| /* |
| ** 2004 April 6 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** $Id: btree.c,v 1.290 2006/01/11 14:09:31 danielk1977 Exp $ |
| ** |
| ** This file implements a external (disk-based) database using BTrees. |
| ** For a detailed discussion of BTrees, refer to |
| ** |
| ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: |
| ** "Sorting And Searching", pages 473-480. Addison-Wesley |
| ** Publishing Company, Reading, Massachusetts. |
| ** |
| ** The basic idea is that each page of the file contains N database |
| ** entries and N+1 pointers to subpages. |
| ** |
| ** ---------------------------------------------------------------- |
| ** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) | |
| ** ---------------------------------------------------------------- |
| ** |
| ** All of the keys on the page that Ptr(0) points to have values less |
| ** than Key(0). All of the keys on page Ptr(1) and its subpages have |
| ** values greater than Key(0) and less than Key(1). All of the keys |
| ** on Ptr(N+1) and its subpages have values greater than Key(N). And |
| ** so forth. |
| ** |
| ** Finding a particular key requires reading O(log(M)) pages from the |
| ** disk where M is the number of entries in the tree. |
| ** |
| ** In this implementation, a single file can hold one or more separate |
| ** BTrees. Each BTree is identified by the index of its root page. The |
| ** key and data for any entry are combined to form the "payload". A |
| ** fixed amount of payload can be carried directly on the database |
| ** page. If the payload is larger than the preset amount then surplus |
| ** bytes are stored on overflow pages. The payload for an entry |
| ** and the preceding pointer are combined to form a "Cell". Each |
| ** page has a small header which contains the Ptr(N+1) pointer and other |
| ** information such as the size of key and data. |
| ** |
| ** FORMAT DETAILS |
| ** |
| ** The file is divided into pages. The first page is called page 1, |
| ** the second is page 2, and so forth. A page number of zero indicates |
| ** "no such page". The page size can be anything between 512 and 65536. |
| ** Each page can be either a btree page, a freelist page or an overflow |
| ** page. |
| ** |
| ** The first page is always a btree page. The first 100 bytes of the first |
| ** page contain a special header (the "file header") that describes the file. |
| ** The format of the file header is as follows: |
| ** |
| ** OFFSET SIZE DESCRIPTION |
| ** 0 16 Header string: "SQLite format 3\000" |
| ** 16 2 Page size in bytes. |
| ** 18 1 File format write version |
| ** 19 1 File format read version |
| ** 20 1 Bytes of unused space at the end of each page |
| ** 21 1 Max embedded payload fraction |
| ** 22 1 Min embedded payload fraction |
| ** 23 1 Min leaf payload fraction |
| ** 24 4 File change counter |
| ** 28 4 Reserved for future use |
| ** 32 4 First freelist page |
| ** 36 4 Number of freelist pages in the file |
| ** 40 60 15 4-byte meta values passed to higher layers |
| ** |
| ** All of the integer values are big-endian (most significant byte first). |
| ** |
| ** The file change counter is incremented when the database is changed more |
| ** than once within the same second. This counter, together with the |
| ** modification time of the file, allows other processes to know |
| ** when the file has changed and thus when they need to flush their |
| ** cache. |
| ** |
| ** The max embedded payload fraction is the amount of the total usable |
| ** space in a page that can be consumed by a single cell for standard |
| ** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default |
| ** is to limit the maximum cell size so that at least 4 cells will fit |
| ** on one page. Thus the default max embedded payload fraction is 64. |
| ** |
| ** If the payload for a cell is larger than the max payload, then extra |
| ** payload is spilled to overflow pages. Once an overflow page is allocated, |
| ** as many bytes as possible are moved into the overflow pages without letting |
| ** the cell size drop below the min embedded payload fraction. |
| ** |
| ** The min leaf payload fraction is like the min embedded payload fraction |
| ** except that it applies to leaf nodes in a LEAFDATA tree. The maximum |
| ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it |
| ** not specified in the header. |
| ** |
| ** Each btree pages is divided into three sections: The header, the |
| ** cell pointer array, and the cell area area. Page 1 also has a 100-byte |
| ** file header that occurs before the page header. |
| ** |
| ** |----------------| |
| ** | file header | 100 bytes. Page 1 only. |
| ** |----------------| |
| ** | page header | 8 bytes for leaves. 12 bytes for interior nodes |
| ** |----------------| |
| ** | cell pointer | | 2 bytes per cell. Sorted order. |
| ** | array | | Grows downward |
| ** | | v |
| ** |----------------| |
| ** | unallocated | |
| ** | space | |
| ** |----------------| ^ Grows upwards |
| ** | cell content | | Arbitrary order interspersed with freeblocks. |
| ** | area | | and free space fragments. |
| ** |----------------| |
| ** |
| ** The page headers looks like this: |
| ** |
| ** OFFSET SIZE DESCRIPTION |
| ** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf |
| ** 1 2 byte offset to the first freeblock |
| ** 3 2 number of cells on this page |
| ** 5 2 first byte of the cell content area |
| ** 7 1 number of fragmented free bytes |
| ** 8 4 Right child (the Ptr(N+1) value). Omitted on leaves. |
| ** |
| ** The flags define the format of this btree page. The leaf flag means that |
| ** this page has no children. The zerodata flag means that this page carries |
| ** only keys and no data. The intkey flag means that the key is a integer |
| ** which is stored in the key size entry of the cell header rather than in |
| ** the payload area. |
| ** |
| ** The cell pointer array begins on the first byte after the page header. |
| ** The cell pointer array contains zero or more 2-byte numbers which are |
| ** offsets from the beginning of the page to the cell content in the cell |
| ** content area. The cell pointers occur in sorted order. The system strives |
| ** to keep free space after the last cell pointer so that new cells can |
| ** be easily added without having to defragment the page. |
| ** |
| ** Cell content is stored at the very end of the page and grows toward the |
| ** beginning of the page. |
| ** |
| ** Unused space within the cell content area is collected into a linked list of |
| ** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset |
| ** to the first freeblock is given in the header. Freeblocks occur in |
| ** increasing order. Because a freeblock must be at least 4 bytes in size, |
| ** any group of 3 or fewer unused bytes in the cell content area cannot |
| ** exist on the freeblock chain. A group of 3 or fewer free bytes is called |
| ** a fragment. The total number of bytes in all fragments is recorded. |
| ** in the page header at offset 7. |
| ** |
| ** SIZE DESCRIPTION |
| ** 2 Byte offset of the next freeblock |
| ** 2 Bytes in this freeblock |
| ** |
| ** Cells are of variable length. Cells are stored in the cell content area at |
| ** the end of the page. Pointers to the cells are in the cell pointer array |
| ** that immediately follows the page header. Cells is not necessarily |
| ** contiguous or in order, but cell pointers are contiguous and in order. |
| ** |
| ** Cell content makes use of variable length integers. A variable |
| ** length integer is 1 to 9 bytes where the lower 7 bits of each |
| ** byte are used. The integer consists of all bytes that have bit 8 set and |
| ** the first byte with bit 8 clear. The most significant byte of the integer |
| ** appears first. A variable-length integer may not be more than 9 bytes long. |
| ** As a special case, all 8 bytes of the 9th byte are used as data. This |
| ** allows a 64-bit integer to be encoded in 9 bytes. |
| ** |
| ** 0x00 becomes 0x00000000 |
| ** 0x7f becomes 0x0000007f |
| ** 0x81 0x00 becomes 0x00000080 |
| ** 0x82 0x00 becomes 0x00000100 |
| ** 0x80 0x7f becomes 0x0000007f |
| ** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678 |
| ** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 |
| ** |
| ** Variable length integers are used for rowids and to hold the number of |
| ** bytes of key and data in a btree cell. |
| ** |
| ** The content of a cell looks like this: |
| ** |
| ** SIZE DESCRIPTION |
| ** 4 Page number of the left child. Omitted if leaf flag is set. |
| ** var Number of bytes of data. Omitted if the zerodata flag is set. |
| ** var Number of bytes of key. Or the key itself if intkey flag is set. |
| ** * Payload |
| ** 4 First page of the overflow chain. Omitted if no overflow |
| ** |
| ** Overflow pages form a linked list. Each page except the last is completely |
| ** filled with data (pagesize - 4 bytes). The last page can have as little |
| ** as 1 byte of data. |
| ** |
| ** SIZE DESCRIPTION |
| ** 4 Page number of next overflow page |
| ** * Data |
| ** |
| ** Freelist pages come in two subtypes: trunk pages and leaf pages. The |
| ** file header points to first in a linked list of trunk page. Each trunk |
| ** page points to multiple leaf pages. The content of a leaf page is |
| ** unspecified. A trunk page looks like this: |
| ** |
| ** SIZE DESCRIPTION |
| ** 4 Page number of next trunk page |
| ** 4 Number of leaf pointers on this page |
| ** * zero or more pages numbers of leaves |
| */ |
| #include "sqliteInt.h" |
| #include "pager.h" |
| #include "btree.h" |
| #include "os.h" |
| #include <assert.h> |
| |
| /* Round up a number to the next larger multiple of 8. This is used |
| ** to force 8-byte alignment on 64-bit architectures. |
| */ |
| #define ROUND8(x) ((x+7)&~7) |
| |
| |
| /* The following value is the maximum cell size assuming a maximum page |
| ** size give above. |
| */ |
| #define MX_CELL_SIZE(pBt) (pBt->pageSize-8) |
| |
| /* The maximum number of cells on a single page of the database. This |
| ** assumes a minimum cell size of 3 bytes. Such small cells will be |
| ** exceedingly rare, but they are possible. |
| */ |
| #define MX_CELL(pBt) ((pBt->pageSize-8)/3) |
| |
| /* Forward declarations */ |
| typedef struct MemPage MemPage; |
| typedef struct BtLock BtLock; |
| |
| /* |
| ** This is a magic string that appears at the beginning of every |
| ** SQLite database in order to identify the file as a real database. |
| ** |
| ** You can change this value at compile-time by specifying a |
| ** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The |
| ** header must be exactly 16 bytes including the zero-terminator so |
| ** the string itself should be 15 characters long. If you change |
| ** the header, then your custom library will not be able to read |
| ** databases generated by the standard tools and the standard tools |
| ** will not be able to read databases created by your custom library. |
| */ |
| #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */ |
| # define SQLITE_FILE_HEADER "SQLite format 3" |
| #endif |
| static const char zMagicHeader[] = SQLITE_FILE_HEADER; |
| |
| /* |
| ** Page type flags. An ORed combination of these flags appear as the |
| ** first byte of every BTree page. |
| */ |
| #define PTF_INTKEY 0x01 |
| #define PTF_ZERODATA 0x02 |
| #define PTF_LEAFDATA 0x04 |
| #define PTF_LEAF 0x08 |
| |
| /* |
| ** As each page of the file is loaded into memory, an instance of the following |
| ** structure is appended and initialized to zero. This structure stores |
| ** information about the page that is decoded from the raw file page. |
| ** |
| ** The pParent field points back to the parent page. This allows us to |
| ** walk up the BTree from any leaf to the root. Care must be taken to |
| ** unref() the parent page pointer when this page is no longer referenced. |
| ** The pageDestructor() routine handles that chore. |
| */ |
| struct MemPage { |
| u8 isInit; /* True if previously initialized. MUST BE FIRST! */ |
| u8 idxShift; /* True if Cell indices have changed */ |
| u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ |
| u8 intKey; /* True if intkey flag is set */ |
| u8 leaf; /* True if leaf flag is set */ |
| u8 zeroData; /* True if table stores keys only */ |
| u8 leafData; /* True if tables stores data on leaves only */ |
| u8 hasData; /* True if this page stores data */ |
| u8 hdrOffset; /* 100 for page 1. 0 otherwise */ |
| u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ |
| u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */ |
| u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */ |
| u16 cellOffset; /* Index in aData of first cell pointer */ |
| u16 idxParent; /* Index in parent of this node */ |
| u16 nFree; /* Number of free bytes on the page */ |
| u16 nCell; /* Number of cells on this page, local and ovfl */ |
| struct _OvflCell { /* Cells that will not fit on aData[] */ |
| u8 *pCell; /* Pointers to the body of the overflow cell */ |
| u16 idx; /* Insert this cell before idx-th non-overflow cell */ |
| } aOvfl[5]; |
| BtShared *pBt; /* Pointer back to BTree structure */ |
| u8 *aData; /* Pointer back to the start of the page */ |
| Pgno pgno; /* Page number for this page */ |
| MemPage *pParent; /* The parent of this page. NULL for root */ |
| }; |
| |
| /* |
| ** The in-memory image of a disk page has the auxiliary information appended |
| ** to the end. EXTRA_SIZE is the number of bytes of space needed to hold |
| ** that extra information. |
| */ |
| #define EXTRA_SIZE sizeof(MemPage) |
| |
| /* Btree handle */ |
| struct Btree { |
| sqlite3 *pSqlite; |
| BtShared *pBt; |
| u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ |
| }; |
| |
| /* |
| ** Btree.inTrans may take one of the following values. |
| ** |
| ** If the shared-data extension is enabled, there may be multiple users |
| ** of the Btree structure. At most one of these may open a write transaction, |
| ** but any number may have active read transactions. Variable Btree.pDb |
| ** points to the handle that owns any current write-transaction. |
| */ |
| #define TRANS_NONE 0 |
| #define TRANS_READ 1 |
| #define TRANS_WRITE 2 |
| |
| /* |
| ** Everything we need to know about an open database |
| */ |
| struct BtShared { |
| Pager *pPager; /* The page cache */ |
| BtCursor *pCursor; /* A list of all open cursors */ |
| MemPage *pPage1; /* First page of the database */ |
| u8 inStmt; /* True if we are in a statement subtransaction */ |
| u8 readOnly; /* True if the underlying file is readonly */ |
| u8 maxEmbedFrac; /* Maximum payload as % of total page size */ |
| u8 minEmbedFrac; /* Minimum payload as % of total page size */ |
| u8 minLeafFrac; /* Minimum leaf payload as % of total page size */ |
| u8 pageSizeFixed; /* True if the page size can no longer be changed */ |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| u8 autoVacuum; /* True if database supports auto-vacuum */ |
| #endif |
| u16 pageSize; /* Total number of bytes on a page */ |
| u16 usableSize; /* Number of usable bytes on each page */ |
| int maxLocal; /* Maximum local payload in non-LEAFDATA tables */ |
| int minLocal; /* Minimum local payload in non-LEAFDATA tables */ |
| int maxLeaf; /* Maximum local payload in a LEAFDATA table */ |
| int minLeaf; /* Minimum local payload in a LEAFDATA table */ |
| BusyHandler *pBusyHandler; /* Callback for when there is lock contention */ |
| u8 inTransaction; /* Transaction state */ |
| int nRef; /* Number of references to this structure */ |
| int nTransaction; /* Number of open transactions (read + write) */ |
| void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */ |
| void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */ |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| BtLock *pLock; /* List of locks held on this shared-btree struct */ |
| BtShared *pNext; /* Next in ThreadData.pBtree linked list */ |
| #endif |
| }; |
| |
| /* |
| ** An instance of the following structure is used to hold information |
| ** about a cell. The parseCellPtr() function fills in this structure |
| ** based on information extract from the raw disk page. |
| */ |
| typedef struct CellInfo CellInfo; |
| struct CellInfo { |
| u8 *pCell; /* Pointer to the start of cell content */ |
| i64 nKey; /* The key for INTKEY tables, or number of bytes in key */ |
| u32 nData; /* Number of bytes of data */ |
| u16 nHeader; /* Size of the cell content header in bytes */ |
| u16 nLocal; /* Amount of payload held locally */ |
| u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */ |
| u16 nSize; /* Size of the cell content on the main b-tree page */ |
| }; |
| |
| /* |
| ** A cursor is a pointer to a particular entry in the BTree. |
| ** The entry is identified by its MemPage and the index in |
| ** MemPage.aCell[] of the entry. |
| */ |
| struct BtCursor { |
| Btree *pBtree; /* The Btree to which this cursor belongs */ |
| BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ |
| int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */ |
| void *pArg; /* First arg to xCompare() */ |
| Pgno pgnoRoot; /* The root page of this tree */ |
| MemPage *pPage; /* Page that contains the entry */ |
| int idx; /* Index of the entry in pPage->aCell[] */ |
| CellInfo info; /* A parse of the cell we are pointing at */ |
| u8 wrFlag; /* True if writable */ |
| u8 eState; /* One of the CURSOR_XXX constants (see below) */ |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| void *pKey; |
| i64 nKey; |
| int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */ |
| #endif |
| }; |
| |
| /* |
| ** Potential values for BtCursor.eState. The first two values (VALID and |
| ** INVALID) may occur in any build. The third (REQUIRESEEK) may only occur |
| ** if sqlite was compiled without the OMIT_SHARED_CACHE symbol defined. |
| ** |
| ** CURSOR_VALID: |
| ** Cursor points to a valid entry. getPayload() etc. may be called. |
| ** |
| ** CURSOR_INVALID: |
| ** Cursor does not point to a valid entry. This can happen (for example) |
| ** because the table is empty or because BtreeCursorFirst() has not been |
| ** called. |
| ** |
| ** CURSOR_REQUIRESEEK: |
| ** The table that this cursor was opened on still exists, but has been |
| ** modified since the cursor was last used. The cursor position is saved |
| ** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in |
| ** this state, restoreCursorPosition() can be called to attempt to seek |
| ** the cursor to the saved position. |
| */ |
| #define CURSOR_INVALID 0 |
| #define CURSOR_VALID 1 |
| #define CURSOR_REQUIRESEEK 2 |
| |
| /* |
| ** The TRACE macro will print high-level status information about the |
| ** btree operation when the global variable sqlite3_btree_trace is |
| ** enabled. |
| */ |
| #if SQLITE_TEST |
| # define TRACE(X) if( sqlite3_btree_trace )\ |
| { sqlite3DebugPrintf X; fflush(stdout); } |
| #else |
| # define TRACE(X) |
| #endif |
| int sqlite3_btree_trace=0; /* True to enable tracing */ |
| |
| /* |
| ** Forward declaration |
| */ |
| static int checkReadLocks(BtShared*,Pgno,BtCursor*); |
| |
| /* |
| ** Read or write a two- and four-byte big-endian integer values. |
| */ |
| static u32 get2byte(unsigned char *p){ |
| return (p[0]<<8) | p[1]; |
| } |
| static u32 get4byte(unsigned char *p){ |
| return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; |
| } |
| static void put2byte(unsigned char *p, u32 v){ |
| p[0] = v>>8; |
| p[1] = v; |
| } |
| static void put4byte(unsigned char *p, u32 v){ |
| p[0] = v>>24; |
| p[1] = v>>16; |
| p[2] = v>>8; |
| p[3] = v; |
| } |
| |
| /* |
| ** Routines to read and write variable-length integers. These used to |
| ** be defined locally, but now we use the varint routines in the util.c |
| ** file. |
| */ |
| #define getVarint sqlite3GetVarint |
| #define getVarint32 sqlite3GetVarint32 |
| #define putVarint sqlite3PutVarint |
| |
| /* The database page the PENDING_BYTE occupies. This page is never used. |
| ** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They |
| ** should possibly be consolidated (presumably in pager.h). |
| */ |
| #define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1) |
| |
| /* |
| ** A linked list of the following structures is stored at BtShared.pLock. |
| ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor |
| ** is opened on the table with root page BtShared.iTable. Locks are removed |
| ** from this list when a transaction is committed or rolled back, or when |
| ** a btree handle is closed. |
| */ |
| struct BtLock { |
| Btree *pBtree; /* Btree handle holding this lock */ |
| Pgno iTable; /* Root page of table */ |
| u8 eLock; /* READ_LOCK or WRITE_LOCK */ |
| BtLock *pNext; /* Next in BtShared.pLock list */ |
| }; |
| |
| /* Candidate values for BtLock.eLock */ |
| #define READ_LOCK 1 |
| #define WRITE_LOCK 2 |
| |
| #ifdef SQLITE_OMIT_SHARED_CACHE |
| /* |
| ** The functions queryTableLock(), lockTable() and unlockAllTables() |
| ** manipulate entries in the BtShared.pLock linked list used to store |
| ** shared-cache table level locks. If the library is compiled with the |
| ** shared-cache feature disabled, then there is only ever one user |
| ** of each BtShared structure and so this locking is not necessary. |
| ** So define the lock related functions as no-ops. |
| */ |
| #define queryTableLock(a,b,c) SQLITE_OK |
| #define lockTable(a,b,c) SQLITE_OK |
| #define unlockAllTables(a) |
| #define restoreCursorPosition(a,b) SQLITE_OK |
| #define saveAllCursors(a,b,c) SQLITE_OK |
| |
| #else |
| |
| /* |
| ** Save the current cursor position in the variables BtCursor.nKey |
| ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. |
| */ |
| static int saveCursorPosition(BtCursor *pCur){ |
| int rc = SQLITE_OK; |
| |
| assert( CURSOR_VALID==pCur->eState|| CURSOR_INVALID==pCur->eState ); |
| assert( 0==pCur->pKey ); |
| |
| if( pCur->eState==CURSOR_VALID ){ |
| rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); |
| |
| /* If this is an intKey table, then the above call to BtreeKeySize() |
| ** stores the integer key in pCur->nKey. In this case this value is |
| ** all that is required. Otherwise, if pCur is not open on an intKey |
| ** table, then malloc space for and store the pCur->nKey bytes of key |
| ** data. |
| */ |
| if( rc==SQLITE_OK && 0==pCur->pPage->intKey){ |
| void *pKey = sqliteMalloc(pCur->nKey); |
| if( pKey ){ |
| rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey); |
| if( rc==SQLITE_OK ){ |
| pCur->pKey = pKey; |
| }else{ |
| sqliteFree(pKey); |
| } |
| }else{ |
| rc = SQLITE_NOMEM; |
| } |
| } |
| assert( !pCur->pPage->intKey || !pCur->pKey ); |
| |
| /* Todo: Should we drop the reference to pCur->pPage here? */ |
| |
| if( rc==SQLITE_OK ){ |
| pCur->eState = CURSOR_REQUIRESEEK; |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Save the positions of all cursors except pExcept open on the table |
| ** with root-page iRoot. Usually, this is called just before cursor |
| ** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()). |
| */ |
| static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ |
| BtCursor *p; |
| if( sqlite3ThreadData()->useSharedData ){ |
| for(p=pBt->pCursor; p; p=p->pNext){ |
| if( p!=pExcept && p->pgnoRoot==iRoot && p->eState==CURSOR_VALID ){ |
| int rc = saveCursorPosition(p); |
| if( SQLITE_OK!=rc ){ |
| return rc; |
| } |
| } |
| } |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Restore the cursor to the position it was in (or as close to as possible) |
| ** when saveCursorPosition() was called. Note that this call deletes the |
| ** saved position info stored by saveCursorPosition(), so there can be |
| ** at most one effective restoreCursorPosition() call after each |
| ** saveCursorPosition(). |
| ** |
| ** If the second argument argument - doSeek - is false, then instead of |
| ** returning the cursor to it's saved position, any saved position is deleted |
| ** and the cursor state set to CURSOR_INVALID. |
| */ |
| static int restoreCursorPosition(BtCursor *pCur, int doSeek){ |
| int rc = SQLITE_OK; |
| if( pCur->eState==CURSOR_REQUIRESEEK ){ |
| assert( sqlite3ThreadData()->useSharedData ); |
| if( doSeek ){ |
| rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, &pCur->skip); |
| }else{ |
| pCur->eState = CURSOR_INVALID; |
| } |
| if( rc==SQLITE_OK ){ |
| sqliteFree(pCur->pKey); |
| pCur->pKey = 0; |
| assert( CURSOR_VALID==pCur->eState || CURSOR_INVALID==pCur->eState ); |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Query to see if btree handle p may obtain a lock of type eLock |
| ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return |
| ** SQLITE_OK if the lock may be obtained (by calling lockTable()), or |
| ** SQLITE_LOCKED if not. |
| */ |
| static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){ |
| BtShared *pBt = p->pBt; |
| BtLock *pIter; |
| |
| /* This is a no-op if the shared-cache is not enabled */ |
| if( 0==sqlite3ThreadData()->useSharedData ){ |
| return SQLITE_OK; |
| } |
| |
| /* This (along with lockTable()) is where the ReadUncommitted flag is |
| ** dealt with. If the caller is querying for a read-lock and the flag is |
| ** set, it is unconditionally granted - even if there are write-locks |
| ** on the table. If a write-lock is requested, the ReadUncommitted flag |
| ** is not considered. |
| ** |
| ** In function lockTable(), if a read-lock is demanded and the |
| ** ReadUncommitted flag is set, no entry is added to the locks list |
| ** (BtShared.pLock). |
| ** |
| ** To summarize: If the ReadUncommitted flag is set, then read cursors do |
| ** not create or respect table locks. The locking procedure for a |
| ** write-cursor does not change. |
| */ |
| if( |
| !p->pSqlite || |
| 0==(p->pSqlite->flags&SQLITE_ReadUncommitted) || |
| eLock==WRITE_LOCK || |
| iTab==MASTER_ROOT |
| ){ |
| for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| if( pIter->pBtree!=p && pIter->iTable==iTab && |
| (pIter->eLock!=eLock || eLock!=READ_LOCK) ){ |
| return SQLITE_LOCKED; |
| } |
| } |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Add a lock on the table with root-page iTable to the shared-btree used |
| ** by Btree handle p. Parameter eLock must be either READ_LOCK or |
| ** WRITE_LOCK. |
| ** |
| ** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and |
| ** SQLITE_NOMEM may also be returned. |
| */ |
| static int lockTable(Btree *p, Pgno iTable, u8 eLock){ |
| BtShared *pBt = p->pBt; |
| BtLock *pLock = 0; |
| BtLock *pIter; |
| |
| /* This is a no-op if the shared-cache is not enabled */ |
| if( 0==sqlite3ThreadData()->useSharedData ){ |
| return SQLITE_OK; |
| } |
| |
| assert( SQLITE_OK==queryTableLock(p, iTable, eLock) ); |
| |
| /* If the read-uncommitted flag is set and a read-lock is requested, |
| ** return early without adding an entry to the BtShared.pLock list. See |
| ** comment in function queryTableLock() for more info on handling |
| ** the ReadUncommitted flag. |
| */ |
| if( |
| (p->pSqlite) && |
| (p->pSqlite->flags&SQLITE_ReadUncommitted) && |
| (eLock==READ_LOCK) && |
| iTable!=MASTER_ROOT |
| ){ |
| return SQLITE_OK; |
| } |
| |
| /* First search the list for an existing lock on this table. */ |
| for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| if( pIter->iTable==iTable && pIter->pBtree==p ){ |
| pLock = pIter; |
| break; |
| } |
| } |
| |
| /* If the above search did not find a BtLock struct associating Btree p |
| ** with table iTable, allocate one and link it into the list. |
| */ |
| if( !pLock ){ |
| pLock = (BtLock *)sqliteMalloc(sizeof(BtLock)); |
| if( !pLock ){ |
| return SQLITE_NOMEM; |
| } |
| pLock->iTable = iTable; |
| pLock->pBtree = p; |
| pLock->pNext = pBt->pLock; |
| pBt->pLock = pLock; |
| } |
| |
| /* Set the BtLock.eLock variable to the maximum of the current lock |
| ** and the requested lock. This means if a write-lock was already held |
| ** and a read-lock requested, we don't incorrectly downgrade the lock. |
| */ |
| assert( WRITE_LOCK>READ_LOCK ); |
| if( eLock>pLock->eLock ){ |
| pLock->eLock = eLock; |
| } |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Release all the table locks (locks obtained via calls to the lockTable() |
| ** procedure) held by Btree handle p. |
| */ |
| static void unlockAllTables(Btree *p){ |
| BtLock **ppIter = &p->pBt->pLock; |
| |
| /* If the shared-cache extension is not enabled, there should be no |
| ** locks in the BtShared.pLock list, making this procedure a no-op. Assert |
| ** that this is the case. |
| */ |
| assert( sqlite3ThreadData()->useSharedData || 0==*ppIter ); |
| |
| while( *ppIter ){ |
| BtLock *pLock = *ppIter; |
| if( pLock->pBtree==p ){ |
| *ppIter = pLock->pNext; |
| sqliteFree(pLock); |
| }else{ |
| ppIter = &pLock->pNext; |
| } |
| } |
| } |
| #endif /* SQLITE_OMIT_SHARED_CACHE */ |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* |
| ** These macros define the location of the pointer-map entry for a |
| ** database page. The first argument to each is the number of usable |
| ** bytes on each page of the database (often 1024). The second is the |
| ** page number to look up in the pointer map. |
| ** |
| ** PTRMAP_PAGENO returns the database page number of the pointer-map |
| ** page that stores the required pointer. PTRMAP_PTROFFSET returns |
| ** the offset of the requested map entry. |
| ** |
| ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page, |
| ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be |
| ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements |
| ** this test. |
| */ |
| #define PTRMAP_PAGENO(pgsz, pgno) (((pgno-2)/(pgsz/5+1))*(pgsz/5+1)+2) |
| #define PTRMAP_PTROFFSET(pgsz, pgno) (((pgno-2)%(pgsz/5+1)-1)*5) |
| #define PTRMAP_ISPAGE(pgsz, pgno) (PTRMAP_PAGENO(pgsz,pgno)==pgno) |
| |
| /* |
| ** The pointer map is a lookup table that identifies the parent page for |
| ** each child page in the database file. The parent page is the page that |
| ** contains a pointer to the child. Every page in the database contains |
| ** 0 or 1 parent pages. (In this context 'database page' refers |
| ** to any page that is not part of the pointer map itself.) Each pointer map |
| ** entry consists of a single byte 'type' and a 4 byte parent page number. |
| ** The PTRMAP_XXX identifiers below are the valid types. |
| ** |
| ** The purpose of the pointer map is to facility moving pages from one |
| ** position in the file to another as part of autovacuum. When a page |
| ** is moved, the pointer in its parent must be updated to point to the |
| ** new location. The pointer map is used to locate the parent page quickly. |
| ** |
| ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not |
| ** used in this case. |
| ** |
| ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number |
| ** is not used in this case. |
| ** |
| ** PTRMAP_OVERFLOW1: The database page is the first page in a list of |
| ** overflow pages. The page number identifies the page that |
| ** contains the cell with a pointer to this overflow page. |
| ** |
| ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of |
| ** overflow pages. The page-number identifies the previous |
| ** page in the overflow page list. |
| ** |
| ** PTRMAP_BTREE: The database page is a non-root btree page. The page number |
| ** identifies the parent page in the btree. |
| */ |
| #define PTRMAP_ROOTPAGE 1 |
| #define PTRMAP_FREEPAGE 2 |
| #define PTRMAP_OVERFLOW1 3 |
| #define PTRMAP_OVERFLOW2 4 |
| #define PTRMAP_BTREE 5 |
| |
| /* |
| ** Write an entry into the pointer map. |
| ** |
| ** This routine updates the pointer map entry for page number 'key' |
| ** so that it maps to type 'eType' and parent page number 'pgno'. |
| ** An error code is returned if something goes wrong, otherwise SQLITE_OK. |
| */ |
| static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){ |
| u8 *pPtrmap; /* The pointer map page */ |
| Pgno iPtrmap; /* The pointer map page number */ |
| int offset; /* Offset in pointer map page */ |
| int rc; |
| |
| assert( pBt->autoVacuum ); |
| if( key==0 ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| iPtrmap = PTRMAP_PAGENO(pBt->usableSize, key); |
| rc = sqlite3pager_get(pBt->pPager, iPtrmap, (void **)&pPtrmap); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| offset = PTRMAP_PTROFFSET(pBt->usableSize, key); |
| |
| if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ |
| TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); |
| rc = sqlite3pager_write(pPtrmap); |
| if( rc==SQLITE_OK ){ |
| pPtrmap[offset] = eType; |
| put4byte(&pPtrmap[offset+1], parent); |
| } |
| } |
| |
| sqlite3pager_unref(pPtrmap); |
| return rc; |
| } |
| |
| /* |
| ** Read an entry from the pointer map. |
| ** |
| ** This routine retrieves the pointer map entry for page 'key', writing |
| ** the type and parent page number to *pEType and *pPgno respectively. |
| ** An error code is returned if something goes wrong, otherwise SQLITE_OK. |
| */ |
| static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ |
| int iPtrmap; /* Pointer map page index */ |
| u8 *pPtrmap; /* Pointer map page data */ |
| int offset; /* Offset of entry in pointer map */ |
| int rc; |
| |
| iPtrmap = PTRMAP_PAGENO(pBt->usableSize, key); |
| rc = sqlite3pager_get(pBt->pPager, iPtrmap, (void **)&pPtrmap); |
| if( rc!=0 ){ |
| return rc; |
| } |
| |
| offset = PTRMAP_PTROFFSET(pBt->usableSize, key); |
| if( pEType ) *pEType = pPtrmap[offset]; |
| if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); |
| |
| sqlite3pager_unref(pPtrmap); |
| if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; |
| return SQLITE_OK; |
| } |
| |
| #endif /* SQLITE_OMIT_AUTOVACUUM */ |
| |
| /* |
| ** Given a btree page and a cell index (0 means the first cell on |
| ** the page, 1 means the second cell, and so forth) return a pointer |
| ** to the cell content. |
| ** |
| ** This routine works only for pages that do not contain overflow cells. |
| */ |
| static u8 *findCell(MemPage *pPage, int iCell){ |
| u8 *data = pPage->aData; |
| assert( iCell>=0 ); |
| assert( iCell<get2byte(&data[pPage->hdrOffset+3]) ); |
| return data + get2byte(&data[pPage->cellOffset+2*iCell]); |
| } |
| |
| /* |
| ** This a more complex version of findCell() that works for |
| ** pages that do contain overflow cells. See insert |
| */ |
| static u8 *findOverflowCell(MemPage *pPage, int iCell){ |
| int i; |
| for(i=pPage->nOverflow-1; i>=0; i--){ |
| int k; |
| struct _OvflCell *pOvfl; |
| pOvfl = &pPage->aOvfl[i]; |
| k = pOvfl->idx; |
| if( k<=iCell ){ |
| if( k==iCell ){ |
| return pOvfl->pCell; |
| } |
| iCell--; |
| } |
| } |
| return findCell(pPage, iCell); |
| } |
| |
| /* |
| ** Parse a cell content block and fill in the CellInfo structure. There |
| ** are two versions of this function. parseCell() takes a cell index |
| ** as the second argument and parseCellPtr() takes a pointer to the |
| ** body of the cell as its second argument. |
| */ |
| static void parseCellPtr( |
| MemPage *pPage, /* Page containing the cell */ |
| u8 *pCell, /* Pointer to the cell text. */ |
| CellInfo *pInfo /* Fill in this structure */ |
| ){ |
| int n; /* Number bytes in cell content header */ |
| u32 nPayload; /* Number of bytes of cell payload */ |
| |
| pInfo->pCell = pCell; |
| assert( pPage->leaf==0 || pPage->leaf==1 ); |
| n = pPage->childPtrSize; |
| assert( n==4-4*pPage->leaf ); |
| if( pPage->hasData ){ |
| n += getVarint32(&pCell[n], &nPayload); |
| }else{ |
| nPayload = 0; |
| } |
| n += getVarint(&pCell[n], (u64 *)&pInfo->nKey); |
| pInfo->nHeader = n; |
| pInfo->nData = nPayload; |
| if( !pPage->intKey ){ |
| nPayload += pInfo->nKey; |
| } |
| if( nPayload<=pPage->maxLocal ){ |
| /* This is the (easy) common case where the entire payload fits |
| ** on the local page. No overflow is required. |
| */ |
| int nSize; /* Total size of cell content in bytes */ |
| pInfo->nLocal = nPayload; |
| pInfo->iOverflow = 0; |
| nSize = nPayload + n; |
| if( nSize<4 ){ |
| nSize = 4; /* Minimum cell size is 4 */ |
| } |
| pInfo->nSize = nSize; |
| }else{ |
| /* If the payload will not fit completely on the local page, we have |
| ** to decide how much to store locally and how much to spill onto |
| ** overflow pages. The strategy is to minimize the amount of unused |
| ** space on overflow pages while keeping the amount of local storage |
| ** in between minLocal and maxLocal. |
| ** |
| ** Warning: changing the way overflow payload is distributed in any |
| ** way will result in an incompatible file format. |
| */ |
| int minLocal; /* Minimum amount of payload held locally */ |
| int maxLocal; /* Maximum amount of payload held locally */ |
| int surplus; /* Overflow payload available for local storage */ |
| |
| minLocal = pPage->minLocal; |
| maxLocal = pPage->maxLocal; |
| surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4); |
| if( surplus <= maxLocal ){ |
| pInfo->nLocal = surplus; |
| }else{ |
| pInfo->nLocal = minLocal; |
| } |
| pInfo->iOverflow = pInfo->nLocal + n; |
| pInfo->nSize = pInfo->iOverflow + 4; |
| } |
| } |
| static void parseCell( |
| MemPage *pPage, /* Page containing the cell */ |
| int iCell, /* The cell index. First cell is 0 */ |
| CellInfo *pInfo /* Fill in this structure */ |
| ){ |
| parseCellPtr(pPage, findCell(pPage, iCell), pInfo); |
| } |
| |
| /* |
| ** Compute the total number of bytes that a Cell needs in the cell |
| ** data area of the btree-page. The return number includes the cell |
| ** data header and the local payload, but not any overflow page or |
| ** the space used by the cell pointer. |
| */ |
| #ifndef NDEBUG |
| static int cellSize(MemPage *pPage, int iCell){ |
| CellInfo info; |
| parseCell(pPage, iCell, &info); |
| return info.nSize; |
| } |
| #endif |
| static int cellSizePtr(MemPage *pPage, u8 *pCell){ |
| CellInfo info; |
| parseCellPtr(pPage, pCell, &info); |
| return info.nSize; |
| } |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* |
| ** If the cell pCell, part of page pPage contains a pointer |
| ** to an overflow page, insert an entry into the pointer-map |
| ** for the overflow page. |
| */ |
| static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){ |
| if( pCell ){ |
| CellInfo info; |
| parseCellPtr(pPage, pCell, &info); |
| if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){ |
| Pgno ovfl = get4byte(&pCell[info.iOverflow]); |
| return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno); |
| } |
| } |
| return SQLITE_OK; |
| } |
| /* |
| ** If the cell with index iCell on page pPage contains a pointer |
| ** to an overflow page, insert an entry into the pointer-map |
| ** for the overflow page. |
| */ |
| static int ptrmapPutOvfl(MemPage *pPage, int iCell){ |
| u8 *pCell; |
| pCell = findOverflowCell(pPage, iCell); |
| return ptrmapPutOvflPtr(pPage, pCell); |
| } |
| #endif |
| |
| |
| /* |
| ** Do sanity checking on a page. Throw an exception if anything is |
| ** not right. |
| ** |
| ** This routine is used for internal error checking only. It is omitted |
| ** from most builds. |
| */ |
| #if defined(BTREE_DEBUG) && !defined(NDEBUG) && 0 |
| static void _pageIntegrity(MemPage *pPage){ |
| int usableSize; |
| u8 *data; |
| int i, j, idx, c, pc, hdr, nFree; |
| int cellOffset; |
| int nCell, cellLimit; |
| u8 *used; |
| |
| used = sqliteMallocRaw( pPage->pBt->pageSize ); |
| if( used==0 ) return; |
| usableSize = pPage->pBt->usableSize; |
| assert( pPage->aData==&((unsigned char*)pPage)[-pPage->pBt->pageSize] ); |
| hdr = pPage->hdrOffset; |
| assert( hdr==(pPage->pgno==1 ? 100 : 0) ); |
| assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) ); |
| c = pPage->aData[hdr]; |
| if( pPage->isInit ){ |
| assert( pPage->leaf == ((c & PTF_LEAF)!=0) ); |
| assert( pPage->zeroData == ((c & PTF_ZERODATA)!=0) ); |
| assert( pPage->leafData == ((c & PTF_LEAFDATA)!=0) ); |
| assert( pPage->intKey == ((c & (PTF_INTKEY|PTF_LEAFDATA))!=0) ); |
| assert( pPage->hasData == |
| !(pPage->zeroData || (!pPage->leaf && pPage->leafData)) ); |
| assert( pPage->cellOffset==pPage->hdrOffset+12-4*pPage->leaf ); |
| assert( pPage->nCell = get2byte(&pPage->aData[hdr+3]) ); |
| } |
| data = pPage->aData; |
| memset(used, 0, usableSize); |
| for(i=0; i<hdr+10-pPage->leaf*4; i++) used[i] = 1; |
| nFree = 0; |
| pc = get2byte(&data[hdr+1]); |
| while( pc ){ |
| int size; |
| assert( pc>0 && pc<usableSize-4 ); |
| size = get2byte(&data[pc+2]); |
| assert( pc+size<=usableSize ); |
| nFree += size; |
| for(i=pc; i<pc+size; i++){ |
| assert( used[i]==0 ); |
| used[i] = 1; |
| } |
| pc = get2byte(&data[pc]); |
| } |
| idx = 0; |
| nCell = get2byte(&data[hdr+3]); |
| cellLimit = get2byte(&data[hdr+5]); |
| assert( pPage->isInit==0 |
| || pPage->nFree==nFree+data[hdr+7]+cellLimit-(cellOffset+2*nCell) ); |
| cellOffset = pPage->cellOffset; |
| for(i=0; i<nCell; i++){ |
| int size; |
| pc = get2byte(&data[cellOffset+2*i]); |
| assert( pc>0 && pc<usableSize-4 ); |
| size = cellSize(pPage, &data[pc]); |
| assert( pc+size<=usableSize ); |
| for(j=pc; j<pc+size; j++){ |
| assert( used[j]==0 ); |
| used[j] = 1; |
| } |
| } |
| for(i=cellOffset+2*nCell; i<cellimit; i++){ |
| assert( used[i]==0 ); |
| used[i] = 1; |
| } |
| nFree = 0; |
| for(i=0; i<usableSize; i++){ |
| assert( used[i]<=1 ); |
| if( used[i]==0 ) nFree++; |
| } |
| assert( nFree==data[hdr+7] ); |
| sqliteFree(used); |
| } |
| #define pageIntegrity(X) _pageIntegrity(X) |
| #else |
| # define pageIntegrity(X) |
| #endif |
| |
| /* A bunch of assert() statements to check the transaction state variables |
| ** of handle p (type Btree*) are internally consistent. |
| */ |
| #define btreeIntegrity(p) \ |
| assert( p->inTrans!=TRANS_NONE || p->pBt->nTransaction<p->pBt->nRef ); \ |
| assert( p->pBt->nTransaction<=p->pBt->nRef ); \ |
| assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \ |
| assert( p->pBt->inTransaction>=p->inTrans ); |
| |
| /* |
| ** Defragment the page given. All Cells are moved to the |
| ** end of the page and all free space is collected into one |
| ** big FreeBlk that occurs in between the header and cell |
| ** pointer array and the cell content area. |
| */ |
| static int defragmentPage(MemPage *pPage){ |
| int i; /* Loop counter */ |
| int pc; /* Address of a i-th cell */ |
| int addr; /* Offset of first byte after cell pointer array */ |
| int hdr; /* Offset to the page header */ |
| int size; /* Size of a cell */ |
| int usableSize; /* Number of usable bytes on a page */ |
| int cellOffset; /* Offset to the cell pointer array */ |
| int brk; /* Offset to the cell content area */ |
| int nCell; /* Number of cells on the page */ |
| unsigned char *data; /* The page data */ |
| unsigned char *temp; /* Temp area for cell content */ |
| |
| assert( sqlite3pager_iswriteable(pPage->aData) ); |
| assert( pPage->pBt!=0 ); |
| assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); |
| assert( pPage->nOverflow==0 ); |
| temp = sqliteMalloc( pPage->pBt->pageSize ); |
| if( temp==0 ) return SQLITE_NOMEM; |
| data = pPage->aData; |
| hdr = pPage->hdrOffset; |
| cellOffset = pPage->cellOffset; |
| nCell = pPage->nCell; |
| assert( nCell==get2byte(&data[hdr+3]) ); |
| usableSize = pPage->pBt->usableSize; |
| brk = get2byte(&data[hdr+5]); |
| memcpy(&temp[brk], &data[brk], usableSize - brk); |
| brk = usableSize; |
| for(i=0; i<nCell; i++){ |
| u8 *pAddr; /* The i-th cell pointer */ |
| pAddr = &data[cellOffset + i*2]; |
| pc = get2byte(pAddr); |
| assert( pc<pPage->pBt->usableSize ); |
| size = cellSizePtr(pPage, &temp[pc]); |
| brk -= size; |
| memcpy(&data[brk], &temp[pc], size); |
| put2byte(pAddr, brk); |
| } |
| assert( brk>=cellOffset+2*nCell ); |
| put2byte(&data[hdr+5], brk); |
| data[hdr+1] = 0; |
| data[hdr+2] = 0; |
| data[hdr+7] = 0; |
| addr = cellOffset+2*nCell; |
| memset(&data[addr], 0, brk-addr); |
| sqliteFree(temp); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Allocate nByte bytes of space on a page. |
| ** |
| ** Return the index into pPage->aData[] of the first byte of |
| ** the new allocation. Or return 0 if there is not enough free |
| ** space on the page to satisfy the allocation request. |
| ** |
| ** If the page contains nBytes of free space but does not contain |
| ** nBytes of contiguous free space, then this routine automatically |
| ** calls defragementPage() to consolidate all free space before |
| ** allocating the new chunk. |
| */ |
| static int allocateSpace(MemPage *pPage, int nByte){ |
| int addr, pc, hdr; |
| int size; |
| int nFrag; |
| int top; |
| int nCell; |
| int cellOffset; |
| unsigned char *data; |
| |
| data = pPage->aData; |
| assert( sqlite3pager_iswriteable(data) ); |
| assert( pPage->pBt ); |
| if( nByte<4 ) nByte = 4; |
| if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0; |
| pPage->nFree -= nByte; |
| hdr = pPage->hdrOffset; |
| |
| nFrag = data[hdr+7]; |
| if( nFrag<60 ){ |
| /* Search the freelist looking for a slot big enough to satisfy the |
| ** space request. */ |
| addr = hdr+1; |
| while( (pc = get2byte(&data[addr]))>0 ){ |
| size = get2byte(&data[pc+2]); |
| if( size>=nByte ){ |
| if( size<nByte+4 ){ |
| memcpy(&data[addr], &data[pc], 2); |
| data[hdr+7] = nFrag + size - nByte; |
| return pc; |
| }else{ |
| put2byte(&data[pc+2], size-nByte); |
| return pc + size - nByte; |
| } |
| } |
| addr = pc; |
| } |
| } |
| |
| /* Allocate memory from the gap in between the cell pointer array |
| ** and the cell content area. |
| */ |
| top = get2byte(&data[hdr+5]); |
| nCell = get2byte(&data[hdr+3]); |
| cellOffset = pPage->cellOffset; |
| if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){ |
| if( defragmentPage(pPage) ) return 0; |
| top = get2byte(&data[hdr+5]); |
| } |
| top -= nByte; |
| assert( cellOffset + 2*nCell <= top ); |
| put2byte(&data[hdr+5], top); |
| return top; |
| } |
| |
| /* |
| ** Return a section of the pPage->aData to the freelist. |
| ** The first byte of the new free block is pPage->aDisk[start] |
| ** and the size of the block is "size" bytes. |
| ** |
| ** Most of the effort here is involved in coalesing adjacent |
| ** free blocks into a single big free block. |
| */ |
| static void freeSpace(MemPage *pPage, int start, int size){ |
| int addr, pbegin, hdr; |
| unsigned char *data = pPage->aData; |
| |
| assert( pPage->pBt!=0 ); |
| assert( sqlite3pager_iswriteable(data) ); |
| assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) ); |
| assert( (start + size)<=pPage->pBt->usableSize ); |
| if( size<4 ) size = 4; |
| |
| /* Add the space back into the linked list of freeblocks */ |
| hdr = pPage->hdrOffset; |
| addr = hdr + 1; |
| while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){ |
| assert( pbegin<=pPage->pBt->usableSize-4 ); |
| assert( pbegin>addr ); |
| addr = pbegin; |
| } |
| assert( pbegin<=pPage->pBt->usableSize-4 ); |
| assert( pbegin>addr || pbegin==0 ); |
| put2byte(&data[addr], start); |
| put2byte(&data[start], pbegin); |
| put2byte(&data[start+2], size); |
| pPage->nFree += size; |
| |
| /* Coalesce adjacent free blocks */ |
| addr = pPage->hdrOffset + 1; |
| while( (pbegin = get2byte(&data[addr]))>0 ){ |
| int pnext, psize; |
| assert( pbegin>addr ); |
| assert( pbegin<=pPage->pBt->usableSize-4 ); |
| pnext = get2byte(&data[pbegin]); |
| psize = get2byte(&data[pbegin+2]); |
| if( pbegin + psize + 3 >= pnext && pnext>0 ){ |
| int frag = pnext - (pbegin+psize); |
| assert( frag<=data[pPage->hdrOffset+7] ); |
| data[pPage->hdrOffset+7] -= frag; |
| put2byte(&data[pbegin], get2byte(&data[pnext])); |
| put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin); |
| }else{ |
| addr = pbegin; |
| } |
| } |
| |
| /* If the cell content area begins with a freeblock, remove it. */ |
| if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){ |
| int top; |
| pbegin = get2byte(&data[hdr+1]); |
| memcpy(&data[hdr+1], &data[pbegin], 2); |
| top = get2byte(&data[hdr+5]); |
| put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2])); |
| } |
| } |
| |
| /* |
| ** Decode the flags byte (the first byte of the header) for a page |
| ** and initialize fields of the MemPage structure accordingly. |
| */ |
| static void decodeFlags(MemPage *pPage, int flagByte){ |
| BtShared *pBt; /* A copy of pPage->pBt */ |
| |
| assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); |
| pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0; |
| pPage->zeroData = (flagByte & PTF_ZERODATA)!=0; |
| pPage->leaf = (flagByte & PTF_LEAF)!=0; |
| pPage->childPtrSize = 4*(pPage->leaf==0); |
| pBt = pPage->pBt; |
| if( flagByte & PTF_LEAFDATA ){ |
| pPage->leafData = 1; |
| pPage->maxLocal = pBt->maxLeaf; |
| pPage->minLocal = pBt->minLeaf; |
| }else{ |
| pPage->leafData = 0; |
| pPage->maxLocal = pBt->maxLocal; |
| pPage->minLocal = pBt->minLocal; |
| } |
| pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); |
| } |
| |
| /* |
| ** Initialize the auxiliary information for a disk block. |
| ** |
| ** The pParent parameter must be a pointer to the MemPage which |
| ** is the parent of the page being initialized. The root of a |
| ** BTree has no parent and so for that page, pParent==NULL. |
| ** |
| ** Return SQLITE_OK on success. If we see that the page does |
| ** not contain a well-formed database page, then return |
| ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not |
| ** guarantee that the page is well-formed. It only shows that |
| ** we failed to detect any corruption. |
| */ |
| static int initPage( |
| MemPage *pPage, /* The page to be initialized */ |
| MemPage *pParent /* The parent. Might be NULL */ |
| ){ |
| int pc; /* Address of a freeblock within pPage->aData[] */ |
| int hdr; /* Offset to beginning of page header */ |
| u8 *data; /* Equal to pPage->aData */ |
| BtShared *pBt; /* The main btree structure */ |
| int usableSize; /* Amount of usable space on each page */ |
| int cellOffset; /* Offset from start of page to first cell pointer */ |
| int nFree; /* Number of unused bytes on the page */ |
| int top; /* First byte of the cell content area */ |
| |
| pBt = pPage->pBt; |
| assert( pBt!=0 ); |
| assert( pParent==0 || pParent->pBt==pBt ); |
| assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) ); |
| assert( pPage->aData == &((unsigned char*)pPage)[-pBt->pageSize] ); |
| if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){ |
| /* The parent page should never change unless the file is corrupt */ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| if( pPage->isInit ) return SQLITE_OK; |
| if( pPage->pParent==0 && pParent!=0 ){ |
| pPage->pParent = pParent; |
| sqlite3pager_ref(pParent->aData); |
| } |
| hdr = pPage->hdrOffset; |
| data = pPage->aData; |
| decodeFlags(pPage, data[hdr]); |
| pPage->nOverflow = 0; |
| pPage->idxShift = 0; |
| usableSize = pBt->usableSize; |
| pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; |
| top = get2byte(&data[hdr+5]); |
| pPage->nCell = get2byte(&data[hdr+3]); |
| if( pPage->nCell>MX_CELL(pBt) ){ |
| /* To many cells for a single page. The page must be corrupt */ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){ |
| /* All pages must have at least one cell, except for root pages */ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| |
| /* Compute the total free space on the page */ |
| pc = get2byte(&data[hdr+1]); |
| nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell); |
| while( pc>0 ){ |
| int next, size; |
| if( pc>usableSize-4 ){ |
| /* Free block is off the page */ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| next = get2byte(&data[pc]); |
| size = get2byte(&data[pc+2]); |
| if( next>0 && next<=pc+size+3 ){ |
| /* Free blocks must be in accending order */ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| nFree += size; |
| pc = next; |
| } |
| pPage->nFree = nFree; |
| if( nFree>=usableSize ){ |
| /* Free space cannot exceed total page size */ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| |
| pPage->isInit = 1; |
| pageIntegrity(pPage); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Set up a raw page so that it looks like a database page holding |
| ** no entries. |
| */ |
| static void zeroPage(MemPage *pPage, int flags){ |
| unsigned char *data = pPage->aData; |
| BtShared *pBt = pPage->pBt; |
| int hdr = pPage->hdrOffset; |
| int first; |
| |
| assert( sqlite3pager_pagenumber(data)==pPage->pgno ); |
| assert( &data[pBt->pageSize] == (unsigned char*)pPage ); |
| assert( sqlite3pager_iswriteable(data) ); |
| memset(&data[hdr], 0, pBt->usableSize - hdr); |
| data[hdr] = flags; |
| first = hdr + 8 + 4*((flags&PTF_LEAF)==0); |
| memset(&data[hdr+1], 0, 4); |
| data[hdr+7] = 0; |
| put2byte(&data[hdr+5], pBt->usableSize); |
| pPage->nFree = pBt->usableSize - first; |
| decodeFlags(pPage, flags); |
| pPage->hdrOffset = hdr; |
| pPage->cellOffset = first; |
| pPage->nOverflow = 0; |
| pPage->idxShift = 0; |
| pPage->nCell = 0; |
| pPage->isInit = 1; |
| pageIntegrity(pPage); |
| } |
| |
| /* |
| ** Get a page from the pager. Initialize the MemPage.pBt and |
| ** MemPage.aData elements if needed. |
| */ |
| static int getPage(BtShared *pBt, Pgno pgno, MemPage **ppPage){ |
| int rc; |
| unsigned char *aData; |
| MemPage *pPage; |
| rc = sqlite3pager_get(pBt->pPager, pgno, (void**)&aData); |
| if( rc ) return rc; |
| pPage = (MemPage*)&aData[pBt->pageSize]; |
| pPage->aData = aData; |
| pPage->pBt = pBt; |
| pPage->pgno = pgno; |
| pPage->hdrOffset = pPage->pgno==1 ? 100 : 0; |
| *ppPage = pPage; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Get a page from the pager and initialize it. This routine |
| ** is just a convenience wrapper around separate calls to |
| ** getPage() and initPage(). |
| */ |
| static int getAndInitPage( |
| BtShared *pBt, /* The database file */ |
| Pgno pgno, /* Number of the page to get */ |
| MemPage **ppPage, /* Write the page pointer here */ |
| MemPage *pParent /* Parent of the page */ |
| ){ |
| int rc; |
| if( pgno==0 ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| rc = getPage(pBt, pgno, ppPage); |
| if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){ |
| rc = initPage(*ppPage, pParent); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Release a MemPage. This should be called once for each prior |
| ** call to getPage. |
| */ |
| static void releasePage(MemPage *pPage){ |
| if( pPage ){ |
| assert( pPage->aData ); |
| assert( pPage->pBt ); |
| assert( &pPage->aData[pPage->pBt->pageSize]==(unsigned char*)pPage ); |
| sqlite3pager_unref(pPage->aData); |
| } |
| } |
| |
| /* |
| ** This routine is called when the reference count for a page |
| ** reaches zero. We need to unref the pParent pointer when that |
| ** happens. |
| */ |
| static void pageDestructor(void *pData, int pageSize){ |
| MemPage *pPage; |
| assert( (pageSize & 7)==0 ); |
| pPage = (MemPage*)&((char*)pData)[pageSize]; |
| if( pPage->pParent ){ |
| MemPage *pParent = pPage->pParent; |
| pPage->pParent = 0; |
| releasePage(pParent); |
| } |
| pPage->isInit = 0; |
| } |
| |
| /* |
| ** During a rollback, when the pager reloads information into the cache |
| ** so that the cache is restored to its original state at the start of |
| ** the transaction, for each page restored this routine is called. |
| ** |
| ** This routine needs to reset the extra data section at the end of the |
| ** page to agree with the restored data. |
| */ |
| static void pageReinit(void *pData, int pageSize){ |
| MemPage *pPage; |
| assert( (pageSize & 7)==0 ); |
| pPage = (MemPage*)&((char*)pData)[pageSize]; |
| if( pPage->isInit ){ |
| pPage->isInit = 0; |
| initPage(pPage, pPage->pParent); |
| } |
| } |
| |
| /* |
| ** Open a database file. |
| ** |
| ** zFilename is the name of the database file. If zFilename is NULL |
| ** a new database with a random name is created. This randomly named |
| ** database file will be deleted when sqlite3BtreeClose() is called. |
| */ |
| int sqlite3BtreeOpen( |
| const char *zFilename, /* Name of the file containing the BTree database */ |
| sqlite3 *pSqlite, /* Associated database handle */ |
| Btree **ppBtree, /* Pointer to new Btree object written here */ |
| int flags /* Options */ |
| ){ |
| BtShared *pBt; /* Shared part of btree structure */ |
| Btree *p; /* Handle to return */ |
| int rc; |
| int nReserve; |
| unsigned char zDbHeader[100]; |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| ThreadData *pTsd = sqlite3ThreadData(); |
| #endif |
| |
| /* Set the variable isMemdb to true for an in-memory database, or |
| ** false for a file-based database. This symbol is only required if |
| ** either of the shared-data or autovacuum features are compiled |
| ** into the library. |
| */ |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM) |
| #ifdef SQLITE_OMIT_MEMORYDB |
| const int isMemdb = !zFilename; |
| #else |
| const int isMemdb = !zFilename || (strcmp(zFilename, ":memory:")?0:1); |
| #endif |
| #endif |
| |
| p = sqliteMalloc(sizeof(Btree)); |
| if( !p ){ |
| return SQLITE_NOMEM; |
| } |
| p->inTrans = TRANS_NONE; |
| p->pSqlite = pSqlite; |
| |
| /* Try to find an existing Btree structure opened on zFilename. */ |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
| if( pTsd->useSharedData && zFilename && !isMemdb ){ |
| char *zFullPathname = sqlite3OsFullPathname(zFilename); |
| if( !zFullPathname ){ |
| sqliteFree(p); |
| return SQLITE_NOMEM; |
| } |
| for(pBt=pTsd->pBtree; pBt; pBt=pBt->pNext){ |
| assert( pBt->nRef>0 ); |
| if( 0==strcmp(zFullPathname, sqlite3pager_filename(pBt->pPager)) ){ |
| p->pBt = pBt; |
| *ppBtree = p; |
| pBt->nRef++; |
| sqliteFree(zFullPathname); |
| return SQLITE_OK; |
| } |
| } |
| sqliteFree(zFullPathname); |
| } |
| #endif |
| |
| /* |
| ** The following asserts make sure that structures used by the btree are |
| ** the right size. This is to guard against size changes that result |
| ** when compiling on a different architecture. |
| */ |
| assert( sizeof(i64)==8 ); |
| assert( sizeof(u64)==8 ); |
| assert( sizeof(u32)==4 ); |
| assert( sizeof(u16)==2 ); |
| assert( sizeof(Pgno)==4 ); |
| |
| pBt = sqliteMalloc( sizeof(*pBt) ); |
| if( pBt==0 ){ |
| *ppBtree = 0; |
| sqliteFree(p); |
| return SQLITE_NOMEM; |
| } |
| rc = sqlite3pager_open(&pBt->pPager, zFilename, EXTRA_SIZE, flags); |
| if( rc!=SQLITE_OK ){ |
| if( pBt->pPager ) sqlite3pager_close(pBt->pPager); |
| sqliteFree(pBt); |
| sqliteFree(p); |
| *ppBtree = 0; |
| return rc; |
| } |
| p->pBt = pBt; |
| |
| sqlite3pager_set_destructor(pBt->pPager, pageDestructor); |
| sqlite3pager_set_reiniter(pBt->pPager, pageReinit); |
| pBt->pCursor = 0; |
| pBt->pPage1 = 0; |
| pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager); |
| sqlite3pager_read_fileheader(pBt->pPager, sizeof(zDbHeader), zDbHeader); |
| pBt->pageSize = get2byte(&zDbHeader[16]); |
| if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE |
| || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ |
| pBt->pageSize = SQLITE_DEFAULT_PAGE_SIZE; |
| pBt->maxEmbedFrac = 64; /* 25% */ |
| pBt->minEmbedFrac = 32; /* 12.5% */ |
| pBt->minLeafFrac = 32; /* 12.5% */ |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* If the magic name ":memory:" will create an in-memory database, then |
| ** do not set the auto-vacuum flag, even if SQLITE_DEFAULT_AUTOVACUUM |
| ** is true. On the other hand, if SQLITE_OMIT_MEMORYDB has been defined, |
| ** then ":memory:" is just a regular file-name. Respect the auto-vacuum |
| ** default in this case. |
| */ |
| if( zFilename && !isMemdb ){ |
| pBt->autoVacuum = SQLITE_DEFAULT_AUTOVACUUM; |
| } |
| #endif |
| nReserve = 0; |
| }else{ |
| nReserve = zDbHeader[20]; |
| pBt->maxEmbedFrac = zDbHeader[21]; |
| pBt->minEmbedFrac = zDbHeader[22]; |
| pBt->minLeafFrac = zDbHeader[23]; |
| pBt->pageSizeFixed = 1; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); |
| #endif |
| } |
| pBt->usableSize = pBt->pageSize - nReserve; |
| assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ |
| sqlite3pager_set_pagesize(pBt->pPager, pBt->pageSize); |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| /* Add the new btree to the linked list starting at ThreadData.pBtree */ |
| if( pTsd->useSharedData && zFilename && !isMemdb ){ |
| pBt->pNext = pTsd->pBtree; |
| pTsd->pBtree = pBt; |
| } |
| #endif |
| pBt->nRef = 1; |
| *ppBtree = p; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Close an open database and invalidate all cursors. |
| */ |
| int sqlite3BtreeClose(Btree *p){ |
| BtShared *pBt = p->pBt; |
| BtCursor *pCur; |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| ThreadData *pTsd = sqlite3ThreadData(); |
| #endif |
| |
| /* Drop any table-locks */ |
| unlockAllTables(p); |
| |
| /* Close all cursors opened via this handle. */ |
| pCur = pBt->pCursor; |
| while( pCur ){ |
| BtCursor *pTmp = pCur; |
| pCur = pCur->pNext; |
| if( pTmp->pBtree==p ){ |
| sqlite3BtreeCloseCursor(pTmp); |
| } |
| } |
| |
| sqliteFree(p); |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| /* If there are still other outstanding references to the shared-btree |
| ** structure, return now. The remainder of this procedure cleans |
| ** up the shared-btree. |
| */ |
| assert( pBt->nRef>0 ); |
| pBt->nRef--; |
| if( pBt->nRef ){ |
| return SQLITE_OK; |
| } |
| |
| /* Remove the shared-btree from the thread wide list */ |
| if( pTsd->pBtree==pBt ){ |
| pTsd->pBtree = pBt->pNext; |
| }else{ |
| BtShared *pPrev; |
| for(pPrev=pTsd->pBtree; pPrev && pPrev->pNext!=pBt; pPrev=pPrev->pNext); |
| if( pPrev ){ |
| pPrev->pNext = pBt->pNext; |
| } |
| } |
| #endif |
| |
| /* Close the pager and free the shared-btree structure */ |
| assert( !pBt->pCursor ); |
| sqlite3pager_close(pBt->pPager); |
| if( pBt->xFreeSchema && pBt->pSchema ){ |
| pBt->xFreeSchema(pBt->pSchema); |
| } |
| sqliteFree(pBt->pSchema); |
| sqliteFree(pBt); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Change the busy handler callback function. |
| */ |
| int sqlite3BtreeSetBusyHandler(Btree *p, BusyHandler *pHandler){ |
| BtShared *pBt = p->pBt; |
| pBt->pBusyHandler = pHandler; |
| sqlite3pager_set_busyhandler(pBt->pPager, pHandler); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Change the limit on the number of pages allowed in the cache. |
| ** |
| ** The maximum number of cache pages is set to the absolute |
| ** value of mxPage. If mxPage is negative, the pager will |
| ** operate asynchronously - it will not stop to do fsync()s |
| ** to insure data is written to the disk surface before |
| ** continuing. Transactions still work if synchronous is off, |
| ** and the database cannot be corrupted if this program |
| ** crashes. But if the operating system crashes or there is |
| ** an abrupt power failure when synchronous is off, the database |
| ** could be left in an inconsistent and unrecoverable state. |
| ** Synchronous is on by default so database corruption is not |
| ** normally a worry. |
| */ |
| int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ |
| BtShared *pBt = p->pBt; |
| sqlite3pager_set_cachesize(pBt->pPager, mxPage); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Change the way data is synced to disk in order to increase or decrease |
| ** how well the database resists damage due to OS crashes and power |
| ** failures. Level 1 is the same as asynchronous (no syncs() occur and |
| ** there is a high probability of damage) Level 2 is the default. There |
| ** is a very low but non-zero probability of damage. Level 3 reduces the |
| ** probability of damage to near zero but with a write performance reduction. |
| */ |
| #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
| int sqlite3BtreeSetSafetyLevel(Btree *p, int level){ |
| BtShared *pBt = p->pBt; |
| sqlite3pager_set_safety_level(pBt->pPager, level); |
| return SQLITE_OK; |
| } |
| #endif |
| |
| /* |
| ** Return TRUE if the given btree is set to safety level 1. In other |
| ** words, return TRUE if no sync() occurs on the disk files. |
| */ |
| int sqlite3BtreeSyncDisabled(Btree *p){ |
| BtShared *pBt = p->pBt; |
| assert( pBt && pBt->pPager ); |
| return sqlite3pager_nosync(pBt->pPager); |
| } |
| |
| #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) |
| /* |
| ** Change the default pages size and the number of reserved bytes per page. |
| ** |
| ** The page size must be a power of 2 between 512 and 65536. If the page |
| ** size supplied does not meet this constraint then the page size is not |
| ** changed. |
| ** |
| ** Page sizes are constrained to be a power of two so that the region |
| ** of the database file used for locking (beginning at PENDING_BYTE, |
| ** the first byte past the 1GB boundary, 0x40000000) needs to occur |
| ** at the beginning of a page. |
| ** |
| ** If parameter nReserve is less than zero, then the number of reserved |
| ** bytes per page is left unchanged. |
| */ |
| int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){ |
| BtShared *pBt = p->pBt; |
| if( pBt->pageSizeFixed ){ |
| return SQLITE_READONLY; |
| } |
| if( nReserve<0 ){ |
| nReserve = pBt->pageSize - pBt->usableSize; |
| } |
| if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && |
| ((pageSize-1)&pageSize)==0 ){ |
| assert( (pageSize & 7)==0 ); |
| assert( !pBt->pPage1 && !pBt->pCursor ); |
| pBt->pageSize = sqlite3pager_set_pagesize(pBt->pPager, pageSize); |
| } |
| pBt->usableSize = pBt->pageSize - nReserve; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Return the currently defined page size |
| */ |
| int sqlite3BtreeGetPageSize(Btree *p){ |
| return p->pBt->pageSize; |
| } |
| int sqlite3BtreeGetReserve(Btree *p){ |
| return p->pBt->pageSize - p->pBt->usableSize; |
| } |
| #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */ |
| |
| /* |
| ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' |
| ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it |
| ** is disabled. The default value for the auto-vacuum property is |
| ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. |
| */ |
| int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ |
| BtShared *pBt = p->pBt;; |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| return SQLITE_READONLY; |
| #else |
| if( pBt->pageSizeFixed ){ |
| return SQLITE_READONLY; |
| } |
| pBt->autoVacuum = (autoVacuum?1:0); |
| return SQLITE_OK; |
| #endif |
| } |
| |
| /* |
| ** Return the value of the 'auto-vacuum' property. If auto-vacuum is |
| ** enabled 1 is returned. Otherwise 0. |
| */ |
| int sqlite3BtreeGetAutoVacuum(Btree *p){ |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| return 0; |
| #else |
| return p->pBt->autoVacuum; |
| #endif |
| } |
| |
| |
| /* |
| ** Get a reference to pPage1 of the database file. This will |
| ** also acquire a readlock on that file. |
| ** |
| ** SQLITE_OK is returned on success. If the file is not a |
| ** well-formed database file, then SQLITE_CORRUPT is returned. |
| ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM |
| ** is returned if we run out of memory. SQLITE_PROTOCOL is returned |
| ** if there is a locking protocol violation. |
| */ |
| static int lockBtree(BtShared *pBt){ |
| int rc, pageSize; |
| MemPage *pPage1; |
| if( pBt->pPage1 ) return SQLITE_OK; |
| rc = getPage(pBt, 1, &pPage1); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| |
| /* Do some checking to help insure the file we opened really is |
| ** a valid database file. |
| */ |
| rc = SQLITE_NOTADB; |
| if( sqlite3pager_pagecount(pBt->pPager)>0 ){ |
| u8 *page1 = pPage1->aData; |
| if( memcmp(page1, zMagicHeader, 16)!=0 ){ |
| goto page1_init_failed; |
| } |
| if( page1[18]>1 || page1[19]>1 ){ |
| goto page1_init_failed; |
| } |
| pageSize = get2byte(&page1[16]); |
| if( ((pageSize-1)&pageSize)!=0 ){ |
| goto page1_init_failed; |
| } |
| assert( (pageSize & 7)==0 ); |
| pBt->pageSize = pageSize; |
| pBt->usableSize = pageSize - page1[20]; |
| if( pBt->usableSize<500 ){ |
| goto page1_init_failed; |
| } |
| pBt->maxEmbedFrac = page1[21]; |
| pBt->minEmbedFrac = page1[22]; |
| pBt->minLeafFrac = page1[23]; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); |
| #endif |
| } |
| |
| /* maxLocal is the maximum amount of payload to store locally for |
| ** a cell. Make sure it is small enough so that at least minFanout |
| ** cells can will fit on one page. We assume a 10-byte page header. |
| ** Besides the payload, the cell must store: |
| ** 2-byte pointer to the cell |
| ** 4-byte child pointer |
| ** 9-byte nKey value |
| ** 4-byte nData value |
| ** 4-byte overflow page pointer |
| ** So a cell consists of a 2-byte poiner, a header which is as much as |
| ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow |
| ** page pointer. |
| */ |
| pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23; |
| pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23; |
| pBt->maxLeaf = pBt->usableSize - 35; |
| pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23; |
| if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){ |
| goto page1_init_failed; |
| } |
| assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); |
| pBt->pPage1 = pPage1; |
| return SQLITE_OK; |
| |
| page1_init_failed: |
| releasePage(pPage1); |
| pBt->pPage1 = 0; |
| return rc; |
| } |
| |
| /* |
| ** This routine works like lockBtree() except that it also invokes the |
| ** busy callback if there is lock contention. |
| */ |
| static int lockBtreeWithRetry(Btree *pRef){ |
| int rc = SQLITE_OK; |
| if( pRef->inTrans==TRANS_NONE ){ |
| u8 inTransaction = pRef->pBt->inTransaction; |
| btreeIntegrity(pRef); |
| rc = sqlite3BtreeBeginTrans(pRef, 0); |
| pRef->pBt->inTransaction = inTransaction; |
| pRef->inTrans = TRANS_NONE; |
| if( rc==SQLITE_OK ){ |
| pRef->pBt->nTransaction--; |
| } |
| btreeIntegrity(pRef); |
| } |
| return rc; |
| } |
| |
| |
| /* |
| ** If there are no outstanding cursors and we are not in the middle |
| ** of a transaction but there is a read lock on the database, then |
| ** this routine unrefs the first page of the database file which |
| ** has the effect of releasing the read lock. |
| ** |
| ** If there are any outstanding cursors, this routine is a no-op. |
| ** |
| ** If there is a transaction in progress, this routine is a no-op. |
| */ |
| static void unlockBtreeIfUnused(BtShared *pBt){ |
| if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){ |
| if( pBt->pPage1->aData==0 ){ |
| MemPage *pPage = pBt->pPage1; |
| pPage->aData = &((u8*)pPage)[-pBt->pageSize]; |
| pPage->pBt = pBt; |
| pPage->pgno = 1; |
| } |
| releasePage(pBt->pPage1); |
| pBt->pPage1 = 0; |
| pBt->inStmt = 0; |
| } |
| } |
| |
| /* |
| ** Create a new database by initializing the first page of the |
| ** file. |
| */ |
| static int newDatabase(BtShared *pBt){ |
| MemPage *pP1; |
| unsigned char *data; |
| int rc; |
| if( sqlite3pager_pagecount(pBt->pPager)>0 ) return SQLITE_OK; |
| pP1 = pBt->pPage1; |
| assert( pP1!=0 ); |
| data = pP1->aData; |
| rc = sqlite3pager_write(data); |
| if( rc ) return rc; |
| memcpy(data, zMagicHeader, sizeof(zMagicHeader)); |
| assert( sizeof(zMagicHeader)==16 ); |
| put2byte(&data[16], pBt->pageSize); |
| data[18] = 1; |
| data[19] = 1; |
| data[20] = pBt->pageSize - pBt->usableSize; |
| data[21] = pBt->maxEmbedFrac; |
| data[22] = pBt->minEmbedFrac; |
| data[23] = pBt->minLeafFrac; |
| memset(&data[24], 0, 100-24); |
| zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); |
| pBt->pageSizeFixed = 1; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| put4byte(&data[36 + 4*4], 1); |
| } |
| #endif |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Attempt to start a new transaction. A write-transaction |
| ** is started if the second argument is nonzero, otherwise a read- |
| ** transaction. If the second argument is 2 or more and exclusive |
| ** transaction is started, meaning that no other process is allowed |
| ** to access the database. A preexisting transaction may not be |
| ** upgraded to exclusive by calling this routine a second time - the |
| ** exclusivity flag only works for a new transaction. |
| ** |
| ** A write-transaction must be started before attempting any |
| ** changes to the database. None of the following routines |
| ** will work unless a transaction is started first: |
| ** |
| ** sqlite3BtreeCreateTable() |
| ** sqlite3BtreeCreateIndex() |
| ** sqlite3BtreeClearTable() |
| ** sqlite3BtreeDropTable() |
| ** sqlite3BtreeInsert() |
| ** sqlite3BtreeDelete() |
| ** sqlite3BtreeUpdateMeta() |
| ** |
| ** If an initial attempt to acquire the lock fails because of lock contention |
| ** and the database was previously unlocked, then invoke the busy handler |
| ** if there is one. But if there was previously a read-lock, do not |
| ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is |
| ** returned when there is already a read-lock in order to avoid a deadlock. |
| ** |
| ** Suppose there are two processes A and B. A has a read lock and B has |
| ** a reserved lock. B tries to promote to exclusive but is blocked because |
| ** of A's read lock. A tries to promote to reserved but is blocked by B. |
| ** One or the other of the two processes must give way or there can be |
| ** no progress. By returning SQLITE_BUSY and not invoking the busy callback |
| ** when A already has a read lock, we encourage A to give up and let B |
| ** proceed. |
| */ |
| int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ |
| BtShared *pBt = p->pBt; |
| int rc = SQLITE_OK; |
| |
| btreeIntegrity(p); |
| |
| /* If the btree is already in a write-transaction, or it |
| ** is already in a read-transaction and a read-transaction |
| ** is requested, this is a no-op. |
| */ |
| if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ |
| return SQLITE_OK; |
| } |
| |
| /* Write transactions are not possible on a read-only database */ |
| if( pBt->readOnly && wrflag ){ |
| return SQLITE_READONLY; |
| } |
| |
| /* If another database handle has already opened a write transaction |
| ** on this shared-btree structure and a second write transaction is |
| ** requested, return SQLITE_BUSY. |
| */ |
| if( pBt->inTransaction==TRANS_WRITE && wrflag ){ |
| return SQLITE_BUSY; |
| } |
| |
| do { |
| if( pBt->pPage1==0 ){ |
| rc = lockBtree(pBt); |
| } |
| |
| if( rc==SQLITE_OK && wrflag ){ |
| rc = sqlite3pager_begin(pBt->pPage1->aData, wrflag>1); |
| if( rc==SQLITE_OK ){ |
| rc = newDatabase(pBt); |
| } |
| } |
| |
| if( rc==SQLITE_OK ){ |
| if( wrflag ) pBt->inStmt = 0; |
| }else{ |
| unlockBtreeIfUnused(pBt); |
| } |
| }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && |
| sqlite3InvokeBusyHandler(pBt->pBusyHandler) ); |
| |
| if( rc==SQLITE_OK ){ |
| if( p->inTrans==TRANS_NONE ){ |
| pBt->nTransaction++; |
| } |
| p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); |
| if( p->inTrans>pBt->inTransaction ){ |
| pBt->inTransaction = p->inTrans; |
| } |
| } |
| |
| btreeIntegrity(p); |
| return rc; |
| } |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| |
| /* |
| ** Set the pointer-map entries for all children of page pPage. Also, if |
| ** pPage contains cells that point to overflow pages, set the pointer |
| ** map entries for the overflow pages as well. |
| */ |
| static int setChildPtrmaps(MemPage *pPage){ |
| int i; /* Counter variable */ |
| int nCell; /* Number of cells in page pPage */ |
| int rc = SQLITE_OK; /* Return code */ |
| BtShared *pBt = pPage->pBt; |
| int isInitOrig = pPage->isInit; |
| Pgno pgno = pPage->pgno; |
| |
| initPage(pPage, 0); |
| nCell = pPage->nCell; |
| |
| for(i=0; i<nCell; i++){ |
| u8 *pCell = findCell(pPage, i); |
| |
| rc = ptrmapPutOvflPtr(pPage, pCell); |
| if( rc!=SQLITE_OK ){ |
| goto set_child_ptrmaps_out; |
| } |
| |
| if( !pPage->leaf ){ |
| Pgno childPgno = get4byte(pCell); |
| rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno); |
| if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out; |
| } |
| } |
| |
| if( !pPage->leaf ){ |
| Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno); |
| } |
| |
| set_child_ptrmaps_out: |
| pPage->isInit = isInitOrig; |
| return rc; |
| } |
| |
| /* |
| ** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow |
| ** page, is a pointer to page iFrom. Modify this pointer so that it points to |
| ** iTo. Parameter eType describes the type of pointer to be modified, as |
| ** follows: |
| ** |
| ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child |
| ** page of pPage. |
| ** |
| ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow |
| ** page pointed to by one of the cells on pPage. |
| ** |
| ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next |
| ** overflow page in the list. |
| */ |
| static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ |
| if( eType==PTRMAP_OVERFLOW2 ){ |
| /* The pointer is always the first 4 bytes of the page in this case. */ |
| if( get4byte(pPage->aData)!=iFrom ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| put4byte(pPage->aData, iTo); |
| }else{ |
| int isInitOrig = pPage->isInit; |
| int i; |
| int nCell; |
| |
| initPage(pPage, 0); |
| nCell = pPage->nCell; |
| |
| for(i=0; i<nCell; i++){ |
| u8 *pCell = findCell(pPage, i); |
| if( eType==PTRMAP_OVERFLOW1 ){ |
| CellInfo info; |
| parseCellPtr(pPage, pCell, &info); |
| if( info.iOverflow ){ |
| if( iFrom==get4byte(&pCell[info.iOverflow]) ){ |
| put4byte(&pCell[info.iOverflow], iTo); |
| break; |
| } |
| } |
| }else{ |
| if( get4byte(pCell)==iFrom ){ |
| put4byte(pCell, iTo); |
| break; |
| } |
| } |
| } |
| |
| if( i==nCell ){ |
| if( eType!=PTRMAP_BTREE || |
| get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); |
| } |
| |
| pPage->isInit = isInitOrig; |
| } |
| return SQLITE_OK; |
| } |
| |
| |
| /* |
| ** Move the open database page pDbPage to location iFreePage in the |
| ** database. The pDbPage reference remains valid. |
| */ |
| static int relocatePage( |
| BtShared *pBt, /* Btree */ |
| MemPage *pDbPage, /* Open page to move */ |
| u8 eType, /* Pointer map 'type' entry for pDbPage */ |
| Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ |
| Pgno iFreePage /* The location to move pDbPage to */ |
| ){ |
| MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ |
| Pgno iDbPage = pDbPage->pgno; |
| Pager *pPager = pBt->pPager; |
| int rc; |
| |
| assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || |
| eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); |
| |
| /* Move page iDbPage from it's current location to page number iFreePage */ |
| TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", |
| iDbPage, iFreePage, iPtrPage, eType)); |
| rc = sqlite3pager_movepage(pPager, pDbPage->aData, iFreePage); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| pDbPage->pgno = iFreePage; |
| |
| /* If pDbPage was a btree-page, then it may have child pages and/or cells |
| ** that point to overflow pages. The pointer map entries for all these |
| ** pages need to be changed. |
| ** |
| ** If pDbPage is an overflow page, then the first 4 bytes may store a |
| ** pointer to a subsequent overflow page. If this is the case, then |
| ** the pointer map needs to be updated for the subsequent overflow page. |
| */ |
| if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ |
| rc = setChildPtrmaps(pDbPage); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| }else{ |
| Pgno nextOvfl = get4byte(pDbPage->aData); |
| if( nextOvfl!=0 ){ |
| rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| } |
| } |
| |
| /* Fix the database pointer on page iPtrPage that pointed at iDbPage so |
| ** that it points at iFreePage. Also fix the pointer map entry for |
| ** iPtrPage. |
| */ |
| if( eType!=PTRMAP_ROOTPAGE ){ |
| rc = getPage(pBt, iPtrPage, &pPtrPage); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| rc = sqlite3pager_write(pPtrPage->aData); |
| if( rc!=SQLITE_OK ){ |
| releasePage(pPtrPage); |
| return rc; |
| } |
| rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); |
| releasePage(pPtrPage); |
| if( rc==SQLITE_OK ){ |
| rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage); |
| } |
| } |
| return rc; |
| } |
| |
| /* Forward declaration required by autoVacuumCommit(). */ |
| static int allocatePage(BtShared *, MemPage **, Pgno *, Pgno, u8); |
| |
| /* |
| ** This routine is called prior to sqlite3pager_commit when a transaction |
| ** is commited for an auto-vacuum database. |
| */ |
| static int autoVacuumCommit(BtShared *pBt, Pgno *nTrunc){ |
| Pager *pPager = pBt->pPager; |
| Pgno nFreeList; /* Number of pages remaining on the free-list. */ |
| int nPtrMap; /* Number of pointer-map pages deallocated */ |
| Pgno origSize; /* Pages in the database file */ |
| Pgno finSize; /* Pages in the database file after truncation */ |
| int rc; /* Return code */ |
| u8 eType; |
| int pgsz = pBt->pageSize; /* Page size for this database */ |
| Pgno iDbPage; /* The database page to move */ |
| MemPage *pDbMemPage = 0; /* "" */ |
| Pgno iPtrPage; /* The page that contains a pointer to iDbPage */ |
| Pgno iFreePage; /* The free-list page to move iDbPage to */ |
| MemPage *pFreeMemPage = 0; /* "" */ |
| |
| #ifndef NDEBUG |
| int nRef = *sqlite3pager_stats(pPager); |
| #endif |
| |
| assert( pBt->autoVacuum ); |
| if( PTRMAP_ISPAGE(pgsz, sqlite3pager_pagecount(pPager)) ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| |
| /* Figure out how many free-pages are in the database. If there are no |
| ** free pages, then auto-vacuum is a no-op. |
| */ |
| nFreeList = get4byte(&pBt->pPage1->aData[36]); |
| if( nFreeList==0 ){ |
| *nTrunc = 0; |
| return SQLITE_OK; |
| } |
| |
| origSize = sqlite3pager_pagecount(pPager); |
| nPtrMap = (nFreeList-origSize+PTRMAP_PAGENO(pgsz, origSize)+pgsz/5)/(pgsz/5); |
| finSize = origSize - nFreeList - nPtrMap; |
| if( origSize>=PENDING_BYTE_PAGE(pBt) && finSize<=PENDING_BYTE_PAGE(pBt) ){ |
| finSize--; |
| if( PTRMAP_ISPAGE(pBt->usableSize, finSize) ){ |
| finSize--; |
| } |
| } |
| TRACE(("AUTOVACUUM: Begin (db size %d->%d)\n", origSize, finSize)); |
| |
| /* Variable 'finSize' will be the size of the file in pages after |
| ** the auto-vacuum has completed (the current file size minus the number |
| ** of pages on the free list). Loop through the pages that lie beyond |
| ** this mark, and if they are not already on the free list, move them |
| ** to a free page earlier in the file (somewhere before finSize). |
| */ |
| for( iDbPage=finSize+1; iDbPage<=origSize; iDbPage++ ){ |
| /* If iDbPage is a pointer map page, or the pending-byte page, skip it. */ |
| if( PTRMAP_ISPAGE(pgsz, iDbPage) || iDbPage==PENDING_BYTE_PAGE(pBt) ){ |
| continue; |
| } |
| |
| rc = ptrmapGet(pBt, iDbPage, &eType, &iPtrPage); |
| if( rc!=SQLITE_OK ) goto autovacuum_out; |
| if( eType==PTRMAP_ROOTPAGE ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| goto autovacuum_out; |
| } |
| |
| /* If iDbPage is free, do not swap it. */ |
| if( eType==PTRMAP_FREEPAGE ){ |
| continue; |
| } |
| rc = getPage(pBt, iDbPage, &pDbMemPage); |
| if( rc!=SQLITE_OK ) goto autovacuum_out; |
| |
| /* Find the next page in the free-list that is not already at the end |
| ** of the file. A page can be pulled off the free list using the |
| ** allocatePage() routine. |
| */ |
| do{ |
| if( pFreeMemPage ){ |
| releasePage(pFreeMemPage); |
| pFreeMemPage = 0; |
| } |
| rc = allocatePage(pBt, &pFreeMemPage, &iFreePage, 0, 0); |
| if( rc!=SQLITE_OK ){ |
| releasePage(pDbMemPage); |
| goto autovacuum_out; |
| } |
| assert( iFreePage<=origSize ); |
| }while( iFreePage>finSize ); |
| releasePage(pFreeMemPage); |
| pFreeMemPage = 0; |
| |
| /* Relocate the page into the body of the file. Note that although the |
| ** page has moved within the database file, the pDbMemPage pointer |
| ** remains valid. This means that this function can run without |
| ** invalidating cursors open on the btree. This is important in |
| ** shared-cache mode. |
| */ |
| rc = relocatePage(pBt, pDbMemPage, eType, iPtrPage, iFreePage); |
| releasePage(pDbMemPage); |
| if( rc!=SQLITE_OK ) goto autovacuum_out; |
| } |
| |
| /* The entire free-list has been swapped to the end of the file. So |
| ** truncate the database file to finSize pages and consider the |
| ** free-list empty. |
| */ |
| rc = sqlite3pager_write(pBt->pPage1->aData); |
| if( rc!=SQLITE_OK ) goto autovacuum_out; |
| put4byte(&pBt->pPage1->aData[32], 0); |
| put4byte(&pBt->pPage1->aData[36], 0); |
| if( rc!=SQLITE_OK ) goto autovacuum_out; |
| *nTrunc = finSize; |
| |
| autovacuum_out: |
| assert( nRef==*sqlite3pager_stats(pPager) ); |
| if( rc!=SQLITE_OK ){ |
| sqlite3pager_rollback(pPager); |
| } |
| return rc; |
| } |
| #endif |
| |
| /* |
| ** Commit the transaction currently in progress. |
| ** |
| ** This will release the write lock on the database file. If there |
| ** are no active cursors, it also releases the read lock. |
| */ |
| int sqlite3BtreeCommit(Btree *p){ |
| int rc = SQLITE_OK; |
| BtShared *pBt = p->pBt; |
| |
| btreeIntegrity(p); |
| unlockAllTables(p); |
| |
| /* If the handle has a write-transaction open, commit the shared-btrees |
| ** transaction and set the shared state to TRANS_READ. |
| */ |
| if( p->inTrans==TRANS_WRITE ){ |
| assert( pBt->inTransaction==TRANS_WRITE ); |
| assert( pBt->nTransaction>0 ); |
| rc = sqlite3pager_commit(pBt->pPager); |
| pBt->inTransaction = TRANS_READ; |
| pBt->inStmt = 0; |
| } |
| |
| /* If the handle has any kind of transaction open, decrement the transaction |
| ** count of the shared btree. If the transaction count reaches 0, set |
| ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below |
| ** will unlock the pager. |
| */ |
| if( p->inTrans!=TRANS_NONE ){ |
| pBt->nTransaction--; |
| if( 0==pBt->nTransaction ){ |
| pBt->inTransaction = TRANS_NONE; |
| } |
| } |
| |
| /* Set the handles current transaction state to TRANS_NONE and unlock |
| ** the pager if this call closed the only read or write transaction. |
| */ |
| p->inTrans = TRANS_NONE; |
| unlockBtreeIfUnused(pBt); |
| |
| btreeIntegrity(p); |
| return rc; |
| } |
| |
| #ifndef NDEBUG |
| /* |
| ** Return the number of write-cursors open on this handle. This is for use |
| ** in assert() expressions, so it is only compiled if NDEBUG is not |
| ** defined. |
| */ |
| static int countWriteCursors(BtShared *pBt){ |
| BtCursor *pCur; |
| int r = 0; |
| for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
| if( pCur->wrFlag ) r++; |
| } |
| return r; |
| } |
| #endif |
| |
| #ifdef SQLITE_TEST |
| /* |
| ** Print debugging information about all cursors to standard output. |
| */ |
| void sqlite3BtreeCursorList(Btree *p){ |
| BtCursor *pCur; |
| BtShared *pBt = p->pBt; |
| for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
| MemPage *pPage = pCur->pPage; |
| char *zMode = pCur->wrFlag ? "rw" : "ro"; |
| sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n", |
| pCur, pCur->pgnoRoot, zMode, |
| pPage ? pPage->pgno : 0, pCur->idx, |
| (pCur->eState==CURSOR_VALID) ? "" : " eof" |
| ); |
| } |
| } |
| #endif |
| |
| /* |
| ** Rollback the transaction in progress. All cursors will be |
| ** invalided by this operation. Any attempt to use a cursor |
| ** that was open at the beginning of this operation will result |
| ** in an error. |
| ** |
| ** This will release the write lock on the database file. If there |
| ** are no active cursors, it also releases the read lock. |
| */ |
| int sqlite3BtreeRollback(Btree *p){ |
| int rc = SQLITE_OK; |
| BtShared *pBt = p->pBt; |
| MemPage *pPage1; |
| |
| btreeIntegrity(p); |
| unlockAllTables(p); |
| |
| if( p->inTrans==TRANS_WRITE ){ |
| assert( TRANS_WRITE==pBt->inTransaction ); |
| |
| rc = sqlite3pager_rollback(pBt->pPager); |
| /* The rollback may have destroyed the pPage1->aData value. So |
| ** call getPage() on page 1 again to make sure pPage1->aData is |
| ** set correctly. */ |
| if( getPage(pBt, 1, &pPage1)==SQLITE_OK ){ |
| releasePage(pPage1); |
| } |
| assert( countWriteCursors(pBt)==0 ); |
| pBt->inTransaction = TRANS_READ; |
| } |
| |
| if( p->inTrans!=TRANS_NONE ){ |
| assert( pBt->nTransaction>0 ); |
| pBt->nTransaction--; |
| if( 0==pBt->nTransaction ){ |
| pBt->inTransaction = TRANS_NONE; |
| } |
| } |
| |
| p->inTrans = TRANS_NONE; |
| pBt->inStmt = 0; |
| unlockBtreeIfUnused(pBt); |
| |
| btreeIntegrity(p); |
| return rc; |
| } |
| |
| /* |
| ** Start a statement subtransaction. The subtransaction can |
| ** can be rolled back independently of the main transaction. |
| ** You must start a transaction before starting a subtransaction. |
| ** The subtransaction is ended automatically if the main transaction |
| ** commits or rolls back. |
| ** |
| ** Only one subtransaction may be active at a time. It is an error to try |
| ** to start a new subtransaction if another subtransaction is already active. |
| ** |
| ** Statement subtransactions are used around individual SQL statements |
| ** that are contained within a BEGIN...COMMIT block. If a constraint |
| ** error occurs within the statement, the effect of that one statement |
| ** can be rolled back without having to rollback the entire transaction. |
| */ |
| int sqlite3BtreeBeginStmt(Btree *p){ |
| int rc; |
| BtShared *pBt = p->pBt; |
| if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){ |
| return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
| } |
| assert( pBt->inTransaction==TRANS_WRITE ); |
| rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_stmt_begin(pBt->pPager); |
| pBt->inStmt = 1; |
| return rc; |
| } |
| |
| |
| /* |
| ** Commit the statment subtransaction currently in progress. If no |
| ** subtransaction is active, this is a no-op. |
| */ |
| int sqlite3BtreeCommitStmt(Btree *p){ |
| int rc; |
| BtShared *pBt = p->pBt; |
| if( pBt->inStmt && !pBt->readOnly ){ |
| rc = sqlite3pager_stmt_commit(pBt->pPager); |
| }else{ |
| rc = SQLITE_OK; |
| } |
| pBt->inStmt = 0; |
| return rc; |
| } |
| |
| /* |
| ** Rollback the active statement subtransaction. If no subtransaction |
| ** is active this routine is a no-op. |
| ** |
| ** All cursors will be invalidated by this operation. Any attempt |
| ** to use a cursor that was open at the beginning of this operation |
| ** will result in an error. |
| */ |
| int sqlite3BtreeRollbackStmt(Btree *p){ |
| int rc; |
| BtShared *pBt = p->pBt; |
| if( pBt->inStmt==0 || pBt->readOnly ) return SQLITE_OK; |
| rc = sqlite3pager_stmt_rollback(pBt->pPager); |
| assert( countWriteCursors(pBt)==0 ); |
| pBt->inStmt = 0; |
| return rc; |
| } |
| |
| /* |
| ** Default key comparison function to be used if no comparison function |
| ** is specified on the sqlite3BtreeCursor() call. |
| */ |
| static int dfltCompare( |
| void *NotUsed, /* User data is not used */ |
| int n1, const void *p1, /* First key to compare */ |
| int n2, const void *p2 /* Second key to compare */ |
| ){ |
| int c; |
| c = memcmp(p1, p2, n1<n2 ? n1 : n2); |
| if( c==0 ){ |
| c = n1 - n2; |
| } |
| return c; |
| } |
| |
| /* |
| ** Create a new cursor for the BTree whose root is on the page |
| ** iTable. The act of acquiring a cursor gets a read lock on |
| ** the database file. |
| ** |
| ** If wrFlag==0, then the cursor can only be used for reading. |
| ** If wrFlag==1, then the cursor can be used for reading or for |
| ** writing if other conditions for writing are also met. These |
| ** are the conditions that must be met in order for writing to |
| ** be allowed: |
| ** |
| ** 1: The cursor must have been opened with wrFlag==1 |
| ** |
| ** 2: No other cursors may be open with wrFlag==0 on the same table |
| ** |
| ** 3: The database must be writable (not on read-only media) |
| ** |
| ** 4: There must be an active transaction. |
| ** |
| ** Condition 2 warrants further discussion. If any cursor is opened |
| ** on a table with wrFlag==0, that prevents all other cursors from |
| ** writing to that table. This is a kind of "read-lock". When a cursor |
| ** is opened with wrFlag==0 it is guaranteed that the table will not |
| ** change as long as the cursor is open. This allows the cursor to |
| ** do a sequential scan of the table without having to worry about |
| ** entries being inserted or deleted during the scan. Cursors should |
| ** be opened with wrFlag==0 only if this read-lock property is needed. |
| ** That is to say, cursors should be opened with wrFlag==0 only if they |
| ** intend to use the sqlite3BtreeNext() system call. All other cursors |
| ** should be opened with wrFlag==1 even if they never really intend |
| ** to write. |
| ** |
| ** No checking is done to make sure that page iTable really is the |
| ** root page of a b-tree. If it is not, then the cursor acquired |
| ** will not work correctly. |
| ** |
| ** The comparison function must be logically the same for every cursor |
| ** on a particular table. Changing the comparison function will result |
| ** in incorrect operations. If the comparison function is NULL, a |
| ** default comparison function is used. The comparison function is |
| ** always ignored for INTKEY tables. |
| */ |
| int sqlite3BtreeCursor( |
| Btree *p, /* The btree */ |
| int iTable, /* Root page of table to open */ |
| int wrFlag, /* 1 to write. 0 read-only */ |
| int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */ |
| void *pArg, /* First arg to xCompare() */ |
| BtCursor **ppCur /* Write new cursor here */ |
| ){ |
| int rc; |
| BtCursor *pCur; |
| BtShared *pBt = p->pBt; |
| |
| *ppCur = 0; |
| if( wrFlag ){ |
| if( pBt->readOnly ){ |
| return SQLITE_READONLY; |
| } |
| if( checkReadLocks(pBt, iTable, 0) ){ |
| return SQLITE_LOCKED; |
| } |
| } |
| |
| if( pBt->pPage1==0 ){ |
| rc = lockBtreeWithRetry(p); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| } |
| pCur = sqliteMalloc( sizeof(*pCur) ); |
| if( pCur==0 ){ |
| rc = SQLITE_NOMEM; |
| goto create_cursor_exception; |
| } |
| pCur->pgnoRoot = (Pgno)iTable; |
| pCur->pPage = 0; /* For exit-handler, in case getAndInitPage() fails. */ |
| if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){ |
| rc = SQLITE_EMPTY; |
| goto create_cursor_exception; |
| } |
| rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0); |
| if( rc!=SQLITE_OK ){ |
| goto create_cursor_exception; |
| } |
| |
| /* Now that no other errors can occur, finish filling in the BtCursor |
| ** variables, link the cursor into the BtShared list and set *ppCur (the |
| ** output argument to this function). |
| */ |
| pCur->xCompare = xCmp ? xCmp : dfltCompare; |
| pCur->pArg = pArg; |
| pCur->pBtree = p; |
| pCur->wrFlag = wrFlag; |
| pCur->idx = 0; |
| memset(&pCur->info, 0, sizeof(pCur->info)); |
| pCur->pNext = pBt->pCursor; |
| if( pCur->pNext ){ |
| pCur->pNext->pPrev = pCur; |
| } |
| pCur->pPrev = 0; |
| pBt->pCursor = pCur; |
| pCur->eState = CURSOR_INVALID; |
| *ppCur = pCur; |
| |
| return SQLITE_OK; |
| create_cursor_exception: |
| if( pCur ){ |
| releasePage(pCur->pPage); |
| sqliteFree(pCur); |
| } |
| unlockBtreeIfUnused(pBt); |
| return rc; |
| } |
| |
| #if 0 /* Not Used */ |
| /* |
| ** Change the value of the comparison function used by a cursor. |
| */ |
| void sqlite3BtreeSetCompare( |
| BtCursor *pCur, /* The cursor to whose comparison function is changed */ |
| int(*xCmp)(void*,int,const void*,int,const void*), /* New comparison func */ |
| void *pArg /* First argument to xCmp() */ |
| ){ |
| pCur->xCompare = xCmp ? xCmp : dfltCompare; |
| pCur->pArg = pArg; |
| } |
| #endif |
| |
| /* |
| ** Close a cursor. The read lock on the database file is released |
| ** when the last cursor is closed. |
| */ |
| int sqlite3BtreeCloseCursor(BtCursor *pCur){ |
| BtShared *pBt = pCur->pBtree->pBt; |
| restoreCursorPosition(pCur, 0); |
| if( pCur->pPrev ){ |
| pCur->pPrev->pNext = pCur->pNext; |
| }else{ |
| pBt->pCursor = pCur->pNext; |
| } |
| if( pCur->pNext ){ |
| pCur->pNext->pPrev = pCur->pPrev; |
| } |
| releasePage(pCur->pPage); |
| unlockBtreeIfUnused(pBt); |
| sqliteFree(pCur); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Make a temporary cursor by filling in the fields of pTempCur. |
| ** The temporary cursor is not on the cursor list for the Btree. |
| */ |
| static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){ |
| memcpy(pTempCur, pCur, sizeof(*pCur)); |
| pTempCur->pNext = 0; |
| pTempCur->pPrev = 0; |
| if( pTempCur->pPage ){ |
| sqlite3pager_ref(pTempCur->pPage->aData); |
| } |
| } |
| |
| /* |
| ** Delete a temporary cursor such as was made by the CreateTemporaryCursor() |
| ** function above. |
| */ |
| static void releaseTempCursor(BtCursor *pCur){ |
| if( pCur->pPage ){ |
| sqlite3pager_unref(pCur->pPage->aData); |
| } |
| } |
| |
| /* |
| ** Make sure the BtCursor.info field of the given cursor is valid. |
| ** If it is not already valid, call parseCell() to fill it in. |
| ** |
| ** BtCursor.info is a cache of the information in the current cell. |
| ** Using this cache reduces the number of calls to parseCell(). |
| */ |
| static void getCellInfo(BtCursor *pCur){ |
| if( pCur->info.nSize==0 ){ |
| parseCell(pCur->pPage, pCur->idx, &pCur->info); |
| }else{ |
| #ifndef NDEBUG |
| CellInfo info; |
| memset(&info, 0, sizeof(info)); |
| parseCell(pCur->pPage, pCur->idx, &info); |
| assert( memcmp(&info, &pCur->info, sizeof(info))==0 ); |
| #endif |
| } |
| } |
| |
| /* |
| ** Set *pSize to the size of the buffer needed to hold the value of |
| ** the key for the current entry. If the cursor is not pointing |
| ** to a valid entry, *pSize is set to 0. |
| ** |
| ** For a table with the INTKEY flag set, this routine returns the key |
| ** itself, not the number of bytes in the key. |
| */ |
| int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ |
| int rc = restoreCursorPosition(pCur, 1); |
| if( rc==SQLITE_OK ){ |
| assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); |
| if( pCur->eState==CURSOR_INVALID ){ |
| *pSize = 0; |
| }else{ |
| getCellInfo(pCur); |
| *pSize = pCur->info.nKey; |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Set *pSize to the number of bytes of data in the entry the |
| ** cursor currently points to. Always return SQLITE_OK. |
| ** Failure is not possible. If the cursor is not currently |
| ** pointing to an entry (which can happen, for example, if |
| ** the database is empty) then *pSize is set to 0. |
| */ |
| int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ |
| int rc = restoreCursorPosition(pCur, 1); |
| if( rc==SQLITE_OK ){ |
| assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); |
| if( pCur->eState==CURSOR_INVALID ){ |
| /* Not pointing at a valid entry - set *pSize to 0. */ |
| *pSize = 0; |
| }else{ |
| getCellInfo(pCur); |
| *pSize = pCur->info.nData; |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Read payload information from the entry that the pCur cursor is |
| ** pointing to. Begin reading the payload at "offset" and read |
| ** a total of "amt" bytes. Put the result in zBuf. |
| ** |
| ** This routine does not make a distinction between key and data. |
| ** It just reads bytes from the payload area. Data might appear |
| ** on the main page or be scattered out on multiple overflow pages. |
| */ |
| static int getPayload( |
| BtCursor *pCur, /* Cursor pointing to entry to read from */ |
| int offset, /* Begin reading this far into payload */ |
| int amt, /* Read this many bytes */ |
| unsigned char *pBuf, /* Write the bytes into this buffer */ |
| int skipKey /* offset begins at data if this is true */ |
| ){ |
| unsigned char *aPayload; |
| Pgno nextPage; |
| int rc; |
| MemPage *pPage; |
| BtShared *pBt; |
| int ovflSize; |
| u32 nKey; |
| |
| assert( pCur!=0 && pCur->pPage!=0 ); |
| assert( pCur->eState==CURSOR_VALID ); |
| pBt = pCur->pBtree->pBt; |
| pPage = pCur->pPage; |
| pageIntegrity(pPage); |
| assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); |
| getCellInfo(pCur); |
| aPayload = pCur->info.pCell; |
| aPayload += pCur->info.nHeader; |
| if( pPage->intKey ){ |
| nKey = 0; |
| }else{ |
| nKey = pCur->info.nKey; |
| } |
| assert( offset>=0 ); |
| if( skipKey ){ |
| offset += nKey; |
| } |
| if( offset+amt > nKey+pCur->info.nData ){ |
| return SQLITE_ERROR; |
| } |
| if( offset<pCur->info.nLocal ){ |
| int a = amt; |
| if( a+offset>pCur->info.nLocal ){ |
| a = pCur->info.nLocal - offset; |
| } |
| memcpy(pBuf, &aPayload[offset], a); |
| if( a==amt ){ |
| return SQLITE_OK; |
| } |
| offset = 0; |
| pBuf += a; |
| amt -= a; |
| }else{ |
| offset -= pCur->info.nLocal; |
| } |
| ovflSize = pBt->usableSize - 4; |
| if( amt>0 ){ |
| nextPage = get4byte(&aPayload[pCur->info.nLocal]); |
| while( amt>0 && nextPage ){ |
| rc = sqlite3pager_get(pBt->pPager, nextPage, (void**)&aPayload); |
| if( rc!=0 ){ |
| return rc; |
| } |
| nextPage = get4byte(aPayload); |
| if( offset<ovflSize ){ |
| int a = amt; |
| if( a + offset > ovflSize ){ |
| a = ovflSize - offset; |
| } |
| memcpy(pBuf, &aPayload[offset+4], a); |
| offset = 0; |
| amt -= a; |
| pBuf += a; |
| }else{ |
| offset -= ovflSize; |
| } |
| sqlite3pager_unref(aPayload); |
| } |
| } |
| |
| if( amt>0 ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Read part of the key associated with cursor pCur. Exactly |
| ** "amt" bytes will be transfered into pBuf[]. The transfer |
| ** begins at "offset". |
| ** |
| ** Return SQLITE_OK on success or an error code if anything goes |
| ** wrong. An error is returned if "offset+amt" is larger than |
| ** the available payload. |
| */ |
| int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
| int rc = restoreCursorPosition(pCur, 1); |
| if( rc==SQLITE_OK ){ |
| assert( pCur->eState==CURSOR_VALID ); |
| assert( pCur->pPage!=0 ); |
| if( pCur->pPage->intKey ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| assert( pCur->pPage->intKey==0 ); |
| assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); |
| rc = getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Read part of the data associated with cursor pCur. Exactly |
| ** "amt" bytes will be transfered into pBuf[]. The transfer |
| ** begins at "offset". |
| ** |
| ** Return SQLITE_OK on success or an error code if anything goes |
| ** wrong. An error is returned if "offset+amt" is larger than |
| ** the available payload. |
| */ |
| int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
| int rc = restoreCursorPosition(pCur, 1); |
| if( rc==SQLITE_OK ){ |
| assert( pCur->eState==CURSOR_VALID ); |
| assert( pCur->pPage!=0 ); |
| assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); |
| rc = getPayload(pCur, offset, amt, pBuf, 1); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Return a pointer to payload information from the entry that the |
| ** pCur cursor is pointing to. The pointer is to the beginning of |
| ** the key if skipKey==0 and it points to the beginning of data if |
| ** skipKey==1. The number of bytes of available key/data is written |
| ** into *pAmt. If *pAmt==0, then the value returned will not be |
| ** a valid pointer. |
| ** |
| ** This routine is an optimization. It is common for the entire key |
| ** and data to fit on the local page and for there to be no overflow |
| ** pages. When that is so, this routine can be used to access the |
| ** key and data without making a copy. If the key and/or data spills |
| ** onto overflow pages, then getPayload() must be used to reassembly |
| ** the key/data and copy it into a preallocated buffer. |
| ** |
| ** The pointer returned by this routine looks directly into the cached |
| ** page of the database. The data might change or move the next time |
| ** any btree routine is called. |
| */ |
| static const unsigned char *fetchPayload( |
| BtCursor *pCur, /* Cursor pointing to entry to read from */ |
| int *pAmt, /* Write the number of available bytes here */ |
| int skipKey /* read beginning at data if this is true */ |
| ){ |
| unsigned char *aPayload; |
| MemPage *pPage; |
| u32 nKey; |
| int nLocal; |
| |
| assert( pCur!=0 && pCur->pPage!=0 ); |
| assert( pCur->eState==CURSOR_VALID ); |
| pPage = pCur->pPage; |
| pageIntegrity(pPage); |
| assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); |
| getCellInfo(pCur); |
| aPayload = pCur->info.pCell; |
| aPayload += pCur->info.nHeader; |
| if( pPage->intKey ){ |
| nKey = 0; |
| }else{ |
| nKey = pCur->info.nKey; |
| } |
| if( skipKey ){ |
| aPayload += nKey; |
| nLocal = pCur->info.nLocal - nKey; |
| }else{ |
| nLocal = pCur->info.nLocal; |
| if( nLocal>nKey ){ |
| nLocal = nKey; |
| } |
| } |
| *pAmt = nLocal; |
| return aPayload; |
| } |
| |
| |
| /* |
| ** For the entry that cursor pCur is point to, return as |
| ** many bytes of the key or data as are available on the local |
| ** b-tree page. Write the number of available bytes into *pAmt. |
| ** |
| ** The pointer returned is ephemeral. The key/data may move |
| ** or be destroyed on the next call to any Btree routine. |
| ** |
| ** These routines is used to get quick access to key and data |
| ** in the common case where no overflow pages are used. |
| */ |
| const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){ |
| if( pCur->eState==CURSOR_VALID ){ |
| return (const void*)fetchPayload(pCur, pAmt, 0); |
| } |
| return 0; |
| } |
| const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){ |
| if( pCur->eState==CURSOR_VALID ){ |
| return (const void*)fetchPayload(pCur, pAmt, 1); |
| } |
| return 0; |
| } |
| |
| |
| /* |
| ** Move the cursor down to a new child page. The newPgno argument is the |
| ** page number of the child page to move to. |
| */ |
| static int moveToChild(BtCursor *pCur, u32 newPgno){ |
| int rc; |
| MemPage *pNewPage; |
| MemPage *pOldPage; |
| BtShared *pBt = pCur->pBtree->pBt; |
| |
| assert( pCur->eState==CURSOR_VALID ); |
| rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage); |
| if( rc ) return rc; |
| pageIntegrity(pNewPage); |
| pNewPage->idxParent = pCur->idx; |
| pOldPage = pCur->pPage; |
| pOldPage->idxShift = 0; |
| releasePage(pOldPage); |
| pCur->pPage = pNewPage; |
| pCur->idx = 0; |
| pCur->info.nSize = 0; |
| if( pNewPage->nCell<1 ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Return true if the page is the virtual root of its table. |
| ** |
| ** The virtual root page is the root page for most tables. But |
| ** for the table rooted on page 1, sometime the real root page |
| ** is empty except for the right-pointer. In such cases the |
| ** virtual root page is the page that the right-pointer of page |
| ** 1 is pointing to. |
| */ |
| static int isRootPage(MemPage *pPage){ |
| MemPage *pParent = pPage->pParent; |
| if( pParent==0 ) return 1; |
| if( pParent->pgno>1 ) return 0; |
| if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1; |
| return 0; |
| } |
| |
| /* |
| ** Move the cursor up to the parent page. |
| ** |
| ** pCur->idx is set to the cell index that contains the pointer |
| ** to the page we are coming from. If we are coming from the |
| ** right-most child page then pCur->idx is set to one more than |
| ** the largest cell index. |
| */ |
| static void moveToParent(BtCursor *pCur){ |
| MemPage *pParent; |
| MemPage *pPage; |
| int idxParent; |
| |
| assert( pCur->eState==CURSOR_VALID ); |
| pPage = pCur->pPage; |
| assert( pPage!=0 ); |
| assert( !isRootPage(pPage) ); |
| pageIntegrity(pPage); |
| pParent = pPage->pParent; |
| assert( pParent!=0 ); |
| pageIntegrity(pParent); |
| idxParent = pPage->idxParent; |
| sqlite3pager_ref(pParent->aData); |
| releasePage(pPage); |
| pCur->pPage = pParent; |
| pCur->info.nSize = 0; |
| assert( pParent->idxShift==0 ); |
| pCur->idx = idxParent; |
| } |
| |
| /* |
| ** Move the cursor to the root page |
| */ |
| static int moveToRoot(BtCursor *pCur){ |
| MemPage *pRoot; |
| int rc; |
| BtShared *pBt = pCur->pBtree->pBt; |
| |
| if( |
| SQLITE_OK!=(rc = restoreCursorPosition(pCur, 0)) || |
| SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0)) |
| ){ |
| pCur->eState = CURSOR_INVALID; |
| return rc; |
| } |
| releasePage(pCur->pPage); |
| pageIntegrity(pRoot); |
| pCur->pPage = pRoot; |
| pCur->idx = 0; |
| pCur->info.nSize = 0; |
| if( pRoot->nCell==0 && !pRoot->leaf ){ |
| Pgno subpage; |
| assert( pRoot->pgno==1 ); |
| subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); |
| assert( subpage>0 ); |
| pCur->eState = CURSOR_VALID; |
| rc = moveToChild(pCur, subpage); |
| } |
| pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID); |
| return rc; |
| } |
| |
| /* |
| ** Move the cursor down to the left-most leaf entry beneath the |
| ** entry to which it is currently pointing. |
| */ |
| static int moveToLeftmost(BtCursor *pCur){ |
| Pgno pgno; |
| int rc; |
| MemPage *pPage; |
| |
| assert( pCur->eState==CURSOR_VALID ); |
| while( !(pPage = pCur->pPage)->leaf ){ |
| assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); |
| pgno = get4byte(findCell(pPage, pCur->idx)); |
| rc = moveToChild(pCur, pgno); |
| if( rc ) return rc; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Move the cursor down to the right-most leaf entry beneath the |
| ** page to which it is currently pointing. Notice the difference |
| ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() |
| ** finds the left-most entry beneath the *entry* whereas moveToRightmost() |
| ** finds the right-most entry beneath the *page*. |
| */ |
| static int moveToRightmost(BtCursor *pCur){ |
| Pgno pgno; |
| int rc; |
| MemPage *pPage; |
| |
| assert( pCur->eState==CURSOR_VALID ); |
| while( !(pPage = pCur->pPage)->leaf ){ |
| pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| pCur->idx = pPage->nCell; |
| rc = moveToChild(pCur, pgno); |
| if( rc ) return rc; |
| } |
| pCur->idx = pPage->nCell - 1; |
| pCur->info.nSize = 0; |
| return SQLITE_OK; |
| } |
| |
| /* Move the cursor to the first entry in the table. Return SQLITE_OK |
| ** on success. Set *pRes to 0 if the cursor actually points to something |
| ** or set *pRes to 1 if the table is empty. |
| */ |
| int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ |
| int rc; |
| rc = moveToRoot(pCur); |
| if( rc ) return rc; |
| if( pCur->eState==CURSOR_INVALID ){ |
| assert( pCur->pPage->nCell==0 ); |
| *pRes = 1; |
| return SQLITE_OK; |
| } |
| assert( pCur->pPage->nCell>0 ); |
| *pRes = 0; |
| rc = moveToLeftmost(pCur); |
| return rc; |
| } |
| |
| /* Move the cursor to the last entry in the table. Return SQLITE_OK |
| ** on success. Set *pRes to 0 if the cursor actually points to something |
| ** or set *pRes to 1 if the table is empty. |
| */ |
| int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ |
| int rc; |
| rc = moveToRoot(pCur); |
| if( rc ) return rc; |
| if( CURSOR_INVALID==pCur->eState ){ |
| assert( pCur->pPage->nCell==0 ); |
| *pRes = 1; |
| return SQLITE_OK; |
| } |
| assert( pCur->eState==CURSOR_VALID ); |
| *pRes = 0; |
| rc = moveToRightmost(pCur); |
| return rc; |
| } |
| |
| /* Move the cursor so that it points to an entry near pKey/nKey. |
| ** Return a success code. |
| ** |
| ** For INTKEY tables, only the nKey parameter is used. pKey is |
| ** ignored. For other tables, nKey is the number of bytes of data |
| ** in pKey. The comparison function specified when the cursor was |
| ** created is used to compare keys. |
| ** |
| ** If an exact match is not found, then the cursor is always |
| ** left pointing at a leaf page which would hold the entry if it |
| ** were present. The cursor might point to an entry that comes |
| ** before or after the key. |
| ** |
| ** The result of comparing the key with the entry to which the |
| ** cursor is written to *pRes if pRes!=NULL. The meaning of |
| ** this value is as follows: |
| ** |
| ** *pRes<0 The cursor is left pointing at an entry that |
| ** is smaller than pKey or if the table is empty |
| ** and the cursor is therefore left point to nothing. |
| ** |
| ** *pRes==0 The cursor is left pointing at an entry that |
| ** exactly matches pKey. |
| ** |
| ** *pRes>0 The cursor is left pointing at an entry that |
| ** is larger than pKey. |
| */ |
| int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){ |
| int rc; |
| rc = moveToRoot(pCur); |
| if( rc ) return rc; |
| assert( pCur->pPage ); |
| assert( pCur->pPage->isInit ); |
| if( pCur->eState==CURSOR_INVALID ){ |
| *pRes = -1; |
| assert( pCur->pPage->nCell==0 ); |
| return SQLITE_OK; |
| } |
| for(;;){ |
| int lwr, upr; |
| Pgno chldPg; |
| MemPage *pPage = pCur->pPage; |
| int c = -1; /* pRes return if table is empty must be -1 */ |
| lwr = 0; |
| upr = pPage->nCell-1; |
| if( !pPage->intKey && pKey==0 ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| pageIntegrity(pPage); |
| while( lwr<=upr ){ |
| void *pCellKey; |
| i64 nCellKey; |
| pCur->idx = (lwr+upr)/2; |
| pCur->info.nSize = 0; |
| sqlite3BtreeKeySize(pCur, &nCellKey); |
| if( pPage->intKey ){ |
| if( nCellKey<nKey ){ |
| c = -1; |
| }else if( nCellKey>nKey ){ |
| c = +1; |
| }else{ |
| c = 0; |
| } |
| }else{ |
| int available; |
| pCellKey = (void *)fetchPayload(pCur, &available, 0); |
| if( available>=nCellKey ){ |
| c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey); |
| }else{ |
| pCellKey = sqliteMallocRaw( nCellKey ); |
| if( pCellKey==0 ) return SQLITE_NOMEM; |
| rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey); |
| c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey); |
| sqliteFree(pCellKey); |
| if( rc ) return rc; |
| } |
| } |
| if( c==0 ){ |
| if( pPage->leafData && !pPage->leaf ){ |
| lwr = pCur->idx; |
| upr = lwr - 1; |
| break; |
| }else{ |
| if( pRes ) *pRes = 0; |
| return SQLITE_OK; |
| } |
| } |
| if( c<0 ){ |
| lwr = pCur->idx+1; |
| }else{ |
| upr = pCur->idx-1; |
| } |
| } |
| assert( lwr==upr+1 ); |
| assert( pPage->isInit ); |
| if( pPage->leaf ){ |
| chldPg = 0; |
| }else if( lwr>=pPage->nCell ){ |
| chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| }else{ |
| chldPg = get4byte(findCell(pPage, lwr)); |
| } |
| if( chldPg==0 ){ |
| assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); |
| if( pRes ) *pRes = c; |
| return SQLITE_OK; |
| } |
| pCur->idx = lwr; |
| pCur->info.nSize = 0; |
| rc = moveToChild(pCur, chldPg); |
| if( rc ){ |
| return rc; |
| } |
| } |
| /* NOT REACHED */ |
| } |
| |
| /* |
| ** Return TRUE if the cursor is not pointing at an entry of the table. |
| ** |
| ** TRUE will be returned after a call to sqlite3BtreeNext() moves |
| ** past the last entry in the table or sqlite3BtreePrev() moves past |
| ** the first entry. TRUE is also returned if the table is empty. |
| */ |
| int sqlite3BtreeEof(BtCursor *pCur){ |
| /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries |
| ** have been deleted? This API will need to change to return an error code |
| ** as well as the boolean result value. |
| */ |
| return (CURSOR_VALID!=pCur->eState); |
| } |
| |
| /* |
| ** Advance the cursor to the next entry in the database. If |
| ** successful then set *pRes=0. If the cursor |
| ** was already pointing to the last entry in the database before |
| ** this routine was called, then set *pRes=1. |
| */ |
| int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ |
| int rc; |
| MemPage *pPage = pCur->pPage; |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| rc = restoreCursorPosition(pCur, 1); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| if( pCur->skip>0 ){ |
| pCur->skip = 0; |
| *pRes = 0; |
| return SQLITE_OK; |
| } |
| pCur->skip = 0; |
| #endif |
| |
| assert( pRes!=0 ); |
| if( CURSOR_INVALID==pCur->eState ){ |
| *pRes = 1; |
| return SQLITE_OK; |
| } |
| assert( pPage->isInit ); |
| assert( pCur->idx<pPage->nCell ); |
| |
| pCur->idx++; |
| pCur->info.nSize = 0; |
| if( pCur->idx>=pPage->nCell ){ |
| if( !pPage->leaf ){ |
| rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
| if( rc ) return rc; |
| rc = moveToLeftmost(pCur); |
| *pRes = 0; |
| return rc; |
| } |
| do{ |
| if( isRootPage(pPage) ){ |
| *pRes = 1; |
| pCur->eState = CURSOR_INVALID; |
| return SQLITE_OK; |
| } |
| moveToParent(pCur); |
| pPage = pCur->pPage; |
| }while( pCur->idx>=pPage->nCell ); |
| *pRes = 0; |
| if( pPage->leafData ){ |
| rc = sqlite3BtreeNext(pCur, pRes); |
| }else{ |
| rc = SQLITE_OK; |
| } |
| return rc; |
| } |
| *pRes = 0; |
| if( pPage->leaf ){ |
| return SQLITE_OK; |
| } |
| rc = moveToLeftmost(pCur); |
| return rc; |
| } |
| |
| /* |
| ** Step the cursor to the back to the previous entry in the database. If |
| ** successful then set *pRes=0. If the cursor |
| ** was already pointing to the first entry in the database before |
| ** this routine was called, then set *pRes=1. |
| */ |
| int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ |
| int rc; |
| Pgno pgno; |
| MemPage *pPage; |
| |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| rc = restoreCursorPosition(pCur, 1); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| if( pCur->skip<0 ){ |
| pCur->skip = 0; |
| *pRes = 0; |
| return SQLITE_OK; |
| } |
| pCur->skip = 0; |
| #endif |
| |
| if( CURSOR_INVALID==pCur->eState ){ |
| *pRes = 1; |
| return SQLITE_OK; |
| } |
| |
| pPage = pCur->pPage; |
| assert( pPage->isInit ); |
| assert( pCur->idx>=0 ); |
| if( !pPage->leaf ){ |
| pgno = get4byte( findCell(pPage, pCur->idx) ); |
| rc = moveToChild(pCur, pgno); |
| if( rc ) return rc; |
| rc = moveToRightmost(pCur); |
| }else{ |
| while( pCur->idx==0 ){ |
| if( isRootPage(pPage) ){ |
| pCur->eState = CURSOR_INVALID; |
| *pRes = 1; |
| return SQLITE_OK; |
| } |
| moveToParent(pCur); |
| pPage = pCur->pPage; |
| } |
| pCur->idx--; |
| pCur->info.nSize = 0; |
| if( pPage->leafData && !pPage->leaf ){ |
| rc = sqlite3BtreePrevious(pCur, pRes); |
| }else{ |
| rc = SQLITE_OK; |
| } |
| } |
| *pRes = 0; |
| return rc; |
| } |
| |
| /* |
| ** Allocate a new page from the database file. |
| ** |
| ** The new page is marked as dirty. (In other words, sqlite3pager_write() |
| ** has already been called on the new page.) The new page has also |
| ** been referenced and the calling routine is responsible for calling |
| ** sqlite3pager_unref() on the new page when it is done. |
| ** |
| ** SQLITE_OK is returned on success. Any other return value indicates |
| ** an error. *ppPage and *pPgno are undefined in the event of an error. |
| ** Do not invoke sqlite3pager_unref() on *ppPage if an error is returned. |
| ** |
| ** If the "nearby" parameter is not 0, then a (feeble) effort is made to |
| ** locate a page close to the page number "nearby". This can be used in an |
| ** attempt to keep related pages close to each other in the database file, |
| ** which in turn can make database access faster. |
| ** |
| ** If the "exact" parameter is not 0, and the page-number nearby exists |
| ** anywhere on the free-list, then it is guarenteed to be returned. This |
| ** is only used by auto-vacuum databases when allocating a new table. |
| */ |
| static int allocatePage( |
| BtShared *pBt, |
| MemPage **ppPage, |
| Pgno *pPgno, |
| Pgno nearby, |
| u8 exact |
| ){ |
| MemPage *pPage1; |
| int rc; |
| int n; /* Number of pages on the freelist */ |
| int k; /* Number of leaves on the trunk of the freelist */ |
| |
| pPage1 = pBt->pPage1; |
| n = get4byte(&pPage1->aData[36]); |
| if( n>0 ){ |
| /* There are pages on the freelist. Reuse one of those pages. */ |
| MemPage *pTrunk = 0; |
| Pgno iTrunk; |
| MemPage *pPrevTrunk = 0; |
| u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ |
| |
| /* If the 'exact' parameter was true and a query of the pointer-map |
| ** shows that the page 'nearby' is somewhere on the free-list, then |
| ** the entire-list will be searched for that page. |
| */ |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( exact ){ |
| u8 eType; |
| assert( nearby>0 ); |
| assert( pBt->autoVacuum ); |
| rc = ptrmapGet(pBt, nearby, &eType, 0); |
| if( rc ) return rc; |
| if( eType==PTRMAP_FREEPAGE ){ |
| searchList = 1; |
| } |
| *pPgno = nearby; |
| } |
| #endif |
| |
| /* Decrement the free-list count by 1. Set iTrunk to the index of the |
| ** first free-list trunk page. iPrevTrunk is initially 1. |
| */ |
| rc = sqlite3pager_write(pPage1->aData); |
| if( rc ) return rc; |
| put4byte(&pPage1->aData[36], n-1); |
| |
| /* The code within this loop is run only once if the 'searchList' variable |
| ** is not true. Otherwise, it runs once for each trunk-page on the |
| ** free-list until the page 'nearby' is located. |
| */ |
| do { |
| pPrevTrunk = pTrunk; |
| if( pPrevTrunk ){ |
| iTrunk = get4byte(&pPrevTrunk->aData[0]); |
| }else{ |
| iTrunk = get4byte(&pPage1->aData[32]); |
| } |
| rc = getPage(pBt, iTrunk, &pTrunk); |
| if( rc ){ |
| releasePage(pPrevTrunk); |
| return rc; |
| } |
| |
| /* TODO: This should move to after the loop? */ |
| rc = sqlite3pager_write(pTrunk->aData); |
| if( rc ){ |
| releasePage(pTrunk); |
| releasePage(pPrevTrunk); |
| return rc; |
| } |
| |
| k = get4byte(&pTrunk->aData[4]); |
| if( k==0 && !searchList ){ |
| /* The trunk has no leaves and the list is not being searched. |
| ** So extract the trunk page itself and use it as the newly |
| ** allocated page */ |
| assert( pPrevTrunk==0 ); |
| *pPgno = iTrunk; |
| memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
| *ppPage = pTrunk; |
| pTrunk = 0; |
| TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
| }else if( k>pBt->usableSize/4 - 8 ){ |
| /* Value of k is out of range. Database corruption */ |
| return SQLITE_CORRUPT_BKPT; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| }else if( searchList && nearby==iTrunk ){ |
| /* The list is being searched and this trunk page is the page |
| ** to allocate, regardless of whether it has leaves. |
| */ |
| assert( *pPgno==iTrunk ); |
| *ppPage = pTrunk; |
| searchList = 0; |
| if( k==0 ){ |
| if( !pPrevTrunk ){ |
| memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
| }else{ |
| memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); |
| } |
| }else{ |
| /* The trunk page is required by the caller but it contains |
| ** pointers to free-list leaves. The first leaf becomes a trunk |
| ** page in this case. |
| */ |
| MemPage *pNewTrunk; |
| Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); |
| rc = getPage(pBt, iNewTrunk, &pNewTrunk); |
| if( rc!=SQLITE_OK ){ |
| releasePage(pTrunk); |
| releasePage(pPrevTrunk); |
| return rc; |
| } |
| rc = sqlite3pager_write(pNewTrunk->aData); |
| if( rc!=SQLITE_OK ){ |
| releasePage(pNewTrunk); |
| releasePage(pTrunk); |
| releasePage(pPrevTrunk); |
| return rc; |
| } |
| memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); |
| put4byte(&pNewTrunk->aData[4], k-1); |
| memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); |
| if( !pPrevTrunk ){ |
| put4byte(&pPage1->aData[32], iNewTrunk); |
| }else{ |
| put4byte(&pPrevTrunk->aData[0], iNewTrunk); |
| } |
| releasePage(pNewTrunk); |
| } |
| pTrunk = 0; |
| TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
| #endif |
| }else{ |
| /* Extract a leaf from the trunk */ |
| int closest; |
| Pgno iPage; |
| unsigned char *aData = pTrunk->aData; |
| if( nearby>0 ){ |
| int i, dist; |
| closest = 0; |
| dist = get4byte(&aData[8]) - nearby; |
| if( dist<0 ) dist = -dist; |
| for(i=1; i<k; i++){ |
| int d2 = get4byte(&aData[8+i*4]) - nearby; |
| if( d2<0 ) d2 = -d2; |
| if( d2<dist ){ |
| closest = i; |
| dist = d2; |
| } |
| } |
| }else{ |
| closest = 0; |
| } |
| |
| iPage = get4byte(&aData[8+closest*4]); |
| if( !searchList || iPage==nearby ){ |
| *pPgno = iPage; |
| if( *pPgno>sqlite3pager_pagecount(pBt->pPager) ){ |
| /* Free page off the end of the file */ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" |
| ": %d more free pages\n", |
| *pPgno, closest+1, k, pTrunk->pgno, n-1)); |
| if( closest<k-1 ){ |
| memcpy(&aData[8+closest*4], &aData[4+k*4], 4); |
| } |
| put4byte(&aData[4], k-1); |
| rc = getPage(pBt, *pPgno, ppPage); |
| if( rc==SQLITE_OK ){ |
| sqlite3pager_dont_rollback((*ppPage)->aData); |
| rc = sqlite3pager_write((*ppPage)->aData); |
| if( rc!=SQLITE_OK ){ |
| releasePage(*ppPage); |
| } |
| } |
| searchList = 0; |
| } |
| } |
| releasePage(pPrevTrunk); |
| }while( searchList ); |
| releasePage(pTrunk); |
| }else{ |
| /* There are no pages on the freelist, so create a new page at the |
| ** end of the file */ |
| *pPgno = sqlite3pager_pagecount(pBt->pPager) + 1; |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt->usableSize, *pPgno) ){ |
| /* If *pPgno refers to a pointer-map page, allocate two new pages |
| ** at the end of the file instead of one. The first allocated page |
| ** becomes a new pointer-map page, the second is used by the caller. |
| */ |
| TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno)); |
| assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
| (*pPgno)++; |
| } |
| #endif |
| |
| assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
| rc = getPage(pBt, *pPgno, ppPage); |
| if( rc ) return rc; |
| rc = sqlite3pager_write((*ppPage)->aData); |
| if( rc!=SQLITE_OK ){ |
| releasePage(*ppPage); |
| } |
| TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); |
| } |
| |
| assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
| return rc; |
| } |
| |
| /* |
| ** Add a page of the database file to the freelist. |
| ** |
| ** sqlite3pager_unref() is NOT called for pPage. |
| */ |
| static int freePage(MemPage *pPage){ |
| BtShared *pBt = pPage->pBt; |
| MemPage *pPage1 = pBt->pPage1; |
| int rc, n, k; |
| |
| /* Prepare the page for freeing */ |
| assert( pPage->pgno>1 ); |
| pPage->isInit = 0; |
| releasePage(pPage->pParent); |
| pPage->pParent = 0; |
| |
| /* Increment the free page count on pPage1 */ |
| rc = sqlite3pager_write(pPage1->aData); |
| if( rc ) return rc; |
| n = get4byte(&pPage1->aData[36]); |
| put4byte(&pPage1->aData[36], n+1); |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* If the database supports auto-vacuum, write an entry in the pointer-map |
| ** to indicate that the page is free. |
| */ |
| if( pBt->autoVacuum ){ |
| rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0); |
| if( rc ) return rc; |
| } |
| #endif |
| |
| if( n==0 ){ |
| /* This is the first free page */ |
| rc = sqlite3pager_write(pPage->aData); |
| if( rc ) return rc; |
| memset(pPage->aData, 0, 8); |
| put4byte(&pPage1->aData[32], pPage->pgno); |
| TRACE(("FREE-PAGE: %d first\n", pPage->pgno)); |
| }else{ |
| /* Other free pages already exist. Retrive the first trunk page |
| ** of the freelist and find out how many leaves it has. */ |
| MemPage *pTrunk; |
| rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk); |
| if( rc ) return rc; |
| k = get4byte(&pTrunk->aData[4]); |
| if( k>=pBt->usableSize/4 - 8 ){ |
| /* The trunk is full. Turn the page being freed into a new |
| ** trunk page with no leaves. */ |
| rc = sqlite3pager_write(pPage->aData); |
| if( rc ) return rc; |
| put4byte(pPage->aData, pTrunk->pgno); |
| put4byte(&pPage->aData[4], 0); |
| put4byte(&pPage1->aData[32], pPage->pgno); |
| TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", |
| pPage->pgno, pTrunk->pgno)); |
| }else{ |
| /* Add the newly freed page as a leaf on the current trunk */ |
| rc = sqlite3pager_write(pTrunk->aData); |
| if( rc ) return rc; |
| put4byte(&pTrunk->aData[4], k+1); |
| put4byte(&pTrunk->aData[8+k*4], pPage->pgno); |
| sqlite3pager_dont_write(pBt->pPager, pPage->pgno); |
| TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); |
| } |
| releasePage(pTrunk); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Free any overflow pages associated with the given Cell. |
| */ |
| static int clearCell(MemPage *pPage, unsigned char *pCell){ |
| BtShared *pBt = pPage->pBt; |
| CellInfo info; |
| Pgno ovflPgno; |
| int rc; |
| |
| parseCellPtr(pPage, pCell, &info); |
| if( info.iOverflow==0 ){ |
| return SQLITE_OK; /* No overflow pages. Return without doing anything */ |
| } |
| ovflPgno = get4byte(&pCell[info.iOverflow]); |
| while( ovflPgno!=0 ){ |
| MemPage *pOvfl; |
| if( ovflPgno>sqlite3pager_pagecount(pBt->pPager) ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| rc = getPage(pBt, ovflPgno, &pOvfl); |
| if( rc ) return rc; |
| ovflPgno = get4byte(pOvfl->aData); |
| rc = freePage(pOvfl); |
| sqlite3pager_unref(pOvfl->aData); |
| if( rc ) return rc; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Create the byte sequence used to represent a cell on page pPage |
| ** and write that byte sequence into pCell[]. Overflow pages are |
| ** allocated and filled in as necessary. The calling procedure |
| ** is responsible for making sure sufficient space has been allocated |
| ** for pCell[]. |
| ** |
| ** Note that pCell does not necessary need to point to the pPage->aData |
| ** area. pCell might point to some temporary storage. The cell will |
| ** be constructed in this temporary area then copied into pPage->aData |
| ** later. |
| */ |
| static int fillInCell( |
| MemPage *pPage, /* The page that contains the cell */ |
| unsigned char *pCell, /* Complete text of the cell */ |
| const void *pKey, i64 nKey, /* The key */ |
| const void *pData,int nData, /* The data */ |
| int *pnSize /* Write cell size here */ |
| ){ |
| int nPayload; |
| const u8 *pSrc; |
| int nSrc, n, rc; |
| int spaceLeft; |
| MemPage *pOvfl = 0; |
| MemPage *pToRelease = 0; |
| unsigned char *pPrior; |
| unsigned char *pPayload; |
| BtShared *pBt = pPage->pBt; |
| Pgno pgnoOvfl = 0; |
| int nHeader; |
| CellInfo info; |
| |
| /* Fill in the header. */ |
| nHeader = 0; |
| if( !pPage->leaf ){ |
| nHeader += 4; |
| } |
| if( pPage->hasData ){ |
| nHeader += putVarint(&pCell[nHeader], nData); |
| }else{ |
| nData = 0; |
| } |
| nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); |
| parseCellPtr(pPage, pCell, &info); |
| assert( info.nHeader==nHeader ); |
| assert( info.nKey==nKey ); |
| assert( info.nData==nData ); |
| |
| /* Fill in the payload */ |
| nPayload = nData; |
| if( pPage->intKey ){ |
| pSrc = pData; |
| nSrc = nData; |
| nData = 0; |
| }else{ |
| nPayload += nKey; |
| pSrc = pKey; |
| nSrc = nKey; |
| } |
| *pnSize = info.nSize; |
| spaceLeft = info.nLocal; |
| pPayload = &pCell[nHeader]; |
| pPrior = &pCell[info.iOverflow]; |
| |
| while( nPayload>0 ){ |
| if( spaceLeft==0 ){ |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ |
| #endif |
| rc = allocatePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* If the database supports auto-vacuum, and the second or subsequent |
| ** overflow page is being allocated, add an entry to the pointer-map |
| ** for that page now. The entry for the first overflow page will be |
| ** added later, by the insertCell() routine. |
| */ |
| if( pBt->autoVacuum && pgnoPtrmap!=0 && rc==SQLITE_OK ){ |
| rc = ptrmapPut(pBt, pgnoOvfl, PTRMAP_OVERFLOW2, pgnoPtrmap); |
| } |
| #endif |
| if( rc ){ |
| releasePage(pToRelease); |
| /* clearCell(pPage, pCell); */ |
| return rc; |
| } |
| put4byte(pPrior, pgnoOvfl); |
| releasePage(pToRelease); |
| pToRelease = pOvfl; |
| pPrior = pOvfl->aData; |
| put4byte(pPrior, 0); |
| pPayload = &pOvfl->aData[4]; |
| spaceLeft = pBt->usableSize - 4; |
| } |
| n = nPayload; |
| if( n>spaceLeft ) n = spaceLeft; |
| if( n>nSrc ) n = nSrc; |
| memcpy(pPayload, pSrc, n); |
| nPayload -= n; |
| pPayload += n; |
| pSrc += n; |
| nSrc -= n; |
| spaceLeft -= n; |
| if( nSrc==0 ){ |
| nSrc = nData; |
| pSrc = pData; |
| } |
| } |
| releasePage(pToRelease); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Change the MemPage.pParent pointer on the page whose number is |
| ** given in the second argument so that MemPage.pParent holds the |
| ** pointer in the third argument. |
| */ |
| static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){ |
| MemPage *pThis; |
| unsigned char *aData; |
| |
| if( pgno==0 ) return SQLITE_OK; |
| assert( pBt->pPager!=0 ); |
| aData = sqlite3pager_lookup(pBt->pPager, pgno); |
| if( aData ){ |
| pThis = (MemPage*)&aData[pBt->pageSize]; |
| assert( pThis->aData==aData ); |
| if( pThis->isInit ){ |
| if( pThis->pParent!=pNewParent ){ |
| if( pThis->pParent ) sqlite3pager_unref(pThis->pParent->aData); |
| pThis->pParent = pNewParent; |
| if( pNewParent ) sqlite3pager_ref(pNewParent->aData); |
| } |
| pThis->idxParent = idx; |
| } |
| sqlite3pager_unref(aData); |
| } |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno); |
| } |
| #endif |
| return SQLITE_OK; |
| } |
| |
| |
| |
| /* |
| ** Change the pParent pointer of all children of pPage to point back |
| ** to pPage. |
| ** |
| ** In other words, for every child of pPage, invoke reparentPage() |
| ** to make sure that each child knows that pPage is its parent. |
| ** |
| ** This routine gets called after you memcpy() one page into |
| ** another. |
| */ |
| static int reparentChildPages(MemPage *pPage){ |
| int i; |
| BtShared *pBt = pPage->pBt; |
| int rc = SQLITE_OK; |
| |
| if( pPage->leaf ) return SQLITE_OK; |
| |
| for(i=0; i<pPage->nCell; i++){ |
| u8 *pCell = findCell(pPage, i); |
| if( !pPage->leaf ){ |
| rc = reparentPage(pBt, get4byte(pCell), pPage, i); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| } |
| if( !pPage->leaf ){ |
| rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]), |
| pPage, i); |
| pPage->idxShift = 0; |
| } |
| return rc; |
| } |
| |
| /* |
| ** Remove the i-th cell from pPage. This routine effects pPage only. |
| ** The cell content is not freed or deallocated. It is assumed that |
| ** the cell content has been copied someplace else. This routine just |
| ** removes the reference to the cell from pPage. |
| ** |
| ** "sz" must be the number of bytes in the cell. |
| */ |
| static void dropCell(MemPage *pPage, int idx, int sz){ |
| int i; /* Loop counter */ |
| int pc; /* Offset to cell content of cell being deleted */ |
| u8 *data; /* pPage->aData */ |
| u8 *ptr; /* Used to move bytes around within data[] */ |
| |
| assert( idx>=0 && idx<pPage->nCell ); |
| assert( sz==cellSize(pPage, idx) ); |
| assert( sqlite3pager_iswriteable(pPage->aData) ); |
| data = pPage->aData; |
| ptr = &data[pPage->cellOffset + 2*idx]; |
| pc = get2byte(ptr); |
| assert( pc>10 && pc+sz<=pPage->pBt->usableSize ); |
| freeSpace(pPage, pc, sz); |
| for(i=idx+1; i<pPage->nCell; i++, ptr+=2){ |
| ptr[0] = ptr[2]; |
| ptr[1] = ptr[3]; |
| } |
| pPage->nCell--; |
| put2byte(&data[pPage->hdrOffset+3], pPage->nCell); |
| pPage->nFree += 2; |
| pPage->idxShift = 1; |
| } |
| |
| /* |
| ** Insert a new cell on pPage at cell index "i". pCell points to the |
| ** content of the cell. |
| ** |
| ** If the cell content will fit on the page, then put it there. If it |
| ** will not fit, then make a copy of the cell content into pTemp if |
| ** pTemp is not null. Regardless of pTemp, allocate a new entry |
| ** in pPage->aOvfl[] and make it point to the cell content (either |
| ** in pTemp or the original pCell) and also record its index. |
| ** Allocating a new entry in pPage->aCell[] implies that |
| ** pPage->nOverflow is incremented. |
| ** |
| ** If nSkip is non-zero, then do not copy the first nSkip bytes of the |
| ** cell. The caller will overwrite them after this function returns. If |
| ** nSkip is non-zero, then pCell may not point to an invalid memory location |
| ** (but pCell+nSkip is always valid). |
| */ |
| static int insertCell( |
| MemPage *pPage, /* Page into which we are copying */ |
| int i, /* New cell becomes the i-th cell of the page */ |
| u8 *pCell, /* Content of the new cell */ |
| int sz, /* Bytes of content in pCell */ |
| u8 *pTemp, /* Temp storage space for pCell, if needed */ |
| u8 nSkip /* Do not write the first nSkip bytes of the cell */ |
| ){ |
| int idx; /* Where to write new cell content in data[] */ |
| int j; /* Loop counter */ |
| int top; /* First byte of content for any cell in data[] */ |
| int end; /* First byte past the last cell pointer in data[] */ |
| int ins; /* Index in data[] where new cell pointer is inserted */ |
| int hdr; /* Offset into data[] of the page header */ |
| int cellOffset; /* Address of first cell pointer in data[] */ |
| u8 *data; /* The content of the whole page */ |
| u8 *ptr; /* Used for moving information around in data[] */ |
| |
| assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); |
| assert( sz==cellSizePtr(pPage, pCell) ); |
| assert( sqlite3pager_iswriteable(pPage->aData) ); |
| if( pPage->nOverflow || sz+2>pPage->nFree ){ |
| if( pTemp ){ |
| memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip); |
| pCell = pTemp; |
| } |
| j = pPage->nOverflow++; |
| assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) ); |
| pPage->aOvfl[j].pCell = pCell; |
| pPage->aOvfl[j].idx = i; |
| pPage->nFree = 0; |
| }else{ |
| data = pPage->aData; |
| hdr = pPage->hdrOffset; |
| top = get2byte(&data[hdr+5]); |
| cellOffset = pPage->cellOffset; |
| end = cellOffset + 2*pPage->nCell + 2; |
| ins = cellOffset + 2*i; |
| if( end > top - sz ){ |
| int rc = defragmentPage(pPage); |
| if( rc!=SQLITE_OK ) return rc; |
| top = get2byte(&data[hdr+5]); |
| assert( end + sz <= top ); |
| } |
| idx = allocateSpace(pPage, sz); |
| assert( idx>0 ); |
| assert( end <= get2byte(&data[hdr+5]) ); |
| pPage->nCell++; |
| pPage->nFree -= 2; |
| memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip); |
| for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){ |
| ptr[0] = ptr[-2]; |
| ptr[1] = ptr[-1]; |
| } |
| put2byte(&data[ins], idx); |
| put2byte(&data[hdr+3], pPage->nCell); |
| pPage->idxShift = 1; |
| pageIntegrity(pPage); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pPage->pBt->autoVacuum ){ |
| /* The cell may contain a pointer to an overflow page. If so, write |
| ** the entry for the overflow page into the pointer map. |
| */ |
| CellInfo info; |
| parseCellPtr(pPage, pCell, &info); |
| if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){ |
| Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); |
| int rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| } |
| #endif |
| } |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Add a list of cells to a page. The page should be initially empty. |
| ** The cells are guaranteed to fit on the page. |
| */ |
| static void assemblePage( |
| MemPage *pPage, /* The page to be assemblied */ |
| int nCell, /* The number of cells to add to this page */ |
| u8 **apCell, /* Pointers to cell bodies */ |
| int *aSize /* Sizes of the cells */ |
| ){ |
| int i; /* Loop counter */ |
| int totalSize; /* Total size of all cells */ |
| int hdr; /* Index of page header */ |
| int cellptr; /* Address of next cell pointer */ |
| int cellbody; /* Address of next cell body */ |
| u8 *data; /* Data for the page */ |
| |
| assert( pPage->nOverflow==0 ); |
| totalSize = 0; |
| for(i=0; i<nCell; i++){ |
| totalSize += aSize[i]; |
| } |
| assert( totalSize+2*nCell<=pPage->nFree ); |
| assert( pPage->nCell==0 ); |
| cellptr = pPage->cellOffset; |
| data = pPage->aData; |
| hdr = pPage->hdrOffset; |
| put2byte(&data[hdr+3], nCell); |
| if( nCell ){ |
| cellbody = allocateSpace(pPage, totalSize); |
| assert( cellbody>0 ); |
| assert( pPage->nFree >= 2*nCell ); |
| pPage->nFree -= 2*nCell; |
| for(i=0; i<nCell; i++){ |
| put2byte(&data[cellptr], cellbody); |
| memcpy(&data[cellbody], apCell[i], aSize[i]); |
| cellptr += 2; |
| cellbody += aSize[i]; |
| } |
| assert( cellbody==pPage->pBt->usableSize ); |
| } |
| pPage->nCell = nCell; |
| } |
| |
| /* |
| ** The following parameters determine how many adjacent pages get involved |
| ** in a balancing operation. NN is the number of neighbors on either side |
| ** of the page that participate in the balancing operation. NB is the |
| ** total number of pages that participate, including the target page and |
| ** NN neighbors on either side. |
| ** |
| ** The minimum value of NN is 1 (of course). Increasing NN above 1 |
| ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance |
| ** in exchange for a larger degradation in INSERT and UPDATE performance. |
| ** The value of NN appears to give the best results overall. |
| */ |
| #define NN 1 /* Number of neighbors on either side of pPage */ |
| #define NB (NN*2+1) /* Total pages involved in the balance */ |
| |
| /* Forward reference */ |
| static int balance(MemPage*, int); |
| |
| #ifndef SQLITE_OMIT_QUICKBALANCE |
| /* |
| ** This version of balance() handles the common special case where |
| ** a new entry is being inserted on the extreme right-end of the |
| ** tree, in other words, when the new entry will become the largest |
| ** entry in the tree. |
| ** |
| ** Instead of trying balance the 3 right-most leaf pages, just add |
| ** a new page to the right-hand side and put the one new entry in |
| ** that page. This leaves the right side of the tree somewhat |
| ** unbalanced. But odds are that we will be inserting new entries |
| ** at the end soon afterwards so the nearly empty page will quickly |
| ** fill up. On average. |
| ** |
| ** pPage is the leaf page which is the right-most page in the tree. |
| ** pParent is its parent. pPage must have a single overflow entry |
| ** which is also the right-most entry on the page. |
| */ |
| static int balance_quick(MemPage *pPage, MemPage *pParent){ |
| int rc; |
| MemPage *pNew; |
| Pgno pgnoNew; |
| u8 *pCell; |
| int szCell; |
| CellInfo info; |
| BtShared *pBt = pPage->pBt; |
| int parentIdx = pParent->nCell; /* pParent new divider cell index */ |
| int parentSize; /* Size of new divider cell */ |
| u8 parentCell[64]; /* Space for the new divider cell */ |
| |
| /* Allocate a new page. Insert the overflow cell from pPage |
| ** into it. Then remove the overflow cell from pPage. |
| */ |
| rc = allocatePage(pBt, &pNew, &pgnoNew, 0, 0); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| pCell = pPage->aOvfl[0].pCell; |
| szCell = cellSizePtr(pPage, pCell); |
| zeroPage(pNew, pPage->aData[0]); |
| assemblePage(pNew, 1, &pCell, &szCell); |
| pPage->nOverflow = 0; |
| |
| /* Set the parent of the newly allocated page to pParent. */ |
| pNew->pParent = pParent; |
| sqlite3pager_ref(pParent->aData); |
| |
| /* pPage is currently the right-child of pParent. Change this |
| ** so that the right-child is the new page allocated above and |
| ** pPage is the next-to-right child. |
| */ |
| assert( pPage->nCell>0 ); |
| parseCellPtr(pPage, findCell(pPage, pPage->nCell-1), &info); |
| rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, &parentSize); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| assert( parentSize<64 ); |
| rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno); |
| put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* If this is an auto-vacuum database, update the pointer map |
| ** with entries for the new page, and any pointer from the |
| ** cell on the page to an overflow page. |
| */ |
| if( pBt->autoVacuum ){ |
| rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| rc = ptrmapPutOvfl(pNew, 0); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| } |
| #endif |
| |
| /* Release the reference to the new page and balance the parent page, |
| ** in case the divider cell inserted caused it to become overfull. |
| */ |
| releasePage(pNew); |
| return balance(pParent, 0); |
| } |
| #endif /* SQLITE_OMIT_QUICKBALANCE */ |
| |
| /* |
| ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine |
| ** if the database supports auto-vacuum or not. Because it is used |
| ** within an expression that is an argument to another macro |
| ** (sqliteMallocRaw), it is not possible to use conditional compilation. |
| ** So, this macro is defined instead. |
| */ |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| #define ISAUTOVACUUM (pBt->autoVacuum) |
| #else |
| #define ISAUTOVACUUM 0 |
| #endif |
| |
| /* |
| ** This routine redistributes Cells on pPage and up to NN*2 siblings |
| ** of pPage so that all pages have about the same amount of free space. |
| ** Usually NN siblings on either side of pPage is used in the balancing, |
| ** though more siblings might come from one side if pPage is the first |
| ** or last child of its parent. If pPage has fewer than 2*NN siblings |
| ** (something which can only happen if pPage is the root page or a |
| ** child of root) then all available siblings participate in the balancing. |
| ** |
| ** The number of siblings of pPage might be increased or decreased by one or |
| ** two in an effort to keep pages nearly full but not over full. The root page |
| ** is special and is allowed to be nearly empty. If pPage is |
| ** the root page, then the depth of the tree might be increased |
| ** or decreased by one, as necessary, to keep the root page from being |
| ** overfull or completely empty. |
| ** |
| ** Note that when this routine is called, some of the Cells on pPage |
| ** might not actually be stored in pPage->aData[]. This can happen |
| ** if the page is overfull. Part of the job of this routine is to |
| ** make sure all Cells for pPage once again fit in pPage->aData[]. |
| ** |
| ** In the course of balancing the siblings of pPage, the parent of pPage |
| ** might become overfull or underfull. If that happens, then this routine |
| ** is called recursively on the parent. |
| ** |
| ** If this routine fails for any reason, it might leave the database |
| ** in a corrupted state. So if this routine fails, the database should |
| ** be rolled back. |
| */ |
| static int balance_nonroot(MemPage *pPage){ |
| MemPage *pParent; /* The parent of pPage */ |
| BtShared *pBt; /* The whole database */ |
| int nCell = 0; /* Number of cells in apCell[] */ |
| int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ |
| int nOld; /* Number of pages in apOld[] */ |
| int nNew; /* Number of pages in apNew[] */ |
| int nDiv; /* Number of cells in apDiv[] */ |
| int i, j, k; /* Loop counters */ |
| int idx; /* Index of pPage in pParent->aCell[] */ |
| int nxDiv; /* Next divider slot in pParent->aCell[] */ |
| int rc; /* The return code */ |
| int leafCorrection; /* 4 if pPage is a leaf. 0 if not */ |
| int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ |
| int usableSpace; /* Bytes in pPage beyond the header */ |
| int pageFlags; /* Value of pPage->aData[0] */ |
| int subtotal; /* Subtotal of bytes in cells on one page */ |
| int iSpace = 0; /* First unused byte of aSpace[] */ |
| MemPage *apOld[NB]; /* pPage and up to two siblings */ |
| Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */ |
| MemPage *apCopy[NB]; /* Private copies of apOld[] pages */ |
| MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ |
| Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */ |
| u8 *apDiv[NB]; /* Divider cells in pParent */ |
| int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */ |
| int szNew[NB+2]; /* Combined size of cells place on i-th page */ |
| u8 **apCell = 0; /* All cells begin balanced */ |
| int *szCell; /* Local size of all cells in apCell[] */ |
| u8 *aCopy[NB]; /* Space for holding data of apCopy[] */ |
| u8 *aSpace; /* Space to hold copies of dividers cells */ |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| u8 *aFrom = 0; |
| #endif |
| |
| /* |
| ** Find the parent page. |
| */ |
| assert( pPage->isInit ); |
| assert( sqlite3pager_iswriteable(pPage->aData) ); |
| pBt = pPage->pBt; |
| pParent = pPage->pParent; |
| sqlite3pager_write(pParent->aData); |
| assert( pParent ); |
| TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); |
| |
| #ifndef SQLITE_OMIT_QUICKBALANCE |
| /* |
| ** A special case: If a new entry has just been inserted into a |
| ** table (that is, a btree with integer keys and all data at the leaves) |
| ** and the new entry is the right-most entry in the tree (it has the |
| ** largest key) then use the special balance_quick() routine for |
| ** balancing. balance_quick() is much faster and results in a tighter |
| ** packing of data in the common case. |
| */ |
| if( pPage->leaf && |
| pPage->intKey && |
| pPage->leafData && |
| pPage->nOverflow==1 && |
| pPage->aOvfl[0].idx==pPage->nCell && |
| pPage->pParent->pgno!=1 && |
| get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno |
| ){ |
| /* |
| ** TODO: Check the siblings to the left of pPage. It may be that |
| ** they are not full and no new page is required. |
| */ |
| return balance_quick(pPage, pParent); |
| } |
| #endif |
| |
| /* |
| ** Find the cell in the parent page whose left child points back |
| ** to pPage. The "idx" variable is the index of that cell. If pPage |
| ** is the rightmost child of pParent then set idx to pParent->nCell |
| */ |
| if( pParent->idxShift ){ |
| Pgno pgno; |
| pgno = pPage->pgno; |
| assert( pgno==sqlite3pager_pagenumber(pPage->aData) ); |
| for(idx=0; idx<pParent->nCell; idx++){ |
| if( get4byte(findCell(pParent, idx))==pgno ){ |
| break; |
| } |
| } |
| assert( idx<pParent->nCell |
| || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno ); |
| }else{ |
| idx = pPage->idxParent; |
| } |
| |
| /* |
| ** Initialize variables so that it will be safe to jump |
| ** directly to balance_cleanup at any moment. |
| */ |
| nOld = nNew = 0; |
| sqlite3pager_ref(pParent->aData); |
| |
| /* |
| ** Find sibling pages to pPage and the cells in pParent that divide |
| ** the siblings. An attempt is made to find NN siblings on either |
| ** side of pPage. More siblings are taken from one side, however, if |
| ** pPage there are fewer than NN siblings on the other side. If pParent |
| ** has NB or fewer children then all children of pParent are taken. |
| */ |
| nxDiv = idx - NN; |
| if( nxDiv + NB > pParent->nCell ){ |
| nxDiv = pParent->nCell - NB + 1; |
| } |
| if( nxDiv<0 ){ |
| nxDiv = 0; |
| } |
| nDiv = 0; |
| for(i=0, k=nxDiv; i<NB; i++, k++){ |
| if( k<pParent->nCell ){ |
| apDiv[i] = findCell(pParent, k); |
| nDiv++; |
| assert( !pParent->leaf ); |
| pgnoOld[i] = get4byte(apDiv[i]); |
| }else if( k==pParent->nCell ){ |
| pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]); |
| }else{ |
| break; |
| } |
| rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent); |
| if( rc ) goto balance_cleanup; |
| apOld[i]->idxParent = k; |
| apCopy[i] = 0; |
| assert( i==nOld ); |
| nOld++; |
| nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; |
| } |
| |
| /* Make nMaxCells a multiple of 2 in order to preserve 8-byte |
| ** alignment */ |
| nMaxCells = (nMaxCells + 1)&~1; |
| |
| /* |
| ** Allocate space for memory structures |
| */ |
| apCell = sqliteMallocRaw( |
| nMaxCells*sizeof(u8*) /* apCell */ |
| + nMaxCells*sizeof(int) /* szCell */ |
| + ROUND8(sizeof(MemPage))*NB /* aCopy */ |
| + pBt->pageSize*(5+NB) /* aSpace */ |
| + (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */ |
| ); |
| if( apCell==0 ){ |
| rc = SQLITE_NOMEM; |
| goto balance_cleanup; |
| } |
| szCell = (int*)&apCell[nMaxCells]; |
| aCopy[0] = (u8*)&szCell[nMaxCells]; |
| assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ |
| for(i=1; i<NB; i++){ |
| aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))]; |
| assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ |
| } |
| aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))]; |
| assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| aFrom = &aSpace[5*pBt->pageSize]; |
| } |
| #endif |
| |
| /* |
| ** Make copies of the content of pPage and its siblings into aOld[]. |
| ** The rest of this function will use data from the copies rather |
| ** that the original pages since the original pages will be in the |
| ** process of being overwritten. |
| */ |
| for(i=0; i<nOld; i++){ |
| MemPage *p = apCopy[i] = (MemPage*)&aCopy[i][pBt->pageSize]; |
| p->aData = &((u8*)p)[-pBt->pageSize]; |
| memcpy(p->aData, apOld[i]->aData, pBt->pageSize + sizeof(MemPage)); |
| /* The memcpy() above changes the value of p->aData so we have to |
| ** set it again. */ |
| p->aData = &((u8*)p)[-pBt->pageSize]; |
| } |
| |
| /* |
| ** Load pointers to all cells on sibling pages and the divider cells |
| ** into the local apCell[] array. Make copies of the divider cells |
| ** into space obtained form aSpace[] and remove the the divider Cells |
| ** from pParent. |
| ** |
| ** If the siblings are on leaf pages, then the child pointers of the |
| ** divider cells are stripped from the cells before they are copied |
| ** into aSpace[]. In this way, all cells in apCell[] are without |
| ** child pointers. If siblings are not leaves, then all cell in |
| ** apCell[] include child pointers. Either way, all cells in apCell[] |
| ** are alike. |
| ** |
| ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. |
| ** leafData: 1 if pPage holds key+data and pParent holds only keys. |
| */ |
| nCell = 0; |
| leafCorrection = pPage->leaf*4; |
| leafData = pPage->leafData && pPage->leaf; |
| for(i=0; i<nOld; i++){ |
| MemPage *pOld = apCopy[i]; |
| int limit = pOld->nCell+pOld->nOverflow; |
| for(j=0; j<limit; j++){ |
| assert( nCell<nMaxCells ); |
| apCell[nCell] = findOverflowCell(pOld, j); |
| szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| int a; |
| aFrom[nCell] = i; |
| for(a=0; a<pOld->nOverflow; a++){ |
| if( pOld->aOvfl[a].pCell==apCell[nCell] ){ |
| aFrom[nCell] = 0xFF; |
| break; |
| } |
| } |
| } |
| #endif |
| nCell++; |
| } |
| if( i<nOld-1 ){ |
| int sz = cellSizePtr(pParent, apDiv[i]); |
| if( leafData ){ |
| /* With the LEAFDATA flag, pParent cells hold only INTKEYs that |
| ** are duplicates of keys on the child pages. We need to remove |
| ** the divider cells from pParent, but the dividers cells are not |
| ** added to apCell[] because they are duplicates of child cells. |
| */ |
| dropCell(pParent, nxDiv, sz); |
| }else{ |
| u8 *pTemp; |
| assert( nCell<nMaxCells ); |
| szCell[nCell] = sz; |
| pTemp = &aSpace[iSpace]; |
| iSpace += sz; |
| assert( iSpace<=pBt->pageSize*5 ); |
| memcpy(pTemp, apDiv[i], sz); |
| apCell[nCell] = pTemp+leafCorrection; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| aFrom[nCell] = 0xFF; |
| } |
| #endif |
| dropCell(pParent, nxDiv, sz); |
| szCell[nCell] -= leafCorrection; |
| assert( get4byte(pTemp)==pgnoOld[i] ); |
| if( !pOld->leaf ){ |
| assert( leafCorrection==0 ); |
| /* The right pointer of the child page pOld becomes the left |
| ** pointer of the divider cell */ |
| memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4); |
| }else{ |
| assert( leafCorrection==4 ); |
| } |
| nCell++; |
| } |
| } |
| } |
| |
| /* |
| ** Figure out the number of pages needed to hold all nCell cells. |
| ** Store this number in "k". Also compute szNew[] which is the total |
| ** size of all cells on the i-th page and cntNew[] which is the index |
| ** in apCell[] of the cell that divides page i from page i+1. |
| ** cntNew[k] should equal nCell. |
| ** |
| ** Values computed by this block: |
| ** |
| ** k: The total number of sibling pages |
| ** szNew[i]: Spaced used on the i-th sibling page. |
| ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to |
| ** the right of the i-th sibling page. |
| ** usableSpace: Number of bytes of space available on each sibling. |
| ** |
| */ |
| usableSpace = pBt->usableSize - 12 + leafCorrection; |
| for(subtotal=k=i=0; i<nCell; i++){ |
| assert( i<nMaxCells ); |
| subtotal += szCell[i] + 2; |
| if( subtotal > usableSpace ){ |
| szNew[k] = subtotal - szCell[i]; |
| cntNew[k] = i; |
| if( leafData ){ i--; } |
| subtotal = 0; |
| k++; |
| } |
| } |
| szNew[k] = subtotal; |
| cntNew[k] = nCell; |
| k++; |
| |
| /* |
| ** The packing computed by the previous block is biased toward the siblings |
| ** on the left side. The left siblings are always nearly full, while the |
| ** right-most sibling might be nearly empty. This block of code attempts |
| ** to adjust the packing of siblings to get a better balance. |
| ** |
| ** This adjustment is more than an optimization. The packing above might |
| ** be so out of balance as to be illegal. For example, the right-most |
| ** sibling might be completely empty. This adjustment is not optional. |
| */ |
| for(i=k-1; i>0; i--){ |
| int szRight = szNew[i]; /* Size of sibling on the right */ |
| int szLeft = szNew[i-1]; /* Size of sibling on the left */ |
| int r; /* Index of right-most cell in left sibling */ |
| int d; /* Index of first cell to the left of right sibling */ |
| |
| r = cntNew[i-1] - 1; |
| d = r + 1 - leafData; |
| assert( d<nMaxCells ); |
| assert( r<nMaxCells ); |
| while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){ |
| szRight += szCell[d] + 2; |
| szLeft -= szCell[r] + 2; |
| cntNew[i-1]--; |
| r = cntNew[i-1] - 1; |
| d = r + 1 - leafData; |
| } |
| szNew[i] = szRight; |
| szNew[i-1] = szLeft; |
| } |
| |
| /* Either we found one or more cells (cntnew[0])>0) or we are the |
| ** a virtual root page. A virtual root page is when the real root |
| ** page is page 1 and we are the only child of that page. |
| */ |
| assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) ); |
| |
| /* |
| ** Allocate k new pages. Reuse old pages where possible. |
| */ |
| assert( pPage->pgno>1 ); |
| pageFlags = pPage->aData[0]; |
| for(i=0; i<k; i++){ |
| MemPage *pNew; |
| if( i<nOld ){ |
| pNew = apNew[i] = apOld[i]; |
| pgnoNew[i] = pgnoOld[i]; |
| apOld[i] = 0; |
| rc = sqlite3pager_write(pNew->aData); |
| if( rc ) goto balance_cleanup; |
| }else{ |
| rc = allocatePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0); |
| if( rc ) goto balance_cleanup; |
| apNew[i] = pNew; |
| } |
| nNew++; |
| zeroPage(pNew, pageFlags); |
| } |
| |
| /* Free any old pages that were not reused as new pages. |
| */ |
| while( i<nOld ){ |
| rc = freePage(apOld[i]); |
| if( rc ) goto balance_cleanup; |
| releasePage(apOld[i]); |
| apOld[i] = 0; |
| i++; |
| } |
| |
| /* |
| ** Put the new pages in accending order. This helps to |
| ** keep entries in the disk file in order so that a scan |
| ** of the table is a linear scan through the file. That |
| ** in turn helps the operating system to deliver pages |
| ** from the disk more rapidly. |
| ** |
| ** An O(n^2) insertion sort algorithm is used, but since |
| ** n is never more than NB (a small constant), that should |
| ** not be a problem. |
| ** |
| ** When NB==3, this one optimization makes the database |
| ** about 25% faster for large insertions and deletions. |
| */ |
| for(i=0; i<k-1; i++){ |
| int minV = pgnoNew[i]; |
| int minI = i; |
| for(j=i+1; j<k; j++){ |
| if( pgnoNew[j]<(unsigned)minV ){ |
| minI = j; |
| minV = pgnoNew[j]; |
| } |
| } |
| if( minI>i ){ |
| int t; |
| MemPage *pT; |
| t = pgnoNew[i]; |
| pT = apNew[i]; |
| pgnoNew[i] = pgnoNew[minI]; |
| apNew[i] = apNew[minI]; |
| pgnoNew[minI] = t; |
| apNew[minI] = pT; |
| } |
| } |
| TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n", |
| pgnoOld[0], |
| nOld>=2 ? pgnoOld[1] : 0, |
| nOld>=3 ? pgnoOld[2] : 0, |
| pgnoNew[0], szNew[0], |
| nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0, |
| nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0, |
| nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0, |
| nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0)); |
| |
| /* |
| ** Evenly distribute the data in apCell[] across the new pages. |
| ** Insert divider cells into pParent as necessary. |
| */ |
| j = 0; |
| for(i=0; i<nNew; i++){ |
| /* Assemble the new sibling page. */ |
| MemPage *pNew = apNew[i]; |
| assert( j<nMaxCells ); |
| assert( pNew->pgno==pgnoNew[i] ); |
| assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]); |
| assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) ); |
| assert( pNew->nOverflow==0 ); |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* If this is an auto-vacuum database, update the pointer map entries |
| ** that point to the siblings that were rearranged. These can be: left |
| ** children of cells, the right-child of the page, or overflow pages |
| ** pointed to by cells. |
| */ |
| if( pBt->autoVacuum ){ |
| for(k=j; k<cntNew[i]; k++){ |
| assert( k<nMaxCells ); |
| if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){ |
| rc = ptrmapPutOvfl(pNew, k-j); |
| if( rc!=SQLITE_OK ){ |
| goto balance_cleanup; |
| } |
| } |
| } |
| } |
| #endif |
| |
| j = cntNew[i]; |
| |
| /* If the sibling page assembled above was not the right-most sibling, |
| ** insert a divider cell into the parent page. |
| */ |
| if( i<nNew-1 && j<nCell ){ |
| u8 *pCell; |
| u8 *pTemp; |
| int sz; |
| |
| assert( j<nMaxCells ); |
| pCell = apCell[j]; |
| sz = szCell[j] + leafCorrection; |
| if( !pNew->leaf ){ |
| memcpy(&pNew->aData[8], pCell, 4); |
| pTemp = 0; |
| }else if( leafData ){ |
| /* If the tree is a leaf-data tree, and the siblings are leaves, |
| ** then there is no divider cell in apCell[]. Instead, the divider |
| ** cell consists of the integer key for the right-most cell of |
| ** the sibling-page assembled above only. |
| */ |
| CellInfo info; |
| j--; |
| parseCellPtr(pNew, apCell[j], &info); |
| pCell = &aSpace[iSpace]; |
| fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz); |
| iSpace += sz; |
| assert( iSpace<=pBt->pageSize*5 ); |
| pTemp = 0; |
| }else{ |
| pCell -= 4; |
| pTemp = &aSpace[iSpace]; |
| iSpace += sz; |
| assert( iSpace<=pBt->pageSize*5 ); |
| } |
| rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4); |
| if( rc!=SQLITE_OK ) goto balance_cleanup; |
| put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* If this is an auto-vacuum database, and not a leaf-data tree, |
| ** then update the pointer map with an entry for the overflow page |
| ** that the cell just inserted points to (if any). |
| */ |
| if( pBt->autoVacuum && !leafData ){ |
| rc = ptrmapPutOvfl(pParent, nxDiv); |
| if( rc!=SQLITE_OK ){ |
| goto balance_cleanup; |
| } |
| } |
| #endif |
| j++; |
| nxDiv++; |
| } |
| } |
| assert( j==nCell ); |
| if( (pageFlags & PTF_LEAF)==0 ){ |
| memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4); |
| } |
| if( nxDiv==pParent->nCell+pParent->nOverflow ){ |
| /* Right-most sibling is the right-most child of pParent */ |
| put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]); |
| }else{ |
| /* Right-most sibling is the left child of the first entry in pParent |
| ** past the right-most divider entry */ |
| put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]); |
| } |
| |
| /* |
| ** Reparent children of all cells. |
| */ |
| for(i=0; i<nNew; i++){ |
| rc = reparentChildPages(apNew[i]); |
| if( rc!=SQLITE_OK ) goto balance_cleanup; |
| } |
| rc = reparentChildPages(pParent); |
| if( rc!=SQLITE_OK ) goto balance_cleanup; |
| |
| /* |
| ** Balance the parent page. Note that the current page (pPage) might |
| ** have been added to the freelist so it might no longer be initialized. |
| ** But the parent page will always be initialized. |
| */ |
| assert( pParent->isInit ); |
| /* assert( pPage->isInit ); // No! pPage might have been added to freelist */ |
| /* pageIntegrity(pPage); // No! pPage might have been added to freelist */ |
| rc = balance(pParent, 0); |
| |
| /* |
| ** Cleanup before returning. |
| */ |
| balance_cleanup: |
| sqliteFree(apCell); |
| for(i=0; i<nOld; i++){ |
| releasePage(apOld[i]); |
| } |
| for(i=0; i<nNew; i++){ |
| releasePage(apNew[i]); |
| } |
| releasePage(pParent); |
| TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n", |
| pPage->pgno, nOld, nNew, nCell)); |
| return rc; |
| } |
| |
| /* |
| ** This routine is called for the root page of a btree when the root |
| ** page contains no cells. This is an opportunity to make the tree |
| ** shallower by one level. |
| */ |
| static int balance_shallower(MemPage *pPage){ |
| MemPage *pChild; /* The only child page of pPage */ |
| Pgno pgnoChild; /* Page number for pChild */ |
| int rc = SQLITE_OK; /* Return code from subprocedures */ |
| BtShared *pBt; /* The main BTree structure */ |
| int mxCellPerPage; /* Maximum number of cells per page */ |
| u8 **apCell; /* All cells from pages being balanced */ |
| int *szCell; /* Local size of all cells */ |
| |
| assert( pPage->pParent==0 ); |
| assert( pPage->nCell==0 ); |
| pBt = pPage->pBt; |
| mxCellPerPage = MX_CELL(pBt); |
| apCell = sqliteMallocRaw( mxCellPerPage*(sizeof(u8*)+sizeof(int)) ); |
| if( apCell==0 ) return SQLITE_NOMEM; |
| szCell = (int*)&apCell[mxCellPerPage]; |
| if( pPage->leaf ){ |
| /* The table is completely empty */ |
| TRACE(("BALANCE: empty table %d\n", pPage->pgno)); |
| }else{ |
| /* The root page is empty but has one child. Transfer the |
| ** information from that one child into the root page if it |
| ** will fit. This reduces the depth of the tree by one. |
| ** |
| ** If the root page is page 1, it has less space available than |
| ** its child (due to the 100 byte header that occurs at the beginning |
| ** of the database fle), so it might not be able to hold all of the |
| ** information currently contained in the child. If this is the |
| ** case, then do not do the transfer. Leave page 1 empty except |
| ** for the right-pointer to the child page. The child page becomes |
| ** the virtual root of the tree. |
| */ |
| pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| assert( pgnoChild>0 ); |
| assert( pgnoChild<=sqlite3pager_pagecount(pPage->pBt->pPager) ); |
| rc = getPage(pPage->pBt, pgnoChild, &pChild); |
| if( rc ) goto end_shallow_balance; |
| if( pPage->pgno==1 ){ |
| rc = initPage(pChild, pPage); |
| if( rc ) goto end_shallow_balance; |
| assert( pChild->nOverflow==0 ); |
| if( pChild->nFree>=100 ){ |
| /* The child information will fit on the root page, so do the |
| ** copy */ |
| int i; |
| zeroPage(pPage, pChild->aData[0]); |
| for(i=0; i<pChild->nCell; i++){ |
| apCell[i] = findCell(pChild,i); |
| szCell[i] = cellSizePtr(pChild, apCell[i]); |
| } |
| assemblePage(pPage, pChild->nCell, apCell, szCell); |
| /* Copy the right-pointer of the child to the parent. */ |
| put4byte(&pPage->aData[pPage->hdrOffset+8], |
| get4byte(&pChild->aData[pChild->hdrOffset+8])); |
| freePage(pChild); |
| TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno)); |
| }else{ |
| /* The child has more information that will fit on the root. |
| ** The tree is already balanced. Do nothing. */ |
| TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno)); |
| } |
| }else{ |
| memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize); |
| pPage->isInit = 0; |
| pPage->pParent = 0; |
| rc = initPage(pPage, 0); |
| assert( rc==SQLITE_OK ); |
| freePage(pChild); |
| TRACE(("BALANCE: transfer child %d into root %d\n", |
| pChild->pgno, pPage->pgno)); |
| } |
| rc = reparentChildPages(pPage); |
| assert( pPage->nOverflow==0 ); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| int i; |
| for(i=0; i<pPage->nCell; i++){ |
| rc = ptrmapPutOvfl(pPage, i); |
| if( rc!=SQLITE_OK ){ |
| goto end_shallow_balance; |
| } |
| } |
| } |
| #endif |
| if( rc!=SQLITE_OK ) goto end_shallow_balance; |
| releasePage(pChild); |
| } |
| end_shallow_balance: |
| sqliteFree(apCell); |
| return rc; |
| } |
| |
| |
| /* |
| ** The root page is overfull |
| ** |
| ** When this happens, Create a new child page and copy the |
| ** contents of the root into the child. Then make the root |
| ** page an empty page with rightChild pointing to the new |
| ** child. Finally, call balance_internal() on the new child |
| ** to cause it to split. |
| */ |
| static int balance_deeper(MemPage *pPage){ |
| int rc; /* Return value from subprocedures */ |
| MemPage *pChild; /* Pointer to a new child page */ |
| Pgno pgnoChild; /* Page number of the new child page */ |
| BtShared *pBt; /* The BTree */ |
| int usableSize; /* Total usable size of a page */ |
| u8 *data; /* Content of the parent page */ |
| u8 *cdata; /* Content of the child page */ |
| int hdr; /* Offset to page header in parent */ |
| int brk; /* Offset to content of first cell in parent */ |
| |
| assert( pPage->pParent==0 ); |
| assert( pPage->nOverflow>0 ); |
| pBt = pPage->pBt; |
| rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0); |
| if( rc ) return rc; |
| assert( sqlite3pager_iswriteable(pChild->aData) ); |
| usableSize = pBt->usableSize; |
| data = pPage->aData; |
| hdr = pPage->hdrOffset; |
| brk = get2byte(&data[hdr+5]); |
| cdata = pChild->aData; |
| memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr); |
| memcpy(&cdata[brk], &data[brk], usableSize-brk); |
| assert( pChild->isInit==0 ); |
| rc = initPage(pChild, pPage); |
| if( rc ) goto balancedeeper_out; |
| memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0])); |
| pChild->nOverflow = pPage->nOverflow; |
| if( pChild->nOverflow ){ |
| pChild->nFree = 0; |
| } |
| assert( pChild->nCell==pPage->nCell ); |
| zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF); |
| put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild); |
| TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno)); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| int i; |
| rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno); |
| if( rc ) goto balancedeeper_out; |
| for(i=0; i<pChild->nCell; i++){ |
| rc = ptrmapPutOvfl(pChild, i); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| } |
| } |
| #endif |
| rc = balance_nonroot(pChild); |
| |
| balancedeeper_out: |
| releasePage(pChild); |
| return rc; |
| } |
| |
| /* |
| ** Decide if the page pPage needs to be balanced. If balancing is |
| ** required, call the appropriate balancing routine. |
| */ |
| static int balance(MemPage *pPage, int insert){ |
| int rc = SQLITE_OK; |
| if( pPage->pParent==0 ){ |
| if( pPage->nOverflow>0 ){ |
| rc = balance_deeper(pPage); |
| } |
| if( rc==SQLITE_OK && pPage->nCell==0 ){ |
| rc = balance_shallower(pPage); |
| } |
| }else{ |
| if( pPage->nOverflow>0 || |
| (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){ |
| rc = balance_nonroot(pPage); |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** This routine checks all cursors that point to table pgnoRoot. |
| ** If any of those cursors other than pExclude were opened with |
| ** wrFlag==0 then this routine returns SQLITE_LOCKED. If all |
| ** cursors that point to pgnoRoot were opened with wrFlag==1 |
| ** then this routine returns SQLITE_OK. |
| ** |
| ** In addition to checking for read-locks (where a read-lock |
| ** means a cursor opened with wrFlag==0) this routine also moves |
| ** all cursors other than pExclude so that they are pointing to the |
| ** first Cell on root page. This is necessary because an insert |
| ** or delete might change the number of cells on a page or delete |
| ** a page entirely and we do not want to leave any cursors |
| ** pointing to non-existant pages or cells. |
| */ |
| static int checkReadLocks(BtShared *pBt, Pgno pgnoRoot, BtCursor *pExclude){ |
| BtCursor *p; |
| for(p=pBt->pCursor; p; p=p->pNext){ |
| u32 flags = (p->pBtree->pSqlite ? p->pBtree->pSqlite->flags : 0); |
| if( p->pgnoRoot!=pgnoRoot || p==pExclude ) continue; |
| if( p->wrFlag==0 && flags&SQLITE_ReadUncommitted ) continue; |
| if( p->wrFlag==0 ) return SQLITE_LOCKED; |
| if( p->pPage->pgno!=p->pgnoRoot ){ |
| moveToRoot(p); |
| } |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Insert a new record into the BTree. The key is given by (pKey,nKey) |
| ** and the data is given by (pData,nData). The cursor is used only to |
| ** define what table the record should be inserted into. The cursor |
| ** is left pointing at a random location. |
| ** |
| ** For an INTKEY table, only the nKey value of the key is used. pKey is |
| ** ignored. For a ZERODATA table, the pData and nData are both ignored. |
| */ |
| int sqlite3BtreeInsert( |
| BtCursor *pCur, /* Insert data into the table of this cursor */ |
| const void *pKey, i64 nKey, /* The key of the new record */ |
| const void *pData, int nData /* The data of the new record */ |
| ){ |
| int rc; |
| int loc; |
| int szNew; |
| MemPage *pPage; |
| BtShared *pBt = pCur->pBtree->pBt; |
| unsigned char *oldCell; |
| unsigned char *newCell = 0; |
| |
| if( pBt->inTransaction!=TRANS_WRITE ){ |
| /* Must start a transaction before doing an insert */ |
| return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
| } |
| assert( !pBt->readOnly ); |
| if( !pCur->wrFlag ){ |
| return SQLITE_PERM; /* Cursor not open for writing */ |
| } |
| if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){ |
| return SQLITE_LOCKED; /* The table pCur points to has a read lock */ |
| } |
| |
| /* Save the positions of any other cursors open on this table */ |
| if( |
| SQLITE_OK!=(rc = restoreCursorPosition(pCur, 0)) || |
| SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || |
| SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc)) |
| ){ |
| return rc; |
| } |
| |
| pPage = pCur->pPage; |
| assert( pPage->intKey || nKey>=0 ); |
| assert( pPage->leaf || !pPage->leafData ); |
| TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", |
| pCur->pgnoRoot, nKey, nData, pPage->pgno, |
| loc==0 ? "overwrite" : "new entry")); |
| assert( pPage->isInit ); |
| rc = sqlite3pager_write(pPage->aData); |
| if( rc ) return rc; |
| newCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) ); |
| if( newCell==0 ) return SQLITE_NOMEM; |
| rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew); |
| if( rc ) goto end_insert; |
| assert( szNew==cellSizePtr(pPage, newCell) ); |
| assert( szNew<=MX_CELL_SIZE(pBt) ); |
| if( loc==0 && CURSOR_VALID==pCur->eState ){ |
| int szOld; |
| assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); |
| oldCell = findCell(pPage, pCur->idx); |
| if( !pPage->leaf ){ |
| memcpy(newCell, oldCell, 4); |
| } |
| szOld = cellSizePtr(pPage, oldCell); |
| rc = clearCell(pPage, oldCell); |
| if( rc ) goto end_insert; |
| dropCell(pPage, pCur->idx, szOld); |
| }else if( loc<0 && pPage->nCell>0 ){ |
| assert( pPage->leaf ); |
| pCur->idx++; |
| pCur->info.nSize = 0; |
| }else{ |
| assert( pPage->leaf ); |
| } |
| rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0); |
| if( rc!=SQLITE_OK ) goto end_insert; |
| rc = balance(pPage, 1); |
| /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */ |
| /* fflush(stdout); */ |
| if( rc==SQLITE_OK ){ |
| moveToRoot(pCur); |
| } |
| end_insert: |
| sqliteFree(newCell); |
| return rc; |
| } |
| |
| /* |
| ** Delete the entry that the cursor is pointing to. The cursor |
| ** is left pointing at a random location. |
| */ |
| int sqlite3BtreeDelete(BtCursor *pCur){ |
| MemPage *pPage = pCur->pPage; |
| unsigned char *pCell; |
| int rc; |
| Pgno pgnoChild = 0; |
| BtShared *pBt = pCur->pBtree->pBt; |
| |
| assert( pPage->isInit ); |
| if( pBt->inTransaction!=TRANS_WRITE ){ |
| /* Must start a transaction before doing a delete */ |
| return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
| } |
| assert( !pBt->readOnly ); |
| if( pCur->idx >= pPage->nCell ){ |
| return SQLITE_ERROR; /* The cursor is not pointing to anything */ |
| } |
| if( !pCur->wrFlag ){ |
| return SQLITE_PERM; /* Did not open this cursor for writing */ |
| } |
| if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){ |
| return SQLITE_LOCKED; /* The table pCur points to has a read lock */ |
| } |
| |
| /* Restore the current cursor position (a no-op if the cursor is not in |
| ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors |
| ** open on the same table. Then call sqlite3pager_write() on the page |
| ** that the entry will be deleted from. |
| */ |
| if( |
| (rc = restoreCursorPosition(pCur, 1)) || |
| (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || |
| (rc = sqlite3pager_write(pPage->aData)) |
| ){ |
| return rc; |
| } |
| |
| /* Locate the cell within it's page and leave pCell pointing to the |
| ** data. The clearCell() call frees any overflow pages associated with the |
| ** cell. The cell itself is still intact. |
| */ |
| pCell = findCell(pPage, pCur->idx); |
| if( !pPage->leaf ){ |
| pgnoChild = get4byte(pCell); |
| } |
| rc = clearCell(pPage, pCell); |
| if( rc ) return rc; |
| |
| if( !pPage->leaf ){ |
| /* |
| ** The entry we are about to delete is not a leaf so if we do not |
| ** do something we will leave a hole on an internal page. |
| ** We have to fill the hole by moving in a cell from a leaf. The |
| ** next Cell after the one to be deleted is guaranteed to exist and |
| ** to be a leaf so we can use it. |
| */ |
| BtCursor leafCur; |
| unsigned char *pNext; |
| int szNext; |
| int notUsed; |
| unsigned char *tempCell = 0; |
| assert( !pPage->leafData ); |
| getTempCursor(pCur, &leafCur); |
| rc = sqlite3BtreeNext(&leafCur, ¬Used); |
| if( rc!=SQLITE_OK ){ |
| if( rc!=SQLITE_NOMEM ){ |
| rc = SQLITE_CORRUPT_BKPT; |
| } |
| } |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3pager_write(leafCur.pPage->aData); |
| } |
| if( rc==SQLITE_OK ){ |
| TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n", |
| pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno)); |
| dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); |
| pNext = findCell(leafCur.pPage, leafCur.idx); |
| szNext = cellSizePtr(leafCur.pPage, pNext); |
| assert( MX_CELL_SIZE(pBt)>=szNext+4 ); |
| tempCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) ); |
| if( tempCell==0 ){ |
| rc = SQLITE_NOMEM; |
| } |
| } |
| if( rc==SQLITE_OK ){ |
| rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0); |
| } |
| if( rc==SQLITE_OK ){ |
| put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild); |
| rc = balance(pPage, 0); |
| } |
| if( rc==SQLITE_OK ){ |
| dropCell(leafCur.pPage, leafCur.idx, szNext); |
| rc = balance(leafCur.pPage, 0); |
| } |
| sqliteFree(tempCell); |
| releaseTempCursor(&leafCur); |
| }else{ |
| TRACE(("DELETE: table=%d delete from leaf %d\n", |
| pCur->pgnoRoot, pPage->pgno)); |
| dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); |
| rc = balance(pPage, 0); |
| } |
| if( rc==SQLITE_OK ){ |
| moveToRoot(pCur); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Create a new BTree table. Write into *piTable the page |
| ** number for the root page of the new table. |
| ** |
| ** The type of type is determined by the flags parameter. Only the |
| ** following values of flags are currently in use. Other values for |
| ** flags might not work: |
| ** |
| ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys |
| ** BTREE_ZERODATA Used for SQL indices |
| */ |
| int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ |
| BtShared *pBt = p->pBt; |
| MemPage *pRoot; |
| Pgno pgnoRoot; |
| int rc; |
| if( pBt->inTransaction!=TRANS_WRITE ){ |
| /* Must start a transaction first */ |
| return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
| } |
| assert( !pBt->readOnly ); |
| |
| /* It is illegal to create a table if any cursors are open on the |
| ** database. This is because in auto-vacuum mode the backend may |
| ** need to move a database page to make room for the new root-page. |
| ** If an open cursor was using the page a problem would occur. |
| */ |
| if( pBt->pCursor ){ |
| return SQLITE_LOCKED; |
| } |
| |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
| if( rc ) return rc; |
| #else |
| if( pBt->autoVacuum ){ |
| Pgno pgnoMove; /* Move a page here to make room for the root-page */ |
| MemPage *pPageMove; /* The page to move to. */ |
| |
| /* Read the value of meta[3] from the database to determine where the |
| ** root page of the new table should go. meta[3] is the largest root-page |
| ** created so far, so the new root-page is (meta[3]+1). |
| */ |
| rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot); |
| if( rc!=SQLITE_OK ) return rc; |
| pgnoRoot++; |
| |
| /* The new root-page may not be allocated on a pointer-map page, or the |
| ** PENDING_BYTE page. |
| */ |
| if( pgnoRoot==PTRMAP_PAGENO(pBt->usableSize, pgnoRoot) || |
| pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ |
| pgnoRoot++; |
| } |
| assert( pgnoRoot>=3 ); |
| |
| /* Allocate a page. The page that currently resides at pgnoRoot will |
| ** be moved to the allocated page (unless the allocated page happens |
| ** to reside at pgnoRoot). |
| */ |
| rc = allocatePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| if( pgnoMove!=pgnoRoot ){ |
| u8 eType; |
| Pgno iPtrPage; |
| |
| releasePage(pPageMove); |
| rc = getPage(pBt, pgnoRoot, &pRoot); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); |
| if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ |
| releasePage(pRoot); |
| return rc; |
| } |
| assert( eType!=PTRMAP_ROOTPAGE ); |
| assert( eType!=PTRMAP_FREEPAGE ); |
| rc = sqlite3pager_write(pRoot->aData); |
| if( rc!=SQLITE_OK ){ |
| releasePage(pRoot); |
| return rc; |
| } |
| rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove); |
| releasePage(pRoot); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| rc = getPage(pBt, pgnoRoot, &pRoot); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| rc = sqlite3pager_write(pRoot->aData); |
| if( rc!=SQLITE_OK ){ |
| releasePage(pRoot); |
| return rc; |
| } |
| }else{ |
| pRoot = pPageMove; |
| } |
| |
| /* Update the pointer-map and meta-data with the new root-page number. */ |
| rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0); |
| if( rc ){ |
| releasePage(pRoot); |
| return rc; |
| } |
| rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); |
| if( rc ){ |
| releasePage(pRoot); |
| return rc; |
| } |
| |
| }else{ |
| rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
| if( rc ) return rc; |
| } |
| #endif |
| assert( sqlite3pager_iswriteable(pRoot->aData) ); |
| zeroPage(pRoot, flags | PTF_LEAF); |
| sqlite3pager_unref(pRoot->aData); |
| *piTable = (int)pgnoRoot; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Erase the given database page and all its children. Return |
| ** the page to the freelist. |
| */ |
| static int clearDatabasePage( |
| BtShared *pBt, /* The BTree that contains the table */ |
| Pgno pgno, /* Page number to clear */ |
| MemPage *pParent, /* Parent page. NULL for the root */ |
| int freePageFlag /* Deallocate page if true */ |
| ){ |
| MemPage *pPage = 0; |
| int rc; |
| unsigned char *pCell; |
| int i; |
| |
| if( pgno>sqlite3pager_pagecount(pBt->pPager) ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| |
| rc = getAndInitPage(pBt, pgno, &pPage, pParent); |
| if( rc ) goto cleardatabasepage_out; |
| rc = sqlite3pager_write(pPage->aData); |
| if( rc ) goto cleardatabasepage_out; |
| for(i=0; i<pPage->nCell; i++){ |
| pCell = findCell(pPage, i); |
| if( !pPage->leaf ){ |
| rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1); |
| if( rc ) goto cleardatabasepage_out; |
| } |
| rc = clearCell(pPage, pCell); |
| if( rc ) goto cleardatabasepage_out; |
| } |
| if( !pPage->leaf ){ |
| rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1); |
| if( rc ) goto cleardatabasepage_out; |
| } |
| if( freePageFlag ){ |
| rc = freePage(pPage); |
| }else{ |
| zeroPage(pPage, pPage->aData[0] | PTF_LEAF); |
| } |
| |
| cleardatabasepage_out: |
| releasePage(pPage); |
| return rc; |
| } |
| |
| /* |
| ** Delete all information from a single table in the database. iTable is |
| ** the page number of the root of the table. After this routine returns, |
| ** the root page is empty, but still exists. |
| ** |
| ** This routine will fail with SQLITE_LOCKED if there are any open |
| ** read cursors on the table. Open write cursors are moved to the |
| ** root of the table. |
| */ |
| int sqlite3BtreeClearTable(Btree *p, int iTable){ |
| int rc; |
| BtCursor *pCur; |
| BtShared *pBt = p->pBt; |
| if( p->inTrans!=TRANS_WRITE ){ |
| return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
| } |
| for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
| if( pCur->pgnoRoot==(Pgno)iTable ){ |
| if( pCur->wrFlag==0 ) return SQLITE_LOCKED; |
| moveToRoot(pCur); |
| } |
| } |
| rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0); |
| #if 0 |
| if( rc ){ |
| sqlite3BtreeRollback(pBt); |
| } |
| #endif |
| return rc; |
| } |
| |
| /* |
| ** Erase all information in a table and add the root of the table to |
| ** the freelist. Except, the root of the principle table (the one on |
| ** page 1) is never added to the freelist. |
| ** |
| ** This routine will fail with SQLITE_LOCKED if there are any open |
| ** cursors on the table. |
| ** |
| ** If AUTOVACUUM is enabled and the page at iTable is not the last |
| ** root page in the database file, then the last root page |
| ** in the database file is moved into the slot formerly occupied by |
| ** iTable and that last slot formerly occupied by the last root page |
| ** is added to the freelist instead of iTable. In this say, all |
| ** root pages are kept at the beginning of the database file, which |
| ** is necessary for AUTOVACUUM to work right. *piMoved is set to the |
| ** page number that used to be the last root page in the file before |
| ** the move. If no page gets moved, *piMoved is set to 0. |
| ** The last root page is recorded in meta[3] and the value of |
| ** meta[3] is updated by this procedure. |
| */ |
| int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ |
| int rc; |
| MemPage *pPage = 0; |
| BtShared *pBt = p->pBt; |
| |
| if( p->inTrans!=TRANS_WRITE ){ |
| return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
| } |
| |
| /* It is illegal to drop a table if any cursors are open on the |
| ** database. This is because in auto-vacuum mode the backend may |
| ** need to move another root-page to fill a gap left by the deleted |
| ** root page. If an open cursor was using this page a problem would |
| ** occur. |
| */ |
| if( pBt->pCursor ){ |
| return SQLITE_LOCKED; |
| } |
| |
| rc = getPage(pBt, (Pgno)iTable, &pPage); |
| if( rc ) return rc; |
| rc = sqlite3BtreeClearTable(p, iTable); |
| if( rc ){ |
| releasePage(pPage); |
| return rc; |
| } |
| |
| *piMoved = 0; |
| |
| if( iTable>1 ){ |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| rc = freePage(pPage); |
| releasePage(pPage); |
| #else |
| if( pBt->autoVacuum ){ |
| Pgno maxRootPgno; |
| rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno); |
| if( rc!=SQLITE_OK ){ |
| releasePage(pPage); |
| return rc; |
| } |
| |
| if( iTable==maxRootPgno ){ |
| /* If the table being dropped is the table with the largest root-page |
| ** number in the database, put the root page on the free list. |
| */ |
| rc = freePage(pPage); |
| releasePage(pPage); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| }else{ |
| /* The table being dropped does not have the largest root-page |
| ** number in the database. So move the page that does into the |
| ** gap left by the deleted root-page. |
| */ |
| MemPage *pMove; |
| releasePage(pPage); |
| rc = getPage(pBt, maxRootPgno, &pMove); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable); |
| releasePage(pMove); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| rc = getPage(pBt, maxRootPgno, &pMove); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| rc = freePage(pMove); |
| releasePage(pMove); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| *piMoved = maxRootPgno; |
| } |
| |
| /* Set the new 'max-root-page' value in the database header. This |
| ** is the old value less one, less one more if that happens to |
| ** be a root-page number, less one again if that is the |
| ** PENDING_BYTE_PAGE. |
| */ |
| maxRootPgno--; |
| if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){ |
| maxRootPgno--; |
| } |
| if( maxRootPgno==PTRMAP_PAGENO(pBt->usableSize, maxRootPgno) ){ |
| maxRootPgno--; |
| } |
| assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); |
| |
| rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); |
| }else{ |
| rc = freePage(pPage); |
| releasePage(pPage); |
| } |
| #endif |
| }else{ |
| /* If sqlite3BtreeDropTable was called on page 1. */ |
| zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); |
| releasePage(pPage); |
| } |
| return rc; |
| } |
| |
| |
| /* |
| ** Read the meta-information out of a database file. Meta[0] |
| ** is the number of free pages currently in the database. Meta[1] |
| ** through meta[15] are available for use by higher layers. Meta[0] |
| ** is read-only, the others are read/write. |
| ** |
| ** The schema layer numbers meta values differently. At the schema |
| ** layer (and the SetCookie and ReadCookie opcodes) the number of |
| ** free pages is not visible. So Cookie[0] is the same as Meta[1]. |
| */ |
| int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ |
| int rc; |
| unsigned char *pP1; |
| BtShared *pBt = p->pBt; |
| |
| /* Reading a meta-data value requires a read-lock on page 1 (and hence |
| ** the sqlite_master table. We grab this lock regardless of whether or |
| ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page |
| ** 1 is treated as a special case by queryTableLock() and lockTable()). |
| */ |
| rc = queryTableLock(p, 1, READ_LOCK); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| assert( idx>=0 && idx<=15 ); |
| rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1); |
| if( rc ) return rc; |
| *pMeta = get4byte(&pP1[36 + idx*4]); |
| sqlite3pager_unref(pP1); |
| |
| /* If autovacuumed is disabled in this build but we are trying to |
| ** access an autovacuumed database, then make the database readonly. |
| */ |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| if( idx==4 && *pMeta>0 ) pBt->readOnly = 1; |
| #endif |
| |
| /* Grab the read-lock on page 1. */ |
| rc = lockTable(p, 1, READ_LOCK); |
| return rc; |
| } |
| |
| /* |
| ** Write meta-information back into the database. Meta[0] is |
| ** read-only and may not be written. |
| */ |
| int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ |
| BtShared *pBt = p->pBt; |
| unsigned char *pP1; |
| int rc; |
| assert( idx>=1 && idx<=15 ); |
| if( p->inTrans!=TRANS_WRITE ){ |
| return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
| } |
| assert( pBt->pPage1!=0 ); |
| pP1 = pBt->pPage1->aData; |
| rc = sqlite3pager_write(pP1); |
| if( rc ) return rc; |
| put4byte(&pP1[36 + idx*4], iMeta); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Return the flag byte at the beginning of the page that the cursor |
| ** is currently pointing to. |
| */ |
| int sqlite3BtreeFlags(BtCursor *pCur){ |
| /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call |
| ** restoreCursorPosition() here. |
| */ |
| MemPage *pPage = pCur->pPage; |
| return pPage ? pPage->aData[pPage->hdrOffset] : 0; |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Print a disassembly of the given page on standard output. This routine |
| ** is used for debugging and testing only. |
| */ |
| static int btreePageDump(BtShared *pBt, int pgno, int recursive, MemPage *pParent){ |
| int rc; |
| MemPage *pPage; |
| int i, j, c; |
| int nFree; |
| u16 idx; |
| int hdr; |
| int nCell; |
| int isInit; |
| unsigned char *data; |
| char range[20]; |
| unsigned char payload[20]; |
| |
| rc = getPage(pBt, (Pgno)pgno, &pPage); |
| isInit = pPage->isInit; |
| if( pPage->isInit==0 ){ |
| initPage(pPage, pParent); |
| } |
| if( rc ){ |
| return rc; |
| } |
| hdr = pPage->hdrOffset; |
| data = pPage->aData; |
| c = data[hdr]; |
| pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0; |
| pPage->zeroData = (c & PTF_ZERODATA)!=0; |
| pPage->leafData = (c & PTF_LEAFDATA)!=0; |
| pPage->leaf = (c & PTF_LEAF)!=0; |
| pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); |
| nCell = get2byte(&data[hdr+3]); |
| sqlite3DebugPrintf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno, |
| data[hdr], data[hdr+7], |
| (pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0); |
| assert( hdr == (pgno==1 ? 100 : 0) ); |
| idx = hdr + 12 - pPage->leaf*4; |
| for(i=0; i<nCell; i++){ |
| CellInfo info; |
| Pgno child; |
| unsigned char *pCell; |
| int sz; |
| int addr; |
| |
| addr = get2byte(&data[idx + 2*i]); |
| pCell = &data[addr]; |
| parseCellPtr(pPage, pCell, &info); |
| sz = info.nSize; |
| sprintf(range,"%d..%d", addr, addr+sz-1); |
| if( pPage->leaf ){ |
| child = 0; |
| }else{ |
| child = get4byte(pCell); |
| } |
| sz = info.nData; |
| if( !pPage->intKey ) sz += info.nKey; |
| if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1; |
| memcpy(payload, &pCell[info.nHeader], sz); |
| for(j=0; j<sz; j++){ |
| if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.'; |
| } |
| payload[sz] = 0; |
| sqlite3DebugPrintf( |
| "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n", |
| i, range, child, info.nKey, info.nData, payload |
| ); |
| } |
| if( !pPage->leaf ){ |
| sqlite3DebugPrintf("right_child: %d\n", get4byte(&data[hdr+8])); |
| } |
| nFree = 0; |
| i = 0; |
| idx = get2byte(&data[hdr+1]); |
| while( idx>0 && idx<pPage->pBt->usableSize ){ |
| int sz = get2byte(&data[idx+2]); |
| sprintf(range,"%d..%d", idx, idx+sz-1); |
| nFree += sz; |
| sqlite3DebugPrintf("freeblock %2d: i=%-10s size=%-4d total=%d\n", |
| i, range, sz, nFree); |
| idx = get2byte(&data[idx]); |
| i++; |
| } |
| if( idx!=0 ){ |
| sqlite3DebugPrintf("ERROR: next freeblock index out of range: %d\n", idx); |
| } |
| if( recursive && !pPage->leaf ){ |
| for(i=0; i<nCell; i++){ |
| unsigned char *pCell = findCell(pPage, i); |
| btreePageDump(pBt, get4byte(pCell), 1, pPage); |
| idx = get2byte(pCell); |
| } |
| btreePageDump(pBt, get4byte(&data[hdr+8]), 1, pPage); |
| } |
| pPage->isInit = isInit; |
| sqlite3pager_unref(data); |
| fflush(stdout); |
| return SQLITE_OK; |
| } |
| int sqlite3BtreePageDump(Btree *p, int pgno, int recursive){ |
| return btreePageDump(p->pBt, pgno, recursive, 0); |
| } |
| #endif |
| |
| #ifdef SQLITE_TEST |
| /* |
| ** Fill aResult[] with information about the entry and page that the |
| ** cursor is pointing to. |
| ** |
| ** aResult[0] = The page number |
| ** aResult[1] = The entry number |
| ** aResult[2] = Total number of entries on this page |
| ** aResult[3] = Cell size (local payload + header) |
| ** aResult[4] = Number of free bytes on this page |
| ** aResult[5] = Number of free blocks on the page |
| ** aResult[6] = Total payload size (local + overflow) |
| ** aResult[7] = Header size in bytes |
| ** aResult[8] = Local payload size |
| ** aResult[9] = Parent page number |
| ** |
| ** This routine is used for testing and debugging only. |
| */ |
| int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){ |
| int cnt, idx; |
| MemPage *pPage = pCur->pPage; |
| BtCursor tmpCur; |
| |
| int rc = restoreCursorPosition(pCur, 1); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| pageIntegrity(pPage); |
| assert( pPage->isInit ); |
| getTempCursor(pCur, &tmpCur); |
| while( upCnt-- ){ |
| moveToParent(&tmpCur); |
| } |
| pPage = tmpCur.pPage; |
| pageIntegrity(pPage); |
| aResult[0] = sqlite3pager_pagenumber(pPage->aData); |
| assert( aResult[0]==pPage->pgno ); |
| aResult[1] = tmpCur.idx; |
| aResult[2] = pPage->nCell; |
| if( tmpCur.idx>=0 && tmpCur.idx<pPage->nCell ){ |
| getCellInfo(&tmpCur); |
| aResult[3] = tmpCur.info.nSize; |
| aResult[6] = tmpCur.info.nData; |
| aResult[7] = tmpCur.info.nHeader; |
| aResult[8] = tmpCur.info.nLocal; |
| }else{ |
| aResult[3] = 0; |
| aResult[6] = 0; |
| aResult[7] = 0; |
| aResult[8] = 0; |
| } |
| aResult[4] = pPage->nFree; |
| cnt = 0; |
| idx = get2byte(&pPage->aData[pPage->hdrOffset+1]); |
| while( idx>0 && idx<pPage->pBt->usableSize ){ |
| cnt++; |
| idx = get2byte(&pPage->aData[idx]); |
| } |
| aResult[5] = cnt; |
| if( pPage->pParent==0 || isRootPage(pPage) ){ |
| aResult[9] = 0; |
| }else{ |
| aResult[9] = pPage->pParent->pgno; |
| } |
| releaseTempCursor(&tmpCur); |
| return SQLITE_OK; |
| } |
| #endif |
| |
| /* |
| ** Return the pager associated with a BTree. This routine is used for |
| ** testing and debugging only. |
| */ |
| Pager *sqlite3BtreePager(Btree *p){ |
| return p->pBt->pPager; |
| } |
| |
| /* |
| ** This structure is passed around through all the sanity checking routines |
| ** in order to keep track of some global state information. |
| */ |
| typedef struct IntegrityCk IntegrityCk; |
| struct IntegrityCk { |
| BtShared *pBt; /* The tree being checked out */ |
| Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ |
| int nPage; /* Number of pages in the database */ |
| int *anRef; /* Number of times each page is referenced */ |
| char *zErrMsg; /* An error message. NULL of no errors seen. */ |
| }; |
| |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| /* |
| ** Append a message to the error message string. |
| */ |
| static void checkAppendMsg( |
| IntegrityCk *pCheck, |
| char *zMsg1, |
| const char *zFormat, |
| ... |
| ){ |
| va_list ap; |
| char *zMsg2; |
| va_start(ap, zFormat); |
| zMsg2 = sqlite3VMPrintf(zFormat, ap); |
| va_end(ap); |
| if( zMsg1==0 ) zMsg1 = ""; |
| if( pCheck->zErrMsg ){ |
| char *zOld = pCheck->zErrMsg; |
| pCheck->zErrMsg = 0; |
| sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0); |
| sqliteFree(zOld); |
| }else{ |
| sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0); |
| } |
| sqliteFree(zMsg2); |
| } |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| /* |
| ** Add 1 to the reference count for page iPage. If this is the second |
| ** reference to the page, add an error message to pCheck->zErrMsg. |
| ** Return 1 if there are 2 ore more references to the page and 0 if |
| ** if this is the first reference to the page. |
| ** |
| ** Also check that the page number is in bounds. |
| */ |
| static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){ |
| if( iPage==0 ) return 1; |
| if( iPage>pCheck->nPage || iPage<0 ){ |
| checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage); |
| return 1; |
| } |
| if( pCheck->anRef[iPage]==1 ){ |
| checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage); |
| return 1; |
| } |
| return (pCheck->anRef[iPage]++)>1; |
| } |
| |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| /* |
| ** Check that the entry in the pointer-map for page iChild maps to |
| ** page iParent, pointer type ptrType. If not, append an error message |
| ** to pCheck. |
| */ |
| static void checkPtrmap( |
| IntegrityCk *pCheck, /* Integrity check context */ |
| Pgno iChild, /* Child page number */ |
| u8 eType, /* Expected pointer map type */ |
| Pgno iParent, /* Expected pointer map parent page number */ |
| char *zContext /* Context description (used for error msg) */ |
| ){ |
| int rc; |
| u8 ePtrmapType; |
| Pgno iPtrmapParent; |
| |
| rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); |
| if( rc!=SQLITE_OK ){ |
| checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild); |
| return; |
| } |
| |
| if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ |
| checkAppendMsg(pCheck, zContext, |
| "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", |
| iChild, eType, iParent, ePtrmapType, iPtrmapParent); |
| } |
| } |
| #endif |
| |
| /* |
| ** Check the integrity of the freelist or of an overflow page list. |
| ** Verify that the number of pages on the list is N. |
| */ |
| static void checkList( |
| IntegrityCk *pCheck, /* Integrity checking context */ |
| int isFreeList, /* True for a freelist. False for overflow page list */ |
| int iPage, /* Page number for first page in the list */ |
| int N, /* Expected number of pages in the list */ |
| char *zContext /* Context for error messages */ |
| ){ |
| int i; |
| int expected = N; |
| int iFirst = iPage; |
| while( N-- > 0 ){ |
| unsigned char *pOvfl; |
| if( iPage<1 ){ |
| checkAppendMsg(pCheck, zContext, |
| "%d of %d pages missing from overflow list starting at %d", |
| N+1, expected, iFirst); |
| break; |
| } |
| if( checkRef(pCheck, iPage, zContext) ) break; |
| if( sqlite3pager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){ |
| checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage); |
| break; |
| } |
| if( isFreeList ){ |
| int n = get4byte(&pOvfl[4]); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pCheck->pBt->autoVacuum ){ |
| checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext); |
| } |
| #endif |
| if( n>pCheck->pBt->usableSize/4-8 ){ |
| checkAppendMsg(pCheck, zContext, |
| "freelist leaf count too big on page %d", iPage); |
| N--; |
| }else{ |
| for(i=0; i<n; i++){ |
| Pgno iFreePage = get4byte(&pOvfl[8+i*4]); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pCheck->pBt->autoVacuum ){ |
| checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext); |
| } |
| #endif |
| checkRef(pCheck, iFreePage, zContext); |
| } |
| N -= n; |
| } |
| } |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| else{ |
| /* If this database supports auto-vacuum and iPage is not the last |
| ** page in this overflow list, check that the pointer-map entry for |
| ** the following page matches iPage. |
| */ |
| if( pCheck->pBt->autoVacuum && N>0 ){ |
| i = get4byte(pOvfl); |
| checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext); |
| } |
| } |
| #endif |
| iPage = get4byte(pOvfl); |
| sqlite3pager_unref(pOvfl); |
| } |
| } |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| /* |
| ** Do various sanity checks on a single page of a tree. Return |
| ** the tree depth. Root pages return 0. Parents of root pages |
| ** return 1, and so forth. |
| ** |
| ** These checks are done: |
| ** |
| ** 1. Make sure that cells and freeblocks do not overlap |
| ** but combine to completely cover the page. |
| ** NO 2. Make sure cell keys are in order. |
| ** NO 3. Make sure no key is less than or equal to zLowerBound. |
| ** NO 4. Make sure no key is greater than or equal to zUpperBound. |
| ** 5. Check the integrity of overflow pages. |
| ** 6. Recursively call checkTreePage on all children. |
| ** 7. Verify that the depth of all children is the same. |
| ** 8. Make sure this page is at least 33% full or else it is |
| ** the root of the tree. |
| */ |
| static int checkTreePage( |
| IntegrityCk *pCheck, /* Context for the sanity check */ |
| int iPage, /* Page number of the page to check */ |
| MemPage *pParent, /* Parent page */ |
| char *zParentContext, /* Parent context */ |
| char *zLowerBound, /* All keys should be greater than this, if not NULL */ |
| int nLower, /* Number of characters in zLowerBound */ |
| char *zUpperBound, /* All keys should be less than this, if not NULL */ |
| int nUpper /* Number of characters in zUpperBound */ |
| ){ |
| MemPage *pPage; |
| int i, rc, depth, d2, pgno, cnt; |
| int hdr, cellStart; |
| int nCell; |
| u8 *data; |
| BtShared *pBt; |
| int usableSize; |
| char zContext[100]; |
| char *hit; |
| |
| sprintf(zContext, "Page %d: ", iPage); |
| |
| /* Check that the page exists |
| */ |
| pBt = pCheck->pBt; |
| usableSize = pBt->usableSize; |
| if( iPage==0 ) return 0; |
| if( checkRef(pCheck, iPage, zParentContext) ) return 0; |
| if( (rc = getPage(pBt, (Pgno)iPage, &pPage))!=0 ){ |
| checkAppendMsg(pCheck, zContext, |
| "unable to get the page. error code=%d", rc); |
| return 0; |
| } |
| if( (rc = initPage(pPage, pParent))!=0 ){ |
| checkAppendMsg(pCheck, zContext, "initPage() returns error code %d", rc); |
| releasePage(pPage); |
| return 0; |
| } |
| |
| /* Check out all the cells. |
| */ |
| depth = 0; |
| for(i=0; i<pPage->nCell; i++){ |
| u8 *pCell; |
| int sz; |
| CellInfo info; |
| |
| /* Check payload overflow pages |
| */ |
| sprintf(zContext, "On tree page %d cell %d: ", iPage, i); |
| pCell = findCell(pPage,i); |
| parseCellPtr(pPage, pCell, &info); |
| sz = info.nData; |
| if( !pPage->intKey ) sz += info.nKey; |
| if( sz>info.nLocal ){ |
| int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); |
| Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext); |
| } |
| #endif |
| checkList(pCheck, 0, pgnoOvfl, nPage, zContext); |
| } |
| |
| /* Check sanity of left child page. |
| */ |
| if( !pPage->leaf ){ |
| pgno = get4byte(pCell); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); |
| } |
| #endif |
| d2 = checkTreePage(pCheck,pgno,pPage,zContext,0,0,0,0); |
| if( i>0 && d2!=depth ){ |
| checkAppendMsg(pCheck, zContext, "Child page depth differs"); |
| } |
| depth = d2; |
| } |
| } |
| if( !pPage->leaf ){ |
| pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| sprintf(zContext, "On page %d at right child: ", iPage); |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum ){ |
| checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0); |
| } |
| #endif |
| checkTreePage(pCheck, pgno, pPage, zContext,0,0,0,0); |
| } |
| |
| /* Check for complete coverage of the page |
| */ |
| data = pPage->aData; |
| hdr = pPage->hdrOffset; |
| hit = sqliteMalloc( usableSize ); |
| if( hit ){ |
| memset(hit, 1, get2byte(&data[hdr+5])); |
| nCell = get2byte(&data[hdr+3]); |
| cellStart = hdr + 12 - 4*pPage->leaf; |
| for(i=0; i<nCell; i++){ |
| int pc = get2byte(&data[cellStart+i*2]); |
| int size = cellSizePtr(pPage, &data[pc]); |
| int j; |
| if( (pc+size-1)>=usableSize || pc<0 ){ |
| checkAppendMsg(pCheck, 0, |
| "Corruption detected in cell %d on page %d",i,iPage,0); |
| }else{ |
| for(j=pc+size-1; j>=pc; j--) hit[j]++; |
| } |
| } |
| for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; |
| cnt++){ |
| int size = get2byte(&data[i+2]); |
| int j; |
| if( (i+size-1)>=usableSize || i<0 ){ |
| checkAppendMsg(pCheck, 0, |
| "Corruption detected in cell %d on page %d",i,iPage,0); |
| }else{ |
| for(j=i+size-1; j>=i; j--) hit[j]++; |
| } |
| i = get2byte(&data[i]); |
| } |
| for(i=cnt=0; i<usableSize; i++){ |
| if( hit[i]==0 ){ |
| cnt++; |
| }else if( hit[i]>1 ){ |
| checkAppendMsg(pCheck, 0, |
| "Multiple uses for byte %d of page %d", i, iPage); |
| break; |
| } |
| } |
| if( cnt!=data[hdr+7] ){ |
| checkAppendMsg(pCheck, 0, |
| "Fragmented space is %d byte reported as %d on page %d", |
| cnt, data[hdr+7], iPage); |
| } |
| } |
| sqliteFree(hit); |
| |
| releasePage(pPage); |
| return depth+1; |
| } |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| /* |
| ** This routine does a complete check of the given BTree file. aRoot[] is |
| ** an array of pages numbers were each page number is the root page of |
| ** a table. nRoot is the number of entries in aRoot. |
| ** |
| ** If everything checks out, this routine returns NULL. If something is |
| ** amiss, an error message is written into memory obtained from malloc() |
| ** and a pointer to that error message is returned. The calling function |
| ** is responsible for freeing the error message when it is done. |
| */ |
| char *sqlite3BtreeIntegrityCheck(Btree *p, int *aRoot, int nRoot){ |
| int i; |
| int nRef; |
| IntegrityCk sCheck; |
| BtShared *pBt = p->pBt; |
| |
| nRef = *sqlite3pager_stats(pBt->pPager); |
| if( lockBtreeWithRetry(p)!=SQLITE_OK ){ |
| return sqliteStrDup("Unable to acquire a read lock on the database"); |
| } |
| sCheck.pBt = pBt; |
| sCheck.pPager = pBt->pPager; |
| sCheck.nPage = sqlite3pager_pagecount(sCheck.pPager); |
| if( sCheck.nPage==0 ){ |
| unlockBtreeIfUnused(pBt); |
| return 0; |
| } |
| sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) ); |
| if( !sCheck.anRef ){ |
| unlockBtreeIfUnused(pBt); |
| return sqlite3MPrintf("Unable to malloc %d bytes", |
| (sCheck.nPage+1)*sizeof(sCheck.anRef[0])); |
| } |
| for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } |
| i = PENDING_BYTE_PAGE(pBt); |
| if( i<=sCheck.nPage ){ |
| sCheck.anRef[i] = 1; |
| } |
| sCheck.zErrMsg = 0; |
| |
| /* Check the integrity of the freelist |
| */ |
| checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), |
| get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); |
| |
| /* Check all the tables. |
| */ |
| for(i=0; i<nRoot; i++){ |
| if( aRoot[i]==0 ) continue; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| if( pBt->autoVacuum && aRoot[i]>1 ){ |
| checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0); |
| } |
| #endif |
| checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0); |
| } |
| |
| /* Make sure every page in the file is referenced |
| */ |
| for(i=1; i<=sCheck.nPage; i++){ |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| if( sCheck.anRef[i]==0 ){ |
| checkAppendMsg(&sCheck, 0, "Page %d is never used", i); |
| } |
| #else |
| /* If the database supports auto-vacuum, make sure no tables contain |
| ** references to pointer-map pages. |
| */ |
| if( sCheck.anRef[i]==0 && |
| (PTRMAP_PAGENO(pBt->usableSize, i)!=i || !pBt->autoVacuum) ){ |
| checkAppendMsg(&sCheck, 0, "Page %d is never used", i); |
| } |
| if( sCheck.anRef[i]!=0 && |
| (PTRMAP_PAGENO(pBt->usableSize, i)==i && pBt->autoVacuum) ){ |
| checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i); |
| } |
| #endif |
| } |
| |
| /* Make sure this analysis did not leave any unref() pages |
| */ |
| unlockBtreeIfUnused(pBt); |
| if( nRef != *sqlite3pager_stats(pBt->pPager) ){ |
| checkAppendMsg(&sCheck, 0, |
| "Outstanding page count goes from %d to %d during this analysis", |
| nRef, *sqlite3pager_stats(pBt->pPager) |
| ); |
| } |
| |
| /* Clean up and report errors. |
| */ |
| sqliteFree(sCheck.anRef); |
| return sCheck.zErrMsg; |
| } |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| |
| /* |
| ** Return the full pathname of the underlying database file. |
| */ |
| const char *sqlite3BtreeGetFilename(Btree *p){ |
| assert( p->pBt->pPager!=0 ); |
| return sqlite3pager_filename(p->pBt->pPager); |
| } |
| |
| /* |
| ** Return the pathname of the directory that contains the database file. |
| */ |
| const char *sqlite3BtreeGetDirname(Btree *p){ |
| assert( p->pBt->pPager!=0 ); |
| return sqlite3pager_dirname(p->pBt->pPager); |
| } |
| |
| /* |
| ** Return the pathname of the journal file for this database. The return |
| ** value of this routine is the same regardless of whether the journal file |
| ** has been created or not. |
| */ |
| const char *sqlite3BtreeGetJournalname(Btree *p){ |
| assert( p->pBt->pPager!=0 ); |
| return sqlite3pager_journalname(p->pBt->pPager); |
| } |
| |
| #ifndef SQLITE_OMIT_VACUUM |
| /* |
| ** Copy the complete content of pBtFrom into pBtTo. A transaction |
| ** must be active for both files. |
| ** |
| ** The size of file pBtFrom may be reduced by this operation. |
| ** If anything goes wrong, the transaction on pBtFrom is rolled back. |
| */ |
| int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){ |
| int rc = SQLITE_OK; |
| Pgno i, nPage, nToPage, iSkip; |
| |
| BtShared *pBtTo = pTo->pBt; |
| BtShared *pBtFrom = pFrom->pBt; |
| |
| if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){ |
| return SQLITE_ERROR; |
| } |
| if( pBtTo->pCursor ) return SQLITE_BUSY; |
| nToPage = sqlite3pager_pagecount(pBtTo->pPager); |
| nPage = sqlite3pager_pagecount(pBtFrom->pPager); |
| iSkip = PENDING_BYTE_PAGE(pBtTo); |
| for(i=1; rc==SQLITE_OK && i<=nPage; i++){ |
| void *pPage; |
| if( i==iSkip ) continue; |
| rc = sqlite3pager_get(pBtFrom->pPager, i, &pPage); |
| if( rc ) break; |
| rc = sqlite3pager_overwrite(pBtTo->pPager, i, pPage); |
| if( rc ) break; |
| sqlite3pager_unref(pPage); |
| } |
| for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){ |
| void *pPage; |
| if( i==iSkip ) continue; |
| rc = sqlite3pager_get(pBtTo->pPager, i, &pPage); |
| if( rc ) break; |
| rc = sqlite3pager_write(pPage); |
| sqlite3pager_unref(pPage); |
| sqlite3pager_dont_write(pBtTo->pPager, i); |
| } |
| if( !rc && nPage<nToPage ){ |
| rc = sqlite3pager_truncate(pBtTo->pPager, nPage); |
| } |
| if( rc ){ |
| sqlite3BtreeRollback(pTo); |
| } |
| return rc; |
| } |
| #endif /* SQLITE_OMIT_VACUUM */ |
| |
| /* |
| ** Return non-zero if a transaction is active. |
| */ |
| int sqlite3BtreeIsInTrans(Btree *p){ |
| return (p && (p->inTrans==TRANS_WRITE)); |
| } |
| |
| /* |
| ** Return non-zero if a statement transaction is active. |
| */ |
| int sqlite3BtreeIsInStmt(Btree *p){ |
| return (p->pBt && p->pBt->inStmt); |
| } |
| |
| /* |
| ** This call is a no-op if no write-transaction is currently active on pBt. |
| ** |
| ** Otherwise, sync the database file for the btree pBt. zMaster points to |
| ** the name of a master journal file that should be written into the |
| ** individual journal file, or is NULL, indicating no master journal file |
| ** (single database transaction). |
| ** |
| ** When this is called, the master journal should already have been |
| ** created, populated with this journal pointer and synced to disk. |
| ** |
| ** Once this is routine has returned, the only thing required to commit |
| ** the write-transaction for this database file is to delete the journal. |
| */ |
| int sqlite3BtreeSync(Btree *p, const char *zMaster){ |
| if( p->inTrans==TRANS_WRITE ){ |
| BtShared *pBt = p->pBt; |
| #ifndef SQLITE_OMIT_AUTOVACUUM |
| Pgno nTrunc = 0; |
| if( pBt->autoVacuum ){ |
| int rc = autoVacuumCommit(pBt, &nTrunc); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| return sqlite3pager_sync(pBt->pPager, zMaster, nTrunc); |
| #endif |
| return sqlite3pager_sync(pBt->pPager, zMaster, 0); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** This function returns a pointer to a blob of memory associated with |
| ** a single shared-btree. The memory is used by client code for it's own |
| ** purposes (for example, to store a high-level schema associated with |
| ** the shared-btree). The btree layer manages reference counting issues. |
| ** |
| ** The first time this is called on a shared-btree, nBytes bytes of memory |
| ** are allocated, zeroed, and returned to the caller. For each subsequent |
| ** call the nBytes parameter is ignored and a pointer to the same blob |
| ** of memory returned. |
| ** |
| ** Just before the shared-btree is closed, the function passed as the |
| ** xFree argument when the memory allocation was made is invoked on the |
| ** blob of allocated memory. This function should not call sqliteFree() |
| ** on the memory, the btree layer does that. |
| */ |
| void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ |
| BtShared *pBt = p->pBt; |
| if( !pBt->pSchema ){ |
| pBt->pSchema = sqliteMalloc(nBytes); |
| pBt->xFreeSchema = xFree; |
| } |
| return pBt->pSchema; |
| } |
| |
| /* |
| ** Return true if another user of the same shared btree as the argument |
| ** handle holds an exclusive lock on the sqlite_master table. |
| */ |
| int sqlite3BtreeSchemaLocked(Btree *p){ |
| return (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK); |
| } |
| |
| int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ |
| int rc = SQLITE_OK; |
| #ifndef SQLITE_OMIT_SHARED_CACHE |
| u8 lockType = (isWriteLock?WRITE_LOCK:READ_LOCK); |
| rc = queryTableLock(p, iTab, lockType); |
| if( rc==SQLITE_OK ){ |
| rc = lockTable(p, iTab, lockType); |
| } |
| #endif |
| return rc; |
| } |
| |
| #if defined(SQLITE_TEST) && !defined(NO_TCL) |
| #include <tcl.h> |
| int sqlite3_shared_cache_report( |
| void * clientData, |
| Tcl_Interp *interp, |
| int objc, |
| Tcl_Obj *CONST objv[] |
| ){ |
| ThreadData *pTd = sqlite3ThreadData(); |
| if( pTd->useSharedData ){ |
| BtShared *pBt; |
| Tcl_Obj *pRet = Tcl_NewObj(); |
| for(pBt=pTd->pBtree; pBt; pBt=pBt->pNext){ |
| const char *zFile = sqlite3pager_filename(pBt->pPager); |
| Tcl_ListObjAppendElement(interp, pRet, Tcl_NewStringObj(zFile, -1)); |
| Tcl_ListObjAppendElement(interp, pRet, Tcl_NewIntObj(pBt->nRef)); |
| } |
| Tcl_SetObjResult(interp, pRet); |
| } |
| return TCL_OK; |
| } |
| #endif |
| |