Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 1 | /* |
| 2 | ****************************************************************************** |
| 3 | * |
Jungshik Shin | a05f412 | 2015-06-09 15:33:54 -0700 | [diff] [blame^] | 4 | * Copyright (C) 2000-2015, International Business Machines |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 5 | * Corporation and others. All Rights Reserved. |
| 6 | * |
| 7 | ****************************************************************************** |
| 8 | * file name: ucnvmbcs.cpp |
| 9 | * encoding: US-ASCII |
| 10 | * tab size: 8 (not used) |
| 11 | * indentation:4 |
| 12 | * |
| 13 | * created on: 2000jul03 |
| 14 | * created by: Markus W. Scherer |
| 15 | * |
| 16 | * The current code in this file replaces the previous implementation |
| 17 | * of conversion code from multi-byte codepages to Unicode and back. |
| 18 | * This implementation supports the following: |
| 19 | * - legacy variable-length codepages with up to 4 bytes per character |
| 20 | * - all Unicode code points (up to 0x10ffff) |
| 21 | * - efficient distinction of unassigned vs. illegal byte sequences |
| 22 | * - it is possible in fromUnicode() to directly deal with simple |
| 23 | * stateful encodings (used for EBCDIC_STATEFUL) |
| 24 | * - it is possible to convert Unicode code points |
| 25 | * to a single zero byte (but not as a fallback except for SBCS) |
| 26 | * |
| 27 | * Remaining limitations in fromUnicode: |
| 28 | * - byte sequences must not have leading zero bytes |
| 29 | * - except for SBCS codepages: no fallback mapping from Unicode to a zero byte |
| 30 | * - limitation to up to 4 bytes per character |
| 31 | * |
| 32 | * ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these |
| 33 | * limitations and adds m:n character mappings and other features. |
| 34 | * See ucnv_ext.h for details. |
| 35 | * |
| 36 | * Change history: |
| 37 | * |
| 38 | * 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U, |
| 39 | * MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2 |
| 40 | * macros to ucnvmbcs.h file |
| 41 | */ |
| 42 | |
| 43 | #include "unicode/utypes.h" |
| 44 | |
| 45 | #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION |
| 46 | |
| 47 | #include "unicode/ucnv.h" |
| 48 | #include "unicode/ucnv_cb.h" |
| 49 | #include "unicode/udata.h" |
| 50 | #include "unicode/uset.h" |
| 51 | #include "unicode/utf8.h" |
| 52 | #include "unicode/utf16.h" |
| 53 | #include "ucnv_bld.h" |
| 54 | #include "ucnvmbcs.h" |
| 55 | #include "ucnv_ext.h" |
| 56 | #include "ucnv_cnv.h" |
| 57 | #include "cmemory.h" |
| 58 | #include "cstring.h" |
| 59 | #include "umutex.h" |
| 60 | |
| 61 | /* control optimizations according to the platform */ |
| 62 | #define MBCS_UNROLL_SINGLE_TO_BMP 1 |
| 63 | #define MBCS_UNROLL_SINGLE_FROM_BMP 0 |
| 64 | |
| 65 | /* |
| 66 | * _MBCSHeader versions 5.3 & 4.3 |
| 67 | * (Note that the _MBCSHeader version is in addition to the converter formatVersion.) |
| 68 | * |
| 69 | * This version is optional. Version 5 is used for incompatible data format changes. |
| 70 | * makeconv will continue to generate version 4 files if possible. |
| 71 | * |
| 72 | * Changes from version 4: |
| 73 | * |
| 74 | * The main difference is an additional _MBCSHeader field with |
| 75 | * - the length (number of uint32_t) of the _MBCSHeader |
| 76 | * - flags for further incompatible data format changes |
| 77 | * - flags for further, backward compatible data format changes |
| 78 | * |
| 79 | * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from |
| 80 | * the file and needs to be reconstituted at load time. |
| 81 | * This requires a utf8Friendly format with an additional mbcsIndex table for fast |
| 82 | * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar. |
| 83 | * (For details about these structures see below, and see ucnvmbcs.h.) |
| 84 | * |
| 85 | * utf8Friendly also implies that the fromUnicode mappings are stored in ascending order |
| 86 | * of the Unicode code points. (This requires that the .ucm file has the |0 etc. |
| 87 | * precision markers for all mappings.) |
| 88 | * |
| 89 | * All fallbacks have been moved to the extension table, leaving only roundtrips in the |
| 90 | * omitted data that can be reconstituted from the toUnicode data. |
| 91 | * |
| 92 | * Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted. |
| 93 | * With only roundtrip mappings in the base fromUnicode data, this part is fully |
| 94 | * redundant with the mbcsIndex and will be reconstituted from that (also using the |
| 95 | * stage 1 table which contains the information about how stage 2 was compacted). |
| 96 | * |
| 97 | * The rest of the stage 2 table, the part for code points above maxFastUChar, |
| 98 | * is stored in the file and will be appended to the reconstituted part. |
| 99 | * |
| 100 | * The entire fromUBytes array is omitted from the file and will be reconstitued. |
| 101 | * This is done by enumerating all toUnicode roundtrip mappings, performing |
| 102 | * each mapping (using the stage 1 and reconstituted stage 2 tables) and |
| 103 | * writing instead of reading the byte values. |
| 104 | * |
| 105 | * _MBCSHeader version 4.3 |
| 106 | * |
| 107 | * Change from version 4.2: |
| 108 | * - Optional utf8Friendly data structures, with 64-entry stage 3 block |
| 109 | * allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS |
| 110 | * files which can be used instead of stages 1 & 2. |
| 111 | * Faster lookups for roundtrips from most commonly used characters, |
| 112 | * and lookups from UTF-8 byte sequences with a natural bit distribution. |
| 113 | * See ucnvmbcs.h for more details. |
| 114 | * |
| 115 | * Change from version 4.1: |
| 116 | * - Added an optional extension table structure at the end of the .cnv file. |
| 117 | * It is present if the upper bits of the header flags field contains a non-zero |
| 118 | * byte offset to it. |
| 119 | * Files that contain only a conversion table and no base table |
| 120 | * use the special outputType MBCS_OUTPUT_EXT_ONLY. |
| 121 | * These contain the base table name between the MBCS header and the extension |
| 122 | * data. |
| 123 | * |
| 124 | * Change from version 4.0: |
| 125 | * - Replace header.reserved with header.fromUBytesLength so that all |
| 126 | * fields in the data have length. |
| 127 | * |
| 128 | * Changes from version 3 (for performance improvements): |
| 129 | * - new bit distribution for state table entries |
| 130 | * - reordered action codes |
| 131 | * - new data structure for single-byte fromUnicode |
| 132 | * + stage 2 only contains indexes |
| 133 | * + stage 3 stores 16 bits per character with classification bits 15..8 |
| 134 | * - no multiplier for stage 1 entries |
| 135 | * - stage 2 for non-single-byte codepages contains the index and the flags in |
| 136 | * one 32-bit value |
| 137 | * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers |
| 138 | * |
| 139 | * For more details about old versions of the MBCS data structure, see |
| 140 | * the corresponding versions of this file. |
| 141 | * |
| 142 | * Converting stateless codepage data ---------------------------------------*** |
| 143 | * (or codepage data with simple states) to Unicode. |
| 144 | * |
| 145 | * Data structure and algorithm for converting from complex legacy codepages |
| 146 | * to Unicode. (Designed before 2000-may-22.) |
| 147 | * |
| 148 | * The basic idea is that the structure of legacy codepages can be described |
| 149 | * with state tables. |
| 150 | * When reading a byte stream, each input byte causes a state transition. |
| 151 | * Some transitions result in the output of a code point, some result in |
| 152 | * "unassigned" or "illegal" output. |
| 153 | * This is used here for character conversion. |
| 154 | * |
| 155 | * The data structure begins with a state table consisting of a row |
| 156 | * per state, with 256 entries (columns) per row for each possible input |
| 157 | * byte value. |
| 158 | * Each entry is 32 bits wide, with two formats distinguished by |
| 159 | * the sign bit (bit 31): |
| 160 | * |
| 161 | * One format for transitional entries (bit 31 not set) for non-final bytes, and |
| 162 | * one format for final entries (bit 31 set). |
| 163 | * Both formats contain the number of the next state in the same bit |
| 164 | * positions. |
| 165 | * State 0 is the initial state. |
| 166 | * |
| 167 | * Most of the time, the offset values of subsequent states are added |
| 168 | * up to a scalar value. This value will eventually be the index of |
| 169 | * the Unicode code point in a table that follows the state table. |
| 170 | * The effect is that the code points for final state table rows |
| 171 | * are contiguous. The code points of final state rows follow each other |
| 172 | * in the order of the references to those final states by previous |
| 173 | * states, etc. |
| 174 | * |
| 175 | * For some terminal states, the offset is itself the output Unicode |
| 176 | * code point (16 bits for a BMP code point or 20 bits for a supplementary |
| 177 | * code point (stored as code point minus 0x10000 so that 20 bits are enough). |
| 178 | * For others, the code point in the Unicode table is stored with either |
| 179 | * one or two code units: one for BMP code points, two for a pair of |
| 180 | * surrogates. |
| 181 | * All code points for a final state entry take up the same number of code |
| 182 | * units, regardless of whether they all actually _use_ the same number |
| 183 | * of code units. This is necessary for simple array access. |
| 184 | * |
| 185 | * An additional feature comes in with what in ICU is called "fallback" |
| 186 | * mappings: |
| 187 | * |
| 188 | * In addition to round-trippable, precise, 1:1 mappings, there are often |
| 189 | * mappings defined between similar, though not the same, characters. |
| 190 | * Typically, such mappings occur only in fromUnicode mapping tables because |
| 191 | * Unicode has a superset repertoire of most other codepages. However, it |
| 192 | * is possible to provide such mappings in the toUnicode tables, too. |
| 193 | * In this case, the fallback mappings are partly integrated into the |
| 194 | * general state tables because the structure of the encoding includes their |
| 195 | * byte sequences. |
| 196 | * For final entries in an initial state, fallback mappings are stored in |
| 197 | * the entry itself like with roundtrip mappings. |
| 198 | * For other final entries, they are stored in the code units table if |
| 199 | * the entry is for a pair of code units. |
| 200 | * For single-unit results in the code units table, there is no space to |
| 201 | * alternatively hold a fallback mapping; in this case, the code unit |
| 202 | * is stored as U+fffe (unassigned), and the fallback mapping needs to |
| 203 | * be looked up by the scalar offset value in a separate table. |
| 204 | * |
| 205 | * "Unassigned" state entries really mean "structurally unassigned", |
| 206 | * i.e., such a byte sequence will never have a mapping result. |
| 207 | * |
| 208 | * The interpretation of the bits in each entry is as follows: |
| 209 | * |
| 210 | * Bit 31 not set, not a terminal entry ("transitional"): |
| 211 | * 30..24 next state |
| 212 | * 23..0 offset delta, to be added up |
| 213 | * |
| 214 | * Bit 31 set, terminal ("final") entry: |
| 215 | * 30..24 next state (regardless of action code) |
| 216 | * 23..20 action code: |
| 217 | * action codes 0 and 1 result in precise-mapping Unicode code points |
| 218 | * 0 valid byte sequence |
| 219 | * 19..16 not used, 0 |
| 220 | * 15..0 16-bit Unicode BMP code point |
| 221 | * never U+fffe or U+ffff |
| 222 | * 1 valid byte sequence |
| 223 | * 19..0 20-bit Unicode supplementary code point |
| 224 | * never U+fffe or U+ffff |
| 225 | * |
| 226 | * action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points |
| 227 | * 2 valid byte sequence (fallback) |
| 228 | * 19..16 not used, 0 |
| 229 | * 15..0 16-bit Unicode BMP code point as fallback result |
| 230 | * 3 valid byte sequence (fallback) |
| 231 | * 19..0 20-bit Unicode supplementary code point as fallback result |
| 232 | * |
| 233 | * action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results |
| 234 | * depending on the code units they result in |
| 235 | * 4 valid byte sequence |
| 236 | * 19..9 not used, 0 |
| 237 | * 8..0 final offset delta |
| 238 | * pointing to one 16-bit code unit which may be |
| 239 | * fffe unassigned -- look for a fallback for this offset |
| 240 | * ffff illegal |
| 241 | * 5 valid byte sequence |
| 242 | * 19..9 not used, 0 |
| 243 | * 8..0 final offset delta |
| 244 | * pointing to two 16-bit code units |
| 245 | * (typically UTF-16 surrogates) |
| 246 | * the result depends on the first code unit as follows: |
| 247 | * 0000..d7ff roundtrip BMP code point (1st alone) |
| 248 | * d800..dbff roundtrip surrogate pair (1st, 2nd) |
| 249 | * dc00..dfff fallback surrogate pair (1st-400, 2nd) |
| 250 | * e000 roundtrip BMP code point (2nd alone) |
| 251 | * e001 fallback BMP code point (2nd alone) |
| 252 | * fffe unassigned |
| 253 | * ffff illegal |
| 254 | * (the final offset deltas are at most 255 * 2, |
| 255 | * times 2 because of storing code unit pairs) |
| 256 | * |
| 257 | * 6 unassigned byte sequence |
| 258 | * 19..16 not used, 0 |
| 259 | * 15..0 16-bit Unicode BMP code point U+fffe (new with version 2) |
| 260 | * this does not contain a final offset delta because the main |
| 261 | * purpose of this action code is to save scalar offset values; |
| 262 | * therefore, fallback values cannot be assigned to byte |
| 263 | * sequences that result in this action code |
| 264 | * 7 illegal byte sequence |
| 265 | * 19..16 not used, 0 |
| 266 | * 15..0 16-bit Unicode BMP code point U+ffff (new with version 2) |
| 267 | * 8 state change only |
| 268 | * 19..0 not used, 0 |
| 269 | * useful for state changes in simple stateful encodings, |
| 270 | * at Shift-In/Shift-Out codes |
| 271 | * |
| 272 | * |
| 273 | * 9..15 reserved for future use |
| 274 | * current implementations will only perform a state change |
| 275 | * and ignore bits 19..0 |
| 276 | * |
| 277 | * An encoding with contiguous ranges of unassigned byte sequences, like |
| 278 | * Shift-JIS and especially EUC-TW, can be stored efficiently by having |
| 279 | * at least two states for the trail bytes: |
| 280 | * One trail byte state that results in code points, and one that only |
| 281 | * has "unassigned" and "illegal" terminal states. |
| 282 | * |
| 283 | * Note: partly by accident, this data structure supports simple stateful |
| 284 | * encodings without any additional logic. |
| 285 | * Currently, only simple Shift-In/Shift-Out schemes are handled with |
| 286 | * appropriate state tables (especially EBCDIC_STATEFUL!). |
| 287 | * |
| 288 | * MBCS version 2 added: |
| 289 | * unassigned and illegal action codes have U+fffe and U+ffff |
| 290 | * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP() |
| 291 | * |
| 292 | * Converting from Unicode to codepage bytes --------------------------------*** |
| 293 | * |
| 294 | * The conversion data structure for fromUnicode is designed for the known |
| 295 | * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to |
| 296 | * a sequence of 1..4 bytes, in addition to a flag that indicates if there is |
| 297 | * a roundtrip mapping. |
| 298 | * |
| 299 | * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3 |
| 300 | * like in the character properties table. |
| 301 | * The beginning of the trie is at offsetFromUTable, the beginning of stage 3 |
| 302 | * with the resulting bytes is at offsetFromUBytes. |
| 303 | * |
| 304 | * Beginning with version 4, single-byte codepages have a significantly different |
| 305 | * trie compared to other codepages. |
| 306 | * In all cases, the entry in stage 1 is directly the index of the block of |
| 307 | * 64 entries in stage 2. |
| 308 | * |
| 309 | * Single-byte lookup: |
| 310 | * |
| 311 | * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3. |
| 312 | * Stage 3 contains one 16-bit word per result: |
| 313 | * Bits 15..8 indicate the kind of result: |
| 314 | * f roundtrip result |
| 315 | * c fallback result from private-use code point |
| 316 | * 8 fallback result from other code points |
| 317 | * 0 unassigned |
| 318 | * Bits 7..0 contain the codepage byte. A zero byte is always possible. |
| 319 | * |
| 320 | * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly |
| 321 | * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup |
| 322 | * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. |
| 323 | * ASCII code points can be looked up with a linear array access into stage 3. |
| 324 | * See maxFastUChar and other details in ucnvmbcs.h. |
| 325 | * |
| 326 | * Multi-byte lookup: |
| 327 | * |
| 328 | * Stage 2 contains a 32-bit word for each 16-block in stage 3: |
| 329 | * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results |
| 330 | * test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) |
| 331 | * If this test is false, then a non-zero result will be interpreted as |
| 332 | * a fallback mapping. |
| 333 | * Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char) |
| 334 | * |
| 335 | * Stage 3 contains 2, 3, or 4 bytes per result. |
| 336 | * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness, |
| 337 | * while 3 bytes are stored as bytes in big-endian order. |
| 338 | * Leading zero bytes are ignored, and the number of bytes is counted. |
| 339 | * A zero byte mapping result is possible as a roundtrip result. |
| 340 | * For some output types, the actual result is processed from this; |
| 341 | * see ucnv_MBCSFromUnicodeWithOffsets(). |
| 342 | * |
| 343 | * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10), |
| 344 | * or (version 3 and up) for BMP-only codepages, it contains 64 entries. |
| 345 | * |
| 346 | * In version 4.3, a utf8Friendly file contains an mbcsIndex table. |
| 347 | * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup |
| 348 | * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. |
| 349 | * ASCII code points can be looked up with a linear array access into stage 3. |
| 350 | * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h. |
| 351 | * |
| 352 | * In version 3, stage 2 blocks may overlap by multiples of the multiplier |
| 353 | * for compaction. |
| 354 | * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks) |
| 355 | * may overlap by any number of entries. |
| 356 | * |
| 357 | * MBCS version 2 added: |
| 358 | * the converter checks for known output types, which allows |
| 359 | * adding new ones without crashing an unaware converter |
| 360 | */ |
| 361 | |
| 362 | /** |
| 363 | * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from |
| 364 | * consecutive sequences of bytes, starting from the one encoded in value, |
| 365 | * to Unicode code points. (Multiple mappings to reduce per-function call overhead.) |
| 366 | * Does not currently support m:n mappings or reverse fallbacks. |
| 367 | * This function will not be called for sequences of bytes with leading zeros. |
| 368 | * |
| 369 | * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode() |
| 370 | * @param value contains 1..4 bytes of the first byte sequence, right-aligned |
| 371 | * @param codePoints resulting Unicode code points, or negative if a byte sequence does |
| 372 | * not map to anything |
| 373 | * @return TRUE to continue enumeration, FALSE to stop |
| 374 | */ |
| 375 | typedef UBool U_CALLCONV |
| 376 | UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]); |
| 377 | |
| 378 | static void |
| 379 | ucnv_MBCSLoad(UConverterSharedData *sharedData, |
| 380 | UConverterLoadArgs *pArgs, |
| 381 | const uint8_t *raw, |
| 382 | UErrorCode *pErrorCode); |
| 383 | |
| 384 | static void |
| 385 | ucnv_MBCSUnload(UConverterSharedData *sharedData); |
| 386 | |
| 387 | static void |
| 388 | ucnv_MBCSOpen(UConverter *cnv, |
| 389 | UConverterLoadArgs *pArgs, |
| 390 | UErrorCode *pErrorCode); |
| 391 | |
| 392 | static UChar32 |
| 393 | ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, |
| 394 | UErrorCode *pErrorCode); |
| 395 | |
| 396 | static void |
| 397 | ucnv_MBCSGetStarters(const UConverter* cnv, |
| 398 | UBool starters[256], |
| 399 | UErrorCode *pErrorCode); |
| 400 | |
| 401 | static const char * |
| 402 | ucnv_MBCSGetName(const UConverter *cnv); |
| 403 | |
| 404 | static void |
| 405 | ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs, |
| 406 | int32_t offsetIndex, |
| 407 | UErrorCode *pErrorCode); |
| 408 | |
| 409 | static UChar32 |
| 410 | ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, |
| 411 | UErrorCode *pErrorCode); |
| 412 | |
| 413 | static void |
| 414 | ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, |
| 415 | UConverterToUnicodeArgs *pToUArgs, |
| 416 | UErrorCode *pErrorCode); |
| 417 | |
| 418 | static void |
| 419 | ucnv_MBCSGetUnicodeSet(const UConverter *cnv, |
| 420 | const USetAdder *sa, |
| 421 | UConverterUnicodeSet which, |
| 422 | UErrorCode *pErrorCode); |
| 423 | |
| 424 | static void |
| 425 | ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, |
| 426 | UConverterToUnicodeArgs *pToUArgs, |
| 427 | UErrorCode *pErrorCode); |
| 428 | |
| 429 | static const UConverterImpl _SBCSUTF8Impl={ |
| 430 | UCNV_MBCS, |
| 431 | |
| 432 | ucnv_MBCSLoad, |
| 433 | ucnv_MBCSUnload, |
| 434 | |
| 435 | ucnv_MBCSOpen, |
| 436 | NULL, |
| 437 | NULL, |
| 438 | |
| 439 | ucnv_MBCSToUnicodeWithOffsets, |
| 440 | ucnv_MBCSToUnicodeWithOffsets, |
| 441 | ucnv_MBCSFromUnicodeWithOffsets, |
| 442 | ucnv_MBCSFromUnicodeWithOffsets, |
| 443 | ucnv_MBCSGetNextUChar, |
| 444 | |
| 445 | ucnv_MBCSGetStarters, |
| 446 | ucnv_MBCSGetName, |
| 447 | ucnv_MBCSWriteSub, |
| 448 | NULL, |
| 449 | ucnv_MBCSGetUnicodeSet, |
| 450 | |
| 451 | NULL, |
| 452 | ucnv_SBCSFromUTF8 |
| 453 | }; |
| 454 | |
| 455 | static const UConverterImpl _DBCSUTF8Impl={ |
| 456 | UCNV_MBCS, |
| 457 | |
| 458 | ucnv_MBCSLoad, |
| 459 | ucnv_MBCSUnload, |
| 460 | |
| 461 | ucnv_MBCSOpen, |
| 462 | NULL, |
| 463 | NULL, |
| 464 | |
| 465 | ucnv_MBCSToUnicodeWithOffsets, |
| 466 | ucnv_MBCSToUnicodeWithOffsets, |
| 467 | ucnv_MBCSFromUnicodeWithOffsets, |
| 468 | ucnv_MBCSFromUnicodeWithOffsets, |
| 469 | ucnv_MBCSGetNextUChar, |
| 470 | |
| 471 | ucnv_MBCSGetStarters, |
| 472 | ucnv_MBCSGetName, |
| 473 | ucnv_MBCSWriteSub, |
| 474 | NULL, |
| 475 | ucnv_MBCSGetUnicodeSet, |
| 476 | |
| 477 | NULL, |
| 478 | ucnv_DBCSFromUTF8 |
| 479 | }; |
| 480 | |
| 481 | static const UConverterImpl _MBCSImpl={ |
| 482 | UCNV_MBCS, |
| 483 | |
| 484 | ucnv_MBCSLoad, |
| 485 | ucnv_MBCSUnload, |
| 486 | |
| 487 | ucnv_MBCSOpen, |
| 488 | NULL, |
| 489 | NULL, |
| 490 | |
| 491 | ucnv_MBCSToUnicodeWithOffsets, |
| 492 | ucnv_MBCSToUnicodeWithOffsets, |
| 493 | ucnv_MBCSFromUnicodeWithOffsets, |
| 494 | ucnv_MBCSFromUnicodeWithOffsets, |
| 495 | ucnv_MBCSGetNextUChar, |
| 496 | |
| 497 | ucnv_MBCSGetStarters, |
| 498 | ucnv_MBCSGetName, |
| 499 | ucnv_MBCSWriteSub, |
| 500 | NULL, |
| 501 | ucnv_MBCSGetUnicodeSet, |
| 502 | NULL, |
| 503 | NULL |
| 504 | }; |
| 505 | |
| 506 | |
| 507 | /* Static data is in tools/makeconv/ucnvstat.c for data-based |
| 508 | * converters. Be sure to update it as well. |
| 509 | */ |
| 510 | |
| 511 | const UConverterSharedData _MBCSData={ |
| 512 | sizeof(UConverterSharedData), 1, |
Jungshik Shin | a05f412 | 2015-06-09 15:33:54 -0700 | [diff] [blame^] | 513 | NULL, NULL, FALSE, TRUE, &_MBCSImpl, |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 514 | 0, UCNV_MBCS_TABLE_INITIALIZER |
| 515 | }; |
| 516 | |
| 517 | |
| 518 | /* GB 18030 data ------------------------------------------------------------ */ |
| 519 | |
| 520 | /* helper macros for linear values for GB 18030 four-byte sequences */ |
| 521 | #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d)) |
| 522 | |
| 523 | #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30) |
| 524 | |
| 525 | #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff) |
| 526 | |
| 527 | /* |
| 528 | * Some ranges of GB 18030 where both the Unicode code points and the |
| 529 | * GB four-byte sequences are contiguous and are handled algorithmically by |
| 530 | * the special callback functions below. |
| 531 | * The values are start & end of Unicode & GB codes. |
| 532 | * |
| 533 | * Note that single surrogates are not mapped by GB 18030 |
| 534 | * as of the re-released mapping tables from 2000-nov-30. |
| 535 | */ |
| 536 | static const uint32_t |
| 537 | gb18030Ranges[14][4]={ |
| 538 | {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)}, |
| 539 | {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)}, |
| 540 | {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)}, |
| 541 | {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)}, |
| 542 | {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)}, |
| 543 | {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)}, |
| 544 | {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)}, |
| 545 | {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)}, |
| 546 | {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)}, |
| 547 | {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)}, |
| 548 | {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)}, |
| 549 | {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)}, |
| 550 | {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)}, |
| 551 | {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)} |
| 552 | }; |
| 553 | |
| 554 | /* bit flag for UConverter.options indicating GB 18030 special handling */ |
| 555 | #define _MBCS_OPTION_GB18030 0x8000 |
| 556 | |
| 557 | /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */ |
| 558 | #define _MBCS_OPTION_KEIS 0x01000 |
| 559 | #define _MBCS_OPTION_JEF 0x02000 |
| 560 | #define _MBCS_OPTION_JIPS 0x04000 |
| 561 | |
| 562 | #define KEIS_SO_CHAR_1 0x0A |
| 563 | #define KEIS_SO_CHAR_2 0x42 |
| 564 | #define KEIS_SI_CHAR_1 0x0A |
| 565 | #define KEIS_SI_CHAR_2 0x41 |
| 566 | |
| 567 | #define JEF_SO_CHAR 0x28 |
| 568 | #define JEF_SI_CHAR 0x29 |
| 569 | |
| 570 | #define JIPS_SO_CHAR_1 0x1A |
| 571 | #define JIPS_SO_CHAR_2 0x70 |
| 572 | #define JIPS_SI_CHAR_1 0x1A |
| 573 | #define JIPS_SI_CHAR_2 0x71 |
| 574 | |
| 575 | enum SISO_Option { |
| 576 | SI, |
| 577 | SO |
| 578 | }; |
| 579 | typedef enum SISO_Option SISO_Option; |
| 580 | |
| 581 | static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) { |
| 582 | int32_t SISOLength = 0; |
| 583 | |
| 584 | switch (option) { |
| 585 | case SI: |
| 586 | if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { |
| 587 | value[0] = KEIS_SI_CHAR_1; |
| 588 | value[1] = KEIS_SI_CHAR_2; |
| 589 | SISOLength = 2; |
| 590 | } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { |
| 591 | value[0] = JEF_SI_CHAR; |
| 592 | SISOLength = 1; |
| 593 | } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { |
| 594 | value[0] = JIPS_SI_CHAR_1; |
| 595 | value[1] = JIPS_SI_CHAR_2; |
| 596 | SISOLength = 2; |
| 597 | } else { |
| 598 | value[0] = UCNV_SI; |
| 599 | SISOLength = 1; |
| 600 | } |
| 601 | break; |
| 602 | case SO: |
| 603 | if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { |
| 604 | value[0] = KEIS_SO_CHAR_1; |
| 605 | value[1] = KEIS_SO_CHAR_2; |
| 606 | SISOLength = 2; |
| 607 | } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { |
| 608 | value[0] = JEF_SO_CHAR; |
| 609 | SISOLength = 1; |
| 610 | } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { |
| 611 | value[0] = JIPS_SO_CHAR_1; |
| 612 | value[1] = JIPS_SO_CHAR_2; |
| 613 | SISOLength = 2; |
| 614 | } else { |
| 615 | value[0] = UCNV_SO; |
| 616 | SISOLength = 1; |
| 617 | } |
| 618 | break; |
| 619 | default: |
| 620 | /* Should never happen. */ |
| 621 | break; |
| 622 | } |
| 623 | |
| 624 | return SISOLength; |
| 625 | } |
| 626 | |
| 627 | /* Miscellaneous ------------------------------------------------------------ */ |
| 628 | |
| 629 | /* similar to ucnv_MBCSGetNextUChar() but recursive */ |
| 630 | static UBool |
| 631 | enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[], |
| 632 | int32_t state, uint32_t offset, |
| 633 | uint32_t value, |
| 634 | UConverterEnumToUCallback *callback, const void *context, |
| 635 | UErrorCode *pErrorCode) { |
| 636 | UChar32 codePoints[32]; |
| 637 | const int32_t *row; |
| 638 | const uint16_t *unicodeCodeUnits; |
| 639 | UChar32 anyCodePoints; |
| 640 | int32_t b, limit; |
| 641 | |
| 642 | row=mbcsTable->stateTable[state]; |
| 643 | unicodeCodeUnits=mbcsTable->unicodeCodeUnits; |
| 644 | |
| 645 | value<<=8; |
| 646 | anyCodePoints=-1; /* becomes non-negative if there is a mapping */ |
| 647 | |
| 648 | b=(stateProps[state]&0x38)<<2; |
| 649 | if(b==0 && stateProps[state]>=0x40) { |
| 650 | /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */ |
| 651 | codePoints[0]=U_SENTINEL; |
| 652 | b=1; |
| 653 | } |
| 654 | limit=((stateProps[state]&7)+1)<<5; |
| 655 | while(b<limit) { |
| 656 | int32_t entry=row[b]; |
| 657 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 658 | int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry); |
| 659 | if(stateProps[nextState]>=0) { |
| 660 | /* recurse to a state with non-ignorable actions */ |
| 661 | if(!enumToU( |
| 662 | mbcsTable, stateProps, nextState, |
| 663 | offset+MBCS_ENTRY_TRANSITION_OFFSET(entry), |
| 664 | value|(uint32_t)b, |
| 665 | callback, context, |
| 666 | pErrorCode)) { |
| 667 | return FALSE; |
| 668 | } |
| 669 | } |
| 670 | codePoints[b&0x1f]=U_SENTINEL; |
| 671 | } else { |
| 672 | UChar32 c; |
| 673 | int32_t action; |
| 674 | |
| 675 | /* |
| 676 | * An if-else-if chain provides more reliable performance for |
| 677 | * the most common cases compared to a switch. |
| 678 | */ |
| 679 | action=MBCS_ENTRY_FINAL_ACTION(entry); |
| 680 | if(action==MBCS_STATE_VALID_DIRECT_16) { |
| 681 | /* output BMP code point */ |
| 682 | c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 683 | } else if(action==MBCS_STATE_VALID_16) { |
| 684 | int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 685 | c=unicodeCodeUnits[finalOffset]; |
| 686 | if(c<0xfffe) { |
| 687 | /* output BMP code point */ |
| 688 | } else { |
| 689 | c=U_SENTINEL; |
| 690 | } |
| 691 | } else if(action==MBCS_STATE_VALID_16_PAIR) { |
| 692 | int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 693 | c=unicodeCodeUnits[finalOffset++]; |
| 694 | if(c<0xd800) { |
| 695 | /* output BMP code point below 0xd800 */ |
| 696 | } else if(c<=0xdbff) { |
| 697 | /* output roundtrip or fallback supplementary code point */ |
| 698 | c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00); |
| 699 | } else if(c==0xe000) { |
| 700 | /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ |
| 701 | c=unicodeCodeUnits[finalOffset]; |
| 702 | } else { |
| 703 | c=U_SENTINEL; |
| 704 | } |
| 705 | } else if(action==MBCS_STATE_VALID_DIRECT_20) { |
| 706 | /* output supplementary code point */ |
| 707 | c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); |
| 708 | } else { |
| 709 | c=U_SENTINEL; |
| 710 | } |
| 711 | |
| 712 | codePoints[b&0x1f]=c; |
| 713 | anyCodePoints&=c; |
| 714 | } |
| 715 | if(((++b)&0x1f)==0) { |
| 716 | if(anyCodePoints>=0) { |
| 717 | if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) { |
| 718 | return FALSE; |
| 719 | } |
| 720 | anyCodePoints=-1; |
| 721 | } |
| 722 | } |
| 723 | } |
| 724 | return TRUE; |
| 725 | } |
| 726 | |
| 727 | /* |
| 728 | * Only called if stateProps[state]==-1. |
| 729 | * A recursive call may do stateProps[state]|=0x40 if this state is the target of an |
| 730 | * MBCS_STATE_CHANGE_ONLY. |
| 731 | */ |
| 732 | static int8_t |
| 733 | getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) { |
| 734 | const int32_t *row; |
| 735 | int32_t min, max, entry, nextState; |
| 736 | |
| 737 | row=stateTable[state]; |
| 738 | stateProps[state]=0; |
| 739 | |
| 740 | /* find first non-ignorable state */ |
| 741 | for(min=0;; ++min) { |
| 742 | entry=row[min]; |
| 743 | nextState=MBCS_ENTRY_STATE(entry); |
| 744 | if(stateProps[nextState]==-1) { |
| 745 | getStateProp(stateTable, stateProps, nextState); |
| 746 | } |
| 747 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 748 | if(stateProps[nextState]>=0) { |
| 749 | break; |
| 750 | } |
| 751 | } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { |
| 752 | break; |
| 753 | } |
| 754 | if(min==0xff) { |
| 755 | stateProps[state]=-0x40; /* (int8_t)0xc0 */ |
| 756 | return stateProps[state]; |
| 757 | } |
| 758 | } |
| 759 | stateProps[state]|=(int8_t)((min>>5)<<3); |
| 760 | |
| 761 | /* find last non-ignorable state */ |
| 762 | for(max=0xff; min<max; --max) { |
| 763 | entry=row[max]; |
| 764 | nextState=MBCS_ENTRY_STATE(entry); |
| 765 | if(stateProps[nextState]==-1) { |
| 766 | getStateProp(stateTable, stateProps, nextState); |
| 767 | } |
| 768 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 769 | if(stateProps[nextState]>=0) { |
| 770 | break; |
| 771 | } |
| 772 | } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { |
| 773 | break; |
| 774 | } |
| 775 | } |
| 776 | stateProps[state]|=(int8_t)(max>>5); |
| 777 | |
| 778 | /* recurse further and collect direct-state information */ |
| 779 | while(min<=max) { |
| 780 | entry=row[min]; |
| 781 | nextState=MBCS_ENTRY_STATE(entry); |
| 782 | if(stateProps[nextState]==-1) { |
| 783 | getStateProp(stateTable, stateProps, nextState); |
| 784 | } |
| 785 | if(MBCS_ENTRY_IS_FINAL(entry)) { |
| 786 | stateProps[nextState]|=0x40; |
| 787 | if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) { |
| 788 | stateProps[state]|=0x40; |
| 789 | } |
| 790 | } |
| 791 | ++min; |
| 792 | } |
| 793 | return stateProps[state]; |
| 794 | } |
| 795 | |
| 796 | /* |
| 797 | * Internal function enumerating the toUnicode data of an MBCS converter. |
| 798 | * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U |
| 799 | * table, but could also be used for a future ucnv_getUnicodeSet() option |
| 800 | * that includes reverse fallbacks (after updating this function's implementation). |
| 801 | * Currently only handles roundtrip mappings. |
| 802 | * Does not currently handle extensions. |
| 803 | */ |
| 804 | static void |
| 805 | ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable, |
| 806 | UConverterEnumToUCallback *callback, const void *context, |
| 807 | UErrorCode *pErrorCode) { |
| 808 | /* |
| 809 | * Properties for each state, to speed up the enumeration. |
| 810 | * Ignorable actions are unassigned/illegal/state-change-only: |
| 811 | * They do not lead to mappings. |
| 812 | * |
| 813 | * Bits 7..6: |
| 814 | * 1 direct/initial state (stateful converters have multiple) |
| 815 | * 0 non-initial state with transitions or with non-ignorable result actions |
| 816 | * -1 final state with only ignorable actions |
| 817 | * |
| 818 | * Bits 5..3: |
| 819 | * The lowest byte value with non-ignorable actions is |
| 820 | * value<<5 (rounded down). |
| 821 | * |
| 822 | * Bits 2..0: |
| 823 | * The highest byte value with non-ignorable actions is |
| 824 | * (value<<5)&0x1f (rounded up). |
| 825 | */ |
| 826 | int8_t stateProps[MBCS_MAX_STATE_COUNT]; |
| 827 | int32_t state; |
| 828 | |
| 829 | uprv_memset(stateProps, -1, sizeof(stateProps)); |
| 830 | |
| 831 | /* recurse from state 0 and set all stateProps */ |
| 832 | getStateProp(mbcsTable->stateTable, stateProps, 0); |
| 833 | |
| 834 | for(state=0; state<mbcsTable->countStates; ++state) { |
| 835 | /*if(stateProps[state]==-1) { |
| 836 | printf("unused/unreachable <icu:state> %d\n", state); |
| 837 | }*/ |
| 838 | if(stateProps[state]>=0x40) { |
| 839 | /* start from each direct state */ |
| 840 | enumToU( |
| 841 | mbcsTable, stateProps, state, 0, 0, |
| 842 | callback, context, |
| 843 | pErrorCode); |
| 844 | } |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | U_CFUNC void |
| 849 | ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData, |
| 850 | const USetAdder *sa, |
| 851 | UConverterUnicodeSet which, |
| 852 | UConverterSetFilter filter, |
| 853 | UErrorCode *pErrorCode) { |
| 854 | const UConverterMBCSTable *mbcsTable; |
| 855 | const uint16_t *table; |
| 856 | |
| 857 | uint32_t st3; |
| 858 | uint16_t st1, maxStage1, st2; |
| 859 | |
| 860 | UChar32 c; |
| 861 | |
| 862 | /* enumerate the from-Unicode trie table */ |
| 863 | mbcsTable=&sharedData->mbcs; |
| 864 | table=mbcsTable->fromUnicodeTable; |
| 865 | if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { |
| 866 | maxStage1=0x440; |
| 867 | } else { |
| 868 | maxStage1=0x40; |
| 869 | } |
| 870 | |
| 871 | c=0; /* keep track of the current code point while enumerating */ |
| 872 | |
| 873 | if(mbcsTable->outputType==MBCS_OUTPUT_1) { |
| 874 | const uint16_t *stage2, *stage3, *results; |
| 875 | uint16_t minValue; |
| 876 | |
| 877 | results=(const uint16_t *)mbcsTable->fromUnicodeBytes; |
| 878 | |
| 879 | /* |
| 880 | * Set a threshold variable for selecting which mappings to use. |
| 881 | * See ucnv_MBCSSingleFromBMPWithOffsets() and |
| 882 | * MBCS_SINGLE_RESULT_FROM_U() for details. |
| 883 | */ |
| 884 | if(which==UCNV_ROUNDTRIP_SET) { |
| 885 | /* use only roundtrips */ |
| 886 | minValue=0xf00; |
| 887 | } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ { |
| 888 | /* use all roundtrip and fallback results */ |
| 889 | minValue=0x800; |
| 890 | } |
| 891 | |
| 892 | for(st1=0; st1<maxStage1; ++st1) { |
| 893 | st2=table[st1]; |
| 894 | if(st2>maxStage1) { |
| 895 | stage2=table+st2; |
| 896 | for(st2=0; st2<64; ++st2) { |
| 897 | if((st3=stage2[st2])!=0) { |
| 898 | /* read the stage 3 block */ |
| 899 | stage3=results+st3; |
| 900 | |
| 901 | do { |
| 902 | if(*stage3++>=minValue) { |
| 903 | sa->add(sa->set, c); |
| 904 | } |
| 905 | } while((++c&0xf)!=0); |
| 906 | } else { |
| 907 | c+=16; /* empty stage 3 block */ |
| 908 | } |
| 909 | } |
| 910 | } else { |
| 911 | c+=1024; /* empty stage 2 block */ |
| 912 | } |
| 913 | } |
| 914 | } else { |
| 915 | const uint32_t *stage2; |
| 916 | const uint8_t *stage3, *bytes; |
| 917 | uint32_t st3Multiplier; |
| 918 | uint32_t value; |
| 919 | UBool useFallback; |
| 920 | |
| 921 | bytes=mbcsTable->fromUnicodeBytes; |
| 922 | |
| 923 | useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET); |
| 924 | |
| 925 | switch(mbcsTable->outputType) { |
| 926 | case MBCS_OUTPUT_3: |
| 927 | case MBCS_OUTPUT_4_EUC: |
| 928 | st3Multiplier=3; |
| 929 | break; |
| 930 | case MBCS_OUTPUT_4: |
| 931 | st3Multiplier=4; |
| 932 | break; |
| 933 | default: |
| 934 | st3Multiplier=2; |
| 935 | break; |
| 936 | } |
| 937 | |
| 938 | for(st1=0; st1<maxStage1; ++st1) { |
| 939 | st2=table[st1]; |
| 940 | if(st2>(maxStage1>>1)) { |
| 941 | stage2=(const uint32_t *)table+st2; |
| 942 | for(st2=0; st2<64; ++st2) { |
| 943 | if((st3=stage2[st2])!=0) { |
| 944 | /* read the stage 3 block */ |
| 945 | stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3; |
| 946 | |
| 947 | /* get the roundtrip flags for the stage 3 block */ |
| 948 | st3>>=16; |
| 949 | |
| 950 | /* |
| 951 | * Add code points for which the roundtrip flag is set, |
| 952 | * or which map to non-zero bytes if we use fallbacks. |
| 953 | * See ucnv_MBCSFromUnicodeWithOffsets() for details. |
| 954 | */ |
| 955 | switch(filter) { |
| 956 | case UCNV_SET_FILTER_NONE: |
| 957 | do { |
| 958 | if(st3&1) { |
| 959 | sa->add(sa->set, c); |
| 960 | stage3+=st3Multiplier; |
| 961 | } else if(useFallback) { |
| 962 | uint8_t b=0; |
| 963 | switch(st3Multiplier) { |
| 964 | case 4: |
| 965 | b|=*stage3++; |
| 966 | case 3: /*fall through*/ |
| 967 | b|=*stage3++; |
| 968 | case 2: /*fall through*/ |
| 969 | b|=stage3[0]|stage3[1]; |
| 970 | stage3+=2; |
| 971 | default: |
| 972 | break; |
| 973 | } |
| 974 | if(b!=0) { |
| 975 | sa->add(sa->set, c); |
| 976 | } |
| 977 | } |
| 978 | st3>>=1; |
| 979 | } while((++c&0xf)!=0); |
| 980 | break; |
| 981 | case UCNV_SET_FILTER_DBCS_ONLY: |
| 982 | /* Ignore single-byte results (<0x100). */ |
| 983 | do { |
| 984 | if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) { |
| 985 | sa->add(sa->set, c); |
| 986 | } |
| 987 | st3>>=1; |
| 988 | stage3+=2; /* +=st3Multiplier */ |
| 989 | } while((++c&0xf)!=0); |
| 990 | break; |
| 991 | case UCNV_SET_FILTER_2022_CN: |
| 992 | /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */ |
| 993 | do { |
| 994 | if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) { |
| 995 | sa->add(sa->set, c); |
| 996 | } |
| 997 | st3>>=1; |
| 998 | stage3+=3; /* +=st3Multiplier */ |
| 999 | } while((++c&0xf)!=0); |
| 1000 | break; |
| 1001 | case UCNV_SET_FILTER_SJIS: |
| 1002 | /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */ |
| 1003 | do { |
| 1004 | if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) { |
| 1005 | sa->add(sa->set, c); |
| 1006 | } |
| 1007 | st3>>=1; |
| 1008 | stage3+=2; /* +=st3Multiplier */ |
| 1009 | } while((++c&0xf)!=0); |
| 1010 | break; |
| 1011 | case UCNV_SET_FILTER_GR94DBCS: |
| 1012 | /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */ |
| 1013 | do { |
| 1014 | if( ((st3&1)!=0 || useFallback) && |
| 1015 | (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) && |
| 1016 | (uint8_t)(value-0xa1)<=(0xfe - 0xa1) |
| 1017 | ) { |
| 1018 | sa->add(sa->set, c); |
| 1019 | } |
| 1020 | st3>>=1; |
| 1021 | stage3+=2; /* +=st3Multiplier */ |
| 1022 | } while((++c&0xf)!=0); |
| 1023 | break; |
| 1024 | case UCNV_SET_FILTER_HZ: |
| 1025 | /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */ |
| 1026 | do { |
| 1027 | if( ((st3&1)!=0 || useFallback) && |
| 1028 | (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) && |
| 1029 | (uint8_t)(value-0xa1)<=(0xfe - 0xa1) |
| 1030 | ) { |
| 1031 | sa->add(sa->set, c); |
| 1032 | } |
| 1033 | st3>>=1; |
| 1034 | stage3+=2; /* +=st3Multiplier */ |
| 1035 | } while((++c&0xf)!=0); |
| 1036 | break; |
| 1037 | default: |
| 1038 | *pErrorCode=U_INTERNAL_PROGRAM_ERROR; |
| 1039 | return; |
| 1040 | } |
| 1041 | } else { |
| 1042 | c+=16; /* empty stage 3 block */ |
| 1043 | } |
| 1044 | } |
| 1045 | } else { |
| 1046 | c+=1024; /* empty stage 2 block */ |
| 1047 | } |
| 1048 | } |
| 1049 | } |
| 1050 | |
| 1051 | ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode); |
| 1052 | } |
| 1053 | |
| 1054 | U_CFUNC void |
| 1055 | ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData, |
| 1056 | const USetAdder *sa, |
| 1057 | UConverterUnicodeSet which, |
| 1058 | UErrorCode *pErrorCode) { |
| 1059 | ucnv_MBCSGetFilteredUnicodeSetForUnicode( |
| 1060 | sharedData, sa, which, |
| 1061 | sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ? |
| 1062 | UCNV_SET_FILTER_DBCS_ONLY : |
| 1063 | UCNV_SET_FILTER_NONE, |
| 1064 | pErrorCode); |
| 1065 | } |
| 1066 | |
| 1067 | static void |
| 1068 | ucnv_MBCSGetUnicodeSet(const UConverter *cnv, |
| 1069 | const USetAdder *sa, |
| 1070 | UConverterUnicodeSet which, |
| 1071 | UErrorCode *pErrorCode) { |
| 1072 | if(cnv->options&_MBCS_OPTION_GB18030) { |
| 1073 | sa->addRange(sa->set, 0, 0xd7ff); |
| 1074 | sa->addRange(sa->set, 0xe000, 0x10ffff); |
| 1075 | } else { |
| 1076 | ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode); |
| 1077 | } |
| 1078 | } |
| 1079 | |
| 1080 | /* conversion extensions for input not in the main table -------------------- */ |
| 1081 | |
| 1082 | /* |
| 1083 | * Hardcoded extension handling for GB 18030. |
| 1084 | * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file. |
| 1085 | * |
| 1086 | * In the future, conversion extensions may handle m:n mappings and delta tables, |
| 1087 | * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html |
| 1088 | * |
| 1089 | * If an input character cannot be mapped, then these functions set an error |
| 1090 | * code. The framework will then call the callback function. |
| 1091 | */ |
| 1092 | |
| 1093 | /* |
| 1094 | * @return if(U_FAILURE) return the code point for cnv->fromUChar32 |
| 1095 | * else return 0 after output has been written to the target |
| 1096 | */ |
| 1097 | static UChar32 |
| 1098 | _extFromU(UConverter *cnv, const UConverterSharedData *sharedData, |
| 1099 | UChar32 cp, |
| 1100 | const UChar **source, const UChar *sourceLimit, |
| 1101 | uint8_t **target, const uint8_t *targetLimit, |
| 1102 | int32_t **offsets, int32_t sourceIndex, |
| 1103 | UBool flush, |
| 1104 | UErrorCode *pErrorCode) { |
| 1105 | const int32_t *cx; |
| 1106 | |
| 1107 | cnv->useSubChar1=FALSE; |
| 1108 | |
| 1109 | if( (cx=sharedData->mbcs.extIndexes)!=NULL && |
| 1110 | ucnv_extInitialMatchFromU( |
| 1111 | cnv, cx, |
| 1112 | cp, source, sourceLimit, |
| 1113 | (char **)target, (char *)targetLimit, |
| 1114 | offsets, sourceIndex, |
| 1115 | flush, |
| 1116 | pErrorCode) |
| 1117 | ) { |
| 1118 | return 0; /* an extension mapping handled the input */ |
| 1119 | } |
| 1120 | |
| 1121 | /* GB 18030 */ |
| 1122 | if((cnv->options&_MBCS_OPTION_GB18030)!=0) { |
| 1123 | const uint32_t *range; |
| 1124 | int32_t i; |
| 1125 | |
| 1126 | range=gb18030Ranges[0]; |
| 1127 | for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) { |
| 1128 | if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) { |
| 1129 | /* found the Unicode code point, output the four-byte sequence for it */ |
| 1130 | uint32_t linear; |
| 1131 | char bytes[4]; |
| 1132 | |
| 1133 | /* get the linear value of the first GB 18030 code in this range */ |
| 1134 | linear=range[2]-LINEAR_18030_BASE; |
| 1135 | |
| 1136 | /* add the offset from the beginning of the range */ |
| 1137 | linear+=((uint32_t)cp-range[0]); |
| 1138 | |
| 1139 | /* turn this into a four-byte sequence */ |
| 1140 | bytes[3]=(char)(0x30+linear%10); linear/=10; |
| 1141 | bytes[2]=(char)(0x81+linear%126); linear/=126; |
| 1142 | bytes[1]=(char)(0x30+linear%10); linear/=10; |
| 1143 | bytes[0]=(char)(0x81+linear); |
| 1144 | |
| 1145 | /* output this sequence */ |
| 1146 | ucnv_fromUWriteBytes(cnv, |
| 1147 | bytes, 4, (char **)target, (char *)targetLimit, |
| 1148 | offsets, sourceIndex, pErrorCode); |
| 1149 | return 0; |
| 1150 | } |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | /* no mapping */ |
| 1155 | *pErrorCode=U_INVALID_CHAR_FOUND; |
| 1156 | return cp; |
| 1157 | } |
| 1158 | |
| 1159 | /* |
| 1160 | * Input sequence: cnv->toUBytes[0..length[ |
| 1161 | * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input |
| 1162 | * else return 0 after output has been written to the target |
| 1163 | */ |
| 1164 | static int8_t |
| 1165 | _extToU(UConverter *cnv, const UConverterSharedData *sharedData, |
| 1166 | int8_t length, |
| 1167 | const uint8_t **source, const uint8_t *sourceLimit, |
| 1168 | UChar **target, const UChar *targetLimit, |
| 1169 | int32_t **offsets, int32_t sourceIndex, |
| 1170 | UBool flush, |
| 1171 | UErrorCode *pErrorCode) { |
| 1172 | const int32_t *cx; |
| 1173 | |
| 1174 | if( (cx=sharedData->mbcs.extIndexes)!=NULL && |
| 1175 | ucnv_extInitialMatchToU( |
| 1176 | cnv, cx, |
| 1177 | length, (const char **)source, (const char *)sourceLimit, |
| 1178 | target, targetLimit, |
| 1179 | offsets, sourceIndex, |
| 1180 | flush, |
| 1181 | pErrorCode) |
| 1182 | ) { |
| 1183 | return 0; /* an extension mapping handled the input */ |
| 1184 | } |
| 1185 | |
| 1186 | /* GB 18030 */ |
| 1187 | if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) { |
| 1188 | const uint32_t *range; |
| 1189 | uint32_t linear; |
| 1190 | int32_t i; |
| 1191 | |
| 1192 | linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]); |
| 1193 | range=gb18030Ranges[0]; |
| 1194 | for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) { |
| 1195 | if(range[2]<=linear && linear<=range[3]) { |
| 1196 | /* found the sequence, output the Unicode code point for it */ |
| 1197 | *pErrorCode=U_ZERO_ERROR; |
| 1198 | |
| 1199 | /* add the linear difference between the input and start sequences to the start code point */ |
| 1200 | linear=range[0]+(linear-range[2]); |
| 1201 | |
| 1202 | /* output this code point */ |
| 1203 | ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode); |
| 1204 | |
| 1205 | return 0; |
| 1206 | } |
| 1207 | } |
| 1208 | } |
| 1209 | |
| 1210 | /* no mapping */ |
| 1211 | *pErrorCode=U_INVALID_CHAR_FOUND; |
| 1212 | return length; |
| 1213 | } |
| 1214 | |
| 1215 | /* EBCDIC swap LF<->NL ------------------------------------------------------ */ |
| 1216 | |
| 1217 | /* |
| 1218 | * This code modifies a standard EBCDIC<->Unicode mapping table for |
| 1219 | * OS/390 (z/OS) Unix System Services (Open Edition). |
| 1220 | * The difference is in the mapping of Line Feed and New Line control codes: |
| 1221 | * Standard EBCDIC maps |
| 1222 | * |
| 1223 | * <U000A> \x25 |0 |
| 1224 | * <U0085> \x15 |0 |
| 1225 | * |
| 1226 | * but OS/390 USS EBCDIC swaps the control codes for LF and NL, |
| 1227 | * mapping |
| 1228 | * |
| 1229 | * <U000A> \x15 |0 |
| 1230 | * <U0085> \x25 |0 |
| 1231 | * |
| 1232 | * This code modifies a loaded standard EBCDIC<->Unicode mapping table |
| 1233 | * by copying it into allocated memory and swapping the LF and NL values. |
| 1234 | * It allows to support the same EBCDIC charset in both versions without |
| 1235 | * duplicating the entire installed table. |
| 1236 | */ |
| 1237 | |
| 1238 | /* standard EBCDIC codes */ |
| 1239 | #define EBCDIC_LF 0x25 |
| 1240 | #define EBCDIC_NL 0x15 |
| 1241 | |
| 1242 | /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */ |
| 1243 | #define EBCDIC_RT_LF 0xf25 |
| 1244 | #define EBCDIC_RT_NL 0xf15 |
| 1245 | |
| 1246 | /* Unicode code points */ |
| 1247 | #define U_LF 0x0a |
| 1248 | #define U_NL 0x85 |
| 1249 | |
| 1250 | static UBool |
| 1251 | _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) { |
| 1252 | UConverterMBCSTable *mbcsTable; |
| 1253 | |
| 1254 | const uint16_t *table, *results; |
| 1255 | const uint8_t *bytes; |
| 1256 | |
| 1257 | int32_t (*newStateTable)[256]; |
| 1258 | uint16_t *newResults; |
| 1259 | uint8_t *p; |
| 1260 | char *name; |
| 1261 | |
| 1262 | uint32_t stage2Entry; |
| 1263 | uint32_t size, sizeofFromUBytes; |
| 1264 | |
| 1265 | mbcsTable=&sharedData->mbcs; |
| 1266 | |
| 1267 | table=mbcsTable->fromUnicodeTable; |
| 1268 | bytes=mbcsTable->fromUnicodeBytes; |
| 1269 | results=(const uint16_t *)bytes; |
| 1270 | |
| 1271 | /* |
| 1272 | * Check that this is an EBCDIC table with SBCS portion - |
| 1273 | * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings. |
| 1274 | * |
| 1275 | * If not, ignore the option. Options are always ignored if they do not apply. |
| 1276 | */ |
| 1277 | if(!( |
| 1278 | (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) && |
| 1279 | mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) && |
| 1280 | mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL) |
| 1281 | )) { |
| 1282 | return FALSE; |
| 1283 | } |
| 1284 | |
| 1285 | if(mbcsTable->outputType==MBCS_OUTPUT_1) { |
| 1286 | if(!( |
| 1287 | EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) && |
| 1288 | EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL) |
| 1289 | )) { |
| 1290 | return FALSE; |
| 1291 | } |
| 1292 | } else /* MBCS_OUTPUT_2_SISO */ { |
| 1293 | stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); |
| 1294 | if(!( |
| 1295 | MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 && |
| 1296 | EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF) |
| 1297 | )) { |
| 1298 | return FALSE; |
| 1299 | } |
| 1300 | |
| 1301 | stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); |
| 1302 | if(!( |
| 1303 | MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 && |
| 1304 | EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL) |
| 1305 | )) { |
| 1306 | return FALSE; |
| 1307 | } |
| 1308 | } |
| 1309 | |
| 1310 | if(mbcsTable->fromUBytesLength>0) { |
| 1311 | /* |
| 1312 | * We _know_ the number of bytes in the fromUnicodeBytes array |
| 1313 | * starting with header.version 4.1. |
| 1314 | */ |
| 1315 | sizeofFromUBytes=mbcsTable->fromUBytesLength; |
| 1316 | } else { |
| 1317 | /* |
| 1318 | * Otherwise: |
| 1319 | * There used to be code to enumerate the fromUnicode |
| 1320 | * trie and find the highest entry, but it was removed in ICU 3.2 |
| 1321 | * because it was not tested and caused a low code coverage number. |
| 1322 | * See Jitterbug 3674. |
| 1323 | * This affects only some .cnv file formats with a header.version |
| 1324 | * below 4.1, and only when swaplfnl is requested. |
| 1325 | * |
| 1326 | * ucnvmbcs.c revision 1.99 is the last one with the |
| 1327 | * ucnv_MBCSSizeofFromUBytes() function. |
| 1328 | */ |
| 1329 | *pErrorCode=U_INVALID_FORMAT_ERROR; |
| 1330 | return FALSE; |
| 1331 | } |
| 1332 | |
| 1333 | /* |
| 1334 | * The table has an appropriate format. |
| 1335 | * Allocate and build |
| 1336 | * - a modified to-Unicode state table |
| 1337 | * - a modified from-Unicode output array |
| 1338 | * - a converter name string with the swap option appended |
| 1339 | */ |
| 1340 | size= |
| 1341 | mbcsTable->countStates*1024+ |
| 1342 | sizeofFromUBytes+ |
| 1343 | UCNV_MAX_CONVERTER_NAME_LENGTH+20; |
| 1344 | p=(uint8_t *)uprv_malloc(size); |
| 1345 | if(p==NULL) { |
| 1346 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 1347 | return FALSE; |
| 1348 | } |
| 1349 | |
| 1350 | /* copy and modify the to-Unicode state table */ |
| 1351 | newStateTable=(int32_t (*)[256])p; |
| 1352 | uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024); |
| 1353 | |
| 1354 | newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL); |
| 1355 | newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF); |
| 1356 | |
| 1357 | /* copy and modify the from-Unicode result table */ |
| 1358 | newResults=(uint16_t *)newStateTable[mbcsTable->countStates]; |
| 1359 | uprv_memcpy(newResults, bytes, sizeofFromUBytes); |
| 1360 | |
| 1361 | /* conveniently, the table access macros work on the left side of expressions */ |
| 1362 | if(mbcsTable->outputType==MBCS_OUTPUT_1) { |
| 1363 | MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL; |
| 1364 | MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF; |
| 1365 | } else /* MBCS_OUTPUT_2_SISO */ { |
| 1366 | stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); |
| 1367 | MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL; |
| 1368 | |
| 1369 | stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); |
| 1370 | MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF; |
| 1371 | } |
| 1372 | |
| 1373 | /* set the canonical converter name */ |
| 1374 | name=(char *)newResults+sizeofFromUBytes; |
| 1375 | uprv_strcpy(name, sharedData->staticData->name); |
| 1376 | uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING); |
| 1377 | |
| 1378 | /* set the pointers */ |
| 1379 | umtx_lock(NULL); |
| 1380 | if(mbcsTable->swapLFNLStateTable==NULL) { |
| 1381 | mbcsTable->swapLFNLStateTable=newStateTable; |
| 1382 | mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults; |
| 1383 | mbcsTable->swapLFNLName=name; |
| 1384 | |
| 1385 | newStateTable=NULL; |
| 1386 | } |
| 1387 | umtx_unlock(NULL); |
| 1388 | |
| 1389 | /* release the allocated memory if another thread beat us to it */ |
| 1390 | if(newStateTable!=NULL) { |
| 1391 | uprv_free(newStateTable); |
| 1392 | } |
| 1393 | return TRUE; |
| 1394 | } |
| 1395 | |
| 1396 | /* reconstitute omitted fromUnicode data ------------------------------------ */ |
| 1397 | |
| 1398 | /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */ |
| 1399 | static UBool U_CALLCONV |
| 1400 | writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) { |
| 1401 | UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context; |
| 1402 | const uint16_t *table; |
| 1403 | uint32_t *stage2; |
| 1404 | uint8_t *bytes, *p; |
| 1405 | UChar32 c; |
| 1406 | int32_t i, st3; |
| 1407 | |
| 1408 | table=mbcsTable->fromUnicodeTable; |
| 1409 | bytes=(uint8_t *)mbcsTable->fromUnicodeBytes; |
| 1410 | |
| 1411 | /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */ |
| 1412 | switch(mbcsTable->outputType) { |
| 1413 | case MBCS_OUTPUT_3_EUC: |
| 1414 | if(value<=0xffff) { |
| 1415 | /* short sequences are stored directly */ |
| 1416 | /* code set 0 or 1 */ |
| 1417 | } else if(value<=0x8effff) { |
| 1418 | /* code set 2 */ |
| 1419 | value&=0x7fff; |
| 1420 | } else /* first byte is 0x8f */ { |
| 1421 | /* code set 3 */ |
| 1422 | value&=0xff7f; |
| 1423 | } |
| 1424 | break; |
| 1425 | case MBCS_OUTPUT_4_EUC: |
| 1426 | if(value<=0xffffff) { |
| 1427 | /* short sequences are stored directly */ |
| 1428 | /* code set 0 or 1 */ |
| 1429 | } else if(value<=0x8effffff) { |
| 1430 | /* code set 2 */ |
| 1431 | value&=0x7fffff; |
| 1432 | } else /* first byte is 0x8f */ { |
| 1433 | /* code set 3 */ |
| 1434 | value&=0xff7fff; |
| 1435 | } |
| 1436 | break; |
| 1437 | default: |
| 1438 | break; |
| 1439 | } |
| 1440 | |
| 1441 | for(i=0; i<=0x1f; ++value, ++i) { |
| 1442 | c=codePoints[i]; |
| 1443 | if(c<0) { |
| 1444 | continue; |
| 1445 | } |
| 1446 | |
| 1447 | /* locate the stage 2 & 3 data */ |
| 1448 | stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f); |
| 1449 | p=bytes; |
| 1450 | st3=(int32_t)(uint16_t)*stage2*16+(c&0xf); |
| 1451 | |
| 1452 | /* write the codepage bytes into stage 3 */ |
| 1453 | switch(mbcsTable->outputType) { |
| 1454 | case MBCS_OUTPUT_3: |
| 1455 | case MBCS_OUTPUT_4_EUC: |
| 1456 | p+=st3*3; |
| 1457 | p[0]=(uint8_t)(value>>16); |
| 1458 | p[1]=(uint8_t)(value>>8); |
| 1459 | p[2]=(uint8_t)value; |
| 1460 | break; |
| 1461 | case MBCS_OUTPUT_4: |
| 1462 | ((uint32_t *)p)[st3]=value; |
| 1463 | break; |
| 1464 | default: |
| 1465 | /* 2 bytes per character */ |
| 1466 | ((uint16_t *)p)[st3]=(uint16_t)value; |
| 1467 | break; |
| 1468 | } |
| 1469 | |
| 1470 | /* set the roundtrip flag */ |
| 1471 | *stage2|=(1UL<<(16+(c&0xf))); |
| 1472 | } |
| 1473 | return TRUE; |
| 1474 | } |
| 1475 | |
| 1476 | static void |
| 1477 | reconstituteData(UConverterMBCSTable *mbcsTable, |
| 1478 | uint32_t stage1Length, uint32_t stage2Length, |
| 1479 | uint32_t fullStage2Length, /* lengths are numbers of units, not bytes */ |
| 1480 | UErrorCode *pErrorCode) { |
| 1481 | uint16_t *stage1; |
| 1482 | uint32_t *stage2; |
| 1483 | uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength; |
| 1484 | mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength); |
| 1485 | if(mbcsTable->reconstitutedData==NULL) { |
| 1486 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 1487 | return; |
| 1488 | } |
| 1489 | uprv_memset(mbcsTable->reconstitutedData, 0, dataLength); |
| 1490 | |
| 1491 | /* copy existing data and reroute the pointers */ |
| 1492 | stage1=(uint16_t *)mbcsTable->reconstitutedData; |
| 1493 | uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2); |
| 1494 | |
| 1495 | stage2=(uint32_t *)(stage1+stage1Length); |
| 1496 | uprv_memcpy(stage2+(fullStage2Length-stage2Length), |
| 1497 | mbcsTable->fromUnicodeTable+stage1Length, |
| 1498 | stage2Length*4); |
| 1499 | |
| 1500 | mbcsTable->fromUnicodeTable=stage1; |
| 1501 | mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length); |
| 1502 | |
| 1503 | /* indexes into stage 2 count from the bottom of the fromUnicodeTable */ |
| 1504 | stage2=(uint32_t *)stage1; |
| 1505 | |
| 1506 | /* reconstitute the initial part of stage 2 from the mbcsIndex */ |
| 1507 | { |
| 1508 | int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6; |
| 1509 | int32_t stageUTF8Index=0; |
| 1510 | int32_t st1, st2, st3, i; |
| 1511 | |
| 1512 | for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) { |
| 1513 | st2=stage1[st1]; |
| 1514 | if(st2!=(int32_t)stage1Length/2) { |
| 1515 | /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */ |
| 1516 | for(i=0; i<16; ++i) { |
| 1517 | st3=mbcsTable->mbcsIndex[stageUTF8Index++]; |
| 1518 | if(st3!=0) { |
| 1519 | /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */ |
| 1520 | st3>>=4; |
| 1521 | /* |
| 1522 | * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are |
| 1523 | * allocated together as a single 64-block for access from the mbcsIndex |
| 1524 | */ |
| 1525 | stage2[st2++]=st3++; |
| 1526 | stage2[st2++]=st3++; |
| 1527 | stage2[st2++]=st3++; |
| 1528 | stage2[st2++]=st3; |
| 1529 | } else { |
| 1530 | /* no stage 3 block, skip */ |
| 1531 | st2+=4; |
| 1532 | } |
| 1533 | } |
| 1534 | } else { |
| 1535 | /* no stage 2 block, skip */ |
| 1536 | stageUTF8Index+=16; |
| 1537 | } |
| 1538 | } |
| 1539 | } |
| 1540 | |
| 1541 | /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */ |
| 1542 | ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode); |
| 1543 | } |
| 1544 | |
| 1545 | /* MBCS setup functions ----------------------------------------------------- */ |
| 1546 | |
| 1547 | static void |
| 1548 | ucnv_MBCSLoad(UConverterSharedData *sharedData, |
| 1549 | UConverterLoadArgs *pArgs, |
| 1550 | const uint8_t *raw, |
| 1551 | UErrorCode *pErrorCode) { |
| 1552 | UDataInfo info; |
| 1553 | UConverterMBCSTable *mbcsTable=&sharedData->mbcs; |
| 1554 | _MBCSHeader *header=(_MBCSHeader *)raw; |
| 1555 | uint32_t offset; |
| 1556 | uint32_t headerLength; |
| 1557 | UBool noFromU=FALSE; |
| 1558 | |
| 1559 | if(header->version[0]==4) { |
| 1560 | headerLength=MBCS_HEADER_V4_LENGTH; |
| 1561 | } else if(header->version[0]==5 && header->version[1]>=3 && |
| 1562 | (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) { |
| 1563 | headerLength=header->options&MBCS_OPT_LENGTH_MASK; |
| 1564 | noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0); |
| 1565 | } else { |
| 1566 | *pErrorCode=U_INVALID_TABLE_FORMAT; |
| 1567 | return; |
| 1568 | } |
| 1569 | |
| 1570 | mbcsTable->outputType=(uint8_t)header->flags; |
| 1571 | if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) { |
| 1572 | *pErrorCode=U_INVALID_TABLE_FORMAT; |
| 1573 | return; |
| 1574 | } |
| 1575 | |
| 1576 | /* extension data, header version 4.2 and higher */ |
| 1577 | offset=header->flags>>8; |
| 1578 | if(offset!=0) { |
| 1579 | mbcsTable->extIndexes=(const int32_t *)(raw+offset); |
| 1580 | } |
| 1581 | |
| 1582 | if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) { |
| 1583 | UConverterLoadArgs args=UCNV_LOAD_ARGS_INITIALIZER; |
| 1584 | UConverterSharedData *baseSharedData; |
| 1585 | const int32_t *extIndexes; |
| 1586 | const char *baseName; |
| 1587 | |
| 1588 | /* extension-only file, load the base table and set values appropriately */ |
| 1589 | if((extIndexes=mbcsTable->extIndexes)==NULL) { |
| 1590 | /* extension-only file without extension */ |
| 1591 | *pErrorCode=U_INVALID_TABLE_FORMAT; |
| 1592 | return; |
| 1593 | } |
| 1594 | |
| 1595 | if(pArgs->nestedLoads!=1) { |
| 1596 | /* an extension table must not be loaded as a base table */ |
| 1597 | *pErrorCode=U_INVALID_TABLE_FILE; |
| 1598 | return; |
| 1599 | } |
| 1600 | |
| 1601 | /* load the base table */ |
| 1602 | baseName=(const char *)header+headerLength*4; |
| 1603 | if(0==uprv_strcmp(baseName, sharedData->staticData->name)) { |
| 1604 | /* forbid loading this same extension-only file */ |
| 1605 | *pErrorCode=U_INVALID_TABLE_FORMAT; |
| 1606 | return; |
| 1607 | } |
| 1608 | |
| 1609 | /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */ |
| 1610 | args.size=sizeof(UConverterLoadArgs); |
| 1611 | args.nestedLoads=2; |
| 1612 | args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable; |
| 1613 | args.reserved=pArgs->reserved; |
| 1614 | args.options=pArgs->options; |
| 1615 | args.pkg=pArgs->pkg; |
| 1616 | args.name=baseName; |
| 1617 | baseSharedData=ucnv_load(&args, pErrorCode); |
| 1618 | if(U_FAILURE(*pErrorCode)) { |
| 1619 | return; |
| 1620 | } |
| 1621 | if( baseSharedData->staticData->conversionType!=UCNV_MBCS || |
| 1622 | baseSharedData->mbcs.baseSharedData!=NULL |
| 1623 | ) { |
| 1624 | ucnv_unload(baseSharedData); |
| 1625 | *pErrorCode=U_INVALID_TABLE_FORMAT; |
| 1626 | return; |
| 1627 | } |
| 1628 | if(pArgs->onlyTestIsLoadable) { |
| 1629 | /* |
| 1630 | * Exit as soon as we know that we can load the converter |
| 1631 | * and the format is valid and supported. |
| 1632 | * The worst that can happen in the following code is a memory |
| 1633 | * allocation error. |
| 1634 | */ |
| 1635 | ucnv_unload(baseSharedData); |
| 1636 | return; |
| 1637 | } |
| 1638 | |
| 1639 | /* copy the base table data */ |
| 1640 | uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable)); |
| 1641 | |
| 1642 | /* overwrite values with relevant ones for the extension converter */ |
| 1643 | mbcsTable->baseSharedData=baseSharedData; |
| 1644 | mbcsTable->extIndexes=extIndexes; |
| 1645 | |
| 1646 | /* |
| 1647 | * It would be possible to share the swapLFNL data with a base converter, |
| 1648 | * but the generated name would have to be different, and the memory |
| 1649 | * would have to be free'd only once. |
| 1650 | * It is easier to just create the data for the extension converter |
| 1651 | * separately when it is requested. |
| 1652 | */ |
| 1653 | mbcsTable->swapLFNLStateTable=NULL; |
| 1654 | mbcsTable->swapLFNLFromUnicodeBytes=NULL; |
| 1655 | mbcsTable->swapLFNLName=NULL; |
| 1656 | |
| 1657 | /* |
| 1658 | * The reconstitutedData must be deleted only when the base converter |
| 1659 | * is unloaded. |
| 1660 | */ |
| 1661 | mbcsTable->reconstitutedData=NULL; |
| 1662 | |
| 1663 | /* |
| 1664 | * Set a special, runtime-only outputType if the extension converter |
| 1665 | * is a DBCS version of a base converter that also maps single bytes. |
| 1666 | */ |
| 1667 | if( sharedData->staticData->conversionType==UCNV_DBCS || |
| 1668 | (sharedData->staticData->conversionType==UCNV_MBCS && |
| 1669 | sharedData->staticData->minBytesPerChar>=2) |
| 1670 | ) { |
| 1671 | if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) { |
| 1672 | /* the base converter is SI/SO-stateful */ |
| 1673 | int32_t entry; |
| 1674 | |
| 1675 | /* get the dbcs state from the state table entry for SO=0x0e */ |
| 1676 | entry=mbcsTable->stateTable[0][0xe]; |
| 1677 | if( MBCS_ENTRY_IS_FINAL(entry) && |
| 1678 | MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY && |
| 1679 | MBCS_ENTRY_FINAL_STATE(entry)!=0 |
| 1680 | ) { |
| 1681 | mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); |
| 1682 | |
| 1683 | mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; |
| 1684 | } |
| 1685 | } else if( |
| 1686 | baseSharedData->staticData->conversionType==UCNV_MBCS && |
| 1687 | baseSharedData->staticData->minBytesPerChar==1 && |
| 1688 | baseSharedData->staticData->maxBytesPerChar==2 && |
| 1689 | mbcsTable->countStates<=127 |
| 1690 | ) { |
| 1691 | /* non-stateful base converter, need to modify the state table */ |
| 1692 | int32_t (*newStateTable)[256]; |
| 1693 | int32_t *state; |
| 1694 | int32_t i, count; |
| 1695 | |
| 1696 | /* allocate a new state table and copy the base state table contents */ |
| 1697 | count=mbcsTable->countStates; |
| 1698 | newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024); |
| 1699 | if(newStateTable==NULL) { |
| 1700 | ucnv_unload(baseSharedData); |
| 1701 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 1702 | return; |
| 1703 | } |
| 1704 | |
| 1705 | uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024); |
| 1706 | |
| 1707 | /* change all final single-byte entries to go to a new all-illegal state */ |
| 1708 | state=newStateTable[0]; |
| 1709 | for(i=0; i<256; ++i) { |
| 1710 | if(MBCS_ENTRY_IS_FINAL(state[i])) { |
| 1711 | state[i]=MBCS_ENTRY_TRANSITION(count, 0); |
| 1712 | } |
| 1713 | } |
| 1714 | |
| 1715 | /* build the new all-illegal state */ |
| 1716 | state=newStateTable[count]; |
| 1717 | for(i=0; i<256; ++i) { |
| 1718 | state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0); |
| 1719 | } |
| 1720 | mbcsTable->stateTable=(const int32_t (*)[256])newStateTable; |
| 1721 | mbcsTable->countStates=(uint8_t)(count+1); |
| 1722 | mbcsTable->stateTableOwned=TRUE; |
| 1723 | |
| 1724 | mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; |
| 1725 | } |
| 1726 | } |
| 1727 | |
| 1728 | /* |
| 1729 | * unlike below for files with base tables, do not get the unicodeMask |
| 1730 | * from the sharedData; instead, use the base table's unicodeMask, |
| 1731 | * which we copied in the memcpy above; |
| 1732 | * this is necessary because the static data unicodeMask, especially |
| 1733 | * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data |
| 1734 | */ |
| 1735 | } else { |
| 1736 | /* conversion file with a base table; an additional extension table is optional */ |
| 1737 | /* make sure that the output type is known */ |
| 1738 | switch(mbcsTable->outputType) { |
| 1739 | case MBCS_OUTPUT_1: |
| 1740 | case MBCS_OUTPUT_2: |
| 1741 | case MBCS_OUTPUT_3: |
| 1742 | case MBCS_OUTPUT_4: |
| 1743 | case MBCS_OUTPUT_3_EUC: |
| 1744 | case MBCS_OUTPUT_4_EUC: |
| 1745 | case MBCS_OUTPUT_2_SISO: |
| 1746 | /* OK */ |
| 1747 | break; |
| 1748 | default: |
| 1749 | *pErrorCode=U_INVALID_TABLE_FORMAT; |
| 1750 | return; |
| 1751 | } |
| 1752 | if(pArgs->onlyTestIsLoadable) { |
| 1753 | /* |
| 1754 | * Exit as soon as we know that we can load the converter |
| 1755 | * and the format is valid and supported. |
| 1756 | * The worst that can happen in the following code is a memory |
| 1757 | * allocation error. |
| 1758 | */ |
| 1759 | return; |
| 1760 | } |
| 1761 | |
| 1762 | mbcsTable->countStates=(uint8_t)header->countStates; |
| 1763 | mbcsTable->countToUFallbacks=header->countToUFallbacks; |
| 1764 | mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4); |
| 1765 | mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates); |
| 1766 | mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits); |
| 1767 | |
| 1768 | mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable); |
| 1769 | mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes); |
| 1770 | mbcsTable->fromUBytesLength=header->fromUBytesLength; |
| 1771 | |
| 1772 | /* |
| 1773 | * converter versions 6.1 and up contain a unicodeMask that is |
| 1774 | * used here to select the most efficient function implementations |
| 1775 | */ |
| 1776 | info.size=sizeof(UDataInfo); |
| 1777 | udata_getInfo((UDataMemory *)sharedData->dataMemory, &info); |
| 1778 | if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) { |
| 1779 | /* mask off possible future extensions to be safe */ |
| 1780 | mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3); |
| 1781 | } else { |
| 1782 | /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */ |
| 1783 | mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES; |
| 1784 | } |
| 1785 | |
| 1786 | /* |
| 1787 | * _MBCSHeader.version 4.3 adds utf8Friendly data structures. |
| 1788 | * Check for the header version, SBCS vs. MBCS, and for whether the |
| 1789 | * data structures are optimized for code points as high as what the |
| 1790 | * runtime code is designed for. |
| 1791 | * The implementation does not handle mapping tables with entries for |
| 1792 | * unpaired surrogates. |
| 1793 | */ |
| 1794 | if( header->version[1]>=3 && |
| 1795 | (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 && |
| 1796 | (mbcsTable->countStates==1 ? |
| 1797 | (header->version[2]>=(SBCS_FAST_MAX>>8)) : |
| 1798 | (header->version[2]>=(MBCS_FAST_MAX>>8)) |
| 1799 | ) |
| 1800 | ) { |
| 1801 | mbcsTable->utf8Friendly=TRUE; |
| 1802 | |
| 1803 | if(mbcsTable->countStates==1) { |
| 1804 | /* |
| 1805 | * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher. |
| 1806 | * Build a table with indexes to each block, to be used instead of |
| 1807 | * the regular stage 1/2 table. |
| 1808 | */ |
| 1809 | int32_t i; |
| 1810 | for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) { |
| 1811 | mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)]; |
| 1812 | } |
| 1813 | /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */ |
| 1814 | mbcsTable->maxFastUChar=SBCS_FAST_MAX; |
| 1815 | } else { |
| 1816 | /* |
| 1817 | * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher. |
| 1818 | * The .cnv file is prebuilt with an additional stage table with indexes |
| 1819 | * to each block. |
| 1820 | */ |
| 1821 | mbcsTable->mbcsIndex=(const uint16_t *) |
| 1822 | (mbcsTable->fromUnicodeBytes+ |
| 1823 | (noFromU ? 0 : mbcsTable->fromUBytesLength)); |
| 1824 | mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff; |
| 1825 | } |
| 1826 | } |
| 1827 | |
| 1828 | /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */ |
| 1829 | { |
| 1830 | uint32_t asciiRoundtrips=0xffffffff; |
| 1831 | int32_t i; |
| 1832 | |
| 1833 | for(i=0; i<0x80; ++i) { |
| 1834 | if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) { |
| 1835 | asciiRoundtrips&=~((uint32_t)1<<(i>>2)); |
| 1836 | } |
| 1837 | } |
| 1838 | mbcsTable->asciiRoundtrips=asciiRoundtrips; |
| 1839 | } |
| 1840 | |
| 1841 | if(noFromU) { |
| 1842 | uint32_t stage1Length= |
| 1843 | mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ? |
| 1844 | 0x440 : 0x40; |
| 1845 | uint32_t stage2Length= |
| 1846 | (header->offsetFromUBytes-header->offsetFromUTable)/4- |
| 1847 | stage1Length/2; |
| 1848 | reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode); |
| 1849 | } |
| 1850 | } |
| 1851 | |
| 1852 | /* Set the impl pointer here so that it is set for both extension-only and base tables. */ |
| 1853 | if(mbcsTable->utf8Friendly) { |
| 1854 | if(mbcsTable->countStates==1) { |
| 1855 | sharedData->impl=&_SBCSUTF8Impl; |
| 1856 | } else { |
| 1857 | if(mbcsTable->outputType==MBCS_OUTPUT_2) { |
| 1858 | sharedData->impl=&_DBCSUTF8Impl; |
| 1859 | } |
| 1860 | } |
| 1861 | } |
| 1862 | |
| 1863 | if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) { |
| 1864 | /* |
| 1865 | * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip. |
| 1866 | * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly. |
| 1867 | */ |
| 1868 | mbcsTable->asciiRoundtrips=0; |
| 1869 | } |
| 1870 | } |
| 1871 | |
| 1872 | static void |
| 1873 | ucnv_MBCSUnload(UConverterSharedData *sharedData) { |
| 1874 | UConverterMBCSTable *mbcsTable=&sharedData->mbcs; |
| 1875 | |
| 1876 | if(mbcsTable->swapLFNLStateTable!=NULL) { |
| 1877 | uprv_free(mbcsTable->swapLFNLStateTable); |
| 1878 | } |
| 1879 | if(mbcsTable->stateTableOwned) { |
| 1880 | uprv_free((void *)mbcsTable->stateTable); |
| 1881 | } |
| 1882 | if(mbcsTable->baseSharedData!=NULL) { |
| 1883 | ucnv_unload(mbcsTable->baseSharedData); |
| 1884 | } |
| 1885 | if(mbcsTable->reconstitutedData!=NULL) { |
| 1886 | uprv_free(mbcsTable->reconstitutedData); |
| 1887 | } |
| 1888 | } |
| 1889 | |
| 1890 | static void |
| 1891 | ucnv_MBCSOpen(UConverter *cnv, |
| 1892 | UConverterLoadArgs *pArgs, |
| 1893 | UErrorCode *pErrorCode) { |
| 1894 | UConverterMBCSTable *mbcsTable; |
| 1895 | const int32_t *extIndexes; |
| 1896 | uint8_t outputType; |
| 1897 | int8_t maxBytesPerUChar; |
| 1898 | |
| 1899 | if(pArgs->onlyTestIsLoadable) { |
| 1900 | return; |
| 1901 | } |
| 1902 | |
| 1903 | mbcsTable=&cnv->sharedData->mbcs; |
| 1904 | outputType=mbcsTable->outputType; |
| 1905 | |
| 1906 | if(outputType==MBCS_OUTPUT_DBCS_ONLY) { |
| 1907 | /* the swaplfnl option does not apply, remove it */ |
| 1908 | cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; |
| 1909 | } |
| 1910 | |
| 1911 | if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 1912 | /* do this because double-checked locking is broken */ |
| 1913 | UBool isCached; |
| 1914 | |
| 1915 | umtx_lock(NULL); |
| 1916 | isCached=mbcsTable->swapLFNLStateTable!=NULL; |
| 1917 | umtx_unlock(NULL); |
| 1918 | |
| 1919 | if(!isCached) { |
| 1920 | if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) { |
| 1921 | if(U_FAILURE(*pErrorCode)) { |
| 1922 | return; /* something went wrong */ |
| 1923 | } |
| 1924 | |
| 1925 | /* the option does not apply, remove it */ |
| 1926 | cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; |
| 1927 | } |
| 1928 | } |
| 1929 | } |
| 1930 | |
| 1931 | if(uprv_strstr(pArgs->name, "18030")!=NULL) { |
| 1932 | if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) { |
| 1933 | /* set a flag for GB 18030 mode, which changes the callback behavior */ |
| 1934 | cnv->options|=_MBCS_OPTION_GB18030; |
| 1935 | } |
| 1936 | } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) { |
| 1937 | /* set a flag for KEIS converter, which changes the SI/SO character sequence */ |
| 1938 | cnv->options|=_MBCS_OPTION_KEIS; |
| 1939 | } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) { |
| 1940 | /* set a flag for JEF converter, which changes the SI/SO character sequence */ |
| 1941 | cnv->options|=_MBCS_OPTION_JEF; |
| 1942 | } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) { |
| 1943 | /* set a flag for JIPS converter, which changes the SI/SO character sequence */ |
| 1944 | cnv->options|=_MBCS_OPTION_JIPS; |
| 1945 | } |
| 1946 | |
| 1947 | /* fix maxBytesPerUChar depending on outputType and options etc. */ |
| 1948 | if(outputType==MBCS_OUTPUT_2_SISO) { |
| 1949 | cnv->maxBytesPerUChar=3; /* SO+DBCS */ |
| 1950 | } |
| 1951 | |
| 1952 | extIndexes=mbcsTable->extIndexes; |
| 1953 | if(extIndexes!=NULL) { |
| 1954 | maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes); |
| 1955 | if(outputType==MBCS_OUTPUT_2_SISO) { |
| 1956 | ++maxBytesPerUChar; /* SO + multiple DBCS */ |
| 1957 | } |
| 1958 | |
| 1959 | if(maxBytesPerUChar>cnv->maxBytesPerUChar) { |
| 1960 | cnv->maxBytesPerUChar=maxBytesPerUChar; |
| 1961 | } |
| 1962 | } |
| 1963 | |
| 1964 | #if 0 |
| 1965 | /* |
| 1966 | * documentation of UConverter fields used for status |
| 1967 | * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset() |
| 1968 | */ |
| 1969 | |
| 1970 | /* toUnicode */ |
| 1971 | cnv->toUnicodeStatus=0; /* offset */ |
| 1972 | cnv->mode=0; /* state */ |
| 1973 | cnv->toULength=0; /* byteIndex */ |
| 1974 | |
| 1975 | /* fromUnicode */ |
| 1976 | cnv->fromUChar32=0; |
| 1977 | cnv->fromUnicodeStatus=1; /* prevLength */ |
| 1978 | #endif |
| 1979 | } |
| 1980 | |
| 1981 | static const char * |
| 1982 | ucnv_MBCSGetName(const UConverter *cnv) { |
| 1983 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) { |
| 1984 | return cnv->sharedData->mbcs.swapLFNLName; |
| 1985 | } else { |
| 1986 | return cnv->sharedData->staticData->name; |
| 1987 | } |
| 1988 | } |
| 1989 | |
| 1990 | /* MBCS-to-Unicode conversion functions ------------------------------------- */ |
| 1991 | |
| 1992 | static UChar32 |
| 1993 | ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) { |
| 1994 | const _MBCSToUFallback *toUFallbacks; |
| 1995 | uint32_t i, start, limit; |
| 1996 | |
| 1997 | limit=mbcsTable->countToUFallbacks; |
| 1998 | if(limit>0) { |
| 1999 | /* do a binary search for the fallback mapping */ |
| 2000 | toUFallbacks=mbcsTable->toUFallbacks; |
| 2001 | start=0; |
| 2002 | while(start<limit-1) { |
| 2003 | i=(start+limit)/2; |
| 2004 | if(offset<toUFallbacks[i].offset) { |
| 2005 | limit=i; |
| 2006 | } else { |
| 2007 | start=i; |
| 2008 | } |
| 2009 | } |
| 2010 | |
| 2011 | /* did we really find it? */ |
| 2012 | if(offset==toUFallbacks[start].offset) { |
| 2013 | return toUFallbacks[start].codePoint; |
| 2014 | } |
| 2015 | } |
| 2016 | |
| 2017 | return 0xfffe; |
| 2018 | } |
| 2019 | |
| 2020 | /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */ |
| 2021 | static void |
| 2022 | ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, |
| 2023 | UErrorCode *pErrorCode) { |
| 2024 | UConverter *cnv; |
| 2025 | const uint8_t *source, *sourceLimit; |
| 2026 | UChar *target; |
| 2027 | const UChar *targetLimit; |
| 2028 | int32_t *offsets; |
| 2029 | |
| 2030 | const int32_t (*stateTable)[256]; |
| 2031 | |
| 2032 | int32_t sourceIndex; |
| 2033 | |
| 2034 | int32_t entry; |
| 2035 | UChar c; |
| 2036 | uint8_t action; |
| 2037 | |
| 2038 | /* set up the local pointers */ |
| 2039 | cnv=pArgs->converter; |
| 2040 | source=(const uint8_t *)pArgs->source; |
| 2041 | sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| 2042 | target=pArgs->target; |
| 2043 | targetLimit=pArgs->targetLimit; |
| 2044 | offsets=pArgs->offsets; |
| 2045 | |
| 2046 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 2047 | stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
| 2048 | } else { |
| 2049 | stateTable=cnv->sharedData->mbcs.stateTable; |
| 2050 | } |
| 2051 | |
| 2052 | /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 2053 | sourceIndex=0; |
| 2054 | |
| 2055 | /* conversion loop */ |
| 2056 | while(source<sourceLimit) { |
| 2057 | /* |
| 2058 | * This following test is to see if available input would overflow the output. |
| 2059 | * It does not catch output of more than one code unit that |
| 2060 | * overflows as a result of a surrogate pair or callback output |
| 2061 | * from the last source byte. |
| 2062 | * Therefore, those situations also test for overflows and will |
| 2063 | * then break the loop, too. |
| 2064 | */ |
| 2065 | if(target>=targetLimit) { |
| 2066 | /* target is full */ |
| 2067 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 2068 | break; |
| 2069 | } |
| 2070 | |
| 2071 | entry=stateTable[0][*source++]; |
| 2072 | /* MBCS_ENTRY_IS_FINAL(entry) */ |
| 2073 | |
| 2074 | /* test the most common case first */ |
| 2075 | if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| 2076 | /* output BMP code point */ |
| 2077 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2078 | if(offsets!=NULL) { |
| 2079 | *offsets++=sourceIndex; |
| 2080 | } |
| 2081 | |
| 2082 | /* normal end of action codes: prepare for a new character */ |
| 2083 | ++sourceIndex; |
| 2084 | continue; |
| 2085 | } |
| 2086 | |
| 2087 | /* |
| 2088 | * An if-else-if chain provides more reliable performance for |
| 2089 | * the most common cases compared to a switch. |
| 2090 | */ |
| 2091 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 2092 | if(action==MBCS_STATE_VALID_DIRECT_20 || |
| 2093 | (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) |
| 2094 | ) { |
| 2095 | entry=MBCS_ENTRY_FINAL_VALUE(entry); |
| 2096 | /* output surrogate pair */ |
| 2097 | *target++=(UChar)(0xd800|(UChar)(entry>>10)); |
| 2098 | if(offsets!=NULL) { |
| 2099 | *offsets++=sourceIndex; |
| 2100 | } |
| 2101 | c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); |
| 2102 | if(target<targetLimit) { |
| 2103 | *target++=c; |
| 2104 | if(offsets!=NULL) { |
| 2105 | *offsets++=sourceIndex; |
| 2106 | } |
| 2107 | } else { |
| 2108 | /* target overflow */ |
| 2109 | cnv->UCharErrorBuffer[0]=c; |
| 2110 | cnv->UCharErrorBufferLength=1; |
| 2111 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 2112 | break; |
| 2113 | } |
| 2114 | |
| 2115 | ++sourceIndex; |
| 2116 | continue; |
| 2117 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 2118 | if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| 2119 | /* output BMP code point */ |
| 2120 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2121 | if(offsets!=NULL) { |
| 2122 | *offsets++=sourceIndex; |
| 2123 | } |
| 2124 | |
| 2125 | ++sourceIndex; |
| 2126 | continue; |
| 2127 | } |
| 2128 | } else if(action==MBCS_STATE_UNASSIGNED) { |
| 2129 | /* just fall through */ |
| 2130 | } else if(action==MBCS_STATE_ILLEGAL) { |
| 2131 | /* callback(illegal) */ |
| 2132 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2133 | } else { |
| 2134 | /* reserved, must never occur */ |
| 2135 | ++sourceIndex; |
| 2136 | continue; |
| 2137 | } |
| 2138 | |
| 2139 | if(U_FAILURE(*pErrorCode)) { |
| 2140 | /* callback(illegal) */ |
| 2141 | break; |
| 2142 | } else /* unassigned sequences indicated with byteIndex>0 */ { |
| 2143 | /* try an extension mapping */ |
| 2144 | pArgs->source=(const char *)source; |
| 2145 | cnv->toUBytes[0]=*(source-1); |
| 2146 | cnv->toULength=_extToU(cnv, cnv->sharedData, |
| 2147 | 1, &source, sourceLimit, |
| 2148 | &target, targetLimit, |
| 2149 | &offsets, sourceIndex, |
| 2150 | pArgs->flush, |
| 2151 | pErrorCode); |
| 2152 | sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source); |
| 2153 | |
| 2154 | if(U_FAILURE(*pErrorCode)) { |
| 2155 | /* not mappable or buffer overflow */ |
| 2156 | break; |
| 2157 | } |
| 2158 | } |
| 2159 | } |
| 2160 | |
| 2161 | /* write back the updated pointers */ |
| 2162 | pArgs->source=(const char *)source; |
| 2163 | pArgs->target=target; |
| 2164 | pArgs->offsets=offsets; |
| 2165 | } |
| 2166 | |
| 2167 | /* |
| 2168 | * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages |
| 2169 | * that only map to and from the BMP. |
| 2170 | * In addition to single-byte optimizations, the offset calculations |
| 2171 | * become much easier. |
| 2172 | */ |
| 2173 | static void |
| 2174 | ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs, |
| 2175 | UErrorCode *pErrorCode) { |
| 2176 | UConverter *cnv; |
| 2177 | const uint8_t *source, *sourceLimit, *lastSource; |
| 2178 | UChar *target; |
| 2179 | int32_t targetCapacity, length; |
| 2180 | int32_t *offsets; |
| 2181 | |
| 2182 | const int32_t (*stateTable)[256]; |
| 2183 | |
| 2184 | int32_t sourceIndex; |
| 2185 | |
| 2186 | int32_t entry; |
| 2187 | uint8_t action; |
| 2188 | |
| 2189 | /* set up the local pointers */ |
| 2190 | cnv=pArgs->converter; |
| 2191 | source=(const uint8_t *)pArgs->source; |
| 2192 | sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| 2193 | target=pArgs->target; |
| 2194 | targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
| 2195 | offsets=pArgs->offsets; |
| 2196 | |
| 2197 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 2198 | stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
| 2199 | } else { |
| 2200 | stateTable=cnv->sharedData->mbcs.stateTable; |
| 2201 | } |
| 2202 | |
| 2203 | /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 2204 | sourceIndex=0; |
| 2205 | lastSource=source; |
| 2206 | |
| 2207 | /* |
| 2208 | * since the conversion here is 1:1 UChar:uint8_t, we need only one counter |
| 2209 | * for the minimum of the sourceLength and targetCapacity |
| 2210 | */ |
| 2211 | length=(int32_t)(sourceLimit-source); |
| 2212 | if(length<targetCapacity) { |
| 2213 | targetCapacity=length; |
| 2214 | } |
| 2215 | |
| 2216 | #if MBCS_UNROLL_SINGLE_TO_BMP |
| 2217 | /* unrolling makes it faster on Pentium III/Windows 2000 */ |
| 2218 | /* unroll the loop with the most common case */ |
| 2219 | unrolled: |
| 2220 | if(targetCapacity>=16) { |
| 2221 | int32_t count, loops, oredEntries; |
| 2222 | |
| 2223 | loops=count=targetCapacity>>4; |
| 2224 | do { |
| 2225 | oredEntries=entry=stateTable[0][*source++]; |
| 2226 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2227 | oredEntries|=entry=stateTable[0][*source++]; |
| 2228 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2229 | oredEntries|=entry=stateTable[0][*source++]; |
| 2230 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2231 | oredEntries|=entry=stateTable[0][*source++]; |
| 2232 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2233 | oredEntries|=entry=stateTable[0][*source++]; |
| 2234 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2235 | oredEntries|=entry=stateTable[0][*source++]; |
| 2236 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2237 | oredEntries|=entry=stateTable[0][*source++]; |
| 2238 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2239 | oredEntries|=entry=stateTable[0][*source++]; |
| 2240 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2241 | oredEntries|=entry=stateTable[0][*source++]; |
| 2242 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2243 | oredEntries|=entry=stateTable[0][*source++]; |
| 2244 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2245 | oredEntries|=entry=stateTable[0][*source++]; |
| 2246 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2247 | oredEntries|=entry=stateTable[0][*source++]; |
| 2248 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2249 | oredEntries|=entry=stateTable[0][*source++]; |
| 2250 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2251 | oredEntries|=entry=stateTable[0][*source++]; |
| 2252 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2253 | oredEntries|=entry=stateTable[0][*source++]; |
| 2254 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2255 | oredEntries|=entry=stateTable[0][*source++]; |
| 2256 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2257 | |
| 2258 | /* were all 16 entries really valid? */ |
| 2259 | if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) { |
| 2260 | /* no, return to the first of these 16 */ |
| 2261 | source-=16; |
| 2262 | target-=16; |
| 2263 | break; |
| 2264 | } |
| 2265 | } while(--count>0); |
| 2266 | count=loops-count; |
| 2267 | targetCapacity-=16*count; |
| 2268 | |
| 2269 | if(offsets!=NULL) { |
| 2270 | lastSource+=16*count; |
| 2271 | while(count>0) { |
| 2272 | *offsets++=sourceIndex++; |
| 2273 | *offsets++=sourceIndex++; |
| 2274 | *offsets++=sourceIndex++; |
| 2275 | *offsets++=sourceIndex++; |
| 2276 | *offsets++=sourceIndex++; |
| 2277 | *offsets++=sourceIndex++; |
| 2278 | *offsets++=sourceIndex++; |
| 2279 | *offsets++=sourceIndex++; |
| 2280 | *offsets++=sourceIndex++; |
| 2281 | *offsets++=sourceIndex++; |
| 2282 | *offsets++=sourceIndex++; |
| 2283 | *offsets++=sourceIndex++; |
| 2284 | *offsets++=sourceIndex++; |
| 2285 | *offsets++=sourceIndex++; |
| 2286 | *offsets++=sourceIndex++; |
| 2287 | *offsets++=sourceIndex++; |
| 2288 | --count; |
| 2289 | } |
| 2290 | } |
| 2291 | } |
| 2292 | #endif |
| 2293 | |
| 2294 | /* conversion loop */ |
| 2295 | while(targetCapacity > 0 && source < sourceLimit) { |
| 2296 | entry=stateTable[0][*source++]; |
| 2297 | /* MBCS_ENTRY_IS_FINAL(entry) */ |
| 2298 | |
| 2299 | /* test the most common case first */ |
| 2300 | if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| 2301 | /* output BMP code point */ |
| 2302 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2303 | --targetCapacity; |
| 2304 | continue; |
| 2305 | } |
| 2306 | |
| 2307 | /* |
| 2308 | * An if-else-if chain provides more reliable performance for |
| 2309 | * the most common cases compared to a switch. |
| 2310 | */ |
| 2311 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 2312 | if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 2313 | if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| 2314 | /* output BMP code point */ |
| 2315 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2316 | --targetCapacity; |
| 2317 | continue; |
| 2318 | } |
| 2319 | } else if(action==MBCS_STATE_UNASSIGNED) { |
| 2320 | /* just fall through */ |
| 2321 | } else if(action==MBCS_STATE_ILLEGAL) { |
| 2322 | /* callback(illegal) */ |
| 2323 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2324 | } else { |
| 2325 | /* reserved, must never occur */ |
| 2326 | continue; |
| 2327 | } |
| 2328 | |
| 2329 | /* set offsets since the start or the last extension */ |
| 2330 | if(offsets!=NULL) { |
| 2331 | int32_t count=(int32_t)(source-lastSource); |
| 2332 | |
| 2333 | /* predecrement: do not set the offset for the callback-causing character */ |
| 2334 | while(--count>0) { |
| 2335 | *offsets++=sourceIndex++; |
| 2336 | } |
| 2337 | /* offset and sourceIndex are now set for the current character */ |
| 2338 | } |
| 2339 | |
| 2340 | if(U_FAILURE(*pErrorCode)) { |
| 2341 | /* callback(illegal) */ |
| 2342 | break; |
| 2343 | } else /* unassigned sequences indicated with byteIndex>0 */ { |
| 2344 | /* try an extension mapping */ |
| 2345 | lastSource=source; |
| 2346 | cnv->toUBytes[0]=*(source-1); |
| 2347 | cnv->toULength=_extToU(cnv, cnv->sharedData, |
| 2348 | 1, &source, sourceLimit, |
| 2349 | &target, pArgs->targetLimit, |
| 2350 | &offsets, sourceIndex, |
| 2351 | pArgs->flush, |
| 2352 | pErrorCode); |
| 2353 | sourceIndex+=1+(int32_t)(source-lastSource); |
| 2354 | |
| 2355 | if(U_FAILURE(*pErrorCode)) { |
| 2356 | /* not mappable or buffer overflow */ |
| 2357 | break; |
| 2358 | } |
| 2359 | |
| 2360 | /* recalculate the targetCapacity after an extension mapping */ |
| 2361 | targetCapacity=(int32_t)(pArgs->targetLimit-target); |
| 2362 | length=(int32_t)(sourceLimit-source); |
| 2363 | if(length<targetCapacity) { |
| 2364 | targetCapacity=length; |
| 2365 | } |
| 2366 | } |
| 2367 | |
| 2368 | #if MBCS_UNROLL_SINGLE_TO_BMP |
| 2369 | /* unrolling makes it faster on Pentium III/Windows 2000 */ |
| 2370 | goto unrolled; |
| 2371 | #endif |
| 2372 | } |
| 2373 | |
| 2374 | if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) { |
| 2375 | /* target is full */ |
| 2376 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 2377 | } |
| 2378 | |
| 2379 | /* set offsets since the start or the last callback */ |
| 2380 | if(offsets!=NULL) { |
| 2381 | size_t count=source-lastSource; |
| 2382 | while(count>0) { |
| 2383 | *offsets++=sourceIndex++; |
| 2384 | --count; |
| 2385 | } |
| 2386 | } |
| 2387 | |
| 2388 | /* write back the updated pointers */ |
| 2389 | pArgs->source=(const char *)source; |
| 2390 | pArgs->target=target; |
| 2391 | pArgs->offsets=offsets; |
| 2392 | } |
| 2393 | |
| 2394 | static UBool |
| 2395 | hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) { |
| 2396 | const int32_t *row=stateTable[state]; |
| 2397 | int32_t b, entry; |
| 2398 | /* First test for final entries in this state for some commonly valid byte values. */ |
| 2399 | entry=row[0xa1]; |
| 2400 | if( !MBCS_ENTRY_IS_TRANSITION(entry) && |
| 2401 | MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL |
| 2402 | ) { |
| 2403 | return TRUE; |
| 2404 | } |
| 2405 | entry=row[0x41]; |
| 2406 | if( !MBCS_ENTRY_IS_TRANSITION(entry) && |
| 2407 | MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL |
| 2408 | ) { |
| 2409 | return TRUE; |
| 2410 | } |
| 2411 | /* Then test for final entries in this state. */ |
| 2412 | for(b=0; b<=0xff; ++b) { |
| 2413 | entry=row[b]; |
| 2414 | if( !MBCS_ENTRY_IS_TRANSITION(entry) && |
| 2415 | MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL |
| 2416 | ) { |
| 2417 | return TRUE; |
| 2418 | } |
| 2419 | } |
| 2420 | /* Then recurse for transition entries. */ |
| 2421 | for(b=0; b<=0xff; ++b) { |
| 2422 | entry=row[b]; |
| 2423 | if( MBCS_ENTRY_IS_TRANSITION(entry) && |
| 2424 | hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)) |
| 2425 | ) { |
| 2426 | return TRUE; |
| 2427 | } |
| 2428 | } |
| 2429 | return FALSE; |
| 2430 | } |
| 2431 | |
| 2432 | /* |
| 2433 | * Is byte b a single/lead byte in this state? |
| 2434 | * Recurse for transition states, because here we don't want to say that |
| 2435 | * b is a lead byte if all byte sequences that start with b are illegal. |
| 2436 | */ |
| 2437 | static UBool |
| 2438 | isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) { |
| 2439 | const int32_t *row=stateTable[state]; |
| 2440 | int32_t entry=row[b]; |
| 2441 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { /* lead byte */ |
| 2442 | return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry)); |
| 2443 | } else { |
| 2444 | uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 2445 | if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) { |
| 2446 | return FALSE; /* SI/SO are illegal for DBCS-only conversion */ |
| 2447 | } else { |
| 2448 | return action!=MBCS_STATE_ILLEGAL; |
| 2449 | } |
| 2450 | } |
| 2451 | } |
| 2452 | |
| 2453 | U_CFUNC void |
| 2454 | ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, |
| 2455 | UErrorCode *pErrorCode) { |
| 2456 | UConverter *cnv; |
| 2457 | const uint8_t *source, *sourceLimit; |
| 2458 | UChar *target; |
| 2459 | const UChar *targetLimit; |
| 2460 | int32_t *offsets; |
| 2461 | |
| 2462 | const int32_t (*stateTable)[256]; |
| 2463 | const uint16_t *unicodeCodeUnits; |
| 2464 | |
| 2465 | uint32_t offset; |
| 2466 | uint8_t state; |
| 2467 | int8_t byteIndex; |
| 2468 | uint8_t *bytes; |
| 2469 | |
| 2470 | int32_t sourceIndex, nextSourceIndex; |
| 2471 | |
| 2472 | int32_t entry; |
| 2473 | UChar c; |
| 2474 | uint8_t action; |
| 2475 | |
| 2476 | /* use optimized function if possible */ |
| 2477 | cnv=pArgs->converter; |
| 2478 | |
| 2479 | if(cnv->preToULength>0) { |
| 2480 | /* |
| 2481 | * pass sourceIndex=-1 because we continue from an earlier buffer |
| 2482 | * in the future, this may change with continuous offsets |
| 2483 | */ |
| 2484 | ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode); |
| 2485 | |
| 2486 | if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) { |
| 2487 | return; |
| 2488 | } |
| 2489 | } |
| 2490 | |
| 2491 | if(cnv->sharedData->mbcs.countStates==1) { |
| 2492 | if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
| 2493 | ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode); |
| 2494 | } else { |
| 2495 | ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode); |
| 2496 | } |
| 2497 | return; |
| 2498 | } |
| 2499 | |
| 2500 | /* set up the local pointers */ |
| 2501 | source=(const uint8_t *)pArgs->source; |
| 2502 | sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| 2503 | target=pArgs->target; |
| 2504 | targetLimit=pArgs->targetLimit; |
| 2505 | offsets=pArgs->offsets; |
| 2506 | |
| 2507 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 2508 | stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
| 2509 | } else { |
| 2510 | stateTable=cnv->sharedData->mbcs.stateTable; |
| 2511 | } |
| 2512 | unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; |
| 2513 | |
| 2514 | /* get the converter state from UConverter */ |
| 2515 | offset=cnv->toUnicodeStatus; |
| 2516 | byteIndex=cnv->toULength; |
| 2517 | bytes=cnv->toUBytes; |
| 2518 | |
| 2519 | /* |
| 2520 | * if we are in the SBCS state for a DBCS-only converter, |
| 2521 | * then load the DBCS state from the MBCS data |
| 2522 | * (dbcsOnlyState==0 if it is not a DBCS-only converter) |
| 2523 | */ |
| 2524 | if((state=(uint8_t)(cnv->mode))==0) { |
| 2525 | state=cnv->sharedData->mbcs.dbcsOnlyState; |
| 2526 | } |
| 2527 | |
| 2528 | /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 2529 | sourceIndex=byteIndex==0 ? 0 : -1; |
| 2530 | nextSourceIndex=0; |
| 2531 | |
| 2532 | /* conversion loop */ |
| 2533 | while(source<sourceLimit) { |
| 2534 | /* |
| 2535 | * This following test is to see if available input would overflow the output. |
| 2536 | * It does not catch output of more than one code unit that |
| 2537 | * overflows as a result of a surrogate pair or callback output |
| 2538 | * from the last source byte. |
| 2539 | * Therefore, those situations also test for overflows and will |
| 2540 | * then break the loop, too. |
| 2541 | */ |
| 2542 | if(target>=targetLimit) { |
| 2543 | /* target is full */ |
| 2544 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 2545 | break; |
| 2546 | } |
| 2547 | |
| 2548 | if(byteIndex==0) { |
| 2549 | /* optimized loop for 1/2-byte input and BMP output */ |
| 2550 | if(offsets==NULL) { |
| 2551 | do { |
| 2552 | entry=stateTable[state][*source]; |
| 2553 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 2554 | state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| 2555 | offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| 2556 | |
| 2557 | ++source; |
| 2558 | if( source<sourceLimit && |
| 2559 | MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && |
| 2560 | MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && |
| 2561 | (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe |
| 2562 | ) { |
| 2563 | ++source; |
| 2564 | *target++=c; |
| 2565 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| 2566 | offset=0; |
| 2567 | } else { |
| 2568 | /* set the state and leave the optimized loop */ |
| 2569 | bytes[0]=*(source-1); |
| 2570 | byteIndex=1; |
| 2571 | break; |
| 2572 | } |
| 2573 | } else { |
| 2574 | if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| 2575 | /* output BMP code point */ |
| 2576 | ++source; |
| 2577 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2578 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| 2579 | } else { |
| 2580 | /* leave the optimized loop */ |
| 2581 | break; |
| 2582 | } |
| 2583 | } |
| 2584 | } while(source<sourceLimit && target<targetLimit); |
| 2585 | } else /* offsets!=NULL */ { |
| 2586 | do { |
| 2587 | entry=stateTable[state][*source]; |
| 2588 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 2589 | state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| 2590 | offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| 2591 | |
| 2592 | ++source; |
| 2593 | if( source<sourceLimit && |
| 2594 | MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && |
| 2595 | MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && |
| 2596 | (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe |
| 2597 | ) { |
| 2598 | ++source; |
| 2599 | *target++=c; |
| 2600 | if(offsets!=NULL) { |
| 2601 | *offsets++=sourceIndex; |
| 2602 | sourceIndex=(nextSourceIndex+=2); |
| 2603 | } |
| 2604 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| 2605 | offset=0; |
| 2606 | } else { |
| 2607 | /* set the state and leave the optimized loop */ |
| 2608 | ++nextSourceIndex; |
| 2609 | bytes[0]=*(source-1); |
| 2610 | byteIndex=1; |
| 2611 | break; |
| 2612 | } |
| 2613 | } else { |
| 2614 | if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| 2615 | /* output BMP code point */ |
| 2616 | ++source; |
| 2617 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2618 | if(offsets!=NULL) { |
| 2619 | *offsets++=sourceIndex; |
| 2620 | sourceIndex=++nextSourceIndex; |
| 2621 | } |
| 2622 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| 2623 | } else { |
| 2624 | /* leave the optimized loop */ |
| 2625 | break; |
| 2626 | } |
| 2627 | } |
| 2628 | } while(source<sourceLimit && target<targetLimit); |
| 2629 | } |
| 2630 | |
| 2631 | /* |
| 2632 | * these tests and break statements could be put inside the loop |
| 2633 | * if C had "break outerLoop" like Java |
| 2634 | */ |
| 2635 | if(source>=sourceLimit) { |
| 2636 | break; |
| 2637 | } |
| 2638 | if(target>=targetLimit) { |
| 2639 | /* target is full */ |
| 2640 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 2641 | break; |
| 2642 | } |
| 2643 | |
| 2644 | ++nextSourceIndex; |
| 2645 | bytes[byteIndex++]=*source++; |
| 2646 | } else /* byteIndex>0 */ { |
| 2647 | ++nextSourceIndex; |
| 2648 | entry=stateTable[state][bytes[byteIndex++]=*source++]; |
| 2649 | } |
| 2650 | |
| 2651 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 2652 | state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| 2653 | offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| 2654 | continue; |
| 2655 | } |
| 2656 | |
| 2657 | /* save the previous state for proper extension mapping with SI/SO-stateful converters */ |
| 2658 | cnv->mode=state; |
| 2659 | |
| 2660 | /* set the next state early so that we can reuse the entry variable */ |
| 2661 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| 2662 | |
| 2663 | /* |
| 2664 | * An if-else-if chain provides more reliable performance for |
| 2665 | * the most common cases compared to a switch. |
| 2666 | */ |
| 2667 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 2668 | if(action==MBCS_STATE_VALID_16) { |
| 2669 | offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2670 | c=unicodeCodeUnits[offset]; |
| 2671 | if(c<0xfffe) { |
| 2672 | /* output BMP code point */ |
| 2673 | *target++=c; |
| 2674 | if(offsets!=NULL) { |
| 2675 | *offsets++=sourceIndex; |
| 2676 | } |
| 2677 | byteIndex=0; |
| 2678 | } else if(c==0xfffe) { |
| 2679 | if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) { |
| 2680 | /* output fallback BMP code point */ |
| 2681 | *target++=(UChar)entry; |
| 2682 | if(offsets!=NULL) { |
| 2683 | *offsets++=sourceIndex; |
| 2684 | } |
| 2685 | byteIndex=0; |
| 2686 | } |
| 2687 | } else { |
| 2688 | /* callback(illegal) */ |
| 2689 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2690 | } |
| 2691 | } else if(action==MBCS_STATE_VALID_DIRECT_16) { |
| 2692 | /* output BMP code point */ |
| 2693 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2694 | if(offsets!=NULL) { |
| 2695 | *offsets++=sourceIndex; |
| 2696 | } |
| 2697 | byteIndex=0; |
| 2698 | } else if(action==MBCS_STATE_VALID_16_PAIR) { |
| 2699 | offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2700 | c=unicodeCodeUnits[offset++]; |
| 2701 | if(c<0xd800) { |
| 2702 | /* output BMP code point below 0xd800 */ |
| 2703 | *target++=c; |
| 2704 | if(offsets!=NULL) { |
| 2705 | *offsets++=sourceIndex; |
| 2706 | } |
| 2707 | byteIndex=0; |
| 2708 | } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { |
| 2709 | /* output roundtrip or fallback surrogate pair */ |
| 2710 | *target++=(UChar)(c&0xdbff); |
| 2711 | if(offsets!=NULL) { |
| 2712 | *offsets++=sourceIndex; |
| 2713 | } |
| 2714 | byteIndex=0; |
| 2715 | if(target<targetLimit) { |
| 2716 | *target++=unicodeCodeUnits[offset]; |
| 2717 | if(offsets!=NULL) { |
| 2718 | *offsets++=sourceIndex; |
| 2719 | } |
| 2720 | } else { |
| 2721 | /* target overflow */ |
| 2722 | cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset]; |
| 2723 | cnv->UCharErrorBufferLength=1; |
| 2724 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 2725 | |
| 2726 | offset=0; |
| 2727 | break; |
| 2728 | } |
| 2729 | } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { |
| 2730 | /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ |
| 2731 | *target++=unicodeCodeUnits[offset]; |
| 2732 | if(offsets!=NULL) { |
| 2733 | *offsets++=sourceIndex; |
| 2734 | } |
| 2735 | byteIndex=0; |
| 2736 | } else if(c==0xffff) { |
| 2737 | /* callback(illegal) */ |
| 2738 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2739 | } |
| 2740 | } else if(action==MBCS_STATE_VALID_DIRECT_20 || |
| 2741 | (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) |
| 2742 | ) { |
| 2743 | entry=MBCS_ENTRY_FINAL_VALUE(entry); |
| 2744 | /* output surrogate pair */ |
| 2745 | *target++=(UChar)(0xd800|(UChar)(entry>>10)); |
| 2746 | if(offsets!=NULL) { |
| 2747 | *offsets++=sourceIndex; |
| 2748 | } |
| 2749 | byteIndex=0; |
| 2750 | c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); |
| 2751 | if(target<targetLimit) { |
| 2752 | *target++=c; |
| 2753 | if(offsets!=NULL) { |
| 2754 | *offsets++=sourceIndex; |
| 2755 | } |
| 2756 | } else { |
| 2757 | /* target overflow */ |
| 2758 | cnv->UCharErrorBuffer[0]=c; |
| 2759 | cnv->UCharErrorBufferLength=1; |
| 2760 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 2761 | |
| 2762 | offset=0; |
| 2763 | break; |
| 2764 | } |
| 2765 | } else if(action==MBCS_STATE_CHANGE_ONLY) { |
| 2766 | /* |
| 2767 | * This serves as a state change without any output. |
| 2768 | * It is useful for reading simple stateful encodings, |
| 2769 | * for example using just Shift-In/Shift-Out codes. |
| 2770 | * The 21 unused bits may later be used for more sophisticated |
| 2771 | * state transitions. |
| 2772 | */ |
| 2773 | if(cnv->sharedData->mbcs.dbcsOnlyState==0) { |
| 2774 | byteIndex=0; |
| 2775 | } else { |
| 2776 | /* SI/SO are illegal for DBCS-only conversion */ |
| 2777 | state=(uint8_t)(cnv->mode); /* restore the previous state */ |
| 2778 | |
| 2779 | /* callback(illegal) */ |
| 2780 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2781 | } |
| 2782 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 2783 | if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| 2784 | /* output BMP code point */ |
| 2785 | *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2786 | if(offsets!=NULL) { |
| 2787 | *offsets++=sourceIndex; |
| 2788 | } |
| 2789 | byteIndex=0; |
| 2790 | } |
| 2791 | } else if(action==MBCS_STATE_UNASSIGNED) { |
| 2792 | /* just fall through */ |
| 2793 | } else if(action==MBCS_STATE_ILLEGAL) { |
| 2794 | /* callback(illegal) */ |
| 2795 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2796 | } else { |
| 2797 | /* reserved, must never occur */ |
| 2798 | byteIndex=0; |
| 2799 | } |
| 2800 | |
| 2801 | /* end of action codes: prepare for a new character */ |
| 2802 | offset=0; |
| 2803 | |
| 2804 | if(byteIndex==0) { |
| 2805 | sourceIndex=nextSourceIndex; |
| 2806 | } else if(U_FAILURE(*pErrorCode)) { |
| 2807 | /* callback(illegal) */ |
| 2808 | if(byteIndex>1) { |
| 2809 | /* |
| 2810 | * Ticket 5691: consistent illegal sequences: |
| 2811 | * - We include at least the first byte in the illegal sequence. |
| 2812 | * - If any of the non-initial bytes could be the start of a character, |
| 2813 | * we stop the illegal sequence before the first one of those. |
| 2814 | */ |
| 2815 | UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0); |
| 2816 | int8_t i; |
| 2817 | for(i=1; |
| 2818 | i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]); |
| 2819 | ++i) {} |
| 2820 | if(i<byteIndex) { |
| 2821 | /* Back out some bytes. */ |
| 2822 | int8_t backOutDistance=byteIndex-i; |
| 2823 | int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source); |
| 2824 | byteIndex=i; /* length of reported illegal byte sequence */ |
| 2825 | if(backOutDistance<=bytesFromThisBuffer) { |
| 2826 | source-=backOutDistance; |
| 2827 | } else { |
| 2828 | /* Back out bytes from the previous buffer: Need to replay them. */ |
| 2829 | cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance); |
| 2830 | /* preToULength is negative! */ |
| 2831 | uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength); |
| 2832 | source=(const uint8_t *)pArgs->source; |
| 2833 | } |
| 2834 | } |
| 2835 | } |
| 2836 | break; |
| 2837 | } else /* unassigned sequences indicated with byteIndex>0 */ { |
| 2838 | /* try an extension mapping */ |
| 2839 | pArgs->source=(const char *)source; |
| 2840 | byteIndex=_extToU(cnv, cnv->sharedData, |
| 2841 | byteIndex, &source, sourceLimit, |
| 2842 | &target, targetLimit, |
| 2843 | &offsets, sourceIndex, |
| 2844 | pArgs->flush, |
| 2845 | pErrorCode); |
| 2846 | sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source); |
| 2847 | |
| 2848 | if(U_FAILURE(*pErrorCode)) { |
| 2849 | /* not mappable or buffer overflow */ |
| 2850 | break; |
| 2851 | } |
| 2852 | } |
| 2853 | } |
| 2854 | |
| 2855 | /* set the converter state back into UConverter */ |
| 2856 | cnv->toUnicodeStatus=offset; |
| 2857 | cnv->mode=state; |
| 2858 | cnv->toULength=byteIndex; |
| 2859 | |
| 2860 | /* write back the updated pointers */ |
| 2861 | pArgs->source=(const char *)source; |
| 2862 | pArgs->target=target; |
| 2863 | pArgs->offsets=offsets; |
| 2864 | } |
| 2865 | |
| 2866 | /* |
| 2867 | * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages. |
| 2868 | * We still need a conversion loop in case we find reserved action codes, which are to be ignored. |
| 2869 | */ |
| 2870 | static UChar32 |
| 2871 | ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs, |
| 2872 | UErrorCode *pErrorCode) { |
| 2873 | UConverter *cnv; |
| 2874 | const int32_t (*stateTable)[256]; |
| 2875 | const uint8_t *source, *sourceLimit; |
| 2876 | |
| 2877 | int32_t entry; |
| 2878 | uint8_t action; |
| 2879 | |
| 2880 | /* set up the local pointers */ |
| 2881 | cnv=pArgs->converter; |
| 2882 | source=(const uint8_t *)pArgs->source; |
| 2883 | sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| 2884 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 2885 | stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
| 2886 | } else { |
| 2887 | stateTable=cnv->sharedData->mbcs.stateTable; |
| 2888 | } |
| 2889 | |
| 2890 | /* conversion loop */ |
| 2891 | while(source<sourceLimit) { |
| 2892 | entry=stateTable[0][*source++]; |
| 2893 | /* MBCS_ENTRY_IS_FINAL(entry) */ |
| 2894 | |
| 2895 | /* write back the updated pointer early so that we can return directly */ |
| 2896 | pArgs->source=(const char *)source; |
| 2897 | |
| 2898 | if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| 2899 | /* output BMP code point */ |
| 2900 | return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2901 | } |
| 2902 | |
| 2903 | /* |
| 2904 | * An if-else-if chain provides more reliable performance for |
| 2905 | * the most common cases compared to a switch. |
| 2906 | */ |
| 2907 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 2908 | if( action==MBCS_STATE_VALID_DIRECT_20 || |
| 2909 | (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) |
| 2910 | ) { |
| 2911 | /* output supplementary code point */ |
| 2912 | return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); |
| 2913 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 2914 | if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| 2915 | /* output BMP code point */ |
| 2916 | return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2917 | } |
| 2918 | } else if(action==MBCS_STATE_UNASSIGNED) { |
| 2919 | /* just fall through */ |
| 2920 | } else if(action==MBCS_STATE_ILLEGAL) { |
| 2921 | /* callback(illegal) */ |
| 2922 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2923 | } else { |
| 2924 | /* reserved, must never occur */ |
| 2925 | continue; |
| 2926 | } |
| 2927 | |
| 2928 | if(U_FAILURE(*pErrorCode)) { |
| 2929 | /* callback(illegal) */ |
| 2930 | break; |
| 2931 | } else /* unassigned sequence */ { |
| 2932 | /* defer to the generic implementation */ |
| 2933 | pArgs->source=(const char *)source-1; |
| 2934 | return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
| 2935 | } |
| 2936 | } |
| 2937 | |
| 2938 | /* no output because of empty input or only state changes */ |
| 2939 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 2940 | return 0xffff; |
| 2941 | } |
| 2942 | |
| 2943 | /* |
| 2944 | * Version of _MBCSToUnicodeWithOffsets() optimized for single-character |
| 2945 | * conversion without offset handling. |
| 2946 | * |
| 2947 | * When a character does not have a mapping to Unicode, then we return to the |
| 2948 | * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback |
| 2949 | * handling. |
| 2950 | * We also defer to the generic code in other complicated cases and have them |
| 2951 | * ultimately handled by _MBCSToUnicodeWithOffsets() itself. |
| 2952 | * |
| 2953 | * All normal mappings and errors are handled here. |
| 2954 | */ |
| 2955 | static UChar32 |
| 2956 | ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, |
| 2957 | UErrorCode *pErrorCode) { |
| 2958 | UConverter *cnv; |
| 2959 | const uint8_t *source, *sourceLimit, *lastSource; |
| 2960 | |
| 2961 | const int32_t (*stateTable)[256]; |
| 2962 | const uint16_t *unicodeCodeUnits; |
| 2963 | |
| 2964 | uint32_t offset; |
| 2965 | uint8_t state; |
| 2966 | |
| 2967 | int32_t entry; |
| 2968 | UChar32 c; |
| 2969 | uint8_t action; |
| 2970 | |
| 2971 | /* use optimized function if possible */ |
| 2972 | cnv=pArgs->converter; |
| 2973 | |
| 2974 | if(cnv->preToULength>0) { |
| 2975 | /* use the generic code in ucnv_getNextUChar() to continue with a partial match */ |
| 2976 | return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
| 2977 | } |
| 2978 | |
| 2979 | if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) { |
| 2980 | /* |
| 2981 | * Using the generic ucnv_getNextUChar() code lets us deal correctly |
| 2982 | * with the rare case of a codepage that maps single surrogates |
| 2983 | * without adding the complexity to this already complicated function here. |
| 2984 | */ |
| 2985 | return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
| 2986 | } else if(cnv->sharedData->mbcs.countStates==1) { |
| 2987 | return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode); |
| 2988 | } |
| 2989 | |
| 2990 | /* set up the local pointers */ |
| 2991 | source=lastSource=(const uint8_t *)pArgs->source; |
| 2992 | sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| 2993 | |
| 2994 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 2995 | stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable; |
| 2996 | } else { |
| 2997 | stateTable=cnv->sharedData->mbcs.stateTable; |
| 2998 | } |
| 2999 | unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; |
| 3000 | |
| 3001 | /* get the converter state from UConverter */ |
| 3002 | offset=cnv->toUnicodeStatus; |
| 3003 | |
| 3004 | /* |
| 3005 | * if we are in the SBCS state for a DBCS-only converter, |
| 3006 | * then load the DBCS state from the MBCS data |
| 3007 | * (dbcsOnlyState==0 if it is not a DBCS-only converter) |
| 3008 | */ |
| 3009 | if((state=(uint8_t)(cnv->mode))==0) { |
| 3010 | state=cnv->sharedData->mbcs.dbcsOnlyState; |
| 3011 | } |
| 3012 | |
| 3013 | /* conversion loop */ |
| 3014 | c=U_SENTINEL; |
| 3015 | while(source<sourceLimit) { |
| 3016 | entry=stateTable[state][*source++]; |
| 3017 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 3018 | state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| 3019 | offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| 3020 | |
| 3021 | /* optimization for 1/2-byte input and BMP output */ |
| 3022 | if( source<sourceLimit && |
| 3023 | MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && |
| 3024 | MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && |
| 3025 | (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe |
| 3026 | ) { |
| 3027 | ++source; |
| 3028 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| 3029 | /* output BMP code point */ |
| 3030 | break; |
| 3031 | } |
| 3032 | } else { |
| 3033 | /* save the previous state for proper extension mapping with SI/SO-stateful converters */ |
| 3034 | cnv->mode=state; |
| 3035 | |
| 3036 | /* set the next state early so that we can reuse the entry variable */ |
| 3037 | state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| 3038 | |
| 3039 | /* |
| 3040 | * An if-else-if chain provides more reliable performance for |
| 3041 | * the most common cases compared to a switch. |
| 3042 | */ |
| 3043 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 3044 | if(action==MBCS_STATE_VALID_DIRECT_16) { |
| 3045 | /* output BMP code point */ |
| 3046 | c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3047 | break; |
| 3048 | } else if(action==MBCS_STATE_VALID_16) { |
| 3049 | offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3050 | c=unicodeCodeUnits[offset]; |
| 3051 | if(c<0xfffe) { |
| 3052 | /* output BMP code point */ |
| 3053 | break; |
| 3054 | } else if(c==0xfffe) { |
| 3055 | if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) { |
| 3056 | break; |
| 3057 | } |
| 3058 | } else { |
| 3059 | /* callback(illegal) */ |
| 3060 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3061 | } |
| 3062 | } else if(action==MBCS_STATE_VALID_16_PAIR) { |
| 3063 | offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3064 | c=unicodeCodeUnits[offset++]; |
| 3065 | if(c<0xd800) { |
| 3066 | /* output BMP code point below 0xd800 */ |
| 3067 | break; |
| 3068 | } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { |
| 3069 | /* output roundtrip or fallback supplementary code point */ |
| 3070 | c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00); |
| 3071 | break; |
| 3072 | } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { |
| 3073 | /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ |
| 3074 | c=unicodeCodeUnits[offset]; |
| 3075 | break; |
| 3076 | } else if(c==0xffff) { |
| 3077 | /* callback(illegal) */ |
| 3078 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3079 | } |
| 3080 | } else if(action==MBCS_STATE_VALID_DIRECT_20 || |
| 3081 | (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)) |
| 3082 | ) { |
| 3083 | /* output supplementary code point */ |
| 3084 | c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); |
| 3085 | break; |
| 3086 | } else if(action==MBCS_STATE_CHANGE_ONLY) { |
| 3087 | /* |
| 3088 | * This serves as a state change without any output. |
| 3089 | * It is useful for reading simple stateful encodings, |
| 3090 | * for example using just Shift-In/Shift-Out codes. |
| 3091 | * The 21 unused bits may later be used for more sophisticated |
| 3092 | * state transitions. |
| 3093 | */ |
| 3094 | if(cnv->sharedData->mbcs.dbcsOnlyState!=0) { |
| 3095 | /* SI/SO are illegal for DBCS-only conversion */ |
| 3096 | state=(uint8_t)(cnv->mode); /* restore the previous state */ |
| 3097 | |
| 3098 | /* callback(illegal) */ |
| 3099 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3100 | } |
| 3101 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 3102 | if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| 3103 | /* output BMP code point */ |
| 3104 | c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3105 | break; |
| 3106 | } |
| 3107 | } else if(action==MBCS_STATE_UNASSIGNED) { |
| 3108 | /* just fall through */ |
| 3109 | } else if(action==MBCS_STATE_ILLEGAL) { |
| 3110 | /* callback(illegal) */ |
| 3111 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3112 | } else { |
| 3113 | /* reserved (must never occur), or only state change */ |
| 3114 | offset=0; |
| 3115 | lastSource=source; |
| 3116 | continue; |
| 3117 | } |
| 3118 | |
| 3119 | /* end of action codes: prepare for a new character */ |
| 3120 | offset=0; |
| 3121 | |
| 3122 | if(U_FAILURE(*pErrorCode)) { |
| 3123 | /* callback(illegal) */ |
| 3124 | break; |
| 3125 | } else /* unassigned sequence */ { |
| 3126 | /* defer to the generic implementation */ |
| 3127 | cnv->toUnicodeStatus=0; |
| 3128 | cnv->mode=state; |
| 3129 | pArgs->source=(const char *)lastSource; |
| 3130 | return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
| 3131 | } |
| 3132 | } |
| 3133 | } |
| 3134 | |
| 3135 | if(c<0) { |
| 3136 | if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) { |
| 3137 | /* incomplete character byte sequence */ |
| 3138 | uint8_t *bytes=cnv->toUBytes; |
| 3139 | cnv->toULength=(int8_t)(source-lastSource); |
| 3140 | do { |
| 3141 | *bytes++=*lastSource++; |
| 3142 | } while(lastSource<source); |
| 3143 | *pErrorCode=U_TRUNCATED_CHAR_FOUND; |
| 3144 | } else if(U_FAILURE(*pErrorCode)) { |
| 3145 | /* callback(illegal) */ |
| 3146 | /* |
| 3147 | * Ticket 5691: consistent illegal sequences: |
| 3148 | * - We include at least the first byte in the illegal sequence. |
| 3149 | * - If any of the non-initial bytes could be the start of a character, |
| 3150 | * we stop the illegal sequence before the first one of those. |
| 3151 | */ |
| 3152 | UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0); |
| 3153 | uint8_t *bytes=cnv->toUBytes; |
| 3154 | *bytes++=*lastSource++; /* first byte */ |
| 3155 | if(lastSource==source) { |
| 3156 | cnv->toULength=1; |
| 3157 | } else /* lastSource<source: multi-byte character */ { |
| 3158 | int8_t i; |
| 3159 | for(i=1; |
| 3160 | lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource); |
| 3161 | ++i |
| 3162 | ) { |
| 3163 | *bytes++=*lastSource++; |
| 3164 | } |
| 3165 | cnv->toULength=i; |
| 3166 | source=lastSource; |
| 3167 | } |
| 3168 | } else { |
| 3169 | /* no output because of empty input or only state changes */ |
| 3170 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 3171 | } |
| 3172 | c=0xffff; |
| 3173 | } |
| 3174 | |
| 3175 | /* set the converter state back into UConverter, ready for a new character */ |
| 3176 | cnv->toUnicodeStatus=0; |
| 3177 | cnv->mode=state; |
| 3178 | |
| 3179 | /* write back the updated pointer */ |
| 3180 | pArgs->source=(const char *)source; |
| 3181 | return c; |
| 3182 | } |
| 3183 | |
| 3184 | #if 0 |
| 3185 | /* |
| 3186 | * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus |
| 3187 | * Removal improves code coverage. |
| 3188 | */ |
| 3189 | /** |
| 3190 | * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages. |
| 3191 | * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
| 3192 | * It does not handle conversion extensions (_extToU()). |
| 3193 | */ |
| 3194 | U_CFUNC UChar32 |
| 3195 | ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData, |
| 3196 | uint8_t b, UBool useFallback) { |
| 3197 | int32_t entry; |
| 3198 | uint8_t action; |
| 3199 | |
| 3200 | entry=sharedData->mbcs.stateTable[0][b]; |
| 3201 | /* MBCS_ENTRY_IS_FINAL(entry) */ |
| 3202 | |
| 3203 | if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| 3204 | /* output BMP code point */ |
| 3205 | return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3206 | } |
| 3207 | |
| 3208 | /* |
| 3209 | * An if-else-if chain provides more reliable performance for |
| 3210 | * the most common cases compared to a switch. |
| 3211 | */ |
| 3212 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 3213 | if(action==MBCS_STATE_VALID_DIRECT_20) { |
| 3214 | /* output supplementary code point */ |
| 3215 | return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
| 3216 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 3217 | if(!TO_U_USE_FALLBACK(useFallback)) { |
| 3218 | return 0xfffe; |
| 3219 | } |
| 3220 | /* output BMP code point */ |
| 3221 | return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3222 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { |
| 3223 | if(!TO_U_USE_FALLBACK(useFallback)) { |
| 3224 | return 0xfffe; |
| 3225 | } |
| 3226 | /* output supplementary code point */ |
| 3227 | return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
| 3228 | } else if(action==MBCS_STATE_UNASSIGNED) { |
| 3229 | return 0xfffe; |
| 3230 | } else if(action==MBCS_STATE_ILLEGAL) { |
| 3231 | return 0xffff; |
| 3232 | } else { |
| 3233 | /* reserved, must never occur */ |
| 3234 | return 0xffff; |
| 3235 | } |
| 3236 | } |
| 3237 | #endif |
| 3238 | |
| 3239 | /* |
| 3240 | * This is a simple version of _MBCSGetNextUChar() that is used |
| 3241 | * by other converter implementations. |
| 3242 | * It only returns an "assigned" result if it consumes the entire input. |
| 3243 | * It does not use state from the converter, nor error codes. |
| 3244 | * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
| 3245 | * It handles conversion extensions but not GB 18030. |
| 3246 | * |
| 3247 | * Return value: |
| 3248 | * U+fffe unassigned |
| 3249 | * U+ffff illegal |
| 3250 | * otherwise the Unicode code point |
| 3251 | */ |
| 3252 | U_CFUNC UChar32 |
| 3253 | ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData, |
| 3254 | const char *source, int32_t length, |
| 3255 | UBool useFallback) { |
| 3256 | const int32_t (*stateTable)[256]; |
| 3257 | const uint16_t *unicodeCodeUnits; |
| 3258 | |
| 3259 | uint32_t offset; |
| 3260 | uint8_t state, action; |
| 3261 | |
| 3262 | UChar32 c; |
| 3263 | int32_t i, entry; |
| 3264 | |
| 3265 | if(length<=0) { |
| 3266 | /* no input at all: "illegal" */ |
| 3267 | return 0xffff; |
| 3268 | } |
| 3269 | |
| 3270 | #if 0 |
| 3271 | /* |
| 3272 | * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus |
| 3273 | * TODO In future releases, verify that this function is never called for SBCS |
| 3274 | * conversions, i.e., that sharedData->mbcs.countStates==1 is still true. |
| 3275 | * Removal improves code coverage. |
| 3276 | */ |
| 3277 | /* use optimized function if possible */ |
| 3278 | if(sharedData->mbcs.countStates==1) { |
| 3279 | if(length==1) { |
| 3280 | return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback); |
| 3281 | } else { |
| 3282 | return 0xffff; /* illegal: more than a single byte for an SBCS converter */ |
| 3283 | } |
| 3284 | } |
| 3285 | #endif |
| 3286 | |
| 3287 | /* set up the local pointers */ |
| 3288 | stateTable=sharedData->mbcs.stateTable; |
| 3289 | unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits; |
| 3290 | |
| 3291 | /* converter state */ |
| 3292 | offset=0; |
| 3293 | state=sharedData->mbcs.dbcsOnlyState; |
| 3294 | |
| 3295 | /* conversion loop */ |
| 3296 | for(i=0;;) { |
| 3297 | entry=stateTable[state][(uint8_t)source[i++]]; |
| 3298 | if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 3299 | state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| 3300 | offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| 3301 | |
| 3302 | if(i==length) { |
| 3303 | return 0xffff; /* truncated character */ |
| 3304 | } |
| 3305 | } else { |
| 3306 | /* |
| 3307 | * An if-else-if chain provides more reliable performance for |
| 3308 | * the most common cases compared to a switch. |
| 3309 | */ |
| 3310 | action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 3311 | if(action==MBCS_STATE_VALID_16) { |
| 3312 | offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3313 | c=unicodeCodeUnits[offset]; |
| 3314 | if(c!=0xfffe) { |
| 3315 | /* done */ |
| 3316 | } else if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| 3317 | c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset); |
| 3318 | /* else done with 0xfffe */ |
| 3319 | } |
| 3320 | break; |
| 3321 | } else if(action==MBCS_STATE_VALID_DIRECT_16) { |
| 3322 | /* output BMP code point */ |
| 3323 | c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3324 | break; |
| 3325 | } else if(action==MBCS_STATE_VALID_16_PAIR) { |
| 3326 | offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3327 | c=unicodeCodeUnits[offset++]; |
| 3328 | if(c<0xd800) { |
| 3329 | /* output BMP code point below 0xd800 */ |
| 3330 | } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { |
| 3331 | /* output roundtrip or fallback supplementary code point */ |
| 3332 | c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00)); |
| 3333 | } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { |
| 3334 | /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ |
| 3335 | c=unicodeCodeUnits[offset]; |
| 3336 | } else if(c==0xffff) { |
| 3337 | return 0xffff; |
| 3338 | } else { |
| 3339 | c=0xfffe; |
| 3340 | } |
| 3341 | break; |
| 3342 | } else if(action==MBCS_STATE_VALID_DIRECT_20) { |
| 3343 | /* output supplementary code point */ |
| 3344 | c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
| 3345 | break; |
| 3346 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 3347 | if(!TO_U_USE_FALLBACK(useFallback)) { |
| 3348 | c=0xfffe; |
| 3349 | break; |
| 3350 | } |
| 3351 | /* output BMP code point */ |
| 3352 | c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3353 | break; |
| 3354 | } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { |
| 3355 | if(!TO_U_USE_FALLBACK(useFallback)) { |
| 3356 | c=0xfffe; |
| 3357 | break; |
| 3358 | } |
| 3359 | /* output supplementary code point */ |
| 3360 | c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
| 3361 | break; |
| 3362 | } else if(action==MBCS_STATE_UNASSIGNED) { |
| 3363 | c=0xfffe; |
| 3364 | break; |
| 3365 | } |
| 3366 | |
| 3367 | /* |
| 3368 | * forbid MBCS_STATE_CHANGE_ONLY for this function, |
| 3369 | * and MBCS_STATE_ILLEGAL and reserved action codes |
| 3370 | */ |
| 3371 | return 0xffff; |
| 3372 | } |
| 3373 | } |
| 3374 | |
| 3375 | if(i!=length) { |
| 3376 | /* illegal for this function: not all input consumed */ |
| 3377 | return 0xffff; |
| 3378 | } |
| 3379 | |
| 3380 | if(c==0xfffe) { |
| 3381 | /* try an extension mapping */ |
| 3382 | const int32_t *cx=sharedData->mbcs.extIndexes; |
| 3383 | if(cx!=NULL) { |
| 3384 | return ucnv_extSimpleMatchToU(cx, source, length, useFallback); |
| 3385 | } |
| 3386 | } |
| 3387 | |
| 3388 | return c; |
| 3389 | } |
| 3390 | |
| 3391 | /* MBCS-from-Unicode conversion functions ----------------------------------- */ |
| 3392 | |
| 3393 | /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */ |
| 3394 | static void |
| 3395 | ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, |
| 3396 | UErrorCode *pErrorCode) { |
| 3397 | UConverter *cnv; |
| 3398 | const UChar *source, *sourceLimit; |
| 3399 | uint8_t *target; |
| 3400 | int32_t targetCapacity; |
| 3401 | int32_t *offsets; |
| 3402 | |
| 3403 | const uint16_t *table; |
| 3404 | const uint16_t *mbcsIndex; |
| 3405 | const uint8_t *bytes; |
| 3406 | |
| 3407 | UChar32 c; |
| 3408 | |
| 3409 | int32_t sourceIndex, nextSourceIndex; |
| 3410 | |
| 3411 | uint32_t stage2Entry; |
| 3412 | uint32_t asciiRoundtrips; |
| 3413 | uint32_t value; |
| 3414 | uint8_t unicodeMask; |
| 3415 | |
| 3416 | /* use optimized function if possible */ |
| 3417 | cnv=pArgs->converter; |
| 3418 | unicodeMask=cnv->sharedData->mbcs.unicodeMask; |
| 3419 | |
| 3420 | /* set up the local pointers */ |
| 3421 | source=pArgs->source; |
| 3422 | sourceLimit=pArgs->sourceLimit; |
| 3423 | target=(uint8_t *)pArgs->target; |
| 3424 | targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
| 3425 | offsets=pArgs->offsets; |
| 3426 | |
| 3427 | table=cnv->sharedData->mbcs.fromUnicodeTable; |
| 3428 | mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; |
| 3429 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 3430 | bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
| 3431 | } else { |
| 3432 | bytes=cnv->sharedData->mbcs.fromUnicodeBytes; |
| 3433 | } |
| 3434 | asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
| 3435 | |
| 3436 | /* get the converter state from UConverter */ |
| 3437 | c=cnv->fromUChar32; |
| 3438 | |
| 3439 | /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 3440 | sourceIndex= c==0 ? 0 : -1; |
| 3441 | nextSourceIndex=0; |
| 3442 | |
| 3443 | /* conversion loop */ |
| 3444 | if(c!=0 && targetCapacity>0) { |
| 3445 | goto getTrail; |
| 3446 | } |
| 3447 | |
| 3448 | while(source<sourceLimit) { |
| 3449 | /* |
| 3450 | * This following test is to see if available input would overflow the output. |
| 3451 | * It does not catch output of more than one byte that |
| 3452 | * overflows as a result of a multi-byte character or callback output |
| 3453 | * from the last source character. |
| 3454 | * Therefore, those situations also test for overflows and will |
| 3455 | * then break the loop, too. |
| 3456 | */ |
| 3457 | if(targetCapacity>0) { |
| 3458 | /* |
| 3459 | * Get a correct Unicode code point: |
| 3460 | * a single UChar for a BMP code point or |
| 3461 | * a matched surrogate pair for a "supplementary code point". |
| 3462 | */ |
| 3463 | c=*source++; |
| 3464 | ++nextSourceIndex; |
| 3465 | if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { |
| 3466 | *target++=(uint8_t)c; |
| 3467 | if(offsets!=NULL) { |
| 3468 | *offsets++=sourceIndex; |
| 3469 | sourceIndex=nextSourceIndex; |
| 3470 | } |
| 3471 | --targetCapacity; |
| 3472 | c=0; |
| 3473 | continue; |
| 3474 | } |
| 3475 | /* |
| 3476 | * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX |
| 3477 | * to avoid dealing with surrogates. |
| 3478 | * MBCS_FAST_MAX must be >=0xd7ff. |
| 3479 | */ |
| 3480 | if(c<=0xd7ff) { |
| 3481 | value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c); |
| 3482 | /* There are only roundtrips (!=0) and no-mapping (==0) entries. */ |
| 3483 | if(value==0) { |
| 3484 | goto unassigned; |
| 3485 | } |
| 3486 | /* output the value */ |
| 3487 | } else { |
| 3488 | /* |
| 3489 | * This also tests if the codepage maps single surrogates. |
| 3490 | * If it does, then surrogates are not paired but mapped separately. |
| 3491 | * Note that in this case unmatched surrogates are not detected. |
| 3492 | */ |
| 3493 | if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { |
| 3494 | if(U16_IS_SURROGATE_LEAD(c)) { |
| 3495 | getTrail: |
| 3496 | if(source<sourceLimit) { |
| 3497 | /* test the following code unit */ |
| 3498 | UChar trail=*source; |
| 3499 | if(U16_IS_TRAIL(trail)) { |
| 3500 | ++source; |
| 3501 | ++nextSourceIndex; |
| 3502 | c=U16_GET_SUPPLEMENTARY(c, trail); |
| 3503 | if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
| 3504 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
| 3505 | /* callback(unassigned) */ |
| 3506 | goto unassigned; |
| 3507 | } |
| 3508 | /* convert this supplementary code point */ |
| 3509 | /* exit this condition tree */ |
| 3510 | } else { |
| 3511 | /* this is an unmatched lead code unit (1st surrogate) */ |
| 3512 | /* callback(illegal) */ |
| 3513 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3514 | break; |
| 3515 | } |
| 3516 | } else { |
| 3517 | /* no more input */ |
| 3518 | break; |
| 3519 | } |
| 3520 | } else { |
| 3521 | /* this is an unmatched trail code unit (2nd surrogate) */ |
| 3522 | /* callback(illegal) */ |
| 3523 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3524 | break; |
| 3525 | } |
| 3526 | } |
| 3527 | |
| 3528 | /* convert the Unicode code point in c into codepage bytes */ |
| 3529 | stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
| 3530 | |
| 3531 | /* get the bytes and the length for the output */ |
| 3532 | /* MBCS_OUTPUT_2 */ |
| 3533 | value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
| 3534 | |
| 3535 | /* is this code point assigned, or do we use fallbacks? */ |
| 3536 | if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || |
| 3537 | (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) |
| 3538 | ) { |
| 3539 | /* |
| 3540 | * We allow a 0 byte output if the "assigned" bit is set for this entry. |
| 3541 | * There is no way with this data structure for fallback output |
| 3542 | * to be a zero byte. |
| 3543 | */ |
| 3544 | |
| 3545 | unassigned: |
| 3546 | /* try an extension mapping */ |
| 3547 | pArgs->source=source; |
| 3548 | c=_extFromU(cnv, cnv->sharedData, |
| 3549 | c, &source, sourceLimit, |
| 3550 | &target, target+targetCapacity, |
| 3551 | &offsets, sourceIndex, |
| 3552 | pArgs->flush, |
| 3553 | pErrorCode); |
| 3554 | nextSourceIndex+=(int32_t)(source-pArgs->source); |
| 3555 | |
| 3556 | if(U_FAILURE(*pErrorCode)) { |
| 3557 | /* not mappable or buffer overflow */ |
| 3558 | break; |
| 3559 | } else { |
| 3560 | /* a mapping was written to the target, continue */ |
| 3561 | |
| 3562 | /* recalculate the targetCapacity after an extension mapping */ |
| 3563 | targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); |
| 3564 | |
| 3565 | /* normal end of conversion: prepare for a new character */ |
| 3566 | sourceIndex=nextSourceIndex; |
| 3567 | continue; |
| 3568 | } |
| 3569 | } |
| 3570 | } |
| 3571 | |
| 3572 | /* write the output character bytes from value and length */ |
| 3573 | /* from the first if in the loop we know that targetCapacity>0 */ |
| 3574 | if(value<=0xff) { |
| 3575 | /* this is easy because we know that there is enough space */ |
| 3576 | *target++=(uint8_t)value; |
| 3577 | if(offsets!=NULL) { |
| 3578 | *offsets++=sourceIndex; |
| 3579 | } |
| 3580 | --targetCapacity; |
| 3581 | } else /* length==2 */ { |
| 3582 | *target++=(uint8_t)(value>>8); |
| 3583 | if(2<=targetCapacity) { |
| 3584 | *target++=(uint8_t)value; |
| 3585 | if(offsets!=NULL) { |
| 3586 | *offsets++=sourceIndex; |
| 3587 | *offsets++=sourceIndex; |
| 3588 | } |
| 3589 | targetCapacity-=2; |
| 3590 | } else { |
| 3591 | if(offsets!=NULL) { |
| 3592 | *offsets++=sourceIndex; |
| 3593 | } |
| 3594 | cnv->charErrorBuffer[0]=(char)value; |
| 3595 | cnv->charErrorBufferLength=1; |
| 3596 | |
| 3597 | /* target overflow */ |
| 3598 | targetCapacity=0; |
| 3599 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 3600 | c=0; |
| 3601 | break; |
| 3602 | } |
| 3603 | } |
| 3604 | |
| 3605 | /* normal end of conversion: prepare for a new character */ |
| 3606 | c=0; |
| 3607 | sourceIndex=nextSourceIndex; |
| 3608 | continue; |
| 3609 | } else { |
| 3610 | /* target is full */ |
| 3611 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 3612 | break; |
| 3613 | } |
| 3614 | } |
| 3615 | |
| 3616 | /* set the converter state back into UConverter */ |
| 3617 | cnv->fromUChar32=c; |
| 3618 | |
| 3619 | /* write back the updated pointers */ |
| 3620 | pArgs->source=source; |
| 3621 | pArgs->target=(char *)target; |
| 3622 | pArgs->offsets=offsets; |
| 3623 | } |
| 3624 | |
| 3625 | /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */ |
| 3626 | static void |
| 3627 | ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, |
| 3628 | UErrorCode *pErrorCode) { |
| 3629 | UConverter *cnv; |
| 3630 | const UChar *source, *sourceLimit; |
| 3631 | uint8_t *target; |
| 3632 | int32_t targetCapacity; |
| 3633 | int32_t *offsets; |
| 3634 | |
| 3635 | const uint16_t *table; |
| 3636 | const uint16_t *results; |
| 3637 | |
| 3638 | UChar32 c; |
| 3639 | |
| 3640 | int32_t sourceIndex, nextSourceIndex; |
| 3641 | |
| 3642 | uint16_t value, minValue; |
| 3643 | UBool hasSupplementary; |
| 3644 | |
| 3645 | /* set up the local pointers */ |
| 3646 | cnv=pArgs->converter; |
| 3647 | source=pArgs->source; |
| 3648 | sourceLimit=pArgs->sourceLimit; |
| 3649 | target=(uint8_t *)pArgs->target; |
| 3650 | targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
| 3651 | offsets=pArgs->offsets; |
| 3652 | |
| 3653 | table=cnv->sharedData->mbcs.fromUnicodeTable; |
| 3654 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 3655 | results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
| 3656 | } else { |
| 3657 | results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
| 3658 | } |
| 3659 | |
| 3660 | if(cnv->useFallback) { |
| 3661 | /* use all roundtrip and fallback results */ |
| 3662 | minValue=0x800; |
| 3663 | } else { |
| 3664 | /* use only roundtrips and fallbacks from private-use characters */ |
| 3665 | minValue=0xc00; |
| 3666 | } |
| 3667 | hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); |
| 3668 | |
| 3669 | /* get the converter state from UConverter */ |
| 3670 | c=cnv->fromUChar32; |
| 3671 | |
| 3672 | /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 3673 | sourceIndex= c==0 ? 0 : -1; |
| 3674 | nextSourceIndex=0; |
| 3675 | |
| 3676 | /* conversion loop */ |
| 3677 | if(c!=0 && targetCapacity>0) { |
| 3678 | goto getTrail; |
| 3679 | } |
| 3680 | |
| 3681 | while(source<sourceLimit) { |
| 3682 | /* |
| 3683 | * This following test is to see if available input would overflow the output. |
| 3684 | * It does not catch output of more than one byte that |
| 3685 | * overflows as a result of a multi-byte character or callback output |
| 3686 | * from the last source character. |
| 3687 | * Therefore, those situations also test for overflows and will |
| 3688 | * then break the loop, too. |
| 3689 | */ |
| 3690 | if(targetCapacity>0) { |
| 3691 | /* |
| 3692 | * Get a correct Unicode code point: |
| 3693 | * a single UChar for a BMP code point or |
| 3694 | * a matched surrogate pair for a "supplementary code point". |
| 3695 | */ |
| 3696 | c=*source++; |
| 3697 | ++nextSourceIndex; |
| 3698 | if(U16_IS_SURROGATE(c)) { |
| 3699 | if(U16_IS_SURROGATE_LEAD(c)) { |
| 3700 | getTrail: |
| 3701 | if(source<sourceLimit) { |
| 3702 | /* test the following code unit */ |
| 3703 | UChar trail=*source; |
| 3704 | if(U16_IS_TRAIL(trail)) { |
| 3705 | ++source; |
| 3706 | ++nextSourceIndex; |
| 3707 | c=U16_GET_SUPPLEMENTARY(c, trail); |
| 3708 | if(!hasSupplementary) { |
| 3709 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
| 3710 | /* callback(unassigned) */ |
| 3711 | goto unassigned; |
| 3712 | } |
| 3713 | /* convert this supplementary code point */ |
| 3714 | /* exit this condition tree */ |
| 3715 | } else { |
| 3716 | /* this is an unmatched lead code unit (1st surrogate) */ |
| 3717 | /* callback(illegal) */ |
| 3718 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3719 | break; |
| 3720 | } |
| 3721 | } else { |
| 3722 | /* no more input */ |
| 3723 | break; |
| 3724 | } |
| 3725 | } else { |
| 3726 | /* this is an unmatched trail code unit (2nd surrogate) */ |
| 3727 | /* callback(illegal) */ |
| 3728 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3729 | break; |
| 3730 | } |
| 3731 | } |
| 3732 | |
| 3733 | /* convert the Unicode code point in c into codepage bytes */ |
| 3734 | value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 3735 | |
| 3736 | /* is this code point assigned, or do we use fallbacks? */ |
| 3737 | if(value>=minValue) { |
| 3738 | /* assigned, write the output character bytes from value and length */ |
| 3739 | /* length==1 */ |
| 3740 | /* this is easy because we know that there is enough space */ |
| 3741 | *target++=(uint8_t)value; |
| 3742 | if(offsets!=NULL) { |
| 3743 | *offsets++=sourceIndex; |
| 3744 | } |
| 3745 | --targetCapacity; |
| 3746 | |
| 3747 | /* normal end of conversion: prepare for a new character */ |
| 3748 | c=0; |
| 3749 | sourceIndex=nextSourceIndex; |
| 3750 | } else { /* unassigned */ |
| 3751 | unassigned: |
| 3752 | /* try an extension mapping */ |
| 3753 | pArgs->source=source; |
| 3754 | c=_extFromU(cnv, cnv->sharedData, |
| 3755 | c, &source, sourceLimit, |
| 3756 | &target, target+targetCapacity, |
| 3757 | &offsets, sourceIndex, |
| 3758 | pArgs->flush, |
| 3759 | pErrorCode); |
| 3760 | nextSourceIndex+=(int32_t)(source-pArgs->source); |
| 3761 | |
| 3762 | if(U_FAILURE(*pErrorCode)) { |
| 3763 | /* not mappable or buffer overflow */ |
| 3764 | break; |
| 3765 | } else { |
| 3766 | /* a mapping was written to the target, continue */ |
| 3767 | |
| 3768 | /* recalculate the targetCapacity after an extension mapping */ |
| 3769 | targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); |
| 3770 | |
| 3771 | /* normal end of conversion: prepare for a new character */ |
| 3772 | sourceIndex=nextSourceIndex; |
| 3773 | } |
| 3774 | } |
| 3775 | } else { |
| 3776 | /* target is full */ |
| 3777 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 3778 | break; |
| 3779 | } |
| 3780 | } |
| 3781 | |
| 3782 | /* set the converter state back into UConverter */ |
| 3783 | cnv->fromUChar32=c; |
| 3784 | |
| 3785 | /* write back the updated pointers */ |
| 3786 | pArgs->source=source; |
| 3787 | pArgs->target=(char *)target; |
| 3788 | pArgs->offsets=offsets; |
| 3789 | } |
| 3790 | |
| 3791 | /* |
| 3792 | * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages |
| 3793 | * that map only to and from the BMP. |
| 3794 | * In addition to single-byte/state optimizations, the offset calculations |
| 3795 | * become much easier. |
| 3796 | * It would be possible to use the sbcsIndex for UTF-8-friendly tables, |
| 3797 | * but measurements have shown that this diminishes performance |
| 3798 | * in more cases than it improves it. |
| 3799 | * See SVN revision 21013 (2007-feb-06) for the last version with #if switches |
| 3800 | * for various MBCS and SBCS optimizations. |
| 3801 | */ |
| 3802 | static void |
| 3803 | ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs, |
| 3804 | UErrorCode *pErrorCode) { |
| 3805 | UConverter *cnv; |
| 3806 | const UChar *source, *sourceLimit, *lastSource; |
| 3807 | uint8_t *target; |
| 3808 | int32_t targetCapacity, length; |
| 3809 | int32_t *offsets; |
| 3810 | |
| 3811 | const uint16_t *table; |
| 3812 | const uint16_t *results; |
| 3813 | |
| 3814 | UChar32 c; |
| 3815 | |
| 3816 | int32_t sourceIndex; |
| 3817 | |
| 3818 | uint32_t asciiRoundtrips; |
| 3819 | uint16_t value, minValue; |
| 3820 | |
| 3821 | /* set up the local pointers */ |
| 3822 | cnv=pArgs->converter; |
| 3823 | source=pArgs->source; |
| 3824 | sourceLimit=pArgs->sourceLimit; |
| 3825 | target=(uint8_t *)pArgs->target; |
| 3826 | targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
| 3827 | offsets=pArgs->offsets; |
| 3828 | |
| 3829 | table=cnv->sharedData->mbcs.fromUnicodeTable; |
| 3830 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 3831 | results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
| 3832 | } else { |
| 3833 | results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
| 3834 | } |
| 3835 | asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
| 3836 | |
| 3837 | if(cnv->useFallback) { |
| 3838 | /* use all roundtrip and fallback results */ |
| 3839 | minValue=0x800; |
| 3840 | } else { |
| 3841 | /* use only roundtrips and fallbacks from private-use characters */ |
| 3842 | minValue=0xc00; |
| 3843 | } |
| 3844 | |
| 3845 | /* get the converter state from UConverter */ |
| 3846 | c=cnv->fromUChar32; |
| 3847 | |
| 3848 | /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 3849 | sourceIndex= c==0 ? 0 : -1; |
| 3850 | lastSource=source; |
| 3851 | |
| 3852 | /* |
| 3853 | * since the conversion here is 1:1 UChar:uint8_t, we need only one counter |
| 3854 | * for the minimum of the sourceLength and targetCapacity |
| 3855 | */ |
| 3856 | length=(int32_t)(sourceLimit-source); |
| 3857 | if(length<targetCapacity) { |
| 3858 | targetCapacity=length; |
| 3859 | } |
| 3860 | |
| 3861 | /* conversion loop */ |
| 3862 | if(c!=0 && targetCapacity>0) { |
| 3863 | goto getTrail; |
| 3864 | } |
| 3865 | |
| 3866 | #if MBCS_UNROLL_SINGLE_FROM_BMP |
| 3867 | /* unrolling makes it slower on Pentium III/Windows 2000?! */ |
| 3868 | /* unroll the loop with the most common case */ |
| 3869 | unrolled: |
| 3870 | if(targetCapacity>=4) { |
| 3871 | int32_t count, loops; |
| 3872 | uint16_t andedValues; |
| 3873 | |
| 3874 | loops=count=targetCapacity>>2; |
| 3875 | do { |
| 3876 | c=*source++; |
| 3877 | andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 3878 | *target++=(uint8_t)value; |
| 3879 | c=*source++; |
| 3880 | andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 3881 | *target++=(uint8_t)value; |
| 3882 | c=*source++; |
| 3883 | andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 3884 | *target++=(uint8_t)value; |
| 3885 | c=*source++; |
| 3886 | andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 3887 | *target++=(uint8_t)value; |
| 3888 | |
| 3889 | /* were all 4 entries really valid? */ |
| 3890 | if(andedValues<minValue) { |
| 3891 | /* no, return to the first of these 4 */ |
| 3892 | source-=4; |
| 3893 | target-=4; |
| 3894 | break; |
| 3895 | } |
| 3896 | } while(--count>0); |
| 3897 | count=loops-count; |
| 3898 | targetCapacity-=4*count; |
| 3899 | |
| 3900 | if(offsets!=NULL) { |
| 3901 | lastSource+=4*count; |
| 3902 | while(count>0) { |
| 3903 | *offsets++=sourceIndex++; |
| 3904 | *offsets++=sourceIndex++; |
| 3905 | *offsets++=sourceIndex++; |
| 3906 | *offsets++=sourceIndex++; |
| 3907 | --count; |
| 3908 | } |
| 3909 | } |
| 3910 | |
| 3911 | c=0; |
| 3912 | } |
| 3913 | #endif |
| 3914 | |
| 3915 | while(targetCapacity>0) { |
| 3916 | /* |
| 3917 | * Get a correct Unicode code point: |
| 3918 | * a single UChar for a BMP code point or |
| 3919 | * a matched surrogate pair for a "supplementary code point". |
| 3920 | */ |
| 3921 | c=*source++; |
| 3922 | /* |
| 3923 | * Do not immediately check for single surrogates: |
| 3924 | * Assume that they are unassigned and check for them in that case. |
| 3925 | * This speeds up the conversion of assigned characters. |
| 3926 | */ |
| 3927 | /* convert the Unicode code point in c into codepage bytes */ |
| 3928 | if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { |
| 3929 | *target++=(uint8_t)c; |
| 3930 | --targetCapacity; |
| 3931 | c=0; |
| 3932 | continue; |
| 3933 | } |
| 3934 | value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 3935 | /* is this code point assigned, or do we use fallbacks? */ |
| 3936 | if(value>=minValue) { |
| 3937 | /* assigned, write the output character bytes from value and length */ |
| 3938 | /* length==1 */ |
| 3939 | /* this is easy because we know that there is enough space */ |
| 3940 | *target++=(uint8_t)value; |
| 3941 | --targetCapacity; |
| 3942 | |
| 3943 | /* normal end of conversion: prepare for a new character */ |
| 3944 | c=0; |
| 3945 | continue; |
| 3946 | } else if(!U16_IS_SURROGATE(c)) { |
| 3947 | /* normal, unassigned BMP character */ |
| 3948 | } else if(U16_IS_SURROGATE_LEAD(c)) { |
| 3949 | getTrail: |
| 3950 | if(source<sourceLimit) { |
| 3951 | /* test the following code unit */ |
| 3952 | UChar trail=*source; |
| 3953 | if(U16_IS_TRAIL(trail)) { |
| 3954 | ++source; |
| 3955 | c=U16_GET_SUPPLEMENTARY(c, trail); |
| 3956 | /* this codepage does not map supplementary code points */ |
| 3957 | /* callback(unassigned) */ |
| 3958 | } else { |
| 3959 | /* this is an unmatched lead code unit (1st surrogate) */ |
| 3960 | /* callback(illegal) */ |
| 3961 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3962 | break; |
| 3963 | } |
| 3964 | } else { |
| 3965 | /* no more input */ |
| 3966 | if (pArgs->flush) { |
| 3967 | *pErrorCode=U_TRUNCATED_CHAR_FOUND; |
| 3968 | } |
| 3969 | break; |
| 3970 | } |
| 3971 | } else { |
| 3972 | /* this is an unmatched trail code unit (2nd surrogate) */ |
| 3973 | /* callback(illegal) */ |
| 3974 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3975 | break; |
| 3976 | } |
| 3977 | |
| 3978 | /* c does not have a mapping */ |
| 3979 | |
| 3980 | /* get the number of code units for c to correctly advance sourceIndex */ |
| 3981 | length=U16_LENGTH(c); |
| 3982 | |
| 3983 | /* set offsets since the start or the last extension */ |
| 3984 | if(offsets!=NULL) { |
| 3985 | int32_t count=(int32_t)(source-lastSource); |
| 3986 | |
| 3987 | /* do not set the offset for this character */ |
| 3988 | count-=length; |
| 3989 | |
| 3990 | while(count>0) { |
| 3991 | *offsets++=sourceIndex++; |
| 3992 | --count; |
| 3993 | } |
| 3994 | /* offsets and sourceIndex are now set for the current character */ |
| 3995 | } |
| 3996 | |
| 3997 | /* try an extension mapping */ |
| 3998 | lastSource=source; |
| 3999 | c=_extFromU(cnv, cnv->sharedData, |
| 4000 | c, &source, sourceLimit, |
| 4001 | &target, (const uint8_t *)(pArgs->targetLimit), |
| 4002 | &offsets, sourceIndex, |
| 4003 | pArgs->flush, |
| 4004 | pErrorCode); |
| 4005 | sourceIndex+=length+(int32_t)(source-lastSource); |
| 4006 | lastSource=source; |
| 4007 | |
| 4008 | if(U_FAILURE(*pErrorCode)) { |
| 4009 | /* not mappable or buffer overflow */ |
| 4010 | break; |
| 4011 | } else { |
| 4012 | /* a mapping was written to the target, continue */ |
| 4013 | |
| 4014 | /* recalculate the targetCapacity after an extension mapping */ |
| 4015 | targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); |
| 4016 | length=(int32_t)(sourceLimit-source); |
| 4017 | if(length<targetCapacity) { |
| 4018 | targetCapacity=length; |
| 4019 | } |
| 4020 | } |
| 4021 | |
| 4022 | #if MBCS_UNROLL_SINGLE_FROM_BMP |
| 4023 | /* unrolling makes it slower on Pentium III/Windows 2000?! */ |
| 4024 | goto unrolled; |
| 4025 | #endif |
| 4026 | } |
| 4027 | |
| 4028 | if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) { |
| 4029 | /* target is full */ |
| 4030 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 4031 | } |
| 4032 | |
| 4033 | /* set offsets since the start or the last callback */ |
| 4034 | if(offsets!=NULL) { |
| 4035 | size_t count=source-lastSource; |
| 4036 | if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) { |
| 4037 | /* |
| 4038 | Caller gave us a partial supplementary character, |
| 4039 | which this function couldn't convert in any case. |
| 4040 | The callback will handle the offset. |
| 4041 | */ |
| 4042 | count--; |
| 4043 | } |
| 4044 | while(count>0) { |
| 4045 | *offsets++=sourceIndex++; |
| 4046 | --count; |
| 4047 | } |
| 4048 | } |
| 4049 | |
| 4050 | /* set the converter state back into UConverter */ |
| 4051 | cnv->fromUChar32=c; |
| 4052 | |
| 4053 | /* write back the updated pointers */ |
| 4054 | pArgs->source=source; |
| 4055 | pArgs->target=(char *)target; |
| 4056 | pArgs->offsets=offsets; |
| 4057 | } |
| 4058 | |
| 4059 | U_CFUNC void |
| 4060 | ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, |
| 4061 | UErrorCode *pErrorCode) { |
| 4062 | UConverter *cnv; |
| 4063 | const UChar *source, *sourceLimit; |
| 4064 | uint8_t *target; |
| 4065 | int32_t targetCapacity; |
| 4066 | int32_t *offsets; |
| 4067 | |
| 4068 | const uint16_t *table; |
| 4069 | const uint16_t *mbcsIndex; |
| 4070 | const uint8_t *p, *bytes; |
| 4071 | uint8_t outputType; |
| 4072 | |
| 4073 | UChar32 c; |
| 4074 | |
| 4075 | int32_t prevSourceIndex, sourceIndex, nextSourceIndex; |
| 4076 | |
| 4077 | uint32_t stage2Entry; |
| 4078 | uint32_t asciiRoundtrips; |
| 4079 | uint32_t value; |
| 4080 | /* Shift-In and Shift-Out byte sequences differ by encoding scheme. */ |
| 4081 | uint8_t siBytes[2] = {0, 0}; |
| 4082 | uint8_t soBytes[2] = {0, 0}; |
| 4083 | uint8_t siLength, soLength; |
| 4084 | int32_t length = 0, prevLength; |
| 4085 | uint8_t unicodeMask; |
| 4086 | |
| 4087 | cnv=pArgs->converter; |
| 4088 | |
| 4089 | if(cnv->preFromUFirstCP>=0) { |
| 4090 | /* |
| 4091 | * pass sourceIndex=-1 because we continue from an earlier buffer |
| 4092 | * in the future, this may change with continuous offsets |
| 4093 | */ |
| 4094 | ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode); |
| 4095 | |
| 4096 | if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) { |
| 4097 | return; |
| 4098 | } |
| 4099 | } |
| 4100 | |
| 4101 | /* use optimized function if possible */ |
| 4102 | outputType=cnv->sharedData->mbcs.outputType; |
| 4103 | unicodeMask=cnv->sharedData->mbcs.unicodeMask; |
| 4104 | if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) { |
| 4105 | if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
| 4106 | ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode); |
| 4107 | } else { |
| 4108 | ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode); |
| 4109 | } |
| 4110 | return; |
| 4111 | } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) { |
| 4112 | ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode); |
| 4113 | return; |
| 4114 | } |
| 4115 | |
| 4116 | /* set up the local pointers */ |
| 4117 | source=pArgs->source; |
| 4118 | sourceLimit=pArgs->sourceLimit; |
| 4119 | target=(uint8_t *)pArgs->target; |
| 4120 | targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
| 4121 | offsets=pArgs->offsets; |
| 4122 | |
| 4123 | table=cnv->sharedData->mbcs.fromUnicodeTable; |
| 4124 | if(cnv->sharedData->mbcs.utf8Friendly) { |
| 4125 | mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; |
| 4126 | } else { |
| 4127 | mbcsIndex=NULL; |
| 4128 | } |
| 4129 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 4130 | bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
| 4131 | } else { |
| 4132 | bytes=cnv->sharedData->mbcs.fromUnicodeBytes; |
| 4133 | } |
| 4134 | asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
| 4135 | |
| 4136 | /* get the converter state from UConverter */ |
| 4137 | c=cnv->fromUChar32; |
| 4138 | |
| 4139 | if(outputType==MBCS_OUTPUT_2_SISO) { |
| 4140 | prevLength=cnv->fromUnicodeStatus; |
| 4141 | if(prevLength==0) { |
| 4142 | /* set the real value */ |
| 4143 | prevLength=1; |
| 4144 | } |
| 4145 | } else { |
| 4146 | /* prevent fromUnicodeStatus from being set to something non-0 */ |
| 4147 | prevLength=0; |
| 4148 | } |
| 4149 | |
| 4150 | /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 4151 | prevSourceIndex=-1; |
| 4152 | sourceIndex= c==0 ? 0 : -1; |
| 4153 | nextSourceIndex=0; |
| 4154 | |
| 4155 | /* Get the SI/SO character for the converter */ |
| 4156 | siLength = getSISOBytes(SI, cnv->options, siBytes); |
| 4157 | soLength = getSISOBytes(SO, cnv->options, soBytes); |
| 4158 | |
| 4159 | /* conversion loop */ |
| 4160 | /* |
| 4161 | * This is another piece of ugly code: |
| 4162 | * A goto into the loop if the converter state contains a first surrogate |
| 4163 | * from the previous function call. |
| 4164 | * It saves me to check in each loop iteration a check of if(c==0) |
| 4165 | * and duplicating the trail-surrogate-handling code in the else |
| 4166 | * branch of that check. |
| 4167 | * I could not find any other way to get around this other than |
| 4168 | * using a function call for the conversion and callback, which would |
| 4169 | * be even more inefficient. |
| 4170 | * |
| 4171 | * Markus Scherer 2000-jul-19 |
| 4172 | */ |
| 4173 | if(c!=0 && targetCapacity>0) { |
| 4174 | goto getTrail; |
| 4175 | } |
| 4176 | |
| 4177 | while(source<sourceLimit) { |
| 4178 | /* |
| 4179 | * This following test is to see if available input would overflow the output. |
| 4180 | * It does not catch output of more than one byte that |
| 4181 | * overflows as a result of a multi-byte character or callback output |
| 4182 | * from the last source character. |
| 4183 | * Therefore, those situations also test for overflows and will |
| 4184 | * then break the loop, too. |
| 4185 | */ |
| 4186 | if(targetCapacity>0) { |
| 4187 | /* |
| 4188 | * Get a correct Unicode code point: |
| 4189 | * a single UChar for a BMP code point or |
| 4190 | * a matched surrogate pair for a "supplementary code point". |
| 4191 | */ |
| 4192 | c=*source++; |
| 4193 | ++nextSourceIndex; |
| 4194 | if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { |
| 4195 | *target++=(uint8_t)c; |
| 4196 | if(offsets!=NULL) { |
| 4197 | *offsets++=sourceIndex; |
| 4198 | prevSourceIndex=sourceIndex; |
| 4199 | sourceIndex=nextSourceIndex; |
| 4200 | } |
| 4201 | --targetCapacity; |
| 4202 | c=0; |
| 4203 | continue; |
| 4204 | } |
| 4205 | /* |
| 4206 | * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX |
| 4207 | * to avoid dealing with surrogates. |
| 4208 | * MBCS_FAST_MAX must be >=0xd7ff. |
| 4209 | */ |
| 4210 | if(c<=0xd7ff && mbcsIndex!=NULL) { |
| 4211 | value=mbcsIndex[c>>6]; |
| 4212 | |
| 4213 | /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */ |
| 4214 | /* There are only roundtrips (!=0) and no-mapping (==0) entries. */ |
| 4215 | switch(outputType) { |
| 4216 | case MBCS_OUTPUT_2: |
| 4217 | value=((const uint16_t *)bytes)[value +(c&0x3f)]; |
| 4218 | if(value<=0xff) { |
| 4219 | if(value==0) { |
| 4220 | goto unassigned; |
| 4221 | } else { |
| 4222 | length=1; |
| 4223 | } |
| 4224 | } else { |
| 4225 | length=2; |
| 4226 | } |
| 4227 | break; |
| 4228 | case MBCS_OUTPUT_2_SISO: |
| 4229 | /* 1/2-byte stateful with Shift-In/Shift-Out */ |
| 4230 | /* |
| 4231 | * Save the old state in the converter object |
| 4232 | * right here, then change the local prevLength state variable if necessary. |
| 4233 | * Then, if this character turns out to be unassigned or a fallback that |
| 4234 | * is not taken, the callback code must not save the new state in the converter |
| 4235 | * because the new state is for a character that is not output. |
| 4236 | * However, the callback must still restore the state from the converter |
| 4237 | * in case the callback function changed it for its output. |
| 4238 | */ |
| 4239 | cnv->fromUnicodeStatus=prevLength; /* save the old state */ |
| 4240 | value=((const uint16_t *)bytes)[value +(c&0x3f)]; |
| 4241 | if(value<=0xff) { |
| 4242 | if(value==0) { |
| 4243 | goto unassigned; |
| 4244 | } else if(prevLength<=1) { |
| 4245 | length=1; |
| 4246 | } else { |
| 4247 | /* change from double-byte mode to single-byte */ |
| 4248 | if (siLength == 1) { |
| 4249 | value|=(uint32_t)siBytes[0]<<8; |
| 4250 | length = 2; |
| 4251 | } else if (siLength == 2) { |
| 4252 | value|=(uint32_t)siBytes[1]<<8; |
| 4253 | value|=(uint32_t)siBytes[0]<<16; |
| 4254 | length = 3; |
| 4255 | } |
| 4256 | prevLength=1; |
| 4257 | } |
| 4258 | } else { |
| 4259 | if(prevLength==2) { |
| 4260 | length=2; |
| 4261 | } else { |
| 4262 | /* change from single-byte mode to double-byte */ |
| 4263 | if (soLength == 1) { |
| 4264 | value|=(uint32_t)soBytes[0]<<16; |
| 4265 | length = 3; |
| 4266 | } else if (soLength == 2) { |
| 4267 | value|=(uint32_t)soBytes[1]<<16; |
| 4268 | value|=(uint32_t)soBytes[0]<<24; |
| 4269 | length = 4; |
| 4270 | } |
| 4271 | prevLength=2; |
| 4272 | } |
| 4273 | } |
| 4274 | break; |
| 4275 | case MBCS_OUTPUT_DBCS_ONLY: |
| 4276 | /* table with single-byte results, but only DBCS mappings used */ |
| 4277 | value=((const uint16_t *)bytes)[value +(c&0x3f)]; |
| 4278 | if(value<=0xff) { |
| 4279 | /* no mapping or SBCS result, not taken for DBCS-only */ |
| 4280 | goto unassigned; |
| 4281 | } else { |
| 4282 | length=2; |
| 4283 | } |
| 4284 | break; |
| 4285 | case MBCS_OUTPUT_3: |
| 4286 | p=bytes+(value+(c&0x3f))*3; |
| 4287 | value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
| 4288 | if(value<=0xff) { |
| 4289 | if(value==0) { |
| 4290 | goto unassigned; |
| 4291 | } else { |
| 4292 | length=1; |
| 4293 | } |
| 4294 | } else if(value<=0xffff) { |
| 4295 | length=2; |
| 4296 | } else { |
| 4297 | length=3; |
| 4298 | } |
| 4299 | break; |
| 4300 | case MBCS_OUTPUT_4: |
| 4301 | value=((const uint32_t *)bytes)[value +(c&0x3f)]; |
| 4302 | if(value<=0xff) { |
| 4303 | if(value==0) { |
| 4304 | goto unassigned; |
| 4305 | } else { |
| 4306 | length=1; |
| 4307 | } |
| 4308 | } else if(value<=0xffff) { |
| 4309 | length=2; |
| 4310 | } else if(value<=0xffffff) { |
| 4311 | length=3; |
| 4312 | } else { |
| 4313 | length=4; |
| 4314 | } |
| 4315 | break; |
| 4316 | case MBCS_OUTPUT_3_EUC: |
| 4317 | value=((const uint16_t *)bytes)[value +(c&0x3f)]; |
| 4318 | /* EUC 16-bit fixed-length representation */ |
| 4319 | if(value<=0xff) { |
| 4320 | if(value==0) { |
| 4321 | goto unassigned; |
| 4322 | } else { |
| 4323 | length=1; |
| 4324 | } |
| 4325 | } else if((value&0x8000)==0) { |
| 4326 | value|=0x8e8000; |
| 4327 | length=3; |
| 4328 | } else if((value&0x80)==0) { |
| 4329 | value|=0x8f0080; |
| 4330 | length=3; |
| 4331 | } else { |
| 4332 | length=2; |
| 4333 | } |
| 4334 | break; |
| 4335 | case MBCS_OUTPUT_4_EUC: |
| 4336 | p=bytes+(value+(c&0x3f))*3; |
| 4337 | value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
| 4338 | /* EUC 16-bit fixed-length representation applied to the first two bytes */ |
| 4339 | if(value<=0xff) { |
| 4340 | if(value==0) { |
| 4341 | goto unassigned; |
| 4342 | } else { |
| 4343 | length=1; |
| 4344 | } |
| 4345 | } else if(value<=0xffff) { |
| 4346 | length=2; |
| 4347 | } else if((value&0x800000)==0) { |
| 4348 | value|=0x8e800000; |
| 4349 | length=4; |
| 4350 | } else if((value&0x8000)==0) { |
| 4351 | value|=0x8f008000; |
| 4352 | length=4; |
| 4353 | } else { |
| 4354 | length=3; |
| 4355 | } |
| 4356 | break; |
| 4357 | default: |
| 4358 | /* must not occur */ |
| 4359 | /* |
| 4360 | * To avoid compiler warnings that value & length may be |
| 4361 | * used without having been initialized, we set them here. |
| 4362 | * In reality, this is unreachable code. |
| 4363 | * Not having a default branch also causes warnings with |
| 4364 | * some compilers. |
| 4365 | */ |
| 4366 | value=0; |
| 4367 | length=0; |
| 4368 | break; |
| 4369 | } |
| 4370 | /* output the value */ |
| 4371 | } else { |
| 4372 | /* |
| 4373 | * This also tests if the codepage maps single surrogates. |
| 4374 | * If it does, then surrogates are not paired but mapped separately. |
| 4375 | * Note that in this case unmatched surrogates are not detected. |
| 4376 | */ |
| 4377 | if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { |
| 4378 | if(U16_IS_SURROGATE_LEAD(c)) { |
| 4379 | getTrail: |
| 4380 | if(source<sourceLimit) { |
| 4381 | /* test the following code unit */ |
| 4382 | UChar trail=*source; |
| 4383 | if(U16_IS_TRAIL(trail)) { |
| 4384 | ++source; |
| 4385 | ++nextSourceIndex; |
| 4386 | c=U16_GET_SUPPLEMENTARY(c, trail); |
| 4387 | if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
| 4388 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
| 4389 | cnv->fromUnicodeStatus=prevLength; /* save the old state */ |
| 4390 | /* callback(unassigned) */ |
| 4391 | goto unassigned; |
| 4392 | } |
| 4393 | /* convert this supplementary code point */ |
| 4394 | /* exit this condition tree */ |
| 4395 | } else { |
| 4396 | /* this is an unmatched lead code unit (1st surrogate) */ |
| 4397 | /* callback(illegal) */ |
| 4398 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 4399 | break; |
| 4400 | } |
| 4401 | } else { |
| 4402 | /* no more input */ |
| 4403 | break; |
| 4404 | } |
| 4405 | } else { |
| 4406 | /* this is an unmatched trail code unit (2nd surrogate) */ |
| 4407 | /* callback(illegal) */ |
| 4408 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 4409 | break; |
| 4410 | } |
| 4411 | } |
| 4412 | |
| 4413 | /* convert the Unicode code point in c into codepage bytes */ |
| 4414 | |
| 4415 | /* |
| 4416 | * The basic lookup is a triple-stage compact array (trie) lookup. |
| 4417 | * For details see the beginning of this file. |
| 4418 | * |
| 4419 | * Single-byte codepages are handled with a different data structure |
| 4420 | * by _MBCSSingle... functions. |
| 4421 | * |
| 4422 | * The result consists of a 32-bit value from stage 2 and |
| 4423 | * a pointer to as many bytes as are stored per character. |
| 4424 | * The pointer points to the character's bytes in stage 3. |
| 4425 | * Bits 15..0 of the stage 2 entry contain the stage 3 index |
| 4426 | * for that pointer, while bits 31..16 are flags for which of |
| 4427 | * the 16 characters in the block are roundtrip-assigned. |
| 4428 | * |
| 4429 | * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t |
| 4430 | * respectively as uint32_t, in the platform encoding. |
| 4431 | * For 3-byte codepages, the bytes are always stored in big-endian order. |
| 4432 | * |
| 4433 | * For EUC encodings that use only either 0x8e or 0x8f as the first |
| 4434 | * byte of their longest byte sequences, the first two bytes in |
| 4435 | * this third stage indicate with their 7th bits whether these bytes |
| 4436 | * are to be written directly or actually need to be preceeded by |
| 4437 | * one of the two Single-Shift codes. With this, the third stage |
| 4438 | * stores one byte fewer per character than the actual maximum length of |
| 4439 | * EUC byte sequences. |
| 4440 | * |
| 4441 | * Other than that, leading zero bytes are removed and the other |
| 4442 | * bytes output. A single zero byte may be output if the "assigned" |
| 4443 | * bit in stage 2 was on. |
| 4444 | * The data structure does not support zero byte output as a fallback, |
| 4445 | * and also does not allow output of leading zeros. |
| 4446 | */ |
| 4447 | stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
| 4448 | |
| 4449 | /* get the bytes and the length for the output */ |
| 4450 | switch(outputType) { |
| 4451 | case MBCS_OUTPUT_2: |
| 4452 | value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4453 | if(value<=0xff) { |
| 4454 | length=1; |
| 4455 | } else { |
| 4456 | length=2; |
| 4457 | } |
| 4458 | break; |
| 4459 | case MBCS_OUTPUT_2_SISO: |
| 4460 | /* 1/2-byte stateful with Shift-In/Shift-Out */ |
| 4461 | /* |
| 4462 | * Save the old state in the converter object |
| 4463 | * right here, then change the local prevLength state variable if necessary. |
| 4464 | * Then, if this character turns out to be unassigned or a fallback that |
| 4465 | * is not taken, the callback code must not save the new state in the converter |
| 4466 | * because the new state is for a character that is not output. |
| 4467 | * However, the callback must still restore the state from the converter |
| 4468 | * in case the callback function changed it for its output. |
| 4469 | */ |
| 4470 | cnv->fromUnicodeStatus=prevLength; /* save the old state */ |
| 4471 | value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4472 | if(value<=0xff) { |
| 4473 | if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) { |
| 4474 | /* no mapping, leave value==0 */ |
| 4475 | length=0; |
| 4476 | } else if(prevLength<=1) { |
| 4477 | length=1; |
| 4478 | } else { |
| 4479 | /* change from double-byte mode to single-byte */ |
| 4480 | if (siLength == 1) { |
| 4481 | value|=(uint32_t)siBytes[0]<<8; |
| 4482 | length = 2; |
| 4483 | } else if (siLength == 2) { |
| 4484 | value|=(uint32_t)siBytes[1]<<8; |
| 4485 | value|=(uint32_t)siBytes[0]<<16; |
| 4486 | length = 3; |
| 4487 | } |
| 4488 | prevLength=1; |
| 4489 | } |
| 4490 | } else { |
| 4491 | if(prevLength==2) { |
| 4492 | length=2; |
| 4493 | } else { |
| 4494 | /* change from single-byte mode to double-byte */ |
| 4495 | if (soLength == 1) { |
| 4496 | value|=(uint32_t)soBytes[0]<<16; |
| 4497 | length = 3; |
| 4498 | } else if (soLength == 2) { |
| 4499 | value|=(uint32_t)soBytes[1]<<16; |
| 4500 | value|=(uint32_t)soBytes[0]<<24; |
| 4501 | length = 4; |
| 4502 | } |
| 4503 | prevLength=2; |
| 4504 | } |
| 4505 | } |
| 4506 | break; |
| 4507 | case MBCS_OUTPUT_DBCS_ONLY: |
| 4508 | /* table with single-byte results, but only DBCS mappings used */ |
| 4509 | value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4510 | if(value<=0xff) { |
| 4511 | /* no mapping or SBCS result, not taken for DBCS-only */ |
| 4512 | value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ |
| 4513 | length=0; |
| 4514 | } else { |
| 4515 | length=2; |
| 4516 | } |
| 4517 | break; |
| 4518 | case MBCS_OUTPUT_3: |
| 4519 | p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4520 | value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
| 4521 | if(value<=0xff) { |
| 4522 | length=1; |
| 4523 | } else if(value<=0xffff) { |
| 4524 | length=2; |
| 4525 | } else { |
| 4526 | length=3; |
| 4527 | } |
| 4528 | break; |
| 4529 | case MBCS_OUTPUT_4: |
| 4530 | value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4531 | if(value<=0xff) { |
| 4532 | length=1; |
| 4533 | } else if(value<=0xffff) { |
| 4534 | length=2; |
| 4535 | } else if(value<=0xffffff) { |
| 4536 | length=3; |
| 4537 | } else { |
| 4538 | length=4; |
| 4539 | } |
| 4540 | break; |
| 4541 | case MBCS_OUTPUT_3_EUC: |
| 4542 | value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4543 | /* EUC 16-bit fixed-length representation */ |
| 4544 | if(value<=0xff) { |
| 4545 | length=1; |
| 4546 | } else if((value&0x8000)==0) { |
| 4547 | value|=0x8e8000; |
| 4548 | length=3; |
| 4549 | } else if((value&0x80)==0) { |
| 4550 | value|=0x8f0080; |
| 4551 | length=3; |
| 4552 | } else { |
| 4553 | length=2; |
| 4554 | } |
| 4555 | break; |
| 4556 | case MBCS_OUTPUT_4_EUC: |
| 4557 | p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4558 | value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
| 4559 | /* EUC 16-bit fixed-length representation applied to the first two bytes */ |
| 4560 | if(value<=0xff) { |
| 4561 | length=1; |
| 4562 | } else if(value<=0xffff) { |
| 4563 | length=2; |
| 4564 | } else if((value&0x800000)==0) { |
| 4565 | value|=0x8e800000; |
| 4566 | length=4; |
| 4567 | } else if((value&0x8000)==0) { |
| 4568 | value|=0x8f008000; |
| 4569 | length=4; |
| 4570 | } else { |
| 4571 | length=3; |
| 4572 | } |
| 4573 | break; |
| 4574 | default: |
| 4575 | /* must not occur */ |
| 4576 | /* |
| 4577 | * To avoid compiler warnings that value & length may be |
| 4578 | * used without having been initialized, we set them here. |
| 4579 | * In reality, this is unreachable code. |
| 4580 | * Not having a default branch also causes warnings with |
| 4581 | * some compilers. |
| 4582 | */ |
| 4583 | value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ |
| 4584 | length=0; |
| 4585 | break; |
| 4586 | } |
| 4587 | |
| 4588 | /* is this code point assigned, or do we use fallbacks? */ |
| 4589 | if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 || |
| 4590 | (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) |
| 4591 | ) { |
| 4592 | /* |
| 4593 | * We allow a 0 byte output if the "assigned" bit is set for this entry. |
| 4594 | * There is no way with this data structure for fallback output |
| 4595 | * to be a zero byte. |
| 4596 | */ |
| 4597 | |
| 4598 | unassigned: |
| 4599 | /* try an extension mapping */ |
| 4600 | pArgs->source=source; |
| 4601 | c=_extFromU(cnv, cnv->sharedData, |
| 4602 | c, &source, sourceLimit, |
| 4603 | &target, target+targetCapacity, |
| 4604 | &offsets, sourceIndex, |
| 4605 | pArgs->flush, |
| 4606 | pErrorCode); |
| 4607 | nextSourceIndex+=(int32_t)(source-pArgs->source); |
| 4608 | prevLength=cnv->fromUnicodeStatus; /* restore SISO state */ |
| 4609 | |
| 4610 | if(U_FAILURE(*pErrorCode)) { |
| 4611 | /* not mappable or buffer overflow */ |
| 4612 | break; |
| 4613 | } else { |
| 4614 | /* a mapping was written to the target, continue */ |
| 4615 | |
| 4616 | /* recalculate the targetCapacity after an extension mapping */ |
| 4617 | targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); |
| 4618 | |
| 4619 | /* normal end of conversion: prepare for a new character */ |
| 4620 | if(offsets!=NULL) { |
| 4621 | prevSourceIndex=sourceIndex; |
| 4622 | sourceIndex=nextSourceIndex; |
| 4623 | } |
| 4624 | continue; |
| 4625 | } |
| 4626 | } |
| 4627 | } |
| 4628 | |
| 4629 | /* write the output character bytes from value and length */ |
| 4630 | /* from the first if in the loop we know that targetCapacity>0 */ |
| 4631 | if(length<=targetCapacity) { |
| 4632 | if(offsets==NULL) { |
| 4633 | switch(length) { |
| 4634 | /* each branch falls through to the next one */ |
| 4635 | case 4: |
| 4636 | *target++=(uint8_t)(value>>24); |
| 4637 | case 3: /*fall through*/ |
| 4638 | *target++=(uint8_t)(value>>16); |
| 4639 | case 2: /*fall through*/ |
| 4640 | *target++=(uint8_t)(value>>8); |
| 4641 | case 1: /*fall through*/ |
| 4642 | *target++=(uint8_t)value; |
| 4643 | default: |
| 4644 | /* will never occur */ |
| 4645 | break; |
| 4646 | } |
| 4647 | } else { |
| 4648 | switch(length) { |
| 4649 | /* each branch falls through to the next one */ |
| 4650 | case 4: |
| 4651 | *target++=(uint8_t)(value>>24); |
| 4652 | *offsets++=sourceIndex; |
| 4653 | case 3: /*fall through*/ |
| 4654 | *target++=(uint8_t)(value>>16); |
| 4655 | *offsets++=sourceIndex; |
| 4656 | case 2: /*fall through*/ |
| 4657 | *target++=(uint8_t)(value>>8); |
| 4658 | *offsets++=sourceIndex; |
| 4659 | case 1: /*fall through*/ |
| 4660 | *target++=(uint8_t)value; |
| 4661 | *offsets++=sourceIndex; |
| 4662 | default: |
| 4663 | /* will never occur */ |
| 4664 | break; |
| 4665 | } |
| 4666 | } |
| 4667 | targetCapacity-=length; |
| 4668 | } else { |
| 4669 | uint8_t *charErrorBuffer; |
| 4670 | |
| 4671 | /* |
| 4672 | * We actually do this backwards here: |
| 4673 | * In order to save an intermediate variable, we output |
| 4674 | * first to the overflow buffer what does not fit into the |
| 4675 | * regular target. |
| 4676 | */ |
| 4677 | /* we know that 1<=targetCapacity<length<=4 */ |
| 4678 | length-=targetCapacity; |
| 4679 | charErrorBuffer=(uint8_t *)cnv->charErrorBuffer; |
| 4680 | switch(length) { |
| 4681 | /* each branch falls through to the next one */ |
| 4682 | case 3: |
| 4683 | *charErrorBuffer++=(uint8_t)(value>>16); |
| 4684 | case 2: /*fall through*/ |
| 4685 | *charErrorBuffer++=(uint8_t)(value>>8); |
| 4686 | case 1: /*fall through*/ |
| 4687 | *charErrorBuffer=(uint8_t)value; |
| 4688 | default: |
| 4689 | /* will never occur */ |
| 4690 | break; |
| 4691 | } |
| 4692 | cnv->charErrorBufferLength=(int8_t)length; |
| 4693 | |
| 4694 | /* now output what fits into the regular target */ |
| 4695 | value>>=8*length; /* length was reduced by targetCapacity */ |
| 4696 | switch(targetCapacity) { |
| 4697 | /* each branch falls through to the next one */ |
| 4698 | case 3: |
| 4699 | *target++=(uint8_t)(value>>16); |
| 4700 | if(offsets!=NULL) { |
| 4701 | *offsets++=sourceIndex; |
| 4702 | } |
| 4703 | case 2: /*fall through*/ |
| 4704 | *target++=(uint8_t)(value>>8); |
| 4705 | if(offsets!=NULL) { |
| 4706 | *offsets++=sourceIndex; |
| 4707 | } |
| 4708 | case 1: /*fall through*/ |
| 4709 | *target++=(uint8_t)value; |
| 4710 | if(offsets!=NULL) { |
| 4711 | *offsets++=sourceIndex; |
| 4712 | } |
| 4713 | default: |
| 4714 | /* will never occur */ |
| 4715 | break; |
| 4716 | } |
| 4717 | |
| 4718 | /* target overflow */ |
| 4719 | targetCapacity=0; |
| 4720 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 4721 | c=0; |
| 4722 | break; |
| 4723 | } |
| 4724 | |
| 4725 | /* normal end of conversion: prepare for a new character */ |
| 4726 | c=0; |
| 4727 | if(offsets!=NULL) { |
| 4728 | prevSourceIndex=sourceIndex; |
| 4729 | sourceIndex=nextSourceIndex; |
| 4730 | } |
| 4731 | continue; |
| 4732 | } else { |
| 4733 | /* target is full */ |
| 4734 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 4735 | break; |
| 4736 | } |
| 4737 | } |
| 4738 | |
| 4739 | /* |
| 4740 | * the end of the input stream and detection of truncated input |
| 4741 | * are handled by the framework, but for EBCDIC_STATEFUL conversion |
| 4742 | * we need to emit an SI at the very end |
| 4743 | * |
| 4744 | * conditions: |
| 4745 | * successful |
| 4746 | * EBCDIC_STATEFUL in DBCS mode |
| 4747 | * end of input and no truncated input |
| 4748 | */ |
| 4749 | if( U_SUCCESS(*pErrorCode) && |
| 4750 | outputType==MBCS_OUTPUT_2_SISO && prevLength==2 && |
| 4751 | pArgs->flush && source>=sourceLimit && c==0 |
| 4752 | ) { |
| 4753 | /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */ |
| 4754 | if(targetCapacity>0) { |
| 4755 | *target++=(uint8_t)siBytes[0]; |
| 4756 | if (siLength == 2) { |
| 4757 | if (targetCapacity<2) { |
| 4758 | cnv->charErrorBuffer[0]=(uint8_t)siBytes[1]; |
| 4759 | cnv->charErrorBufferLength=1; |
| 4760 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 4761 | } else { |
| 4762 | *target++=(uint8_t)siBytes[1]; |
| 4763 | } |
| 4764 | } |
| 4765 | if(offsets!=NULL) { |
| 4766 | /* set the last source character's index (sourceIndex points at sourceLimit now) */ |
| 4767 | *offsets++=prevSourceIndex; |
| 4768 | } |
| 4769 | } else { |
| 4770 | /* target is full */ |
| 4771 | cnv->charErrorBuffer[0]=(uint8_t)siBytes[0]; |
| 4772 | if (siLength == 2) { |
| 4773 | cnv->charErrorBuffer[1]=(uint8_t)siBytes[1]; |
| 4774 | } |
| 4775 | cnv->charErrorBufferLength=siLength; |
| 4776 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 4777 | } |
| 4778 | prevLength=1; /* we switched into SBCS */ |
| 4779 | } |
| 4780 | |
| 4781 | /* set the converter state back into UConverter */ |
| 4782 | cnv->fromUChar32=c; |
| 4783 | cnv->fromUnicodeStatus=prevLength; |
| 4784 | |
| 4785 | /* write back the updated pointers */ |
| 4786 | pArgs->source=source; |
| 4787 | pArgs->target=(char *)target; |
| 4788 | pArgs->offsets=offsets; |
| 4789 | } |
| 4790 | |
| 4791 | /* |
| 4792 | * This is another simple conversion function for internal use by other |
| 4793 | * conversion implementations. |
| 4794 | * It does not use the converter state nor call callbacks. |
| 4795 | * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
| 4796 | * It handles conversion extensions but not GB 18030. |
| 4797 | * |
| 4798 | * It converts one single Unicode code point into codepage bytes, encoded |
| 4799 | * as one 32-bit value. The function returns the number of bytes in *pValue: |
| 4800 | * 1..4 the number of bytes in *pValue |
| 4801 | * 0 unassigned (*pValue undefined) |
| 4802 | * -1 illegal (currently not used, *pValue undefined) |
| 4803 | * |
| 4804 | * *pValue will contain the resulting bytes with the last byte in bits 7..0, |
| 4805 | * the second to last byte in bits 15..8, etc. |
| 4806 | * Currently, the function assumes but does not check that 0<=c<=0x10ffff. |
| 4807 | */ |
| 4808 | U_CFUNC int32_t |
| 4809 | ucnv_MBCSFromUChar32(UConverterSharedData *sharedData, |
| 4810 | UChar32 c, uint32_t *pValue, |
| 4811 | UBool useFallback) { |
| 4812 | const int32_t *cx; |
| 4813 | const uint16_t *table; |
| 4814 | #if 0 |
| 4815 | /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */ |
| 4816 | const uint8_t *p; |
| 4817 | #endif |
| 4818 | uint32_t stage2Entry; |
| 4819 | uint32_t value; |
| 4820 | int32_t length; |
| 4821 | |
| 4822 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
| 4823 | if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
| 4824 | table=sharedData->mbcs.fromUnicodeTable; |
| 4825 | |
| 4826 | /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ |
| 4827 | if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) { |
| 4828 | value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c); |
| 4829 | /* is this code point assigned, or do we use fallbacks? */ |
| 4830 | if(useFallback ? value>=0x800 : value>=0xc00) { |
| 4831 | *pValue=value&0xff; |
| 4832 | return 1; |
| 4833 | } |
| 4834 | } else /* outputType!=MBCS_OUTPUT_1 */ { |
| 4835 | stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
| 4836 | |
| 4837 | /* get the bytes and the length for the output */ |
| 4838 | switch(sharedData->mbcs.outputType) { |
| 4839 | case MBCS_OUTPUT_2: |
| 4840 | value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); |
| 4841 | if(value<=0xff) { |
| 4842 | length=1; |
| 4843 | } else { |
| 4844 | length=2; |
| 4845 | } |
| 4846 | break; |
| 4847 | #if 0 |
| 4848 | /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */ |
| 4849 | case MBCS_OUTPUT_DBCS_ONLY: |
| 4850 | /* table with single-byte results, but only DBCS mappings used */ |
| 4851 | value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); |
| 4852 | if(value<=0xff) { |
| 4853 | /* no mapping or SBCS result, not taken for DBCS-only */ |
| 4854 | value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */ |
| 4855 | length=0; |
| 4856 | } else { |
| 4857 | length=2; |
| 4858 | } |
| 4859 | break; |
| 4860 | case MBCS_OUTPUT_3: |
| 4861 | p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); |
| 4862 | value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
| 4863 | if(value<=0xff) { |
| 4864 | length=1; |
| 4865 | } else if(value<=0xffff) { |
| 4866 | length=2; |
| 4867 | } else { |
| 4868 | length=3; |
| 4869 | } |
| 4870 | break; |
| 4871 | case MBCS_OUTPUT_4: |
| 4872 | value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); |
| 4873 | if(value<=0xff) { |
| 4874 | length=1; |
| 4875 | } else if(value<=0xffff) { |
| 4876 | length=2; |
| 4877 | } else if(value<=0xffffff) { |
| 4878 | length=3; |
| 4879 | } else { |
| 4880 | length=4; |
| 4881 | } |
| 4882 | break; |
| 4883 | case MBCS_OUTPUT_3_EUC: |
| 4884 | value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); |
| 4885 | /* EUC 16-bit fixed-length representation */ |
| 4886 | if(value<=0xff) { |
| 4887 | length=1; |
| 4888 | } else if((value&0x8000)==0) { |
| 4889 | value|=0x8e8000; |
| 4890 | length=3; |
| 4891 | } else if((value&0x80)==0) { |
| 4892 | value|=0x8f0080; |
| 4893 | length=3; |
| 4894 | } else { |
| 4895 | length=2; |
| 4896 | } |
| 4897 | break; |
| 4898 | case MBCS_OUTPUT_4_EUC: |
| 4899 | p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c); |
| 4900 | value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
| 4901 | /* EUC 16-bit fixed-length representation applied to the first two bytes */ |
| 4902 | if(value<=0xff) { |
| 4903 | length=1; |
| 4904 | } else if(value<=0xffff) { |
| 4905 | length=2; |
| 4906 | } else if((value&0x800000)==0) { |
| 4907 | value|=0x8e800000; |
| 4908 | length=4; |
| 4909 | } else if((value&0x8000)==0) { |
| 4910 | value|=0x8f008000; |
| 4911 | length=4; |
| 4912 | } else { |
| 4913 | length=3; |
| 4914 | } |
| 4915 | break; |
| 4916 | #endif |
| 4917 | default: |
| 4918 | /* must not occur */ |
| 4919 | return -1; |
| 4920 | } |
| 4921 | |
| 4922 | /* is this code point assigned, or do we use fallbacks? */ |
| 4923 | if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || |
| 4924 | (FROM_U_USE_FALLBACK(useFallback, c) && value!=0) |
| 4925 | ) { |
| 4926 | /* |
| 4927 | * We allow a 0 byte output if the "assigned" bit is set for this entry. |
| 4928 | * There is no way with this data structure for fallback output |
| 4929 | * to be a zero byte. |
| 4930 | */ |
| 4931 | /* assigned */ |
| 4932 | *pValue=value; |
| 4933 | return length; |
| 4934 | } |
| 4935 | } |
| 4936 | } |
| 4937 | |
| 4938 | cx=sharedData->mbcs.extIndexes; |
| 4939 | if(cx!=NULL) { |
| 4940 | length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback); |
| 4941 | return length>=0 ? length : -length; /* return abs(length); */ |
| 4942 | } |
| 4943 | |
| 4944 | /* unassigned */ |
| 4945 | return 0; |
| 4946 | } |
| 4947 | |
| 4948 | |
| 4949 | #if 0 |
| 4950 | /* |
| 4951 | * This function has been moved to ucnv2022.c for inlining. |
| 4952 | * This implementation is here only for documentation purposes |
| 4953 | */ |
| 4954 | |
| 4955 | /** |
| 4956 | * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages. |
| 4957 | * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
| 4958 | * It does not handle conversion extensions (_extFromU()). |
| 4959 | * |
| 4960 | * It returns the codepage byte for the code point, or -1 if it is unassigned. |
| 4961 | */ |
| 4962 | U_CFUNC int32_t |
| 4963 | ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData, |
| 4964 | UChar32 c, |
| 4965 | UBool useFallback) { |
| 4966 | const uint16_t *table; |
| 4967 | int32_t value; |
| 4968 | |
| 4969 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
| 4970 | if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
| 4971 | return -1; |
| 4972 | } |
| 4973 | |
| 4974 | /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ |
| 4975 | table=sharedData->mbcs.fromUnicodeTable; |
| 4976 | |
| 4977 | /* get the byte for the output */ |
| 4978 | value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c); |
| 4979 | /* is this code point assigned, or do we use fallbacks? */ |
| 4980 | if(useFallback ? value>=0x800 : value>=0xc00) { |
| 4981 | return value&0xff; |
| 4982 | } else { |
| 4983 | return -1; |
| 4984 | } |
| 4985 | } |
| 4986 | #endif |
| 4987 | |
| 4988 | /* MBCS-from-UTF-8 conversion functions ------------------------------------- */ |
| 4989 | |
| 4990 | /* minimum code point values for n-byte UTF-8 sequences, n=0..4 */ |
| 4991 | static const UChar32 |
| 4992 | utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 }; |
| 4993 | |
| 4994 | /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */ |
| 4995 | static const UChar32 |
| 4996 | utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 }; |
| 4997 | |
| 4998 | static void |
| 4999 | ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, |
| 5000 | UConverterToUnicodeArgs *pToUArgs, |
| 5001 | UErrorCode *pErrorCode) { |
| 5002 | UConverter *utf8, *cnv; |
| 5003 | const uint8_t *source, *sourceLimit; |
| 5004 | uint8_t *target; |
| 5005 | int32_t targetCapacity; |
| 5006 | |
| 5007 | const uint16_t *table, *sbcsIndex; |
| 5008 | const uint16_t *results; |
| 5009 | |
| 5010 | int8_t oldToULength, toULength, toULimit; |
| 5011 | |
| 5012 | UChar32 c; |
| 5013 | uint8_t b, t1, t2; |
| 5014 | |
| 5015 | uint32_t asciiRoundtrips; |
| 5016 | uint16_t value, minValue; |
| 5017 | UBool hasSupplementary; |
| 5018 | |
| 5019 | /* set up the local pointers */ |
| 5020 | utf8=pToUArgs->converter; |
| 5021 | cnv=pFromUArgs->converter; |
| 5022 | source=(uint8_t *)pToUArgs->source; |
| 5023 | sourceLimit=(uint8_t *)pToUArgs->sourceLimit; |
| 5024 | target=(uint8_t *)pFromUArgs->target; |
| 5025 | targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); |
| 5026 | |
| 5027 | table=cnv->sharedData->mbcs.fromUnicodeTable; |
| 5028 | sbcsIndex=cnv->sharedData->mbcs.sbcsIndex; |
| 5029 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 5030 | results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
| 5031 | } else { |
| 5032 | results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
| 5033 | } |
| 5034 | asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
| 5035 | |
| 5036 | if(cnv->useFallback) { |
| 5037 | /* use all roundtrip and fallback results */ |
| 5038 | minValue=0x800; |
| 5039 | } else { |
| 5040 | /* use only roundtrips and fallbacks from private-use characters */ |
| 5041 | minValue=0xc00; |
| 5042 | } |
| 5043 | hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); |
| 5044 | |
| 5045 | /* get the converter state from the UTF-8 UConverter */ |
| 5046 | c=(UChar32)utf8->toUnicodeStatus; |
| 5047 | if(c!=0) { |
| 5048 | toULength=oldToULength=utf8->toULength; |
| 5049 | toULimit=(int8_t)utf8->mode; |
| 5050 | } else { |
| 5051 | toULength=oldToULength=toULimit=0; |
| 5052 | } |
| 5053 | |
| 5054 | /* |
| 5055 | * Make sure that the last byte sequence before sourceLimit is complete |
| 5056 | * or runs into a lead byte. |
| 5057 | * Do not go back into the bytes that will be read for finishing a partial |
| 5058 | * sequence from the previous buffer. |
| 5059 | * In the conversion loop compare source with sourceLimit only once |
| 5060 | * per multi-byte character. |
| 5061 | */ |
| 5062 | { |
| 5063 | int32_t i, length; |
| 5064 | |
| 5065 | length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); |
| 5066 | for(i=0; i<3 && i<length;) { |
| 5067 | b=*(sourceLimit-i-1); |
| 5068 | if(U8_IS_TRAIL(b)) { |
| 5069 | ++i; |
| 5070 | } else { |
| 5071 | if(i<U8_COUNT_TRAIL_BYTES(b)) { |
| 5072 | /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */ |
| 5073 | sourceLimit-=i+1; |
| 5074 | } |
| 5075 | break; |
| 5076 | } |
| 5077 | } |
| 5078 | } |
| 5079 | |
| 5080 | if(c!=0 && targetCapacity>0) { |
| 5081 | utf8->toUnicodeStatus=0; |
| 5082 | utf8->toULength=0; |
| 5083 | goto moreBytes; |
| 5084 | /* |
| 5085 | * Note: We could avoid the goto by duplicating some of the moreBytes |
| 5086 | * code, but only up to the point of collecting a complete UTF-8 |
| 5087 | * sequence; then recurse for the toUBytes[toULength] |
| 5088 | * and then continue with normal conversion. |
| 5089 | * |
| 5090 | * If so, move this code to just after initializing the minimum |
| 5091 | * set of local variables for reading the UTF-8 input |
| 5092 | * (utf8, source, target, limits but not cnv, table, minValue, etc.). |
| 5093 | * |
| 5094 | * Potential advantages: |
| 5095 | * - avoid the goto |
| 5096 | * - oldToULength could become a local variable in just those code blocks |
| 5097 | * that deal with buffer boundaries |
| 5098 | * - possibly faster if the goto prevents some compiler optimizations |
| 5099 | * (this would need measuring to confirm) |
| 5100 | * Disadvantage: |
| 5101 | * - code duplication |
| 5102 | */ |
| 5103 | } |
| 5104 | |
| 5105 | /* conversion loop */ |
| 5106 | while(source<sourceLimit) { |
| 5107 | if(targetCapacity>0) { |
| 5108 | b=*source++; |
| 5109 | if((int8_t)b>=0) { |
| 5110 | /* convert ASCII */ |
| 5111 | if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { |
| 5112 | *target++=(uint8_t)b; |
| 5113 | --targetCapacity; |
| 5114 | continue; |
| 5115 | } else { |
| 5116 | c=b; |
| 5117 | value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c); |
| 5118 | } |
| 5119 | } else { |
| 5120 | if(b<0xe0) { |
| 5121 | if( /* handle U+0080..U+07FF inline */ |
| 5122 | b>=0xc2 && |
| 5123 | (t1=(uint8_t)(*source-0x80)) <= 0x3f |
| 5124 | ) { |
| 5125 | c=b&0x1f; |
| 5126 | ++source; |
| 5127 | value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1); |
| 5128 | if(value>=minValue) { |
| 5129 | *target++=(uint8_t)value; |
| 5130 | --targetCapacity; |
| 5131 | continue; |
| 5132 | } else { |
| 5133 | c=(c<<6)|t1; |
| 5134 | } |
| 5135 | } else { |
| 5136 | c=-1; |
| 5137 | } |
| 5138 | } else if(b==0xe0) { |
| 5139 | if( /* handle U+0800..U+0FFF inline */ |
| 5140 | (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 && |
| 5141 | (t2=(uint8_t)(source[1]-0x80)) <= 0x3f |
| 5142 | ) { |
| 5143 | c=t1; |
| 5144 | source+=2; |
| 5145 | value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2); |
| 5146 | if(value>=minValue) { |
| 5147 | *target++=(uint8_t)value; |
| 5148 | --targetCapacity; |
| 5149 | continue; |
| 5150 | } else { |
| 5151 | c=(c<<6)|t2; |
| 5152 | } |
| 5153 | } else { |
| 5154 | c=-1; |
| 5155 | } |
| 5156 | } else { |
| 5157 | c=-1; |
| 5158 | } |
| 5159 | |
| 5160 | if(c<0) { |
| 5161 | /* handle "complicated" and error cases, and continuing partial characters */ |
| 5162 | oldToULength=0; |
| 5163 | toULength=1; |
| 5164 | toULimit=U8_COUNT_TRAIL_BYTES(b)+1; |
| 5165 | c=b; |
| 5166 | moreBytes: |
| 5167 | while(toULength<toULimit) { |
| 5168 | /* |
| 5169 | * The sourceLimit may have been adjusted before the conversion loop |
| 5170 | * to stop before a truncated sequence. |
| 5171 | * Here we need to use the real limit in case we have two truncated |
| 5172 | * sequences at the end. |
| 5173 | * See ticket #7492. |
| 5174 | */ |
| 5175 | if(source<(uint8_t *)pToUArgs->sourceLimit) { |
| 5176 | b=*source; |
| 5177 | if(U8_IS_TRAIL(b)) { |
| 5178 | ++source; |
| 5179 | ++toULength; |
| 5180 | c=(c<<6)+b; |
| 5181 | } else { |
| 5182 | break; /* sequence too short, stop with toULength<toULimit */ |
| 5183 | } |
| 5184 | } else { |
| 5185 | /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */ |
| 5186 | source-=(toULength-oldToULength); |
| 5187 | while(oldToULength<toULength) { |
| 5188 | utf8->toUBytes[oldToULength++]=*source++; |
| 5189 | } |
| 5190 | utf8->toUnicodeStatus=c; |
| 5191 | utf8->toULength=toULength; |
| 5192 | utf8->mode=toULimit; |
| 5193 | pToUArgs->source=(char *)source; |
| 5194 | pFromUArgs->target=(char *)target; |
| 5195 | return; |
| 5196 | } |
| 5197 | } |
| 5198 | |
| 5199 | if( toULength==toULimit && /* consumed all trail bytes */ |
| 5200 | (toULength==3 || toULength==2) && /* BMP */ |
| 5201 | (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] && |
| 5202 | (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ |
| 5203 | ) { |
| 5204 | value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 5205 | } else if( |
| 5206 | toULength==toULimit && toULength==4 && |
| 5207 | (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) |
| 5208 | ) { |
| 5209 | /* supplementary code point */ |
| 5210 | if(!hasSupplementary) { |
| 5211 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
| 5212 | value=0; |
| 5213 | } else { |
| 5214 | value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 5215 | } |
| 5216 | } else { |
| 5217 | /* error handling: illegal UTF-8 byte sequence */ |
| 5218 | source-=(toULength-oldToULength); |
| 5219 | while(oldToULength<toULength) { |
| 5220 | utf8->toUBytes[oldToULength++]=*source++; |
| 5221 | } |
| 5222 | utf8->toULength=toULength; |
| 5223 | pToUArgs->source=(char *)source; |
| 5224 | pFromUArgs->target=(char *)target; |
| 5225 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 5226 | return; |
| 5227 | } |
| 5228 | } |
| 5229 | } |
| 5230 | |
| 5231 | if(value>=minValue) { |
| 5232 | /* output the mapping for c */ |
| 5233 | *target++=(uint8_t)value; |
| 5234 | --targetCapacity; |
| 5235 | } else { |
| 5236 | /* value<minValue means c is unassigned (unmappable) */ |
| 5237 | /* |
| 5238 | * Try an extension mapping. |
| 5239 | * Pass in no source because we don't have UTF-16 input. |
| 5240 | * If we have a partial match on c, we will return and revert |
| 5241 | * to UTF-8->UTF-16->charset conversion. |
| 5242 | */ |
| 5243 | static const UChar nul=0; |
| 5244 | const UChar *noSource=&nul; |
| 5245 | c=_extFromU(cnv, cnv->sharedData, |
| 5246 | c, &noSource, noSource, |
| 5247 | &target, target+targetCapacity, |
| 5248 | NULL, -1, |
| 5249 | pFromUArgs->flush, |
| 5250 | pErrorCode); |
| 5251 | |
| 5252 | if(U_FAILURE(*pErrorCode)) { |
| 5253 | /* not mappable or buffer overflow */ |
| 5254 | cnv->fromUChar32=c; |
| 5255 | break; |
| 5256 | } else if(cnv->preFromUFirstCP>=0) { |
| 5257 | /* |
| 5258 | * Partial match, return and revert to pivoting. |
| 5259 | * In normal from-UTF-16 conversion, we would just continue |
| 5260 | * but then exit the loop because the extension match would |
| 5261 | * have consumed the source. |
| 5262 | */ |
| 5263 | *pErrorCode=U_USING_DEFAULT_WARNING; |
| 5264 | break; |
| 5265 | } else { |
| 5266 | /* a mapping was written to the target, continue */ |
| 5267 | |
| 5268 | /* recalculate the targetCapacity after an extension mapping */ |
| 5269 | targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target); |
| 5270 | } |
| 5271 | } |
| 5272 | } else { |
| 5273 | /* target is full */ |
| 5274 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 5275 | break; |
| 5276 | } |
| 5277 | } |
| 5278 | |
| 5279 | /* |
| 5280 | * The sourceLimit may have been adjusted before the conversion loop |
| 5281 | * to stop before a truncated sequence. |
| 5282 | * If so, then collect the truncated sequence now. |
| 5283 | */ |
| 5284 | if(U_SUCCESS(*pErrorCode) && |
| 5285 | cnv->preFromUFirstCP<0 && |
| 5286 | source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) { |
| 5287 | c=utf8->toUBytes[0]=b=*source++; |
| 5288 | toULength=1; |
| 5289 | toULimit=U8_COUNT_TRAIL_BYTES(b)+1; |
| 5290 | while(source<sourceLimit) { |
| 5291 | utf8->toUBytes[toULength++]=b=*source++; |
| 5292 | c=(c<<6)+b; |
| 5293 | } |
| 5294 | utf8->toUnicodeStatus=c; |
| 5295 | utf8->toULength=toULength; |
| 5296 | utf8->mode=toULimit; |
| 5297 | } |
| 5298 | |
| 5299 | /* write back the updated pointers */ |
| 5300 | pToUArgs->source=(char *)source; |
| 5301 | pFromUArgs->target=(char *)target; |
| 5302 | } |
| 5303 | |
| 5304 | static void |
| 5305 | ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, |
| 5306 | UConverterToUnicodeArgs *pToUArgs, |
| 5307 | UErrorCode *pErrorCode) { |
| 5308 | UConverter *utf8, *cnv; |
| 5309 | const uint8_t *source, *sourceLimit; |
| 5310 | uint8_t *target; |
| 5311 | int32_t targetCapacity; |
| 5312 | |
| 5313 | const uint16_t *table, *mbcsIndex; |
| 5314 | const uint16_t *results; |
| 5315 | |
| 5316 | int8_t oldToULength, toULength, toULimit; |
| 5317 | |
| 5318 | UChar32 c; |
| 5319 | uint8_t b, t1, t2; |
| 5320 | |
| 5321 | uint32_t stage2Entry; |
| 5322 | uint32_t asciiRoundtrips; |
| 5323 | uint16_t value; |
| 5324 | UBool hasSupplementary; |
| 5325 | |
| 5326 | /* set up the local pointers */ |
| 5327 | utf8=pToUArgs->converter; |
| 5328 | cnv=pFromUArgs->converter; |
| 5329 | source=(uint8_t *)pToUArgs->source; |
| 5330 | sourceLimit=(uint8_t *)pToUArgs->sourceLimit; |
| 5331 | target=(uint8_t *)pFromUArgs->target; |
| 5332 | targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); |
| 5333 | |
| 5334 | table=cnv->sharedData->mbcs.fromUnicodeTable; |
| 5335 | mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; |
| 5336 | if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 5337 | results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
| 5338 | } else { |
| 5339 | results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
| 5340 | } |
| 5341 | asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
| 5342 | |
| 5343 | hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); |
| 5344 | |
| 5345 | /* get the converter state from the UTF-8 UConverter */ |
| 5346 | c=(UChar32)utf8->toUnicodeStatus; |
| 5347 | if(c!=0) { |
| 5348 | toULength=oldToULength=utf8->toULength; |
| 5349 | toULimit=(int8_t)utf8->mode; |
| 5350 | } else { |
| 5351 | toULength=oldToULength=toULimit=0; |
| 5352 | } |
| 5353 | |
| 5354 | /* |
| 5355 | * Make sure that the last byte sequence before sourceLimit is complete |
| 5356 | * or runs into a lead byte. |
| 5357 | * Do not go back into the bytes that will be read for finishing a partial |
| 5358 | * sequence from the previous buffer. |
| 5359 | * In the conversion loop compare source with sourceLimit only once |
| 5360 | * per multi-byte character. |
| 5361 | */ |
| 5362 | { |
| 5363 | int32_t i, length; |
| 5364 | |
| 5365 | length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); |
| 5366 | for(i=0; i<3 && i<length;) { |
| 5367 | b=*(sourceLimit-i-1); |
| 5368 | if(U8_IS_TRAIL(b)) { |
| 5369 | ++i; |
| 5370 | } else { |
| 5371 | if(i<U8_COUNT_TRAIL_BYTES(b)) { |
| 5372 | /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */ |
| 5373 | sourceLimit-=i+1; |
| 5374 | } |
| 5375 | break; |
| 5376 | } |
| 5377 | } |
| 5378 | } |
| 5379 | |
| 5380 | if(c!=0 && targetCapacity>0) { |
| 5381 | utf8->toUnicodeStatus=0; |
| 5382 | utf8->toULength=0; |
| 5383 | goto moreBytes; |
| 5384 | /* See note in ucnv_SBCSFromUTF8() about this goto. */ |
| 5385 | } |
| 5386 | |
| 5387 | /* conversion loop */ |
| 5388 | while(source<sourceLimit) { |
| 5389 | if(targetCapacity>0) { |
| 5390 | b=*source++; |
| 5391 | if((int8_t)b>=0) { |
| 5392 | /* convert ASCII */ |
| 5393 | if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { |
| 5394 | *target++=b; |
| 5395 | --targetCapacity; |
| 5396 | continue; |
| 5397 | } else { |
| 5398 | value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b); |
| 5399 | if(value==0) { |
| 5400 | c=b; |
| 5401 | goto unassigned; |
| 5402 | } |
| 5403 | } |
| 5404 | } else { |
| 5405 | if(b>0xe0) { |
| 5406 | if( /* handle U+1000..U+D7FF inline */ |
| 5407 | (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)) || |
| 5408 | (b==0xed && (t1 <= 0x1f))) && |
| 5409 | (t2=(uint8_t)(source[1]-0x80)) <= 0x3f |
| 5410 | ) { |
| 5411 | c=((b&0xf)<<6)|t1; |
| 5412 | source+=2; |
| 5413 | value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2); |
| 5414 | if(value==0) { |
| 5415 | c=(c<<6)|t2; |
| 5416 | goto unassigned; |
| 5417 | } |
| 5418 | } else { |
| 5419 | c=-1; |
| 5420 | } |
| 5421 | } else if(b<0xe0) { |
| 5422 | if( /* handle U+0080..U+07FF inline */ |
| 5423 | b>=0xc2 && |
| 5424 | (t1=(uint8_t)(*source-0x80)) <= 0x3f |
| 5425 | ) { |
| 5426 | c=b&0x1f; |
| 5427 | ++source; |
| 5428 | value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1); |
| 5429 | if(value==0) { |
| 5430 | c=(c<<6)|t1; |
| 5431 | goto unassigned; |
| 5432 | } |
| 5433 | } else { |
| 5434 | c=-1; |
| 5435 | } |
| 5436 | } else { |
| 5437 | c=-1; |
| 5438 | } |
| 5439 | |
| 5440 | if(c<0) { |
| 5441 | /* handle "complicated" and error cases, and continuing partial characters */ |
| 5442 | oldToULength=0; |
| 5443 | toULength=1; |
| 5444 | toULimit=U8_COUNT_TRAIL_BYTES(b)+1; |
| 5445 | c=b; |
| 5446 | moreBytes: |
| 5447 | while(toULength<toULimit) { |
| 5448 | /* |
| 5449 | * The sourceLimit may have been adjusted before the conversion loop |
| 5450 | * to stop before a truncated sequence. |
| 5451 | * Here we need to use the real limit in case we have two truncated |
| 5452 | * sequences at the end. |
| 5453 | * See ticket #7492. |
| 5454 | */ |
| 5455 | if(source<(uint8_t *)pToUArgs->sourceLimit) { |
| 5456 | b=*source; |
| 5457 | if(U8_IS_TRAIL(b)) { |
| 5458 | ++source; |
| 5459 | ++toULength; |
| 5460 | c=(c<<6)+b; |
| 5461 | } else { |
| 5462 | break; /* sequence too short, stop with toULength<toULimit */ |
| 5463 | } |
| 5464 | } else { |
| 5465 | /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */ |
| 5466 | source-=(toULength-oldToULength); |
| 5467 | while(oldToULength<toULength) { |
| 5468 | utf8->toUBytes[oldToULength++]=*source++; |
| 5469 | } |
| 5470 | utf8->toUnicodeStatus=c; |
| 5471 | utf8->toULength=toULength; |
| 5472 | utf8->mode=toULimit; |
| 5473 | pToUArgs->source=(char *)source; |
| 5474 | pFromUArgs->target=(char *)target; |
| 5475 | return; |
| 5476 | } |
| 5477 | } |
| 5478 | |
| 5479 | if( toULength==toULimit && /* consumed all trail bytes */ |
| 5480 | (toULength==3 || toULength==2) && /* BMP */ |
| 5481 | (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] && |
| 5482 | (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ |
| 5483 | ) { |
| 5484 | stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
| 5485 | } else if( |
| 5486 | toULength==toULimit && toULength==4 && |
| 5487 | (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) |
| 5488 | ) { |
| 5489 | /* supplementary code point */ |
| 5490 | if(!hasSupplementary) { |
| 5491 | /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ |
| 5492 | stage2Entry=0; |
| 5493 | } else { |
| 5494 | stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
| 5495 | } |
| 5496 | } else { |
| 5497 | /* error handling: illegal UTF-8 byte sequence */ |
| 5498 | source-=(toULength-oldToULength); |
| 5499 | while(oldToULength<toULength) { |
| 5500 | utf8->toUBytes[oldToULength++]=*source++; |
| 5501 | } |
| 5502 | utf8->toULength=toULength; |
| 5503 | pToUArgs->source=(char *)source; |
| 5504 | pFromUArgs->target=(char *)target; |
| 5505 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 5506 | return; |
| 5507 | } |
| 5508 | |
| 5509 | /* get the bytes and the length for the output */ |
| 5510 | /* MBCS_OUTPUT_2 */ |
| 5511 | value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c); |
| 5512 | |
| 5513 | /* is this code point assigned, or do we use fallbacks? */ |
| 5514 | if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || |
| 5515 | (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) |
| 5516 | ) { |
| 5517 | goto unassigned; |
| 5518 | } |
| 5519 | } |
| 5520 | } |
| 5521 | |
| 5522 | /* write the output character bytes from value and length */ |
| 5523 | /* from the first if in the loop we know that targetCapacity>0 */ |
| 5524 | if(value<=0xff) { |
| 5525 | /* this is easy because we know that there is enough space */ |
| 5526 | *target++=(uint8_t)value; |
| 5527 | --targetCapacity; |
| 5528 | } else /* length==2 */ { |
| 5529 | *target++=(uint8_t)(value>>8); |
| 5530 | if(2<=targetCapacity) { |
| 5531 | *target++=(uint8_t)value; |
| 5532 | targetCapacity-=2; |
| 5533 | } else { |
| 5534 | cnv->charErrorBuffer[0]=(char)value; |
| 5535 | cnv->charErrorBufferLength=1; |
| 5536 | |
| 5537 | /* target overflow */ |
| 5538 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 5539 | break; |
| 5540 | } |
| 5541 | } |
| 5542 | continue; |
| 5543 | |
| 5544 | unassigned: |
| 5545 | { |
| 5546 | /* |
| 5547 | * Try an extension mapping. |
| 5548 | * Pass in no source because we don't have UTF-16 input. |
| 5549 | * If we have a partial match on c, we will return and revert |
| 5550 | * to UTF-8->UTF-16->charset conversion. |
| 5551 | */ |
| 5552 | static const UChar nul=0; |
| 5553 | const UChar *noSource=&nul; |
| 5554 | c=_extFromU(cnv, cnv->sharedData, |
| 5555 | c, &noSource, noSource, |
| 5556 | &target, target+targetCapacity, |
| 5557 | NULL, -1, |
| 5558 | pFromUArgs->flush, |
| 5559 | pErrorCode); |
| 5560 | |
| 5561 | if(U_FAILURE(*pErrorCode)) { |
| 5562 | /* not mappable or buffer overflow */ |
| 5563 | cnv->fromUChar32=c; |
| 5564 | break; |
| 5565 | } else if(cnv->preFromUFirstCP>=0) { |
| 5566 | /* |
| 5567 | * Partial match, return and revert to pivoting. |
| 5568 | * In normal from-UTF-16 conversion, we would just continue |
| 5569 | * but then exit the loop because the extension match would |
| 5570 | * have consumed the source. |
| 5571 | */ |
| 5572 | *pErrorCode=U_USING_DEFAULT_WARNING; |
| 5573 | break; |
| 5574 | } else { |
| 5575 | /* a mapping was written to the target, continue */ |
| 5576 | |
| 5577 | /* recalculate the targetCapacity after an extension mapping */ |
| 5578 | targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target); |
| 5579 | continue; |
| 5580 | } |
| 5581 | } |
| 5582 | } else { |
| 5583 | /* target is full */ |
| 5584 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 5585 | break; |
| 5586 | } |
| 5587 | } |
| 5588 | |
| 5589 | /* |
| 5590 | * The sourceLimit may have been adjusted before the conversion loop |
| 5591 | * to stop before a truncated sequence. |
| 5592 | * If so, then collect the truncated sequence now. |
| 5593 | */ |
| 5594 | if(U_SUCCESS(*pErrorCode) && |
| 5595 | cnv->preFromUFirstCP<0 && |
| 5596 | source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) { |
| 5597 | c=utf8->toUBytes[0]=b=*source++; |
| 5598 | toULength=1; |
| 5599 | toULimit=U8_COUNT_TRAIL_BYTES(b)+1; |
| 5600 | while(source<sourceLimit) { |
| 5601 | utf8->toUBytes[toULength++]=b=*source++; |
| 5602 | c=(c<<6)+b; |
| 5603 | } |
| 5604 | utf8->toUnicodeStatus=c; |
| 5605 | utf8->toULength=toULength; |
| 5606 | utf8->mode=toULimit; |
| 5607 | } |
| 5608 | |
| 5609 | /* write back the updated pointers */ |
| 5610 | pToUArgs->source=(char *)source; |
| 5611 | pFromUArgs->target=(char *)target; |
| 5612 | } |
| 5613 | |
| 5614 | /* miscellaneous ------------------------------------------------------------ */ |
| 5615 | |
| 5616 | static void |
| 5617 | ucnv_MBCSGetStarters(const UConverter* cnv, |
| 5618 | UBool starters[256], |
| 5619 | UErrorCode *) { |
| 5620 | const int32_t *state0; |
| 5621 | int i; |
| 5622 | |
| 5623 | state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState]; |
| 5624 | for(i=0; i<256; ++i) { |
| 5625 | /* all bytes that cause a state transition from state 0 are lead bytes */ |
| 5626 | starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]); |
| 5627 | } |
| 5628 | } |
| 5629 | |
| 5630 | /* |
| 5631 | * This is an internal function that allows other converter implementations |
| 5632 | * to check whether a byte is a lead byte. |
| 5633 | */ |
| 5634 | U_CFUNC UBool |
| 5635 | ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) { |
| 5636 | return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]); |
| 5637 | } |
| 5638 | |
| 5639 | static void |
| 5640 | ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs, |
| 5641 | int32_t offsetIndex, |
| 5642 | UErrorCode *pErrorCode) { |
| 5643 | UConverter *cnv=pArgs->converter; |
| 5644 | char *p, *subchar; |
| 5645 | char buffer[4]; |
| 5646 | int32_t length; |
| 5647 | |
| 5648 | /* first, select between subChar and subChar1 */ |
| 5649 | if( cnv->subChar1!=0 && |
| 5650 | (cnv->sharedData->mbcs.extIndexes!=NULL ? |
| 5651 | cnv->useSubChar1 : |
| 5652 | (cnv->invalidUCharBuffer[0]<=0xff)) |
| 5653 | ) { |
| 5654 | /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */ |
| 5655 | subchar=(char *)&cnv->subChar1; |
| 5656 | length=1; |
| 5657 | } else { |
| 5658 | /* select subChar in all other cases */ |
| 5659 | subchar=(char *)cnv->subChars; |
| 5660 | length=cnv->subCharLen; |
| 5661 | } |
| 5662 | |
| 5663 | /* reset the selector for the next code point */ |
| 5664 | cnv->useSubChar1=FALSE; |
| 5665 | |
| 5666 | if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) { |
| 5667 | p=buffer; |
| 5668 | |
| 5669 | /* fromUnicodeStatus contains prevLength */ |
| 5670 | switch(length) { |
| 5671 | case 1: |
| 5672 | if(cnv->fromUnicodeStatus==2) { |
| 5673 | /* DBCS mode and SBCS sub char: change to SBCS */ |
| 5674 | cnv->fromUnicodeStatus=1; |
| 5675 | *p++=UCNV_SI; |
| 5676 | } |
| 5677 | *p++=subchar[0]; |
| 5678 | break; |
| 5679 | case 2: |
| 5680 | if(cnv->fromUnicodeStatus<=1) { |
| 5681 | /* SBCS mode and DBCS sub char: change to DBCS */ |
| 5682 | cnv->fromUnicodeStatus=2; |
| 5683 | *p++=UCNV_SO; |
| 5684 | } |
| 5685 | *p++=subchar[0]; |
| 5686 | *p++=subchar[1]; |
| 5687 | break; |
| 5688 | default: |
| 5689 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 5690 | return; |
| 5691 | } |
| 5692 | subchar=buffer; |
| 5693 | length=(int32_t)(p-buffer); |
| 5694 | } |
| 5695 | |
| 5696 | ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode); |
| 5697 | } |
| 5698 | |
| 5699 | U_CFUNC UConverterType |
| 5700 | ucnv_MBCSGetType(const UConverter* converter) { |
| 5701 | /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */ |
| 5702 | if(converter->sharedData->mbcs.countStates==1) { |
| 5703 | return (UConverterType)UCNV_SBCS; |
| 5704 | } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) { |
| 5705 | return (UConverterType)UCNV_EBCDIC_STATEFUL; |
| 5706 | } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) { |
| 5707 | return (UConverterType)UCNV_DBCS; |
| 5708 | } |
| 5709 | return (UConverterType)UCNV_MBCS; |
| 5710 | } |
| 5711 | |
| 5712 | #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */ |