| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains routines used for analyzing expressions and |
| ** for generating VDBE code that evaluates expressions in SQLite. |
| ** |
| ** $Id: expr.c,v 1.139 2004/06/11 10:51:27 danielk1977 Exp $ |
| */ |
| #include "sqliteInt.h" |
| #include <ctype.h> |
| |
| char const *sqlite3AffinityString(char affinity){ |
| switch( affinity ){ |
| case SQLITE_AFF_INTEGER: return "i"; |
| case SQLITE_AFF_NUMERIC: return "n"; |
| case SQLITE_AFF_TEXT: return "t"; |
| case SQLITE_AFF_NONE: return "o"; |
| default: |
| assert(0); |
| } |
| } |
| |
| |
| /* |
| ** Return the 'affinity' of the expression pExpr if any. |
| ** |
| ** If pExpr is a column, a reference to a column via an 'AS' alias, |
| ** or a sub-select with a column as the return value, then the |
| ** affinity of that column is returned. Otherwise, 0x00 is returned, |
| ** indicating no affinity for the expression. |
| ** |
| ** i.e. the WHERE clause expresssions in the following statements all |
| ** have an affinity: |
| ** |
| ** CREATE TABLE t1(a); |
| ** SELECT * FROM t1 WHERE a; |
| ** SELECT a AS b FROM t1 WHERE b; |
| ** SELECT * FROM t1 WHERE (select a from t1); |
| */ |
| char sqlite3ExprAffinity(Expr *pExpr){ |
| if( pExpr->op==TK_AS ){ |
| return sqlite3ExprAffinity(pExpr->pLeft); |
| } |
| if( pExpr->op==TK_SELECT ){ |
| return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); |
| } |
| return pExpr->affinity; |
| } |
| |
| /* |
| ** Return the default collation sequence for the expression pExpr. If |
| ** there is no default collation type, return 0. |
| */ |
| CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ |
| CollSeq *pColl = 0; |
| if( pExpr ){ |
| pColl = pExpr->pColl; |
| if( pExpr->op==TK_AS && !pColl ){ |
| return sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
| } |
| } |
| if( sqlite3CheckCollSeq(pParse, pColl) ){ |
| pColl = 0; |
| } |
| return pColl; |
| } |
| |
| /* |
| ** pExpr is the left operand of a comparison operator. aff2 is the |
| ** type affinity of the right operand. This routine returns the |
| ** type affinity that should be used for the comparison operator. |
| */ |
| char sqlite3CompareAffinity(Expr *pExpr, char aff2){ |
| char aff1 = sqlite3ExprAffinity(pExpr); |
| if( aff1 && aff2 ){ |
| /* Both sides of the comparison are columns. If one has numeric or |
| ** integer affinity, use that. Otherwise use no affinity. |
| */ |
| if( aff1==SQLITE_AFF_INTEGER || aff2==SQLITE_AFF_INTEGER ){ |
| return SQLITE_AFF_INTEGER; |
| }else if( aff1==SQLITE_AFF_NUMERIC || aff2==SQLITE_AFF_NUMERIC ){ |
| return SQLITE_AFF_NUMERIC; |
| }else{ |
| return SQLITE_AFF_NONE; |
| } |
| }else if( !aff1 && !aff2 ){ |
| /* Neither side of the comparison is a column. Use numeric affinity |
| ** for the comparison. |
| */ |
| return SQLITE_AFF_NUMERIC; |
| }else{ |
| /* One side is a column, the other is not. Use the columns affinity. */ |
| return (aff1 + aff2); |
| } |
| } |
| |
| /* |
| ** pExpr is a comparison operator. Return the type affinity that should |
| ** be applied to both operands prior to doing the comparison. |
| */ |
| static char comparisonAffinity(Expr *pExpr){ |
| char aff; |
| assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || |
| pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || |
| pExpr->op==TK_NE ); |
| assert( pExpr->pLeft ); |
| aff = sqlite3ExprAffinity(pExpr->pLeft); |
| if( pExpr->pRight ){ |
| aff = sqlite3CompareAffinity(pExpr->pRight, aff); |
| } |
| else if( pExpr->pSelect ){ |
| aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); |
| } |
| else if( !aff ){ |
| aff = SQLITE_AFF_NUMERIC; |
| } |
| return aff; |
| } |
| |
| /* |
| ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. |
| ** idx_affinity is the affinity of an indexed column. Return true |
| ** if the index with affinity idx_affinity may be used to implement |
| ** the comparison in pExpr. |
| */ |
| int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ |
| char aff = comparisonAffinity(pExpr); |
| return |
| (aff==SQLITE_AFF_NONE) || |
| (aff==SQLITE_AFF_NUMERIC && idx_affinity==SQLITE_AFF_INTEGER) || |
| (aff==SQLITE_AFF_INTEGER && idx_affinity==SQLITE_AFF_NUMERIC) || |
| (aff==idx_affinity); |
| } |
| |
| /* |
| ** Return the P1 value that should be used for a binary comparison |
| ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. |
| ** If jumpIfNull is true, then set the low byte of the returned |
| ** P1 value to tell the opcode to jump if either expression |
| ** evaluates to NULL. |
| */ |
| static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ |
| char aff = sqlite3ExprAffinity(pExpr2); |
| return (((int)sqlite3CompareAffinity(pExpr1, aff))<<8)+(jumpIfNull?1:0); |
| } |
| |
| /* |
| ** Return a pointer to the collation sequence that should be used by |
| ** a binary comparison operator comparing pLeft and pRight. |
| ** |
| ** If the left hand expression has a collating sequence type, then it is |
| ** used. Otherwise the collation sequence for the right hand expression |
| ** is used, or the default (BINARY) if neither expression has a collating |
| ** type. |
| */ |
| static CollSeq* binaryCompareCollSeq(Parse *pParse, Expr *pLeft, Expr *pRight){ |
| CollSeq *pColl = sqlite3ExprCollSeq(pParse, pLeft); |
| if( !pColl ){ |
| pColl = sqlite3ExprCollSeq(pParse, pRight); |
| } |
| return pColl; |
| } |
| |
| /* |
| ** Construct a new expression node and return a pointer to it. Memory |
| ** for this node is obtained from sqliteMalloc(). The calling function |
| ** is responsible for making sure the node eventually gets freed. |
| */ |
| Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, Token *pToken){ |
| Expr *pNew; |
| pNew = sqliteMalloc( sizeof(Expr) ); |
| if( pNew==0 ){ |
| /* When malloc fails, we leak memory from pLeft and pRight */ |
| return 0; |
| } |
| pNew->op = op; |
| pNew->pLeft = pLeft; |
| pNew->pRight = pRight; |
| if( pToken ){ |
| assert( pToken->dyn==0 ); |
| pNew->token = *pToken; |
| pNew->span = *pToken; |
| }else{ |
| assert( pNew->token.dyn==0 ); |
| assert( pNew->token.z==0 ); |
| assert( pNew->token.n==0 ); |
| if( pLeft && pRight ){ |
| sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); |
| }else{ |
| pNew->span = pNew->token; |
| } |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Set the Expr.span field of the given expression to span all |
| ** text between the two given tokens. |
| */ |
| void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ |
| assert( pRight!=0 ); |
| assert( pLeft!=0 ); |
| /* Note: pExpr might be NULL due to a prior malloc failure */ |
| if( pExpr && pRight->z && pLeft->z ){ |
| if( pLeft->dyn==0 && pRight->dyn==0 ){ |
| pExpr->span.z = pLeft->z; |
| pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z); |
| }else{ |
| pExpr->span.z = 0; |
| } |
| } |
| } |
| |
| /* |
| ** Construct a new expression node for a function with multiple |
| ** arguments. |
| */ |
| Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){ |
| Expr *pNew; |
| pNew = sqliteMalloc( sizeof(Expr) ); |
| if( pNew==0 ){ |
| /* sqlite3ExprListDelete(pList); // Leak pList when malloc fails */ |
| return 0; |
| } |
| pNew->op = TK_FUNCTION; |
| pNew->pList = pList; |
| if( pToken ){ |
| assert( pToken->dyn==0 ); |
| pNew->token = *pToken; |
| }else{ |
| pNew->token.z = 0; |
| } |
| pNew->span = pNew->token; |
| return pNew; |
| } |
| |
| /* |
| ** Recursively delete an expression tree. |
| */ |
| void sqlite3ExprDelete(Expr *p){ |
| if( p==0 ) return; |
| if( p->span.dyn ) sqliteFree((char*)p->span.z); |
| if( p->token.dyn ) sqliteFree((char*)p->token.z); |
| sqlite3ExprDelete(p->pLeft); |
| sqlite3ExprDelete(p->pRight); |
| sqlite3ExprListDelete(p->pList); |
| sqlite3SelectDelete(p->pSelect); |
| sqliteFree(p); |
| } |
| |
| |
| /* |
| ** The following group of routines make deep copies of expressions, |
| ** expression lists, ID lists, and select statements. The copies can |
| ** be deleted (by being passed to their respective ...Delete() routines) |
| ** without effecting the originals. |
| ** |
| ** The expression list, ID, and source lists return by sqlite3ExprListDup(), |
| ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded |
| ** by subsequent calls to sqlite*ListAppend() routines. |
| ** |
| ** Any tables that the SrcList might point to are not duplicated. |
| */ |
| Expr *sqlite3ExprDup(Expr *p){ |
| Expr *pNew; |
| if( p==0 ) return 0; |
| pNew = sqliteMallocRaw( sizeof(*p) ); |
| if( pNew==0 ) return 0; |
| memcpy(pNew, p, sizeof(*pNew)); |
| if( p->token.z!=0 ){ |
| pNew->token.z = sqliteStrDup(p->token.z); |
| pNew->token.dyn = 1; |
| }else{ |
| assert( pNew->token.z==0 ); |
| } |
| pNew->span.z = 0; |
| pNew->pLeft = sqlite3ExprDup(p->pLeft); |
| pNew->pRight = sqlite3ExprDup(p->pRight); |
| pNew->pList = sqlite3ExprListDup(p->pList); |
| pNew->pSelect = sqlite3SelectDup(p->pSelect); |
| return pNew; |
| } |
| void sqlite3TokenCopy(Token *pTo, Token *pFrom){ |
| if( pTo->dyn ) sqliteFree((char*)pTo->z); |
| if( pFrom->z ){ |
| pTo->n = pFrom->n; |
| pTo->z = sqliteStrNDup(pFrom->z, pFrom->n); |
| pTo->dyn = 1; |
| }else{ |
| pTo->z = 0; |
| } |
| } |
| ExprList *sqlite3ExprListDup(ExprList *p){ |
| ExprList *pNew; |
| struct ExprList_item *pItem; |
| int i; |
| if( p==0 ) return 0; |
| pNew = sqliteMalloc( sizeof(*pNew) ); |
| if( pNew==0 ) return 0; |
| pNew->nExpr = pNew->nAlloc = p->nExpr; |
| pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) ); |
| if( pItem==0 ) return 0; /* Leaks memory after a malloc failure */ |
| for(i=0; i<p->nExpr; i++, pItem++){ |
| Expr *pNewExpr, *pOldExpr; |
| pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = p->a[i].pExpr); |
| if( pOldExpr->span.z!=0 && pNewExpr ){ |
| /* Always make a copy of the span for top-level expressions in the |
| ** expression list. The logic in SELECT processing that determines |
| ** the names of columns in the result set needs this information */ |
| sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span); |
| } |
| assert( pNewExpr==0 || pNewExpr->span.z!=0 |
| || pOldExpr->span.z==0 || sqlite3_malloc_failed ); |
| pItem->zName = sqliteStrDup(p->a[i].zName); |
| pItem->sortOrder = p->a[i].sortOrder; |
| pItem->isAgg = p->a[i].isAgg; |
| pItem->done = 0; |
| } |
| return pNew; |
| } |
| SrcList *sqlite3SrcListDup(SrcList *p){ |
| SrcList *pNew; |
| int i; |
| int nByte; |
| if( p==0 ) return 0; |
| nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); |
| pNew = sqliteMallocRaw( nByte ); |
| if( pNew==0 ) return 0; |
| pNew->nSrc = pNew->nAlloc = p->nSrc; |
| for(i=0; i<p->nSrc; i++){ |
| struct SrcList_item *pNewItem = &pNew->a[i]; |
| struct SrcList_item *pOldItem = &p->a[i]; |
| pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase); |
| pNewItem->zName = sqliteStrDup(pOldItem->zName); |
| pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias); |
| pNewItem->jointype = pOldItem->jointype; |
| pNewItem->iCursor = pOldItem->iCursor; |
| pNewItem->pTab = 0; |
| pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect); |
| pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn); |
| pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing); |
| } |
| return pNew; |
| } |
| IdList *sqlite3IdListDup(IdList *p){ |
| IdList *pNew; |
| int i; |
| if( p==0 ) return 0; |
| pNew = sqliteMallocRaw( sizeof(*pNew) ); |
| if( pNew==0 ) return 0; |
| pNew->nId = pNew->nAlloc = p->nId; |
| pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) ); |
| if( pNew->a==0 ) return 0; |
| for(i=0; i<p->nId; i++){ |
| struct IdList_item *pNewItem = &pNew->a[i]; |
| struct IdList_item *pOldItem = &p->a[i]; |
| pNewItem->zName = sqliteStrDup(pOldItem->zName); |
| pNewItem->idx = pOldItem->idx; |
| } |
| return pNew; |
| } |
| Select *sqlite3SelectDup(Select *p){ |
| Select *pNew; |
| if( p==0 ) return 0; |
| pNew = sqliteMallocRaw( sizeof(*p) ); |
| if( pNew==0 ) return 0; |
| pNew->isDistinct = p->isDistinct; |
| pNew->pEList = sqlite3ExprListDup(p->pEList); |
| pNew->pSrc = sqlite3SrcListDup(p->pSrc); |
| pNew->pWhere = sqlite3ExprDup(p->pWhere); |
| pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy); |
| pNew->pHaving = sqlite3ExprDup(p->pHaving); |
| pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy); |
| pNew->op = p->op; |
| pNew->pPrior = sqlite3SelectDup(p->pPrior); |
| pNew->nLimit = p->nLimit; |
| pNew->nOffset = p->nOffset; |
| pNew->zSelect = 0; |
| pNew->iLimit = -1; |
| pNew->iOffset = -1; |
| pNew->ppOpenTemp = 0; |
| return pNew; |
| } |
| |
| |
| /* |
| ** Add a new element to the end of an expression list. If pList is |
| ** initially NULL, then create a new expression list. |
| */ |
| ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ |
| if( pList==0 ){ |
| pList = sqliteMalloc( sizeof(ExprList) ); |
| if( pList==0 ){ |
| /* sqlite3ExprDelete(pExpr); // Leak memory if malloc fails */ |
| return 0; |
| } |
| assert( pList->nAlloc==0 ); |
| } |
| if( pList->nAlloc<=pList->nExpr ){ |
| pList->nAlloc = pList->nAlloc*2 + 4; |
| pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0])); |
| if( pList->a==0 ){ |
| /* sqlite3ExprDelete(pExpr); // Leak memory if malloc fails */ |
| pList->nExpr = pList->nAlloc = 0; |
| return pList; |
| } |
| } |
| assert( pList->a!=0 ); |
| if( pExpr || pName ){ |
| struct ExprList_item *pItem = &pList->a[pList->nExpr++]; |
| memset(pItem, 0, sizeof(*pItem)); |
| pItem->pExpr = pExpr; |
| if( pName ){ |
| sqlite3SetNString(&pItem->zName, pName->z, pName->n, 0); |
| sqlite3Dequote(pItem->zName); |
| } |
| } |
| return pList; |
| } |
| |
| /* |
| ** Delete an entire expression list. |
| */ |
| void sqlite3ExprListDelete(ExprList *pList){ |
| int i; |
| if( pList==0 ) return; |
| assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); |
| assert( pList->nExpr<=pList->nAlloc ); |
| for(i=0; i<pList->nExpr; i++){ |
| sqlite3ExprDelete(pList->a[i].pExpr); |
| sqliteFree(pList->a[i].zName); |
| } |
| sqliteFree(pList->a); |
| sqliteFree(pList); |
| } |
| |
| /* |
| ** Walk an expression tree. Return 1 if the expression is constant |
| ** and 0 if it involves variables. |
| ** |
| ** For the purposes of this function, a double-quoted string (ex: "abc") |
| ** is considered a variable but a single-quoted string (ex: 'abc') is |
| ** a constant. |
| */ |
| int sqlite3ExprIsConstant(Expr *p){ |
| switch( p->op ){ |
| case TK_ID: |
| case TK_COLUMN: |
| case TK_DOT: |
| case TK_FUNCTION: |
| return 0; |
| case TK_NULL: |
| case TK_STRING: |
| case TK_BLOB: |
| case TK_INTEGER: |
| case TK_FLOAT: |
| case TK_VARIABLE: |
| return 1; |
| default: { |
| if( p->pLeft && !sqlite3ExprIsConstant(p->pLeft) ) return 0; |
| if( p->pRight && !sqlite3ExprIsConstant(p->pRight) ) return 0; |
| if( p->pList ){ |
| int i; |
| for(i=0; i<p->pList->nExpr; i++){ |
| if( !sqlite3ExprIsConstant(p->pList->a[i].pExpr) ) return 0; |
| } |
| } |
| return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0); |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** If the given expression codes a constant integer that is small enough |
| ** to fit in a 32-bit integer, return 1 and put the value of the integer |
| ** in *pValue. If the expression is not an integer or if it is too big |
| ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. |
| */ |
| int sqlite3ExprIsInteger(Expr *p, int *pValue){ |
| switch( p->op ){ |
| case TK_INTEGER: { |
| if( sqlite3GetInt32(p->token.z, pValue) ){ |
| return 1; |
| } |
| break; |
| } |
| case TK_STRING: { |
| const char *z = p->token.z; |
| int n = p->token.n; |
| if( n>0 && z[0]=='-' ){ z++; n--; } |
| while( n>0 && *z && isdigit(*z) ){ z++; n--; } |
| if( n==0 && sqlite3GetInt32(p->token.z, pValue) ){ |
| return 1; |
| } |
| break; |
| } |
| case TK_UPLUS: { |
| return sqlite3ExprIsInteger(p->pLeft, pValue); |
| } |
| case TK_UMINUS: { |
| int v; |
| if( sqlite3ExprIsInteger(p->pLeft, &v) ){ |
| *pValue = -v; |
| return 1; |
| } |
| break; |
| } |
| default: break; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Return TRUE if the given string is a row-id column name. |
| */ |
| int sqlite3IsRowid(const char *z){ |
| if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; |
| if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; |
| if( sqlite3StrICmp(z, "OID")==0 ) return 1; |
| return 0; |
| } |
| |
| /* |
| ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up |
| ** that name in the set of source tables in pSrcList and make the pExpr |
| ** expression node refer back to that source column. The following changes |
| ** are made to pExpr: |
| ** |
| ** pExpr->iDb Set the index in db->aDb[] of the database holding |
| ** the table. |
| ** pExpr->iTable Set to the cursor number for the table obtained |
| ** from pSrcList. |
| ** pExpr->iColumn Set to the column number within the table. |
| ** pExpr->op Set to TK_COLUMN. |
| ** pExpr->pLeft Any expression this points to is deleted |
| ** pExpr->pRight Any expression this points to is deleted. |
| ** |
| ** The pDbToken is the name of the database (the "X"). This value may be |
| ** NULL meaning that name is of the form Y.Z or Z. Any available database |
| ** can be used. The pTableToken is the name of the table (the "Y"). This |
| ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it |
| ** means that the form of the name is Z and that columns from any table |
| ** can be used. |
| ** |
| ** If the name cannot be resolved unambiguously, leave an error message |
| ** in pParse and return non-zero. Return zero on success. |
| */ |
| static int lookupName( |
| Parse *pParse, /* The parsing context */ |
| Token *pDbToken, /* Name of the database containing table, or NULL */ |
| Token *pTableToken, /* Name of table containing column, or NULL */ |
| Token *pColumnToken, /* Name of the column. */ |
| SrcList *pSrcList, /* List of tables used to resolve column names */ |
| ExprList *pEList, /* List of expressions used to resolve "AS" */ |
| Expr *pExpr /* Make this EXPR node point to the selected column */ |
| ){ |
| char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ |
| char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ |
| char *zCol = 0; /* Name of the column. The "Z" */ |
| int i, j; /* Loop counters */ |
| int cnt = 0; /* Number of matching column names */ |
| int cntTab = 0; /* Number of matching table names */ |
| sqlite *db = pParse->db; /* The database */ |
| |
| assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ |
| if( pDbToken && pDbToken->z ){ |
| zDb = sqliteStrNDup(pDbToken->z, pDbToken->n); |
| sqlite3Dequote(zDb); |
| }else{ |
| zDb = 0; |
| } |
| if( pTableToken && pTableToken->z ){ |
| zTab = sqliteStrNDup(pTableToken->z, pTableToken->n); |
| sqlite3Dequote(zTab); |
| }else{ |
| assert( zDb==0 ); |
| zTab = 0; |
| } |
| zCol = sqliteStrNDup(pColumnToken->z, pColumnToken->n); |
| sqlite3Dequote(zCol); |
| if( sqlite3_malloc_failed ){ |
| return 1; /* Leak memory (zDb and zTab) if malloc fails */ |
| } |
| assert( zTab==0 || pEList==0 ); |
| |
| pExpr->iTable = -1; |
| for(i=0; i<pSrcList->nSrc; i++){ |
| struct SrcList_item *pItem = &pSrcList->a[i]; |
| Table *pTab = pItem->pTab; |
| Column *pCol; |
| |
| if( pTab==0 ) continue; |
| assert( pTab->nCol>0 ); |
| if( zTab ){ |
| if( pItem->zAlias ){ |
| char *zTabName = pItem->zAlias; |
| if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; |
| }else{ |
| char *zTabName = pTab->zName; |
| if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; |
| if( zDb!=0 && sqlite3StrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){ |
| continue; |
| } |
| } |
| } |
| if( 0==(cntTab++) ){ |
| pExpr->iTable = pItem->iCursor; |
| pExpr->iDb = pTab->iDb; |
| } |
| for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ |
| if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ |
| cnt++; |
| pExpr->iTable = pItem->iCursor; |
| pExpr->iDb = pTab->iDb; |
| /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ |
| pExpr->iColumn = j==pTab->iPKey ? -1 : j; |
| pExpr->affinity = pTab->aCol[j].affinity; |
| pExpr->pColl = pTab->aCol[j].pColl; |
| break; |
| } |
| } |
| } |
| |
| /* If we have not already resolved the name, then maybe |
| ** it is a new.* or old.* trigger argument reference |
| */ |
| if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ |
| TriggerStack *pTriggerStack = pParse->trigStack; |
| Table *pTab = 0; |
| if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ |
| pExpr->iTable = pTriggerStack->newIdx; |
| assert( pTriggerStack->pTab ); |
| pTab = pTriggerStack->pTab; |
| }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab) == 0 ){ |
| pExpr->iTable = pTriggerStack->oldIdx; |
| assert( pTriggerStack->pTab ); |
| pTab = pTriggerStack->pTab; |
| } |
| |
| if( pTab ){ |
| int j; |
| Column *pCol = pTab->aCol; |
| |
| pExpr->iDb = pTab->iDb; |
| cntTab++; |
| for(j=0; j < pTab->nCol; j++, pCol++) { |
| if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ |
| cnt++; |
| pExpr->iColumn = j==pTab->iPKey ? -1 : j; |
| pExpr->affinity = pTab->aCol[j].affinity; |
| pExpr->pColl = pTab->aCol[j].pColl; |
| break; |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Perhaps the name is a reference to the ROWID |
| */ |
| if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ |
| cnt = 1; |
| pExpr->iColumn = -1; |
| pExpr->affinity = SQLITE_AFF_INTEGER; |
| } |
| |
| /* |
| ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z |
| ** might refer to an result-set alias. This happens, for example, when |
| ** we are resolving names in the WHERE clause of the following command: |
| ** |
| ** SELECT a+b AS x FROM table WHERE x<10; |
| ** |
| ** In cases like this, replace pExpr with a copy of the expression that |
| ** forms the result set entry ("a+b" in the example) and return immediately. |
| ** Note that the expression in the result set should have already been |
| ** resolved by the time the WHERE clause is resolved. |
| */ |
| if( cnt==0 && pEList!=0 ){ |
| for(j=0; j<pEList->nExpr; j++){ |
| char *zAs = pEList->a[j].zName; |
| if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ |
| assert( pExpr->pLeft==0 && pExpr->pRight==0 ); |
| pExpr->op = TK_AS; |
| pExpr->iColumn = j; |
| pExpr->pLeft = sqlite3ExprDup(pEList->a[j].pExpr); |
| sqliteFree(zCol); |
| assert( zTab==0 && zDb==0 ); |
| return 0; |
| } |
| } |
| } |
| |
| /* |
| ** If X and Y are NULL (in other words if only the column name Z is |
| ** supplied) and the value of Z is enclosed in double-quotes, then |
| ** Z is a string literal if it doesn't match any column names. In that |
| ** case, we need to return right away and not make any changes to |
| ** pExpr. |
| */ |
| if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ |
| sqliteFree(zCol); |
| return 0; |
| } |
| |
| /* |
| ** cnt==0 means there was not match. cnt>1 means there were two or |
| ** more matches. Either way, we have an error. |
| */ |
| if( cnt!=1 ){ |
| char *z = 0; |
| char *zErr; |
| zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; |
| if( zDb ){ |
| sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, 0); |
| }else if( zTab ){ |
| sqlite3SetString(&z, zTab, ".", zCol, 0); |
| }else{ |
| z = sqliteStrDup(zCol); |
| } |
| sqlite3ErrorMsg(pParse, zErr, z); |
| sqliteFree(z); |
| } |
| |
| /* Clean up and return |
| */ |
| sqliteFree(zDb); |
| sqliteFree(zTab); |
| sqliteFree(zCol); |
| sqlite3ExprDelete(pExpr->pLeft); |
| pExpr->pLeft = 0; |
| sqlite3ExprDelete(pExpr->pRight); |
| pExpr->pRight = 0; |
| pExpr->op = TK_COLUMN; |
| sqlite3AuthRead(pParse, pExpr, pSrcList); |
| return cnt!=1; |
| } |
| |
| /* |
| ** This routine walks an expression tree and resolves references to |
| ** table columns. Nodes of the form ID.ID or ID resolve into an |
| ** index to the table in the table list and a column offset. The |
| ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable |
| ** value is changed to the index of the referenced table in pTabList |
| ** plus the "base" value. The base value will ultimately become the |
| ** VDBE cursor number for a cursor that is pointing into the referenced |
| ** table. The Expr.iColumn value is changed to the index of the column |
| ** of the referenced table. The Expr.iColumn value for the special |
| ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an |
| ** alias for ROWID. |
| ** |
| ** We also check for instances of the IN operator. IN comes in two |
| ** forms: |
| ** |
| ** expr IN (exprlist) |
| ** and |
| ** expr IN (SELECT ...) |
| ** |
| ** The first form is handled by creating a set holding the list |
| ** of allowed values. The second form causes the SELECT to generate |
| ** a temporary table. |
| ** |
| ** This routine also looks for scalar SELECTs that are part of an expression. |
| ** If it finds any, it generates code to write the value of that select |
| ** into a memory cell. |
| ** |
| ** Unknown columns or tables provoke an error. The function returns |
| ** the number of errors seen and leaves an error message on pParse->zErrMsg. |
| */ |
| int sqlite3ExprResolveIds( |
| Parse *pParse, /* The parser context */ |
| SrcList *pSrcList, /* List of tables used to resolve column names */ |
| ExprList *pEList, /* List of expressions used to resolve "AS" */ |
| Expr *pExpr /* The expression to be analyzed. */ |
| ){ |
| int i; |
| |
| if( pExpr==0 || pSrcList==0 ) return 0; |
| for(i=0; i<pSrcList->nSrc; i++){ |
| assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab ); |
| } |
| switch( pExpr->op ){ |
| /* Double-quoted strings (ex: "abc") are used as identifiers if |
| ** possible. Otherwise they remain as strings. Single-quoted |
| ** strings (ex: 'abc') are always string literals. |
| */ |
| case TK_STRING: { |
| if( pExpr->token.z[0]=='\'' ) break; |
| /* Fall thru into the TK_ID case if this is a double-quoted string */ |
| } |
| /* A lone identifier is the name of a columnd. |
| */ |
| case TK_ID: { |
| if( lookupName(pParse, 0, 0, &pExpr->token, pSrcList, pEList, pExpr) ){ |
| return 1; |
| } |
| break; |
| } |
| |
| /* A table name and column name: ID.ID |
| ** Or a database, table and column: ID.ID.ID |
| */ |
| case TK_DOT: { |
| Token *pColumn; |
| Token *pTable; |
| Token *pDb; |
| Expr *pRight; |
| |
| pRight = pExpr->pRight; |
| if( pRight->op==TK_ID ){ |
| pDb = 0; |
| pTable = &pExpr->pLeft->token; |
| pColumn = &pRight->token; |
| }else{ |
| assert( pRight->op==TK_DOT ); |
| pDb = &pExpr->pLeft->token; |
| pTable = &pRight->pLeft->token; |
| pColumn = &pRight->pRight->token; |
| } |
| if( lookupName(pParse, pDb, pTable, pColumn, pSrcList, 0, pExpr) ){ |
| return 1; |
| } |
| break; |
| } |
| |
| case TK_IN: { |
| char affinity; |
| Vdbe *v = sqlite3GetVdbe(pParse); |
| KeyInfo keyInfo; |
| int addr; /* Address of OP_OpenTemp instruction */ |
| |
| if( v==0 ) return 1; |
| if( sqlite3ExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){ |
| return 1; |
| } |
| affinity = sqlite3ExprAffinity(pExpr->pLeft); |
| |
| /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' |
| ** expression it is handled the same way. A temporary table is |
| ** filled with single-field index keys representing the results |
| ** from the SELECT or the <exprlist>. |
| ** |
| ** If the 'x' expression is a column value, or the SELECT... |
| ** statement returns a column value, then the affinity of that |
| ** column is used to build the index keys. If both 'x' and the |
| ** SELECT... statement are columns, then numeric affinity is used |
| ** if either column has NUMERIC or INTEGER affinity. If neither |
| ** 'x' nor the SELECT... statement are columns, then numeric affinity |
| ** is used. |
| */ |
| pExpr->iTable = pParse->nTab++; |
| addr = sqlite3VdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 0); |
| memset(&keyInfo, 0, sizeof(keyInfo)); |
| keyInfo.nField = 1; |
| sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); |
| |
| if( pExpr->pSelect ){ |
| /* Case 1: expr IN (SELECT ...) |
| ** |
| ** Generate code to write the results of the select into the temporary |
| ** table allocated and opened above. |
| */ |
| int iParm = pExpr->iTable + (((int)affinity)<<16); |
| assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); |
| sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0); |
| if( pExpr->pSelect->pEList && pExpr->pSelect->pEList->nExpr>0 ){ |
| keyInfo.aColl[0] = binaryCompareCollSeq(pParse, pExpr->pLeft, |
| pExpr->pSelect->pEList->a[0].pExpr); |
| } |
| }else if( pExpr->pList ){ |
| /* Case 2: expr IN (exprlist) |
| ** |
| ** For each expression, build an index key from the evaluation and |
| ** store it in the temporary table. If <expr> is a column, then use |
| ** that columns affinity when building index keys. If <expr> is not |
| ** a column, use numeric affinity. |
| */ |
| int i; |
| char const *affStr; |
| if( !affinity ){ |
| affinity = SQLITE_AFF_NUMERIC; |
| } |
| affStr = sqlite3AffinityString(affinity); |
| keyInfo.aColl[0] = pExpr->pLeft->pColl; |
| |
| /* Loop through each expression in <exprlist>. */ |
| for(i=0; i<pExpr->pList->nExpr; i++){ |
| Expr *pE2 = pExpr->pList->a[i].pExpr; |
| |
| /* Check that the expression is constant and valid. */ |
| if( !sqlite3ExprIsConstant(pE2) ){ |
| sqlite3ErrorMsg(pParse, |
| "right-hand side of IN operator must be constant"); |
| return 1; |
| } |
| if( sqlite3ExprCheck(pParse, pE2, 0, 0) ){ |
| return 1; |
| } |
| |
| /* Evaluate the expression and insert it into the temp table */ |
| sqlite3ExprCode(pParse, pE2); |
| sqlite3VdbeOp3(v, OP_MakeKey, 1, 0, affStr, P3_STATIC); |
| sqlite3VdbeAddOp(v, OP_String8, 0, 0); |
| sqlite3VdbeAddOp(v, OP_PutStrKey, pExpr->iTable, 0); |
| } |
| } |
| sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); |
| |
| break; |
| } |
| |
| case TK_SELECT: { |
| /* This has to be a scalar SELECT. Generate code to put the |
| ** value of this select in a memory cell and record the number |
| ** of the memory cell in iColumn. |
| */ |
| pExpr->iColumn = pParse->nMem++; |
| if(sqlite3Select(pParse, pExpr->pSelect, SRT_Mem,pExpr->iColumn,0,0,0,0)){ |
| return 1; |
| } |
| break; |
| } |
| |
| /* For all else, just recursively walk the tree */ |
| default: { |
| if( pExpr->pLeft |
| && sqlite3ExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){ |
| return 1; |
| } |
| if( pExpr->pRight |
| && sqlite3ExprResolveIds(pParse, pSrcList, pEList, pExpr->pRight) ){ |
| return 1; |
| } |
| if( pExpr->pList ){ |
| int i; |
| ExprList *pList = pExpr->pList; |
| for(i=0; i<pList->nExpr; i++){ |
| Expr *pArg = pList->a[i].pExpr; |
| if( sqlite3ExprResolveIds(pParse, pSrcList, pEList, pArg) ){ |
| return 1; |
| } |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** pExpr is a node that defines a function of some kind. It might |
| ** be a syntactic function like "count(x)" or it might be a function |
| ** that implements an operator, like "a LIKE b". |
| ** |
| ** This routine makes *pzName point to the name of the function and |
| ** *pnName hold the number of characters in the function name. |
| */ |
| static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){ |
| switch( pExpr->op ){ |
| case TK_FUNCTION: { |
| *pzName = pExpr->token.z; |
| *pnName = pExpr->token.n; |
| break; |
| } |
| case TK_LIKE: { |
| *pzName = "like"; |
| *pnName = 4; |
| break; |
| } |
| case TK_GLOB: { |
| *pzName = "glob"; |
| *pnName = 4; |
| break; |
| } |
| default: { |
| *pzName = "can't happen"; |
| *pnName = 12; |
| break; |
| } |
| } |
| } |
| |
| /* |
| ** Error check the functions in an expression. Make sure all |
| ** function names are recognized and all functions have the correct |
| ** number of arguments. Leave an error message in pParse->zErrMsg |
| ** if anything is amiss. Return the number of errors. |
| ** |
| ** if pIsAgg is not null and this expression is an aggregate function |
| ** (like count(*) or max(value)) then write a 1 into *pIsAgg. |
| */ |
| int sqlite3ExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){ |
| int nErr = 0; |
| if( pExpr==0 ) return 0; |
| switch( pExpr->op ){ |
| case TK_GLOB: |
| case TK_LIKE: |
| case TK_FUNCTION: { |
| int n = pExpr->pList ? pExpr->pList->nExpr : 0; /* Number of arguments */ |
| int no_such_func = 0; /* True if no such function exists */ |
| int wrong_num_args = 0; /* True if wrong number of arguments */ |
| int is_agg = 0; /* True if is an aggregate function */ |
| int i; |
| int nId; /* Number of characters in function name */ |
| const char *zId; /* The function name. */ |
| FuncDef *pDef; |
| int iPrefEnc = (pParse->db->enc==TEXT_Utf8)?0:1; |
| |
| getFunctionName(pExpr, &zId, &nId); |
| pDef = sqlite3FindFunction(pParse->db, zId, nId, n, iPrefEnc, 0); |
| if( pDef==0 ){ |
| pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, iPrefEnc, 0); |
| if( pDef==0 ){ |
| no_such_func = 1; |
| }else{ |
| wrong_num_args = 1; |
| } |
| }else{ |
| is_agg = pDef->xFunc==0; |
| } |
| if( is_agg && !allowAgg ){ |
| sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId, zId); |
| nErr++; |
| is_agg = 0; |
| }else if( no_such_func ){ |
| sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); |
| nErr++; |
| }else if( wrong_num_args ){ |
| sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", |
| nId, zId); |
| nErr++; |
| } |
| if( is_agg ){ |
| pExpr->op = TK_AGG_FUNCTION; |
| if( pIsAgg ) *pIsAgg = 1; |
| } |
| for(i=0; nErr==0 && i<n; i++){ |
| nErr = sqlite3ExprCheck(pParse, pExpr->pList->a[i].pExpr, |
| allowAgg && !is_agg, pIsAgg); |
| } |
| /* FIX ME: Compute pExpr->affinity based on the expected return |
| ** type of the function |
| */ |
| } |
| default: { |
| if( pExpr->pLeft ){ |
| nErr = sqlite3ExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg); |
| } |
| if( nErr==0 && pExpr->pRight ){ |
| nErr = sqlite3ExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg); |
| } |
| if( nErr==0 && pExpr->pList ){ |
| int n = pExpr->pList->nExpr; |
| int i; |
| for(i=0; nErr==0 && i<n; i++){ |
| Expr *pE2 = pExpr->pList->a[i].pExpr; |
| nErr = sqlite3ExprCheck(pParse, pE2, allowAgg, pIsAgg); |
| } |
| } |
| break; |
| } |
| } |
| return nErr; |
| } |
| |
| /* |
| ** Return one of the SQLITE_AFF_* affinity types that indicates the likely |
| ** data type of the result of the given expression. |
| ** |
| ** Not every expression has a fixed type. If the type cannot be determined |
| ** at compile-time, then try to return the type affinity if the expression |
| ** is a column. Otherwise just return SQLITE_AFF_NONE. |
| ** |
| ** The sqlite3ExprResolveIds() and sqlite3ExprCheck() routines must have |
| ** both been called on the expression before it is passed to this routine. |
| */ |
| int sqlite3ExprType(Expr *p){ |
| if( p==0 ) return SQLITE_AFF_NONE; |
| while( p ) switch( p->op ){ |
| case TK_CONCAT: |
| case TK_STRING: |
| case TK_BLOB: |
| return SQLITE_AFF_TEXT; |
| |
| case TK_AS: |
| p = p->pLeft; |
| break; |
| |
| case TK_VARIABLE: |
| case TK_NULL: |
| return SQLITE_AFF_NONE; |
| |
| case TK_SELECT: /*** FIX ME ****/ |
| case TK_COLUMN: /*** FIX ME ****/ |
| case TK_CASE: /*** FIX ME ****/ |
| |
| default: |
| return SQLITE_AFF_NUMERIC; |
| } |
| return SQLITE_AFF_NONE; |
| } |
| |
| /* |
| ** Generate an instruction that will put the integer describe by |
| ** text z[0..n-1] on the stack. |
| */ |
| static void codeInteger(Vdbe *v, const char *z, int n){ |
| int i; |
| if( sqlite3GetInt32(z, &i) ){ |
| sqlite3VdbeAddOp(v, OP_Integer, i, 0); |
| }else if( sqlite3FitsIn64Bits(z) ){ |
| sqlite3VdbeOp3(v, OP_Integer, 0, 0, z, n); |
| }else{ |
| sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n); |
| } |
| } |
| |
| /* |
| ** Generate code into the current Vdbe to evaluate the given |
| ** expression and leave the result on the top of stack. |
| */ |
| void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ |
| Vdbe *v = pParse->pVdbe; |
| int op; |
| if( v==0 || pExpr==0 ) return; |
| switch( pExpr->op ){ |
| case TK_PLUS: op = OP_Add; break; |
| case TK_MINUS: op = OP_Subtract; break; |
| case TK_STAR: op = OP_Multiply; break; |
| case TK_SLASH: op = OP_Divide; break; |
| case TK_AND: op = OP_And; break; |
| case TK_OR: op = OP_Or; break; |
| case TK_LT: op = OP_Lt; break; |
| case TK_LE: op = OP_Le; break; |
| case TK_GT: op = OP_Gt; break; |
| case TK_GE: op = OP_Ge; break; |
| case TK_NE: op = OP_Ne; break; |
| case TK_EQ: op = OP_Eq; break; |
| case TK_ISNULL: op = OP_IsNull; break; |
| case TK_NOTNULL: op = OP_NotNull; break; |
| case TK_NOT: op = OP_Not; break; |
| case TK_UMINUS: op = OP_Negative; break; |
| case TK_BITAND: op = OP_BitAnd; break; |
| case TK_BITOR: op = OP_BitOr; break; |
| case TK_BITNOT: op = OP_BitNot; break; |
| case TK_LSHIFT: op = OP_ShiftLeft; break; |
| case TK_RSHIFT: op = OP_ShiftRight; break; |
| case TK_REM: op = OP_Remainder; break; |
| case TK_FLOAT: op = OP_Real; break; |
| case TK_STRING: op = OP_String8; break; |
| case TK_BLOB: op = OP_HexBlob; break; |
| default: break; |
| } |
| switch( pExpr->op ){ |
| case TK_COLUMN: { |
| if( pParse->useAgg ){ |
| sqlite3VdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg); |
| }else if( pExpr->iColumn>=0 ){ |
| sqlite3VdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn); |
| }else{ |
| sqlite3VdbeAddOp(v, OP_Recno, pExpr->iTable, 0); |
| } |
| break; |
| } |
| case TK_INTEGER: { |
| codeInteger(v, pExpr->token.z, pExpr->token.n); |
| break; |
| } |
| case TK_FLOAT: |
| case TK_STRING: { |
| sqlite3VdbeOp3(v, op, 0, 0, pExpr->token.z, pExpr->token.n); |
| sqlite3VdbeDequoteP3(v, -1); |
| break; |
| } |
| case TK_BLOB: { |
| sqlite3VdbeOp3(v, op, 0, 0, pExpr->token.z+1, pExpr->token.n-1); |
| sqlite3VdbeDequoteP3(v, -1); |
| break; |
| } |
| case TK_NULL: { |
| sqlite3VdbeAddOp(v, OP_String8, 0, 0); |
| break; |
| } |
| case TK_VARIABLE: { |
| sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); |
| break; |
| } |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pRight, 0); |
| CollSeq *p3 = binaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3ExprCode(pParse, pExpr->pRight); |
| sqlite3VdbeOp3(v, op, p1, 0, (void *)p3, P3_COLLSEQ); |
| break; |
| } |
| case TK_AND: |
| case TK_OR: |
| case TK_PLUS: |
| case TK_STAR: |
| case TK_MINUS: |
| case TK_REM: |
| case TK_BITAND: |
| case TK_BITOR: |
| case TK_SLASH: { |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3ExprCode(pParse, pExpr->pRight); |
| sqlite3VdbeAddOp(v, op, 0, 0); |
| break; |
| } |
| case TK_LSHIFT: |
| case TK_RSHIFT: { |
| sqlite3ExprCode(pParse, pExpr->pRight); |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3VdbeAddOp(v, op, 0, 0); |
| break; |
| } |
| case TK_CONCAT: { |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3ExprCode(pParse, pExpr->pRight); |
| sqlite3VdbeAddOp(v, OP_Concat, 2, 0); |
| break; |
| } |
| case TK_UMINUS: { |
| Expr *pLeft = pExpr->pLeft; |
| assert( pLeft ); |
| if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ |
| Token *p = &pLeft->token; |
| char *z = sqliteMalloc( p->n + 2 ); |
| sprintf(z, "-%.*s", p->n, p->z); |
| if( pLeft->op==TK_FLOAT ){ |
| sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1); |
| }else{ |
| codeInteger(v, z, p->n+1); |
| } |
| sqliteFree(z); |
| break; |
| } |
| /* Fall through into TK_NOT */ |
| } |
| case TK_BITNOT: |
| case TK_NOT: { |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3VdbeAddOp(v, op, 0, 0); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| int dest; |
| sqlite3VdbeAddOp(v, OP_Integer, 1, 0); |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| dest = sqlite3VdbeCurrentAddr(v) + 2; |
| sqlite3VdbeAddOp(v, op, 1, dest); |
| sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); |
| } |
| break; |
| case TK_AGG_FUNCTION: { |
| sqlite3VdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg); |
| break; |
| } |
| case TK_GLOB: |
| case TK_LIKE: |
| case TK_FUNCTION: { |
| ExprList *pList = pExpr->pList; |
| int nExpr = pList ? pList->nExpr : 0; |
| FuncDef *pDef; |
| int nId; |
| const char *zId; |
| int p2 = 0; |
| int i; |
| int iPrefEnc = (pParse->db->enc==TEXT_Utf8)?0:1; |
| CollSeq *pColl = 0; |
| getFunctionName(pExpr, &zId, &nId); |
| pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, iPrefEnc, 0); |
| assert( pDef!=0 ); |
| nExpr = sqlite3ExprCodeExprList(pParse, pList); |
| for(i=0; i<nExpr && i<32; i++){ |
| if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ |
| p2 |= (1<<i); |
| } |
| if( pDef->needCollSeq && !pColl ){ |
| pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); |
| } |
| } |
| if( pDef->needCollSeq ){ |
| if( !pColl ) pColl = pParse->db->pDfltColl; |
| sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, pColl, P3_COLLSEQ); |
| } |
| sqlite3VdbeOp3(v, OP_Function, nExpr, p2, (char*)pDef, P3_FUNCDEF); |
| break; |
| } |
| case TK_SELECT: { |
| sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); |
| break; |
| } |
| case TK_IN: { |
| int addr; |
| char const *affStr; |
| |
| /* Figure out the affinity to use to create a key from the results |
| ** of the expression. affinityStr stores a static string suitable for |
| ** P3 of OP_MakeKey. |
| */ |
| affStr = sqlite3AffinityString(comparisonAffinity(pExpr)); |
| |
| sqlite3VdbeAddOp(v, OP_Integer, 1, 0); |
| |
| /* Code the <expr> from "<expr> IN (...)". The temporary table |
| ** pExpr->iTable contains the values that make up the (...) set. |
| */ |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| addr = sqlite3VdbeCurrentAddr(v); |
| sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ |
| sqlite3VdbeAddOp(v, OP_Pop, 2, 0); |
| sqlite3VdbeAddOp(v, OP_String8, 0, 0); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); |
| sqlite3VdbeOp3(v, OP_MakeKey, 1, 0, affStr, P3_STATIC); /* addr + 4 */ |
| sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); |
| sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ |
| |
| break; |
| } |
| case TK_BETWEEN: { |
| int p1; |
| CollSeq *p3; |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
| sqlite3ExprCode(pParse, pExpr->pList->a[0].pExpr); |
| p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[0].pExpr, 0); |
| p3 = binaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pList->a[0].pExpr); |
| sqlite3VdbeOp3(v, OP_Ge, p1, 0, (void *)p3, P3_COLLSEQ); |
| sqlite3VdbeAddOp(v, OP_Pull, 1, 0); |
| sqlite3ExprCode(pParse, pExpr->pList->a[1].pExpr); |
| p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[1].pExpr, 0); |
| p3 = binaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pList->a[1].pExpr); |
| sqlite3VdbeOp3(v, OP_Le, p1, 0, (void *)p3, P3_COLLSEQ); |
| sqlite3VdbeAddOp(v, OP_And, 0, 0); |
| break; |
| } |
| case TK_UPLUS: |
| case TK_AS: { |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| break; |
| } |
| case TK_CASE: { |
| int expr_end_label; |
| int jumpInst; |
| int addr; |
| int nExpr; |
| int i; |
| |
| assert(pExpr->pList); |
| assert((pExpr->pList->nExpr % 2) == 0); |
| assert(pExpr->pList->nExpr > 0); |
| nExpr = pExpr->pList->nExpr; |
| expr_end_label = sqlite3VdbeMakeLabel(v); |
| if( pExpr->pLeft ){ |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| } |
| for(i=0; i<nExpr; i=i+2){ |
| sqlite3ExprCode(pParse, pExpr->pList->a[i].pExpr); |
| if( pExpr->pLeft ){ |
| int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[i].pExpr, 1); |
| CollSeq *p3 = binaryCompareCollSeq(pParse, pExpr->pLeft, |
| pExpr->pList->a[i].pExpr); |
| sqlite3VdbeAddOp(v, OP_Dup, 1, 1); |
| jumpInst = sqlite3VdbeOp3(v, OP_Ne, p1, 0, (void *)p3, P3_COLLSEQ); |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| }else{ |
| jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); |
| } |
| sqlite3ExprCode(pParse, pExpr->pList->a[i+1].pExpr); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); |
| addr = sqlite3VdbeCurrentAddr(v); |
| sqlite3VdbeChangeP2(v, jumpInst, addr); |
| } |
| if( pExpr->pLeft ){ |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| } |
| if( pExpr->pRight ){ |
| sqlite3ExprCode(pParse, pExpr->pRight); |
| }else{ |
| sqlite3VdbeAddOp(v, OP_String8, 0, 0); |
| } |
| sqlite3VdbeResolveLabel(v, expr_end_label); |
| break; |
| } |
| case TK_RAISE: { |
| if( !pParse->trigStack ){ |
| sqlite3ErrorMsg(pParse, |
| "RAISE() may only be used within a trigger-program"); |
| pParse->nErr++; |
| return; |
| } |
| if( pExpr->iColumn == OE_Rollback || |
| pExpr->iColumn == OE_Abort || |
| pExpr->iColumn == OE_Fail ){ |
| sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, |
| pExpr->token.z, pExpr->token.n); |
| sqlite3VdbeDequoteP3(v, -1); |
| } else { |
| assert( pExpr->iColumn == OE_Ignore ); |
| sqlite3VdbeOp3(v, OP_Goto, 0, pParse->trigStack->ignoreJump, |
| "(IGNORE jump)", 0); |
| } |
| } |
| break; |
| } |
| } |
| |
| /* |
| ** Generate code that pushes the value of every element of the given |
| ** expression list onto the stack. |
| ** |
| ** Return the number of elements pushed onto the stack. |
| */ |
| int sqlite3ExprCodeExprList( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList /* The expression list to be coded */ |
| ){ |
| struct ExprList_item *pItem; |
| int i, n; |
| Vdbe *v; |
| if( pList==0 ) return 0; |
| v = sqlite3GetVdbe(pParse); |
| n = pList->nExpr; |
| for(pItem=pList->a, i=0; i<n; i++, pItem++){ |
| sqlite3ExprCode(pParse, pItem->pExpr); |
| } |
| return n; |
| } |
| |
| /* |
| ** Generate code for a boolean expression such that a jump is made |
| ** to the label "dest" if the expression is true but execution |
| ** continues straight thru if the expression is false. |
| ** |
| ** If the expression evaluates to NULL (neither true nor false), then |
| ** take the jump if the jumpIfNull flag is true. |
| */ |
| void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
| Vdbe *v = pParse->pVdbe; |
| int op = 0; |
| if( v==0 || pExpr==0 ) return; |
| switch( pExpr->op ){ |
| case TK_LT: op = OP_Lt; break; |
| case TK_LE: op = OP_Le; break; |
| case TK_GT: op = OP_Gt; break; |
| case TK_GE: op = OP_Ge; break; |
| case TK_NE: op = OP_Ne; break; |
| case TK_EQ: op = OP_Eq; break; |
| case TK_ISNULL: op = OP_IsNull; break; |
| case TK_NOTNULL: op = OP_NotNull; break; |
| default: break; |
| } |
| switch( pExpr->op ){ |
| case TK_AND: { |
| int d2 = sqlite3VdbeMakeLabel(v); |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); |
| sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
| sqlite3VdbeResolveLabel(v, d2); |
| break; |
| } |
| case TK_OR: { |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
| sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
| break; |
| } |
| case TK_NOT: { |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
| break; |
| } |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pRight, jumpIfNull); |
| CollSeq *p3 = binaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3ExprCode(pParse, pExpr->pRight); |
| sqlite3VdbeOp3(v, op, p1, dest, (void *)p3, P3_COLLSEQ); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3VdbeAddOp(v, op, 1, dest); |
| break; |
| } |
| case TK_BETWEEN: { |
| /* The expression "x BETWEEN y AND z" is implemented as: |
| ** |
| ** 1 IF (x < y) GOTO 3 |
| ** 2 IF (x <= z) GOTO <dest> |
| ** 3 ... |
| */ |
| int addr; |
| int p1; |
| CollSeq *p3; |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
| sqlite3ExprCode(pParse, pExpr->pList->a[0].pExpr); |
| p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[0].pExpr, !jumpIfNull); |
| p3 = binaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pList->a[0].pExpr); |
| addr = sqlite3VdbeOp3(v, OP_Lt, p1, 0, (void *)p3, P3_COLLSEQ); |
| |
| sqlite3ExprCode(pParse, pExpr->pList->a[1].pExpr); |
| p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[1].pExpr, jumpIfNull); |
| p3 = binaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pList->a[1].pExpr); |
| sqlite3VdbeOp3(v, OP_Le, p1, dest, (void *)p3, P3_COLLSEQ); |
| |
| sqlite3VdbeAddOp(v, OP_Integer, 0, 0); |
| sqlite3VdbeChangeP2(v, addr, sqlite3VdbeCurrentAddr(v)); |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| break; |
| } |
| default: { |
| sqlite3ExprCode(pParse, pExpr); |
| sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); |
| break; |
| } |
| } |
| } |
| |
| /* |
| ** Generate code for a boolean expression such that a jump is made |
| ** to the label "dest" if the expression is false but execution |
| ** continues straight thru if the expression is true. |
| ** |
| ** If the expression evaluates to NULL (neither true nor false) then |
| ** jump if jumpIfNull is true or fall through if jumpIfNull is false. |
| */ |
| void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
| Vdbe *v = pParse->pVdbe; |
| int op = 0; |
| if( v==0 || pExpr==0 ) return; |
| switch( pExpr->op ){ |
| case TK_LT: op = OP_Ge; break; |
| case TK_LE: op = OP_Gt; break; |
| case TK_GT: op = OP_Le; break; |
| case TK_GE: op = OP_Lt; break; |
| case TK_NE: op = OP_Eq; break; |
| case TK_EQ: op = OP_Ne; break; |
| case TK_ISNULL: op = OP_NotNull; break; |
| case TK_NOTNULL: op = OP_IsNull; break; |
| default: break; |
| } |
| switch( pExpr->op ){ |
| case TK_AND: { |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
| sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
| break; |
| } |
| case TK_OR: { |
| int d2 = sqlite3VdbeMakeLabel(v); |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); |
| sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
| sqlite3VdbeResolveLabel(v, d2); |
| break; |
| } |
| case TK_NOT: { |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
| break; |
| } |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| int p1 = binaryCompareP1(pExpr->pLeft, pExpr->pRight, jumpIfNull); |
| CollSeq *p3 = binaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3ExprCode(pParse, pExpr->pRight); |
| sqlite3VdbeOp3(v, op, p1, dest, (void *)p3, P3_COLLSEQ); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3VdbeAddOp(v, op, 1, dest); |
| break; |
| } |
| case TK_BETWEEN: { |
| /* The expression is "x BETWEEN y AND z". It is implemented as: |
| ** |
| ** 1 IF (x >= y) GOTO 3 |
| ** 2 GOTO <dest> |
| ** 3 IF (x > z) GOTO <dest> |
| */ |
| int addr; |
| int p1; |
| CollSeq *p3; |
| sqlite3ExprCode(pParse, pExpr->pLeft); |
| sqlite3VdbeAddOp(v, OP_Dup, 0, 0); |
| sqlite3ExprCode(pParse, pExpr->pList->a[0].pExpr); |
| addr = sqlite3VdbeCurrentAddr(v); |
| p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[0].pExpr, !jumpIfNull); |
| p3 = binaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pList->a[0].pExpr); |
| sqlite3VdbeOp3(v, OP_Ge, p1, addr+3, (void *)p3, P3_COLLSEQ); |
| sqlite3VdbeAddOp(v, OP_Pop, 1, 0); |
| sqlite3VdbeAddOp(v, OP_Goto, 0, dest); |
| sqlite3ExprCode(pParse, pExpr->pList->a[1].pExpr); |
| p1 = binaryCompareP1(pExpr->pLeft, pExpr->pList->a[1].pExpr, jumpIfNull); |
| p3 = binaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pList->a[1].pExpr); |
| sqlite3VdbeOp3(v, OP_Gt, p1, dest, (void *)p3, P3_COLLSEQ); |
| break; |
| } |
| default: { |
| sqlite3ExprCode(pParse, pExpr); |
| sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); |
| break; |
| } |
| } |
| } |
| |
| /* |
| ** Do a deep comparison of two expression trees. Return TRUE (non-zero) |
| ** if they are identical and return FALSE if they differ in any way. |
| */ |
| int sqlite3ExprCompare(Expr *pA, Expr *pB){ |
| int i; |
| if( pA==0 ){ |
| return pB==0; |
| }else if( pB==0 ){ |
| return 0; |
| } |
| if( pA->op!=pB->op ) return 0; |
| if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; |
| if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; |
| if( pA->pList ){ |
| if( pB->pList==0 ) return 0; |
| if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; |
| for(i=0; i<pA->pList->nExpr; i++){ |
| if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ |
| return 0; |
| } |
| } |
| }else if( pB->pList ){ |
| return 0; |
| } |
| if( pA->pSelect || pB->pSelect ) return 0; |
| if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; |
| if( pA->token.z ){ |
| if( pB->token.z==0 ) return 0; |
| if( pB->token.n!=pA->token.n ) return 0; |
| if( sqlite3StrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| ** Add a new element to the pParse->aAgg[] array and return its index. |
| */ |
| static int appendAggInfo(Parse *pParse){ |
| if( (pParse->nAgg & 0x7)==0 ){ |
| int amt = pParse->nAgg + 8; |
| AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0])); |
| if( aAgg==0 ){ |
| return -1; |
| } |
| pParse->aAgg = aAgg; |
| } |
| memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0])); |
| return pParse->nAgg++; |
| } |
| |
| /* |
| ** Analyze the given expression looking for aggregate functions and |
| ** for variables that need to be added to the pParse->aAgg[] array. |
| ** Make additional entries to the pParse->aAgg[] array as necessary. |
| ** |
| ** This routine should only be called after the expression has been |
| ** analyzed by sqlite3ExprResolveIds() and sqlite3ExprCheck(). |
| ** |
| ** If errors are seen, leave an error message in zErrMsg and return |
| ** the number of errors. |
| */ |
| int sqlite3ExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){ |
| int i; |
| AggExpr *aAgg; |
| int nErr = 0; |
| |
| if( pExpr==0 ) return 0; |
| switch( pExpr->op ){ |
| case TK_COLUMN: { |
| aAgg = pParse->aAgg; |
| for(i=0; i<pParse->nAgg; i++){ |
| if( aAgg[i].isAgg ) continue; |
| if( aAgg[i].pExpr->iTable==pExpr->iTable |
| && aAgg[i].pExpr->iColumn==pExpr->iColumn ){ |
| break; |
| } |
| } |
| if( i>=pParse->nAgg ){ |
| i = appendAggInfo(pParse); |
| if( i<0 ) return 1; |
| pParse->aAgg[i].isAgg = 0; |
| pParse->aAgg[i].pExpr = pExpr; |
| } |
| pExpr->iAgg = i; |
| break; |
| } |
| case TK_AGG_FUNCTION: { |
| aAgg = pParse->aAgg; |
| for(i=0; i<pParse->nAgg; i++){ |
| if( !aAgg[i].isAgg ) continue; |
| if( sqlite3ExprCompare(aAgg[i].pExpr, pExpr) ){ |
| break; |
| } |
| } |
| if( i>=pParse->nAgg ){ |
| int iPrefEnc = (pParse->db->enc==TEXT_Utf8)?0:1; |
| i = appendAggInfo(pParse); |
| if( i<0 ) return 1; |
| pParse->aAgg[i].isAgg = 1; |
| pParse->aAgg[i].pExpr = pExpr; |
| pParse->aAgg[i].pFunc = sqlite3FindFunction(pParse->db, |
| pExpr->token.z, pExpr->token.n, |
| pExpr->pList ? pExpr->pList->nExpr : 0, iPrefEnc, 0); |
| } |
| pExpr->iAgg = i; |
| break; |
| } |
| default: { |
| if( pExpr->pLeft ){ |
| nErr = sqlite3ExprAnalyzeAggregates(pParse, pExpr->pLeft); |
| } |
| if( nErr==0 && pExpr->pRight ){ |
| nErr = sqlite3ExprAnalyzeAggregates(pParse, pExpr->pRight); |
| } |
| if( nErr==0 && pExpr->pList ){ |
| int n = pExpr->pList->nExpr; |
| int i; |
| for(i=0; nErr==0 && i<n; i++){ |
| nErr = sqlite3ExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr); |
| } |
| } |
| break; |
| } |
| } |
| return nErr; |
| } |
| |
| /* |
| ** Locate a user function given a name, a number of arguments and a flag |
| ** indicating whether the function prefers UTF-16 over UTF-8. Return a |
| ** pointer to the FuncDef structure that defines that function, or return |
| ** NULL if the function does not exist. |
| ** |
| ** If the createFlag argument is true, then a new (blank) FuncDef |
| ** structure is created and liked into the "db" structure if a |
| ** no matching function previously existed. When createFlag is true |
| ** and the nArg parameter is -1, then only a function that accepts |
| ** any number of arguments will be returned. |
| ** |
| ** If createFlag is false and nArg is -1, then the first valid |
| ** function found is returned. A function is valid if either xFunc |
| ** or xStep is non-zero. |
| ** |
| ** If createFlag is false, then a function with the required name and |
| ** number of arguments may be returned even if the eTextRep flag does not |
| ** match that requested. |
| */ |
| FuncDef *sqlite3FindFunction( |
| sqlite *db, /* An open database */ |
| const char *zName, /* Name of the function. Not null-terminated */ |
| int nName, /* Number of characters in the name */ |
| int nArg, /* Number of arguments. -1 means any number */ |
| int eTextRep, /* True to retrieve UTF-16 versions. */ |
| int createFlag /* Create new entry if true and does not otherwise exist */ |
| ){ |
| FuncDef *p; /* Iterator variable */ |
| FuncDef *pFirst; /* First function with this name */ |
| FuncDef *pBest = 0; /* Best match found so far */ |
| int matchqual = 0; |
| |
| /* Normalize argument values to simplify comparisons below. */ |
| if( eTextRep ) eTextRep = 1; |
| if( nArg<-1 ) nArg = -1; |
| |
| pFirst = (FuncDef*)sqlite3HashFind(&db->aFunc, zName, nName); |
| for(p=pFirst; p; p=p->pNext){ |
| if( 1 || p->xFunc || p->xStep ){ |
| if( p->nArg==nArg && p->iPrefEnc==eTextRep ){ |
| /* A perfect match. */ |
| pBest = p; |
| matchqual = 4; |
| break; |
| } |
| if( p->nArg==nArg ){ |
| /* Number of arguments matches, but not the text encoding */ |
| pBest = p; |
| matchqual = 3; |
| } |
| else if( (p->nArg<0) || (nArg<0) ){ |
| if( matchqual<2 && p->iPrefEnc==eTextRep ){ |
| /* Matched a varargs function with correct text encoding */ |
| pBest = p; |
| matchqual = 2; |
| } |
| if( matchqual<1 ){ |
| /* Matched a varargs function with incorrect text encoding */ |
| pBest = p; |
| matchqual = 1; |
| } |
| } |
| } |
| } |
| |
| if( createFlag && matchqual<4 && |
| (pBest = sqliteMalloc(sizeof(*pBest)+nName+1)) ){ |
| pBest->nArg = nArg; |
| pBest->pNext = pFirst; |
| pBest->zName = (char*)&pBest[1]; |
| pBest->iPrefEnc = eTextRep; |
| memcpy(pBest->zName, zName, nName); |
| pBest->zName[nName] = 0; |
| sqlite3HashInsert(&db->aFunc, pBest->zName, nName, (void*)pBest); |
| } |
| |
| if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){ |
| return pBest; |
| } |
| return 0; |
| } |
| |