The index is removed from the database hash tables but |
| ** it is not unlinked from the Table that it indexes. |
| ** Unlinking from the Table must be done by the calling function. |
| */ |
| static void sqliteDeleteIndex(sqlite3 *db, Index *p){ |
| Index *pOld; |
| const char *zName = p->zName; |
| |
| pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0); |
| assert( pOld==0 || pOld==p ); |
| freeIndex(p); |
| } |
| |
| /* |
| ** For the index called zIdxName which is found in the database iDb, |
| ** unlike that index from its Table then remove the index from |
| ** the index hash table and free all memory structures associated |
| ** with the index. |
| */ |
| void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ |
| Index *pIndex; |
| int len; |
| Hash *pHash = &db->aDb[iDb].pSchema->idxHash; |
| |
| len = strlen(zIdxName); |
| pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0); |
| if( pIndex ){ |
| if( pIndex->pTable->pIndex==pIndex ){ |
| pIndex->pTable->pIndex = pIndex->pNext; |
| }else{ |
| Index *p; |
| for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} |
| if( p && p->pNext==pIndex ){ |
| p->pNext = pIndex->pNext; |
| } |
| } |
| freeIndex(pIndex); |
| } |
| db->flags |= SQLITE_InternChanges; |
| } |
| |
| /* |
| ** Erase all schema information from the in-memory hash tables of |
| ** a single database. This routine is called to reclaim memory |
| ** before the database closes. It is also called during a rollback |
| ** if there were schema changes during the transaction or if a |
| ** schema-cookie mismatch occurs. |
| ** |
| ** If iDb<=0 then reset the internal schema tables for all database |
| ** files. If iDb>=2 then reset the internal schema for only the |
| ** single file indicated. |
| */ |
| void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ |
| int i, j; |
| |
| assert( iDb>=0 && iDb<db->nDb ); |
| for(i=iDb; i<db->nDb; i++){ |
| Db *pDb = &db->aDb[i]; |
| if( pDb->pSchema ){ |
| sqlite3SchemaFree(pDb->pSchema); |
| } |
| if( iDb>0 ) return; |
| } |
| assert( iDb==0 ); |
| db->flags &= ~SQLITE_InternChanges; |
| |
| /* If one or more of the auxiliary database files has been closed, |
| ** then remove them from the auxiliary database list. We take the |
| ** opportunity to do this here since we have just deleted all of the |
| ** schema hash tables and therefore do not have to make any changes |
| ** to any of those tables. |
| */ |
| for(i=0; i<db->nDb; i++){ |
| struct Db *pDb = &db->aDb[i]; |
| if( pDb->pBt==0 ){ |
| if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux); |
| pDb->pAux = 0; |
| } |
| } |
| for(i=j=2; i<db->nDb; i++){ |
| struct Db *pDb = &db->aDb[i]; |
| if( pDb->pBt==0 ){ |
| sqliteFree(pDb->zName); |
| pDb->zName = 0; |
| continue; |
| } |
| if( j<i ){ |
| db->aDb[j] = db->aDb[i]; |
| } |
| j++; |
| } |
| memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); |
| db->nDb = j; |
| if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ |
| memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); |
| sqliteFree(db->aDb); |
| db->aDb = db->aDbStatic; |
| } |
| } |
| |
| /* |
| ** This routine is called whenever a rollback occurs. If there were |
| ** schema changes during the transaction, then we have to reset the |
| ** internal hash tables and reload them from disk. |
| */ |
| void sqlite3RollbackInternalChanges(sqlite3 *db){ |
| if( db->flags & SQLITE_InternChanges ){ |
| sqlite3ResetInternalSchema(db, 0); |
| } |
| } |
| |
| /* |
| ** This routine is called when a commit occurs. |
| */ |
| void sqlite3CommitInternalChanges(sqlite3 *db){ |
| db->flags &= ~SQLITE_InternChanges; |
| } |
| |
| /* |
| ** Clear the column names from a table or view. |
| */ |
| static void sqliteResetColumnNames(Table *pTable){ |
| int i; |
| Column *pCol; |
| assert( pTable!=0 ); |
| if( (pCol = pTable->aCol)!=0 ){ |
| for(i=0; i<pTable->nCol; i++, pCol++){ |
| sqliteFree(pCol->zName); |
| sqlite3ExprDelete(pCol->pDflt); |
| sqliteFree(pCol->zType); |
| sqliteFree(pCol->zColl); |
| } |
| sqliteFree(pTable->aCol); |
| } |
| pTable->aCol = 0; |
| pTable->nCol = 0; |
| } |
| |
| /* |
| ** Remove the memory data structures associated with the given |
| ** Table. No changes are made to disk by this routine. |
| ** |
| ** This routine just deletes the data structure. It does not unlink |
| ** the table data structure from the hash table. Nor does it remove |
| ** foreign keys from the sqlite.aFKey hash table. But it does destroy |
| ** memory structures of the indices and foreign keys associated with |
| ** the table. |
| ** |
| ** Indices associated with the table are unlinked from the "db" |
| ** data structure if db!=NULL. If db==NULL, indices attached to |
| ** the table are deleted, but it is assumed they have already been |
| ** unlinked. |
| */ |
| void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ |
| Index *pIndex, *pNext; |
| FKey *pFKey, *pNextFKey; |
| |
| db = 0; |
| |
| if( pTable==0 ) return; |
| |
| /* Do not delete the table until the reference count reaches zero. */ |
| pTable->nRef--; |
| if( pTable->nRef>0 ){ |
| return; |
| } |
| assert( pTable->nRef==0 ); |
| |
| /* Delete all indices associated with this table |
| */ |
| for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ |
| pNext = pIndex->pNext; |
| assert( pIndex->pSchema==pTable->pSchema ); |
| sqliteDeleteIndex(db, pIndex); |
| } |
| |
| #ifndef SQLITE_OMIT_FOREIGN_KEY |
| /* Delete all foreign keys associated with this table. The keys |
| ** should have already been unlinked from the db->aFKey hash table |
| */ |
| for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ |
| pNextFKey = pFKey->pNextFrom; |
| assert( sqlite3HashFind(&pTable->pSchema->aFKey, |
| pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey ); |
| sqliteFree(pFKey); |
| } |
| #endif |
| |
| /* Delete the Table structure itself. |
| */ |
| sqliteResetColumnNames(pTable); |
| sqliteFree(pTable->zName); |
| sqliteFree(pTable->zColAff); |
| sqlite3SelectDelete(pTable->pSelect); |
| #ifndef SQLITE_OMIT_CHECK |
| sqlite3ExprDelete(pTable->pCheck); |
| #endif |
| sqliteFree(pTable); |
| } |
| |
| /* |
| ** Unlink the given table from the hash tables and the delete the |
| ** table structure with all its indices and foreign keys. |
| */ |
| void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ |
| Table *p; |
| FKey *pF1, *pF2; |
| Db *pDb; |
| |
| assert( db!=0 ); |
| assert( iDb>=0 && iDb<db->nDb ); |
| assert( zTabName && zTabName[0] ); |
| pDb = &db->aDb[iDb]; |
| p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0); |
| if( p ){ |
| #ifndef SQLITE_OMIT_FOREIGN_KEY |
| for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ |
| int nTo = strlen(pF1->zTo) + 1; |
| pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo); |
| if( pF2==pF1 ){ |
| sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo); |
| }else{ |
| while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } |
| if( pF2 ){ |
| pF2->pNextTo = pF1->pNextTo; |
| } |
| } |
| } |
| #endif |
| sqlite3DeleteTable(db, p); |
| } |
| db->flags |= SQLITE_InternChanges; |
| } |
| |
| /* |
| ** Given a token, return a string that consists of the text of that |
| ** token with any quotations removed. Space to hold the returned string |
| ** is obtained from sqliteMalloc() and must be freed by the calling |
| ** function. |
| ** |
| ** Tokens are often just pointers into the original SQL text and so |
| ** are not \000 terminated and are not persistent. The returned string |
| ** is \000 terminated and is persistent. |
| */ |
| char *sqlite3NameFromToken(Token *pName){ |
| char *zName; |
| if( pName ){ |
| zName = sqliteStrNDup((char*)pName->z, pName->n); |
| sqlite3Dequote(zName); |
| }else{ |
| zName = 0; |
| } |
| return zName; |
| } |
| |
| /* |
| ** Open the sqlite_master table stored in database number iDb for |
| ** writing. The table is opened using cursor 0. |
| */ |
| void sqlite3OpenMasterTable(Parse *p, int iDb){ |
| Vdbe *v = sqlite3GetVdbe(p); |
| sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); |
| sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); |
| sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT); |
| sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */ |
| } |
| |
| /* |
| ** The token *pName contains the name of a database (either "main" or |
| ** "temp" or the name of an attached db). This routine returns the |
| ** index of the named database in db->aDb[], or -1 if the named db |
| ** does not exist. |
| */ |
| int sqlite3FindDb(sqlite3 *db, Token *pName){ |
| int i = -1; /* Database number */ |
| int n; /* Number of characters in the name */ |
| Db *pDb; /* A database whose name space is being searched */ |
| char *zName; /* Name we are searching for */ |
| |
| zName = sqlite3NameFromToken(pName); |
| if( zName ){ |
| n = strlen(zName); |
| for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ |
| if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && |
| 0==sqlite3StrICmp(pDb->zName, zName) ){ |
| break; |
| } |
| } |
| sqliteFree(zName); |
| } |
| return i; |
| } |
| |
| /* The table or view or trigger name is passed to this routine via tokens |
| ** pName1 and pName2. If the table name was fully qualified, for example: |
| ** |
| ** CREATE TABLE xxx.yyy (...); |
| ** |
| ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if |
| ** the table name is not fully qualified, i.e.: |
| ** |
| ** CREATE TABLE yyy(...); |
| ** |
| ** Then pName1 is set to "yyy" and pName2 is "". |
| ** |
| ** This routine sets the *ppUnqual pointer to point at the token (pName1 or |
| ** pName2) that stores the unqualified table name. The index of the |
| ** database "xxx" is returned. |
| */ |
| int sqlite3TwoPartName( |
| Parse *pParse, /* Parsing and code generating context */ |
| Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ |
| Token *pName2, /* The "yyy" in the name "xxx.yyy" */ |
| Token **pUnqual /* Write the unqualified object name here */ |
| ){ |
| int iDb; /* Database holding the object */ |
| sqlite3 *db = pParse->db; |
| |
| if( pName2 && pName2->n>0 ){ |
| assert( !db->init.busy ); |
| *pUnqual = pName2; |
| iDb = sqlite3FindDb(db, pName1); |
| if( iDb<0 ){ |
| sqlite3ErrorMsg(pParse, "unknown database %T", pName1); |
| pParse->nErr++; |
| return -1; |
| } |
| }else{ |
| assert( db->init.iDb==0 || db->init.busy ); |
| iDb = db->init.iDb; |
| *pUnqual = pName1; |
| } |
| return iDb; |
| } |
| |
| /* |
| ** This routine is used to check if the UTF-8 string zName is a legal |
| ** unqualified name for a new schema object (table, index, view or |
| ** trigger). All names are legal except those that begin with the string |
| ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace |
| ** is reserved for internal use. |
| */ |
| int sqlite3CheckObjectName(Parse *pParse, const char *zName){ |
| if( !pParse->db->init.busy && pParse->nested==0 |
| && (pParse->db->flags & SQLITE_WriteSchema)==0 |
| && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ |
| sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); |
| return SQLITE_ERROR; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Begin constructing a new table representation in memory. This is |
| ** the first of several action routines that get called in response |
| ** to a CREATE TABLE statement. In particular, this routine is called |
| ** after seeing tokens "CREATE" and "TABLE" and the table name. The |
| ** pStart token is the CREATE and pName is the table name. The isTemp |
| ** flag is true if the table should be stored in the auxiliary database |
| ** file instead of in the main database file. This is normally the case |
| ** when the "TEMP" or "TEMPORARY" keyword occurs in between |
| ** CREATE and TABLE. |
| ** |
| ** The new table record is initialized and put in pParse->pNewTable. |
| ** As more of the CREATE TABLE statement is parsed, additional action |
| ** routines will be called to add more information to this record. |
| ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine |
| ** is called to complete the construction of the new table record. |
| */ |
| void sqlite3StartTable( |
| Parse *pParse, /* Parser context */ |
| Token *pStart, /* The "CREATE" token */ |
| Token *pName1, /* First part of the name of the table or view */ |
| Token *pName2, /* Second part of the name of the table or view */ |
| int isTemp, /* True if this is a TEMP table */ |
| int isView, /* True if this is a VIEW */ |
| int noErr /* Do nothing if table already exists */ |
| ){ |
| Table *pTable; |
| char *zName = 0; /* The name of the new table */ |
| sqlite3 *db = pParse->db; |
| Vdbe *v; |
| int iDb; /* Database number to create the table in */ |
| Token *pName; /* Unqualified name of the table to create */ |
| |
| /* The table or view name to create is passed to this routine via tokens |
| ** pName1 and pName2. If the table name was fully qualified, for example: |
| ** |
| ** CREATE TABLE xxx.yyy (...); |
| ** |
| ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if |
| ** the table name is not fully qualified, i.e.: |
| ** |
| ** CREATE TABLE yyy(...); |
| ** |
| ** Then pName1 is set to "yyy" and pName2 is "". |
| ** |
| ** The call below sets the pName pointer to point at the token (pName1 or |
| ** pName2) that stores the unqualified table name. The variable iDb is |
| ** set to the index of the database that the table or view is to be |
| ** created in. |
| */ |
| iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
| if( iDb<0 ) return; |
| if( !OMIT_TEMPDB && isTemp && iDb>1 ){ |
| /* If creating a temp table, the name may not be qualified */ |
| sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); |
| return; |
| } |
| if( !OMIT_TEMPDB && isTemp ) iDb = 1; |
| |
| pParse->sNameToken = *pName; |
| zName = sqlite3NameFromToken(pName); |
| if( zName==0 ) return; |
| if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ |
| goto begin_table_error; |
| } |
| if( db->init.iDb==1 ) isTemp = 1; |
| #ifndef SQLITE_OMIT_AUTHORIZATION |
| assert( (isTemp & 1)==isTemp ); |
| { |
| int code; |
| char *zDb = db->aDb[iDb].zName; |
| if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ |
| goto begin_table_error; |
| } |
| if( isView ){ |
| if( !OMIT_TEMPDB && isTemp ){ |
| code = SQLITE_CREATE_TEMP_VIEW; |
| }else{ |
| code = SQLITE_CREATE_VIEW; |
| } |
| }else{ |
| if( !OMIT_TEMPDB && isTemp ){ |
| code = SQLITE_CREATE_TEMP_TABLE; |
| }else{ |
| code = SQLITE_CREATE_TABLE; |
| } |
| } |
| if( sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ |
| goto begin_table_error; |
| } |
| } |
| #endif |
| |
| /* Make sure the new table name does not collide with an existing |
| ** index or table name in the same database. Issue an error message if |
| ** it does. |
| */ |
| if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| goto begin_table_error; |
| } |
| pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName); |
| if( pTable ){ |
| if( !noErr ){ |
| sqlite3ErrorMsg(pParse, "table %T already exists", pName); |
| } |
| goto begin_table_error; |
| } |
| if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){ |
| sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); |
| goto begin_table_error; |
| } |
| pTable = sqliteMalloc( sizeof(Table) ); |
| if( pTable==0 ){ |
| pParse->rc = SQLITE_NOMEM; |
| pParse->nErr++; |
| goto begin_table_error; |
| } |
| pTable->zName = zName; |
| pTable->nCol = 0; |
| pTable->aCol = 0; |
| pTable->iPKey = -1; |
| pTable->pIndex = 0; |
| pTable->pSchema = db->aDb[iDb].pSchema; |
| pTable->nRef = 1; |
| if( pParse->pNewTable ) sqlite3DeleteTable(db, pParse->pNewTable); |
| pParse->pNewTable = pTable; |
| |
| /* If this is the magic sqlite_sequence table used by autoincrement, |
| ** then record a pointer to this table in the main database structure |
| ** so that INSERT can find the table easily. |
| */ |
| #ifndef SQLITE_OMIT_AUTOINCREMENT |
| if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ |
| pTable->pSchema->pSeqTab = pTable; |
| } |
| #endif |
| |
| /* Begin generating the code that will insert the table record into |
| ** the SQLITE_MASTER table. Note in particular that we must go ahead |
| ** and allocate the record number for the table entry now. Before any |
| ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause |
| ** indices to be created and the table record must come before the |
| ** indices. Hence, the record number for the table must be allocated |
| ** now. |
| */ |
| if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ |
| int lbl; |
| sqlite3BeginWriteOperation(pParse, 0, iDb); |
| |
| /* If the file format and encoding in the database have not been set, |
| ** set them now. |
| */ |
| sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); /* file_format */ |
| lbl = sqlite3VdbeMakeLabel(v); |
| sqlite3VdbeAddOp(v, OP_If, 0, lbl); |
| sqlite3VdbeAddOp(v, OP_Integer, SQLITE_DEFAULT_FILE_FORMAT, 0); |
| sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1); |
| sqlite3VdbeAddOp(v, OP_Integer, ENC(db), 0); |
| sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4); |
| sqlite3VdbeResolveLabel(v, lbl); |
| |
| /* This just creates a place-holder record in the sqlite_master table. |
| ** The record created does not contain anything yet. It will be replaced |
| ** by the real entry in code generated at sqlite3EndTable(). |
| ** |
| ** The rowid for the new entry is left on the top of the stack. |
| ** The rowid value is needed by the code that sqlite3EndTable will |
| ** generate. |
| */ |
| #ifndef SQLITE_OMIT_VIEW |
| if( isView ){ |
| sqlite3VdbeAddOp(v, OP_Integer, 0, 0); |
| }else |
| #endif |
| { |
| sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0); |
| } |
| sqlite3OpenMasterTable(pParse, iDb); |
| sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0); |
| sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
| sqlite3VdbeAddOp(v, OP_Null, 0, 0); |
| sqlite3VdbeAddOp(v, OP_Insert, 0, 0); |
| sqlite3VdbeAddOp(v, OP_Close, 0, 0); |
| sqlite3VdbeAddOp(v, OP_Pull, 1, 0); |
| } |
| |
| /* Normal (non-error) return. */ |
| return; |
| |
| /* If an error occurs, we jump here */ |
| begin_table_error: |
| sqliteFree(zName); |
| return; |
| } |
| |
| /* |
| ** This macro is used to compare two strings in a case-insensitive manner. |
| ** It is slightly faster than calling sqlite3StrICmp() directly, but |
| ** produces larger code. |
| ** |
| ** WARNING: This macro is not compatible with the strcmp() family. It |
| ** returns true if the two strings are equal, otherwise false. |
| */ |
| #define STRICMP(x, y) (\ |
| sqlite3UpperToLower[*(unsigned char *)(x)]== \ |
| sqlite3UpperToLower[*(unsigned char *)(y)] \ |
| && sqlite3StrICmp((x)+1,(y)+1)==0 ) |
| |
| /* |
| ** Add a new column to the table currently being constructed. |
| ** |
| ** The parser calls this routine once for each column declaration |
| ** in a CREATE TABLE statement. sqlite3StartTable() gets called |
| ** first to get things going. Then this routine is called for each |
| ** column. |
| */ |
| void sqlite3AddColumn(Parse *pParse, Token *pName){ |
| Table *p; |
| int i; |
| char *z; |
| Column *pCol; |
| if( (p = pParse->pNewTable)==0 ) return; |
| z = sqlite3NameFromToken(pName); |
| if( z==0 ) return; |
| for(i=0; i<p->nCol; i++){ |
| if( STRICMP(z, p->aCol[i].zName) ){ |
| sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); |
| sqliteFree(z); |
| return; |
| } |
| } |
| if( (p->nCol & 0x7)==0 ){ |
| Column *aNew; |
| aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0])); |
| if( aNew==0 ){ |
| sqliteFree(z); |
| return; |
| } |
| p->aCol = aNew; |
| } |
| pCol = &p->aCol[p->nCol]; |
| memset(pCol, 0, sizeof(p->aCol[0])); |
| pCol->zName = z; |
| |
| /* If there is no type specified, columns have the default affinity |
| ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will |
| ** be called next to set pCol->affinity correctly. |
| */ |
| pCol->affinity = SQLITE_AFF_NONE; |
| p->nCol++; |
| } |
| |
| /* |
| ** This routine is called by the parser while in the middle of |
| ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has |
| ** been seen on a column. This routine sets the notNull flag on |
| ** the column currently under construction. |
| */ |
| void sqlite3AddNotNull(Parse *pParse, int onError){ |
| Table *p; |
| int i; |
| if( (p = pParse->pNewTable)==0 ) return; |
| i = p->nCol-1; |
| if( i>=0 ) p->aCol[i].notNull = onError; |
| } |
| |
| /* |
| ** Scan the column type name zType (length nType) and return the |
| ** associated affinity type. |
| ** |
| ** This routine does a case-independent search of zType for the |
| ** substrings in the following table. If one of the substrings is |
| ** found, the corresponding affinity is returned. If zType contains |
| ** more than one of the substrings, entries toward the top of |
| ** the table take priority. For example, if zType is 'BLOBINT', |
| ** SQLITE_AFF_INTEGER is returned. |
| ** |
| ** Substring | Affinity |
| ** -------------------------------- |
| ** 'INT' | SQLITE_AFF_INTEGER |
| ** 'CHAR' | SQLITE_AFF_TEXT |
| ** 'CLOB' | SQLITE_AFF_TEXT |
| ** 'TEXT' | SQLITE_AFF_TEXT |
| ** 'BLOB' | SQLITE_AFF_NONE |
| ** 'REAL' | SQLITE_AFF_REAL |
| ** 'FLOA' | SQLITE_AFF_REAL |
| ** 'DOUB' | SQLITE_AFF_REAL |
| ** |
| ** If none of the substrings in the above table are found, |
| ** SQLITE_AFF_NUMERIC is returned. |
| */ |
| char sqlite3AffinityType(const Token *pType){ |
| u32 h = 0; |
| char aff = SQLITE_AFF_NUMERIC; |
| const unsigned char *zIn = pType->z; |
| const unsigned char *zEnd = &pType->z[pType->n]; |
| |
| while( zIn!=zEnd ){ |
| h = (h<<8) + sqlite3UpperToLower[*zIn]; |
| zIn++; |
| if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ |
| aff = SQLITE_AFF_TEXT; |
| }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ |
| aff = SQLITE_AFF_TEXT; |
| }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ |
| aff = SQLITE_AFF_TEXT; |
| }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ |
| && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ |
| aff = SQLITE_AFF_NONE; |
| #ifndef SQLITE_OMIT_FLOATING_POINT |
| }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ |
| && aff==SQLITE_AFF_NUMERIC ){ |
| aff = SQLITE_AFF_REAL; |
| }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ |
| && aff==SQLITE_AFF_NUMERIC ){ |
| aff = SQLITE_AFF_REAL; |
| }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ |
| && aff==SQLITE_AFF_NUMERIC ){ |
| aff = SQLITE_AFF_REAL; |
| #endif |
| }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ |
| aff = SQLITE_AFF_INTEGER; |
| break; |
| } |
| } |
| |
| return aff; |
| } |
| |
| /* |
| ** This routine is called by the parser while in the middle of |
| ** parsing a CREATE TABLE statement. The pFirst token is the first |
| ** token in the sequence of tokens that describe the type of the |
| ** column currently under construction. pLast is the last token |
| ** in the sequence. Use this information to construct a string |
| ** that contains the typename of the column and store that string |
| ** in zType. |
| */ |
| void sqlite3AddColumnType(Parse *pParse, Token *pType){ |
| Table *p; |
| int i; |
| Column *pCol; |
| |
| if( (p = pParse->pNewTable)==0 ) return; |
| i = p->nCol-1; |
| if( i<0 ) return; |
| pCol = &p->aCol[i]; |
| sqliteFree(pCol->zType); |
| pCol->zType = sqlite3NameFromToken(pType); |
| pCol->affinity = sqlite3AffinityType(pType); |
| } |
| |
| /* |
| ** The expression is the default value for the most recently added column |
| ** of the table currently under construction. |
| ** |
| ** Default value expressions must be constant. Raise an exception if this |
| ** is not the case. |
| ** |
| ** This routine is called by the parser while in the middle of |
| ** parsing a CREATE TABLE statement. |
| */ |
| void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){ |
| Table *p; |
| Column *pCol; |
| if( (p = pParse->pNewTable)!=0 ){ |
| pCol = &(p->aCol[p->nCol-1]); |
| if( !sqlite3ExprIsConstantOrFunction(pExpr) ){ |
| sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", |
| pCol->zName); |
| }else{ |
| sqlite3ExprDelete(pCol->pDflt); |
| pCol->pDflt = sqlite3ExprDup(pExpr); |
| } |
| } |
| sqlite3ExprDelete(pExpr); |
| } |
| |
| /* |
| ** Designate the PRIMARY KEY for the table. pList is a list of names |
| ** of columns that form the primary key. If pList is NULL, then the |
| ** most recently added column of the table is the primary key. |
| ** |
| ** A table can have at most one primary key. If the table already has |
| ** a primary key (and this is the second primary key) then create an |
| ** error. |
| ** |
| ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, |
| ** then we will try to use that column as the rowid. Set the Table.iPKey |
| ** field of the table under construction to be the index of the |
| ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is |
| ** no INTEGER PRIMARY KEY. |
| ** |
| ** If the key is not an INTEGER PRIMARY KEY, then create a unique |
| ** index for the key. No index is created for INTEGER PRIMARY KEYs. |
| */ |
| void sqlite3AddPrimaryKey( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* List of field names to be indexed */ |
| int onError, /* What to do with a uniqueness conflict */ |
| int autoInc, /* True if the AUTOINCREMENT keyword is present */ |
| int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ |
| ){ |
| Table *pTab = pParse->pNewTable; |
| char *zType = 0; |
| int iCol = -1, i; |
| if( pTab==0 ) goto primary_key_exit; |
| if( pTab->hasPrimKey ){ |
| sqlite3ErrorMsg(pParse, |
| "table \"%s\" has more than one primary key", pTab->zName); |
| goto primary_key_exit; |
| } |
| pTab->hasPrimKey = 1; |
| if( pList==0 ){ |
| iCol = pTab->nCol - 1; |
| pTab->aCol[iCol].isPrimKey = 1; |
| }else{ |
| for(i=0; i<pList->nExpr; i++){ |
| for(iCol=0; iCol<pTab->nCol; iCol++){ |
| if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ |
| break; |
| } |
| } |
| if( iCol<pTab->nCol ){ |
| pTab->aCol[iCol].isPrimKey = 1; |
| } |
| } |
| if( pList->nExpr>1 ) iCol = -1; |
| } |
| if( iCol>=0 && iCol<pTab->nCol ){ |
| zType = pTab->aCol[iCol].zType; |
| } |
| if( zType && sqlite3StrICmp(zType, "INTEGER")==0 |
| && sortOrder==SQLITE_SO_ASC ){ |
| pTab->iPKey = iCol; |
| pTab->keyConf = onError; |
| pTab->autoInc = autoInc; |
| }else if( autoInc ){ |
| #ifndef SQLITE_OMIT_AUTOINCREMENT |
| sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " |
| "INTEGER PRIMARY KEY"); |
| #endif |
| }else{ |
| sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); |
| pList = 0; |
| } |
| |
| primary_key_exit: |
| sqlite3ExprListDelete(pList); |
| return; |
| } |
| |
| /* |
| ** Add a new CHECK constraint to the table currently under construction. |
| */ |
| void sqlite3AddCheckConstraint( |
| Parse *pParse, /* Parsing context */ |
| Expr *pCheckExpr /* The check expression */ |
| ){ |
| #ifndef SQLITE_OMIT_CHECK |
| Table *pTab = pParse->pNewTable; |
| if( pTab ){ |
| /* The CHECK expression must be duplicated so that tokens refer |
| ** to malloced space and not the (ephemeral) text of the CREATE TABLE |
| ** statement */ |
| pTab->pCheck = sqlite3ExprAnd(pTab->pCheck, sqlite3ExprDup(pCheckExpr)); |
| } |
| #endif |
| sqlite3ExprDelete(pCheckExpr); |
| } |
| |
| /* |
| ** Set the collation function of the most recently parsed table column |
| ** to the CollSeq given. |
| */ |
| void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){ |
| Table *p; |
| int i; |
| |
| if( (p = pParse->pNewTable)==0 ) return; |
| i = p->nCol-1; |
| |
| if( sqlite3LocateCollSeq(pParse, zType, nType) ){ |
| Index *pIdx; |
| p->aCol[i].zColl = sqlite3StrNDup(zType, nType); |
| |
| /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", |
| ** then an index may have been created on this column before the |
| ** collation type was added. Correct this if it is the case. |
| */ |
| for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ |
| assert( pIdx->nColumn==1 ); |
| if( pIdx->aiColumn[0]==i ){ |
| pIdx->azColl[0] = p->aCol[i].zColl; |
| } |
| } |
| } |
| } |
| |
| /* |
| ** This function returns the collation sequence for database native text |
| ** encoding identified by the string zName, length nName. |
| ** |
| ** If the requested collation sequence is not available, or not available |
| ** in the database native encoding, the collation factory is invoked to |
| ** request it. If the collation factory does not supply such a sequence, |
| ** and the sequence is available in another text encoding, then that is |
| ** returned instead. |
| ** |
| ** If no versions of the requested collations sequence are available, or |
| ** another error occurs, NULL is returned and an error message written into |
| ** pParse. |
| */ |
| CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){ |
| sqlite3 *db = pParse->db; |
| u8 enc = ENC(db); |
| u8 initbusy = db->init.busy; |
| CollSeq *pColl; |
| |
| pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy); |
| if( !initbusy && (!pColl || !pColl->xCmp) ){ |
| pColl = sqlite3GetCollSeq(db, pColl, zName, nName); |
| if( !pColl ){ |
| if( nName<0 ){ |
| nName = strlen(zName); |
| } |
| sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName); |
| pColl = 0; |
| } |
| } |
| |
| return pColl; |
| } |
| |
| |
| /* |
| ** Generate code that will increment the schema cookie. |
| ** |
| ** The schema cookie is used to determine when the schema for the |
| ** database changes. After each schema change, the cookie value |
| ** changes. When a process first reads the schema it records the |
| ** cookie. Thereafter, whenever it goes to access the database, |
| ** it checks the cookie to make sure the schema has not changed |
| ** since it was last read. |
| ** |
| ** This plan is not completely bullet-proof. It is possible for |
| ** the schema to change multiple times and for the cookie to be |
| ** set back to prior value. But schema changes are infrequent |
| ** and the probability of hitting the same cookie value is only |
| ** 1 chance in 2^32. So we're safe enough. |
| */ |
| void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){ |
| sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0); |
| sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0); |
| } |
| |
| /* |
| ** Measure the number of characters needed to output the given |
| ** identifier. The number returned includes any quotes used |
| ** but does not include the null terminator. |
| ** |
| ** The estimate is conservative. It might be larger that what is |
| ** really needed. |
| */ |
| static int identLength(const char *z){ |
| int n; |
| for(n=0; *z; n++, z++){ |
| if( *z=='"' ){ n++; } |
| } |
| return n + 2; |
| } |
| |
| /* |
| ** Write an identifier onto the end of the given string. Add |
| ** quote characters as needed. |
| */ |
| static void identPut(char *z, int *pIdx, char *zSignedIdent){ |
| unsigned char *zIdent = (unsigned char*)zSignedIdent; |
| int i, j, needQuote; |
| i = *pIdx; |
| for(j=0; zIdent[j]; j++){ |
| if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break; |
| } |
| needQuote = zIdent[j]!=0 || isdigit(zIdent[0]) |
| || sqlite3KeywordCode(zIdent, j)!=TK_ID; |
| if( needQuote ) z[i++] = '"'; |
| for(j=0; zIdent[j]; j++){ |
| z[i++] = zIdent[j]; |
| if( zIdent[j]=='"' ) z[i++] = '"'; |
| } |
| if( needQuote ) z[i++] = '"'; |
| z[i] = 0; |
| *pIdx = i; |
| } |
| |
| /* |
| ** Generate a CREATE TABLE statement appropriate for the given |
| ** table. Memory to hold the text of the statement is obtained |
| ** from sqliteMalloc() and must be freed by the calling function. |
| */ |
| static char *createTableStmt(Table *p, int isTemp){ |
| int i, k, n; |
| char *zStmt; |
| char *zSep, *zSep2, *zEnd, *z; |
| Column *pCol; |
| n = 0; |
| for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ |
| n += identLength(pCol->zName); |
| z = pCol->zType; |
| if( z ){ |
| n += (strlen(z) + 1); |
| } |
| } |
| n += identLength(p->zName); |
| if( n<50 ){ |
| zSep = ""; |
| zSep2 = ","; |
| zEnd = ")"; |
| }else{ |
| zSep = "\n "; |
| zSep2 = ",\n "; |
| zEnd = "\n)"; |
| } |
| n += 35 + 6*p->nCol; |
| zStmt = sqliteMallocRaw( n ); |
| if( zStmt==0 ) return 0; |
| strcpy(zStmt, !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE "); |
| k = strlen(zStmt); |
| identPut(zStmt, &k, p->zName); |
| zStmt[k++] = '('; |
| for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ |
| strcpy(&zStmt[k], zSep); |
| k += strlen(&zStmt[k]); |
| zSep = zSep2; |
| identPut(zStmt, &k, pCol->zName); |
| if( (z = pCol->zType)!=0 ){ |
| zStmt[k++] = ' '; |
| strcpy(&zStmt[k], z); |
| k += strlen(z); |
| } |
| } |
| strcpy(&zStmt[k], zEnd); |
| return zStmt; |
| } |
| |
| /* |
| ** This routine is called to report the final ")" that terminates |
| ** a CREATE TABLE statement. |
| ** |
| ** The table structure that other action routines have been building |
| ** is added to the internal hash tables, assuming no errors have |
| ** occurred. |
| ** |
| ** An entry for the table is made in the master table on disk, unless |
| ** this is a temporary table or db->init.busy==1. When db->init.busy==1 |
| ** it means we are reading the sqlite_master table because we just |
| ** connected to the database or because the sqlite_master table has |
| ** recently changed, so the entry for this table already exists in |
| ** the sqlite_master table. We do not want to create it again. |
| ** |
| ** If the pSelect argument is not NULL, it means that this routine |
| ** was called to create a table generated from a |
| ** "CREATE TABLE ... AS SELECT ..." statement. The column names of |
| ** the new table will match the result set of the SELECT. |
| */ |
| void sqlite3EndTable( |
| Parse *pParse, /* Parse context */ |
| Token *pCons, /* The ',' token after the last column defn. */ |
| Token *pEnd, /* The final ')' token in the CREATE TABLE */ |
| Select *pSelect /* Select from a "CREATE ... AS SELECT" */ |
| ){ |
| Table *p; |
| sqlite3 *db = pParse->db; |
| int iDb; |
| |
| if( (pEnd==0 && pSelect==0) || |
| pParse->nErr || sqlite3ThreadData()->mallocFailed ) { |
| return; |
| } |
| p = pParse->pNewTable; |
| if( p==0 ) return; |
| |
| assert( !db->init.busy || !pSelect ); |
| |
| iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); |
| |
| #ifndef SQLITE_OMIT_CHECK |
| /* Resolve names in all CHECK constraint expressions. |
| */ |
| if( p->pCheck ){ |
| SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ |
| NameContext sNC; /* Name context for pParse->pNewTable */ |
| |
| memset(&sNC, 0, sizeof(sNC)); |
| memset(&sSrc, 0, sizeof(sSrc)); |
| sSrc.nSrc = 1; |
| sSrc.a[0].zName = p->zName; |
| sSrc.a[0].pTab = p; |
| sSrc.a[0].iCursor = -1; |
| sNC.pParse = pParse; |
| sNC.pSrcList = &sSrc; |
| sNC.isCheck = 1; |
| if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){ |
| return; |
| } |
| } |
| #endif /* !defined(SQLITE_OMIT_CHECK) */ |
| |
| /* If the db->init.busy is 1 it means we are reading the SQL off the |
| ** "sqlite_master" or "sqlite_temp_master" table on the disk. |
| ** So do not write to the disk again. Extract the root page number |
| ** for the table from the db->init.newTnum field. (The page number |
| ** should have been put there by the sqliteOpenCb routine.) |
| */ |
| if( db->init.busy ){ |
| p->tnum = db->init.newTnum; |
| } |
| |
| /* If not initializing, then create a record for the new table |
| ** in the SQLITE_MASTER table of the database. The record number |
| ** for the new table entry should already be on the stack. |
| ** |
| ** If this is a TEMPORARY table, write the entry into the auxiliary |
| ** file instead of into the main database file. |
| */ |
| if( !db->init.busy ){ |
| int n; |
| Vdbe *v; |
| char *zType; /* "view" or "table" */ |
| char *zType2; /* "VIEW" or "TABLE" */ |
| char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ |
| |
| v = sqlite3GetVdbe(pParse); |
| if( v==0 ) return; |
| |
| sqlite3VdbeAddOp(v, OP_Close, 0, 0); |
| |
| /* Create the rootpage for the new table and push it onto the stack. |
| ** A view has no rootpage, so just push a zero onto the stack for |
| ** views. Initialize zType at the same time. |
| */ |
| if( p->pSelect==0 ){ |
| /* A regular table */ |
| zType = "table"; |
| zType2 = "TABLE"; |
| #ifndef SQLITE_OMIT_VIEW |
| }else{ |
| /* A view */ |
| zType = "view"; |
| zType2 = "VIEW"; |
| #endif |
| } |
| |
| /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT |
| ** statement to populate the new table. The root-page number for the |
| ** new table is on the top of the vdbe stack. |
| ** |
| ** Once the SELECT has been coded by sqlite3Select(), it is in a |
| ** suitable state to query for the column names and types to be used |
| ** by the new table. |
| ** |
| ** A shared-cache write-lock is not required to write to the new table, |
| ** as a schema-lock must have already been obtained to create it. Since |
| ** a schema-lock excludes all other database users, the write-lock would |
| ** be redundant. |
| */ |
| if( pSelect ){ |
| Table *pSelTab; |
| sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
| sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); |
| sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0); |
| pParse->nTab = 2; |
| sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0); |
| sqlite3VdbeAddOp(v, OP_Close, 1, 0); |
| if( pParse->nErr==0 ){ |
| pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect); |
| if( pSelTab==0 ) return; |
| assert( p->aCol==0 ); |
| p->nCol = pSelTab->nCol; |
| p->aCol = pSelTab->aCol; |
| pSelTab->nCol = 0; |
| pSelTab->aCol = 0; |
| sqlite3DeleteTable(0, pSelTab); |
| } |
| } |
| |
| /* Compute the complete text of the CREATE statement */ |
| if( pSelect ){ |
| zStmt = createTableStmt(p, p->pSchema==pParse->db->aDb[1].pSchema); |
| }else{ |
| n = pEnd->z - pParse->sNameToken.z + 1; |
| zStmt = sqlite3MPrintf("CREATE %s %.*s", zType2, n, pParse->sNameToken.z); |
| } |
| |
| /* A slot for the record has already been allocated in the |
| ** SQLITE_MASTER table. We just need to update that slot with all |
| ** the information we've collected. The rowid for the preallocated |
| ** slot is the 2nd item on the stack. The top of the stack is the |
| ** root page for the new table (or a 0 if this is a view). |
| */ |
| sqlite3NestedParse(pParse, |
| "UPDATE %Q.%s " |
| "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q " |
| "WHERE rowid=#1", |
| db->aDb[iDb].zName, SCHEMA_TABLE(iDb), |
| zType, |
| p->zName, |
| p->zName, |
| zStmt |
| ); |
| sqliteFree(zStmt); |
| sqlite3ChangeCookie(db, v, iDb); |
| |
| #ifndef SQLITE_OMIT_AUTOINCREMENT |
| /* Check to see if we need to create an sqlite_sequence table for |
| ** keeping track of autoincrement keys. |
| */ |
| if( p->autoInc ){ |
| Db *pDb = &db->aDb[iDb]; |
| if( pDb->pSchema->pSeqTab==0 ){ |
| sqlite3NestedParse(pParse, |
| "CREATE TABLE %Q.sqlite_sequence(name,seq)", |
| pDb->zName |
| ); |
| } |
| } |
| #endif |
| |
| /* Reparse everything to update our internal data structures */ |
| sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, |
| sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC); |
| } |
| |
| |
| /* Add the table to the in-memory representation of the database. |
| */ |
| if( db->init.busy && pParse->nErr==0 ){ |
| Table *pOld; |
| FKey *pFKey; |
| Schema *pSchema = p->pSchema; |
| pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p); |
| if( pOld ){ |
| assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ |
| return; |
| } |
| #ifndef SQLITE_OMIT_FOREIGN_KEY |
| for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ |
| int nTo = strlen(pFKey->zTo) + 1; |
| pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo); |
| sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey); |
| } |
| #endif |
| pParse->pNewTable = 0; |
| db->nTable++; |
| db->flags |= SQLITE_InternChanges; |
| |
| #ifndef SQLITE_OMIT_ALTERTABLE |
| if( !p->pSelect ){ |
| assert( !pSelect && pCons && pEnd ); |
| if( pCons->z==0 ) pCons = pEnd; |
| p->addColOffset = 13 + (pCons->z - pParse->sNameToken.z); |
| } |
| #endif |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_VIEW |
| /* |
| ** The parser calls this routine in order to create a new VIEW |
| */ |
| void sqlite3CreateView( |
| Parse *pParse, /* The parsing context */ |
| Token *pBegin, /* The CREATE token that begins the statement */ |
| Token *pName1, /* The token that holds the name of the view */ |
| Token *pName2, /* The token that holds the name of the view */ |
| Select *pSelect, /* A SELECT statement that will become the new view */ |
| int isTemp /* TRUE for a TEMPORARY view */ |
| ){ |
| Table *p; |
| int n; |
| const unsigned char *z; |
| Token sEnd; |
| DbFixer sFix; |
| Token *pName; |
| int iDb; |
| |
| if( pParse->nVar>0 ){ |
| sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); |
| sqlite3SelectDelete(pSelect); |
| return; |
| } |
| sqlite3StartTable(pParse, pBegin, pName1, pName2, isTemp, 1, 0); |
| p = pParse->pNewTable; |
| if( p==0 || pParse->nErr ){ |
| sqlite3SelectDelete(pSelect); |
| return; |
| } |
| sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
| iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); |
| if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) |
| && sqlite3FixSelect(&sFix, pSelect) |
| ){ |
| sqlite3SelectDelete(pSelect); |
| return; |
| } |
| |
| /* Make a copy of the entire SELECT statement that defines the view. |
| ** This will force all the Expr.token.z values to be dynamically |
| ** allocated rather than point to the input string - which means that |
| ** they will persist after the current sqlite3_exec() call returns. |
| */ |
| p->pSelect = sqlite3SelectDup(pSelect); |
| sqlite3SelectDelete(pSelect); |
| if( sqlite3ThreadData()->mallocFailed ){ |
| return; |
| } |
| if( !pParse->db->init.busy ){ |
| sqlite3ViewGetColumnNames(pParse, p); |
| } |
| |
| /* Locate the end of the CREATE VIEW statement. Make sEnd point to |
| ** the end. |
| */ |
| sEnd = pParse->sLastToken; |
| if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ |
| sEnd.z += sEnd.n; |
| } |
| sEnd.n = 0; |
| n = sEnd.z - pBegin->z; |
| z = (const unsigned char*)pBegin->z; |
| while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; } |
| sEnd.z = &z[n-1]; |
| sEnd.n = 1; |
| |
| /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ |
| sqlite3EndTable(pParse, 0, &sEnd, 0); |
| return; |
| } |
| #endif /* SQLITE_OMIT_VIEW */ |
| |
| #ifndef SQLITE_OMIT_VIEW |
| /* |
| ** The Table structure pTable is really a VIEW. Fill in the names of |
| ** the columns of the view in the pTable structure. Return the number |
| ** of errors. If an error is seen leave an error message in pParse->zErrMsg. |
| */ |
| int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ |
| Table *pSelTab; /* A fake table from which we get the result set */ |
| Select *pSel; /* Copy of the SELECT that implements the view */ |
| int nErr = 0; /* Number of errors encountered */ |
| int n; /* Temporarily holds the number of cursors assigned */ |
| |
| assert( pTable ); |
| |
| /* A positive nCol means the columns names for this view are |
| ** already known. |
| */ |
| if( pTable->nCol>0 ) return 0; |
| |
| /* A negative nCol is a special marker meaning that we are currently |
| ** trying to compute the column names. If we enter this routine with |
| ** a negative nCol, it means two or more views form a loop, like this: |
| ** |
| ** CREATE VIEW one AS SELECT * FROM two; |
| ** CREATE VIEW two AS SELECT * FROM one; |
| ** |
| ** Actually, this error is caught previously and so the following test |
| ** should always fail. But we will leave it in place just to be safe. |
| */ |
| #if 0 |
| if( pTable->nCol<0 ){ |
| sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); |
| return 1; |
| } |
| #endif |
| assert( pTable->nCol>=0 ); |
| |
| /* If we get this far, it means we need to compute the table names. |
| ** Note that the call to sqlite3ResultSetOfSelect() will expand any |
| ** "*" elements in the results set of the view and will assign cursors |
| ** to the elements of the FROM clause. But we do not want these changes |
| ** to be permanent. So the computation is done on a copy of the SELECT |
| ** statement that defines the view. |
| */ |
| assert( pTable->pSelect ); |
| pSel = sqlite3SelectDup(pTable->pSelect); |
| if( pSel ){ |
| n = pParse->nTab; |
| sqlite3SrcListAssignCursors(pParse, pSel->pSrc); |
| pTable->nCol = -1; |
| pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); |
| pParse->nTab = n; |
| if( pSelTab ){ |
| assert( pTable->aCol==0 ); |
| pTable->nCol = pSelTab->nCol; |
| pTable->aCol = pSelTab->aCol; |
| pSelTab->nCol = 0; |
| pSelTab->aCol = 0; |
| sqlite3DeleteTable(0, pSelTab); |
| pTable->pSchema->flags |= DB_UnresetViews; |
| }else{ |
| pTable->nCol = 0; |
| nErr++; |
| } |
| sqlite3SelectDelete(pSel); |
| } else { |
| nErr++; |
| } |
| return nErr; |
| } |
| #endif /* SQLITE_OMIT_VIEW */ |
| |
| #ifndef SQLITE_OMIT_VIEW |
| /* |
| ** Clear the column names from every VIEW in database idx. |
| */ |
| static void sqliteViewResetAll(sqlite3 *db, int idx){ |
| HashElem *i; |
| if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; |
| for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ |
| Table *pTab = sqliteHashData(i); |
| if( pTab->pSelect ){ |
| sqliteResetColumnNames(pTab); |
| } |
| } |
| DbClearProperty(db, idx, DB_UnresetViews); |
| } |
| #else |
| # define sqliteViewResetAll(A,B) |
| #endif /* SQLITE_OMIT_VIEW */ |
| |
| /* |
| ** This function is called by the VDBE to adjust the internal schema |
| ** used by SQLite when the btree layer moves a table root page. The |
| ** root-page of a table or index in database iDb has changed from iFrom |
| ** to iTo. |
| */ |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){ |
| HashElem *pElem; |
| Hash *pHash; |
| |
| pHash = &pDb->pSchema->tblHash; |
| for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ |
| Table *pTab = sqliteHashData(pElem); |
| if( pTab->tnum==iFrom ){ |
| pTab->tnum = iTo; |
| return; |
| } |
| } |
| pHash = &pDb->pSchema->idxHash; |
| for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ |
| Index *pIdx = sqliteHashData(pElem); |
| if( pIdx->tnum==iFrom ){ |
| pIdx->tnum = iTo; |
| return; |
| } |
| } |
| assert(0); |
| } |
| #endif |
| |
| /* |
| ** Write code to erase the table with root-page iTable from database iDb. |
| ** Also write code to modify the sqlite_master table and internal schema |
| ** if a root-page of another table is moved by the btree-layer whilst |
| ** erasing iTable (this can happen with an auto-vacuum database). |
| */ |
| static void destroyRootPage(Parse *pParse, int iTable, int iDb){ |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* OP_Destroy pushes an integer onto the stack. If this integer |
| ** is non-zero, then it is the root page number of a table moved to |
| ** location iTable. The following code modifies the sqlite_master table to |
| ** reflect this. |
| ** |
| ** The "#0" in the SQL is a special constant that means whatever value |
| ** is on the top of the stack. See sqlite3RegisterExpr(). |
| */ |
| sqlite3NestedParse(pParse, |
| "UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0", |
| pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable); |
| #endif |
| } |
| |
| /* |
| ** Write VDBE code to erase table pTab and all associated indices on disk. |
| ** Code to update the sqlite_master tables and internal schema definitions |
| ** in case a root-page belonging to another table is moved by the btree layer |
| ** is also added (this can happen with an auto-vacuum database). |
| */ |
| static void destroyTable(Parse *pParse, Table *pTab){ |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| Index *pIdx; |
| int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| destroyRootPage(pParse, pTab->tnum, iDb); |
| for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| destroyRootPage(pParse, pIdx->tnum, iDb); |
| } |
| #else |
| /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM |
| ** is not defined), then it is important to call OP_Destroy on the |
| ** table and index root-pages in order, starting with the numerically |
| ** largest root-page number. This guarantees that none of the root-pages |
| ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the |
| ** following were coded: |
| ** |
| ** OP_Destroy 4 0 |
| ** ... |
| ** OP_Destroy 5 0 |
| ** |
| ** and root page 5 happened to be the largest root-page number in the |
| ** database, then root page 5 would be moved to page 4 by the |
| ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit |
| ** a free-list page. |
| */ |
| int iTab = pTab->tnum; |
| int iDestroyed = 0; |
| |
| while( 1 ){ |
| Index *pIdx; |
| int iLargest = 0; |
| |
| if( iDestroyed==0 || iTab<iDestroyed ){ |
| iLargest = iTab; |
| } |
| for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| int iIdx = pIdx->tnum; |
| assert( pIdx->pSchema==pTab->pSchema ); |
| if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ |
| iLargest = iIdx; |
| } |
| } |
| if( iLargest==0 ){ |
| return; |
| }else{ |
| int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| destroyRootPage(pParse, iLargest, iDb); |
| iDestroyed = iLargest; |
| } |
| } |
| #endif |
| } |
| |
| /* |
| ** This routine is called to do the work of a DROP TABLE statement. |
| ** pName is the name of the table to be dropped. |
| */ |
| void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ |
| Table *pTab; |
| Vdbe *v; |
| sqlite3 *db = pParse->db; |
| int iDb; |
| |
| if( pParse->nErr || sqlite3ThreadData()->mallocFailed ) goto exit_drop_table; |
| assert( pName->nSrc==1 ); |
| pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase); |
| |
| if( pTab==0 ){ |
| if( noErr ){ |
| sqlite3ErrorClear(pParse); |
| } |
| goto exit_drop_table; |
| } |
| iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| assert( iDb>=0 && iDb<db->nDb ); |
| #ifndef SQLITE_OMIT_AUTHORIZATION |
| { |
| int code; |
| const char *zTab = SCHEMA_TABLE(iDb); |
| const char *zDb = db->aDb[iDb].zName; |
| if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ |
| goto exit_drop_table; |
| } |
| if( isView ){ |
| if( !OMIT_TEMPDB && iDb==1 ){ |
| code = SQLITE_DROP_TEMP_VIEW; |
| }else{ |
| code = SQLITE_DROP_VIEW; |
| } |
| }else{ |
| if( !OMIT_TEMPDB && iDb==1 ){ |
| code = SQLITE_DROP_TEMP_TABLE; |
| }else{ |
| code = SQLITE_DROP_TABLE; |
| } |
| } |
| if( sqlite3AuthCheck(pParse, code, pTab->zName, 0, zDb) ){ |
| goto exit_drop_table; |
| } |
| if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ |
| goto exit_drop_table; |
| } |
| } |
| #endif |
| if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){ |
| sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); |
| goto exit_drop_table; |
| } |
| |
| #ifndef SQLITE_OMIT_VIEW |
| /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used |
| ** on a table. |
| */ |
| if( isView && pTab->pSelect==0 ){ |
| sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); |
| goto exit_drop_table; |
| } |
| if( !isView && pTab->pSelect ){ |
| sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); |
| goto exit_drop_table; |
| } |
| #endif |
| |
| /* Generate code to remove the table from the master table |
| ** on disk. |
| */ |
| v = sqlite3GetVdbe(pParse); |
| if( v ){ |
| Trigger *pTrigger; |
| Db *pDb = &db->aDb[iDb]; |
| sqlite3BeginWriteOperation(pParse, 0, iDb); |
| |
| /* Drop all triggers associated with the table being dropped. Code |
| ** is generated to remove entries from sqlite_master and/or |
| ** sqlite_temp_master if required. |
| */ |
| pTrigger = pTab->pTrigger; |
| while( pTrigger ){ |
| assert( pTrigger->pSchema==pTab->pSchema || |
| pTrigger->pSchema==db->aDb[1].pSchema ); |
| sqlite3DropTriggerPtr(pParse, pTrigger, 1); |
| pTrigger = pTrigger->pNext; |
| } |
| |
| #ifndef SQLITE_OMIT_AUTOINCREMENT |
| /* Remove any entries of the sqlite_sequence table associated with |
| ** the table being dropped. This is done before the table is dropped |
| ** at the btree level, in case the sqlite_sequence table needs to |
| ** move as a result of the drop (can happen in auto-vacuum mode). |
| */ |
| if( pTab->autoInc ){ |
| sqlite3NestedParse(pParse, |
| "DELETE FROM %s.sqlite_sequence WHERE name=%Q", |
| pDb->zName, pTab->zName |
| ); |
| } |
| #endif |
| |
| /* Drop all SQLITE_MASTER table and index entries that refer to the |
| ** table. The program name loops through the master table and deletes |
| ** every row that refers to a table of the same name as the one being |
| ** dropped. Triggers are handled seperately because a trigger can be |
| ** created in the temp database that refers to a table in another |
| ** database. |
| */ |
| sqlite3NestedParse(pParse, |
| "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", |
| pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); |
| if( !isView ){ |
| destroyTable(pParse, pTab); |
| } |
| |
| /* Remove the table entry from SQLite's internal schema and modify |
| ** the schema cookie. |
| */ |
| sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0); |
| sqlite3ChangeCookie(db, v, iDb); |
| } |
| sqliteViewResetAll(db, iDb); |
| |
| exit_drop_table: |
| sqlite3SrcListDelete(pName); |
| } |
| |
| /* |
| ** This routine is called to create a new foreign key on the table |
| ** currently under construction. pFromCol determines which columns |
| ** in the current table point to the foreign key. If pFromCol==0 then |
| ** connect the key to the last column inserted. pTo is the name of |
| ** the table referred to. pToCol is a list of tables in the other |
| ** pTo table that the foreign key points to. flags contains all |
| ** information about the conflict resolution algorithms specified |
| ** in the ON DELETE, ON UPDATE and ON INSERT clauses. |
| ** |
| ** An FKey structure is created and added to the table currently |
| ** under construction in the pParse->pNewTable field. The new FKey |
| ** is not linked into db->aFKey at this point - that does not happen |
| ** until sqlite3EndTable(). |
| ** |
| ** The foreign key is set for IMMEDIATE processing. A subsequent call |
| ** to sqlite3DeferForeignKey() might change this to DEFERRED. |
| */ |
| void sqlite3CreateForeignKey( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pFromCol, /* Columns in this table that point to other table */ |
| Token *pTo, /* Name of the other table */ |
| ExprList *pToCol, /* Columns in the other table */ |
| int flags /* Conflict resolution algorithms. */ |
| ){ |
| #ifndef SQLITE_OMIT_FOREIGN_KEY |
| FKey *pFKey = 0; |
| Table *p = pParse->pNewTable; |
| int nByte; |
| int i; |
| int nCol; |
| char *z; |
| |
| assert( pTo!=0 ); |
| if( p==0 || pParse->nErr ) goto fk_end; |
| if( pFromCol==0 ){ |
| int iCol = p->nCol-1; |
| if( iCol<0 ) goto fk_end; |
| if( pToCol && pToCol->nExpr!=1 ){ |
| sqlite3ErrorMsg(pParse, "foreign key on %s" |
| " should reference only one column of table %T", |
| p->aCol[iCol].zName, pTo); |
| goto fk_end; |
| } |
| nCol = 1; |
| }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ |
| sqlite3ErrorMsg(pParse, |
| "number of columns in foreign key does not match the number of " |
| "columns in the referenced table"); |
| goto fk_end; |
| }else{ |
| nCol = pFromCol->nExpr; |
| } |
| nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; |
| if( pToCol ){ |
| for(i=0; i<pToCol->nExpr; i++){ |
| nByte += strlen(pToCol->a[i].zName) + 1; |
| } |
| } |
| pFKey = sqliteMalloc( nByte ); |
| if( pFKey==0 ) goto fk_end; |
| pFKey->pFrom = p; |
| pFKey->pNextFrom = p->pFKey; |
| z = (char*)&pFKey[1]; |
| pFKey->aCol = (struct sColMap*)z; |
| z += sizeof(struct sColMap)*nCol; |
| pFKey->zTo = z; |
| memcpy(z, pTo->z, pTo->n); |
| z[pTo->n] = 0; |
| z += pTo->n+1; |
| pFKey->pNextTo = 0; |
| pFKey->nCol = nCol; |
| if( pFromCol==0 ){ |
| pFKey->aCol[0].iFrom = p->nCol-1; |
| }else{ |
| for(i=0; i<nCol; i++){ |
| int j; |
| for(j=0; j<p->nCol; j++){ |
| if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ |
| pFKey->aCol[i].iFrom = j; |
| break; |
| } |
| } |
| if( j>=p->nCol ){ |
| sqlite3ErrorMsg(pParse, |
| "unknown column \"%s\" in foreign key definition", |
| pFromCol->a[i].zName); |
| goto fk_end; |
| } |
| } |
| } |
| if( pToCol ){ |
| for(i=0; i<nCol; i++){ |
| int n = strlen(pToCol->a[i].zName); |
| pFKey->aCol[i].zCol = z; |
| memcpy(z, pToCol->a[i].zName, n); |
| z[n] = 0; |
| z += n+1; |
| } |
| } |
| pFKey->isDeferred = 0; |
| pFKey->deleteConf = flags & 0xff; |
| pFKey->updateConf = (flags >> 8 ) & 0xff; |
| pFKey->insertConf = (flags >> 16 ) & 0xff; |
| |
| /* Link the foreign key to the table as the last step. |
| */ |
| p->pFKey = pFKey; |
| pFKey = 0; |
| |
| fk_end: |
| sqliteFree(pFKey); |
| #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ |
| sqlite3ExprListDelete(pFromCol); |
| sqlite3ExprListDelete(pToCol); |
| } |
| |
| /* |
| ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED |
| ** clause is seen as part of a foreign key definition. The isDeferred |
| ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. |
| ** The behavior of the most recently created foreign key is adjusted |
| ** accordingly. |
| */ |
| void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ |
| #ifndef SQLITE_OMIT_FOREIGN_KEY |
| Table *pTab; |
| FKey *pFKey; |
| if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; |
| pFKey->isDeferred = isDeferred; |
| #endif |
| } |
| |
| /* |
| ** Generate code that will erase and refill index *pIdx. This is |
| ** used to initialize a newly created index or to recompute the |
| ** content of an index in response to a REINDEX command. |
| ** |
| ** if memRootPage is not negative, it means that the index is newly |
| ** created. The memory cell specified by memRootPage contains the |
| ** root page number of the index. If memRootPage is negative, then |
| ** the index already exists and must be cleared before being refilled and |
| ** the root page number of the index is taken from pIndex->tnum. |
| */ |
| static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ |
| Table *pTab = pIndex->pTable; /* The table that is indexed */ |
| int iTab = pParse->nTab; /* Btree cursor used for pTab */ |
| int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */ |
| int addr1; /* Address of top of loop */ |
| int tnum; /* Root page of index */ |
| Vdbe *v; /* Generate code into this virtual machine */ |
| KeyInfo *pKey; /* KeyInfo for index */ |
| int iDb = sqlite3SchemaToIndex(pParse->db, pIndex->pSchema); |
| |
| #ifndef SQLITE_OMIT_AUTHORIZATION |
| if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, |
| pParse->db->aDb[iDb].zName ) ){ |
| return; |
| } |
| #endif |
| |
| /* Require a write-lock on the table to perform this operation */ |
| sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); |
| |
| v = sqlite3GetVdbe(pParse); |
| if( v==0 ) return; |
| if( memRootPage>=0 ){ |
| sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0); |
| tnum = 0; |
| }else{ |
| tnum = pIndex->tnum; |
| sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb); |
| } |
| sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); |
| pKey = sqlite3IndexKeyinfo(pParse, pIndex); |
| sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char *)pKey, P3_KEYINFO_HANDOFF); |
| sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
| addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); |
| sqlite3GenerateIndexKey(v, pIndex, iTab); |
| if( pIndex->onError!=OE_None ){ |
| int curaddr = sqlite3VdbeCurrentAddr(v); |
| int addr2 = curaddr+4; |
| sqlite3VdbeChangeP2(v, curaddr-1, addr2); |
| sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0); |
| sqlite3VdbeAddOp(v, OP_AddImm, 1, 0); |
| sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2); |
| sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, |
| "indexed columns are not unique", P3_STATIC); |
| assert( addr2==sqlite3VdbeCurrentAddr(v) ); |
| } |
| sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0); |
| sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1); |
| sqlite3VdbeJumpHere(v, addr1); |
| sqlite3VdbeAddOp(v, OP_Close, iTab, 0); |
| sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); |
| } |
| |
| /* |
| ** Create a new index for an SQL table. pName1.pName2 is the name of the index |
| ** and pTblList is the name of the table that is to be indexed. Both will |
| ** be NULL for a primary key or an index that is created to satisfy a |
| ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable |
| ** as the table to be indexed. pParse->pNewTable is a table that is |
| ** currently being constructed by a CREATE TABLE statement. |
| ** |
| ** pList is a list of columns to be indexed. pList will be NULL if this |
| ** is a primary key or unique-constraint on the most recent column added |
| ** to the table currently under construction. |
| */ |
| void sqlite3CreateIndex( |
| Parse *pParse, /* All information about this parse */ |
| Token *pName1, /* First part of index name. May be NULL */ |
| Token *pName2, /* Second part of index name. May be NULL */ |
| SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ |
| ExprList *pList, /* A list of columns to be indexed */ |
| int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ |
| Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */ |
| Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ |
| int sortOrder, /* Sort order of primary key when pList==NULL */ |
| int ifNotExist /* Omit error if index already exists */ |
| ){ |
| Table *pTab = 0; /* Table to be indexed */ |
| Index *pIndex = 0; /* The index to be created */ |
| char *zName = 0; /* Name of the index */ |
| int nName; /* Number of characters in zName */ |
| int i, j; |
| Token nullId; /* Fake token for an empty ID list */ |
| DbFixer sFix; /* For assigning database names to pTable */ |
| int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ |
| sqlite3 *db = pParse->db; |
| Db *pDb; /* The specific table containing the indexed database */ |
| int iDb; /* Index of the database that is being written */ |
| Token *pName = 0; /* Unqualified name of the index to create */ |
| struct ExprList_item *pListItem; /* For looping over pList */ |
| int nCol; |
| int nExtra = 0; |
| char *zExtra; |
| |
| if( pParse->nErr || sqlite3ThreadData()->mallocFailed ){ |
| goto exit_create_index; |
| } |
| |
| /* |
| ** Find the table that is to be indexed. Return early if not found. |
| */ |
| if( pTblName!=0 ){ |
| |
| /* Use the two-part index name to determine the database |
| ** to search for the table. 'Fix' the table name to this db |
| ** before looking up the table. |
| */ |
| assert( pName1 && pName2 ); |
| iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
| if( iDb<0 ) goto exit_create_index; |
| |
| #ifndef SQLITE_OMIT_TEMPDB |
| /* If the index name was unqualified, check if the the table |
| ** is a temp table. If so, set the database to 1. |
| */ |
| pTab = sqlite3SrcListLookup(pParse, pTblName); |
| if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ |
| iDb = 1; |
| } |
| #endif |
| |
| if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && |
| sqlite3FixSrcList(&sFix, pTblName) |
| ){ |
| /* Because the parser constructs pTblName from a single identifier, |
| ** sqlite3FixSrcList can never fail. */ |
| assert(0); |
| } |
| pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName, |
| pTblName->a[0].zDatabase); |
| if( !pTab ) goto exit_create_index; |
| assert( db->aDb[iDb].pSchema==pTab->pSchema ); |
| }else{ |
| assert( pName==0 ); |
| pTab = pParse->pNewTable; |
| if( !pTab ) goto exit_create_index; |
| iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| } |
| pDb = &db->aDb[iDb]; |
| |
| if( pTab==0 || pParse->nErr ) goto exit_create_index; |
| if( pTab->readOnly ){ |
| sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); |
| goto exit_create_index; |
| } |
| #ifndef SQLITE_OMIT_VIEW |
| if( pTab->pSelect ){ |
| sqlite3ErrorMsg(pParse, "views may not be indexed"); |
| goto exit_create_index; |
| } |
| #endif |
| |
| /* |
| ** Find the name of the index. Make sure there is not already another |
| ** index or table with the same name. |
| ** |
| ** Exception: If we are reading the names of permanent indices from the |
| ** sqlite_master table (because some other process changed the schema) and |
| ** one of the index names collides with the name of a temporary table or |
| ** index, then we will continue to process this index. |
| ** |
| ** If pName==0 it means that we are |
| ** dealing with a primary key or UNIQUE constraint. We have to invent our |
| ** own name. |
| */ |
| if( pName ){ |
| zName = sqlite3NameFromToken(pName); |
| if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; |
| if( zName==0 ) goto exit_create_index; |
| if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ |
| goto exit_create_index; |
| } |
| if( !db->init.busy ){ |
| if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; |
| if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ |
| if( !ifNotExist ){ |
| sqlite3ErrorMsg(pParse, "index %s already exists", zName); |
| } |
| goto exit_create_index; |
| } |
| if( sqlite3FindTable(db, zName, 0)!=0 ){ |
| sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); |
| goto exit_create_index; |
| } |
| } |
| }else{ |
| char zBuf[30]; |
| int n; |
| Index *pLoop; |
| for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} |
| sprintf(zBuf,"_%d",n); |
| zName = 0; |
| sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0); |
| if( zName==0 ) goto exit_create_index; |
| } |
| |
| /* Check for authorization to create an index. |
| */ |
| #ifndef SQLITE_OMIT_AUTHORIZATION |
| { |
| const char *zDb = pDb->zName; |
| if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ |
| goto exit_create_index; |
| } |
| i = SQLITE_CREATE_INDEX; |
| if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; |
| if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ |
| goto exit_create_index; |
| } |
| } |
| #endif |
| |
| /* If pList==0, it means this routine was called to make a primary |
| ** key out of the last column added to the table under construction. |
| ** So create a fake list to simulate this. |
| */ |
| if( pList==0 ){ |
| nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName; |
| nullId.n = strlen((char*)nullId.z); |
| pList = sqlite3ExprListAppend(0, 0, &nullId); |
| if( pList==0 ) goto exit_create_index; |
| pList->a[0].sortOrder = sortOrder; |
| } |
| |
| /* Figure out how many bytes of space are required to store explicitly |
| ** specified collation sequence names. |
| */ |
| for(i=0; i<pList->nExpr; i++){ |
| Expr *pExpr = pList->a[i].pExpr; |
| if( pExpr ){ |
| nExtra += (1 + strlen(pExpr->pColl->zName)); |
| } |
| } |
| |
| /* |
| ** Allocate the index structure. |
| */ |
| nName = strlen(zName); |
| nCol = pList->nExpr; |
| pIndex = sqliteMalloc( |
| sizeof(Index) + /* Index structure */ |
| sizeof(int)*nCol + /* Index.aiColumn */ |
| sizeof(int)*(nCol+1) + /* Index.aiRowEst */ |
| sizeof(char *)*nCol + /* Index.azColl */ |
| sizeof(u8)*nCol + /* Index.aSortOrder */ |
| nName + 1 + /* Index.zName */ |
| nExtra /* Collation sequence names */ |
| ); |
| if( sqlite3ThreadData()->mallocFailed ) goto exit_create_index; |
| pIndex->aiColumn = (int *)(&pIndex[1]); |
| pIndex->aiRowEst = (int *)(&pIndex->aiColumn[nCol]); |
| pIndex->azColl = (char **)(&pIndex->aiRowEst[nCol+1]); |
| pIndex->aSortOrder = (u8 *)(&pIndex->azColl[nCol]); |
| pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); |
| zExtra = (char *)(&pIndex->zName[nName+1]); |
| strcpy(pIndex->zName, zName); |
| pIndex->pTable = pTab; |
| pIndex->nColumn = pList->nExpr; |
| pIndex->onError = onError; |
| pIndex->autoIndex = pName==0; |
| pIndex->pSchema = db->aDb[iDb].pSchema; |
| |
| /* Check to see if we should honor DESC requests on index columns |
| */ |
| if( pDb->pSchema->file_format>=4 ){ |
| sortOrderMask = -1; /* Honor DESC */ |
| }else{ |
| sortOrderMask = 0; /* Ignore DESC */ |
| } |
| |
| /* Scan the names of the columns of the table to be indexed and |
| ** load the column indices into the Index structure. Report an error |
| ** if any column is not found. |
| */ |
| for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ |
| const char *zColName = pListItem->zName; |
| Column *pTabCol; |
| int requestedSortOrder; |
| char *zColl; /* Collation sequence */ |
| |
| for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ |
| if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; |
| } |
| if( j>=pTab->nCol ){ |
| sqlite3ErrorMsg(pParse, "table %s has no column named %s", |
| pTab->zName, zColName); |
| goto exit_create_index; |
| } |
| pIndex->aiColumn[i] = j; |
| if( pListItem->pExpr ){ |
| assert( pListItem->pExpr->pColl ); |
| zColl = zExtra; |
| strcpy(zExtra, pListItem->pExpr->pColl->zName); |
| zExtra += (strlen(zColl) + 1); |
| }else{ |
| zColl = pTab->aCol[j].zColl; |
| if( !zColl ){ |
| zColl = db->pDfltColl->zName; |
| } |
| } |
| if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){ |
| goto exit_create_index; |
| } |
| pIndex->azColl[i] = zColl; |
| requestedSortOrder = pListItem->sortOrder & sortOrderMask; |
| pIndex->aSortOrder[i] = requestedSortOrder; |
| } |
| sqlite3DefaultRowEst(pIndex); |
| |
| if( pTab==pParse->pNewTable ){ |
| /* This routine has been called to create an automatic index as a |
| ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or |
| ** a PRIMARY KEY or UNIQUE clause following the column definitions. |
| ** i.e. one of: |
| ** |
| ** CREATE TABLE t(x PRIMARY KEY, y); |
| ** CREATE TABLE t(x, y, UNIQUE(x, y)); |
| ** |
| ** Either way, check to see if the table already has such an index. If |
| ** so, don't bother creating this one. This only applies to |
| ** automatically created indices. Users can do as they wish with |
| ** explicit indices. |
| */ |
| Index *pIdx; |
| for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| int k; |
| assert( pIdx->onError!=OE_None ); |
| assert( pIdx->autoIndex ); |
| assert( pIndex->onError!=OE_None ); |
| |
| if( pIdx->nColumn!=pIndex->nColumn ) continue; |
| for(k=0; k<pIdx->nColumn; k++){ |
| const char *z1 = pIdx->azColl[k]; |
| const char *z2 = pIndex->azColl[k]; |
| if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; |
| if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break; |
| if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; |
| } |
| if( k==pIdx->nColumn ){ |
| if( pIdx->onError!=pIndex->onError ){ |
| /* This constraint creates the same index as a previous |
| ** constraint specified somewhere in the CREATE TABLE statement. |
| ** However the ON CONFLICT clauses are different. If both this |
| ** constraint and the previous equivalent constraint have explicit |
| ** ON CONFLICT clauses this is an error. Otherwise, use the |
| ** explicitly specified behaviour for the index. |
| */ |
| if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ |
| sqlite3ErrorMsg(pParse, |
| "conflicting ON CONFLICT clauses specified", 0); |
| } |
| if( pIdx->onError==OE_Default ){ |
| pIdx->onError = pIndex->onError; |
| } |
| } |
| goto exit_create_index; |
| } |
| } |
| } |
| |
| /* Link the new Index structure to its table and to the other |
| ** in-memory database structures. |
| */ |
| if( db->init.busy ){ |
| Index *p; |
| p = sqlite3HashInsert(&pIndex->pSchema->idxHash, |
| pIndex->zName, strlen(pIndex->zName)+1, pIndex); |
| if( p ){ |
| assert( p==pIndex ); /* Malloc must have failed */ |
| goto exit_create_index; |
| } |
| db->flags |= SQLITE_InternChanges; |
| if( pTblName!=0 ){ |
| pIndex->tnum = db->init.newTnum; |
| } |
| } |
| |
| /* If the db->init.busy is 0 then create the index on disk. This |
| ** involves writing the index into the master table and filling in the |
| ** index with the current table contents. |
| ** |
| ** The db->init.busy is 0 when the user first enters a CREATE INDEX |
| ** command. db->init.busy is 1 when a database is opened and |
| ** CREATE INDEX statements are read out of the master table. In |
| ** the latter case the index already exists on disk, which is why |
| ** we don't want to recreate it. |
| ** |
| ** If pTblName==0 it means this index is generated as a primary key |
| ** or UNIQUE constraint of a CREATE TABLE statement. Since the table |
| ** has just been created, it contains no data and the index initialization |
| ** step can be skipped. |
| */ |
| else if( db->init.busy==0 ){ |
| Vdbe *v; |
| char *zStmt; |
| int iMem = pParse->nMem++; |
| |
| v = sqlite3GetVdbe(pParse); |
| if( v==0 ) goto exit_create_index; |
| |
| |
| /* Create the rootpage for the index |
| */ |
| sqlite3BeginWriteOperation(pParse, 1, iDb); |
| sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0); |
| sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); |
| |
| /* Gather the complete text of the CREATE INDEX statement into |
| ** the zStmt variable |
| */ |
| if( pStart && pEnd ){ |
| /* A named index with an explicit CREATE INDEX statement */ |
| zStmt = sqlite3MPrintf("CREATE%s INDEX %.*s", |
| onError==OE_None ? "" : " UNIQUE", |
| pEnd->z - pName->z + 1, |
| pName->z); |
| }else{ |
| /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ |
| /* zStmt = sqlite3MPrintf(""); */ |
| zStmt = 0; |
| } |
| |
| /* Add an entry in sqlite_master for this index |
| */ |
| sqlite3NestedParse(pParse, |
| "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);", |
| db->aDb[iDb].zName, SCHEMA_TABLE(iDb), |
| pIndex->zName, |
| pTab->zName, |
| zStmt |
| ); |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| sqliteFree(zStmt); |
| |
| /* Fill the index with data and reparse the schema. Code an OP_Expire |
| ** to invalidate all pre-compiled statements. |
| */ |
| if( pTblName ){ |
| sqlite3RefillIndex(pParse, pIndex, iMem); |
| sqlite3ChangeCookie(db, v, iDb); |
| sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, |
| sqlite3MPrintf("name='%q'", pIndex->zName), P3_DYNAMIC); |
| sqlite3VdbeAddOp(v, OP_Expire, 0, 0); |
| } |
| } |
| |
| /* When adding an index to the list of indices for a table, make |
| ** sure all indices labeled OE_Replace come after all those labeled |
| ** OE_Ignore. This is necessary for the correct operation of UPDATE |
| ** and INSERT. |
| */ |
| if( db->init.busy || pTblName==0 ){ |
| if( onError!=OE_Replace || pTab->pIndex==0 |
| || pTab->pIndex->onError==OE_Replace){ |
| pIndex->pNext = pTab->pIndex; |
| pTab->pIndex = pIndex; |
| }else{ |
| Index *pOther = pTab->pIndex; |
| while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ |
| pOther = pOther->pNext; |
| } |
| pIndex->pNext = pOther->pNext; |
| pOther->pNext = pIndex; |
| } |
| pIndex = 0; |
| } |
| |
| /* Clean up before exiting */ |
| exit_create_index: |
| if( pIndex ){ |
| freeIndex(pIndex); |
| } |
| sqlite3ExprListDelete(pList); |
| sqlite3SrcListDelete(pTblName); |
| sqliteFree(zName); |
| return; |
| } |
| |
| /* |
| ** Generate code to make sure the file format number is at least minFormat. |
| ** The generated code will increase the file format number if necessary. |
| */ |
| void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){ |
| Vdbe *v; |
| v = sqlite3GetVdbe(pParse); |
| if( v ){ |
| sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); |
| sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0); |
| sqlite3VdbeAddOp(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3); |
| sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0); |
| sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1); |
| } |
| } |
| |
| /* |
| ** Fill the Index.aiRowEst[] array with default information - information |
| ** to be used when we have not run the ANALYZE command. |
| ** |
| ** aiRowEst[0] is suppose to contain the number of elements in the index. |
| ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the |
| ** number of rows in the table that match any particular value of the |
| ** first column of the index. aiRowEst[2] is an estimate of the number |
| ** of rows that match any particular combiniation of the first 2 columns |
| ** of the index. And so forth. It must always be the case that |
| * |
| ** aiRowEst[N]<=aiRowEst[N-1] |
| ** aiRowEst[N]>=1 |
| ** |
| ** Apart from that, we have little to go on besides intuition as to |
| ** how aiRowEst[] should be initialized. The numbers generated here |
| ** are based on typical values found in actual indices. |
| */ |
| void sqlite3DefaultRowEst(Index *pIdx){ |
| unsigned *a = pIdx->aiRowEst; |
| int i; |
| assert( a!=0 ); |
| a[0] = 1000000; |
| for(i=pIdx->nColumn; i>=1; i--){ |
| a[i] = 10; |
| } |
| if( pIdx->onError!=OE_None ){ |
| a[pIdx->nColumn] = 1; |
| } |
| } |
| |
| /* |
| ** This routine will drop an existing named index. This routine |
| ** implements the DROP INDEX statement. |
| */ |
| void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ |
| Index *pIndex; |
| Vdbe *v; |
| sqlite3 *db = pParse->db; |
| int iDb; |
| |
| if( pParse->nErr || sqlite3ThreadData()->mallocFailed ){ |
| goto exit_drop_index; |
| } |
| assert( pName->nSrc==1 ); |
| if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| goto exit_drop_index; |
| } |
| pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); |
| if( pIndex==0 ){ |
| if( !ifExists ){ |
| sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); |
| } |
| pParse->checkSchema = 1; |
| goto exit_drop_index; |
| } |
| if( pIndex->autoIndex ){ |
| sqlite3ErrorMsg(pParse, "index associated with UNIQUE " |
| "or PRIMARY KEY constraint cannot be dropped", 0); |
| goto exit_drop_index; |
| } |
| iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); |
| #ifndef SQLITE_OMIT_AUTHORIZATION |
| { |
| int code = SQLITE_DROP_INDEX; |
| Table *pTab = pIndex->pTable; |
| const char *zDb = db->aDb[iDb].zName; |
| const char *zTab = SCHEMA_TABLE(iDb); |
| if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ |
| goto exit_drop_index; |
| } |
| if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; |
| if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ |
| goto exit_drop_index; |
| } |
| } |
| #endif |
| |
| /* Generate code to remove the index and from the master table */ |
| v = sqlite3GetVdbe(pParse); |
| if( v ){ |
| sqlite3NestedParse(pParse, |
| "DELETE FROM %Q.%s WHERE name=%Q", |
| db->aDb[iDb].zName, SCHEMA_TABLE(iDb), |
| pIndex->zName |
| ); |
| sqlite3ChangeCookie(db, v, iDb); |
| destroyRootPage(pParse, pIndex->tnum, iDb); |
| sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0); |
| } |
| |
| exit_drop_index: |
| sqlite3SrcListDelete(pName); |
| } |
| |
| /* |
| ** ppArray points into a structure where there is an array pointer |
| ** followed by two integers. The first integer is the |
| ** number of elements in the structure array. The second integer |
| ** is the number of allocated slots in the array. |
| ** |
| ** In other words, the structure looks something like this: |
| ** |
| ** struct Example1 { |
| ** struct subElem *aEntry; |
| ** int nEntry; |
| ** int nAlloc; |
| ** } |
| ** |
| ** The pnEntry parameter points to the equivalent of Example1.nEntry. |
| ** |
| ** This routine allocates a new slot in the array, zeros it out, |
| ** and returns its index. If malloc fails a negative number is returned. |
| ** |
| ** szEntry is the sizeof of a single array entry. initSize is the |
| ** number of array entries allocated on the initial allocation. |
| */ |
| int sqlite3ArrayAllocate(void **ppArray, int szEntry, int initSize){ |
| char *p; |
| int *an = (int*)&ppArray[1]; |
| if( an[0]>=an[1] ){ |
| void *pNew; |
| int newSize; |
| newSize = an[1]*2 + initSize; |
| pNew = sqliteRealloc(*ppArray, newSize*szEntry); |
| if( pNew==0 ){ |
| return -1; |
| } |
| an[1] = newSize; |
| *ppArray = pNew; |
| } |
| p = *ppArray; |
| memset(&p[an[0]*szEntry], 0, szEntry); |
| return an[0]++; |
| } |
| |
| /* |
| ** Append a new element to the given IdList. Create a new IdList if |
| ** need be. |
| ** |
| ** A new IdList is returned, or NULL if malloc() fails. |
| */ |
| IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){ |
| int i; |
| if( pList==0 ){ |
| pList = sqliteMalloc( sizeof(IdList) ); |
| if( pList==0 ) return 0; |
| pList->nAlloc = 0; |
| } |
| i = sqlite3ArrayAllocate((void**)&pList->a, sizeof(pList->a[0]), 5); |
| if( i<0 ){ |
| sqlite3IdListDelete(pList); |
| return 0; |
| } |
| pList->a[i].zName = sqlite3NameFromToken(pToken); |
| return pList; |
| } |
| |
| /* |
| ** Delete an IdList. |
| */ |
| void sqlite3IdListDelete(IdList *pList){ |
| int i; |
| if( pList==0 ) return; |
| for(i=0; i<pList->nId; i++){ |
| sqliteFree(pList->a[i].zName); |
| } |
| sqliteFree(pList->a); |
| sqliteFree(pList); |
| } |
| |
| /* |
| ** Return the index in pList of the identifier named zId. Return -1 |
| ** if not found. |
| */ |
| int sqlite3IdListIndex(IdList *pList, const char *zName){ |
| int i; |
| if( pList==0 ) return -1; |
| for(i=0; i<pList->nId; i++){ |
| if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; |
| } |
| return -1; |
| } |
| |
| /* |
| ** Append a new table name to the given SrcList. Create a new SrcList if |
| ** need be. A new entry is created in the SrcList even if pToken is NULL. |
| ** |
| ** A new SrcList is returned, or NULL if malloc() fails. |
| ** |
| ** If pDatabase is not null, it means that the table has an optional |
| ** database name prefix. Like this: "database.table". The pDatabase |
| ** points to the table name and the pTable points to the database name. |
| ** The SrcList.a[].zName field is filled with the table name which might |
| ** come from pTable (if pDatabase is NULL) or from pDatabase. |
| ** SrcList.a[].zDatabase is filled with the database name from pTable, |
| ** or with NULL if no database is specified. |
| ** |
| ** In other words, if call like this: |
| ** |
| ** sqlite3SrcListAppend(A,B,0); |
| ** |
| ** Then B is a table name and the database name is unspecified. If called |
| ** like this: |
| ** |
| ** sqlite3SrcListAppend(A,B,C); |
| ** |
| ** Then C is the table name and B is the database name. |
| */ |
| SrcList *sqlite3SrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){ |
| struct SrcList_item *pItem; |
| if( pList==0 ){ |
| pList = sqliteMalloc( sizeof(SrcList) ); |
| if( pList==0 ) return 0; |
| pList->nAlloc = 1; |
| } |
| if( pList->nSrc>=pList->nAlloc ){ |
| SrcList *pNew; |
| pList->nAlloc *= 2; |
| pNew = sqliteRealloc(pList, |
| sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) ); |
| if( pNew==0 ){ |
| sqlite3SrcListDelete(pList); |
| return 0; |
| } |
| pList = pNew; |
| } |
| pItem = &pList->a[pList->nSrc]; |
| memset(pItem, 0, sizeof(pList->a[0])); |
| if( pDatabase && pDatabase->z==0 ){ |
| pDatabase = 0; |
| } |
| if( pDatabase && pTable ){ |
| Token *pTemp = pDatabase; |
| pDatabase = pTable; |
| pTable = pTemp; |
| } |
| pItem->zName = sqlite3NameFromToken(pTable); |
| pItem->zDatabase = sqlite3NameFromToken(pDatabase); |
| pItem->iCursor = -1; |
| pList->nSrc++; |
| return pList; |
| } |
| |
| /* |
| ** Assign cursors to all tables in a SrcList |
| */ |
| void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ |
| int i; |
| struct SrcList_item *pItem; |
| assert(pList || sqlite3ThreadData()->mallocFailed); |
| if( pList ){ |
| for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ |
| if( pItem->iCursor>=0 ) break; |
| pItem->iCursor = pParse->nTab++; |
| if( pItem->pSelect ){ |
| sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Add an alias to the last identifier on the given identifier list. |
| */ |
| void sqlite3SrcListAddAlias(SrcList *pList, Token *pToken){ |
| if( pList && pList->nSrc>0 ){ |
| pList->a[pList->nSrc-1].zAlias = sqlite3NameFromToken(pToken); |
| } |
| } |
| |
| /* |
| ** Delete an entire SrcList including all its substructure. |
| */ |
| void sqlite3SrcListDelete(SrcList *pList){ |
| int i; |
| struct SrcList_item *pItem; |
| if( pList==0 ) return; |
| for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ |
| sqliteFree(pItem->zDatabase); |
| sqliteFree(pItem->zName); |
| sqliteFree(pItem->zAlias); |
| sqlite3DeleteTable(0, pItem->pTab); |
| sqlite3SelectDelete(pItem->pSelect); |
| sqlite3ExprDelete(pItem->pOn); |
| sqlite3IdListDelete(pItem->pUsing); |
| } |
| sqliteFree(pList); |
| } |
| |
| /* |
| ** Begin a transaction |
| */ |
| void sqlite3BeginTransaction(Parse *pParse, int type){ |
| sqlite3 *db; |
| Vdbe *v; |
| int i; |
| |
| if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; |
| if( pParse->nErr || sqlite3ThreadData()->mallocFailed ) return; |
| if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return; |
| |
| v = sqlite3GetVdbe(pParse); |
| if( !v ) return; |
| if( type!=TK_DEFERRED ){ |
| for(i=0; i<db->nDb; i++){ |
| sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); |
| } |
| } |
| sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0); |
| } |
| |
| /* |
| ** Commit a transaction |
| */ |
| void sqlite3CommitTransaction(Parse *pParse){ |
| sqlite3 *db; |
| Vdbe *v; |
| |
| if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; |
| if( pParse->nErr || sqlite3ThreadData()->mallocFailed ) return; |
| if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return; |
| |
| v = sqlite3GetVdbe(pParse); |
| if( v ){ |
| sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0); |
| } |
| } |
| |
| /* |
| ** Rollback a transaction |
| */ |
| void sqlite3RollbackTransaction(Parse *pParse){ |
| sqlite3 *db; |
| Vdbe *v; |
| |
| if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; |
| if( pParse->nErr || sqlite3ThreadData()->mallocFailed ) return; |
| if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return; |
| |
| v = sqlite3GetVdbe(pParse); |
| if( v ){ |
| sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1); |
| } |
| } |
| |
| /* |
| ** Make sure the TEMP database is open and available for use. Return |
| ** the number of errors. Leave any error messages in the pParse structure. |
| */ |
| static int sqlite3OpenTempDatabase(Parse *pParse){ |
| sqlite3 *db = pParse->db; |
| if( db->aDb[1].pBt==0 && !pParse->explain ){ |
| int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt); |
| if( rc!=SQLITE_OK ){ |
| sqlite3ErrorMsg(pParse, "unable to open a temporary database " |
| "file for storing temporary tables"); |
| pParse->rc = rc; |
| return 1; |
| } |
| if( db->flags & !db->autoCommit ){ |
| rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1); |
| if( rc!=SQLITE_OK ){ |
| sqlite3ErrorMsg(pParse, "unable to get a write lock on " |
| "the temporary database file"); |
| pParse->rc = rc; |
| return 1; |
| } |
| } |
| assert( db->aDb[1].pSchema ); |
| } |
| return 0; |
| } |
| |
| /* |
| ** Generate VDBE code that will verify the schema cookie and start |
| ** a read-transaction for all named database files. |
| ** |
| ** It is important that all schema cookies be verified and all |
| ** read transactions be started before anything else happens in |
| ** the VDBE program. But this routine can be called after much other |
| ** code has been generated. So here is what we do: |
| ** |
| ** The first time this routine is called, we code an OP_Goto that |
| ** will jump to a subroutine at the end of the program. Then we |
| ** record every database that needs its schema verified in the |
| ** pParse->cookieMask field. Later, after all other code has been |
| ** generated, the subroutine that does the cookie verifications and |
| ** starts the transactions will be coded and the OP_Goto P2 value |
| ** will be made to point to that subroutine. The generation of the |
| ** cookie verification subroutine code happens in sqlite3FinishCoding(). |
| ** |
| ** If iDb<0 then code the OP_Goto only - don't set flag to verify the |
| ** schema on any databases. This can be used to position the OP_Goto |
| ** early in the code, before we know if any database tables will be used. |
| */ |
| void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ |
| sqlite3 *db; |
| Vdbe *v; |
| int mask; |
| |
| v = sqlite3GetVdbe(pParse); |
| if( v==0 ) return; /* This only happens if there was a prior error */ |
| db = pParse->db; |
| if( pParse->cookieGoto==0 ){ |
| pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1; |
| } |
| if( iDb>=0 ){ |
| assert( iDb<db->nDb ); |
| assert( db->aDb[iDb].pBt!=0 || iDb==1 ); |
| assert( iDb<32 ); |
| mask = 1<<iDb; |
| if( (pParse->cookieMask & mask)==0 ){ |
| pParse->cookieMask |= mask; |
| pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; |
| if( !OMIT_TEMPDB && iDb==1 ){ |
| sqlite3OpenTempDatabase(pParse); |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Generate VDBE code that prepares for doing an operation that |
| ** might change the database. |
| ** |
| ** This routine starts a new transaction if we are not already within |
| ** a transaction. If we are already within a transaction, then a checkpoint |
| ** is set if the setStatement parameter is true. A checkpoint should |
| ** be set for operations that might fail (due to a constraint) part of |
| ** the way through and which will need to undo some writes without having to |
| ** rollback the whole transaction. For operations where all constraints |
| ** can be checked before any changes are made to the database, it is never |
| ** necessary to undo a write and the checkpoint should not be set. |
| ** |
| ** Only database iDb and the temp database are made writable by this call. |
| ** If iDb==0, then the main and temp databases are made writable. If |
| ** iDb==1 then only the temp database is made writable. If iDb>1 then the |
| ** specified auxiliary database and the temp database are made writable. |
| */ |
| void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| if( v==0 ) return; |
| sqlite3CodeVerifySchema(pParse, iDb); |
| pParse->writeMask |= 1<<iDb; |
| if( setStatement && pParse->nested==0 ){ |
| sqlite3VdbeAddOp(v, OP_Statement, iDb, 0); |
| } |
| if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){ |
| sqlite3BeginWriteOperation(pParse, setStatement, 1); |
| } |
| } |
| |
| /* |
| ** Check to see if pIndex uses the collating sequence pColl. Return |
| ** true if it does and false if it does not. |
| */ |
| #ifndef SQLITE_OMIT_REINDEX |
| static int collationMatch(const char *zColl, Index *pIndex){ |
| int i; |
| for(i=0; i<pIndex->nColumn; i++){ |
| const char *z = pIndex->azColl[i]; |
| if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){ |
| return 1; |
| } |
| } |
| return 0; |
| } |
| #endif |
| |
| /* |
| ** Recompute all indices of pTab that use the collating sequence pColl. |
| ** If pColl==0 then recompute all indices of pTab. |
| */ |
| #ifndef SQLITE_OMIT_REINDEX |
| static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ |
| Index *pIndex; /* An index associated with pTab */ |
| |
| for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ |
| if( zColl==0 || collationMatch(zColl, pIndex) ){ |
| int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| sqlite3BeginWriteOperation(pParse, 0, iDb); |
| sqlite3RefillIndex(pParse, pIndex, -1); |
| } |
| } |
| } |
| #endif |
| |
| /* |
| ** Recompute all indices of all tables in all databases where the |
| ** indices use the collating sequence pColl. If pColl==0 then recompute |
| ** all indices everywhere. |
| */ |
| #ifndef SQLITE_OMIT_REINDEX |
| static void reindexDatabases(Parse *pParse, char const *zColl){ |
| Db *pDb; /* A single database */ |
| int iDb; /* The database index number */ |
| sqlite3 *db = pParse->db; /* The database connection */ |
| HashElem *k; /* For looping over tables in pDb */ |
| Table *pTab; /* A table in the database */ |
| |
| for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ |
| if( pDb==0 ) continue; |
| for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ |
| pTab = (Table*)sqliteHashData(k); |
| reindexTable(pParse, pTab, zColl); |
| } |
| } |
| } |
| #endif |
| |
| /* |
| ** Generate code for the REINDEX command. |
| ** |
| ** REINDEX -- 1 |
| ** REINDEX <collation> -- 2 |
| ** REINDEX ?<database>.?<tablename> -- 3 |
| ** REINDEX ?<database>.?<indexname> -- 4 |
| ** |
| ** Form 1 causes all indices in all attached databases to be rebuilt. |
| ** Form 2 rebuilds all indices in all databases that use the named |
| ** collating function. Forms 3 and 4 rebuild the named index or all |
| ** indices associated with the named table. |
| */ |
| #ifndef SQLITE_OMIT_REINDEX |
| void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ |
| CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ |
| char *z; /* Name of a table or index */ |
| const char *zDb; /* Name of the database */ |
| Table *pTab; /* A table in the database */ |
| Index *pIndex; /* An index associated with pTab */ |
| int iDb; /* The database index number */ |
| sqlite3 *db = pParse->db; /* The database connection */ |
| Token *pObjName; /* Name of the table or index to be reindexed */ |
| |
| /* Read the database schema. If an error occurs, leave an error message |
| ** and code in pParse and return NULL. */ |
| if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| return; |
| } |
| |
| if( pName1==0 || pName1->z==0 ){ |
| reindexDatabases(pParse, 0); |
| return; |
| }else if( pName2==0 || pName2->z==0 ){ |
| assert( pName1->z ); |
| pColl = sqlite3FindCollSeq(db, ENC(db), (char*)pName1->z, pName1->n, 0); |
| if( pColl ){ |
| char *z = sqlite3StrNDup(pName1->z, pName1->n); |
| if( z ){ |
| reindexDatabases(pParse, z); |
| sqliteFree(z); |
| } |
| return; |
| } |
| } |
| iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); |
| if( iDb<0 ) return; |
| z = sqlite3NameFromToken(pObjName); |
| zDb = db->aDb[iDb].zName; |
| pTab = sqlite3FindTable(db, z, zDb); |
| if( pTab ){ |
| reindexTable(pParse, pTab, 0); |
| sqliteFree(z); |
| return; |
| } |
| pIndex = sqlite3FindIndex(db, z, zDb); |
| sqliteFree(z); |
| if( pIndex ){ |
| sqlite3BeginWriteOperation(pParse, 0, iDb); |
| sqlite3RefillIndex(pParse, pIndex, -1); |
| return; |
| } |
| sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); |
| } |
| #endif |
| |
| /* |
| ** Return a dynamicly allocated KeyInfo structure that can be used |
| ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. |
| ** |
| ** If successful, a pointer to the new structure is returned. In this case |
| ** the caller is responsible for calling sqliteFree() on the returned |
| ** pointer. If an error occurs (out of memory or missing collation |
| ** sequence), NULL is returned and the state of pParse updated to reflect |
| ** the error. |
| */ |
| KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ |
| int i; |
| int nCol = pIdx->nColumn; |
| int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; |
| KeyInfo *pKey = (KeyInfo *)sqliteMalloc(nBytes); |
| |
| if( pKey ){ |
| pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); |
| assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); |
| for(i=0; i<nCol; i++){ |
| char *zColl = pIdx->azColl[i]; |
| assert( zColl ); |
| pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1); |
| pKey->aSortOrder[i] = pIdx->aSortOrder[i]; |
| } |
| pKey->nField = nCol; |
| } |
| |
| if( pParse->nErr ){ |
| sqliteFree(pKey); |
| pKey = 0; |
| } |
| return pKey; |
| } |
| |