| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains routines used for analyzing expressions and |
| ** for generating VDBE code that evaluates expressions in SQLite. |
| ** |
| ** $Id: expr.c,v 1.97 2003/07/20 01:16:47 drh Exp $ |
| */ |
| #include "sqliteInt.h" |
| #include <ctype.h> |
| |
| /* |
| ** Construct a new expression node and return a pointer to it. Memory |
| ** for this node is obtained from sqliteMalloc(). The calling function |
| ** is responsible for making sure the node eventually gets freed. |
| */ |
| Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){ |
| Expr *pNew; |
| pNew = sqliteMalloc( sizeof(Expr) ); |
| if( pNew==0 ){ |
| sqliteExprDelete(pLeft); |
| sqliteExprDelete(pRight); |
| return 0; |
| } |
| pNew->op = op; |
| pNew->pLeft = pLeft; |
| pNew->pRight = pRight; |
| if( pToken ){ |
| assert( pToken->dyn==0 ); |
| pNew->token = *pToken; |
| pNew->span = *pToken; |
| }else{ |
| pNew->token.dyn = 0; |
| pNew->token.z = 0; |
| pNew->token.n = 0; |
| if( pLeft && pRight ){ |
| sqliteExprSpan(pNew, &pLeft->span, &pRight->span); |
| }else{ |
| pNew->span = pNew->token; |
| } |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Set the Expr.span field of the given expression to span all |
| ** text between the two given tokens. |
| */ |
| void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ |
| if( pExpr && pRight && pRight->z && pLeft && pLeft->z ){ |
| if( pLeft->dyn==0 && pRight->dyn==0 ){ |
| pExpr->span.z = pLeft->z; |
| pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z); |
| }else{ |
| pExpr->span.z = 0; |
| pExpr->span.n = 0; |
| pExpr->span.dyn = 0; |
| } |
| } |
| } |
| |
| /* |
| ** Construct a new expression node for a function with multiple |
| ** arguments. |
| */ |
| Expr *sqliteExprFunction(ExprList *pList, Token *pToken){ |
| Expr *pNew; |
| pNew = sqliteMalloc( sizeof(Expr) ); |
| if( pNew==0 ){ |
| sqliteExprListDelete(pList); |
| return 0; |
| } |
| pNew->op = TK_FUNCTION; |
| pNew->pList = pList; |
| pNew->token.dyn = 0; |
| if( pToken ){ |
| assert( pToken->dyn==0 ); |
| pNew->token = *pToken; |
| }else{ |
| pNew->token.z = 0; |
| pNew->token.n = 0; |
| } |
| pNew->span = pNew->token; |
| return pNew; |
| } |
| |
| /* |
| ** Recursively delete an expression tree. |
| */ |
| void sqliteExprDelete(Expr *p){ |
| if( p==0 ) return; |
| if( p->span.dyn && p->span.z ) sqliteFree((char*)p->span.z); |
| if( p->token.dyn && p->token.z ) sqliteFree((char*)p->token.z); |
| if( p->pLeft ) sqliteExprDelete(p->pLeft); |
| if( p->pRight ) sqliteExprDelete(p->pRight); |
| if( p->pList ) sqliteExprListDelete(p->pList); |
| if( p->pSelect ) sqliteSelectDelete(p->pSelect); |
| sqliteFree(p); |
| } |
| |
| |
| /* |
| ** The following group of routines make deep copies of expressions, |
| ** expression lists, ID lists, and select statements. The copies can |
| ** be deleted (by being passed to their respective ...Delete() routines) |
| ** without effecting the originals. |
| ** |
| ** The expression list, ID, and source lists return by sqliteExprListDup(), |
| ** sqliteIdListDup(), and sqliteSrcListDup() can not be further expanded |
| ** by subsequent calls to sqlite*ListAppend() routines. |
| ** |
| ** Any tables that the SrcList might point to are not duplicated. |
| */ |
| Expr *sqliteExprDup(Expr *p){ |
| Expr *pNew; |
| if( p==0 ) return 0; |
| pNew = sqliteMallocRaw( sizeof(*p) ); |
| if( pNew==0 ) return 0; |
| memcpy(pNew, p, sizeof(*pNew)); |
| if( p->token.z!=0 ){ |
| pNew->token.z = sqliteStrDup(p->token.z); |
| pNew->token.dyn = 1; |
| }else{ |
| pNew->token.z = 0; |
| pNew->token.n = 0; |
| pNew->token.dyn = 0; |
| } |
| pNew->span.z = 0; |
| pNew->span.n = 0; |
| pNew->span.dyn = 0; |
| pNew->pLeft = sqliteExprDup(p->pLeft); |
| pNew->pRight = sqliteExprDup(p->pRight); |
| pNew->pList = sqliteExprListDup(p->pList); |
| pNew->pSelect = sqliteSelectDup(p->pSelect); |
| return pNew; |
| } |
| void sqliteTokenCopy(Token *pTo, Token *pFrom){ |
| if( pTo->dyn ) sqliteFree((char*)pTo->z); |
| if( pFrom->z ){ |
| pTo->n = pFrom->n; |
| pTo->z = sqliteStrNDup(pFrom->z, pFrom->n); |
| pTo->dyn = 1; |
| }else{ |
| pTo->n = 0; |
| pTo->z = 0; |
| pTo->dyn = 0; |
| } |
| } |
| ExprList *sqliteExprListDup(ExprList *p){ |
| ExprList *pNew; |
| int i; |
| if( p==0 ) return 0; |
| pNew = sqliteMalloc( sizeof(*pNew) ); |
| if( pNew==0 ) return 0; |
| pNew->nExpr = p->nExpr; |
| pNew->a = sqliteMalloc( p->nExpr*sizeof(p->a[0]) ); |
| if( pNew->a==0 ) return 0; |
| for(i=0; i<p->nExpr; i++){ |
| Expr *pNewExpr, *pOldExpr; |
| pNew->a[i].pExpr = pNewExpr = sqliteExprDup(pOldExpr = p->a[i].pExpr); |
| if( pOldExpr->span.z!=0 && pNewExpr ){ |
| /* Always make a copy of the span for top-level expressions in the |
| ** expression list. The logic in SELECT processing that determines |
| ** the names of columns in the result set needs this information */ |
| sqliteTokenCopy(&pNewExpr->span, &pOldExpr->span); |
| } |
| assert( pNewExpr==0 || pNewExpr->span.z!=0 |
| || pOldExpr->span.z==0 || sqlite_malloc_failed ); |
| pNew->a[i].zName = sqliteStrDup(p->a[i].zName); |
| pNew->a[i].sortOrder = p->a[i].sortOrder; |
| pNew->a[i].isAgg = p->a[i].isAgg; |
| pNew->a[i].done = 0; |
| } |
| return pNew; |
| } |
| SrcList *sqliteSrcListDup(SrcList *p){ |
| SrcList *pNew; |
| int i; |
| int nByte; |
| if( p==0 ) return 0; |
| nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); |
| pNew = sqliteMalloc( nByte ); |
| if( pNew==0 ) return 0; |
| pNew->nSrc = p->nSrc; |
| for(i=0; i<p->nSrc; i++){ |
| pNew->a[i].zDatabase = sqliteStrDup(p->a[i].zDatabase); |
| pNew->a[i].zName = sqliteStrDup(p->a[i].zName); |
| pNew->a[i].zAlias = sqliteStrDup(p->a[i].zAlias); |
| pNew->a[i].jointype = p->a[i].jointype; |
| pNew->a[i].iCursor = p->a[i].iCursor; |
| pNew->a[i].pTab = 0; |
| pNew->a[i].pSelect = sqliteSelectDup(p->a[i].pSelect); |
| pNew->a[i].pOn = sqliteExprDup(p->a[i].pOn); |
| pNew->a[i].pUsing = sqliteIdListDup(p->a[i].pUsing); |
| } |
| return pNew; |
| } |
| IdList *sqliteIdListDup(IdList *p){ |
| IdList *pNew; |
| int i; |
| if( p==0 ) return 0; |
| pNew = sqliteMalloc( sizeof(*pNew) ); |
| if( pNew==0 ) return 0; |
| pNew->nId = p->nId; |
| pNew->a = sqliteMalloc( p->nId*sizeof(p->a[0]) ); |
| if( pNew->a==0 ) return 0; |
| for(i=0; i<p->nId; i++){ |
| pNew->a[i].zName = sqliteStrDup(p->a[i].zName); |
| pNew->a[i].idx = p->a[i].idx; |
| } |
| return pNew; |
| } |
| Select *sqliteSelectDup(Select *p){ |
| Select *pNew; |
| if( p==0 ) return 0; |
| pNew = sqliteMalloc( sizeof(*p) ); |
| if( pNew==0 ) return 0; |
| pNew->isDistinct = p->isDistinct; |
| pNew->pEList = sqliteExprListDup(p->pEList); |
| pNew->pSrc = sqliteSrcListDup(p->pSrc); |
| pNew->pWhere = sqliteExprDup(p->pWhere); |
| pNew->pGroupBy = sqliteExprListDup(p->pGroupBy); |
| pNew->pHaving = sqliteExprDup(p->pHaving); |
| pNew->pOrderBy = sqliteExprListDup(p->pOrderBy); |
| pNew->op = p->op; |
| pNew->pPrior = sqliteSelectDup(p->pPrior); |
| pNew->nLimit = p->nLimit; |
| pNew->nOffset = p->nOffset; |
| pNew->zSelect = 0; |
| pNew->iLimit = -1; |
| pNew->iOffset = -1; |
| return pNew; |
| } |
| |
| |
| /* |
| ** Add a new element to the end of an expression list. If pList is |
| ** initially NULL, then create a new expression list. |
| */ |
| ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ |
| int i; |
| if( pList==0 ){ |
| pList = sqliteMalloc( sizeof(ExprList) ); |
| if( pList==0 ){ |
| sqliteExprDelete(pExpr); |
| return 0; |
| } |
| } |
| if( (pList->nExpr & 7)==0 ){ |
| int n = pList->nExpr + 8; |
| struct ExprList_item *a; |
| a = sqliteRealloc(pList->a, n*sizeof(pList->a[0])); |
| if( a==0 ){ |
| sqliteExprDelete(pExpr); |
| return pList; |
| } |
| pList->a = a; |
| } |
| if( pExpr || pName ){ |
| i = pList->nExpr++; |
| pList->a[i].pExpr = pExpr; |
| pList->a[i].zName = 0; |
| if( pName ){ |
| sqliteSetNString(&pList->a[i].zName, pName->z, pName->n, 0); |
| sqliteDequote(pList->a[i].zName); |
| } |
| } |
| return pList; |
| } |
| |
| /* |
| ** Delete an entire expression list. |
| */ |
| void sqliteExprListDelete(ExprList *pList){ |
| int i; |
| if( pList==0 ) return; |
| for(i=0; i<pList->nExpr; i++){ |
| sqliteExprDelete(pList->a[i].pExpr); |
| sqliteFree(pList->a[i].zName); |
| } |
| sqliteFree(pList->a); |
| sqliteFree(pList); |
| } |
| |
| /* |
| ** Walk an expression tree. Return 1 if the expression is constant |
| ** and 0 if it involves variables. |
| ** |
| ** For the purposes of this function, a double-quoted string (ex: "abc") |
| ** is considered a variable but a single-quoted string (ex: 'abc') is |
| ** a constant. |
| */ |
| int sqliteExprIsConstant(Expr *p){ |
| switch( p->op ){ |
| case TK_ID: |
| case TK_COLUMN: |
| case TK_DOT: |
| case TK_FUNCTION: |
| return 0; |
| case TK_NULL: |
| case TK_STRING: |
| case TK_INTEGER: |
| case TK_FLOAT: |
| return 1; |
| default: { |
| if( p->pLeft && !sqliteExprIsConstant(p->pLeft) ) return 0; |
| if( p->pRight && !sqliteExprIsConstant(p->pRight) ) return 0; |
| if( p->pList ){ |
| int i; |
| for(i=0; i<p->pList->nExpr; i++){ |
| if( !sqliteExprIsConstant(p->pList->a[i].pExpr) ) return 0; |
| } |
| } |
| return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0); |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** If the given expression codes a constant integer, return 1 and put |
| ** the value of the integer in *pValue. If the expression is not an |
| ** integer, return 0 and leave *pValue unchanged. |
| */ |
| int sqliteExprIsInteger(Expr *p, int *pValue){ |
| switch( p->op ){ |
| case TK_INTEGER: { |
| *pValue = atoi(p->token.z); |
| return 1; |
| } |
| case TK_STRING: { |
| const char *z = p->token.z; |
| int n = p->token.n; |
| if( n>0 && z[0]=='-' ){ z++; n--; } |
| while( n>0 && *z && isdigit(*z) ){ z++; n--; } |
| if( n==0 ){ |
| *pValue = atoi(p->token.z); |
| return 1; |
| } |
| break; |
| } |
| case TK_UPLUS: { |
| return sqliteExprIsInteger(p->pLeft, pValue); |
| } |
| case TK_UMINUS: { |
| int v; |
| if( sqliteExprIsInteger(p->pLeft, &v) ){ |
| *pValue = -v; |
| return 1; |
| } |
| break; |
| } |
| default: break; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Return TRUE if the given string is a row-id column name. |
| */ |
| int sqliteIsRowid(const char *z){ |
| if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1; |
| if( sqliteStrICmp(z, "ROWID")==0 ) return 1; |
| if( sqliteStrICmp(z, "OID")==0 ) return 1; |
| return 0; |
| } |
| |
| /* |
| ** This routine walks an expression tree and resolves references to |
| ** table columns. Nodes of the form ID.ID or ID resolve into an |
| ** index to the table in the table list and a column offset. The |
| ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable |
| ** value is changed to the index of the referenced table in pTabList |
| ** plus the "base" value. The base value will ultimately become the |
| ** VDBE cursor number for a cursor that is pointing into the referenced |
| ** table. The Expr.iColumn value is changed to the index of the column |
| ** of the referenced table. The Expr.iColumn value for the special |
| ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an |
| ** alias for ROWID. |
| ** |
| ** We also check for instances of the IN operator. IN comes in two |
| ** forms: |
| ** |
| ** expr IN (exprlist) |
| ** and |
| ** expr IN (SELECT ...) |
| ** |
| ** The first form is handled by creating a set holding the list |
| ** of allowed values. The second form causes the SELECT to generate |
| ** a temporary table. |
| ** |
| ** This routine also looks for scalar SELECTs that are part of an expression. |
| ** If it finds any, it generates code to write the value of that select |
| ** into a memory cell. |
| ** |
| ** Unknown columns or tables provoke an error. The function returns |
| ** the number of errors seen and leaves an error message on pParse->zErrMsg. |
| */ |
| int sqliteExprResolveIds( |
| Parse *pParse, /* The parser context */ |
| SrcList *pTabList, /* List of tables used to resolve column names */ |
| ExprList *pEList, /* List of expressions used to resolve "AS" */ |
| Expr *pExpr /* The expression to be analyzed. */ |
| ){ |
| int i; |
| |
| if( pExpr==0 || pTabList==0 ) return 0; |
| for(i=0; i<pTabList->nSrc; i++){ |
| assert( pTabList->a[i].iCursor>=0 && pTabList->a[i].iCursor<pParse->nTab ); |
| } |
| switch( pExpr->op ){ |
| /* Double-quoted strings (ex: "abc") are used as identifiers if |
| ** possible. Otherwise they remain as strings. Single-quoted |
| ** strings (ex: 'abc') are always string literals. |
| */ |
| case TK_STRING: { |
| if( pExpr->token.z[0]=='\'' ) break; |
| /* Fall thru into the TK_ID case if this is a double-quoted string */ |
| } |
| /* A lone identifier. Try and match it as follows: |
| ** |
| ** 1. To the name of a column of one of the tables in pTabList |
| ** |
| ** 2. To the right side of an AS keyword in the column list of |
| ** a SELECT statement. (For example, match against 'x' in |
| ** "SELECT a+b AS 'x' FROM t1".) |
| ** |
| ** 3. One of the special names "ROWID", "OID", or "_ROWID_". |
| */ |
| case TK_ID: { |
| int cnt = 0; /* Number of matches */ |
| char *z; |
| int iDb = -1; |
| |
| assert( pExpr->token.z ); |
| z = sqliteStrNDup(pExpr->token.z, pExpr->token.n); |
| sqliteDequote(z); |
| if( z==0 ) return 1; |
| for(i=0; i<pTabList->nSrc; i++){ |
| int j; |
| Table *pTab = pTabList->a[i].pTab; |
| if( pTab==0 ) continue; |
| iDb = pTab->iDb; |
| assert( pTab->nCol>0 ); |
| for(j=0; j<pTab->nCol; j++){ |
| if( sqliteStrICmp(pTab->aCol[j].zName, z)==0 ){ |
| cnt++; |
| pExpr->iTable = pTabList->a[i].iCursor; |
| pExpr->iDb = pTab->iDb; |
| if( j==pTab->iPKey ){ |
| /* Substitute the record number for the INTEGER PRIMARY KEY */ |
| pExpr->iColumn = -1; |
| pExpr->dataType = SQLITE_SO_NUM; |
| }else{ |
| pExpr->iColumn = j; |
| pExpr->dataType = pTab->aCol[j].sortOrder & SQLITE_SO_TYPEMASK; |
| } |
| pExpr->op = TK_COLUMN; |
| } |
| } |
| } |
| if( cnt==0 && pEList!=0 ){ |
| int j; |
| for(j=0; j<pEList->nExpr; j++){ |
| char *zAs = pEList->a[j].zName; |
| if( zAs!=0 && sqliteStrICmp(zAs, z)==0 ){ |
| cnt++; |
| assert( pExpr->pLeft==0 && pExpr->pRight==0 ); |
| pExpr->op = TK_AS; |
| pExpr->iColumn = j; |
| pExpr->pLeft = sqliteExprDup(pEList->a[j].pExpr); |
| } |
| } |
| } |
| if( cnt==0 && iDb>=0 && sqliteIsRowid(z) ){ |
| pExpr->iColumn = -1; |
| pExpr->iTable = pTabList->a[0].iCursor; |
| pExpr->iDb = iDb; |
| cnt = 1 + (pTabList->nSrc>1); |
| pExpr->op = TK_COLUMN; |
| pExpr->dataType = SQLITE_SO_NUM; |
| } |
| sqliteFree(z); |
| if( cnt==0 && pExpr->token.z[0]!='"' ){ |
| sqliteErrorMsg(pParse, "no such column: %T", &pExpr->token); |
| return 1; |
| }else if( cnt>1 ){ |
| sqliteErrorMsg(pParse, "ambiguous column name: %T", &pExpr->token); |
| return 1; |
| } |
| if( pExpr->op==TK_COLUMN ){ |
| sqliteAuthRead(pParse, pExpr, pTabList); |
| } |
| break; |
| } |
| |
| /* A table name and column name: ID.ID |
| ** Or a database, table and column: ID.ID.ID |
| */ |
| case TK_DOT: { |
| int cnt = 0; /* Number of matches */ |
| int cntTab = 0; /* Number of matching tables */ |
| int i; /* Loop counter */ |
| Expr *pLeft, *pRight; /* Left and right subbranches of the expr */ |
| char *zLeft, *zRight; /* Text of an identifier */ |
| char *zDb; /* Name of database holding table */ |
| sqlite *db = pParse->db; |
| |
| pRight = pExpr->pRight; |
| if( pRight->op==TK_ID ){ |
| pLeft = pExpr->pLeft; |
| zDb = 0; |
| }else{ |
| Expr *pDb = pExpr->pLeft; |
| assert( pDb && pDb->op==TK_ID && pDb->token.z ); |
| zDb = sqliteStrNDup(pDb->token.z, pDb->token.n); |
| pLeft = pRight->pLeft; |
| pRight = pRight->pRight; |
| } |
| assert( pLeft && pLeft->op==TK_ID && pLeft->token.z ); |
| assert( pRight && pRight->op==TK_ID && pRight->token.z ); |
| zLeft = sqliteStrNDup(pLeft->token.z, pLeft->token.n); |
| zRight = sqliteStrNDup(pRight->token.z, pRight->token.n); |
| if( zLeft==0 || zRight==0 ){ |
| sqliteFree(zLeft); |
| sqliteFree(zRight); |
| sqliteFree(zDb); |
| return 1; |
| } |
| sqliteDequote(zDb); |
| sqliteDequote(zLeft); |
| sqliteDequote(zRight); |
| pExpr->iTable = -1; |
| for(i=0; i<pTabList->nSrc; i++){ |
| int j; |
| char *zTab; |
| Table *pTab = pTabList->a[i].pTab; |
| if( pTab==0 ) continue; |
| assert( pTab->nCol>0 ); |
| if( pTabList->a[i].zAlias ){ |
| zTab = pTabList->a[i].zAlias; |
| if( sqliteStrICmp(zTab, zLeft)!=0 ) continue; |
| }else{ |
| zTab = pTab->zName; |
| if( zTab==0 || sqliteStrICmp(zTab, zLeft)!=0 ) continue; |
| if( zDb!=0 && sqliteStrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){ |
| continue; |
| } |
| } |
| if( 0==(cntTab++) ){ |
| pExpr->iTable = pTabList->a[i].iCursor; |
| pExpr->iDb = pTab->iDb; |
| } |
| for(j=0; j<pTab->nCol; j++){ |
| if( sqliteStrICmp(pTab->aCol[j].zName, zRight)==0 ){ |
| cnt++; |
| pExpr->iTable = pTabList->a[i].iCursor; |
| pExpr->iDb = pTab->iDb; |
| /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ |
| pExpr->iColumn = j==pTab->iPKey ? -1 : j; |
| pExpr->dataType = pTab->aCol[j].sortOrder & SQLITE_SO_TYPEMASK; |
| } |
| } |
| } |
| |
| /* If we have not already resolved this *.* expression, then maybe |
| * it is a new.* or old.* trigger argument reference */ |
| if( cnt == 0 && pParse->trigStack != 0 ){ |
| TriggerStack *pTriggerStack = pParse->trigStack; |
| int t = 0; |
| if( pTriggerStack->newIdx != -1 && sqliteStrICmp("new", zLeft) == 0 ){ |
| pExpr->iTable = pTriggerStack->newIdx; |
| assert( pTriggerStack->pTab ); |
| pExpr->iDb = pTriggerStack->pTab->iDb; |
| cntTab++; |
| t = 1; |
| } |
| if( pTriggerStack->oldIdx != -1 && sqliteStrICmp("old", zLeft) == 0 ){ |
| pExpr->iTable = pTriggerStack->oldIdx; |
| assert( pTriggerStack->pTab ); |
| pExpr->iDb = pTriggerStack->pTab->iDb; |
| cntTab++; |
| t = 1; |
| } |
| |
| if( t ){ |
| int j; |
| Table *pTab = pTriggerStack->pTab; |
| for(j=0; j < pTab->nCol; j++) { |
| if( sqliteStrICmp(pTab->aCol[j].zName, zRight)==0 ){ |
| cnt++; |
| pExpr->iColumn = j==pTab->iPKey ? -1 : j; |
| pExpr->dataType = pTab->aCol[j].sortOrder & SQLITE_SO_TYPEMASK; |
| } |
| } |
| } |
| } |
| |
| if( cnt==0 && cntTab==1 && sqliteIsRowid(zRight) ){ |
| cnt = 1; |
| pExpr->iColumn = -1; |
| pExpr->dataType = SQLITE_SO_NUM; |
| } |
| sqliteFree(zDb); |
| sqliteFree(zLeft); |
| sqliteFree(zRight); |
| if( cnt==0 ){ |
| sqliteErrorMsg(pParse, "no such column: %T.%T", |
| &pLeft->token, &pRight->token); |
| return 1; |
| }else if( cnt>1 ){ |
| sqliteErrorMsg(pParse, "ambiguous column name: %T.%T", |
| &pLeft->token, &pRight->token); |
| return 1; |
| } |
| sqliteExprDelete(pExpr->pLeft); |
| pExpr->pLeft = 0; |
| sqliteExprDelete(pExpr->pRight); |
| pExpr->pRight = 0; |
| pExpr->op = TK_COLUMN; |
| sqliteAuthRead(pParse, pExpr, pTabList); |
| break; |
| } |
| |
| case TK_IN: { |
| Vdbe *v = sqliteGetVdbe(pParse); |
| if( v==0 ) return 1; |
| if( sqliteExprResolveIds(pParse, pTabList, pEList, pExpr->pLeft) ){ |
| return 1; |
| } |
| if( pExpr->pSelect ){ |
| /* Case 1: expr IN (SELECT ...) |
| ** |
| ** Generate code to write the results of the select into a temporary |
| ** table. The cursor number of the temporary table has already |
| ** been put in iTable by sqliteExprResolveInSelect(). |
| */ |
| pExpr->iTable = pParse->nTab++; |
| sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1); |
| sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable, 0,0,0); |
| }else if( pExpr->pList ){ |
| /* Case 2: expr IN (exprlist) |
| ** |
| ** Create a set to put the exprlist values in. The Set id is stored |
| ** in iTable. |
| */ |
| int i, iSet; |
| for(i=0; i<pExpr->pList->nExpr; i++){ |
| Expr *pE2 = pExpr->pList->a[i].pExpr; |
| if( !sqliteExprIsConstant(pE2) ){ |
| sqliteErrorMsg(pParse, |
| "right-hand side of IN operator must be constant"); |
| return 1; |
| } |
| if( sqliteExprCheck(pParse, pE2, 0, 0) ){ |
| return 1; |
| } |
| } |
| iSet = pExpr->iTable = pParse->nSet++; |
| for(i=0; i<pExpr->pList->nExpr; i++){ |
| Expr *pE2 = pExpr->pList->a[i].pExpr; |
| switch( pE2->op ){ |
| case TK_FLOAT: |
| case TK_INTEGER: |
| case TK_STRING: { |
| int addr = sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0); |
| assert( pE2->token.z ); |
| sqliteVdbeChangeP3(v, addr, pE2->token.z, pE2->token.n); |
| sqliteVdbeDequoteP3(v, addr); |
| break; |
| } |
| default: { |
| sqliteExprCode(pParse, pE2); |
| sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0); |
| break; |
| } |
| } |
| } |
| } |
| break; |
| } |
| |
| case TK_SELECT: { |
| /* This has to be a scalar SELECT. Generate code to put the |
| ** value of this select in a memory cell and record the number |
| ** of the memory cell in iColumn. |
| */ |
| pExpr->iColumn = pParse->nMem++; |
| if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn,0,0,0) ){ |
| return 1; |
| } |
| break; |
| } |
| |
| /* For all else, just recursively walk the tree */ |
| default: { |
| if( pExpr->pLeft |
| && sqliteExprResolveIds(pParse, pTabList, pEList, pExpr->pLeft) ){ |
| return 1; |
| } |
| if( pExpr->pRight |
| && sqliteExprResolveIds(pParse, pTabList, pEList, pExpr->pRight) ){ |
| return 1; |
| } |
| if( pExpr->pList ){ |
| int i; |
| ExprList *pList = pExpr->pList; |
| for(i=0; i<pList->nExpr; i++){ |
| Expr *pArg = pList->a[i].pExpr; |
| if( sqliteExprResolveIds(pParse, pTabList, pEList, pArg) ){ |
| return 1; |
| } |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** pExpr is a node that defines a function of some kind. It might |
| ** be a syntactic function like "count(x)" or it might be a function |
| ** that implements an operator, like "a LIKE b". |
| ** |
| ** This routine makes *pzName point to the name of the function and |
| ** *pnName hold the number of characters in the function name. |
| */ |
| static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){ |
| switch( pExpr->op ){ |
| case TK_FUNCTION: { |
| *pzName = pExpr->token.z; |
| *pnName = pExpr->token.n; |
| break; |
| } |
| case TK_LIKE: { |
| *pzName = "like"; |
| *pnName = 4; |
| break; |
| } |
| case TK_GLOB: { |
| *pzName = "glob"; |
| *pnName = 4; |
| break; |
| } |
| default: { |
| *pzName = "can't happen"; |
| *pnName = 12; |
| break; |
| } |
| } |
| } |
| |
| /* |
| ** Error check the functions in an expression. Make sure all |
| ** function names are recognized and all functions have the correct |
| ** number of arguments. Leave an error message in pParse->zErrMsg |
| ** if anything is amiss. Return the number of errors. |
| ** |
| ** if pIsAgg is not null and this expression is an aggregate function |
| ** (like count(*) or max(value)) then write a 1 into *pIsAgg. |
| */ |
| int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){ |
| int nErr = 0; |
| if( pExpr==0 ) return 0; |
| switch( pExpr->op ){ |
| case TK_GLOB: |
| case TK_LIKE: |
| case TK_FUNCTION: { |
| int n = pExpr->pList ? pExpr->pList->nExpr : 0; /* Number of arguments */ |
| int no_such_func = 0; /* True if no such function exists */ |
| int is_type_of = 0; /* True if is the special TypeOf() function */ |
| int wrong_num_args = 0; /* True if wrong number of arguments */ |
| int is_agg = 0; /* True if is an aggregate function */ |
| int i; |
| int nId; /* Number of characters in function name */ |
| const char *zId; /* The function name. */ |
| FuncDef *pDef; |
| |
| getFunctionName(pExpr, &zId, &nId); |
| pDef = sqliteFindFunction(pParse->db, zId, nId, n, 0); |
| if( pDef==0 ){ |
| pDef = sqliteFindFunction(pParse->db, zId, nId, -1, 0); |
| if( pDef==0 ){ |
| if( n==1 && nId==6 && sqliteStrNICmp(zId, "typeof", 6)==0 ){ |
| is_type_of = 1; |
| }else { |
| no_such_func = 1; |
| } |
| }else{ |
| wrong_num_args = 1; |
| } |
| }else{ |
| is_agg = pDef->xFunc==0; |
| } |
| if( is_agg && !allowAgg ){ |
| sqliteSetNString(&pParse->zErrMsg, "misuse of aggregate function ", -1, |
| zId, nId, "()", 2, 0); |
| pParse->nErr++; |
| nErr++; |
| is_agg = 0; |
| }else if( no_such_func ){ |
| sqliteSetNString(&pParse->zErrMsg, "no such function: ", -1, zId,nId,0); |
| pParse->nErr++; |
| nErr++; |
| }else if( wrong_num_args ){ |
| sqliteSetNString(&pParse->zErrMsg, |
| "wrong number of arguments to function ", -1, zId, nId, "()", 2, 0); |
| pParse->nErr++; |
| nErr++; |
| } |
| if( is_agg ) pExpr->op = TK_AGG_FUNCTION; |
| if( is_agg && pIsAgg ) *pIsAgg = 1; |
| for(i=0; nErr==0 && i<n; i++){ |
| nErr = sqliteExprCheck(pParse, pExpr->pList->a[i].pExpr, |
| allowAgg && !is_agg, pIsAgg); |
| } |
| if( pDef==0 ){ |
| if( is_type_of ){ |
| pExpr->op = TK_STRING; |
| if( sqliteExprType(pExpr->pList->a[0].pExpr)==SQLITE_SO_NUM ){ |
| pExpr->token.z = "numeric"; |
| pExpr->token.n = 7; |
| }else{ |
| pExpr->token.z = "text"; |
| pExpr->token.n = 4; |
| } |
| } |
| }else if( pDef->dataType>=0 ){ |
| if( pDef->dataType<n ){ |
| pExpr->dataType = |
| sqliteExprType(pExpr->pList->a[pDef->dataType].pExpr); |
| }else{ |
| pExpr->dataType = SQLITE_SO_NUM; |
| } |
| }else if( pDef->dataType==SQLITE_ARGS ){ |
| pDef->dataType = SQLITE_SO_TEXT; |
| for(i=0; i<n; i++){ |
| if( sqliteExprType(pExpr->pList->a[i].pExpr)==SQLITE_SO_NUM ){ |
| pExpr->dataType = SQLITE_SO_NUM; |
| break; |
| } |
| } |
| }else if( pDef->dataType==SQLITE_NUMERIC ){ |
| pExpr->dataType = SQLITE_SO_NUM; |
| }else{ |
| pExpr->dataType = SQLITE_SO_TEXT; |
| } |
| } |
| default: { |
| if( pExpr->pLeft ){ |
| nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg); |
| } |
| if( nErr==0 && pExpr->pRight ){ |
| nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg); |
| } |
| if( nErr==0 && pExpr->pList ){ |
| int n = pExpr->pList->nExpr; |
| int i; |
| for(i=0; nErr==0 && i<n; i++){ |
| Expr *pE2 = pExpr->pList->a[i].pExpr; |
| nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg); |
| } |
| } |
| break; |
| } |
| } |
| return nErr; |
| } |
| |
| /* |
| ** Return either SQLITE_SO_NUM or SQLITE_SO_TEXT to indicate whether the |
| ** given expression should sort as numeric values or as text. |
| ** |
| ** The sqliteExprResolveIds() and sqliteExprCheck() routines must have |
| ** both been called on the expression before it is passed to this routine. |
| */ |
| int sqliteExprType(Expr *p){ |
| if( p==0 ) return SQLITE_SO_NUM; |
| while( p ) switch( p->op ){ |
| case TK_PLUS: |
| case TK_MINUS: |
| case TK_STAR: |
| case TK_SLASH: |
| case TK_AND: |
| case TK_OR: |
| case TK_ISNULL: |
| case TK_NOTNULL: |
| case TK_NOT: |
| case TK_UMINUS: |
| case TK_UPLUS: |
| case TK_BITAND: |
| case TK_BITOR: |
| case TK_BITNOT: |
| case TK_LSHIFT: |
| case TK_RSHIFT: |
| case TK_REM: |
| case TK_INTEGER: |
| case TK_FLOAT: |
| case TK_IN: |
| case TK_BETWEEN: |
| case TK_GLOB: |
| case TK_LIKE: |
| return SQLITE_SO_NUM; |
| |
| case TK_STRING: |
| case TK_NULL: |
| case TK_CONCAT: |
| return SQLITE_SO_TEXT; |
| |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: |
| if( sqliteExprType(p->pLeft)==SQLITE_SO_NUM ){ |
| return SQLITE_SO_NUM; |
| } |
| p = p->pRight; |
| break; |
| |
| case TK_AS: |
| p = p->pLeft; |
| break; |
| |
| case TK_COLUMN: |
| case TK_FUNCTION: |
| case TK_AGG_FUNCTION: |
| return p->dataType; |
| |
| case TK_SELECT: |
| assert( p->pSelect ); |
| assert( p->pSelect->pEList ); |
| assert( p->pSelect->pEList->nExpr>0 ); |
| p = p->pSelect->pEList->a[0].pExpr; |
| break; |
| |
| case TK_CASE: { |
| if( p->pRight && sqliteExprType(p->pRight)==SQLITE_SO_NUM ){ |
| return SQLITE_SO_NUM; |
| } |
| if( p->pList ){ |
| int i; |
| ExprList *pList = p->pList; |
| for(i=1; i<pList->nExpr; i+=2){ |
| if( sqliteExprType(pList->a[i].pExpr)==SQLITE_SO_NUM ){ |
| return SQLITE_SO_NUM; |
| } |
| } |
| } |
| return SQLITE_SO_TEXT; |
| } |
| |
| default: |
| assert( p->op==TK_ABORT ); /* Can't Happen */ |
| break; |
| } |
| return SQLITE_SO_NUM; |
| } |
| |
| /* |
| ** Generate code into the current Vdbe to evaluate the given |
| ** expression and leave the result on the top of stack. |
| */ |
| void sqliteExprCode(Parse *pParse, Expr *pExpr){ |
| Vdbe *v = pParse->pVdbe; |
| int op; |
| if( v==0 || pExpr==0 ) return; |
| switch( pExpr->op ){ |
| case TK_PLUS: op = OP_Add; break; |
| case TK_MINUS: op = OP_Subtract; break; |
| case TK_STAR: op = OP_Multiply; break; |
| case TK_SLASH: op = OP_Divide; break; |
| case TK_AND: op = OP_And; break; |
| case TK_OR: op = OP_Or; break; |
| case TK_LT: op = OP_Lt; break; |
| case TK_LE: op = OP_Le; break; |
| case TK_GT: op = OP_Gt; break; |
| case TK_GE: op = OP_Ge; break; |
| case TK_NE: op = OP_Ne; break; |
| case TK_EQ: op = OP_Eq; break; |
| case TK_ISNULL: op = OP_IsNull; break; |
| case TK_NOTNULL: op = OP_NotNull; break; |
| case TK_NOT: op = OP_Not; break; |
| case TK_UMINUS: op = OP_Negative; break; |
| case TK_BITAND: op = OP_BitAnd; break; |
| case TK_BITOR: op = OP_BitOr; break; |
| case TK_BITNOT: op = OP_BitNot; break; |
| case TK_LSHIFT: op = OP_ShiftLeft; break; |
| case TK_RSHIFT: op = OP_ShiftRight; break; |
| case TK_REM: op = OP_Remainder; break; |
| default: break; |
| } |
| switch( pExpr->op ){ |
| case TK_COLUMN: { |
| if( pParse->useAgg ){ |
| sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg); |
| }else if( pExpr->iColumn>=0 ){ |
| sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn); |
| }else{ |
| sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0); |
| } |
| break; |
| } |
| case TK_INTEGER: { |
| int iVal = atoi(pExpr->token.z); |
| char zBuf[30]; |
| sprintf(zBuf,"%d",iVal); |
| if( strlen(zBuf)!=pExpr->token.n |
| || strncmp(pExpr->token.z,zBuf,pExpr->token.n)!=0 ){ |
| /* If the integer value cannot be represented exactly in 32 bits, |
| ** then code it as a string instead. */ |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| }else{ |
| sqliteVdbeAddOp(v, OP_Integer, iVal, 0); |
| } |
| sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n); |
| break; |
| } |
| case TK_FLOAT: { |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| assert( pExpr->token.z ); |
| sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n); |
| break; |
| } |
| case TK_STRING: { |
| int addr = sqliteVdbeAddOp(v, OP_String, 0, 0); |
| assert( pExpr->token.z ); |
| sqliteVdbeChangeP3(v, addr, pExpr->token.z, pExpr->token.n); |
| sqliteVdbeDequoteP3(v, addr); |
| break; |
| } |
| case TK_NULL: { |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| break; |
| } |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){ |
| op += 6; /* Convert numeric opcodes to text opcodes */ |
| } |
| /* Fall through into the next case */ |
| } |
| case TK_AND: |
| case TK_OR: |
| case TK_PLUS: |
| case TK_STAR: |
| case TK_MINUS: |
| case TK_REM: |
| case TK_BITAND: |
| case TK_BITOR: |
| case TK_SLASH: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteExprCode(pParse, pExpr->pRight); |
| sqliteVdbeAddOp(v, op, 0, 0); |
| break; |
| } |
| case TK_LSHIFT: |
| case TK_RSHIFT: { |
| sqliteExprCode(pParse, pExpr->pRight); |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteVdbeAddOp(v, op, 0, 0); |
| break; |
| } |
| case TK_CONCAT: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteExprCode(pParse, pExpr->pRight); |
| sqliteVdbeAddOp(v, OP_Concat, 2, 0); |
| break; |
| } |
| case TK_UPLUS: { |
| Expr *pLeft = pExpr->pLeft; |
| if( pLeft && pLeft->op==TK_INTEGER ){ |
| sqliteVdbeAddOp(v, OP_Integer, atoi(pLeft->token.z), 0); |
| sqliteVdbeChangeP3(v, -1, pLeft->token.z, pLeft->token.n); |
| }else if( pLeft && pLeft->op==TK_FLOAT ){ |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| sqliteVdbeChangeP3(v, -1, pLeft->token.z, pLeft->token.n); |
| }else{ |
| sqliteExprCode(pParse, pExpr->pLeft); |
| } |
| break; |
| } |
| case TK_UMINUS: { |
| assert( pExpr->pLeft ); |
| if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){ |
| Token *p = &pExpr->pLeft->token; |
| char *z = sqliteMalloc( p->n + 2 ); |
| sprintf(z, "-%.*s", p->n, p->z); |
| if( pExpr->pLeft->op==TK_INTEGER ){ |
| sqliteVdbeAddOp(v, OP_Integer, atoi(z), 0); |
| }else{ |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| } |
| sqliteVdbeChangeP3(v, -1, z, p->n+1); |
| sqliteFree(z); |
| break; |
| } |
| /* Fall through into TK_NOT */ |
| } |
| case TK_BITNOT: |
| case TK_NOT: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteVdbeAddOp(v, op, 0, 0); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| int dest; |
| sqliteVdbeAddOp(v, OP_Integer, 1, 0); |
| sqliteExprCode(pParse, pExpr->pLeft); |
| dest = sqliteVdbeCurrentAddr(v) + 2; |
| sqliteVdbeAddOp(v, op, 1, dest); |
| sqliteVdbeAddOp(v, OP_AddImm, -1, 0); |
| break; |
| } |
| case TK_AGG_FUNCTION: { |
| sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg); |
| break; |
| } |
| case TK_GLOB: |
| case TK_LIKE: |
| case TK_FUNCTION: { |
| int i; |
| ExprList *pList = pExpr->pList; |
| int nExpr = pList ? pList->nExpr : 0; |
| FuncDef *pDef; |
| int nId; |
| const char *zId; |
| getFunctionName(pExpr, &zId, &nId); |
| pDef = sqliteFindFunction(pParse->db, zId, nId, nExpr, 0); |
| assert( pDef!=0 ); |
| for(i=0; i<nExpr; i++){ |
| sqliteExprCode(pParse, pList->a[i].pExpr); |
| } |
| sqliteVdbeAddOp(v, OP_Function, nExpr, 0); |
| sqliteVdbeChangeP3(v, -1, (char*)pDef, P3_POINTER); |
| break; |
| } |
| case TK_SELECT: { |
| sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); |
| break; |
| } |
| case TK_IN: { |
| int addr; |
| sqliteVdbeAddOp(v, OP_Integer, 1, 0); |
| sqliteExprCode(pParse, pExpr->pLeft); |
| addr = sqliteVdbeCurrentAddr(v); |
| sqliteVdbeAddOp(v, OP_NotNull, -1, addr+4); |
| sqliteVdbeAddOp(v, OP_Pop, 1, 0); |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| sqliteVdbeAddOp(v, OP_Goto, 0, addr+6); |
| if( pExpr->pSelect ){ |
| sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+6); |
| }else{ |
| sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+6); |
| } |
| sqliteVdbeAddOp(v, OP_AddImm, -1, 0); |
| break; |
| } |
| case TK_BETWEEN: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteVdbeAddOp(v, OP_Dup, 0, 0); |
| sqliteExprCode(pParse, pExpr->pList->a[0].pExpr); |
| sqliteVdbeAddOp(v, OP_Ge, 0, 0); |
| sqliteVdbeAddOp(v, OP_Pull, 1, 0); |
| sqliteExprCode(pParse, pExpr->pList->a[1].pExpr); |
| sqliteVdbeAddOp(v, OP_Le, 0, 0); |
| sqliteVdbeAddOp(v, OP_And, 0, 0); |
| break; |
| } |
| case TK_AS: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| break; |
| } |
| case TK_CASE: { |
| int expr_end_label; |
| int jumpInst; |
| int addr; |
| int nExpr; |
| int i; |
| |
| assert(pExpr->pList); |
| assert((pExpr->pList->nExpr % 2) == 0); |
| assert(pExpr->pList->nExpr > 0); |
| nExpr = pExpr->pList->nExpr; |
| expr_end_label = sqliteVdbeMakeLabel(v); |
| if( pExpr->pLeft ){ |
| sqliteExprCode(pParse, pExpr->pLeft); |
| } |
| for(i=0; i<nExpr; i=i+2){ |
| sqliteExprCode(pParse, pExpr->pList->a[i].pExpr); |
| if( pExpr->pLeft ){ |
| sqliteVdbeAddOp(v, OP_Dup, 1, 1); |
| jumpInst = sqliteVdbeAddOp(v, OP_Ne, 1, 0); |
| sqliteVdbeAddOp(v, OP_Pop, 1, 0); |
| }else{ |
| jumpInst = sqliteVdbeAddOp(v, OP_IfNot, 1, 0); |
| } |
| sqliteExprCode(pParse, pExpr->pList->a[i+1].pExpr); |
| sqliteVdbeAddOp(v, OP_Goto, 0, expr_end_label); |
| addr = sqliteVdbeCurrentAddr(v); |
| sqliteVdbeChangeP2(v, jumpInst, addr); |
| } |
| if( pExpr->pLeft ){ |
| sqliteVdbeAddOp(v, OP_Pop, 1, 0); |
| } |
| if( pExpr->pRight ){ |
| sqliteExprCode(pParse, pExpr->pRight); |
| }else{ |
| sqliteVdbeAddOp(v, OP_String, 0, 0); |
| } |
| sqliteVdbeResolveLabel(v, expr_end_label); |
| break; |
| } |
| case TK_RAISE: { |
| if( !pParse->trigStack ){ |
| sqliteErrorMsg(pParse, |
| "RAISE() may only be used within a trigger-program"); |
| pParse->nErr++; |
| return; |
| } |
| if( pExpr->iColumn == OE_Rollback || |
| pExpr->iColumn == OE_Abort || |
| pExpr->iColumn == OE_Fail ){ |
| char * msg = sqliteStrNDup(pExpr->token.z, pExpr->token.n); |
| sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn); |
| sqliteDequote(msg); |
| sqliteVdbeChangeP3(v, -1, msg, 0); |
| sqliteFree(msg); |
| } else { |
| assert( pExpr->iColumn == OE_Ignore ); |
| sqliteVdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); |
| sqliteVdbeChangeP3(v, -1, "(IGNORE jump)", 0); |
| } |
| } |
| break; |
| } |
| } |
| |
| /* |
| ** Generate code for a boolean expression such that a jump is made |
| ** to the label "dest" if the expression is true but execution |
| ** continues straight thru if the expression is false. |
| ** |
| ** If the expression evaluates to NULL (neither true nor false), then |
| ** take the jump if the jumpIfNull flag is true. |
| */ |
| void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
| Vdbe *v = pParse->pVdbe; |
| int op = 0; |
| if( v==0 || pExpr==0 ) return; |
| switch( pExpr->op ){ |
| case TK_LT: op = OP_Lt; break; |
| case TK_LE: op = OP_Le; break; |
| case TK_GT: op = OP_Gt; break; |
| case TK_GE: op = OP_Ge; break; |
| case TK_NE: op = OP_Ne; break; |
| case TK_EQ: op = OP_Eq; break; |
| case TK_ISNULL: op = OP_IsNull; break; |
| case TK_NOTNULL: op = OP_NotNull; break; |
| default: break; |
| } |
| switch( pExpr->op ){ |
| case TK_AND: { |
| int d2 = sqliteVdbeMakeLabel(v); |
| sqliteExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); |
| sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
| sqliteVdbeResolveLabel(v, d2); |
| break; |
| } |
| case TK_OR: { |
| sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
| sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
| break; |
| } |
| case TK_NOT: { |
| sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
| break; |
| } |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteExprCode(pParse, pExpr->pRight); |
| if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){ |
| op += 6; /* Convert numeric opcodes to text opcodes */ |
| } |
| sqliteVdbeAddOp(v, op, jumpIfNull, dest); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteVdbeAddOp(v, op, 1, dest); |
| break; |
| } |
| case TK_IN: { |
| int addr; |
| sqliteExprCode(pParse, pExpr->pLeft); |
| addr = sqliteVdbeCurrentAddr(v); |
| sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3); |
| sqliteVdbeAddOp(v, OP_Pop, 1, 0); |
| sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4); |
| if( pExpr->pSelect ){ |
| sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest); |
| }else{ |
| sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest); |
| } |
| break; |
| } |
| case TK_BETWEEN: { |
| int addr; |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteVdbeAddOp(v, OP_Dup, 0, 0); |
| sqliteExprCode(pParse, pExpr->pList->a[0].pExpr); |
| addr = sqliteVdbeAddOp(v, OP_Lt, !jumpIfNull, 0); |
| sqliteExprCode(pParse, pExpr->pList->a[1].pExpr); |
| sqliteVdbeAddOp(v, OP_Le, jumpIfNull, dest); |
| sqliteVdbeAddOp(v, OP_Integer, 0, 0); |
| sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v)); |
| sqliteVdbeAddOp(v, OP_Pop, 1, 0); |
| break; |
| } |
| default: { |
| sqliteExprCode(pParse, pExpr); |
| sqliteVdbeAddOp(v, OP_If, jumpIfNull, dest); |
| break; |
| } |
| } |
| } |
| |
| /* |
| ** Generate code for a boolean expression such that a jump is made |
| ** to the label "dest" if the expression is false but execution |
| ** continues straight thru if the expression is true. |
| ** |
| ** If the expression evaluates to NULL (neither true nor false) then |
| ** jump if jumpIfNull is true or fall through if jumpIfNull is false. |
| */ |
| void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
| Vdbe *v = pParse->pVdbe; |
| int op = 0; |
| if( v==0 || pExpr==0 ) return; |
| switch( pExpr->op ){ |
| case TK_LT: op = OP_Ge; break; |
| case TK_LE: op = OP_Gt; break; |
| case TK_GT: op = OP_Le; break; |
| case TK_GE: op = OP_Lt; break; |
| case TK_NE: op = OP_Eq; break; |
| case TK_EQ: op = OP_Ne; break; |
| case TK_ISNULL: op = OP_NotNull; break; |
| case TK_NOTNULL: op = OP_IsNull; break; |
| default: break; |
| } |
| switch( pExpr->op ){ |
| case TK_AND: { |
| sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
| sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
| break; |
| } |
| case TK_OR: { |
| int d2 = sqliteVdbeMakeLabel(v); |
| sqliteExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); |
| sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
| sqliteVdbeResolveLabel(v, d2); |
| break; |
| } |
| case TK_NOT: { |
| sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
| break; |
| } |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){ |
| /* Convert numeric comparison opcodes into text comparison opcodes. |
| ** This step depends on the fact that the text comparision opcodes are |
| ** always 6 greater than their corresponding numeric comparison |
| ** opcodes. |
| */ |
| assert( OP_Eq+6 == OP_StrEq ); |
| op += 6; |
| } |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteExprCode(pParse, pExpr->pRight); |
| sqliteVdbeAddOp(v, op, jumpIfNull, dest); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteVdbeAddOp(v, op, 1, dest); |
| break; |
| } |
| case TK_IN: { |
| int addr; |
| sqliteExprCode(pParse, pExpr->pLeft); |
| addr = sqliteVdbeCurrentAddr(v); |
| sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3); |
| sqliteVdbeAddOp(v, OP_Pop, 1, 0); |
| sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4); |
| if( pExpr->pSelect ){ |
| sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest); |
| }else{ |
| sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest); |
| } |
| break; |
| } |
| case TK_BETWEEN: { |
| int addr; |
| sqliteExprCode(pParse, pExpr->pLeft); |
| sqliteVdbeAddOp(v, OP_Dup, 0, 0); |
| sqliteExprCode(pParse, pExpr->pList->a[0].pExpr); |
| addr = sqliteVdbeCurrentAddr(v); |
| sqliteVdbeAddOp(v, OP_Ge, !jumpIfNull, addr+3); |
| sqliteVdbeAddOp(v, OP_Pop, 1, 0); |
| sqliteVdbeAddOp(v, OP_Goto, 0, dest); |
| sqliteExprCode(pParse, pExpr->pList->a[1].pExpr); |
| sqliteVdbeAddOp(v, OP_Gt, jumpIfNull, dest); |
| break; |
| } |
| default: { |
| sqliteExprCode(pParse, pExpr); |
| sqliteVdbeAddOp(v, OP_IfNot, jumpIfNull, dest); |
| break; |
| } |
| } |
| } |
| |
| /* |
| ** Do a deep comparison of two expression trees. Return TRUE (non-zero) |
| ** if they are identical and return FALSE if they differ in any way. |
| */ |
| int sqliteExprCompare(Expr *pA, Expr *pB){ |
| int i; |
| if( pA==0 ){ |
| return pB==0; |
| }else if( pB==0 ){ |
| return 0; |
| } |
| if( pA->op!=pB->op ) return 0; |
| if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0; |
| if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0; |
| if( pA->pList ){ |
| if( pB->pList==0 ) return 0; |
| if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; |
| for(i=0; i<pA->pList->nExpr; i++){ |
| if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ |
| return 0; |
| } |
| } |
| }else if( pB->pList ){ |
| return 0; |
| } |
| if( pA->pSelect || pB->pSelect ) return 0; |
| if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; |
| if( pA->token.z ){ |
| if( pB->token.z==0 ) return 0; |
| if( pB->token.n!=pA->token.n ) return 0; |
| if( sqliteStrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| ** Add a new element to the pParse->aAgg[] array and return its index. |
| */ |
| static int appendAggInfo(Parse *pParse){ |
| if( (pParse->nAgg & 0x7)==0 ){ |
| int amt = pParse->nAgg + 8; |
| AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0])); |
| if( aAgg==0 ){ |
| return -1; |
| } |
| pParse->aAgg = aAgg; |
| } |
| memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0])); |
| return pParse->nAgg++; |
| } |
| |
| /* |
| ** Analyze the given expression looking for aggregate functions and |
| ** for variables that need to be added to the pParse->aAgg[] array. |
| ** Make additional entries to the pParse->aAgg[] array as necessary. |
| ** |
| ** This routine should only be called after the expression has been |
| ** analyzed by sqliteExprResolveIds() and sqliteExprCheck(). |
| ** |
| ** If errors are seen, leave an error message in zErrMsg and return |
| ** the number of errors. |
| */ |
| int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){ |
| int i; |
| AggExpr *aAgg; |
| int nErr = 0; |
| |
| if( pExpr==0 ) return 0; |
| switch( pExpr->op ){ |
| case TK_COLUMN: { |
| aAgg = pParse->aAgg; |
| for(i=0; i<pParse->nAgg; i++){ |
| if( aAgg[i].isAgg ) continue; |
| if( aAgg[i].pExpr->iTable==pExpr->iTable |
| && aAgg[i].pExpr->iColumn==pExpr->iColumn ){ |
| break; |
| } |
| } |
| if( i>=pParse->nAgg ){ |
| i = appendAggInfo(pParse); |
| if( i<0 ) return 1; |
| pParse->aAgg[i].isAgg = 0; |
| pParse->aAgg[i].pExpr = pExpr; |
| } |
| pExpr->iAgg = i; |
| break; |
| } |
| case TK_AGG_FUNCTION: { |
| aAgg = pParse->aAgg; |
| for(i=0; i<pParse->nAgg; i++){ |
| if( !aAgg[i].isAgg ) continue; |
| if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){ |
| break; |
| } |
| } |
| if( i>=pParse->nAgg ){ |
| i = appendAggInfo(pParse); |
| if( i<0 ) return 1; |
| pParse->aAgg[i].isAgg = 1; |
| pParse->aAgg[i].pExpr = pExpr; |
| pParse->aAgg[i].pFunc = sqliteFindFunction(pParse->db, |
| pExpr->token.z, pExpr->token.n, |
| pExpr->pList ? pExpr->pList->nExpr : 0, 0); |
| } |
| pExpr->iAgg = i; |
| break; |
| } |
| default: { |
| if( pExpr->pLeft ){ |
| nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft); |
| } |
| if( nErr==0 && pExpr->pRight ){ |
| nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight); |
| } |
| if( nErr==0 && pExpr->pList ){ |
| int n = pExpr->pList->nExpr; |
| int i; |
| for(i=0; nErr==0 && i<n; i++){ |
| nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr); |
| } |
| } |
| break; |
| } |
| } |
| return nErr; |
| } |
| |
| /* |
| ** Locate a user function given a name and a number of arguments. |
| ** Return a pointer to the FuncDef structure that defines that |
| ** function, or return NULL if the function does not exist. |
| ** |
| ** If the createFlag argument is true, then a new (blank) FuncDef |
| ** structure is created and liked into the "db" structure if a |
| ** no matching function previously existed. When createFlag is true |
| ** and the nArg parameter is -1, then only a function that accepts |
| ** any number of arguments will be returned. |
| ** |
| ** If createFlag is false and nArg is -1, then the first valid |
| ** function found is returned. A function is valid if either xFunc |
| ** or xStep is non-zero. |
| */ |
| FuncDef *sqliteFindFunction( |
| sqlite *db, /* An open database */ |
| const char *zName, /* Name of the function. Not null-terminated */ |
| int nName, /* Number of characters in the name */ |
| int nArg, /* Number of arguments. -1 means any number */ |
| int createFlag /* Create new entry if true and does not otherwise exist */ |
| ){ |
| FuncDef *pFirst, *p, *pMaybe; |
| pFirst = p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, nName); |
| if( p && !createFlag && nArg<0 ){ |
| while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; } |
| return p; |
| } |
| pMaybe = 0; |
| while( p && p->nArg!=nArg ){ |
| if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p; |
| p = p->pNext; |
| } |
| if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){ |
| return 0; |
| } |
| if( p==0 && pMaybe ){ |
| assert( createFlag==0 ); |
| return pMaybe; |
| } |
| if( p==0 && createFlag && (p = sqliteMalloc(sizeof(*p)))!=0 ){ |
| p->nArg = nArg; |
| p->pNext = pFirst; |
| p->dataType = pFirst ? pFirst->dataType : SQLITE_NUMERIC; |
| sqliteHashInsert(&db->aFunc, zName, nName, (void*)p); |
| } |
| return p; |
| } |