Jungshik Shin | 87232d8 | 2017-05-13 21:10:13 -0700 | [diff] [blame] | 1 | // © 2016 and later: Unicode, Inc. and others. |
Jungshik Shin | 5feb9ad | 2016-10-21 12:52:48 -0700 | [diff] [blame] | 2 | // License & terms of use: http://www.unicode.org/copyright.html |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 3 | /* |
| 4 | ******************************************************************************* |
| 5 | * Copyright (C) 2010-2014, International Business Machines |
| 6 | * Corporation and others. All Rights Reserved. |
| 7 | ******************************************************************************* |
| 8 | * collationiterator.cpp |
| 9 | * |
| 10 | * created on: 2010oct27 |
| 11 | * created by: Markus W. Scherer |
| 12 | */ |
| 13 | |
| 14 | #include "utypeinfo.h" // for 'typeid' to work |
| 15 | |
| 16 | #include "unicode/utypes.h" |
| 17 | |
| 18 | #if !UCONFIG_NO_COLLATION |
| 19 | |
| 20 | #include "unicode/ucharstrie.h" |
| 21 | #include "unicode/ustringtrie.h" |
| 22 | #include "charstr.h" |
| 23 | #include "cmemory.h" |
| 24 | #include "collation.h" |
| 25 | #include "collationdata.h" |
| 26 | #include "collationfcd.h" |
| 27 | #include "collationiterator.h" |
| 28 | #include "normalizer2impl.h" |
| 29 | #include "uassert.h" |
| 30 | #include "uvectr32.h" |
| 31 | |
| 32 | U_NAMESPACE_BEGIN |
| 33 | |
| 34 | CollationIterator::CEBuffer::~CEBuffer() {} |
| 35 | |
| 36 | UBool |
| 37 | CollationIterator::CEBuffer::ensureAppendCapacity(int32_t appCap, UErrorCode &errorCode) { |
| 38 | int32_t capacity = buffer.getCapacity(); |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 39 | if((length + appCap) <= capacity) { return true; } |
| 40 | if(U_FAILURE(errorCode)) { return false; } |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 41 | do { |
| 42 | if(capacity < 1000) { |
| 43 | capacity *= 4; |
| 44 | } else { |
| 45 | capacity *= 2; |
| 46 | } |
| 47 | } while(capacity < (length + appCap)); |
| 48 | int64_t *p = buffer.resize(capacity, length); |
| 49 | if(p == NULL) { |
| 50 | errorCode = U_MEMORY_ALLOCATION_ERROR; |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 51 | return false; |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 52 | } |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 53 | return true; |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 54 | } |
| 55 | |
| 56 | // State of combining marks skipped in discontiguous contraction. |
| 57 | // We create a state object on first use and keep it around deactivated between uses. |
| 58 | class SkippedState : public UMemory { |
| 59 | public: |
| 60 | // Born active but empty. |
| 61 | SkippedState() : pos(0), skipLengthAtMatch(0) {} |
| 62 | void clear() { |
| 63 | oldBuffer.remove(); |
| 64 | pos = 0; |
| 65 | // The newBuffer is reset by setFirstSkipped(). |
| 66 | } |
| 67 | |
| 68 | UBool isEmpty() const { return oldBuffer.isEmpty(); } |
| 69 | |
| 70 | UBool hasNext() const { return pos < oldBuffer.length(); } |
| 71 | |
| 72 | // Requires hasNext(). |
| 73 | UChar32 next() { |
| 74 | UChar32 c = oldBuffer.char32At(pos); |
| 75 | pos += U16_LENGTH(c); |
| 76 | return c; |
| 77 | } |
| 78 | |
| 79 | // Accounts for one more input code point read beyond the end of the marks buffer. |
| 80 | void incBeyond() { |
| 81 | U_ASSERT(!hasNext()); |
| 82 | ++pos; |
| 83 | } |
| 84 | |
| 85 | // Goes backward through the skipped-marks buffer. |
| 86 | // Returns the number of code points read beyond the skipped marks |
| 87 | // that need to be backtracked through normal input. |
| 88 | int32_t backwardNumCodePoints(int32_t n) { |
| 89 | int32_t length = oldBuffer.length(); |
| 90 | int32_t beyond = pos - length; |
| 91 | if(beyond > 0) { |
| 92 | if(beyond >= n) { |
| 93 | // Not back far enough to re-enter the oldBuffer. |
| 94 | pos -= n; |
| 95 | return n; |
| 96 | } else { |
| 97 | // Back out all beyond-oldBuffer code points and re-enter the buffer. |
| 98 | pos = oldBuffer.moveIndex32(length, beyond - n); |
| 99 | return beyond; |
| 100 | } |
| 101 | } else { |
| 102 | // Go backwards from inside the oldBuffer. |
| 103 | pos = oldBuffer.moveIndex32(pos, -n); |
| 104 | return 0; |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | void setFirstSkipped(UChar32 c) { |
| 109 | skipLengthAtMatch = 0; |
| 110 | newBuffer.setTo(c); |
| 111 | } |
| 112 | |
| 113 | void skip(UChar32 c) { |
| 114 | newBuffer.append(c); |
| 115 | } |
| 116 | |
| 117 | void recordMatch() { skipLengthAtMatch = newBuffer.length(); } |
| 118 | |
| 119 | // Replaces the characters we consumed with the newly skipped ones. |
| 120 | void replaceMatch() { |
| 121 | // Note: UnicodeString.replace() pins pos to at most length(). |
| 122 | oldBuffer.replace(0, pos, newBuffer, 0, skipLengthAtMatch); |
| 123 | pos = 0; |
| 124 | } |
| 125 | |
| 126 | void saveTrieState(const UCharsTrie &trie) { trie.saveState(state); } |
| 127 | void resetToTrieState(UCharsTrie &trie) const { trie.resetToState(state); } |
| 128 | |
| 129 | private: |
| 130 | // Combining marks skipped in previous discontiguous-contraction matching. |
| 131 | // After that discontiguous contraction was completed, we start reading them from here. |
| 132 | UnicodeString oldBuffer; |
| 133 | // Combining marks newly skipped in current discontiguous-contraction matching. |
| 134 | // These might have been read from the normal text or from the oldBuffer. |
| 135 | UnicodeString newBuffer; |
| 136 | // Reading index in oldBuffer, |
| 137 | // or counter for how many code points have been read beyond oldBuffer (pos-oldBuffer.length()). |
| 138 | int32_t pos; |
| 139 | // newBuffer.length() at the time of the last matching character. |
| 140 | // When a partial match fails, we back out skipped and partial-matching input characters. |
| 141 | int32_t skipLengthAtMatch; |
| 142 | // We save the trie state before we attempt to match a character, |
| 143 | // so that we can skip it and try the next one. |
| 144 | UCharsTrie::State state; |
| 145 | }; |
| 146 | |
| 147 | CollationIterator::CollationIterator(const CollationIterator &other) |
| 148 | : UObject(other), |
| 149 | trie(other.trie), |
| 150 | data(other.data), |
| 151 | cesIndex(other.cesIndex), |
| 152 | skipped(NULL), |
| 153 | numCpFwd(other.numCpFwd), |
| 154 | isNumeric(other.isNumeric) { |
| 155 | UErrorCode errorCode = U_ZERO_ERROR; |
| 156 | int32_t length = other.ceBuffer.length; |
| 157 | if(length > 0 && ceBuffer.ensureAppendCapacity(length, errorCode)) { |
| 158 | for(int32_t i = 0; i < length; ++i) { |
| 159 | ceBuffer.set(i, other.ceBuffer.get(i)); |
| 160 | } |
| 161 | ceBuffer.length = length; |
| 162 | } else { |
| 163 | cesIndex = 0; |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | CollationIterator::~CollationIterator() { |
| 168 | delete skipped; |
| 169 | } |
| 170 | |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 171 | bool |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 172 | CollationIterator::operator==(const CollationIterator &other) const { |
| 173 | // Subclasses: Call this method and then add more specific checks. |
| 174 | // Compare the iterator state but not the collation data (trie & data fields): |
| 175 | // Assume that the caller compares the data. |
| 176 | // Ignore skipped since that should be unused between calls to nextCE(). |
| 177 | // (It only stays around to avoid another memory allocation.) |
| 178 | if(!(typeid(*this) == typeid(other) && |
| 179 | ceBuffer.length == other.ceBuffer.length && |
| 180 | cesIndex == other.cesIndex && |
| 181 | numCpFwd == other.numCpFwd && |
| 182 | isNumeric == other.isNumeric)) { |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 183 | return false; |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 184 | } |
| 185 | for(int32_t i = 0; i < ceBuffer.length; ++i) { |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 186 | if(ceBuffer.get(i) != other.ceBuffer.get(i)) { return false; } |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 187 | } |
Frank Tang | 3e05d9d | 2021-11-08 14:04:04 -0800 | [diff] [blame] | 188 | return true; |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 189 | } |
| 190 | |
| 191 | void |
| 192 | CollationIterator::reset() { |
| 193 | cesIndex = ceBuffer.length = 0; |
| 194 | if(skipped != NULL) { skipped->clear(); } |
| 195 | } |
| 196 | |
| 197 | int32_t |
| 198 | CollationIterator::fetchCEs(UErrorCode &errorCode) { |
| 199 | while(U_SUCCESS(errorCode) && nextCE(errorCode) != Collation::NO_CE) { |
| 200 | // No need to loop for each expansion CE. |
| 201 | cesIndex = ceBuffer.length; |
| 202 | } |
| 203 | return ceBuffer.length; |
| 204 | } |
| 205 | |
| 206 | uint32_t |
| 207 | CollationIterator::handleNextCE32(UChar32 &c, UErrorCode &errorCode) { |
| 208 | c = nextCodePoint(errorCode); |
| 209 | return (c < 0) ? Collation::FALLBACK_CE32 : data->getCE32(c); |
| 210 | } |
| 211 | |
| 212 | UChar |
| 213 | CollationIterator::handleGetTrailSurrogate() { |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | UBool |
| 218 | CollationIterator::foundNULTerminator() { |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 219 | return false; |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 220 | } |
| 221 | |
| 222 | UBool |
| 223 | CollationIterator::forbidSurrogateCodePoints() const { |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 224 | return false; |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 225 | } |
| 226 | |
| 227 | uint32_t |
| 228 | CollationIterator::getDataCE32(UChar32 c) const { |
| 229 | return data->getCE32(c); |
| 230 | } |
| 231 | |
| 232 | uint32_t |
| 233 | CollationIterator::getCE32FromBuilderData(uint32_t /*ce32*/, UErrorCode &errorCode) { |
| 234 | if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; } |
| 235 | return 0; |
| 236 | } |
| 237 | |
| 238 | int64_t |
| 239 | CollationIterator::nextCEFromCE32(const CollationData *d, UChar32 c, uint32_t ce32, |
| 240 | UErrorCode &errorCode) { |
| 241 | --ceBuffer.length; // Undo ceBuffer.incLength(). |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 242 | appendCEsFromCE32(d, c, ce32, true, errorCode); |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 243 | if(U_SUCCESS(errorCode)) { |
| 244 | return ceBuffer.get(cesIndex++); |
| 245 | } else { |
| 246 | return Collation::NO_CE_PRIMARY; |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | void |
| 251 | CollationIterator::appendCEsFromCE32(const CollationData *d, UChar32 c, uint32_t ce32, |
| 252 | UBool forward, UErrorCode &errorCode) { |
| 253 | while(Collation::isSpecialCE32(ce32)) { |
| 254 | switch(Collation::tagFromCE32(ce32)) { |
| 255 | case Collation::FALLBACK_TAG: |
| 256 | case Collation::RESERVED_TAG_3: |
| 257 | if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; } |
| 258 | return; |
| 259 | case Collation::LONG_PRIMARY_TAG: |
| 260 | ceBuffer.append(Collation::ceFromLongPrimaryCE32(ce32), errorCode); |
| 261 | return; |
| 262 | case Collation::LONG_SECONDARY_TAG: |
| 263 | ceBuffer.append(Collation::ceFromLongSecondaryCE32(ce32), errorCode); |
| 264 | return; |
| 265 | case Collation::LATIN_EXPANSION_TAG: |
| 266 | if(ceBuffer.ensureAppendCapacity(2, errorCode)) { |
| 267 | ceBuffer.set(ceBuffer.length, Collation::latinCE0FromCE32(ce32)); |
| 268 | ceBuffer.set(ceBuffer.length + 1, Collation::latinCE1FromCE32(ce32)); |
| 269 | ceBuffer.length += 2; |
| 270 | } |
| 271 | return; |
| 272 | case Collation::EXPANSION32_TAG: { |
| 273 | const uint32_t *ce32s = d->ce32s + Collation::indexFromCE32(ce32); |
| 274 | int32_t length = Collation::lengthFromCE32(ce32); |
| 275 | if(ceBuffer.ensureAppendCapacity(length, errorCode)) { |
| 276 | do { |
| 277 | ceBuffer.appendUnsafe(Collation::ceFromCE32(*ce32s++)); |
| 278 | } while(--length > 0); |
| 279 | } |
| 280 | return; |
| 281 | } |
| 282 | case Collation::EXPANSION_TAG: { |
| 283 | const int64_t *ces = d->ces + Collation::indexFromCE32(ce32); |
| 284 | int32_t length = Collation::lengthFromCE32(ce32); |
| 285 | if(ceBuffer.ensureAppendCapacity(length, errorCode)) { |
| 286 | do { |
| 287 | ceBuffer.appendUnsafe(*ces++); |
| 288 | } while(--length > 0); |
| 289 | } |
| 290 | return; |
| 291 | } |
| 292 | case Collation::BUILDER_DATA_TAG: |
| 293 | ce32 = getCE32FromBuilderData(ce32, errorCode); |
| 294 | if(U_FAILURE(errorCode)) { return; } |
| 295 | if(ce32 == Collation::FALLBACK_CE32) { |
| 296 | d = data->base; |
| 297 | ce32 = d->getCE32(c); |
| 298 | } |
| 299 | break; |
| 300 | case Collation::PREFIX_TAG: |
| 301 | if(forward) { backwardNumCodePoints(1, errorCode); } |
| 302 | ce32 = getCE32FromPrefix(d, ce32, errorCode); |
| 303 | if(forward) { forwardNumCodePoints(1, errorCode); } |
| 304 | break; |
| 305 | case Collation::CONTRACTION_TAG: { |
| 306 | const UChar *p = d->contexts + Collation::indexFromCE32(ce32); |
| 307 | uint32_t defaultCE32 = CollationData::readCE32(p); // Default if no suffix match. |
| 308 | if(!forward) { |
| 309 | // Backward contractions are handled by previousCEUnsafe(). |
| 310 | // c has contractions but they were not found. |
| 311 | ce32 = defaultCE32; |
| 312 | break; |
| 313 | } |
| 314 | UChar32 nextCp; |
| 315 | if(skipped == NULL && numCpFwd < 0) { |
| 316 | // Some portion of nextCE32FromContraction() pulled out here as an ASCII fast path, |
| 317 | // avoiding the function call and the nextSkippedCodePoint() overhead. |
| 318 | nextCp = nextCodePoint(errorCode); |
| 319 | if(nextCp < 0) { |
| 320 | // No more text. |
| 321 | ce32 = defaultCE32; |
| 322 | break; |
| 323 | } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 && |
| 324 | !CollationFCD::mayHaveLccc(nextCp)) { |
| 325 | // All contraction suffixes start with characters with lccc!=0 |
| 326 | // but the next code point has lccc==0. |
| 327 | backwardNumCodePoints(1, errorCode); |
| 328 | ce32 = defaultCE32; |
| 329 | break; |
| 330 | } |
| 331 | } else { |
| 332 | nextCp = nextSkippedCodePoint(errorCode); |
| 333 | if(nextCp < 0) { |
| 334 | // No more text. |
| 335 | ce32 = defaultCE32; |
| 336 | break; |
| 337 | } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 && |
| 338 | !CollationFCD::mayHaveLccc(nextCp)) { |
| 339 | // All contraction suffixes start with characters with lccc!=0 |
| 340 | // but the next code point has lccc==0. |
| 341 | backwardNumSkipped(1, errorCode); |
| 342 | ce32 = defaultCE32; |
| 343 | break; |
| 344 | } |
| 345 | } |
| 346 | ce32 = nextCE32FromContraction(d, ce32, p + 2, defaultCE32, nextCp, errorCode); |
| 347 | if(ce32 == Collation::NO_CE32) { |
| 348 | // CEs from a discontiguous contraction plus the skipped combining marks |
| 349 | // have been appended already. |
| 350 | return; |
| 351 | } |
| 352 | break; |
| 353 | } |
| 354 | case Collation::DIGIT_TAG: |
| 355 | if(isNumeric) { |
| 356 | appendNumericCEs(ce32, forward, errorCode); |
| 357 | return; |
| 358 | } else { |
| 359 | // Fetch the non-numeric-collation CE32 and continue. |
| 360 | ce32 = d->ce32s[Collation::indexFromCE32(ce32)]; |
| 361 | break; |
| 362 | } |
| 363 | case Collation::U0000_TAG: |
| 364 | U_ASSERT(c == 0); |
| 365 | if(forward && foundNULTerminator()) { |
| 366 | // Handle NUL-termination. (Not needed in Java.) |
| 367 | ceBuffer.append(Collation::NO_CE, errorCode); |
| 368 | return; |
| 369 | } else { |
| 370 | // Fetch the normal ce32 for U+0000 and continue. |
| 371 | ce32 = d->ce32s[0]; |
| 372 | break; |
| 373 | } |
| 374 | case Collation::HANGUL_TAG: { |
| 375 | const uint32_t *jamoCE32s = d->jamoCE32s; |
| 376 | c -= Hangul::HANGUL_BASE; |
| 377 | UChar32 t = c % Hangul::JAMO_T_COUNT; |
| 378 | c /= Hangul::JAMO_T_COUNT; |
| 379 | UChar32 v = c % Hangul::JAMO_V_COUNT; |
| 380 | c /= Hangul::JAMO_V_COUNT; |
| 381 | if((ce32 & Collation::HANGUL_NO_SPECIAL_JAMO) != 0) { |
| 382 | // None of the Jamo CE32s are isSpecialCE32(). |
| 383 | // Avoid recursive function calls and per-Jamo tests. |
| 384 | if(ceBuffer.ensureAppendCapacity(t == 0 ? 2 : 3, errorCode)) { |
| 385 | ceBuffer.set(ceBuffer.length, Collation::ceFromCE32(jamoCE32s[c])); |
| 386 | ceBuffer.set(ceBuffer.length + 1, Collation::ceFromCE32(jamoCE32s[19 + v])); |
| 387 | ceBuffer.length += 2; |
| 388 | if(t != 0) { |
| 389 | ceBuffer.appendUnsafe(Collation::ceFromCE32(jamoCE32s[39 + t])); |
| 390 | } |
| 391 | } |
| 392 | return; |
| 393 | } else { |
| 394 | // We should not need to compute each Jamo code point. |
| 395 | // In particular, there should be no offset or implicit ce32. |
| 396 | appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[c], forward, errorCode); |
| 397 | appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[19 + v], forward, errorCode); |
| 398 | if(t == 0) { return; } |
| 399 | // offset 39 = 19 + 21 - 1: |
| 400 | // 19 = JAMO_L_COUNT |
| 401 | // 21 = JAMO_T_COUNT |
| 402 | // -1 = omit t==0 |
| 403 | ce32 = jamoCE32s[39 + t]; |
| 404 | c = U_SENTINEL; |
| 405 | break; |
| 406 | } |
| 407 | } |
| 408 | case Collation::LEAD_SURROGATE_TAG: { |
| 409 | U_ASSERT(forward); // Backward iteration should never see lead surrogate code _unit_ data. |
| 410 | U_ASSERT(U16_IS_LEAD(c)); |
| 411 | UChar trail; |
| 412 | if(U16_IS_TRAIL(trail = handleGetTrailSurrogate())) { |
| 413 | c = U16_GET_SUPPLEMENTARY(c, trail); |
| 414 | ce32 &= Collation::LEAD_TYPE_MASK; |
| 415 | if(ce32 == Collation::LEAD_ALL_UNASSIGNED) { |
| 416 | ce32 = Collation::UNASSIGNED_CE32; // unassigned-implicit |
| 417 | } else if(ce32 == Collation::LEAD_ALL_FALLBACK || |
| 418 | (ce32 = d->getCE32FromSupplementary(c)) == Collation::FALLBACK_CE32) { |
| 419 | // fall back to the base data |
| 420 | d = d->base; |
| 421 | ce32 = d->getCE32FromSupplementary(c); |
| 422 | } |
| 423 | } else { |
| 424 | // c is an unpaired surrogate. |
| 425 | ce32 = Collation::UNASSIGNED_CE32; |
| 426 | } |
| 427 | break; |
| 428 | } |
| 429 | case Collation::OFFSET_TAG: |
| 430 | U_ASSERT(c >= 0); |
| 431 | ceBuffer.append(d->getCEFromOffsetCE32(c, ce32), errorCode); |
| 432 | return; |
| 433 | case Collation::IMPLICIT_TAG: |
| 434 | U_ASSERT(c >= 0); |
| 435 | if(U_IS_SURROGATE(c) && forbidSurrogateCodePoints()) { |
| 436 | ce32 = Collation::FFFD_CE32; |
| 437 | break; |
| 438 | } else { |
| 439 | ceBuffer.append(Collation::unassignedCEFromCodePoint(c), errorCode); |
| 440 | return; |
| 441 | } |
| 442 | } |
| 443 | } |
| 444 | ceBuffer.append(Collation::ceFromSimpleCE32(ce32), errorCode); |
| 445 | } |
| 446 | |
| 447 | uint32_t |
| 448 | CollationIterator::getCE32FromPrefix(const CollationData *d, uint32_t ce32, |
| 449 | UErrorCode &errorCode) { |
| 450 | const UChar *p = d->contexts + Collation::indexFromCE32(ce32); |
| 451 | ce32 = CollationData::readCE32(p); // Default if no prefix match. |
| 452 | p += 2; |
| 453 | // Number of code points read before the original code point. |
| 454 | int32_t lookBehind = 0; |
| 455 | UCharsTrie prefixes(p); |
| 456 | for(;;) { |
| 457 | UChar32 c = previousCodePoint(errorCode); |
| 458 | if(c < 0) { break; } |
| 459 | ++lookBehind; |
| 460 | UStringTrieResult match = prefixes.nextForCodePoint(c); |
| 461 | if(USTRINGTRIE_HAS_VALUE(match)) { |
| 462 | ce32 = (uint32_t)prefixes.getValue(); |
| 463 | } |
| 464 | if(!USTRINGTRIE_HAS_NEXT(match)) { break; } |
| 465 | } |
| 466 | forwardNumCodePoints(lookBehind, errorCode); |
| 467 | return ce32; |
| 468 | } |
| 469 | |
| 470 | UChar32 |
| 471 | CollationIterator::nextSkippedCodePoint(UErrorCode &errorCode) { |
| 472 | if(skipped != NULL && skipped->hasNext()) { return skipped->next(); } |
| 473 | if(numCpFwd == 0) { return U_SENTINEL; } |
| 474 | UChar32 c = nextCodePoint(errorCode); |
| 475 | if(skipped != NULL && !skipped->isEmpty() && c >= 0) { skipped->incBeyond(); } |
| 476 | if(numCpFwd > 0 && c >= 0) { --numCpFwd; } |
| 477 | return c; |
| 478 | } |
| 479 | |
| 480 | void |
| 481 | CollationIterator::backwardNumSkipped(int32_t n, UErrorCode &errorCode) { |
| 482 | if(skipped != NULL && !skipped->isEmpty()) { |
| 483 | n = skipped->backwardNumCodePoints(n); |
| 484 | } |
| 485 | backwardNumCodePoints(n, errorCode); |
| 486 | if(numCpFwd >= 0) { numCpFwd += n; } |
| 487 | } |
| 488 | |
| 489 | uint32_t |
| 490 | CollationIterator::nextCE32FromContraction(const CollationData *d, uint32_t contractionCE32, |
| 491 | const UChar *p, uint32_t ce32, UChar32 c, |
| 492 | UErrorCode &errorCode) { |
| 493 | // c: next code point after the original one |
| 494 | |
| 495 | // Number of code points read beyond the original code point. |
| 496 | // Needed for discontiguous contraction matching. |
| 497 | int32_t lookAhead = 1; |
| 498 | // Number of code points read since the last match (initially only c). |
| 499 | int32_t sinceMatch = 1; |
| 500 | // Normally we only need a contiguous match, |
| 501 | // and therefore need not remember the suffixes state from before a mismatch for retrying. |
| 502 | // If we are already processing skipped combining marks, then we do track the state. |
| 503 | UCharsTrie suffixes(p); |
| 504 | if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); } |
| 505 | UStringTrieResult match = suffixes.firstForCodePoint(c); |
| 506 | for(;;) { |
| 507 | UChar32 nextCp; |
| 508 | if(USTRINGTRIE_HAS_VALUE(match)) { |
| 509 | ce32 = (uint32_t)suffixes.getValue(); |
| 510 | if(!USTRINGTRIE_HAS_NEXT(match) || (c = nextSkippedCodePoint(errorCode)) < 0) { |
| 511 | return ce32; |
| 512 | } |
| 513 | if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); } |
| 514 | sinceMatch = 1; |
| 515 | } else if(match == USTRINGTRIE_NO_MATCH || (nextCp = nextSkippedCodePoint(errorCode)) < 0) { |
| 516 | // No match for c, or partial match (USTRINGTRIE_NO_VALUE) and no further text. |
| 517 | // Back up if necessary, and try a discontiguous contraction. |
| 518 | if((contractionCE32 & Collation::CONTRACT_TRAILING_CCC) != 0 && |
| 519 | // Discontiguous contraction matching extends an existing match. |
| 520 | // If there is no match yet, then there is nothing to do. |
| 521 | ((contractionCE32 & Collation::CONTRACT_SINGLE_CP_NO_MATCH) == 0 || |
| 522 | sinceMatch < lookAhead)) { |
| 523 | // The last character of at least one suffix has lccc!=0, |
| 524 | // allowing for discontiguous contractions. |
| 525 | // UCA S2.1.1 only processes non-starters immediately following |
| 526 | // "a match in the table" (sinceMatch=1). |
| 527 | if(sinceMatch > 1) { |
| 528 | // Return to the state after the last match. |
| 529 | // (Return to sinceMatch=0 and re-fetch the first partially-matched character.) |
| 530 | backwardNumSkipped(sinceMatch, errorCode); |
| 531 | c = nextSkippedCodePoint(errorCode); |
| 532 | lookAhead -= sinceMatch - 1; |
| 533 | sinceMatch = 1; |
| 534 | } |
| 535 | if(d->getFCD16(c) > 0xff) { |
| 536 | return nextCE32FromDiscontiguousContraction( |
| 537 | d, suffixes, ce32, lookAhead, c, errorCode); |
| 538 | } |
| 539 | } |
| 540 | break; |
| 541 | } else { |
| 542 | // Continue after partial match (USTRINGTRIE_NO_VALUE) for c. |
| 543 | // It does not have a result value, therefore it is not itself "a match in the table". |
| 544 | // If a partially-matched c has ccc!=0 then |
| 545 | // it might be skipped in discontiguous contraction. |
| 546 | c = nextCp; |
| 547 | ++sinceMatch; |
| 548 | } |
| 549 | ++lookAhead; |
| 550 | match = suffixes.nextForCodePoint(c); |
| 551 | } |
| 552 | backwardNumSkipped(sinceMatch, errorCode); |
| 553 | return ce32; |
| 554 | } |
| 555 | |
| 556 | uint32_t |
| 557 | CollationIterator::nextCE32FromDiscontiguousContraction( |
| 558 | const CollationData *d, UCharsTrie &suffixes, uint32_t ce32, |
| 559 | int32_t lookAhead, UChar32 c, |
| 560 | UErrorCode &errorCode) { |
| 561 | if(U_FAILURE(errorCode)) { return 0; } |
| 562 | |
| 563 | // UCA section 3.3.2 Contractions: |
| 564 | // Contractions that end with non-starter characters |
| 565 | // are known as discontiguous contractions. |
| 566 | // ... discontiguous contractions must be detected in input text |
| 567 | // whenever the final sequence of non-starter characters could be rearranged |
| 568 | // so as to make a contiguous matching sequence that is canonically equivalent. |
| 569 | |
| 570 | // UCA: http://www.unicode.org/reports/tr10/#S2.1 |
| 571 | // S2.1 Find the longest initial substring S at each point that has a match in the table. |
| 572 | // S2.1.1 If there are any non-starters following S, process each non-starter C. |
| 573 | // S2.1.2 If C is not blocked from S, find if S + C has a match in the table. |
| 574 | // Note: A non-starter in a string is called blocked |
| 575 | // if there is another non-starter of the same canonical combining class or zero |
| 576 | // between it and the last character of canonical combining class 0. |
| 577 | // S2.1.3 If there is a match, replace S by S + C, and remove C. |
| 578 | |
| 579 | // First: Is a discontiguous contraction even possible? |
| 580 | uint16_t fcd16 = d->getFCD16(c); |
| 581 | U_ASSERT(fcd16 > 0xff); // The caller checked this already, as a shortcut. |
| 582 | UChar32 nextCp = nextSkippedCodePoint(errorCode); |
| 583 | if(nextCp < 0) { |
| 584 | // No further text. |
| 585 | backwardNumSkipped(1, errorCode); |
| 586 | return ce32; |
| 587 | } |
| 588 | ++lookAhead; |
| 589 | uint8_t prevCC = (uint8_t)fcd16; |
| 590 | fcd16 = d->getFCD16(nextCp); |
| 591 | if(fcd16 <= 0xff) { |
| 592 | // The next code point after c is a starter (S2.1.1 "process each non-starter"). |
| 593 | backwardNumSkipped(2, errorCode); |
| 594 | return ce32; |
| 595 | } |
| 596 | |
| 597 | // We have read and matched (lookAhead-2) code points, |
| 598 | // read non-matching c and peeked ahead at nextCp. |
| 599 | // Return to the state before the mismatch and continue matching with nextCp. |
| 600 | if(skipped == NULL || skipped->isEmpty()) { |
| 601 | if(skipped == NULL) { |
| 602 | skipped = new SkippedState(); |
| 603 | if(skipped == NULL) { |
| 604 | errorCode = U_MEMORY_ALLOCATION_ERROR; |
| 605 | return 0; |
| 606 | } |
| 607 | } |
| 608 | suffixes.reset(); |
| 609 | if(lookAhead > 2) { |
| 610 | // Replay the partial match so far. |
| 611 | backwardNumCodePoints(lookAhead, errorCode); |
| 612 | suffixes.firstForCodePoint(nextCodePoint(errorCode)); |
| 613 | for(int32_t i = 3; i < lookAhead; ++i) { |
| 614 | suffixes.nextForCodePoint(nextCodePoint(errorCode)); |
| 615 | } |
| 616 | // Skip c (which did not match) and nextCp (which we will try now). |
| 617 | forwardNumCodePoints(2, errorCode); |
| 618 | } |
| 619 | skipped->saveTrieState(suffixes); |
| 620 | } else { |
| 621 | // Reset to the trie state before the failed match of c. |
| 622 | skipped->resetToTrieState(suffixes); |
| 623 | } |
| 624 | |
| 625 | skipped->setFirstSkipped(c); |
| 626 | // Number of code points read since the last match (at this point: c and nextCp). |
| 627 | int32_t sinceMatch = 2; |
| 628 | c = nextCp; |
| 629 | for(;;) { |
| 630 | UStringTrieResult match; |
| 631 | // "If C is not blocked from S, find if S + C has a match in the table." (S2.1.2) |
| 632 | if(prevCC < (fcd16 >> 8) && USTRINGTRIE_HAS_VALUE(match = suffixes.nextForCodePoint(c))) { |
| 633 | // "If there is a match, replace S by S + C, and remove C." (S2.1.3) |
| 634 | // Keep prevCC unchanged. |
| 635 | ce32 = (uint32_t)suffixes.getValue(); |
| 636 | sinceMatch = 0; |
| 637 | skipped->recordMatch(); |
| 638 | if(!USTRINGTRIE_HAS_NEXT(match)) { break; } |
| 639 | skipped->saveTrieState(suffixes); |
| 640 | } else { |
| 641 | // No match for "S + C", skip C. |
| 642 | skipped->skip(c); |
| 643 | skipped->resetToTrieState(suffixes); |
| 644 | prevCC = (uint8_t)fcd16; |
| 645 | } |
| 646 | if((c = nextSkippedCodePoint(errorCode)) < 0) { break; } |
| 647 | ++sinceMatch; |
| 648 | fcd16 = d->getFCD16(c); |
| 649 | if(fcd16 <= 0xff) { |
| 650 | // The next code point after c is a starter (S2.1.1 "process each non-starter"). |
| 651 | break; |
| 652 | } |
| 653 | } |
| 654 | backwardNumSkipped(sinceMatch, errorCode); |
| 655 | UBool isTopDiscontiguous = skipped->isEmpty(); |
| 656 | skipped->replaceMatch(); |
| 657 | if(isTopDiscontiguous && !skipped->isEmpty()) { |
| 658 | // We did get a match after skipping one or more combining marks, |
| 659 | // and we are not in a recursive discontiguous contraction. |
| 660 | // Append CEs from the contraction ce32 |
| 661 | // and then from the combining marks that we skipped before the match. |
| 662 | c = U_SENTINEL; |
| 663 | for(;;) { |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 664 | appendCEsFromCE32(d, c, ce32, true, errorCode); |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 665 | // Fetch CE32s for skipped combining marks from the normal data, with fallback, |
| 666 | // rather than from the CollationData where we found the contraction. |
| 667 | if(!skipped->hasNext()) { break; } |
| 668 | c = skipped->next(); |
| 669 | ce32 = getDataCE32(c); |
| 670 | if(ce32 == Collation::FALLBACK_CE32) { |
| 671 | d = data->base; |
| 672 | ce32 = d->getCE32(c); |
| 673 | } else { |
| 674 | d = data; |
| 675 | } |
| 676 | // Note: A nested discontiguous-contraction match |
| 677 | // replaces consumed combining marks with newly skipped ones |
| 678 | // and resets the reading position to the beginning. |
| 679 | } |
| 680 | skipped->clear(); |
| 681 | ce32 = Collation::NO_CE32; // Signal to the caller that the result is in the ceBuffer. |
| 682 | } |
| 683 | return ce32; |
| 684 | } |
| 685 | |
| 686 | void |
| 687 | CollationIterator::appendNumericCEs(uint32_t ce32, UBool forward, UErrorCode &errorCode) { |
| 688 | // Collect digits. |
| 689 | CharString digits; |
| 690 | if(forward) { |
| 691 | for(;;) { |
| 692 | char digit = Collation::digitFromCE32(ce32); |
| 693 | digits.append(digit, errorCode); |
| 694 | if(numCpFwd == 0) { break; } |
| 695 | UChar32 c = nextCodePoint(errorCode); |
| 696 | if(c < 0) { break; } |
| 697 | ce32 = data->getCE32(c); |
| 698 | if(ce32 == Collation::FALLBACK_CE32) { |
| 699 | ce32 = data->base->getCE32(c); |
| 700 | } |
| 701 | if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) { |
| 702 | backwardNumCodePoints(1, errorCode); |
| 703 | break; |
| 704 | } |
| 705 | if(numCpFwd > 0) { --numCpFwd; } |
| 706 | } |
| 707 | } else { |
| 708 | for(;;) { |
| 709 | char digit = Collation::digitFromCE32(ce32); |
| 710 | digits.append(digit, errorCode); |
| 711 | UChar32 c = previousCodePoint(errorCode); |
| 712 | if(c < 0) { break; } |
| 713 | ce32 = data->getCE32(c); |
| 714 | if(ce32 == Collation::FALLBACK_CE32) { |
| 715 | ce32 = data->base->getCE32(c); |
| 716 | } |
| 717 | if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) { |
| 718 | forwardNumCodePoints(1, errorCode); |
| 719 | break; |
| 720 | } |
| 721 | } |
| 722 | // Reverse the digit string. |
| 723 | char *p = digits.data(); |
| 724 | char *q = p + digits.length() - 1; |
| 725 | while(p < q) { |
| 726 | char digit = *p; |
| 727 | *p++ = *q; |
| 728 | *q-- = digit; |
| 729 | } |
| 730 | } |
| 731 | if(U_FAILURE(errorCode)) { return; } |
| 732 | int32_t pos = 0; |
| 733 | do { |
| 734 | // Skip leading zeros. |
| 735 | while(pos < (digits.length() - 1) && digits[pos] == 0) { ++pos; } |
| 736 | // Write a sequence of CEs for at most 254 digits at a time. |
| 737 | int32_t segmentLength = digits.length() - pos; |
| 738 | if(segmentLength > 254) { segmentLength = 254; } |
| 739 | appendNumericSegmentCEs(digits.data() + pos, segmentLength, errorCode); |
| 740 | pos += segmentLength; |
| 741 | } while(U_SUCCESS(errorCode) && pos < digits.length()); |
| 742 | } |
| 743 | |
| 744 | void |
| 745 | CollationIterator::appendNumericSegmentCEs(const char *digits, int32_t length, UErrorCode &errorCode) { |
| 746 | U_ASSERT(1 <= length && length <= 254); |
| 747 | U_ASSERT(length == 1 || digits[0] != 0); |
| 748 | uint32_t numericPrimary = data->numericPrimary; |
| 749 | // Note: We use primary byte values 2..255: digits are not compressible. |
| 750 | if(length <= 7) { |
| 751 | // Very dense encoding for small numbers. |
| 752 | int32_t value = digits[0]; |
| 753 | for(int32_t i = 1; i < length; ++i) { |
| 754 | value = value * 10 + digits[i]; |
| 755 | } |
| 756 | // Primary weight second byte values: |
| 757 | // 74 byte values 2.. 75 for small numbers in two-byte primary weights. |
| 758 | // 40 byte values 76..115 for medium numbers in three-byte primary weights. |
| 759 | // 16 byte values 116..131 for large numbers in four-byte primary weights. |
| 760 | // 124 byte values 132..255 for very large numbers with 4..127 digit pairs. |
| 761 | int32_t firstByte = 2; |
| 762 | int32_t numBytes = 74; |
| 763 | if(value < numBytes) { |
| 764 | // Two-byte primary for 0..73, good for day & month numbers etc. |
| 765 | uint32_t primary = numericPrimary | ((firstByte + value) << 16); |
| 766 | ceBuffer.append(Collation::makeCE(primary), errorCode); |
| 767 | return; |
| 768 | } |
| 769 | value -= numBytes; |
| 770 | firstByte += numBytes; |
| 771 | numBytes = 40; |
| 772 | if(value < numBytes * 254) { |
| 773 | // Three-byte primary for 74..10233=74+40*254-1, good for year numbers and more. |
| 774 | uint32_t primary = numericPrimary | |
| 775 | ((firstByte + value / 254) << 16) | ((2 + value % 254) << 8); |
| 776 | ceBuffer.append(Collation::makeCE(primary), errorCode); |
| 777 | return; |
| 778 | } |
| 779 | value -= numBytes * 254; |
| 780 | firstByte += numBytes; |
| 781 | numBytes = 16; |
| 782 | if(value < numBytes * 254 * 254) { |
| 783 | // Four-byte primary for 10234..1042489=10234+16*254*254-1. |
| 784 | uint32_t primary = numericPrimary | (2 + value % 254); |
| 785 | value /= 254; |
| 786 | primary |= (2 + value % 254) << 8; |
| 787 | value /= 254; |
| 788 | primary |= (firstByte + value % 254) << 16; |
| 789 | ceBuffer.append(Collation::makeCE(primary), errorCode); |
| 790 | return; |
| 791 | } |
| 792 | // original value > 1042489 |
| 793 | } |
| 794 | U_ASSERT(length >= 7); |
| 795 | |
| 796 | // The second primary byte value 132..255 indicates the number of digit pairs (4..127), |
| 797 | // then we generate primary bytes with those pairs. |
| 798 | // Omit trailing 00 pairs. |
| 799 | // Decrement the value for the last pair. |
| 800 | |
| 801 | // Set the exponent. 4 pairs->132, 5 pairs->133, ..., 127 pairs->255. |
| 802 | int32_t numPairs = (length + 1) / 2; |
| 803 | uint32_t primary = numericPrimary | ((132 - 4 + numPairs) << 16); |
| 804 | // Find the length without trailing 00 pairs. |
| 805 | while(digits[length - 1] == 0 && digits[length - 2] == 0) { |
| 806 | length -= 2; |
| 807 | } |
| 808 | // Read the first pair. |
| 809 | uint32_t pair; |
| 810 | int32_t pos; |
| 811 | if(length & 1) { |
| 812 | // Only "half a pair" if we have an odd number of digits. |
| 813 | pair = digits[0]; |
| 814 | pos = 1; |
| 815 | } else { |
| 816 | pair = digits[0] * 10 + digits[1]; |
| 817 | pos = 2; |
| 818 | } |
| 819 | pair = 11 + 2 * pair; |
| 820 | // Add the pairs of digits between pos and length. |
| 821 | int32_t shift = 8; |
| 822 | while(pos < length) { |
| 823 | if(shift == 0) { |
| 824 | // Every three pairs/bytes we need to store a 4-byte-primary CE |
| 825 | // and start with a new CE with the '0' primary lead byte. |
| 826 | primary |= pair; |
| 827 | ceBuffer.append(Collation::makeCE(primary), errorCode); |
| 828 | primary = numericPrimary; |
| 829 | shift = 16; |
| 830 | } else { |
| 831 | primary |= pair << shift; |
| 832 | shift -= 8; |
| 833 | } |
| 834 | pair = 11 + 2 * (digits[pos] * 10 + digits[pos + 1]); |
| 835 | pos += 2; |
| 836 | } |
| 837 | primary |= (pair - 1) << shift; |
| 838 | ceBuffer.append(Collation::makeCE(primary), errorCode); |
| 839 | } |
| 840 | |
| 841 | int64_t |
| 842 | CollationIterator::previousCE(UVector32 &offsets, UErrorCode &errorCode) { |
| 843 | if(ceBuffer.length > 0) { |
| 844 | // Return the previous buffered CE. |
| 845 | return ceBuffer.get(--ceBuffer.length); |
| 846 | } |
| 847 | offsets.removeAllElements(); |
| 848 | int32_t limitOffset = getOffset(); |
| 849 | UChar32 c = previousCodePoint(errorCode); |
| 850 | if(c < 0) { return Collation::NO_CE; } |
| 851 | if(data->isUnsafeBackward(c, isNumeric)) { |
| 852 | return previousCEUnsafe(c, offsets, errorCode); |
| 853 | } |
| 854 | // Simple, safe-backwards iteration: |
| 855 | // Get a CE going backwards, handle prefixes but no contractions. |
| 856 | uint32_t ce32 = data->getCE32(c); |
| 857 | const CollationData *d; |
| 858 | if(ce32 == Collation::FALLBACK_CE32) { |
| 859 | d = data->base; |
| 860 | ce32 = d->getCE32(c); |
| 861 | } else { |
| 862 | d = data; |
| 863 | } |
| 864 | if(Collation::isSimpleOrLongCE32(ce32)) { |
| 865 | return Collation::ceFromCE32(ce32); |
| 866 | } |
Frank Tang | 1f164ee | 2022-11-08 12:31:27 -0800 | [diff] [blame^] | 867 | appendCEsFromCE32(d, c, ce32, false, errorCode); |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 868 | if(U_SUCCESS(errorCode)) { |
| 869 | if(ceBuffer.length > 1) { |
| 870 | offsets.addElement(getOffset(), errorCode); |
| 871 | // For an expansion, the offset of each non-initial CE is the limit offset, |
| 872 | // consistent with forward iteration. |
| 873 | while(offsets.size() <= ceBuffer.length) { |
| 874 | offsets.addElement(limitOffset, errorCode); |
Frank Tang | b869661 | 2019-10-25 14:58:21 -0700 | [diff] [blame] | 875 | } |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 876 | } |
| 877 | return ceBuffer.get(--ceBuffer.length); |
| 878 | } else { |
| 879 | return Collation::NO_CE_PRIMARY; |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | int64_t |
| 884 | CollationIterator::previousCEUnsafe(UChar32 c, UVector32 &offsets, UErrorCode &errorCode) { |
| 885 | // We just move through the input counting safe and unsafe code points |
| 886 | // without collecting the unsafe-backward substring into a buffer and |
| 887 | // switching to it. |
| 888 | // This is to keep the logic simple. Otherwise we would have to handle |
| 889 | // prefix matching going before the backward buffer, switching |
| 890 | // to iteration and back, etc. |
| 891 | // In the most important case of iterating over a normal string, |
| 892 | // reading from the string itself is already maximally fast. |
| 893 | // The only drawback there is that after getting the CEs we always |
| 894 | // skip backward to the safe character rather than switching out |
| 895 | // of a backwardBuffer. |
| 896 | // But this should not be the common case for previousCE(), |
| 897 | // and correctness and maintainability are more important than |
| 898 | // complex optimizations. |
| 899 | // Find the first safe character before c. |
| 900 | int32_t numBackward = 1; |
| 901 | while((c = previousCodePoint(errorCode)) >= 0) { |
| 902 | ++numBackward; |
| 903 | if(!data->isUnsafeBackward(c, isNumeric)) { |
| 904 | break; |
| 905 | } |
| 906 | } |
| 907 | // Set the forward iteration limit. |
| 908 | // Note: This counts code points. |
| 909 | // We cannot enforce a limit in the middle of a surrogate pair or similar. |
| 910 | numCpFwd = numBackward; |
| 911 | // Reset the forward iterator. |
| 912 | cesIndex = 0; |
| 913 | U_ASSERT(ceBuffer.length == 0); |
| 914 | // Go forward and collect the CEs. |
| 915 | int32_t offset = getOffset(); |
| 916 | while(numCpFwd > 0) { |
| 917 | // nextCE() normally reads one code point. |
| 918 | // Contraction matching and digit specials read more and check numCpFwd. |
| 919 | --numCpFwd; |
| 920 | // Append one or more CEs to the ceBuffer. |
| 921 | (void)nextCE(errorCode); |
| 922 | U_ASSERT(U_FAILURE(errorCode) || ceBuffer.get(ceBuffer.length - 1) != Collation::NO_CE); |
| 923 | // No need to loop for getting each expansion CE from nextCE(). |
| 924 | cesIndex = ceBuffer.length; |
| 925 | // However, we need to write an offset for each CE. |
| 926 | // This is for CollationElementIterator::getOffset() to return |
| 927 | // intermediate offsets from the unsafe-backwards segment. |
| 928 | U_ASSERT(offsets.size() < ceBuffer.length); |
| 929 | offsets.addElement(offset, errorCode); |
| 930 | // For an expansion, the offset of each non-initial CE is the limit offset, |
| 931 | // consistent with forward iteration. |
| 932 | offset = getOffset(); |
| 933 | while(offsets.size() < ceBuffer.length) { |
| 934 | offsets.addElement(offset, errorCode); |
Frank Tang | b869661 | 2019-10-25 14:58:21 -0700 | [diff] [blame] | 935 | } |
Jungshik Shin (jungshik at google) | 0f8746a | 2015-01-08 15:46:45 -0800 | [diff] [blame] | 936 | } |
| 937 | U_ASSERT(offsets.size() == ceBuffer.length); |
| 938 | // End offset corresponding to just after the unsafe-backwards segment. |
| 939 | offsets.addElement(offset, errorCode); |
| 940 | // Reset the forward iteration limit |
| 941 | // and move backward to before the segment for which we fetched CEs. |
| 942 | numCpFwd = -1; |
| 943 | backwardNumCodePoints(numBackward, errorCode); |
| 944 | // Use the collected CEs and return the last one. |
| 945 | cesIndex = 0; // Avoid cesIndex > ceBuffer.length when that gets decremented. |
| 946 | if(U_SUCCESS(errorCode)) { |
| 947 | return ceBuffer.get(--ceBuffer.length); |
| 948 | } else { |
| 949 | return Collation::NO_CE_PRIMARY; |
| 950 | } |
| 951 | } |
| 952 | |
| 953 | U_NAMESPACE_END |
| 954 | |
| 955 | #endif // !UCONFIG_NO_COLLATION |